
NGWS runtime

Supporting Security Declarations and
Annotations

Original: December 17, 1999

Last revision: June 2, 2000

This specification provides background information on how software development
tools can support NGWS security declarations and annotations. For additional
information on these topics see the related documents listed in Section 6.

The purpose of this document is to provide basic “how-to” information for software
tools and reduce the amount of background reading necessary to understand how to
support NGWS runtime security relevant information. There are four areas which
compilers/software development tools are expected to support:

 Declarative security checks in code

 Security permission request sets in assembly manifests

 Marking of unverifiable code (not applicable for languages that generate verifiably
type safe code such as VB 7.0 and C#)

 Insertion of custom evidence into an assembly manifest

NOTE: THIS DOCUMENT IS AN EARLY RELEASE OF THE FINAL SPECIFICATION. IT IS

MEANT TO SPECIFY AND ACCOMPANY SOFTWARE THAT IS STILL IN DEVELOPMENT.

SOME OF THE INFORMATION IN THIS DOCUMENTATION MAY BE INACCURATE OR MAY

NOT BE AN ACCURATE REPRESENTATION OF THE FUNCTIONALITY OF THE FINAL

SPECIFICATION OR SOFTWARE. MICROSOFT ASSUMES NO RESPONSIBILITY FOR ANY

DAMAGES THAT MIGHT OCCUR EITHER DIRECTLY OR INDIRECTLY FROM THESE

INACCURACIES. MICROSOFT MAY HAVE TRADEMARKS, COPYRIGHTS, PATENTS OR

PENDING PATENT APPLICATIONS, OR OTHER INTELLECTUAL PROPERTY RIGHTS

COVERING SUBJECT MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS

DOCUMENT DOES NOT GIVE YOU A LICENSE TO THESE TRADEMARKS, COPYRIGHTS,

PATENTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

Supporting Security Declarations and Annotations

Table of Contents
1 Supporting Declarative Security..3

1.1 Overview of Supporting Declarative Security..3

1.2 Implementation Discussion..4

1.2.1 Security Custom Attributes...4

1.2.2 API for Emitting Declarative Security Checks...................................6

2 Assembly Security Permission Requests...8

2.1 Overview of Assembly Security Permission Requests.............................8

2.2 Generating Assembly Permission Requests...9

2.2.1 Using XML-encoded Permission Sets..9

2.2.2 Using Custom Attributes...9

2.3 XML Permission Encoding..10

2.3.1 Permission Set Encoding...10

2.3.2 Permission Encoding..10

3 Marking Unverifiable Code Overview..12

3.1 Marking Unverifiable Code...12

3.2 Requesting the SkipVerification Permission...12

4 Inserting Evidence in Assemblies...14

5 Dynamic Assemblies..15

5.1 Declarations in dynamic assemblies..15

5.2 Asembly Permission Requests..15

5.3 Inserting Evidence..15

6 Relevant Documents..17

This is preliminary documentation and subject to change Page 2 6/2/2000

Supporting Security Declarations and Annotations

1 Supporting Declarative Security

1.1Overview of Supporting Declarative Security
The NGWS runtime provides APIs to allow compilers to emit metadata information
representing developer defined declarative security checks (see NGWS runtime
Security Permissions in section 6). This process is supported using custom
attributes, and is consistent with other uses of custom attributes. This should make
it easier for tools to support this functionality based on common language syntax.

The NGWS runtime security team has defined security attribute classes
corresponding to the default security permissions that ship with NGWS runtime.
These security attributes derive from a special security attribute
(System.Security.Permission.SecurityAttribute defined in Section 1.2.1) that is a
subclass of the base custom attribute class (System.Attribute). The security
attribute classes are packaged so that they are in the same namespace as the
related permission classes. This insures that if the tool can resolve the custom
attribute declaration to the associated attribute class, our supporting infrastructure
can also resolve to the associated permission class. Custom Permissions are
required to follow this basic pattern.

Tools are expected to parse security declarations, determine the appropriate security
attribute class, and call a provided API providing the security attribute class and
constructor values (see Section 1.2.2). Once the runtime has all declarations
applicable to a given element (Class or Method1) they are post-processed to resolve
any references (for example, to a Publisher identity certificate), union the
declarations into a permission set, and generate a serialized object representation of
the permission set. This is done to eliminate potential security holes that could arise
if reference resolution were deferred until runtime and improves runtime efficiency.

These latter steps are handled transparently to tools. As a side effect however, the
security declaration attributes are not visible via reflection as one might expect for
custom attributes in general. This is not considered a major issue but is something
software developers need to be aware of.

The subsequent sections review the API information tools must understand to handle
security declarations (Section 1.2.2)

In summary, the NGWS runtime provides:

 Defined security permission attribute classes, all derived from SecurityAttribute
so they are easily identified as security attribute classes.

 Basic syntax rules for declaring parameters on attribute declarations. In
particular, where are references to external info allowed, can multiple references
be provided, etc.

 As part of the API definition, we specify how descriptive error messages are
returned to the compiler to indicate problems in the security declarations

Tools are expected to provide:

 A language syntax for expressing security declarations

1 One should also be able to put declarative security checks on a property, but this
should always be passed to the runtime metadata as though the declaration was on
the individual get and/or set methods.

This is preliminary documentation and subject to change Page 3 6/2/2000

Supporting Security Declarations and Annotations

 Support for calling the provided API(s) to properly encode security declarations in
the Metadata

 UI reporting mechanism to provide user feedback on security declaration errors

1.2Implementation Discussion
This section describes support for tools implementing declarative security checks via
unmanaged code interfaces. Tools using the reflection emit managed code interfaces
use different API as described in Section 5.

1.2.1 Security Custom Attributes
Declarative security takes the form of one or more custom attribute class references
preceding a class, or method declaration. The references contain constructor
arguments that both specify the security action to take (assert, deny, demand etc)
and any state data associated with the permission that the custom attribute maps to
(e.g. allowed file name for a FileIOPermission).

All security attribute classes derive from a single well known class
(System.Security.Permissions.SecurityAttribute). This will allow tools to detect that a
given custom attribute class is a security attribute class without tying all security
attribute classes to the same namespace (this is important to allow the extensibility
of security permissions). COR_BASE_SECURITY_ATTRIBUTE_CLASS defines the
SecurityAttribute class name in cor.h as an assist.

Code generation tools must detect security attribute classes prior to emitting it into
metadata since only a typeref to a custom attribute class is stored. The typeref is
insufficient to allow us to determine the parent class and the namespace of the
attribute class itself.

The SecurityAttribute class definition is:

 public abstract class SecurityAttribute : System.Attribute

 {

 protected SecurityAction m_action;

 protected bool m_unrestricted;

 public SecurityAttribute(SecurityAction action)

 {

 m_action = action;

 }

 public SecurityAction Action

 {

 virtual get { return m_action; }

 virtual set { m_action = value; }

 }

 public bool Unrestricted

 {

This is preliminary documentation and subject to change Page 4 6/2/2000

Supporting Security Declarations and Annotations

 virtual get { return m_unrestricted; }

 virtual set { m_unrestricted = value; }

 }

 abstract public IPermission CreatePermission();

 }

As should be evident from this, all SecurityAttribute classes will support the ability to
request the “unrestricted” version of a given permission plus an “action code” to
indicate what type of check is desired. The action codes are defined by a
SecurityAction enum (in namespace System.Security.Permissions):

public enum SecurityAction

{

 /**

 * Hint that permission may be required

 */

 Request = 1;

 /**

 * Demand permission of all caller

 */

 Demand = 2;

 /**

 * Assert permission so callers don't need

 */

 Assert = 3;

 /**

 * Deny permissions so checks will fail

 */

 Deny = 4;

 /**

 * Reduce permissions so check will fail

 */

 PermitOnly = 5;

 /**

 * Demand permission of caller

 */

 LinkDemand = 6;

This is preliminary documentation and subject to change Page 5 6/2/2000

Supporting Security Declarations and Annotations

 /**

 * Demand permission of a subclass

 */

 InheritanceDemand = 7;

 /**

 * Request minimum permissions to run

 */

 RequestMinimum = 8;

 /**

 * Request optional additional permissions

 */

 RequestOptional = 9;

 /**

 * Refuse to be granted these permissions

 */

 RequestRefuse = 10;

}

1.2.2 API for Emitting Declarative Security Checks
The unmanaged API below allows development tools to emit declarative security
checks into metadata. As noted earlier, declarative security checks should be
supported using a custom attribute syntax. Security custom attributes are always
processed as a group on a per-element (class or method) basis, and error
information is passed back to the calling code if a problem is detected.

HRESULT DefineSecurityAttributeSet(

mdToken tkObj, // [IN] Class or method requiring security

attributes

COR_SECATTR rSecAttrs[],// [IN] Array of security attribute

descriptions

ULONG cSecAttrs, // [IN] Count of elements in above array

ULONG *pulErrorAttr); // [OUT] On error, index of attribute

causing problem

This requires use of the COR_SECATTR data structure, defined in cor.h, to express
the entries in the attribute array:

typedef struct {

mdMemberRef tkCtor; // Ref to constructor of security attribute

const void *pCustomValue; // Blob describing ctor

args&field/property values

This is preliminary documentation and subject to change Page 6 6/2/2000

Supporting Security Declarations and Annotations

ULONG cbCustomValue; // Length of the above blob

} COR_SECATTR;

To aid in the construction of the pCustomValue parameter, we provide an
unmanaged action code enumeration, corresponding to
System.Security.Permissions.SecurityAction.

typedef enum CorDeclSecurity

{

 dclActionMask = 0x000f, // Mask allows growth of enum.

 dclActionNil = 0x0000,

 dclRequest = 0x0001, //

 dclDemand = 0x0002, //

 dclAssert = 0x0003, //

 dclDeny = 0x0004, //

 dclPermitOnly = 0x0005, //

 dclLinktimeCheck = 0x0006, //

 dclInheritanceCheck = 0x0007, //

 dclRequestMinimum = 0x0008, //

 dclRequestOptional = 0x0009, //

 dclRequestRefuse = 0x000a, //

 dclMaximumValue = 0x000a, // Maximum legal value

} CorDeclSecurity;

In using this API, tools should follow the following scheme:

 For each custom attribute declaration on a class or method, determine whether
it's a security custom attribute or not. That is, check whether the custom
attribute class is derived from the SecurityAttribute class. For non-security
custom attributes, call DefineCustomAttribute() to emit the attribute to
metadata. For security custom attributes, remember the attribute definition (the
information needed for a COR_SECATTR structure) and continue parsing.

 Once all custom attributes for a given class or method have been processed, pass
all the security custom attributes in a single call to DefineSecurityAttributeSet().
If DefineSecurityAttributeSet() is subsequently called for the same class/method,
the second call will overwrite the first (i.e. permission set merging is not done).

 If an error occurs, the ULONG pointed to by pulErrorAttr will be updated to
indicate which attribute was at fault. If the error is general, *pulErrorAttr will be
set to cSecAttrs.

The APIs EnumPermissionsSets and GetPermissionSetProps are used to retrieve
permission set data that was actually persisted into the metadata.

This is preliminary documentation and subject to change Page 7 6/2/2000

Supporting Security Declarations and Annotations

2 Assembly Security Permission Requests

2.1Overview of Assembly Security Permission

Requests
The NGWS runtime security system grants permissions to managed code based on
the evidence from the code, permissions requested by the code, and local security
policy. The assembly is the basic packaging unit for application code and each
assembly manifest may contain a declarative security request for the permissions it
needs to run. This section discusses how tools can support the generation of
assembly permission requests.

Code permission requests consist of three permission sets, as described below.
These requests are only valid when attached to an assembly, i.e., are persisted in
the assembly manifest. Any permission set requests attached to other security
targets are ignored by the NGWS runtime. If a code permission request is omitted,
then code will be granted exactly the permissions authorized by policy

Request Minimum

The “minimum” request set represents the permissions code must be granted in
order to run (conversely, without policy sufficient to allow these permissions the
code should not be run). This offers some benefit to developers. They can be
assured that if the code runs it has at least these permissions, hence they can
limit exception handling and error recovery logic necessary if lesser permissions
were granted at run-time.

Request Optional

In addition to a minimum request, code may also request an “optional” set of
permissions. These would also be granted if authorized by policy. If not
granted, the code will still be allowed to run. This allows code to request
permissions beyond the minimum required, but the developer should be prepared
to gracefully handle security exceptions in the event it lacks these permissions.

Request Refuse

This represents a set of permissions the code is never to be granted, even if
policy allows it. This feature is particularly useful in the case of an unrestricted
optional request set, in effect it allows one to request all additional permissions
except those listed here.

Applications can use request refuse to ensure they never get certain permission.
For example, an application that browses data but never modifies it may refuse
any file write permissions – doing so ensures that even in the event of a bug or
malicious use the code will not be able to overwrite the data it operates on.

The following are the common permission request situations that arise:

 Code only needs a specific set of mandatory permissions, the optional request
should be empty (“Nothing”); there is no need to explicitly refuse permissions

 Code only needs a specific set of mandatory and optional permissions, the
requests should be for just those permissions only and there is no need to
explicitly refuse permissions never requested

This is preliminary documentation and subject to change Page 8 6/2/2000

Supporting Security Declarations and Annotations

 Code wishes to get any unspecified permissions that policy allows, yet to
never be granted certain specific permissions. To be granted unspecified
permissions the optional request should be set to “Everything”, in which case
request refuse is necessary to refuse specific permissions

2.2Generating Assembly Permission Requests

2.2.1 Using XML-encoded Permission Sets
One supported approach to inserting a permission request set into the assembly
manifest is through an XML-encoded permission set declaration as described in
Section 2.3.

Tools could either require the end-user to construct and supply the XML-encoded
request set, or generate it after collecting user input via a UI mechanism. Once
available, the tools use the custom security attribute

System.Security.Permission.PermissionSetAttribute

This attribute accepts either a reference to a file or a string object with the XML
permission set. To indicate which permission request set is being provided, the
appropriate action code is used. The relevant values are:

 RequestMinimum = 8,

 RequestOptional = 9,

 RequestRefuse = 10

To attach this to the assembly manifest, the API

DefineSecurityAttributeSet()

described in Section 1.2.2 is called with the mdToken parameter set to the assembly
token. In this case, the input security attribute must contain a reference to a valid
permission request set or an error will occur. Multiple PermissionSetAttributes are
referenced in the call to DefineSecurityAttributeSet() to set all three permission
request sets.

2.2.2 Using Custom Attributes
As an alternative to the XML-encoded permission set approach, tools may construct
the permission request set(s) using security permission attributes in a manner
analogous to inserting declarative security checks. In this case a set of security
attributes for the desired permission are used, but the SecurityAction code indicates
the permission request is part of a minimum, optional or refused permission request
set. These relevant values are:

 RequestMinimum = 8,

 RequestOptional = 9,

 RequestRefuse = 10

Tools build up the assembly permission request set by creating a set of
COR_SECATTR structures that represent the permissions desired in each of the three
request sets. The API, DefineSecurityAttributeSet() is then called to insert the
request set into the assembly manifest.

This is preliminary documentation and subject to change Page 9 6/2/2000

Supporting Security Declarations and Annotations

2.3XML Permission Encoding

The examples in this section indicate the form of XML-encoded permission sets and individual permissions.
The permission specification (see related documents in section 6) is the authoritative reference on
permission implementation and should be reviewed if one intends to use this mechanism.

2.3.1 Permission Set Encoding
To build up a permission set including individual permissions one uses the format:

<PermissionSet>

 <Permission class=”permission class 1”>

</Permission>

 <Permission class=”permission class 2”>

</Permission>

</PermissionSet>

Alternately, one can reference pre-defined, named permission sets. The one of most
interest in this context is the ‘Everything’ set represented by:

<PermissionSet class=”System.Security.NamedPermissionSet”>

 <Name>Everything</Name>

</PermissionSet>

2.3.2 Permission Encoding
Below are some examples of XML permission encoding.

<Permission class=”System.Security.Permissions.EnvironmentPermission”>

 <Read>{string of files}</Read>

 <Write>{string of files}</Write>

</Permission>

<Permission class=”System.Security.Permissions.FileDialogPermission”>

 <AllFiles/> | <ExceptSystem/> | <NoPresetFolder/> | <NoFiles/>

</Permission>

<Permission class=”System.Security.Permissions.FileIOPermission”>

 <Read>{string of files & folders}</Read>

 <Append>{string of files & folders }</Append>

 <Write>{string of files & folders }</Write>

</Permission>

<Permission class=”System.Security.Permissions.RegistryPermission”>

 <Read>{string of keys & values}</Read>

 <Append>{string of keys & values}</Append>

This is preliminary documentation and subject to change Page 10 6/2/2000

Supporting Security Declarations and Annotations

 <Write>{string of keys & values}</Write>

</Permission>

<Permission class=”System.Security.Permission.UIPermission”>

 <AllWindows/> | <SafeTopLevelWindows/> | <SafeSubwindows> |

<NoWindows/>

 <AllClipboard/> | <OwnClipboard/> | <NoClipboard/>

</Permission>

This is preliminary documentation and subject to change Page 11 6/2/2000

Supporting Security Declarations and Annotations

3 Marking Unverifiable Code Overview
The following describes the approach supported for marking unverifiable code
modules and setting an associated assembly level request for the SkipVerification
permission.

These markings are an important step in providing ways to know when code will fail
verification and provide a basis for end-user trust decisions and associated policy
control over verification requirements. Development tools generating type safe IL
need not be concerned with this issue.

3.1Marking Unverifiable Code
Tools should mark modules containing unverifiable code by calling
DefineCustomAttribute() to insert a module level unverifiable mark. The custom
attribute to use is:

System.Security.UnverifiableCodeAttribute

This derives from System.Attribute. That is, it is a ‘normal’ custom attribute not a
security attribute. This is attached at the module level, i.e., the mdToken parameter
is set to the module def. This custom attribute carries no internal state. Its
presence in the module metadata is interpreted as indicating the module contains
unverifiable code.

It is important that unverifiable code be marked as such in order that it may request
the SkipVerification permission (see below). Otherwise, unverifiable code will fail
verification and not be allowed to run.

3.2Requesting the SkipVerification Permission
It is recommended that any development tools building assemblies be prepared to
detect, and honor, module level unverifiable code markings. Obviously, tools that
only create assemblies from type safe IL code they generate can safely ignore this
issue.

Assembly builders can discover if one or more modules contain unverifiable code by
enumerating the custom attributes for each module using EnumCustomAttribute. If
an UnverifiableCodeAttribute is present, then the assembly will contain unverifiable
code. In this case, the assembly builder should insert the SkipVerification permission
in the assembly manifest as part of the minimum permission request set (see
Section 2.2). In effect, the SkipVerification permission should be unioned in with
any developer specified security permission requests.

If an XML-encoded permission request set approach for attaching a permission
request set is used (Section 2.2.1) then the SkipVerification permission, represented
by

 <Permission

class="System.Security.Permissions.SecurityPermission">

<SkipVerification\>

 </Permission>

This is preliminary documentation and subject to change Page 12 6/2/2000

Supporting Security Declarations and Annotations

needs to be merged in with any user supplied XML permission request set. This is
fairly straightforward string manipulation and no runtime support is provided to
assist in this operation.

If one is using the security attribute set approach (Section 2.2.2) then one merely
adds the security attribute

System.Security.Permissions.SecurityPermissionAttribute

To the COR_SECATTR structures. SkipVerification must be set for this attribute by
including it in the constructor arguments. The action code of
SecurityAction.RequestMinimum set should be used.

This is preliminary documentation and subject to change Page 13 6/2/2000

Supporting Security Declarations and Annotations

4 Inserting Evidence in Assemblies
Compilers that generate assemblies may provide a means for developers to specify
‘custom’ evidence to be included into the assembly. This evidence can be used at
runtime, in conjunction with the security policy system, to determine permission
granted when the assembly is loaded.

Assemblies may provide evidence of their own by including it as a resource. The
Security.Evidence resource contains a single Evidence object serialized in binary
format. The evidence object inside the Evidence collection may be of any type but it
may not be any of the standard evidence types supported by the NGWS runtime.
This restriction insures inserted evidence cannot override the standard evidence
types. For example, Publisher identity is always determined based on an
Authenticode signature and is never determined by the Security.Evidence resource.

This is preliminary documentation and subject to change Page 14 6/2/2000

Supporting Security Declarations and Annotations

5 Dynamic Assemblies
Dynamic assemblies are created with the AssemblyBuilder class and are typically
used by script engines or other hosts that generate IL at runtime. This section
describes how support for declarative security and code requests differs for dynamic
assemblies at the implementation level. Conceptually, the security features are
similar but due to the nature of dynamic assemblies and the APIs used to create
them differences exist.

5.1Declarations in dynamic assemblies
Declarative security can be used on emitted types and methods; analogous to the
custom attribute based declarations described earlier, using AddDeclarativeSecurity.

AddDeclarativeSecurity (SecurityAction action, PermissionSet pset)

There is no support for using the DefineSecurityAttributeSet method when creating
dynamic assemblies.

5.2Assembly Permission Requests
Code permission requests are specified as three permission sets at the time the
dynamic assembly is created. System.AppDomain.DefineDynamicAssembly provides
parameters for the code request permission sets to be given by the host. The
method definition is:

AssemblyBuilder DefineDynamicAssembly (AssemblyName name,

AssemblyBuilderAccess access, String dir, Evidence evidence,

PermissionSet requiredPermissions, PermissionSet

optionalPermissions, PermissionSet refusedPermissions)

The following pseudo-code fragment illustrates how to create a permission set object
consisting of three permissions, P1, P2, P3. Details coding for of each permission
depend on its type.

PermissionSet set = new PermissionSet();

set.AddPermission(new P1(…));

set.AddPermission(new P2(…));

set.AddPermission(new P3(…));

5.3Inserting Evidence
The host emitting a dynamic assembly can pass evidence into the assembly via the
DefineDynamicAssembly API given above, but only if it has been granted the
SecurityPermission(ControlEvidence) permission.

The first time code is executed in a dynamic assembly for which evidence was
provided, security policy is applied using the evidence and code request supplied.
This is used to determine the appropriate permissions to grant based on the system
policy. If the dynamic assembly creator did not have permission to provide evidence

This is preliminary documentation and subject to change Page 15 6/2/2000

Supporting Security Declarations and Annotations

then the creator’s permissions are applied to the dynamic assembly at creation time
and no policy evaluation is needed before code can be executed.

This is preliminary documentation and subject to change Page 16 6/2/2000

Supporting Security Declarations and Annotations

6 Relevant Documents
NGWS runtime Security Permissions

Topic “NGWS Security Permissions Specification” in the SDK Developer’s Specifications help
(Docs\cpappendix.chm in the NGWS SDK directory)

NGWS runtime Security Policy

Topic “NGWS Security Policy Specification” in the SDK Developer’s Specifications help
(Docs\cpappendix.chm in the NGWS SDK directory)

NGWS runtime Metadata API

Document “COR Metadata Interfaces” in the SDK Tool Developers Guide (Tool Developers
Guide\Docs\COR Metadata Interfaces.doc in the NGWS SDK directory)

This is preliminary documentation and subject to change Page 17 6/2/2000

	1 Supporting Declarative Security
	1.1 Overview of Supporting Declarative Security
	1.2 Implementation Discussion
	1.2.1 Security Custom Attributes
	1.2.2 API for Emitting Declarative Security Checks

	2 Assembly Security Permission Requests
	2.1 Overview of Assembly Security Permission Requests
	2.2 Generating Assembly Permission Requests
	2.2.1 Using XML-encoded Permission Sets
	2.2.2 Using Custom Attributes

	2.3 XML Permission Encoding
	2.3.1 Permission Set Encoding
	2.3.2 Permission Encoding

	3 Marking Unverifiable Code Overview
	3.1 Marking Unverifiable Code
	3.2 Requesting the SkipVerification Permission

	4 Inserting Evidence in Assemblies
	5 Dynamic Assemblies
	5.1 Declarations in dynamic assemblies
	5.2 Assembly Permission Requests
	5.3 Inserting Evidence

	6 Relevant Documents

