
Debug Reference

NGWS runtime

Debug Reference

This is preliminary documentation and subject to change

Last updated: 14 June 2000

Page 1

Debug Reference

Table of Contents
1 Overview of Debug Interfaces...5

2 Security Considerations..6

3 Debug Interface Scenarios..7

3.1 Debugging a Runtime Process..7

3.2 Controlling the Program..7

3.2.1 Setting a Breakpoint in Managed Code...8

3.2.2 Stepping through Managed and Unmanaged Code............................8

3.2.3 Handling Exceptions..9

3.3 Examining the Program...10

3.3.1 Accessing Call Stacks...10

3.3.2 Evaluating Expressions...10

3.4 Injecting Code Dynamically..11

3.4.1 Composing the Function...11

3.4.2 Injecting the Code...12

3.4.3 Executing Injected Code...12

3.4.4 Miscellaneous Issues..13

3.4.5 Getting the Signature From the Metadata......................................13

4 In-Process Debugging APIs...15

4.1 GetInprocInspectionInterface...15

4.2 GetInprocInspectionIThisThread...15

5 Debug Interfaces...16

5.1 ICorDebug : IUnknown..19

5.2 ICorDebugAppDomain : ICorDebugController.....................................22

5.3 ICorDebugAppDomainEnum : ICorDebugEnum...................................25

5.4 ICorDebugArrayValue : ICorDebugHeapValue.....................................25

5.5 ICorDebugAssembly : IUnknown...27

5.6 ICorDebugAssemblyEnum : ICorDebugEnum......................................29

5.7 ICorDebugBoxValue : ICorDebugHeapValue.......................................29

5.8 ICorDebugBreakpoint : IUnknown...30

5.9 ICorDebugBreakpointEnum : ICorDebugEnum....................................30

5.10 ICorDebugChain : IUnknown..31

5.11 ICorDebugChainEnum : ICorDebugEnum...34

5.12 ICorDebugClass : IUnknown..35

5.13 ICorDebugCode : IUnknown...35

Page 2

Debug Reference

5.14 ICorDebugContext : ICorDebugObjectValue.......................................38

5.15 ICorDebugController : IUnknown..38

5.16 ICorDebugEditAndContinueSnapshot : IUnknown................................42

5.17 ICorDebugEnum : IUnknown..45

5.18 ICorDebugErrorInfoEnum : ICorDebugEnum.......................................46

5.19 ICorDebugEval : IUnknown..47

5.20 ICorDebugFrame : IUnknown...50

5.21 ICorDebugFrameEnum : ICorDebugEnum..53

5.22 ICorDebugFunction : IUnknown..53

5.23 ICorDebugFunctionBreakpoint : ICorDebugBreakpoint.........................55

5.24 ICorDebugGenericValue : ICorDebugValue...56

5.25 ICorDebugHeapValue : ICorDebugValue..56

5.26 ICorDebugILFrame : ICorDebugFrame...57

5.27 ICorDebugManagedCallback : IUnknown..60

5.28 ICorDebugModule : IUnknown..69

5.29 ICorDebugModuleBreakpoint : ICorDebugBreakpoint...........................73

5.30 ICorDebugModuleEnum : ICorDebugEnum...74

5.31 ICorDebugNativeFrame : ICorDebugFrame...74

5.32 ICorDebugObjectValue : ICorDebugValue..78

5.33 ICorDebugObjectEnum : ICorDebugEnum..80

5.34 ICorDebugProcess : ICorDebugController...80

5.35 ICorDebugProcessEnum : ICorDebugEnum...85

5.36 ICorDebugRegisterSet : IUnknown..86

5.37 ICorDebugReferenceValue : ICorDebugValue......................................88

5.38 ICorDebugStepper : IUnknown...89

5.39 ICorDebugStepperEnum : ICorDebugEnum..92

5.40 ICorDebugStringValue : ICorDebugHeapValue....................................93

5.41 ICorDebugThread : IUnknown..93

5.42 ICorDebugThreadEnum : ICorDebugEnum...98

5.43 ICorDebugUnmanagedCallback : IUnknown..98

5.44 ICorDebugValue : IUnknown..99

5.45 ICorDebugValueBreakpoint : ICorDebugBreakpoint............................101

5.46 ICorDebugValueEnum : ICorDebugEnum..101

6 Debug Type Definitions...102

6.1 COR_DEBUG_STEP_RANGE..102

6.2 COR_IL_MAP..102

Page 3

Debug Reference

6.3 CorDebugChainReason..102

6.4 CorDebugCreateProcessFlags..103

6.5 CorDebugIlToNativeMappingTypes..103

6.6 COR_DEBUG_IL_TO_NATIVE_MAP..103

6.7 CorDebugIntercept...103

6.8 CorDebugMappingResult..104

6.9 CorDebugRegister...104

6.10 CorDebugStepReason..105

6.11 CorDebugThreadState...106

6.12 CorDebugUnmappedStop...106

6.13 CorDebugUserState...107

6.14 LoggingLevelEnum..107

6.15 LogSwitchCallReason...107

7 HRESULT DEFINITIONS..109

Page 4

Debug Reference

1 Overview of Debug Interfaces
The NGWS runtime Debugging Services API enables tools vendors to write debuggers
used to debug applications that run in the NGWS runtime environment. The code to
be debugged can be any type of code that is supported by the runtime.

The debug interfaces consist of a collection of Component Object Model (COM)
objects and interfaces implemented by the runtime and a collection of COM callback
interfaces that must be implemented by the debugger. The debugger application is
usually written in a language that can access these interfaces and objects for
communicating with the runtime and controlling the runtime execution environment.
Because these debug interfaces are all based on COM, debugger programs can be
easily extended to allow remote debugging using Distributed COM (DCOM).

The debug interfaces can be organized into the functional categories shown in the
following table.

Category Purpose

Registration Interfaces called by the debugger to register with the runtime and
request to be notified when specific events occur

Notification Callback interfaces that must be implemented by the debugger
through which the runtime notifies the debugger of various events
and returns requested information.

Breakpoint Interfaces called by the debugger to retrieve information about
breakpoints.

Execution Interfaces called by the debugger to control execution of debuggee
and access call stacks.

Information Interfaces called by the debugger to obtain information about
debuggee.

Enumeration Interfaces called by the debugger to enumerate objects.

Modification Interfaces called by the debugger to modify the code that is being
debugged.

This specification identifies several scenarios in which the interfaces of the Debug API
will be used, and explains which interfaces will be used for each scenario. In
addition, it briefly describes each debugging interface by category and lists the
supported methods.

This specification is intended to be used in conjunction with the Debug Architecture
specification, which provides general information about why Debugging Services are
needed and what features are supported.

The interfaces in this document are organized alphabetically.

Page 5

Debug Reference

2 Security Considerations
This section describes a few debugging scenarios in the context of runtime security.

Attaching to a Process. Under Windows NT/2000, the debuggee process must be
created with a security descriptor that grants the debugger full access. The
debugging process must have the SE_DEBUG_NAME privilege granted and enabled
to debug any process. By default, a Windows NT/2000 administrator is granted this
privilege. Windows 95/98 and Windows CE are less secure operating systems and do
not impose special requirements for attaching to a process.

Debugger Injects a Delta PE During Edit and Continue. An assembly is verified
when it is loaded. Subsequently, the debugger modifies some code and sends a delta
PE into the debuggee process. The delta PE is not verified. The updated methods are
verified after they are compiled by the JIT compiler.

Metadata of Signed Assembly Modified. A signed assembly is loaded. A debugger
modifies the running code by changing the metadata associated with the debuggee
using Edit and Continue. The operation changes the hash used to compute the
assembly’s signature. The operation does not result in additional security checks.
The integrity of the assembly is checked and the correct permissions granted only
when the assembly is loaded. Permissions that were assigned by the runtime will
continue to be in force.

Page 6

Debug Reference

3 Debug Interface Scenarios
Tools vendors implementing debuggers for tools that support the runtime will use the
interfaces of the Debug API to handle many debugging scenarios. The following basic
debugging scenarios are described in detail in the sections that follow:

 Debugging a process in the runtime environment

 Controlling the program during debugging.

 Examining the program during debugging.

3.1Debugging a Runtime Process
The following is a step-by-step description of how a runtime process is debugged:

 The debugger creates an instance of ICorDebug. The debugger invokes
CoCreateInstance using the CLSID CLSID_CorDebug to obtain an instance of
ICorDebug.

 The debugger initializes the debugging API by calling Initialize().

 The debugger registers a managed event handler. The debugger invokes
SetManagedHandler on ICorDebug to register an instance of
ICorDebugManagedCallback as the callback for receiving notification and
information about events in managed code.

 The debugger optionally registers an unmanaged event handler. If the
debugger wants to debug unmanaged code, it invokes SetUnmanagedHandler on
ICorDebug to register an instance of ICorDebugUnmanagedCallback as the
callback for receiving notification and information about events in unmanaged
code.

 The debugger creates the debuggee process. The debugger calls
CreateProcess on ICorDebug to create a process.

 The Debugger Interface notifies the debugger about the new debuggee
process. The Debugger Interface calls callbacks on ICorDebugManagedCallback
starting with the callbacks CreateProcess. This may be followed by calls to the
callbacks LoadModule, LoadClass, CreateThread, etc.

 The debugger stops debugging. At some point the debugger will get an
ExitProcess event, meaning that the debuggee is no longer executing. Sometime
thereafter, the debugger releases all references to any interfaces it has, and then
calls ICorDebug::Terminate.

3.2Controlling the Program
During debugging, controlling the program consists of setting breakpoints in
managed code, stepping through managed and unmanaged code, and handling first
and last chance exceptions. In the sections that follow, brief descriptions are
presented to explain how to use the debug interfaces to accomplish these tasks.

Page 7

Debug Reference

3.2.1 Setting a Breakpoint in Managed Code
The following is a step-by-step description of how a breakpoint is set in managed
code.

 The debugger obtains a module object for the given function. The
debugger calls GetModuleFromMetaDataInterface on ICorDebugAppDomain with
the metadata interface to obtain an ICorDebugModule object for the function’s
module.

 The debugger obtains a function object for the given function. The
debugger calls GetFunctionFromToken on ICorDebugModule to obtain the
function object.

 The debugger obtains the code object for the given function. The debugger
calls GetILCode on ICorDebugFunction to obtain the code object for the function.

 The debugger creates a breakpoint in the managed code. The debugger
calls CreateBreakpoint on ICorDebugCode with a specific offset to set a
breakpoint in the function. CreateBreakpoint returns an instance of
ICorDebugBreakpoint. The breakpoint will be created in the active state.

 The debugger continues execution of the process. The debugger calls
Continue on the ICorDebugProcess object for the current debuggee process.

 The Debugger Interface notifies the debugger when the breakpoint is hit.
The Debugger Interface calls the Breakpoint callback on
ICorDebugManagedCallback when a thread reaches the breakpoint.

3.2.2 Stepping through Managed and Unmanaged

Code
The following is a step-by-step description of how a debugger single-steps through
managed code. In this scenario, unmanaged code is called during the stepping.

 The debugger creates a stepper given the thread in which the single-step
is to occur. The debugger calls CreateStepper on the ICorDebugThread object
for the thread being stepped. Alternatively, the debugger calls CreateStepper on
the ICorDebugFrame object for the frame relative to which the stepping is to
occur. It is assumed that the process is stopped when the stepper is created.

 The debugger steps the thread. The debugger calls Step on the
ICorDebugStepper object created in the previous step.

 The debugger continues execution of the process. The debugger calls
Continue on the ICorDebugProcess object for the current debuggee process.

 The Debugger Interface informs the debugger that the step has
completed. The Debugger Interface calls StepComplete on the
ICorDebugManagedCallback object that the debugger had registered with the
runtime.

 The debugger steps the thread. The debugger calls Step on the
ICorDebugStepper object again to step the thread.

 The debugger continues execution of the process. The debugger calls
Continue on the ICorDebugProcess object for the current debuggee process.

Page 8

Debug Reference

 Step alternatives:

 The debugger optionally skips stepping in native code. The debugger
calls StepOut on the ICorDebugStepper object to skip stepping until the
previous frame is reactivated. The Debugger Interface component will call
StepComplete on ICorDebugManagedCallback when the managed code is
reentered.

 The debugger optionally steps into next managed code. The debugger
calls Step on the ICorDebugStepper object so that control is returned when
previous managed code frame is reentered or when new managed code is
called by the unmanaged code.

 The debugger continues execution of the process. The debugger calls
Continue on the ICorDebugProcess object for the current debuggee process.

 The Debugger Interface informs the debugger that unmanaged code
is being stepped into. The Debugger Interface component calls DebugEvent
on the ICorDebugUnmanagedCallback interface.

3.2.3 Handling Exceptions
The following is a step-by-step description of how a first chance exception is
handled.

 The runtime informs the debugger that a first chance exception has
occurred. The Debugger Interface calls Exception on the
ICorDebugManagedCallback interface that the debugger registered with the
runtime.

 The debugger obtains information about the exception. The debugger calls
GetCurrentException on the ICorDebugThread object it was passed in the
callback to obtain an exception object (ICorDebugValue).

 The debugger obtains the ICorDebugObjectValue object for the
exception. The debugger calls QueryInterface on the ICorDebugValue object to
obtain the ICorDebugObjectValue object for the exception.

 The debugger obtains the class of the exception object that was thrown.
The debugger calls GetClass on the ICorDebugObjectValue exception object.

 The debugger decides to ignore the exception by simply continuing.

 The runtime informs the debugger that a last chance exception has
occurred. The Debugger Interface component calls Exception on the
ICorDebugManagedCallback object and specifies that the exception is a “last
chance” exception.

 The user decides the exception is inconsequential. The debugger calls
ClearCurrentException on the ICorDebugThread object for the current debuggee
thread. This clears the exception and prevents the exception from being thrown.

 The debugger continues execution of the process. The debugger calls
Continue on the ICorDebugProcess object for the current debuggee process.

Page 9

Debug Reference

3.3Examining the Program
To examine a program during debugging, the debugger needs to be able to access
managed stack frames and evaluate expressions. Step-by-step descriptions are
given below for each of these tasks.

3.3.1 Accessing Call Stacks
The following is a step-by-step description of how a debugger accesses managed
stack frames. The debuggee process must be stopped at this point.

 The debugger obtains an enumerator for the stack chains. The debugger
calls EnumerateChains on the ICorDebugThread object for the thread for which
stack chains are to be accessed to obtain an ICorDebugChainEnum object to
enumerate the stack chains.

 The debugger iterates through the stack chains. The debugger calls Next on
the ICorDebugChainEnum object to iterate through the stack chains.

 The debugger obtains an enumerator for the stack frames in the chain.
The debugger calls EnumerateFrames on the ICorDebugChain object.

 The debugger iterates through the stack frames. The debugger calls Next
on ICorDebugFrameEnum to iterate through the stack frames in the chain.

 The debugger optionally obtains the IP address. The debugger calls GetIP
on ICorDebugILFrame to obtain the IP relative to the start of the function for the
stack frame.

 The debugger optionally obtains other information about the stack
frame. The debugger calls GetFunctionToken to obtain the metadata token for
the function for the code that the stack frame is running. The debugger calls
GetCode to obtain an object representing the code that the stack frame is
running.

3.3.2 Evaluating Expressions
Expressions in unmanaged native code are evaluated using the same mechanisms
debuggers use today. In managed code, the debugger can evaluate an expression as
follows:

 Parse the expression

 Call the Debugging APIs to

 Access values of variables in the expression.

 Invoke functions in the expression.

Alternatively, the debugger can do the following:

 Wrap the expression in a global function and compile the function.

 Call the Debugging API (Edit & Continue) to add the global function.

 Call the Debugging API to evaluate the function.

The following is a step-by-step description of how a debugger evaluates an
expression. In this scenario, the expression is A + Foo() where A is assumed to be
in a register and the code being debugged is native managed.

Page 10

Debug Reference

 The debugger obtains the value of A. The debugger calls
GetLocalRegisterValue on the ICorDebugNativeFrame object for the stack frame
in which the expression is to be evaluated.

 The debugger creates an evaluation object. The debugger calls CreateEval
on the ICorDebugThread object for the thread in which the expression is to be
evaluated.

 The debugger computes the value of Foo(). The debugger calls CallFunction
on the ICorDebugEval object.

 The debugger evaluates the expression. The debugger applies constant
folding to the expression using the values obtained in the previous two steps.

3.4Injecting Code Dynamically
This section describes Dynamic Code Injection using the Debugging Services.
Dynamic Code Injection executes a function that wasn’t present in the original PE,
for example, an expression in the Immediate Window in Microsoft Visual Studio for
Visual Basic. The runtime hijacks an active thread to execute the code. The
debugger may request the runtime to run or freeze the remaining threads. Because
Dynamic Code Injection is built on Function Evaluation, a dynamically injected
function can be debugged as if it were a regular code, i.e., all normal Debugging
Services such as setting breakpoints, stepping, etc. can be invoked on the
dynamically injected code.

A debugger must do the following to dynamically inject code:

 Compose a function that will execute the dynamic code.

 Inject the code into the debuggee using Edit and Continue.

 Execute the code, repeatedly if the user desires, by invoking the composed
function.

3.4.1 Composing the Function
1. The first step is to compute the signature for the function that will execute the

dynamic code.
To do this, append the signature for the local variables to the signature for the
method being executed in the leaf frame. A signature constructed this way does
not require the minimal subset of used variables to be computed. The runtime
will ignore the unused variables. See the section Getting the Signature From the
Metadata for details.

All arguments to the function must be declared to be ByRef. This will allow
Function Evaluation to propagate any changes to the variables within the body of
the injected function back to the leaf frame within the debuggee.

It is possible that some variables won’t be in scope when the dynamic code is
executed. In such situations, a Null reference should be passed. If such a variable
is referenced, a NullReferenceException will be thrown. When this happens, the
function evaluation will complete by calling the
ICorDebugManagedCallback::EvalException callback.

2. Choose a unique name for the function. The name must be special. The special
name allows a debugger to prevent a user from browsing the function. The
Debugging Services expects the function name to be prefixed with the string

Page 11

Debug Reference

“_Hidden:”. When the method is added, a flag will be set indicating that the
function name is special.

3.4.2 Injecting the Code
1. The debugger should ask the compiler to build a function whose body is the code

to be injected dynamically.

2. The debugger computes a delta PE. To do this, the debugger calls
ICorDebugModule::GetEditAndContinueSnapshot to obtain an
ICorDebugEditAndContinueSnapshot object. The debugger calls methods on
ICorDebugEditAndContinueSnapshot to create the delta PE image. The debugger
calls ICorDebugAppDomain::CommitChanges to install the delta PE in the running
image.

3. The dynamically injected function should be placed at the same level of visibility
as the leaf frame in which it will execute. If the leaf frame is an instance method,
then the dynamically injected function should also be an instance method within
the same class. If the leaf frame is a static method (global methods are static
methods belong to a particular class), then the dynamically injected function
should also be a static method.

4. It is important to note that the function will exist within the debuggee even after
the dynamic code injection process completes. This allows previously injected
code to be reevaluated repeatedly without having to compose the function and
inject the code again, i.e., the steps described in this section and the previous
section can be skipped.

3.4.3 Executing Injected Code
1. For each variable in the signature, get its value (an ICorDebugValue object) using

the debugging inspection routines. Use either ICorDebugThread::GetActiveFrame
or ICorDebugChain::GetActiveFrame to get the leaf frame, QueryInterface for
ICorDebugILFrame. Call ICorDebugILFrame::EnumerateLocalVariables,
ICorDebugILFrame::EnumerateArguments,
ICorDebugILFrame::GetLocalVariable, or ICorDebugILFrame::GetArguments to
get the actual variables.

Note that if the debugger is attached to a debuggee that doesn’t have
CORDBG_ENABLE set (i.e., to a debuggee that has not been collecting debugging
information), the debugger will not be able to get an ICorDebugILFrame, and
thus will not be able to collect values for the Function Evaluation.

It does not matter if the objects that are arguments to the dynamically injected
function are dereferenced weakly or strongly. When the function is evaluated, the
runtime will hijack the thread in which the injection occurred. This will leave the
original leaf frame on the stack, along with all the original, strong references.
The only case where this would not be true is if all the references within the
debuggee were weak, in which case running the dynamic code injection might
trigger a garbage collection that may cause the object to be garbage collected.

2. Use ICorDebugThread::CreateEval to create an ICorDebugEval object.
ICorDebugEval provides methods to evaluate a function. Call one of these
methods. Methods such as ICorDebugEval::CallFunction only set up the function
evaluation. The debugger needs to call ICorDebugProcess::Continue or
ICorDebugAppDomain::Continue to run the debuggee and evaluate the function.

Page 12

Debug Reference

When the evaluation has completed, the Debugging Services will call
ICorDebugManagedCallback::EvalComplete or
ICorDebugManagedCallback::EvalException to notify the debugger about the
function evaluation.

If the function evaluation returns an object, the object will be a strongly
referenced.

If the dynamically injected code attempts to dereference a Null reference passed
to the function that wraps the code, the Debugging Services will call
ICorDebugManagedCallback::EvalException. In response, the debugger could
notify the user that it cannot evaluate the injected code.

Note that ICorDebugEval::CallFunction does not do virtual dispatches; use
ICorDebugObjectValue::GetVirtualMethod if you want virtual dispatches.

If the debuggee is multithreaded and the debugger does not want any of the
other threads running, the debugger should call
ICorDebugAppDomain::SetAllThreadsDebugState or
ICorDebugProcess::SetAllThreadsDebugState and set the state of all threads
except that of the thread used for function evaluation to THREAD_SUSPEND.
There is a risk that this may result in a deadlock, depending on what the
dynamically injected code does.

3.4.4 Miscellaneous Issues
 Since the runtime security is determined by context policies, unless one

specifically takes actions to affect security, dynamic code injection will operate
with the same security permissions and capabilities as the leaf frame.

 Dynamically injected functions can be added wherever Edit and Continue allows
the functions to be added. A logical choice is to add them to the leaf frame.

 Note that there are no limits on the number of fields, instance methods, or static
methods that can be added to a class using Edit and Continue operations. The
maximum amount of static data allowed is predefined and limited at this time to
1 MB per module.

 Non-local GoTo statements are not allowed in dynamically injected code.

3.4.5 Getting the Signature From the Metadata
Obtaining a MetaData Dispenser

 The debugger calls ICorDebugModule::GetMetaDataInterface with REFIID
IID_IMetaDataDispenser to obtain a metadata dispenser.

 The debugger calls IMetaDataDispenser::OpenScope with the REFIID
IID_IMetaDataImport to obtain the IMetaDataImport interface.

Finding the method using IMetaDataImport

 The debugger calls IMetaDataImport::GetMethodProps to look up the method
using its token. The method token can be obtained using
ICorDebugFunction::GetToken. GetMethodProps will return the signature of the
method.

 The debugger calls IMetaDataImport::GetSigFromToken to obtain the local
signature, i.e., the signature of the local variables. The debugger must supply the

Page 13

Debug Reference

token for the signature of the local variables. The debugger can obtain this token
by calling ICorDebugFunction::GetLocalVarSigToken.

Constructing the Function Signature

The format of the signature is documented in the specification Type and Signature
Encoding in Metadata, and takes precedence over anything described in this
document.

The section Method Declaration in the signature specification describes the format for
the method signature. The format is a single byte for the calling convention, followed
by a single byte for the count of arguments, followed by a list of types each of which
can have a different size. If the calling convention is CALLCONV_VARARG, the count
of arguments will be the total number of arguments, i.e., fixed arguments plus
variable arguments. An ELEMENT_TYPE_SENTINEL byte marks where the fixed
arguments end and where the variable arguments begin.

The section Stand-Alone Signatures in the signature specification describes the
format of local signatures. Standalone signatures do not use the VARARGS calling
convention.

After obtaining the method signature and the local signature, the debugger should
allocate space for a new signature. The debugger should then iterate through the
method signature, and for each type, put the ELEMENT_TYPE_BYREF byte in the new
signature followed by the type. The process is repeated this until the end of method
signature is reached or a type marked ELEMENT_TYPE_SENTINEL is reached. Next,
the debugger should copy the local signature types, marking each type
ELEMENT_TYPE_BYREF. If the method signature has a VARARGS calling convention,
the debugger should copy those types marking each of them ELEMENT_TYPE_BYREF.
Finally, the debugger should update the count of arguments.

Page 14

Debug Reference

4 In-Process Debugging APIs
The In-Process Debugging API (“Inproc Debugging API”) is intended for use by
various tools and clients that run in the same process as the debuggee – the profiler
being the most notable example. They allow for inspection of, but not manipulation
of, variables, and specifically do not allow for flow-control or edit and continue.

The Inproc Debugging API interfaces are the same as those used by the out-of-
process debugger, although some methods will return
CORDBG_E_INPROC_NOT_IMPL, to indicate that the method is unavailable in-
process. There are a couple ways to obtain one of these interfaces within the
process.

4.1GetInprocInspectionInterface
GetInprocInspectionInterface retrieves an ICorDebug interface.

4.2GetInprocInspectionIThisThread
GetInprocInspectionIThisThread returns an ICorDebugThread interface that inspects
the managed thread that the profiler callback is currently being called from.

Note that this method may fail if there is no managed thread that is attached to the
native operating system thread. For example, the Win32 thread that executes the
Initialize callback will allow the profiler to take actions, even though the managed
Thread object hasn’t been created yet.

Page 15

Debug Reference

5 Debug Interfaces
The Debug API supplies interfaces for debugging that can be organized into the
following categories of functionality:

 Registration

 Notification

 Breakpoints

 Execution

 Information

 Enumeration

Interface Inherits From Description

ICorDebug IUnknown The interface pointer to this object
represents an event processing
loop for a debugger process.

ICorDebugAppDomain ICorDebugController This interface provides methods
that apply to application domains.

ICorDebugAppDomainE
num

ICorDebugEnum This interface provides methods for
enumerating application domains.

ICorDebugArrayValue ICorDebugHeapValue This interface provides methods for
accessing array elements.

ICorDebugAssembly IUnknown This interface provides methods
that apply to assemblies.

ICorDebugAssemblyEn
um

ICorDebugEnum This interface provides methods for
enumerating assemblies.

ICorDebugBoxValue ICorDebugHeapValue This interface provides methods
that apply to boxed value class
objects.

ICorDebugBreakpoint IUnknown This interface provides methods for
retrieving information about
breakpoints.

ICorDebugBreakpointE
num

ICorDebugEnum This interface provides methods for
enumerating breakpoints.

ICorDebugChain IUnknown This interface provides access to
call stacks in the stack chain.

ICorDebugChainEnum ICorDebugEnum This interface provides methods for
enumerating stack chains.

ICorDebugClass IUnknown This interface provides methods for
obtaining information about
classes.

ICorDebugCode IUnknown This interface provides methods for

Page 16

Debug Reference

obtaining information about code.

ICorDebugContext ICorDebugObjectValue This interface provides methods for
obtaining information about
contexts.

ICorDebugController IUnknown The ICorDebugContext interface
represents a scope at which
program execution context can be
controlled. It represents either a
process or an application domain.

ICorDebugEditAndCont
inueSnapshot

IUnknown This interface provides methods for
Edit & Continue operations.

ICorDebugEnum IUnknown This interface provides methods for
enumerating objects. It is the root
of the interface hierarchy for all the
enumeration interfaces described
below.

ICorDebugErrorInfoEnu
m

ICorDebugEnum This interface provides methods for
enumerating error information
objects.

ICorDebugEval IUnknown This interface provides methods for
running code inside the debuggee.

ICorDebugFrame IUnknown This interface provides access to
call stacks within the threads of the
debuggee. Each stack frame
represents the state of execution
within a method.

ICorDebugFrameEnum ICorDebugEnum This interface provides methods for
enumerating stack frames.

ICorDebugFunction IUnknown This interface provides methods for
obtaining information about
functions.

ICorDebugFunctionBre
akpoint

ICorDebugBreakpoint This interface provides methods for
retrieving information about
function breakpoints.

ICorDebugGenericValu
e

ICorDebugValue This interface provides methods for
obtaining generic values.

ICorDebugHeapValue ICorDebugValue This interface provides methods
that apply to garbage collected
objects.

ICorDebugILFrame ICorDebugFrame This interface provides methods for
obtaining information about IL
frames.

ICorDebugManagedCall
back

IUnknown This interface provides methods
that allow the runtime to
communicate with the debugger
concerning events in managed code

Page 17

Debug Reference

in the debuggee process.

ICorDebugModule IUnknown This interface provides methods for
obtaining information about
modules.

ICorDebugModuleBrea
kpoint

ICorDebugBreakpoint This interface provides methods for
retrieving information about
module breakpoints.

This interface is not yet
implemented.

ICorDebugModuleEnu
m

ICorDebugEnum This interface provides methods for
enumerating modules.

ICorDebugNativeFrame ICorDebugFrame This interface provides methods for
obtaining information about native
frames.

ICorDebugObjectEnum ICorDebugEnum This interface provides methods for
enumerating managed objects.

ICorDebugObjectValue ICorDebugValue This interface provides methods for
obtaining values of objects.

ICorDebugProcess ICorDebugController This interface provides methods for
controlling and inspecting a
debuggee process.

ICorDebugProcessEnu
m

ICorDebugEnum This interface provides methods for
enumerating process objects.

ICorDebugReferenceVa
lue

ICorDebugValue This interface provides methods
that apply to values that are
references (to objects).

ICorDebugRegisterSet IUnknown This interface provides methods for
obtaining information about
registers.

ICorDebugStepper IUnknown This interface provides methods for
controlling stepping.

ICorDebugStepperEnu
m

ICorDebugEnum This interface provides methods for
enumerating steppers.

ICorDebugStringValue ICorDebugHeapValue This interface provides methods for
obtaining string values.

ICorDebugThread IUnknown This interface provides access to
threads in the runtime.

ICorDebugThreadEnum ICorDebugEnum This interface provides methods for
enumerating thread objects.

ICorDebugUnmanaged
Callback

IUnknown This interface provides methods
that allow the runtime to
communicate with the debugger
concerning events in unmanaged
code in the debuggee process.

Page 18

Debug Reference

ICorDebugValue IUnknown This interface provides methods for
obtaining values.

ICorDebugValueBreakp
oint

ICorDebugBreakpoint This interface provides methods for
retrieving information about value
breakpoints.

ICorDebugValueEnum ICorDebugEnum This interface provides methods for
enumerating values.

5.1ICorDebug : IUnknown
The runtime implements the ICorDebug interface, which provides methods that allow
a debugger to register callback interfaces for notification about managed and
unmanaged events. This interface also provides methods for managing debuggee
processes.

The debugger must wait for the ExitProcess callback before releasing the
ICorDebugProcess and ICorDebug interfaces.

CreateProcess

Not Implemented In-Process.

Launches a process under the control of the debugger. All parameters are the same
as the Win32 CreateProcess call.

Note, that the DEBUG_PROCESS flag (passed in dwCreationFlags), if set, will enable
unmanaged debugging. If only managed debugging is desired, do not set this flag.
(Note that unmanaged debugging can also be enabled later by the
EnableUnmanagedDebuging entry point on the process).

Note that if debuggingFlags is set to DEBUG_ENABLE_EDIT_AND_CONTINUE, then
E&C will be allowed for the process. Otherwise, the argument should be zero'd out,
and no E&C will be allowed. E&C is not allowed when JIT attaching to a process.

HRESULT CreateProcess(LPCWSTR lpApplicationName, LPWSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpProcessAttributes, LPSECURITY_ATTRIBUTES

lpThreadAttributes, BOOL bInheritHandles, DWORD dwCreationFlags, PVOID

lpEnvironment, LPCWSTR lpCurrentDirectory, LPSTARTUPINFOW

lpStartupInfo, LPPROCESS_INFORMATION lpProcessInformation,

CorDebugCreateProcessFlags debuggingFlags, ICorDebugProcess

**ppProcess)

In/
Out

Parameter Description

in lpApplicationName Pointer to name of executable.

in lpCommandLine Pointer to command line string to be passed to
application.

in lpProcessAttributes Pointer to process security attributes.

in lpThreadAttributes Pointer to thread security attributes.

Page 19

Debug Reference

in bInheritHandles Handle inheritance flag.

in dwCreationFlags Creation flags.

in lpEnvironment Pointer to new environment block.

in lpCurrentDirectory Pointer to current directory name.

in lpStartupInfo Pointer to STARTUPINFO.

in lpProcessInformati
on

Pointer to PROCESS_INFORMATION.

in debuggingFlags Debugging flags

out ppProcess Pointer to pointer to a process object.

DebugActiveProcess

Not Implemented In-Process

Used to attach to an existing process.

If win32Attach is TRUE, then the debugger becomes the Win32 debugger for the
process and will begin dispatching the unmanaged callbacks.

HRESULT DebugActiveProcess(DWORD id, BOOL win32Attach, ICorDebugProcess

*ppProcess)

In/
Out

Parameter Description

in id Process ID of the process to attach to.

in win32Attach If TRUE, mixed-mode debugging will be enabled.

out ppProcess Pointer to pointer to a process object.

EnumerateProcesses

Returns an enumerator (ICorDebugProcessEnum) for all processes being
debugged.

HRESULT EnumerateProcesses(ICorDebugProcessEnum **ppProcess)

In/
Out

Parameter Description

out ppProcess Pointer to pointer to an enumerator for the processes.

GetProcess

Returns the process object (ICorDebugProcess) for the process with the given
Win32 process ID.

HRESULT GetProcess(DWORD dwProcessId, ICorDebugProcess **ppProcess)

Page 20

Debug Reference

In/
Out

Parameter Description

in dwProcessId The Win32 process ID of the process.

out ppProcess Pointer to pointer to the process object for the process
with the specified Win32 process ID.

Initialize

The debugger calls this method at creation time to initialize the debugging services,
and must be called at creation time before any other method on ICorDebug is
called. It is not necessary to call this method when using the In Process Debugging
API.

HRESULT Initialize()

SetManagedHandler

Not Implemented In-Process

The debugger calls this method to provide a callback that should receive notification
and information regarding managed events in the debuggee process. The debugger
must pass an interface to its own COM object that implements
ICorDebugManagedCallback.

HRESULT SetManagedHandler(ICorDebugManagedCallback *pCallback)

In/
Out

Parameter Description

in pCallback A pointer to the COM interface implemented by the
debugger that is to receive notifications for the debuggee
process.

SetUnmanagedHandler

Not Implemented In-Process

The debugger calls this method to provide a callback that should receive notification
and information regarding unmanaged events in the debuggee process. The
debugger must pass an interface to its own COM object that implements
ICorDebugUnmanagedCallback.

HRESULT SetUnmanagedHandler(ICorDebugUnmanagedCallback *pCallback)

In/
Out

Parameter Description

in pCallback A pointer to the COM interface implemented by the
debugger that is to receive notifications for the debuggee
process.

Page 21

Debug Reference

Terminate

Not Implemented In-Process

The debugger calls this method when ICorDebug is no longer needed.

HRESULT Terminate()

5.2ICorDebugAppDomain : ICorDebugController
This interface represents an application domain.

The debugger obtains an ICorDebugAppDomain object by calling
ICorDebugProcess::EnumerateAppDomains and then enumerating the application
domain objects, by calling ICorDebugThread::GetAppDomain, or by calling
ICorDebugAssembly::GetAppDomain.

The debugger must wait for the ExitAppDomain callback before releasing the
ICorDebugAppDomain interfaces.

Attach

Not Implemented In-Process

Attach attaches the debugger to this application domain. The debugger will receive
all application domain related events.

HRESULT Attach()

EnumerateAssemblies

Returns an enumerator object (ICorDebugAssemblyEnum) for all assemblies in
the application domain.

HRESULT EnumerateAssemblies(ICorDebugAssemblyEnum **ppAssemblies)

In/
Out

Parameter Description

out ppAssemblies Pointer to pointer to an enumerator object for all
assemblies in the application domain.

EnumerateBreakpoints

Not Implemented In-Process

EnumerateBreakpoints returns an enum (ICorDebugBreakpointEnum) of all active
breakpoints in the app domain. This includes all types of breakpoints : function
breakpoints, data breakpoints, etc.

HRESULT EnumerateBreakpoints(ICorDebugBreakpointEnum **ppBreakpoints)

In/
Out

Parameter Description

Page 22

Debug Reference

out ppBreakpoints Pointer to pointer to an enumerator object for all
breakpoints in the debuggee process.

EnumerateSteppers

Not Implemented In-Process

Returns an enumerator object (ICorDebugStepperEnum) for all active steppers in
the debuggee process.

HRESULT EnumerateSteppers(ICorDebugStepperEnum **ppSteppers)

In/
Out

Parameter Description

out ppSteppers Pointer to pointer to an enumerator for all active
steppers.

GetID

Returns the ID of this application domain.

HRESULT GetID(ULONG23 *pId)

In/
Out

Parameter Description

out pId Pointer to the 32 bit number that represents the ID of
this application domain. This number is unique across
appdomains, within a single process.

GetModuleFromMetaDataInterface

Returns a module object (ICorDebugModule) for the given metadata interface.

HRESULT GetModuleFromMetaDataInterface(IUnknown *pIMetaData,

ICorDebugModule **ppModule)

In/
Out

Parameter Description

in pIMetaData Pointer to the metadata interface.

out ppModule Pointer to pointer to the object for the module
corresponding to the metadata interface.

GetName

Returns the name of the application domain.

HRESULT GetName(ULONG32 cchName, ULONG32 *pcchName, WCHAR szName[])

Page 23

Debug Reference

In/
Out

Parameter Description

in cchName The allocated size of string buffer.

out pcchName The number of characters available for return. No more
than cchName are actually returned in the buffer

out szName[] The string buffer.

GetObject

Returns the runtime application domain object.

Note: This method is not yet implemented.

HRESULT GetObject(ICorDebugValue **ppObject)

In/
Out

Parameter Description

out ppObject Pointer to pointer to an object that represents the
runtime application domain object.

GetProcess

Returns the process containing the application domain.

HRESULT GetProcess(ICorDebugProcess **ppProcess)

In/
Out

Parameter Description

out ppProcess Pointer to pointer to an object that represents the
process containing the application domain.

IsAttached

Not Implemented In-Process

IsAttached returns whether or not the debugger is attached to the application
domain. The methods of ICorDebugController cannot be used until the debugger
attaches to the application domain.

HRESULT IsAttached(BOOL *pbAttached)

In/
Out

Parameter Description

out pbAttached Pointer to boolean which is TRUE if a debugger is
attached to the application domain.

Page 24

Debug Reference

5.3ICorDebugAppDomainEnum : ICorDebugEnum
The ICorDebugAppDomainEnum interface provides methods for enumerating
objects that represent application domain.

Next

This method is used to retrieve application domain objects. The number of
application domain objects to be retrieved is passed as one of the parameters. The
enumeration pointer is incremented by that amount.

HRESULT Next(ULONG celt, ICorAppDomain *appDomains[], ULONG

*pceltFetched)

In/
Out

Parameter Description

in celt The number of application domain objects requested to
be retrieved.

out appDomains[] Array of pointers to application domain objects that is
retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.4ICorDebugArrayValue : ICorDebugHeapValue
This interface is used to obtain information about an array value object such as the
number of elements in an array or the value of a specific element of an array. Value
objects are returned by the following methods: ICorDebugArrayValue:: GetElement,
ICorDebugClass::GetStaticFieldValue, ICorDebugObjectValue::GetFieldValue,
ICorDebugILFrame::GetLocalVariable, ICorDebugILFrame::GetArgumentValue,
ICorDebugILFrame::GetStackValue, and the various register value access functions
defined on ICorDebugILFrame.

GetBaseIndicies

GetBaseIndicies returns the base index of each dimension in the array.

HRESULT GetBaseIndicies(ULONG32 cdim, ULONG32 indicies[])

In/
Out

Parameter Description

in cdim The size of the array indicies[].

out indicies[] The array that will contain the base index of each
dimension in the array.

GetCount

GetCount returns the number of elements in all dimensions of the array.

Page 25

Debug Reference

HRESULT GetCount(ULONG32 *pnCount)

In/
Out

Parameter Description

out pnCount Pointer to the number of elements in the array.

GetDimensions

GetDimensions returns the dimensions of the array.

HRESULT GetDimensions(ULONG32 cdim, ULONG32 dims[])

In/
Out

Parameter Description

In cdim The size of the array dims[].

out dims[] The array that will contain the returned dimensions.

GetElement

Returns a value object (ICorDebugValue) representing an element of the array. The
indicies array must not be null.

HRESULT GetElement(ULONG32 cdim, ULONG32 indicies[], ICorDebugValue

**ppValue)

In/
Out

Parameter Description

in cdim The size of the array indicies[].

in indicies[] The array that contains the index of each dimension in
the array.

out ppValue Pointer to pointer to the object that represents the value
of the element of the array.

GetElementAtPosition

Returns a value object (ICorDebugValue) representing the element at the given
position in the array. The position is over all elements of the array.

HRESULT GetElementAtPosition(ULONG32 nPosition, ICorDebugValue

**ppValue)

In/
Out

Parameter Description

in nPosition The position of the element of the array.

out ppValue Pointer to pointer to the object that represents the value

Page 26

Debug Reference

of the element of the array.

GetElementType

Returns the simple type of the elements of the array.

HRESULT GetElementType(CorElementType *pType)

In/
Out

Parameter Description

out pType Pointer to the type of the elements of the array.

GetRank

GetRank returns the number of dimensions in the array.

HRESULT GetRank(ULONG32 *pnRank)

In/
Out

Parameter Description

out pnRank Pointer to the number of dimensions in the array.

HasBaseIndicies

HasBaseIndicies returns whether or not the array has base indices.

HRESULT HasBaseIndicies(BOOL *pbHasBaseIndicies)

In/
Out

Parameter Description

out pbHasBaseIndicies Pointer to a Boolean indicating whether or not the array
has base indices. If this is set to FALSE, then 0 is used
as the base index.

5.5ICorDebugAssembly : IUnknown
This interface represents an assembly.

The debugger obtains an ICorDebugAssembly object by calling
ICorDebugManagedCallback::LoadAssembly, ICorDebug::GetSystemAssembly,
ICorDebugModule::GetAssembly, or ICorDebugAppDomain::EnumerateAssemblies.

EnumerateModules

Returns an enumerator object (ICorDebugModuleEnum) for all loaded modules in
the assembly.

HRESULT EnumerateModules(ICorDebugModuleEnum **ppModules)

Page 27

Debug Reference

In/
Out

Parameter Description

out ppModules Pointer to pointer to an enumerator object for all the
modules in the assembly.

GetAppDomain

Returns the application domain containing the assembly. Returns null if this is the
system assembly.

HRESULT GetAppDomain(ICorDebugAppDomain **ppAppDomain)

In/
Out

Parameter Description

out ppAppDomain Pointer to a pointer to the application domain object that
contains the assembly.

GetCodeBase

Returns the code base used to load the assembly (for example, a URL where the
code was loaded from).

Note: This method is not yet implemented.

HRESULT GetCodeBase(ULONG32 cchName, ULONG32 *pcchName, WCHAR szName[])

In/
Out

Parameter Description

in cchName The allocated size of string buffer.

out pcchName The number of characters available for return. No more
than cchName are actually returned in the buffer

out szName[] The string buffer.

GetName

Returns the name of the assembly.

HRESULT GetName(ULONG32 cchName, ULONG32 *pcchName, WCHAR szName[])

In/
Out

Parameter Description

in cchName The allocated size of string buffer.

out pcchName The number of characters available for return. No more
than cchName are actually returned in the buffer

out szName[] The string buffer.

Page 28

Debug Reference

GetProcess

Returns the process containing the assembly.

HRESULT GetProcess(ICorDebugProcess **ppProcess)

In/
Out

Parameter Description

out ppProcess Pointer to pointer to the process object that contains the
assembly.

5.6ICorDebugAssemblyEnum : ICorDebugEnum
The ICorDebugAssemblyEnum interface provides methods for enumerating
objects that represent assemblies.

Next

This method is used to retrieve assembly objects. The number of assembly objects to
be retrieved is passed as one of the parameters. The enumeration pointer is
incremented by that amount.

HRESULT Next(ULONG celt, ICorAssembly *assemblies[], ULONG

*pceltFetched)

In/
Out

Parameter Description

in celt The number of assembly objects requested to be
retrieved.

out assemblies[] Array of pointers to assembly objects that is retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.7ICorDebugBoxValue : ICorDebugHeapValue
This interface provides methods that return information about boxed value class
objects.

GetObject

Returns the value object that is in the box.

HRESULT GetObject(ICorDebugObjectValue **ppObject)

In/
Out

Parameter Description

out ppObject Pointer to pointer to the value object that is in the box.

Page 29

Debug Reference

5.8ICorDebugBreakpoint : IUnknown
Not Implemented In-Process : Neither this, nor any of the interfaces which inherit
from this.

This interface provides methods that return information about breakpoints that can
be breakpoints set in a function or a watchpoint set on a value. An
ICorDebugBreakpoint object is created by calling the various CreateBreakpoint
methods. Note that breakpoints have no direct support for deactivation or condition
expressions. The debugger must implement this functionality on top of this interface
if desired.

Activate

The debugger calls this method to set the active state of the breakpoint.

HRESULT Activate(BOOL bActive)

In/
Out

Parameter Description

in bActive If TRUE, activate the breakpoint. If FALSE, deactivate
the breakpoint.

IsActive

The debugger calls this method to check if the breakpoint is active.

HRESULT Activate(BOOL *pbActive)

In/
Out

Parameter Description

out pbActive Pointer to a Boolean that is TRUE if the breakpoint is
active.

5.9ICorDebugBreakpointEnum : ICorDebugEnum
Not Implemented In-Process

This interface provides a method for enumerating breakpoint objects.

Next

This method is used to retrieve breakpoint objects. The number of breakpoint objects
to be retrieved is passed as one of the parameters. The enumeration pointer is
incremented by that amount.

Page 30

Debug Reference

HRESULT Next(ULONG celt, ICorDebugBreakpoint *breakpoints[], ULONG

*pceltFetched)

In/
Out

Parameter Description

in celt The number of breakpoint objects requested to be
retrieved.

out breakpoints[] Array of pointers to breakpoint objects that is retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.10 ICorDebugChain : IUnknown
This interface provides methods to obtain information about stack chains. A stack
chain is a segment of a physical or logical call stack. All frames in a chain occupy
contiguous stack space, and they share the same thread and context. A chain may
represent either managed or unmanaged code, although an unmanaged chain will
have no visible frames.

The debugger obtains a ICorDebugChain object by calling
ICorDebugThread::EnumerateChains, ICorDebugChain::GetCaller, or
ICorDebugChain::GetCallee.

EnumerateFrames

Returns an enumerator for all the stack frames in the chain, starting at the most
recently active one. This should be called only for managed chains.

Note: The Debugging Services does not provide methods for obtaining
information about unmanaged chains. The debugger needs to use other means to
obtain this information.

HRESULT EnumerateFrames(ICorDebugFrameEnum **ppFrames)

In/
Out

Parameter Description

out ppFrames Pointer to pointer to an enumerator for all of the stack
frames in the chain.

GetActiveFrame

GetActiveFrame is a convenience routine to return the active (most recent) frame on
the chain, if any.

HRESULT GetActiveFrame([out] ICorDebugFrame **ppFrame)

In/
Out

Parameter Description

out ppFrame Pointer to pointer to the frame that is most active.

GetCallee

Page 31

Debug Reference

Returns a chain object (ICorDebugChain) for the chain which this chain is waiting
on before it resumes. Note that this may be a chain on another thread in the case of
cross-thread-marshalled calls. The callee will be NULL if the chain is currently
actively running.

HRESULT GetCallee(ICorDebugChain **ppChain)

In/
Out

Parameter Description

out ppChain Pointer to pointer to the chain object for the chain that
this chain is waiting on.

GetCaller

Returns a chain object (ICorDebugChain) for the chain which called this chain.
Note that this may be a chain on another thread in the case of cross-thread-
marshalled calls. The caller will be NULL for spontaneously called chains (e.g., the
ThreadProc, a debugger initiated call, etc.)

HRESULT GetCaller(ICorDebugChain **ppChain)

In/
Out

Parameter Description

out ppChain Pointer to pointer to the chain object for the chain that
called this chain.

GetContext

Returns the context object (ICorDebugContext) for all of the frames in the chain.

Note: This method is not yet implemented.

HRESULT GetContext(ICorDebugContext **ppContext)

In/
Out

Parameter Description

out ppContext Pointer to pointer to the context object for all of the
frames in the chain.

GetNext

Returns a pointer to a pointer to a chain object (ICorDebugChain) for the chain
which was on this thread after the current one, if there is one.

HRESULT GetNext(ICorDebugChain **ppChain)

In/
Out

Parameter Description

out ppChain Pointer to pointer to a chain object.

Page 32

Debug Reference

GetPrevious

Returns a pointer to a pointer to a chain object (ICorDebugChain) for the chain
which was on this thread before the current one was pushed, if there is one.

HRESULT GetPrevious(ICorDebugChain **ppChain)

In/
Out

Parameter Description

out ppChain Pointer to pointer to a chain object.

GetReason

Returns the reason for the genesis of this calling chain.

HRESULT GetReason(CorDebugChainReason *pReason)

In/
Out

Parameter Description

out pReason Pointer to a structure describing the reason.

GetRegisterSet

Returns the register set for the active part of the chain.

HRESULT GetRegisterSet(ICorDebugRegisterSet **ppRegisters)

In/
Out

Parameter Description

out ppRegisters Pointer to pointer to a register set object.

GetStackRange

Returns the absolute address range of the stack segment for the call chain. Note
that you cannot make any assumptions about what is actually stored on the stack –
the numeric range is to compare stack frame locations only.

HRESULT GetStackRange(CORDB_ADDRESS *pStart, CORDB_ADDRESS *pEnd)

In/
Out

Parameter Description

out pStart Pointer to the real Win32 minimum value that bounds
the stack segment.

out pEnd Pointer to the real Win32 maximum value that bounds

Page 33

Debug Reference

the stack segment.

GetThread

Returns the thread object (ICorDebugThread) for the thread to which this call chain
belongs.

HRESULT GetThread(ICorDebugThread **ppThread)

In/
Out

Parameter Description

out ppThread Pointer to pointer to a thread object for the thread to
which the stack frame belongs.

IsManaged

Determines whether or not the chain is currently running managed code.

HRESULT IsManaged(BOOL *pManaged)

In/
Out

Parameter Description

out pManaged Pointer to a Boolean that is TRUE if the chain is running
managed code.

5.11 ICorDebugChainEnum : ICorDebugEnum
The ICorDebugChainEnum interface provides methods for enumerating objects that
represent stack chains. The debugger obtains an ICorDebugChainEnum object by
calling ICorDebugThread::EnumerateChains.

Next

This method is used to retrieve stack chain objects. The number of stack chain
objects to be retrieved is passed as one of the parameters. The enumeration pointer
is incremented by that amount.

HRESULT Next(ULONG celt, ICorDebugChain *chains[], ULONG *pceltFetched)

In/
Out

Parameter Description

in celt The number of stack chain objects requested to be
retrieved.

out chains[] Array of pointers to chain objects that is retrieved.

out pceltFetched Pointer to the number of actual values fetched.

Page 34

Debug Reference

5.12 ICorDebugClass : IUnknown
This interface provides methods for accessing information about a class, such as field
values and metadata. The debugger obtains an ICorDebugClass object by calling
ICorDebugFunction::GetClass, ICorDebugObjectValue::GetClass, or
ICorDebugModule::GetClassFromToken.

GetModule

Returns the module object (ICorDebugModule) for the class.

HRESULT GetModule(ICorDebugModule **ppModule)

In/
Out

Parameter Description

out ppModule Pointer to pointer to the module object for the class.

GetStaticFieldValue

GetStaticFieldValue returns a value object for the given static field variable. If the
static field could possibly be relative to either a thread, context, or appdomain, then
pFrame will help the debugger determine the proper value.

HRESULT GetStaticFieldValue(mdFieldDef fieldDef, ICorDebugFrame

*pFrame, ICorDebugValueFrame **ppValue)

In/
Out

Parameter Description

in fieldDef Field definition.

in pFrame Pointer to a frame

out ppValue Pointer to pointer to a value object for the static field.

GetToken

Returns the metadata typedef token for the class.

HRESULT GetToken(mdTypeDef *pTypeDef)

In/
Out

Paramete

r

Description

out pTypeDef Pointer to the metadata typedef token for the class.

5.13 ICorDebugCode : IUnknown
The ICorDebugCode interface provides methods to access information about IL code
such as size and address. The interface also provides methods to set breakpoints in
code.

Page 35

Debug Reference

The debugger obtains an ICorDebugCode object by calling
ICorDebugFrame::GetCode or ICorDebugFunction::GetILCode.

CreateBreakpoint

Not Implemented In-Process

Sets a breakpoint in the function at the given offset.

Note that the breakpoint must be activated before it is active.

If this code is IL, and there is a JIT-compiled version of the code, the breakpoint will
be applied in the JIT-compiled code as well.

HRESULT CreateBreakpoint(ULONG32 offset, ICorDebugFunctionBreakpoint

**ppBreakpoint)

In/
Out

Parameter Description

in offset Offset from the beginning of the function.

out ppBreakpoint Pointer to pointer to the breakpoint object for the
breakpoint set.

GetAddress

Returns the address of the code.

HRESULT GetAddress(CORDB_ADDRESS *pStart)

In/
Out

Parameter Description

out pStart Pointer to the address of the code.

GetCode

Returns the code of the method suitable for disassembly. Note that instruction
boundaries aren’t checked.

HRESULT GetCode(ULONG32 startOffset, ULONG32 endOffset, ULONG32

cBufferAlloc, BYTE buffer[], ULONG32 *pcBufferSize)

In/
Out

Parameter Description

in startOffset Starting offset of code from the beginning of the
method.

in endOffset Ending offset of code from the beginning of the method.

in cBufferAlloc Size of allocated buffer array

out buffer Buffer in which code is to be returned.

Page 36

Debug Reference

out pcBufferSize The number of bytes available for return. No more than
cBufferAlloc are actually returned in the buffer

GetFunction

Returns an ICorDebugFunction object representing the function for the code.

HRESULT GetFunction(ICorDebugFunction **ppFunction)

In/
Out

Parameter Description

out ppFunction Pointer to pointer to the function object for code.

GetILToNativeMapping

GetILToNativeMapping returns a map from IL offsets to native offsets for this code.
An array of COR_DEBUG_IL_TO_NATIVE_MAP structs will be returned, and some of
the ilOffsets in this array map may be the values specified in
CorDebugIlToNativeMappingTypes. Note: this method is only valid for
ICorDebugCodes representing native code that was jitted from IL code.

HRESULT GetILToNativeMapping(ULONG32 cMap, ULONG32 *pcMap,
COR_DEBUG_IL_TO_NATIVE_MAP map[])

In/
Out

Parameter Description

in cMap Pointer to the map array.

out pcMap The number of elements written into the map array.

out map Space allocated by the caller to receive the IL to native
mapping information.

GetSize

Returns the size of the code.

HRESULT GetSize(ULONG32 *pcBytes)

In/
Out

Parameter Description

out pcBytes Pointer to the size of the code.

GetVersionNumber

Returns the version number of the code.

HRESULT GetVersioNumber(ULONG32 *nVersion)

Page 37

Debug Reference

In/
Out

Parameter Description

out nVersion Pointer to the version of the code.

IsIL

Returns TRUE if IL code is being executed.

HRESULT IsIL(BOOL *pbIL)

In/
Out

Parameter Description

out pbIL Pointer to a Boolean indicating if the code is IL.

5.14 ICorDebugContext :

ICorDebugObjectValue
The ICorDebugContext interface provides methods that return information about a
context.

The debugger obtains an ICorDebugContext object by calling
ICorDebugChain::GetContext.

5.15 ICorDebugController : IUnknown
The ICorDebugController interface represents a scope at which program execution
context can be controlled. It represents either a process or an application domain.
The interfaces ICorDebugProcess and ICorDebugAppDomain extend
ICorDebugController.

If this is the controller of a process, the controller affects all threads in the process.
Otherwise the controller only affects the threads of a particular application domain.

CanCommitChanges

Not Implemented In-Process

Checks if the delta PE's can be applied to the running application domain. If there
are any known problems with the changes, then information about the error is
returned. The runtime will ensure that circular dependencies are handled.

HRESULT CanCommitChanges(ULONG cSnapshots, const

ICorDebugEditAndContinueSnapshot *pSnapshots[], ICorDebugErrorInfoEnum

**pError)

In/
Out

Parameter Description

in cSnapshots Number of elements in the pSnapshots array.

Page 38

Debug Reference

in pSnapshots Array of pointer to ICorDebugEditAndContinueSnapshot
objects representing Edit & Continue snapshots.

out pError Pointer to enumerator for error information.

CommitChanges

Not Implemented In-Process

Applies the delta PE's to the running application domain. If failures occur, detailed
information about the errors is returned. There are no rollback guarantees when a
failure occurs. Applying delta PE's to a running application domain must be done in
the order the snapshots are retrieved and may not be interleaved, i.e., there is no
merging of multiple snapshots applied out of order or with the same root. The
runtime will ensure that circular dependencies are handled. Partial commits are not
supported.

HRESULT CommitChanges(ULONG cSnapshots, const

ICorDebugEditAndContinueSnapshot *pSnapshots[], ICorDebugErrorInfoEnum

**pError)

In/
Out

Parameter Description

in cSnapshots Number of elements in the pSnapshots array.

in pSnapshots Array of pointer to ICorDebugEditAndContinueSnapshot
objects representing Edit & Continue snapshots.

out pError Pointer to enumerator for error information.

Continue

Not Implemented In-Process

Continues the process or application domain after a call to Stop.

HRESULT Continue(fIsOutOfBand)
In/
Out

Parameter Description

in fIsOutOfBand fIsOutOfBand is set to TRUE if continuing from an
unmanaged event that was sent with the fOutOfBand
flag in the unmanaged callback and it is set to FALSE if
continuing from a managed event or a normal
unmanaged event.

Detach

Not Implemented In-Process

Detaches the debugger from the application domain or process. The application
domain or process continues execution normally (thus the debugger shouldn’t call
Continue after Detach()ing). The ICorDebugProcess object (if detaching from a

Page 39

Debug Reference

process) or ICorDebugAppDomain object (if detaching from an application domain) is
no longer valid after the detach.

Note: If a debugger attempts to detach from a soft-attached process, the detach will
always succeed. If a debugger attempts to detach from a hard-attached process, i.e.,
the attach will succeed subject to operating system limitations.

HRESULT Detach()

EnumerateThreads

Returns an enumeration of all runtime threads active in the debuggee process or
application domain

HRESULT EnumerateThreads(ICorDebugThreadEnum **ppThreads)

In/
Out

Parameter Description

out ppThreads Pointer to pointer to an enumerator for all active runtime
threads in the debuggee process or application domain.

HasQueuedCallbacks

Not Implemented In-Process

Returns TRUE if there are currently managed callbacks that are queued up for the
given thread. These callbacks will be dispatched one at a time, each time Continue
is called.

If NULL is given for the pThread parameter, HasQueuedCallbacks will return TRUE if
there are currently managed callbacks queued for any thread.

HRESULT HasQueuedCallbacks (ICorDebugThread *pThread, BOOL *pbQueued)

In/
Out

Parameter Description

in pThread Pointer to the specified thread. If NULL,
HasQueuedCallbacks will return TRUE if there are
currently managed callbacks queued for any thread.

out pbQueued Pointer to a Boolean that is TRUE if there are currently
mapped callbacks that are queued up.

IsRunning

Not Implemented In-Process

Returns TRUE if the threads in the process or application domain are running freely.

HRESULT IsRunning(BOOL *pbRunning)

In/
Out

Parameter Description

Page 40

Debug Reference

out pbRunning Pointer to a Boolean that represents the running state of
the process or application. TRUE is returned if the
process or application domain is currently running.

SetAllThreadsDebugState

Not Implemented In-Process

Sets the current debug state of each thread. See ICorDebugThread::SetDebugState
for details.

HRESULT SetAllThreadsDebugState(CorDebugThreadState state,

ICorDebugThread *pExceptThisThread)

In/
Out

Parameter Description

in state The debug state to which the thread should be set.

in pExceptThisThread Pointer to the thread that is exempt from the debug
state change. Use NULL if you want to affect all threads.

Stop

Not Implemented In-Process

Performs a cooperative stop on all threads running managed code in the process or
application domain. Threads running managed code are suspended (unless this is in-
process). If a cooperative stop fails due to a deadlock, all threads are suspended and
E_TIMEOUT is returned.

HRESULT Stop(DWORD dwTimeout)

In/
Out

Parameter Description

in dwTimeout The time period in milliseconds after which this function
should timeout.

Terminate

Not Implemented In-Process

Terminates the process or application domain with extreme prejudice.

Note. If the process or application domain is stopped when Terminate is called, the
process or application domain should be continued using
ICorDebugController::Continue so that the ExitProcess or ExitAppDomain
callback is received.

Note: This method is not yet implemented by an AppDomain, but is
implemented at the process level.

HRESULT Terminate(UINT *exitCode)

Page 41

Debug Reference

In/
Out

Parameter Description

in exitCode Exit code for the process or application domain.

5.16 ICorDebugEditAndContinueSnapshot :

IUnknown
Not Implemented In-Process

This interface provides methods that allow a debugger to modify the code being
debugged using Edit & Continue operations.

The debugger obtains an ICorDebugEditAndContinueSnapshot object by calling
ICorDebugModule::GetEditAndContinueSnapshot.

The snapshot objects are managed objects. The compiler allocates a chunk of
memory and calls CopyMetadata to request the metadata to be written to the
memory. Alternatively, the compiler can request CopyMetadata to write the
metadata to a file. CopyMetadata takes a pointer to a GUID and a pointer to an
object that implements the IStream interface. The compiler must provide an
implementation of the IStream interface. The GUID identifies the metadata version
of the snapshot.

Once the metadata (version 1) has been copied to memory or to a file, the compiler
does an “open scope” operation to load the metadata. The compiler now emits the
changes required by the Edit and Continue operation to the metadata scope. The
IDE then copies the changes to the metadata, i.e., the delta PE, over to the
debuggee resulting in modified metadata (version 2).

Page 42

Debug Reference

Normally, the compiler applies sequences of Edit and Continue operations generating
successive versions of snapshots. The compiler can avoid repeatedly copying
metadata from the debuggee by maintaining a cache of snapshots. In this scenario,
the compiler requests a snapshot when it first applies Edit and Continue operations
to obtain the first version of the snapshot. For subsequent Edit and Continue
operations, the compiler invokes GetMvid to obtain a pointer to the GUID that
represents the current version of the snapshot in the debuggee. The compiler
compares this GUID with the GUID that it obtained when it called CopyMetadata. If
the two GUIDs match, the compiler does not need to call CopyMetadata again.
Instead, the compiler can apply the Edit and Continue operations to its copy of the
metadata corresponding to version 2 of the snapshot and generate the next version
of the snapshot and return the new delta PE.

CopyMetadata

Saves a copy of the executing metadata from the debuggee for this snapshot to the
output stream. The stream implementation must be supplied by the caller and will
typically either save the copy to memory or to disk. Only the IStream::Write
method will be called by this method. The MVID value returned is the unique
metadata ID for this copy of the metadata. It may be used on subsequent edit and
continue operations to determine if the client has the most recent version already
(performance win to cache).

HRESULT CopyMetadata(IStream *pIStream, GUID *pMvid)

In/
Out

Parameter Description

in pIStream Pointer to an IStream object to which the metadata is to
be copied.

out pMvid Pointer to a GUID that represents the version of the
metadata in the debuggee.

GetMvid

Returns the currently active metadata ID for the executing process. This value can
be used in conjunction with CopyMetaData to cache the most recent copy of the
metadata and avoid expensive copies. So for example, if you call CopyMetaData once
and save that copy, then on the next E&C operation you can ask for the current
MVID and see if it is already in your cache. If it is, use your version instead of
calling CopyMetaData again.

HRESULT GetMvid(GUID *pMvid)

In/
Out

Parameter Description

out pMvid Pointer to a GUID that represents the version of the
metadata in the debuggee.

GetRoDataRVA

Returns the base RVA that should be used when adding new static read-only data to
an existing image. The EE will guarantee that any RVA values embedded in the code

Page 43

Debug Reference

are valid when the delta PE is applied with new data. The new data will be added to a
page that is marked read-only. The new data must be contained in a .rdata section.

HRESULT GetRoDataRVA(ULONG32 *pRoDataRVA)

In/
Out

Parameter Description

out pRoDataRVA Pointer to base address of space for read-only data that
a compiler wishes to emit

GetRwDataRVA

Returns the base RVA that should be used when adding new static read/write data to
an existing image. The EE will guarantee that any RVA values embedded in the code
are valid when the delta PE is applied with new data. The new data will be added to a
page that is marked to allow read and write access. The new data must be contained
in a .data section.

HRESULT GetRwDataRVA(ULONG32 *pRwDataRVA)

In/
Out

Parameter Description

out pRwDataRVA Pointer to base address of space for read/write data that
a compiler wishes to emit

SetILMap

This method is called once for every method being replaced that has active instances
on a call stack on a thread in the target process. It is up to the caller of the API to
determine that this is the case. The target process should be halted before making
this check and before calling this method.

The method tells the runtime how the old code maps to the new code. The runtime
will map breakpoints from the locations in the old code to the corresponding
locations in the new code. If there are no breakpoints that need to be mapped, the
mapping table is only required for live instruction pointers. If breakpoints need to be
mapped, the full IL-map must be provided.

Right now, only sequence points should be mapped.

HRESULT SetILMap(mdToken mdFunction, ULONG cMapSize, const COR_IL_MAP

ilmap[])

In/
Out

Parameter Description

in mdFunction Function metadata token.

in cMapSize Number of elements in the IL-map array.

in ilMap Mapping table (see below).

Page 44

Debug Reference

SetPEBytes

This method gives the snapshot object a pointer to the delta PE which was based on
the snapshot. This pointer value will be AddRef’d and cached until
ICorDebugProcess::CanCommitChanges and/or ICorDebugProcess::CommitChanges
are called, at which point the engine will read the delta PE and remote it into the
debuggee process where the changes will be checked/applied.

HRESULT SetPEBytes(IStream *pIStream)

In/
Out

Parameter Description

in pIStream IStream from which the delta PE is to be read.

SetPESymbolBytes

This method gives the snapshot object a pointer to the updated symbols for the delta
PE which was based on the snapshot. This pointer value will be AddRef’d and cached
until ICorDebugProcess::CanCommitChanges and/or
ICorDebugProcess::CommitChanges are called, at which point the engine will read
the delta PE and remote it into the debuggee process where the changes will be
checked/applied.

HRESULT SetPESymbolBytes(IStream *pIStream)

In/
Out

Parameter Description

in pIStream IStream from which the updated symbols for the delta
PE is to be read.

5.17 ICorDebugEnum : IUnknown
The ICorDebugEnum interface provides methods for enumerating objects. This is the
root of the interface hierarchy for all enumeration interfaces.

ICorDebugEnum objects are returned by various methods defined on the runtime
Debugging interfaces.

Clone

Copies a pointer to the current position in the list to another enumerator object.

HRESULT Clone(ICorDebugEnum **ppEnum)

In/
Out

Parameter Description

out ppEnum Pointer to pointer to the target enumerator object.

Page 45

Debug Reference

GetCount

Gets the number of elements pointed to by the enumerator object.

HRESULT GetCount(ULONG *pcelt)

In/
Out

Parameter Description

out pcelt Pointer to the number of elements pointed to by the
enumerator object.

Reset

Sets or resets the position of the enumerator to the beginning of the list.

HRESULT Reset()

Skip

Moves the position of the enumeration forward. The number of objects to be skipped
is based on a parameter passed to the method.

HRESULT Skip(ULONG celt)

In/
Out

Parameter Description

in celt The number of elements to be skipped.

5.18 ICorDebugErrorInfoEnum :

ICorDebugEnum
The ICorDebugErrorInfoEnum interface provides methods for enumerating objects
that represent error information objects.

The debugger obtains an ICorDebugErrorInfoEnum object by calling
ICorDebugProcess:CanCommitChanges or ICorDebugProcess::CommitChanges.

Next

Used to retrieve error information objects. The number of such objects to be
retrieved is passed as one of the parameters. The enumeration pointer is
incremented by that amount.

HRESULT Next(ULONG celt, IErrorInfo *errorInfo[], ULONG *pceltFetched)

In/
Out

Parameter Description

in celt The number of IErrorInfo objects requested to be
retrieved.

Page 46

Debug Reference

out errorInfo[] Array of pointer to error information objects that is
retrieved.

out pceltFetched Pointer to the number of actual values fetched

5.19 ICorDebugEval : IUnknown
Not Implemented In-Process

ICorDebugEval collects functionality that runs code inside the debuggee. Note that
the operations do not complete until ICorDebugProcess::Continue is called, and the
EvalComplete callback is called.

An ICorDebugEval object is created in the context of a specific thread that will be
used to perform the evaluation. If you need to use this functionality without
changing the state of the program, set the DebugState of the program’s threads to
STOP before calling Continue.

Note that since user code is running when the evaluation is in progress, any debug
events can occur, including class loads, breakpoints, etc. Callbacks will be called
normally in such a case. The state of the Eval will be seen as part of the normal
program state inspection; the full debugger API continues to operate as normal in
such a circumstance. Evals can even be nested. Also, the user code may never
complete due to deadlock or infinite looping. In this case you will need to Abort the
Eval before resuming the program.

The following apply to function evaluation:

 If the function evaluation terminates with an exception, an attached debugger
can inspect the exception that was thrown.

 Execution control is in effect during evaluation. Breakpoints in the function being
evaluated can be hit.

 Function evaluations can be nested.

 When a debugger receives event callbacks and it inspects the stack chain, the
chain reason for the function evaluation will show up as CHAIN_FUNC_EVAL.

 A debugger will be able to evaluate a function only if the debuggee thread on
which the function evaluation is done is at a GC safe point.

 Strong and weak references are supported.

 Currently, a debugger cannot evaluate a function if it is stopped in some internal
runtime code.

In future, the following fill be supported:

 Ability to evaluate a function when the debuggee process is at any point.

Abort

Aborts the current computation. Note that in the case of nested Evals, this may
fail unless it is the most recent Eval.

HRESULT Abort()

CallFunction

Page 47

Debug Reference

Sets up a function call. Note that the given function is called directly; there is no
virtual dispatch. Use ICorDebugObjectValue::GetVirtualMethod to do a virtual
dispatch.

HRESULT CallFunction(ICorDebugFunction *pFunction, ULONG32 nArgs,

ICorDebugValue *pArgs[])

In/
Out

Parameter Description

in pFunction Pointer to the function to be called.

in nArgs Number of arguments.

in pArgs Array of pointers to arguments of the function.

CreateValue

Creates an IcorDebugValue of the given type for the sole purpose of using it in a
function evaluation. These can be use to pass user constants as parameters. The
value has a zero or NULL initial value. Use ICorDebugValue::SetValue to set the
value.

pElementClass is only required for value classes. Pass NULL otherwise.

If elementType == ELEMENT_TYPE_CLASS, then you get an
ICorDebugReferenceValue representing the NULL object reference. You can use this
to pass NULL to evals that have object reference parameters. You cannot set the
ICorDebugReferenceValue to anything. It always remains NULL.

HRESULT CreateValue(CorElementType elementType, ICorDebugClass

*pElementClass, IcorDebugValue **ppValue)

In/
Out

Parameter Description

in elementType The element type of the value.

in pElementClass Pointer to a value class.

out ppValue Pointer to pointer to a value object.

GetResult

Returns the result of the evaluation. This is only valid after the evaluation is
completed. If the evaluation completes normally, the result will be the return value.
If it terminates with an exception, the result is the exception thrown.

HRESULT GetResult(ICorDebugValue **ppResult)

In/
Out

Parameter Description

out ppResult Pointer to a pointer to the object representing the result
of the evaluation.

Page 48

Debug Reference

GetThread

Returns the thread that this eval was created from.

HRESULT GetThread(ICorDebugThread **ppThread)

In/
Out

Parameter Description

in ppThread Pointer to a pointer to the object representing the thread
that this eval was created from.

IsActive

Returns whether or not the Eval has an active computation.

HRESULT IsActive(BOOL *pbActive)

In/
Out

Parameter Description

in pbActive Pointer to a Boolean representing the active state of the
Eval.

NewArray

Allocates a new array with the given element type and dimensions.

HRESULT NewArray(CorElemetnType elementType, ICorDebugClass

*pElementClass, ULONG32 rank, ULONG32 dims[], ULONG32 lowBounds[])

In/
Out

Parameter Description

in elementType The element type of the array.

in pElementClass Pointer to class of the objects that represent the
elements of the array.

in rank The rank of the array.

in dims[] The dimensions of the array.

in lowBounds[] The lower bounds of the array.

NewObject

Allocates and calls the constructor for an object.

HRESULT NewObject(ICorDebugFunction *pConstructor, ULONG32 nArgs,

ICorDebugValue *pArgs[])

Page 49

Debug Reference

In/
Out

Parameter Description

in pConstructor Pointer to the function that represents the constructor.

in nArgs Number of arguments.

in pArgs Array of pointers to arguments of the constructor.

NewObjectNoConstructor

Allocates a new object without attempting to call any constructor on the object.

HRESULT NewObjectNoConstructor(ICorDebugClass *pClass)

In/
Out

Parameter Description

in pClass Pointer to the class of the object.

NewString

Allocates a string object with the given contents.

HRESULT NewString (LPWSTR string)

In/
Out

Parameter Description

in string Pointer to string representing the contents of the string
object.

5.20 ICorDebugFrame : IUnknown
This interface provides methods that allow a debugger to view and change code that
is about to be executed. ICorDebugFrame also provides methods that return
information about the function that activated the stack frame.

The debugger obtains an ICorDebugFrame object by enumerating frame objects
using the enumerator returned by ICorDebugChain::EnumerateFrames.

CreateStepper

Not Implemented In-Process

Creates a stepper object which operates relative to the frame. The Stepper API must
then be used to perform actual stepping.

Note that if this frame is not active, the frame will typically have to be returned to
before the step is completed.

HRESULT CreateStepper(ICorDebugStepper **ppStepper)

Page 50

Debug Reference

In/
Out

Parameter Description

out ppStepper Pointer to pointer to the created stepper object.

GetCallee

Returns a pointer to the frame in the current chain which this frame called, or NULL
if this is the innermost frame in the chain.

HRESULT GetCallee(ICorDebugFrame **ppFrame)

In/
Out

Parameter Description

out ppFrame Pointer to pointer to the frame object in the current
chain which this frame called.

GetCaller

Returns a pointer to the frame in the current chain that called this frame, or NULL if
this is the outermost frame in the chain.

HRESULT GetCaller(ICorDebugFrame **ppFrame)

In/
Out

Parameter Description

out ppFrame Pointer to pointer to the frame object in the current
chain that called this frame.

GetChain

Returns an ICorDebugChain object representing the chain of which this stack frame
is a part.

HRESULT GetChain(ICorDebugChain **ppChain)

In/
Out

Parameter Description

out ppChain Pointer to pointer to a chain object.

GetCode

Returns an ICorDebugCode object representing the code that the stack frame is
running.

HRESULT GetCode(ICorDebugCode **ppCode)

In/ Parameter Description

Page 51

Debug Reference

Out

out ppCode Pointer to pointer to a code object for code that the
stack frame is running.

GetFunction

Returns an ICorDebugFunction object representing the function for the code that
the stack frame is running.

HRESULT GetFunction(ICorDebugFunction **ppFunction)

In/
Out

Parameter Description

out ppFunction Pointer to pointer to a function object representing the
function for the code that the stack frame is running.

GetFunctionToken

Returns the token for the function for the code which this stack frame is running.

HRESULT GetFunctionToken(mdMethodDef *pToken)

In/
Out

Parameter Description

out pToken Pointer to the metadata function token for the code
which this stack frame is running.

GetStackRange

Returns the absolute address range of the stack frame. This is useful for piecing
together interleaved stack traces gathered from multiple EE engines.) Note that you
cannot make any assumptions about what is actually stored on the stack – the
numeric range is to compare stack frame locations only.

Note: This method is not yet implemented.

HRESULT GetStackRange(CORDB_ADDRESS *pStart, CORDB_ADDRESS *pEnd)

In/
Out

Parameter Description

out pStart Pointer to the real Win32 minimum value that bounds
the stack frame.

out pEnd Pointer to the real Win32 maximum value that bounds
the stack frame.

Page 52

Debug Reference

5.21 ICorDebugFrameEnum : ICorDebugEnum
The ICorDebugFrameEnum interface provides methods for enumerating objects that
represent stack frames.

Next

This method is used to retrieve stack frame objects. The number of frame objects to
be retrieved is passed as one of the parameters. The enumeration pointer is
incremented by that amount.

HRESULT Next(ULONG celt, ICorDebugFrame *frames[], ULONG *pceltFetched)

In/
Out

Parameter Description

in celt The number of stack frame objects requested to be
retrieved.

out frames[] Array of pointers to frame objects that is retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.22 ICorDebugFunction : IUnknown
This interface provides methods that return information about a function, such as its
metadata, the class in which the function is defined, the module to which the class
belongs, etc.

The debugger obtains an ICorDebugFunction object by calling
ICorDebugCode::GetFunction or ICorDebugModule::GetFunctionFromToken.

CreateBreakpoint

Not Implemented In-Process

CreateBreakpoint creates a breakpoint at the start of the function.

HRESULT CreateBreakpoint(ICorDebugFunctionBreakpoint **ppBreakpoint)

In/
Out

Parameter Description

out ppBreakpoint Pointer to pointer to the function breakpoint object.

GetClass

Returns the class object (ICorDebugClass) for the function.

HRESULT GetClass(ICorDebugClass **ppClass)

Page 53

Debug Reference

In/
Out

Parameter Description

out ppClass Pointer to pointer to the class object for the function.
Null is returned if the function is not a member.

GetCurrentVersionNumber

Obtains the current version of the function, which is the same version as that
obtained by ICorDebugCode::GetVersionNumber with the pointer that GetILCode or
GetNativeCode returns

HRESULT GetCurrentVersionNumber(ULONG32 *pnCurrentVersion)

In/
Out

Parameter Description

out pnCurrentVersion The current version.

GetILCode

Returns the IL code for the function. Returns NULL if there is no IL code.

HRESULT GetILCode (ICorDebugCode **ppCode)

In/
Out

Parameter Description

out ppCode The code object.

GetLocalVarSigToken

Returns the token for the local variable signature for this function.

HRESULT GetLocalVarSigToken(mdSignature *pmdSig)

In/
Out

Parameter Description

out pmdSig Pointer to a metadata signature token. NULL is returned
if the function has no local variables.

GetModule

Returns the module object (ICorDebugModule) for the function.

HRESULT GetModule(ICorDebugModule **pModule)

In/
Out

Parameter Description

out pModule Pointer to pointer to the module object for the function.

Page 54

Debug Reference

GetNativeCode

Returns the native code for the function. Returns NULL if there is no native code.

HRESULT GetNativeCode (ICorDebugCode **ppCode)

In/
Out

Parameter Description

out ppCode Pointer to pointer to the code object that represents
native code for the function.

GetToken

Returns the metadata methodDef token for the function.

HRESULT GetToken(mdMethodDef *pMethodDef)

In/
Out

Parameter Description

out pMethodDef Pointer to the metadata methodDef token for the
function.

5.23 ICorDebugFunctionBreakpoint :

ICorDebugBreakpoint
Not Implemented In-Process

This interface provides methods that return information about function breakpoints.
An ICorDebugFunctionBreakpoint object is created by calling
ICorDebugFunction::CreateBreakpoint or ICorDebugCode::CreateBreakpoint.

GetFunction

The debugger calls this method to get the function at which the breakpoint occurred.

HRESULT GetFunction(ICorDebugFunction **ppFunction)

In/
Out

Parameter Description

out ppFunction Pointer to pointer to the object that represents the
function at which the breakpoint occurred.

GetOffset

The debugger calls this method to get the offset within the function at which the
breakpoint occurred.

HRESULT GetOffset(ULONG32 *pnOffset)

Page 55

Debug Reference

In/
Out

Parameter Description

out pnOffset Pointer to the offset within the function at which the
breakpoint occurred.

5.24 ICorDebugGenericValue : ICorDebugValue
ICorDebugGenericValue applies to all values.

GetValue

Copies the value into the specified buffer. The buffer should be the appropriate size
for the simple type.

HRESULT GetValue(void *pTo)

In/
Out

Parameter Description

out pTo Pointer to the value.

SetValue

Not Implemented In-Process

Copies a new value from the specified buffer. The buffer should be the appropriate
size for the simple type.

HRESULT SetValue(void *pFrom)

In/
Out

Parameter Description

in pFrom Pointer to the value.

5.25 ICorDebugHeapValue : ICorDebugValue
ICorDebugHeapValue represents a garbage collected object. Since heap values are
represented with strong or weak handles, they can be held onto indefinitely (across
Continues).

CreateRelocBreakpoint

Not Implemented In-Process

Creates a breakpoint that will be triggered when the address in the reference
changes due to a garbage collection.

Note: This method is not yet implemented.

Page 56

Debug Reference

HRESULT CreateRelocBreakpoint(ICorDebugValueBreakpoint **ppBreakpoint)

In/
Out

Parameter Description

out ppBreakpoint Pointer to a pointer to a value breakpoint object for the
breakpoint that will be triggered.

IsValid

Tests whether the object is valid. The object becomes invalid if the garbage collector
reclaims the object.

HRESULT IsValid(BOOL *pbValid)

In/
Out

Parameter Description

out pbValid Pointer to a Boolean that is TRUE if the object is valid.

5.26 ICorDebugILFrame : ICorDebugFrame
This interface provides methods that return information about IL frames. The IL
frames can be running interpreted or JIT-compiled code.

The debugger obtains an ICorDebugILFrame object by calling
ICorDebugChain::EnumerateChains, which returns an enumerator for stack frames,
and then calling the methods defined on ICorDebugFrameEnum to enumerate the
stack frames.

CanSetIP

Not Implemented In-Process

CanSetIP attempts to determine if it is safe to set the instruction pointer to the IL
at the given offset. If this returns S_OK, then executing SetIP will result in a safe,
correct, continued execution. If CanSetIP returns anything else, SetIP can still be
invoked, but continued, correct execution of the debuggee cannot be guaranteed.
See the "Debugging Services" specification for details of the conditions under which
the instruction pointer may be set.

HRESULT CanSetIP(ULONG32 nOffset)

In/
Out

Parameter Description

in nOffset IL offset to which instruction pointer should be set.

EnumerateArguments

Returns a list of the arguments available in the frame. Note that this will include
varargs arguments as well as arguments declared by the function signature.

Page 57

Debug Reference

HRESULT EnumerateArguments(ICorDebugValueEnum **ppValueEnum)

In/
Out

Parameter Description

out ppValueEnum Pointer to pointer to the objects representing arguments
available in the frame.

EnumerateLocalVariables

Returns a list of the local variables available in the frame. Note that this may not
include all the locals in the running function, as some of them may not be active.

HRESULT EnumerateLocalVariables(ICorDebugValueEnum **ppValueEnum)

In/
Out

Parameter Description

out ppValueEnum Pointer to pointer to an enumerator object for local
variables in the frame.

GetArgument

Returns the value object (ICorDebugValue) for the value of an argument in an IL
frame. This can be used either in an interpreted or JIT-compiled frame.

The slot number is as follows:

 If a method has 'this', then 'this' is slot 0. All parameters (including return
values) follow.
So, if a method is not static and has a return value, then 'this' is slot 0, the
return value is slot 1, the first user argument is 2, etc.

 If a method is not static and doesn't have a return value, then 'this' is slot 0, the
first user argument is 1, etc.

Basically, 'this' is always in slot 0. All arguments are in slot 1..n, slot 0..n if the
method is static. An optional return value is passed to a method as the first
argument, it is just hidden from the user. So you just have to be sure to count your
return values in the arguments.

HRESULT GetArgument(DWORD dwIndex, ICorDebugValue **ppValue)

In/
Out

Parameter Description

in dwIndex Location on the stack frame.

out ppValue Pointer to pointer to the object that represents the value
of the argument.

GetIP

Page 58

Debug Reference

Returns the byte offset into the IL code from the start of the function for this stack
frame. If this stack frame is active, this address is the next instruction to execute. If
this stack frame is not active, this is the next instruction to execute when the stack
frame is reactivated.

Note that if this is a JITted frame, the IP will be determined by mapping backwards
from the actual native IP, so the value may not be exact.

HRESULT GetIP(ULONG32 *pnOffset, CorDebugMappingResult *pMappingResult)

In/
Out

Parameter Description

out pnOffset Pointer to the offset of IL from the start of the function.

out pMappingResult Pointer to an object describing the details of how the IP
was obtained (see below).

GetLocalVariable

Returns the value object (ICorDebugValue) for a local variable in an IL frame. This
can be used either in an interpreted or JIT-compiled frame.

HRESULT GetLocalVariable(DWORD dwIndex, ICorDebugValue **ppValue)

In/
Out

Parameter Description

in dwIndex Location on the stack frame.

out ppValue Pointer to pointer to the object that represents the value
of the variable.

GetStackDepth

Returns the operand stack depth of the IL stack frame.

Note: This method is not yet implemented.

HRESULT GetStackDepth(ULONG32 *pDepth)

In/
Out

Parameter Description

out pDepth Pointer to the return value of the stack depth.

GetStackValue

Returns a value from the operand stack in an IL frame.

Note: This method is not yet implemented.

HRESULT GetStackValue(DWORD dwIndex, ICorDebugValue **ppValue)

In/ Parameter Description

Page 59

Debug Reference

Out

in dwIndex Index of the operand.

out ppValue Pointer to pointer to the object that represents the value
of the operand.

SetIP

Not Implemented In-Process

Sets the instruction pointer to the IL at the given offset. Note that this is an
inherently dangerous thing to do. The debugger (or debugger user) is responsible for
adjusting the local state of the function so that it remains consistent. In particular,
for interpreted methods the stack may need adjustment. See the "Debugging
Services" specification for details of the conditions under which the instruction
pointer may be set.

HRESULT SetIP(ULONG32 nOffset)

In/
Out

Parameter Description

in nOffset The offset of IL from the start of the function.

HRESULT Codes Returned

 CORDBG_E_CANT_SET_IP_INTO_CATCH

 CORDBG_E_CANT_SET_IP_INTO_FINALLY

 CORDBG_E_CODE_NOT_AVAILABLE

 CORDBG_S_BAD_END_SEQUENCE_POINT

 CORDBG_S_BAD_START_SEQUENCE_POINT

 CORDBG_S_INSUFFICIENT_INFO_FOR_SETIP

 E_FAIL

 S_OK

5.27 ICorDebugManagedCallback : IUnknown
Not Implemented In-Process

The debugger implements this callback interface and registers it with the runtime by
calling ICorDebug::SetManagedHandler. The runtime calls methods defined on
this interface to notify the debugger about managed events in the debuggee process.

All callbacks are called with the process in the synchronized state. All callbacks are
serialized, and are called in the same thread. Each callback implementor must call
Continue in a callback to resume execution. If Continue is not called before
returning, the process will remain stopped. Continue must be called before any
more event callbacks will happen.

Break

Page 60

Debug Reference

Notifies the debugger when a break opcode in the code stream is executed.

HRESULT Break(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

Breakpoint

Notifies the debugger when a breakpoint is hit by the debuggee.

HRESULT Breakpoint(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread, ICorDebugBreakpoint *pBreakpoint)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

in pBreakpoint Pointer to the object that represents the code or data
breakpoint.

ControlCTrap

ControlCTrap is called if a CTRL-C is trapped in the process being debugger. All
appdomains within the process are stopped for this callback. Return values:
S_OK : Debugger will handle the ControlC Trap S_FALSE : Debugger won't handle
the ControlC Trap

HRESULT ControlCTrap(ICorDebugProcess *pProcess)

In/
Out

Parameter Description

in pProcess Pointer to the process object that represents the process
that generated the event.

CreateAppDomain

Notifies the debugger when an application domain is created.

HRESULT CreateAppDomain(ICorDebugProcess *pProcess, ICorDebugAppDomain

*pAppDomain)

Page 61

Debug Reference

In/
Out

Parameter Description

in pProcess Pointer to the process object that represents the process
that generated the event.

in pAppDomain Pointer to the application domain object that was
created.

CreateProcess

Notifies the debugger when a process is first attached to or started. This entry point
won’t be called until the Execution Engine is initialized. Process object is returned
from create/attach in case EE never starts up.

HRESULT CreateProcess(ICorDebugProcess *pProcess)

In/
Out

Parameter Description

in pProcess Pointer to the process object that represents the process
that generated the event.

CreateThread

Notifies the debugger when a thread first begins executing managed code. The
thread will be positioned immediately at the first managed code to be executed.

HRESULT CreateThread(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

DebuggerError

Notifies the debugger when an error occurs while attempting to handle an event from
the runtime. The process is placed in pass through mode, possibly permanently,
depending on the nature of the error.

HRESULT DebuggerError(ICorDebugProcess *pProcess, HRESULT errorHR,

DWORD errorCode)

In/
Out

Parameter Description

Page 62

Debug Reference

in pProcess Pointer to the process object that represents the process
that generated the event.

in errorHR The HRESULT for the error that occurred.

in errorCode Additional information about the error that occurred.

EvalComplete

Notifies the debugger when an evaluation has completed.

HRESULT EvalComplete(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread, ICorDebugEval *pEval)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

in pEval Pointer to the evaluation object used to perform the
evaluation.

EvalException

Notifies the debugger when an evaluation terminates with an unhandled exception.

HRESULT EvalException(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread, ICorDebugEval *pEval)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

in pEval Pointer to the evaluation object used to perform the
evaluation.

Exception

Notifies the debugger when an exception occurs in managed code. The specific
exception can be retrieved from the thread object.

HRESULT Exception(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread, BOOL unhandled)

Page 63

Debug Reference

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

in unhandled If FALSE, this is a “first chance” exception that hasn’t
had a chance to be processed by the application. If
TRUE, this is an unhandled exception which will
terminate the process.

ExitAppDomain

Notifies the debugger when an application domain exits.

HRESULT ExitAppDomain(ICorDebugProcess *pProcess, ICorDebugAppDomain

*pAppDomain)

In/
Out

Parameter Description

in pProcess Pointer to the process object that represents the process
that generated the event.

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

ExitProcess

Notifies the debugger about an exit-process debugging event.

HRESULT ExitProcess(ICorDebugProcess *pProcess)

In/
Out

Parameter Description

in pProcess Pointer to the process object that represents the process
that generated the event.

ExitThread

Notifies the debugger about an exit-thread debugging event.

HRESULT ExitThread(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents

Page 64

Debug Reference

the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

LoadAssembly

Notifies the debugger when an assembly is successfully loaded.

HRESULT LoadAssembly(ICorDebugAppDomain *pAppDomain, ICorDebugAssembly

*pAssembly)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pAssembly Pointer to the assembly object that represents the
assembly that generated the event.

LoadClass

Notifies the debugger when the runtime has finished loading a class. This callback
only occurs if ClassLoading has been enabled for the class’s module.

HRESULT LoadClass(ICorDebugAppDomain *pAppDomain, ICorDebugClass

*pClass)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pClass Pointer to the class that was loaded.

LoadModule

Notifies the debugger when the runtime has loaded a module. This is an appropriate
time to examine metadata for the module or enable or disable JIT debugging.

HRESULT LoadModule(ICorDebugAppDomain *pAppDomain, ICorDebugModule

*pModule)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pModule Pointer to the module that was loaded.

Page 65

Debug Reference

LogMessage

LogMessage is called when a managed thread calls the Log class in the
System.Diagnostics package to log an event.

HRESULT LogMessage(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread, LONG lLevel, WCHAR pLogSwitchName[], WCHAR pMessage[])

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

in lLevel The level for the Log message.

in pLogSwitchName Array of characters representing the log switch name.

in pMessage Array of characters representing the log message.

LogSwitch

LogSwitch is called when a managed thread calls the LogSwitch class in the
System.Diagnostics package to log an event.

HRESULT LogSwitch(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread, LONG lLevel, ULONG ulReason, WCHAR pLogSwitchName[], WCHAR

pParentName[])

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

in lLevel The level for the Log message.

in ulReason The log switch reason.

in pLogSwitchName Array of characters representing the log switch name.

in pParentName Array of characters representing the name of the parent
of the log switch.

NameChange

NameChange is called if either an AppDomain's or Thread's name changes.

HRESULT NameChange(ICorDebugAppDomain *pAppDomain,

 ICorDebugThread *pThread)

Page 66

Debug Reference

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

StepComplete

Notifies the debugger when an execution step completes in the debuggee. The
stepper may be used to continue stepping if desired (except for TERMINATE
reasons.)

HRESULT StepComplete(ICorDebugAppDomain *pAppDomain, ICorDebugThread

*pThread, ICorDebugStepper *pStepper, CorDebugStepReason reason)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pThread Pointer to the thread object that represents the thread
that generated the event.

in pStepper Pointer to the stepper object that represents the
stepping process.

in reason Type of step complete.

UnloadAssembly

Notifies the debugger when an assembly is unloaded. The assembly should not be
used after this point.

HRESULT UnLoadAssembly(ICorDebugAppDomain *pAppDomain,

ICorDebugAssembly *pAssembly)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pAssembly Pointer to the assembly object that represents the
assembly that generated the event.

UnloadClass

Notifies the debugger when the runtime is about to unload a class. The class should
not be referenced after this point. This callback only occurs if ClassLoading has been
enabled for the class’s module.

Page 67

Debug Reference

HRESULT UnloadClass(ICorDebugAppDomain *pAppDomain, ICorDebugClass

*pClass)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pClass Pointer to the class that was unloaded.

UnloadModule

Notifies the debugger that a module has been unloaded. The module should not be
used after this point.

HRESULT UnloadModule(ICorDebugAppDomain *pAppDomain, ICorDebugModule

*pModule)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pModule Pointer to the module that was unloaded.

UpdateModuleSymbols

UpdateModuleSymbols is called when an NGWS module's symbols have changed.
This is a debugger's chance to update its view of a module's symbols, typically by
calling ISymUnmanagedReader::UpdateSymbolStore or
ISymUnmanagedReader::ReplaceSymbolStore.

HRESULT UpdateModuleSymbols(ICorDebugAppDomain *pAppDomain,

ICorDebugModule *pModule, IStream *pSymbolStream)

In/
Out

Parameter Description

in pAppDomain Pointer to the application domain object that represents
the application domain that generated the event.

in pModule Pointer to the module

in pSymbolStream Pointer to the new symbol stream.

Page 68

Debug Reference

5.28 ICorDebugModule : IUnknown
The ICorDebugModule interface provides methods that return information about a
module, such as the process to which the module belongs or the metadata for the
module. ICorDebugModule also provides methods for enabling debugging in JIT-
compiled code, doing Edit and Continue operations, etc.

The debugger obtains an ICorDebugModule object by calling
ICorDebugClass::GetModule, ICorDebugFunction::GetModule, or
ICorDebugProcess::GetModuleFromToken.

CreateBreakpoint

Not Implemented In-Process

Creates a breakpoint that will be triggered when any code in the module is executed.

Note: This method is not yet implemented.

HRESULT CreateBreakpoint (ICorDebugModuleBreakpoint **ppBreakpoint)

In/
Out

Parameter Description

out ppBreakpoint Pointer to pointer to an object that represents the
module breakpoint.

EnableClassLoadCallbacks

Not Implemented In-Process

Controls whether or not ClassLoad callbacks are called for the particular module.
ClassLoad callbacks are off by default.

HRESULT EnableClassLoadCallbacks (BOOL bClassLoadCallbacks)

In/
Out

Parameter Description

in bClassLoadCallbac
ks

TRUE to enable ClassLoad callbacks.

EnableJITDebugging

Not Implemented In-Process

EnableJITDebugging controls whether the JITer preserves mapping information
between the IL version of a function and the JIT-compiled version for functions in the
module. Turning this on will also disable certain optimizations in the code that the
JITer generates. If bAllowJitOpts is true, then the JITer will generate code with
certain (JIT-specific) optimizations

Page 69

Debug Reference

JIT debugging is enabled by default for all modules loaded when the debugger is
active. Programmatically enabling/disabling these settings will override global
settings.

HRESULT EnableJITDebugging(BOOL bJITDebugging, BOOL bAllowJitOpts)

In/
Out

Parameter Description

in bJITDebugging TRUE to enable JIT debugging.

in bAllowJitOpts TRUE to enable JIT optimizations.

GetAssembly

Returns the assembly that contains this module.

HRESULT GetAssembly(ICorDebugAssembly **ppAssembly)

In/
Out

Parameter Description

out ppAssembly Pointer to a pointer to the assembly object that contains
the module.

GetBaseAddress

Returns the base address of the module.

HRESULT GetBaseAddress(CORDB_ADDRESS *pAddress)

In/
Out

Parameter Description

out pAddress Pointer to the base address of the module.

GetClassFromToken

Returns a class object (ICorDebugClass) for a given class metadata token.

HRESULT GetClassFromToken(mdTypeDef typedef, ICorDebugClass **ppClass)

In/
Out

Parameter Description

in typeDef Metadata typedef token.

out ppClass Pointer to pointer to an object that represents the class
corresponding to the typedef token.

GetEditAndContinueSnapshot

Page 70

Debug Reference

Not Implemented In-Process

This method produces a snapshot of the running process. This snapshot can then be
fed into the compiler to guarantee the same token values are returned by the
metadata during compilation, to find the address where new static data should go,
etc. These changes are committed using ICorDebugProcess.

HRESULT GetEditAndContinueSnapshot(ICorDebugEditAndContinueSnapshot

**ppEditAndContinueSnapshot)

In/
Out

Parameter Description

out ppEditAndContinueSnap
shot

Pointer to pointer to an Edit & Continue object for
edits.

GetFunctionFromRVA

Returns a function object (ICorDebugFunction) from the relative address of the
function in the module.

Note: This method is not yet implemented.

HRESULT GetFunctionFromRVA(CORDB_ADDRESS rva, ICorDebugFunction

**ppFunction)

In/
Out

Parameter Description

in rva Relative address of the function in the module.

out ppFunction Pointer to pointer to an object that represents the
function.

GetFunctionFromToken

Returns a function object (ICorDebugFunction) for a given function metadata
token. Returns CORDBG_E_FUNCTION_NOT_IL if called with a methodDef that does
not refer to an IL method.

HRESULT GetFunctionFromToken(mdMethodDef methodDef, ICorDebugFunction

**ppFunction)

In/
Out

Parameter Description

in methodDef Metadata reference for the function member.

out ppFunction Pointer to pointer to an object that represents the
function corresponding to the member reference.

GetGlobalVariableValue

Page 71

Debug Reference

Returns a value object for the given global variable.

HRESULT GetGlobalVariableValue(mdFieldDef fieldDef,

ICorDebugValue **ppValue)

In/
Out

Parameter Description

in fieldDef Metadata reference for the global variable.

out ppValue Pointer to pointer to an object that represents the value
of the global variable.

GetMetaDataInterface

This method returns a metadata interface pointer that can be used to examine the
metadata for this module.

HRESULT GetMetaDataInterface(REFIID riid, IUnknown **ppObj)

In/
Out

Parameter Description

in riid The REFIID of the metadata interface.

out ppObj Pointer to pointer to the metadata interface object.

GetName

Returns the name of the module.

HRESULT GetName(ULONG32 cchName, ULONG32 *pcchName, WCHAR szName[])

In/
Out

Parameter Description

in cchName The allocated size of string buffer.

out pcchName The number of characters available for return. No more
than cchName are actually returned in the buffer.

out szName[] The string buffer.

GetProcess

Returns a process object (ICorDebugProcess) for the process to which this module
belongs.

HRESULT GetProcess(ICorDebugProcess **ppProcess)

In/
Out

Parameter Description

out ppProcess Pointer to pointer to an object that represents a

Page 72

Debug Reference

debuggee process.

GetSize

Returns the size, in bytes, of the module.

HRESULT GetSize(ULONG32 *pcBytes)

In/
Out

Parameter Description

out pcBytes The size, in bytes, of the module.

GetToken

Returns the token for the module table entry for this object. The token may then be
passed to the metadata import APIs.

HRESULT GetToken(mdModule *pToken)

In/
Out

Parameter Description

out pToken Pointer to the token for the module table entry for
the module.

IsDynamic

If this is a dynamic module, IsDynamic sets *pDynamic to true, otherwise sets
*pDynamic to false.

HRESULT IsDynamic(BOOL *pDynamic)

In/
Out

Parameter Description

out pDynamic If this is a dynamic module, IsDynamic sets *pDynamic
to true, otherwise sets *pDynamic to false.

5.29 ICorDebugModuleBreakpoint :

ICorDebugBreakpoint
Not Implemented In-Process

This interface provides methods that return information about module breakpoints.
An ICorDebugModuleBreakpoint object is created by calling
ICorDebugModule::CreateBreakpoint.

GetModule

The debugger calls this method to get the module at which the breakpoint occurred.

Page 73

Debug Reference

HRESULT GetModule(ICorDebugModule **ppModule)

In/
Out

Parameter Description

out ppModule Pointer to pointer to the object that represents the
module at which the breakpoint occurred.

5.30 ICorDebugModuleEnum : ICorDebugEnum
The ICorDebugModuleEnum interface provides methods for enumerating module
objects.

The debugger obtains an ICorDebugModuleEnum object by calling
ICorDebugProcess::EnumerateModules on an object that represents a debuggee
process.

Next

This method is used to retrieve module objects. The number of module objects to be
retrieved is passed as one of the parameters. The enumeration pointer is
incremented by that amount.

HRESULT Next(ULONG celt, ICorDebugModule *modules[], ULONG

*pceltFetched)

In/
Out

Parameter Description

in celt The number of module objects requested to be
retrieved.

out modules[] Array of pointers to module objects that is retrieved.

out pceltFetched The pointer to the number of actual values fetched.

5.31 ICorDebugNativeFrame : ICorDebugFrame
This interface provides methods to access information about frames running native
managed or JIT-compiled managed code. Information returned includes the value of
the instruction pointer associated with the stack frame and the value of hardware
registers. This interface also provides a method to set the value of the instruction
pointer.

The debugger obtains an ICorDebugNativeFrame object by calling
ICorDebugChain::EnumerateChains, which returns an enumerator for stack frames,
and then calling the methods defined on ICorDebugFrameEnum to enumerate the
stack frames.

CanSetIP

Not Implemented In-Process

Page 74

Debug Reference

CanSetIP attempts to determine if it is safe to set the instruction pointer to the
given native offset. If this returns S_OK, then executing SetIP will result in a safe,
correct, continued execution. If CanSetIP returns anything else, SetIP can still be
invoked, but continued, correct execution of the debuggee cannot be guaranteed.
See the "Debugging Services" specification for details of the conditions under which
the instruction pointer may be set.

HRESULT CanSetIP(ULONG32 nOffset)

In/
Out

Parameter Description

in nOffset Native offset to which instruction pointer should be set.

GetIP

Returns the byte offset into the native code from the start of the function for this
stack frame. If this stack frame is active, this address is the next instruction to
execute. If this stack frame is not active, this is the next instruction to execute when
the stack frame is reactivated.

HRESULT GetIP(ULONG32 *pnOffset)

In/
Out

Parameter Description

out pnOffset Pointer to the offset of native code from the start of the
function.

GetLocalDoubleRegisterValue

Return the value of a local variable or argument stored in a register pair of the native
frame.

HRESULT GetLocalDoubleRegisterValue (CorDebugRegister highWordReg,

CorDebugRegister lowWordReg, ULONG cbSigBlob, PCCOR_SIGNATURE

pvSigBlob, ICorDebugValue **ppValue)

In/
Out

Parameter Description

in highWordReg The register identifier for the high word register.

in lowWordReg The register identifier for the low word register.

in cbSigBlob Count in bytes of the signature blob.

in pvSigBlob Pointer to the signature blob.

out ppValue Return value of the variable.

GetLocalMemoryRegisterValue

Page 75

Debug Reference

Return the value of a local variable which is stored half in a register and half in
memory.

HRESULT GetLocalMemoryRegisterValue(CORDB_ADDRESS highWordAddress,

CorDebugRegister lowWordRegister, ULONG cbSigBlob, PCCOR_SIGNATURE

pvSigBlob, ICorDebugValue **ppValue)

In/
Out

Parameter Description

in highWordAddress Address for high word.

in lowWordRegister Register specifier for low word.

in cbSigBlob Count in bytes of the signature blob.

in pvSigBlob Pointer to the signature blob.

out ppValue Return value of the variable.

GetLocalMemoryValue

Return the value of a local variable stored at the given address.

HRESULT GetLocalMemoryValue(CORDB_ADDRESS address, ULONG cbSigBlob,

PCCOR_SIGNATURE pvSigBlob, ICorDebugValue **ppValue)

In/
Out

Parameter Description

in address Local variable stored at the given address.

in cbSigBlob Count in bytes of the signature blob.

in pvSigBlob Pointer to the signature blob.

out ppValue Return value of the variable.

GetLocalRegisterMemoryValue

Return the value of a local variable which is stored half in a register and half in
memory.

HRESULT GetLocalRegisterMemoryValue(CorDebugRegister highWordReg,

CORDB_ADDRESS lowWordAddress, ULONG cbSigBlob, PCCOR_SIGNATURE

pvSigBlob, ICorDebugValue **ppValue)

In/
Out

Parameter Description

in highWordReg Register specifier for high word.

in lowWordAddress Address for low word.

in cbSigBlob Count in bytes of the signature blob.

Page 76

Debug Reference

in pvSigBlob Pointer to the signature blob.

out ppValue Return value of the variable.

GetLocalRegisterValue

Returns the value of a local variable or argument stored in a register of a native
frame.

HRESULT GetLocalRegisterValue(CorDebugRegister reg, ULONG cbSigBlob,

PCCOR_SIGNATURE pvSigBlob, ICorDebugValue **ppValue)

In/
Out

Parameter Description

in reg The register identifier.

in cbSigBlob Count in bytes of the signature blob.

in pvSigBlob Pointer to the signature blob.

out ppValue Pointer to pointer to an object that represents the value
of the register.

GetRegisterSet

Returns the register set for this frame.

HRESULT GetRegisterSet(ICorDebugRegisterSet **ppRegisters)

In/
Out

Parameter Description

out ppRegisters Pointer to a pointer to a register set object for this
frame.

SetIP

Not Implemented In-Process

Sets the instruction pointer to the native code at the given offset. Note that this is an
inherently dangerous thing to do. The debugger (or debugger user) is responsible for
adjusting the local state of the function so that it remains consistent. See the
"Debugging Services" specification for details of the conditions under which the
instruction pointer may be set.

HRESULT SetIP(ULONG32 nOffset)

In/
Out

Parameter Description

in nOffset The offset of native code from the start of the function.

Page 77

Debug Reference

5.32 ICorDebugObjectValue : ICorDebugValue
The ICorDebugObjectValue interface provides methods that return information about
an object that represents an object value. Information returned includes the class of
the object and value of fields of the object. Objects are not necessarily heap values
because they may be value objects. You must do a separate QI to access heap
functionality.

GetClass

Returns the class of the object in the value. The object must not be null.

HRESULT GetClass(ICorDebugClass **ppClass)

In/
Out

Parameter Description

out ppClass Pointer to pointer to an object that represents the class
of the object in the value.

GetContext

Returns the runtime context for the object.

Note: This method is not yet implemented.

HRESULT GetContext(ICorDebugContext **ppContext)

In/
Out

Parameter Description

out ppContext Pointer to pointer to an object that represents the
runtime context for this object.

GetFieldValue

Returns a value for the given field in the given class. The class must be on the class
hierarchy of the object’s class, and the field must be a field of that class.

HRESULT GetFieldValue(ICorDebugClass *pClass, mdFieldDef fieldDef,

ICorDebugValue **ppValue)

In/
Out

Parameter Description

in pClass Pointer to an object that represents the class of the
given field.

in fieldDef The metadata token for the field definition.

out ppValue Pointer to pointer to an object that represents the value
of the field.

Page 78

Debug Reference

GetManagedCopy

GetManagedCopy will return an IUnknown that is a managed copy of a value class
object. This can be used with COM Interop to get information about the object, like
calling System.Object::ToString on it.

Returns CORDB_E_OBJECT_IS_NOT_COPYABLE_VALUE_CLASS if the class of this
object is not a value class.

HRESULT GetManagedCopy(IUnknown **ppObject)

In/
Out

Parameter Description

out ppObject Pointer to an IUnknown that is a managed copy of a
value class object.

GetVirtualMethod

Returns the most derived function for the given reference on this object.

Note: This method is not yet implemented.

HRESULT GetVirtualMethod(mdMemberRef memberRef, ICorDebugFunction

**ppFunction)

In/
Out

Parameter Description

in memberRef The metadata token member reference.

out ppFunction Pointer to pointer to an object that represents the most
derived function for the given reference.

IsValueClass

Returns true if the class of this object is a value class.

HRESULT IsValueClass(BOOL *pbIsValueClass)
In/
Out

Parameter Description

in pbIsValueClass Set to TRUE if this is actually a value class.

SetFromManagedCopy

Not Implemented In-Process

SetFromManagedCopy will update a object's contents given a managed copy of the
object. This can be used after using GetManagedCopy to update an object with a
changed version.

SetFromManagedCopy returns
CORDB_E_OBJECT_IS_NOT_COPYABLE_VALUE_CLASS if the class of this object is
not a value class.

Page 79

Debug Reference

HRESULT SetFromManagedCopy(IUnknown *pObject)
In/
Out

Parameter Description

in pObject Managed copy of the value class to update the object’s
contents with.

5.33 ICorDebugObjectEnum : ICorDebugEnum
The ICorDebugObjectEnum interface provides methods for enumerating managed
objects.

The debugger obtains an ICorDebugObjectEnum object by calling
ICorDebugProcess::EnumerateObjects.

Next

This method is used to retrieve managed objects. The number of objects to be
retrieved is passed as one of the parameters. The enumeration pointer is
incremented by that amount.

HRESULT Next(ULONG celt, CORDB_ADDRESS objects[], ULONG *pceltFetched)

In/
Out

Parameter Description

in celt The number of objects requested to be retrieved.

out objects Array of pointers to objects that are retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.34 ICorDebugProcess : ICorDebugController
The ICorDebugProcess interface provides methods that return information about a
debuggee process.

The debugger obtains an ICorDebugProcess by calling
ICorDebug::EnumerateProcesses and then enumerating the debuggee process
objects, or by calling ICorDebug::GetProcess with the Win32 process ID of a
debuggee process.

The debugger must wait for the ExitProcess callback before releasing the
ICorDebugProcess and ICorDebug interfaces.

ClearCurrentException

Not Implemented In-Process

Clears the current unmanaged exception on the given thread. Call this before calling
Continue when a thread has reported an unmanaged exception that should be
ignored by the debuggee.

HRESULT ClearCurrentException(DWORD threadId)

Page 80

Debug Reference

In/
Out

Parameter Description

in threadId Thread Id of the thread for which the unmanaged
exception needs to be cleared.

EnableLogMessages

Not Implemented In-Process

Enables sending of log messages to the debugger.

HRESULT EnableLogMessages(BOOL fOnOff)
In/
Out

Parameter Description

in fOnOff If TRUE, enables sending of log messages from the
debuggee to the debugger.

EnumerateAppDomains

Returns an enumerator object (ICorDebugAppDomainEnum) for all application
domains in the debuggee process.

HRESULT EnumerateAppDomains(ICorDebugAppDomainEnum **ppAppDomains)

In/
Out

Parameter Description

out ppAppDomains Pointer to pointer to an enumerator object for all
application domains in the debuggee process.

EnumerateObjects

Not Implemented In-Process

Returns an enumerator object (ICorDebugObjectEnum) for all managed objects in
the debuggee process. This should only be called when the process is in a stopped
or synchronized state.

Note: This method is not yet implemented, and is tentative.

HRESULT EnumerateObjects(ICorDebugObjectEnum **ppObjects)

In/
Out

Parameter Description

out ppObjects Pointer to pointer to an enumerator for all managed
objects in the debuggee process.

GetHandle

Page 81

Debug Reference

Returns the handle for the debuggee process.

HRESULT GetHandle(HANDLE *phProcessHandle)

In/
Out

Parameter Description

out phProcessHandle Pointer to the handle for the process

GetID

Returns the Win32 process ID for the debuggee process.

HRESULT GetID(DWORD *pdwProcessId)

In/
Out

Parameter Description

out pdwProcessId Pointer to the Win32 process ID for the process

GetObject

Returns the runtime process object.

Note: This method is not yet implemented.

HRESULT GetObject(ICorDebugObjectValue **ppObject)

In/
Out

Parameter Description

out ppObject Pointer to pointer to an object that represents the
runtime process object.

GetThread

Returns the ICorDebugThread given the Win32 thread ID.

Note that eventually there will not be a one-to-one correspondence between Win32
threads and the runtime threads; so, this entry point will go away.

HRESULT GetThread(DWORD dwThreadId, ICorDebugThread **ppThread)

In/
Out

Parameter Description

in dwThreadId Win32 thread ID.

out ppThread Pointer to pointer to an object that represents a
debuggee thread that was created by the runtime.

GetThreadContext

Page 82

Debug Reference

Returns the context for the given thread. The debugger should call this function
rather than the Win32 GetThreadContext, because the thread may actually be in
“hijacked” state where its context has been temporarily changed. Note that the
threadID argument must be for an unmanaged thread.

HRESULT GetThreadContext(DWORD threadID, ULONG32 contextSize, BYTE

context[])

In/
Out

Parameter Description

in threadID Win32 thread ID of thread.

in contextSize Size of the context[] buffer.

out context[] Context structure for the current platform.

IsOSSuspended

Returns whether or not the thread has been suspended as part of the debugger logic
of stopping the process, i.e., it has had its Win32 suspend count incremented by one.
The debugger may want to take this into account if shows the user the OS suspend
count of the thread.

This method only makes sense in the context of unmanaged debugging—during
managed debugging threads are not OS suspended (they are cooperatively
suspended).

HRESULT IsOSSuspended (DWORD threadID, BOOL *pbSuspended)

In/
Out

Parameter Description

in threadID Win32 thread ID of thread.

in pbSuspended Pointer to boolean which is TRUE if thread has been
suspended.

IsTransitionStub

Not Implemented In-Process

Tests whether an address is inside of a transition stub which will cause a transition to
managed code. This can be used by unmanaged stepping code to decide when to
return stepping control to a managed stepper.

Note that, tentatively, these stubs may also be able to be identified ahead of time by
looking at information in the PE file.

HRESULT IsTransitionStub(CORDB_ADDRESS address, BOOL

*pbTransitionStub)

In/
Out

Parameter Description

Page 83

Debug Reference

in address Address of the function.

out pbTransitionStub Pointer to a Boolean that is TRUE if the address is inside
of a transition stub.

ModifyLogSwitch

Not Implemented In-Process

Modifies the specified switch’s severity level.

HRESULT ModifyLogSwitch(WCHAR *pstrLogSwitchName, LONG lLevel)

In/
Out

Parameter Description

in pstrLogSwitchNam
e

Pointer to a string that is the name of the log switch.

in lLevel The new log switch levelI.

ReadMemory

Reads memory from the process. Any debugger patches will be automatically
removed.

HRESULT ReadMemory(CORDB_ADDRESS address, DWORD size, BYTE buffer[],

DWORD *read)

In/
Out

Parameter Description

in address Address at which memory is to be read.

in size Size of buffer[].

out buffer Buffer for returning data read from memory.

out read Number of bytes actually read.

SetThreadContext

Not Implemented In-Process

Sets the context for the given thread. The debugger should call this function rather
than the Win32 SetThreadContext because the thread may actually be in a
“hijacked” state where its context has been temporarily changed. The data returned
is a context structure for the current platform.

This is a dangerous call which can corrupt the runtime if used improperly.

HRESULT SetThreadContext(DWORD threadID, ULONG32 contextSize, BYTE

context[])

Page 84

Debug Reference

In/
Out

Parameter Description

in threadID Win32 thread ID of thread.

in contextSize Size of the context[] buffer.

out context[] Context structure for the current platform.

ThreadForFiberCookie

Given a fiber cookie from the Runtime Hosting API, returns the matching
ICorDebugThread. If the thread is found, returns S_OK. Returns S_FALSE otherwise.

HRESULT ThreadForFiberCookie(DWORD fiberCookie, IcorDebugThread

**ppThread)

In/
Out

Parameter Description

in fiberCookie The fiber cookie.

out ppThread Pointer to pointer to a thread object.

WriteMemory

Not Implemented In-Process

Writes memory in the process. Any debugger patches will be automatically written
behind.

This is a dangerous call that can corrupt the runtime if used

improperly.

HRESULT WriteMemory(CORDB_ADDRESS address, DWORD size, BYTE buffer[],

DWORD *written)

In/
Out

Parameter Description

in address Address at which memory is to be written.

in size Size of buffer[].

out buffer Buffer containing data to be written to memory.

out written Number of bytes actually written.

5.35 ICorDebugProcessEnum : ICorDebugEnum
The ICorDebugProcessEnum interface provides methods for enumerating objects that
represent debuggee processes.

The debugger obtains an ICorDebugProcessEnum object by calling
ICorDebug::EnumerateProcesses.

Page 85

Debug Reference

Next

Used to retrieve process objects. The number of process objects to be retrieved is
passed as one of the parameters. The enumeration pointer is incremented by that
amount.

HRESULT Next(ULONG celt, ICorDebugProcess *processes[], ULONG

*pceltFetched)

In/
Out

Parameter Description

in celt The number of process objects requested to be
retrieved.

out processes[] Array of pointer to process objects that are retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.36 ICorDebugRegisterSet : IUnknown
The ICorDebugRegisterSet interface provides methods for getting and setting
registers and contexts.

The debugger obtains a ICorDebugRegisterSet object by calling
ICorDebugThread::GetRegisterSet.

GetRegisters

Returns an array of register values corresponding to the given mask. The registers
which have their bit set in the mask will be packed into the resulting array. No room
is assigned in the array for registers whose mask bit is not set. Thus, the size of the
array should be equal to the number of 1’s in the mask.

If an unavailable register is indicated by the mask, an indeterminate value will be
returned for the corresponding register.

HRESULT GetRegisters(ULONG64 mask, ULONG32 regCount, CORDB_REGISTER

regBuffer[])

In/
Out

Parameter Description

in mask Mask indicating selected registers.

in regCount Number of elements in the buffer regBuffer to receive
the register values. If the value of regCount is too small
for the number of registers indicated by the mask, the
higher numbered registers will be truncated from the
set. Or, if the value of regCount is too large, the unused
regBuffer elements will be unmodified.

out regBuffer Array that will contain the returned register values.

Page 86

Debug Reference

GetRegistersAvailable

Returns a mask indicating which registers are available in the given register set.
Registers may be unavailable if their value is undeterminable for the given situation.

HRESULT GetRegistersAvailable(ULONG64 *pAvailable)

In/
Out

Parameter Description

out pAvailable Pointer to a word that contains a bit for each register (1
<< register index), which will be 1 if the register is
available or 0 if it is not.

GetThreadContext

Returns the context for the thread.

HRESULT GetThreadContext(ULONG32 contextSize, BYTE context[])

In/
Out

Parameter Description

in contextSize Size of the buffer context[].

out context[] Context structure for the current platform.

SetRegisters

Not Implemented In-Process

Sets the value of the registers specified by the given mask. For each bit set in the
mask, the corresponding register will be set from the corresponding element in
regBuffer[]. Note that the correlation is by sequence, not by the position of the bit,
i.e., regBuffer is “packed”; there are no elements corresponding to registers whose
bit is not set. If an unavailable register is indicated by the mask, the register will not
be set (although a value for that register is recognized from the regBuffer[].)

Note that setting registers this way is inherently dangerous. CorDebug makes no
attempt to ensure that the runtime remains in a valid state when register values are
changed. E.g., if the instruction pointer were set to point to non-managed code, the
results would be unpredictable.

HRESULT SetRegisters(ULONG64 mask, ULONG32 regCount, CORDB_REGISTER

regBuffer[])

In/
Out

Parameter Description

in mask Mask indicating selected registers.

in regCount Number of elements in the buffer regBuffer. If the value
of regCount is too small for the number of registers

Page 87

Debug Reference

indicated by the mask, the higher numbered registers
will not be set. Or, if the value of regCount is too large,
the extra values will be ignored.

in regBuffer Array containing the register values.

SetThreadContext

Not Implemented In-Process

Sets the context for the thread.

HRESULT SetThreadContext(ULONG32 contextSize, BYTE context[])

In/
Out

Parameter Description

in contextSize Size of the buffer context[].

in context[] Context structure for the current platform.

5.37 ICorDebugReferenceValue :

ICorDebugValue
ICorDebugReferenceValue applies to values which are references.

Dereference

Returns a value representing the object referenced. The resulting value is a “weak
reference” which will become invalid if the object is garbage collected.

HRESULT Dereference(ICorDebugHeapValue **ppValue)

In/
Out

Parameter Description

in ppValue Pointer to a pointer to the returned value representing
the object referenced.

DereferenceStrong

Returns a value representing the object referenced. The resulting value is a “strong
reference” which will cause the object referenced to not be collected as long as it
exists.

HRESULT DereferenceStrong(ICorDebugValue **ppValue)

In/
Out

Parameter Description

in ppValue Pointer to a pointer to the returned value representing
the object referenced.

Page 88

Debug Reference

GetValue

Copies the value into the specified buffer. The buffer should be the appropriate size
for the simple type.

HRESULT GetValue(CORDB_ADDRESS *pValue)

In/
Out

Parameter Description

out pValue Pointer to the value of the reference.

IsNull

Tests whether the reference is null.

HRESULT IsNull (BOOL *pbNull)

In/
Out

Parameter Description

out pbNull TRUE if the reference is null.

SetValue

Not Implemented In-Process

Copies a new value from the specified buffer. The buffer should be the appropriate
size for the simple type.

HRESULT SetValue(CORDB_ADDRESS value)

In/
Out

Parameter Description

in value Value of the reference.

5.38 ICorDebugStepper : IUnknown
Not Implemented In-Process

The ICorDebugStepper interface provides methods that allow a debugger to manage
stepping in the debuggee.

A stepper object represents a stepping operation being performed by the debugger.
Note that there can be more than one stepper per thread; for instance a breakpoint
may be hit in the midst of stepping over a function, and the user may wish to start a
new stepping operation inside that function. (Note that it is up to the debugger how
to handle this; it may want to cancel the original stepping operation, or nest them.
This API allows either behavior.)

Also, a stepper may migrate between threads if a cross-thread marshaled call is
made by the EE.

Page 89

Debug Reference

This object serves several purposes. It serves as an identifier between a step
command issued and the completion of that command. It also provides a central
interface to encapsulate all of the stepping that can be performed. Finally, it provides
a way to prematurely cancel a stepping operation.

The debugger obtains a ICorDebugStepper object by calling
ICorDebugFrame::CreateStepper or ICorDebugProcess:EnumerateSteppers to obtain
an enumerator for steppers, and then calling ICorDebugStepperEnum to enumerate
steppers.

Deactivate

Causes a stepper to cancel the last stepping command it received. A new stepping
command may then be issued.

HRESULT Deactivate()

IsActive

Determines whether the stepper is active (that is, whether it is currently stepping).

Any step action remains active until one of the following callbacks are called:

 StepComplete – the step has completed normally

 StepInToUnmanaged – an unmanaged function was stepped into

 StepOutToUnmanaged – the current function returned to unmanaged code

 StepException – an exception caused the Stepper’s stack frame to be unwound

Note that a stepper is always deactivated when passed to a Step callback. A stepper
may also be deactivated prematurely by calling Deactivate before a callback
condition is reached.

HRESULT IsActive(BOOL *pbActive)

In/
Out

Parameter Description

out pbActive Pointer to a Boolean that is TRUE if the stepper is active.

SetInterceptMask

Controls which intercept code will be stepped into by the stepper. If the bit for an
interceptor is set, the stepper will complete with reason STEPPER_INTERCEPT when
the given type of intercept occurs. If the bit is cleared, the intercepting code will be
skipped.

Note that SetInterceptMask may have unforeseen interactions with
SetUnmappedStopMask (from the user’s point of view). For example, if the only
visible (i.e., non internal) portion of class initialization code lacks mapping
information (STOP_NO_MAPPING_INFO) and STOP_NO_MAPPING_INFO isn’t set,
then we’ll step over the class initialization.

By default, only INTERCEPT_NONE will be used.

Page 90

Debug Reference

HRESULT SetInterceptMask(CorDebugIntercept mask)

In/
Out

Parameter Description

in mask Mask that controls which intercept code will be stepped
into.

SetUnmappedStopMask

Controls whether the stepper will stop in JIT-compiled code that is not mapped to IL.

If the given flag is set, then that type of unmanaged code will be stopped in.
Otherwise stepping transparently continues.

It should be noted that if one doesn’t use a stepper to enter a method (for example,
the main() method of C++), then one won’t necessarily step over prologs, etc.

By default, STOP_OTHER_UNMAPPED will be used.

HRESULT SetUnmappedStopMask(CorDebugUnmappedStop mask)

In/
Out

Parameter Description

in mask Mask that controls type of unmapped code.

Step

Step is called when a thread is to be single stepped. The step will complete at the
next managed instruction executed by the EE in the stepper’s frame.

If bStepIn is TRUE, any function calls made during the step will be stepped into.
Otherwise, they will be skipped.

If Step is called on a stepper which is not in managed code, the step will complete
when the next managed code is executed by the thread. (If bStepIn is FALSE, it will
only complete when managed code is returned to, not when it is stepped into.)

HRESULT Step(BOOL bStepIn)

In/
Out

Parameter Description

in bStepIn If TRUE, any function calls made during the step will be
stepped into. Otherwise, they will be skipped.

StepOut

This operation will complete after the current frame is returned normally and the
previous frame is reactivated. If this is called when in unmanaged code, the step will
complete when the calling managed code is returned to.

HRESULT StepOut()

Page 91

Debug Reference

StepRange

StepRange works just like Step, except it will not complete until code outside the
given range is reached. This can be more efficient than stepping one instruction at a
time.

Ranges are specified as a list of offset pairs [start, end) (note that the end is
exclusive) from the start of the stepper’s frames’ code.

Ranges are relative to the IL code of a method. Call SetRangeIL(FALSE) to specify
ranges relative to the native code of a method.

HRESULT Step(BOOL bStepIn, COR_DEBUG_STEP_RANGE ranges[], ULONG32

cRangeCount)

In/
Out

Parameter Description

in bStepIn If TRUE, any function calls made during the step will be
stepped into. Otherwise they will be skipped.

in ranges An array of code ranges.

in cRangeCount The number of elements in the ranges array.

StepRangeIL

StepRangeIL is used to set whether the ranges passed to StepRange are relative to
the IL code or the native code for the method being stepped in.

By default, the range is in IL.

HRESULT StepRangeIL(BOOL bIL)

In/
Out

Parameter Description

in bIL TRUE, if ranges are relative to IL.

5.39 ICorDebugStepperEnum : ICorDebugEnum
Not Implemented In-Process

The ICorDebugStepperEnum interface provides methods to enumerate stepper
objects.

The debugger obtains an ICorDebugStepperEnum object by calling
ICorDebugProcess:EnumerateSteppers.

Next

Used to retrieve stepper objects. The number of stepper objects to be retrieved is
passed as one of the parameters. The enumeration pointer is incremented by that
amount.

HRESULT Next(ULONG celt, ICorDebugStepper *steppers[], ULONG

*pceltFetched)

Page 92

Debug Reference

In/
Out

Parameter Description

in celt The number of stepper objects requested to be retrieved.

out steppers[] An array of pointer to stepper objects that is retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.40 ICorDebugStringValue :

ICorDebugHeapValue
The ICorDebugStringValue interface provides methods that return information about
an object that represents a string value.

The debugger obtains ICorDebugStringValue objects by calling methods on various
interfaces such as ICorDebugArrayValue, ICorDebugClass, ICorDebugILFrame, etc.

GetLength

Returns the length of a string.

HRESULT GetLength (ULONG32 *pcchString)

In/
Out

Parameter Description

out pcchString Pointer to the length of string

GetString

Returns the contents of a string.

HRESULT GetString(ULONG32 cchString, ULONG32 *pcchString, WCHAR

szString[])

In/
Out

Parameter Description

in cchString The allocated size of string buffer.

out pcchString The number of characters available for return. No more
than cchString are actually returned in the buffer.

out szString[] The string buffer.

5.41 ICorDebugThread : IUnknown
The ICorDebugThread interface provides methods to obtain information about a
debuggee thread, such as enumerating the stack frames for a thread, controlling
execution of a debuggee thread, getting the ID of the thread, etc.

Page 93

Debug Reference

The debugger obtains an ICorDebugThread object by calling
ICorDebugChain::GetThread, CreateThread, or
ICorDebugProcess::EnumerateThreads. The last method returns an enumerator for
thread objects that can be used to enumerate all thread objects for debuggee
threads in a debuggee process.

ClearCurrentException

Not Implemented In-Process

Clears the current exception object, preventing it from being thrown. This should be
called before the exception callback returns.

HRESULT ClearCurrentException()

CreateEval

Not Implemented In-Process

CreateEval creates an evaluation object which operates on the given thread. The
Eval will push a new chain on the thread before doing its computation.

Note that this interrupts the computation currently being performed on the thread
until the evaluation completes.

HRESULT CreateEval(ICorDebugEval **ppEval)

In/
Out

Parameter Description

out ppEval Pointer to pointer to an evaluation object.

CreateStepper

Not Implemented In-Process

Creates a stepper object which operates relative to the active frame in the given
thread. (Note that the frame may be running unmanaged code.) The methods
defined on ICorDebugStepper must then be used to perform the actual stepping.

HRESULT CreateStepper(ICorDebugStepper **ppStepper)

In/
Out

Parameter Description

out ppStepper Pointer to pointer to the created stepper object.

EnumerateChains

Returns an enumerator which will return all the stack chains in the thread, starting at
the top (innermost) one. These chains represent the physical call stack for the
thread.

Chain boundaries occur for several reasons:

Page 94

Debug Reference

 Managed to unmanaged and unmanaged to managed transitions.

 Context switches.

 Debuggger hijacking of user threads.

Note that in the simple case for a thread running purely managed code in a single
context, there will be a one to one correspondence between threads and chains.

A debugger may want to rearrange the physical call stacks of all threads into logical
call stacks. This would involve sorting all the threads’ chains by their caller/callee
relationships and regrouping them.

If called by the In Process Debugging API, this will cause a new stack trace to be
done.

HRESULT EnumerateChains(ICorDebugChainEnum **ppChains)

In/
Out

Parameter Description

out ppChains Pointer to pointer to an enumerator for all the stack
chains in the thread.

GetActiveChain

Returns the active (most recent) chain on the thread, if any.

HRESULT GetActiveChain(ICorDebugChain **ppChain)

In/
Out

Parameter Description

out ppChain Pointer to pointer to the active chain on the thread.

GetActiveFrame

Returns the active (most recent) frame on the thread, if any.

HRESULT GetActiveFrame(ICorDebugFrame **ppFrame)

In/
Out

Parameter Description

out ppFrame Pointer to pointer to the active frame on the thread.

GetAppDomain

Returns the application domain that owns this thread.

HRESULT GetAppDomain(ICorDebugAppDomain **ppAppDomain)

In/
Out

Parameter Description

Page 95

Debug Reference

out ppAppDomain Pointer to pointer to the appliction domain object for the
application domain that owns the thread.

GetCurrentException

Not Implemented In-Process

Returns the exception object which is currently being thrown by the thread. This will
only exist for the duration of an exception callback.

HRESULT GetCurrentException(ICorDebugValue **ppExceptionObject)

In/
Out

Parameter Description

out ppExceptionObject Pointer to the pointer to the object that represents the
exception object being thrown.

GetDebugState

Returns the current debug state of the thread. If the process is currently stopped,
the “current debug state” represents the debug state if the process were to be
continued, not the actual state.

HRESULT GetDebugState(CorDebugThreadState *pState)

In/
Out

Parameter Description

out pState Pointer to the current debug state of the thread.

GetHandle

Returns a handle to the thread.

HRESULT GetHandle(DWORD *phThreadHandle)

In/
Out

Parameter Description

out phThreadHandle Pointer to the handle to the thread.

GetID

Returns the Win32 thread id.

HRESULT GetID(DWORD *pdwThreadId)

In/
Out

Parameter Description

Page 96

Debug Reference

out pdwThreadId Pointer to the Win32 thread ID.

GetObject

Returns the runtime thread object.

HRESULT GetObject(ICorDebugValue **ppObject)

In/
Out

Parameter Description

out ppObject Pointer to pointer to an object that represents the
runtime thread object.

GetProcess

Returns the process object (ICorDebugProcess) for the process that contains the
thread.

HRESULT GetProcess(ICorDebugProcess **ppProcess)

In/
Out

Parameter Description

out ppProcess Pointer to pointer to the process object for the process
that contains the thread.

GetRegisterSet

Returns the register set for the active part of the thread.

HRESULT GetRegisterSet(ICorDebugRegisterSet **ppRegisters)

In/
Out

Parameter Description

out ppRegisters Pointer to pointer to the register set for the active part
of the thread.

GetUserState

Returns the user state of the thread, i.e, the state which it has when the program
being debugged examines it.

HRESULT GetUserState(CorDebugUserState *pState)

In/
Out

Parameter Description

out pState Pointer to the current user state of the thread.

Page 97

Debug Reference

SetDebugState

Not Implemented In-Process

Sets the current debug state of the thread. The “current debug state” represents the
debug state if the process were to be continued, not the actual state. The normal
value for this is THREAD_RUNNING. Only the debugger can affect the debug state of
a thread. Debug states do not last across continues. So, if you want to keep a thread
THREAD_SUSPENDed over multiple continues, you can set it once and thereafter not
have to worry about it.

HRESULT SetDebugState(CorDebugThreadState state)

In/
Out

Parameter Description

in state The debug state to which the thread should be set.

5.42 ICorDebugThreadEnum : ICorDebugEnum
The ICorDebugThreadEnum interface provides methods for enumerating objects that
represent debuggee threads.

The debugger obtains an ICorDebugThreadEnum object by calling
ICorDebugProcess::EnumerateThreads.

Next

Used to retrieve thread objects. The number of thread objects to be retrieved is
passed as one of the parameters. The enumeration pointer is incremented by that
amount.

HRESULT Next(ULONG celt, ICorDebugThread *threads[], ULONG

*pceltFetched)

In/
Out

Parameter Description

in celt The number of thread objects requested to be retrieved.

out threads[] An array of pointers to thread objects that is retrieved.

out pceltFetched Pointer to the number of actual values fetched.

5.43 ICorDebugUnmanagedCallback :

IUnknown
Not Implemented In-Process

The debugger implements this callback interface and registers it with the runtime by
calling ICorDebug::SetUnManagedHandler. The runtime calls methods defined on

Page 98

Debug Reference

this interface to notify the debugger about unmanaged events in the debuggee
process.

DebugEvent

DebugEvent is called when a DEBUG_EVENT is received which is not directly related
to the NGWS runtime.

This callback is an exception to the rules about callbacks. When this callback is
called, the process will be in the "raw" OS debug stopped state. The process will not
be synchronized. The process will automatically enter the synchronized state when
necessary to satifsy certain requests for information about managed code. (Note that
this may result in other nested DebugEvent callbacks.)

Call ClearCurrentException on the process to ignore an exception event before
continuing the process. (Causes DBG_CONTINUE to be sent on continue rather than
DBG_EXCEPTION_NOT_HANDLED)

HRESULT DebugEvent(LPDEBUG_EVENT pDebugEvent, BOOL fOutofBand)

In/
Out

Parameter Description

in pDebugEvent Pointer to a descriptor describing the type of event about
which the debugger is being notified.

in fOutofBand fOutofBand will be FALSE if the Debugging Services
support interaction with the process’s managed state
while the process is stopped due to this event.
fOutofBand will be TRUE if interaction with the process’s
managed state is impossible until the unmanaged event
is continued from.

5.44 ICorDebugValue : IUnknown
The ICorDebugValue interface provides methods that provide information about
values of various items in a debuggee process.

The ICorDebugValue object represents a value in the debuggee process.
ICorDebugValue allows the value of an item to be retrieved or set.

In general, ownership of a value object is passed to the debugger from the API. The
recipient is responsible for removing a reference from the object when finished with
it.

Depending on where the value was retrieved from, the value may not remain valid
after the process is resumed. So, in general, values shouldn’t be held across
"continues."

The debugger obtains ICorDebugValue objects by calling methods on various
interfaces such as ICorDebugArrayValue, ICorDebugClass, ICorDebugILFrame, etc.

CreateBreakpoint

Not Implemented In-Process

Creates a breakpoint that will be triggered when the value is modified.

Page 99

Debug Reference

Note: This method is not yet implemented.

HRESULT CreateBreakpoint(ICorDebugValueBreakpoint **ppBreakpoint)

In/
Out

Parameter Description

out ppBreakpoint Pointer to a pointer to the value breakpoint object.

GetAddress

Returns the address of the value in the debuggee process. This might be useful
information for the debugger to show.

If the value is at least partly in registers, 0 is returned.

HRESULT GetAddress(CORDB_ADDRESS *pAddress)

In/
Out

Parameter Description

out pAddress Pointer to the address of the value in the debuggee
process.

GetType

Returns the simple type of the value. If the object has a more complex runtime
type, that type may be examined through the appropriate subclasses (e.g.,
ICorDebugObjectValue can get the class of an object).

HRESULT GetType (CorElementType *pType)

In/
Out

Parameter Description

out pType The type of the value.

GetSize

Returns the size in bytes of the value. Note that for reference types this will be the
size of the pointer rather than the size of the object.

HRESULT GetSize(ULONG32 *pSize)

In/
Out

Parameter Description

out pSize The size in bytes of the value.

Page 100

Debug Reference

5.45 ICorDebugValueBreakpoint :

ICorDebugBreakpoint
Not Implemented In-Process

This interface provides methods that return information about value breakpoints. An
ICorDebugValueBreakpoint object is created by calling
ICorDebugValue::CreateBreakpoint.

GetValue

The debugger calls this method to get the value at which the breakpoint occurred.

HRESULT GetValue(ICorDebugValue **ppValue)

In/
Out

Parameter Description

out ppValue Pointer to pointer to the object that represents the value
at which the breakpoint occurred.

5.46 ICorDebugValueEnum : ICorDebugEnum
The ICorDebugValueEnum interface provides methods for enumerating values.

The debugger obtains an ICorDebugValueEnum object by calling
ICorDebugILFrame::EnumerateLocalVariables or
ICorDebugILFrame::EnumArguments.

Next

This method is used to retrieve values. The number of values to be retrieved is
passed as one of the parameters. The enumeration pointer is incremented by that
amount.

In the event of a failure, the “current” pointer will be moved one element beyond
that indicated by *pceltFetched. Thus, if one were to repeatedly ask for one element
to iterate through the array, you would iterate exactly ICorDebugEnum::GetCount
times, regardless of individual failures.

HRESULT Next(ULONG celt, ICorDebugValue *values[], ULONG *pceltFetched)

In/
Out

Parameter Description

in celt The number of values requested to be retrieved.

out values Array of pointers to values that are retrieved.

out pceltFetched Pointer to the number of actual values fetched.

Page 101

Debug Reference

6 Debug Type Definitions

6.1COR_DEBUG_STEP_RANGE
This type definition is used by ICorDebugStepper::StepRange.

typedef struct

{

 ULONG32 startOffset, endOffset;

} COR_DEBUG_STEP_RANGE;

6.2COR_IL_MAP
This typedef is used by ICorDebugEditAndContinueSnapshot.

typedef struct _COR_IL_MAP

{

 ULONG32 oldOffset; // Old IL offset relative to beginning of

function

 ULONG32 newOffset; // New IL offset relative to beginning of

function

} COR_IL_MAP;

6.3CorDebugChainReason
This type definition is used by ICorDebugThread::GetReason.

typedef enum CorDebugChainReason

{

 CHAIN_NONE = 0x000,

 CHAIN_CLASS_INIT = 0x001,

 CHAIN_EXCEPTION_FILTER = 0x002,

 CHAIN_SECURITY = 0x004,

 CHAIN_CONTEXT_POLICY = 0x008,

 CHAIN_INTERCEPTION = 0x010,

 CHAIN_PROCESS_START = 0x020,

 CHAIN_THREAD_START = 0x040,

 CHAIN_ENTER_MANAGED = 0x080,

 CHAIN_ENTER_UNMANAGED = 0x100,

 CHAIN_DEBUGGER_EVAL = 0x200,

 CHAIN_CONTEXT_SWITCH = 0x400,

 CHAIN_FUNC_EVAL = 0x800,

} CorDebugChainReason;

Page 102

Debug Reference

6.4 CorDebugCreateProcessFlags
This type definition is used by ICorDebug::CreateProcess

typedef enum CorDebugCreateProcessFlags

{

 DEBUG_NO_SPECIAL_OPTIONS = 0x0000,

DEBUG_ENABLE_EDIT_AND_CONTINUE = 0x0001,

} CorDebugCreateProcessFlags;

6.5 CorDebugIlToNativeMappingTypes
ICorDebugCode:: GetILToNativeMapping returns an array of
COR_DEBUG_IL_TO_NATIVE_MAP structures. In order to convey that
certain ranges of native instructions correspond to special regions of code
(for example, the prolog), an entry in the array may have it’s ilOffset field
set to one of these values.

typedef enum CorDebugIlToNativeMappingTypes

{

 NO_MAPPING = -1,

 PROLOG = -2,

 EPILOG = -3

} CorDebugIlToNativeMappingTypes;

6.6 COR_DEBUG_IL_TO_NATIVE_MAP
This type definition is used by ICorDebugCode::GetILToNativeMapping.

typedef struct COR_DEBUG_IL_TO_NATIVE_MAP

{

ULONG32 ilOffset;

ULONG32 nativeStartOffset;

ULONG32 nativeEndOffset;

} COR_DEBUG_IL_TO_NATIVE_MAP;

6.7CorDebugIntercept
This type definition is used by ICorDebugStepper::SetInterceptMask.

typedef enum CorDebugIntercept

{

 INTERCEPT_NONE = 0x0,

 INTERCEPT_CLASS_INIT = 0x01,

 INTERCEPT_EXCEPTION_FILTER = 0x02,

 INTERCEPT_SECURITY = 0x04,

 INTERCEPT_CONTEXT_POLICY = 0x08,

 INTERCEPT_INTERCEPTION = 0x10,

Page 103

Debug Reference

 INTERCEPT_ALL = 0xffff

} CorDebugIntercept;

6.8CorDebugMappingResult
This type definition is used by ICorDebugILFrame::GetIP.

typedef enum CorDebugMappingResult

{

 MAPPING_PROLOG = 0x1,

 MAPPING_EPILOG = 0x2,

 MAPPING_NO_INFO = 0x4,

 MAPPING_UNMAPPED_ADDRESS = 0x8,

 MAPPING_EXACT = 0x10,

 MAPPING_APPROXIMATE = 0x20

};

Mapping Result Description

MAPPING_EXACT The IP is correct. Either the frame is interpreted or
there is an exact IL map for the function.

MAPPING_APPROXIMATE The IP was successfully mapped but may only be
approximate.

MAPPING_UNMAPPED_ADDRES
S

Although there is mapping information for the
function, the current address is not mappable to IL.
An IP of 0 is returned.

MAPPING_PROLOG The native code is in the prolog, so an IP of 0 is
returned.

MAPPING_EPILOG The native code is in the epilog, so the last IP of the
method is returned.

MAPPING_NO_INFO No mapping information is available for the method,
so an IP of 0 is returned.

6.9CorDebugRegister
This type definition is used by ICorDebugRegisterSet.

typedef enum CorDebugRegister

{

// Registers potentially available on all architectures. Note that

these overlap with the architecture- // specific registers.

REGISTER_INSTRUCTION_POINTER = 0,

REGISTER_STACK_POINTER,

REGISTER_FRAME_POINTER,

Page 104

Debug Reference

// X86 registers

REGISTER_X86_EIP = 0,

REGISTER_X86_ESP,

REGISTER_X86_EBP,

REGISTER_X86_EAX,

REGISTER_X86_ECX,

REGISTER_X86_EDX,

REGISTER_X86_EBX,

REGISTER_X86_ESI,

REGISTER_X86_EDI,

REGISTER_X86_FPSTACK_0,

REGISTER_X86_FPSTACK_1,

REGISTER_X86_FPSTACK_2,

REGISTER_X86_FPSTACK_3,

REGISTER_X86_FPSTACK_4,

REGISTER_X86_FPSTACK_5,

REGISTER_X86_FPSTACK_6,

REGISTER_X86_FPSTACK_7,

// other architectures here

} CorDebugRegister;

6.10 CorDebugStepReason
This type definition is used by ICorDebugManagedCallback::StepComplete.

typedef enum CorDebugStepReason

{

 STEP_NORMAL,

 STEP_RETURN,

 STEP_CALL,

 STEP_EXCEPTION_FILTER,

 STEP_EXCEPTION_HANDLE,

 STEP_INTERCEPT,

 STEP_EXIT

} CorDebugStepReason;

Reason Description

STEP_NORMAL Stepping completed normally in the same function.

STEP_RETURN Stepping continued normally after the function returned.

Page 105

Debug Reference

STEP_CALL Stepping continued normally at the start of a newly
called function.

STEP_EXCEPTION_FILTER Control passed to an exception filter after an exception
was thrown.

STEP_EXCEPTION_HANDLE
D

Control passed to an exception handler after an
exception was thrown.

STEP_INTERCEPT Control passed to an interceptor.

STEP_EXIT Thread exited before the step completed. No more
stepping can be performed with the stepper.

6.11 CorDebugThreadState
A thread’s DebugState determines whether the debugger lets a thread run or not.
Possible states are determined by the following table:

State Description

RUN Thread runs freely unless a debug event occurs.

SUSPEND Thread cannot run.

Note: We allow for message pumping via a callback provided to the hosting API.
Thus, we don’t need an “interrupted” state here.

typedef enum CorDebugThreadState

{

 THREAD_RUN,

 THREAD_SUSPEND

} CorDebugThreadState;

6.12 CorDebugUnmappedStop
This type definition is used by ICorDebugStepper:SetUnmappedStopMask.

typedef enum CorDebugUnmappedStop

{

 STOP_NONE = 0x0,

 STOP_PROLOG = 0x01,

 STOP_EPILOG = 0x02,

 STOP_NO_MAPPING_INFO = 0x04,

 STOP_OTHER_UNMAPPED = 0x08,

 STOP_UNMAPPED = 0x10,

 STOP_ALL = 0xffff

} CorDebugUnmappedStop;

Page 106

Debug Reference

6.13 CorDebugUserState
This type definition is used by ICorDebugThread::GetUserState.

typedef enum CorDebugUserState

{

 USER_STOP_REQUESTED = 0x01,

 USER_SUSPEND_REQUESTED = 0x02,

 USER_BACKGROUND = 0x04,

 USER_UNSTARTED = 0x08,

 USER_STOPPED = 0x10,

 USER_WAIT_SLEEP_JOIN = 0x20,

 USER_SUSPENDED = 0x40

} CorDebugUserState;

6.14 LoggingLevelEnum

typedef enum LoggingLevelEnum

{

 LTraceLevel0 = 0,

 LTraceLevel1,

 LTraceLevel2,

 LTraceLevel3,

 LTraceLevel4,

 LStatusLevel0 = 20,

 LStatusLevel1,

 LStatusLevel2,

 LStatusLevel3,

 LStatusLevel4,

 LWarningLevel = 40,

 LErrorLevel = 50,

 LPanicLevel = 100

} LoggingLevelEnum;

6.15 LogSwitchCallReason

typedef enum LogSwitchCallReason

{

 SWITCH_CREATE,

 SWITCH_MODIFY,

 SWITCH_DELETE

Page 107

Debug Reference

} LogSwitchCallReason;

Page 108

Debug Reference

7 HRESULT DEFINITIONS
Please note that HRESULTs are divded into errors (CORDBG_E_*) and status results
(CORDBG_S_*).

Code Description

CORDBG_E_BAD_THREAD_STATE The state of the thread is invalid. For example,
if you try and do a stack trace on a dead
thread.

CORDBG_E_CANT_CHANGE_JIT_S
ETTING_FOR_ZAP_MODULE

You can't change JIT settings for ZAP modules.

CORDBG_E_CANT_SET_IP_INTO_
FINALLY

SetIP is not possible because it would move
EIP from outside of an exception handling
finally clause to a point inside of one.

CORDBG_E_CANT_SETIP_INTO_O
R_OUT_OF_FILTER

SetIP can't leave or enter a filter.

CORDBG_E_CANT_SET_IP_OUT_
OF_FINALLY

While unwinding for an exception (because
the EE calls the finally during the unwind). If
you stepped into the code b/c you walked off
the end of the try, then you can leave the
finally.

CORDBG_E_CLASS_NOT_LOADED A class was not loaded.

CORDBG_E_CODE_NOT_AVAILAB
LE

For whatever reason, the code is unavailable.

CORDBG_E_FIELD_NOT_AVAILAB
LE

A field in a class is not available probably
because the runtime optimized it away.

CORDBG_E_FUNC_EVAL_BAD_ST
ART_POINT

Func eval can't work if we're, for example, not
stopped at a GC safe point.

CORDBG_E_FUNC_EVAL_NOT_CO
MPLETE

If you call CordbEval::GetResult before the
func eval has finished, you'll get this result.

CORDBG_E_FUNCTION_NOT_IL Attempt to get a ICorDebugFunction for a
function that is not IL.

CORDBG_E_IL_VAR_NOT_AVAILA
BLE

An IL variable is not available at the current
native IP.

CORDBG_E_INPROC_NOT_IMPL The inproc version of the debugging API
doesn't implement this function.

CORDBG_E_INVALID_OBJECT

CORDBG_E_NON_NATIVE_FRAME “Native frame only” operation on a non-native
frame.

CORDBG_E_NONCONTINUABLE_E
XCEPTION

Tried to continue on an exception that doesn’t
allow continuation. Only IL “break” instruction
allows continuation.

Page 109

Debug Reference

CORDBG_E_OBJECT_IS_NOT_COP
YABLE_VALUE_CLASS

This object value is no longer valid.

CORDBG_E_PROCESS_NOT_SYNC
HRONIZED

Process not synchronized.

CORDBG_E_PROCESS_TERMINAT
ED

Process was terminated.

CORDBG_E_SET_IP_NOT_ALLOW
ED_ON_NONLEAF_FRAME

SetIP cannot be done on any frame except the
leaf frame.

CORDBG_E_SET_IP_IMPOSSIBLE SetIP isn’t allowed. For example, there is
insufficient memory to perform SetIP.

CORDBG_E_STATIC_VAR_NOT_A
VAILABLE

A static variable isn't available because it
hasn't been initialized yet.

CORDBG_E_UNRECOVERABLE_ER
ROR

Unrecoverable API error.

CORDBG_S_BAD_END_SEQUENCE
_POINT

Attempt to SetIP when not going to a
sequence point. If both this and
CORDBG_E_BAD_START_SEQUENCE_POINT
are true, only this error will be reported.

CORDBG_S_INSUFFICIENT_INFO
_FOR_SETIP

SetIP is possible, but the Debugging Services
doesn’t have enough information to fix
variable locations, GC references, or anything
else. Use at your own risk.

CORDBG_S_FUNC_EVAL_ABORTE
D

The func eval completed, but was aborted.

CORDBG_S_FUNC_EVAL_HAS_NO
_RESULT

Some Func evals will lack a return value, such
as those whose return type is void.

CORDBG_S_VALUE_POINTS_TO_
VOID

The Debugging API doesn’t support
dereferencing pointers of type void.

Page 110

	1 Overview of Debug Interfaces
	2 Security Considerations
	3 Debug Interface Scenarios
	3.1 Debugging a Runtime Process
	3.2 Controlling the Program
	3.2.1 Setting a Breakpoint in Managed Code
	3.2.2 Stepping through Managed and Unmanaged Code
	3.2.3 Handling Exceptions

	3.3 Examining the Program
	3.3.1 Accessing Call Stacks
	3.3.2 Evaluating Expressions

	3.4 Injecting Code Dynamically
	3.4.1 Composing the Function
	3.4.2 Injecting the Code
	3.4.3 Executing Injected Code
	3.4.4 Miscellaneous Issues
	3.4.5 Getting the Signature From the Metadata

	4 In-Process Debugging APIs
	4.1 GetInprocInspectionInterface
	4.2 GetInprocInspectionIThisThread

	5 Debug Interfaces
	5.1 ICorDebug : IUnknown
	5.2 ICorDebugAppDomain : ICorDebugController
	5.3 ICorDebugAppDomainEnum : ICorDebugEnum
	5.4 ICorDebugArrayValue : ICorDebugHeapValue
	5.5 ICorDebugAssembly : IUnknown
	5.6 ICorDebugAssemblyEnum : ICorDebugEnum
	5.7 ICorDebugBoxValue : ICorDebugHeapValue
	5.8 ICorDebugBreakpoint : IUnknown
	5.9 ICorDebugBreakpointEnum : ICorDebugEnum
	5.10 ICorDebugChain : IUnknown
	5.11 ICorDebugChainEnum : ICorDebugEnum
	5.12 ICorDebugClass : IUnknown
	5.13 ICorDebugCode : IUnknown
	5.14 ICorDebugContext : ICorDebugObjectValue
	5.15 ICorDebugController : IUnknown
	5.16 ICorDebugEditAndContinueSnapshot : IUnknown
	5.17 ICorDebugEnum : IUnknown
	5.18 ICorDebugErrorInfoEnum : ICorDebugEnum
	5.19 ICorDebugEval : IUnknown
	5.20 ICorDebugFrame : IUnknown
	5.21 ICorDebugFrameEnum : ICorDebugEnum
	5.22 ICorDebugFunction : IUnknown
	5.23 ICorDebugFunctionBreakpoint : ICorDebugBreakpoint
	5.24 ICorDebugGenericValue : ICorDebugValue
	5.25 ICorDebugHeapValue : ICorDebugValue
	5.26 ICorDebugILFrame : ICorDebugFrame
	5.27 ICorDebugManagedCallback : IUnknown
	5.28 ICorDebugModule : IUnknown
	5.29 ICorDebugModuleBreakpoint : ICorDebugBreakpoint
	5.30 ICorDebugModuleEnum : ICorDebugEnum
	5.31 ICorDebugNativeFrame : ICorDebugFrame
	5.32 ICorDebugObjectValue : ICorDebugValue
	5.33 ICorDebugObjectEnum : ICorDebugEnum
	5.34 ICorDebugProcess : ICorDebugController
	5.35 ICorDebugProcessEnum : ICorDebugEnum
	5.36 ICorDebugRegisterSet : IUnknown
	5.37 ICorDebugReferenceValue : ICorDebugValue
	5.38 ICorDebugStepper : IUnknown
	5.39 ICorDebugStepperEnum : ICorDebugEnum
	5.40 ICorDebugStringValue : ICorDebugHeapValue
	5.41 ICorDebugThread : IUnknown
	5.42 ICorDebugThreadEnum : ICorDebugEnum
	5.43 ICorDebugUnmanagedCallback : IUnknown
	5.44 ICorDebugValue : IUnknown
	5.45 ICorDebugValueBreakpoint : ICorDebugBreakpoint
	5.46 ICorDebugValueEnum : ICorDebugEnum

	6 Debug Type Definitions
	6.1 COR_DEBUG_STEP_RANGE
	6.2 COR_IL_MAP
	6.3 CorDebugChainReason
	6.4 CorDebugCreateProcessFlags
	6.5 CorDebugIlToNativeMappingTypes
	6.6 COR_DEBUG_IL_TO_NATIVE_MAP
	6.7 CorDebugIntercept
	6.8 CorDebugMappingResult
	6.9 CorDebugRegister
	6.10 CorDebugStepReason
	6.11 CorDebugThreadState
	6.12 CorDebugUnmappedStop
	6.13 CorDebugUserState
	6.14 LoggingLevelEnum
	6.15 LogSwitchCallReason

	7 HRESULT DEFINITIONS

