
Metadata Interfaces

NGWS runtime

Metadata Interfaces

This document specifies the API for emitting and importing metadata. This API is
unmanaged and intended for use by compilers and loaders – low-level tools that
require fast access to metadata with a minimum of assistance for traversing
relationships (such as the class hierarchy) or for manipulating collections (such as
members on a class)

Browsers and other tools, seeking a higher-level API, may instead use the managed
Reflections interfaces, specified separately

This is preliminary documentation and subject to change

Last revised: 13 June 2000

Page 1

Metadata Interfaces

1 Overview of the Metadata API...7

1.1 Metadata Interfaces..7

1.2 Metadata Abstractions...8

1.3 Using the APIs and Metadata Tokens...11

1.3.1 The Complile/Link Style of Interaction..11

1.3.2 The RAD Tool Style of Interaction..13

1.3.3 IMapToken...13

1.3.4 IMetaDataError...13

1.4 Related Specifications...14

1.5 Coding Conventions..14

1.5.1 Handling String Parameters..14

1.5.2 Optional Return Parameters..15

1.5.3 Storing Default Values..15

1.5.4 Null Pointers for Return Parameters..15

1.5.5 “Ignore This Argument”..16

1.5.6 Error Returns..16

2 IMetadataDispenserEx..17

2.1 DefineScope..17

2.2 OpenScope..17

2.3 OpenScopeOnMemory...18

2.4 SetOption..18

2.5 GetOption..20

3 IMetaDataEmit..21

3.1 Defining, Saving, and Merging Metadata..21

3.1.1 SetModuleProps...21

3.1.2 Save..21

3.1.3 SaveToStream..21

3.1.4 SaveToMemory...21

3.1.5 GetSaveSize...22

3.1.6 MergeEx...22

3.1.7 MergeEndEx..23

3.1.8 SetHandler...24

3.2 Custom Attributes and Custom Values...24

3.2.1 Using Custom Attributes...25

3.2.2 Using Custom Values...26

Page 2

Metadata Interfaces

3.2.3 DefineCustomAttribute...26

3.2.4 SetCustomAttributeValue..27

3.3 Building Type Definitions...27

3.3.1 DefineTypeDef..27

3.3.2 SetTypeDefProps...28

3.4 Declaring and Defining Members...29

3.4.1 DefineMethod..29

3.4.2 SetMethodProps..30

3.4.3 DefineField...31

3.4.4 SetFieldProps..32

3.4.5 DefineNestedType..32

3.4.6 DefineParam...33

3.4.7 SetParamProps..34

3.4.8 DefineMethodImpl...34

3.4.9 SetRVA..35

3.4.10 SetFieldRVA..35

3.4.11 DefinePinvokeMap...36

3.4.12 SetPinvokeMap..36

3.4.13 SetFieldMarshal...36

3.5 Building Type and Member References...37

3.5.1 DefineTypeRefByName...37

3.5.2 DefineImportType..38

3.5.3 DefineMemberRef..38

3.5.4 DefineImportMember...39

3.5.5 DefineModuleRef...40

3.5.6 SetParent...41

3.6 Declaring Events and Properties...41

3.6.1 DefineProperty..41

3.6.2 SetPropertyProps...42

3.6.3 DefineEvent..43

3.6.4 SetEventProps...44

3.7 Specifying Layout Information for a Class..45

3.7.1 SetClassLayout..45

3.8 Miscellaneous...46

3.8.1 GetTokenFromSig..46

3.8.2 GetTokenFromTypeSpec...46

Page 3

Metadata Interfaces

3.8.3 DefineUserString...46

3.8.4 DeleteToken...47

3.9 Order of Emission...47

4 MetaDataImport..50

4.1 Enumerating Collections..50

4.1.1 CloseEnum Method..51

4.1.2 CountEnum Method...51

4.1.3 ResetEnum...51

4.1.4 IsValidToken...51

4.1.5 EnumTypeDefs..52

4.1.6 EnumInterfaceImpls...52

4.1.7 EnumMembers..52

4.1.8 EnumMembersWithName..53

4.1.9 EnumMethods...53

4.1.10 EnumMethodsWithName...54

4.1.11 EnumUnresolvedMethods..54

4.1.12 EnumMethodSemantics..55

4.1.13 EnumFields...55

4.1.14 EnumFieldsWithName...55

4.1.15 EnumParams..56

4.1.16 EnumMethodImpls...56

4.1.17 EnumProperties...57

4.1.18 EnumEvents...57

4.1.19 EnumTypeRefs..57

4.1.20 EnumMemberRefs..58

4.1.21 EnumModuleRefs...58

4.1.22 EnumCustomAttributes...59

4.1.23 EnumSignatures..59

4.1.24 EnumTypeSpecs..59

4.1.25 EnumUserStrings...60

4.2 Finding a Specific Item in Metadata...60

4.2.1 FindTypeDefByName..60

4.2.2 FindMember..61

4.2.3 FindMethod...61

4.2.4 FindField..62

4.2.5 FindMemberRef...62

Page 4

Metadata Interfaces

4.2.6 FindTypeRef..63

4.3 Obtaining Properties of a Specified Object..63

4.3.1 GetScopeProps..63

4.3.2 GetModuleFromScope...64

4.3.3 GetTypeDefProps...64

4.3.4 GetNestedClassProps...64

4.3.5 GetInterfaceImplProps...65

4.3.6 GetCustomAttributeProps...65

4.3.7 GetCustomAttributeByName..66

4.3.8 GetMemberProps...67

4.3.9 GetMethodProps..67

4.3.10 GetFieldProps..67

4.3.11 GetParamProps...68

4.3.12 GetParamForMethodIndex...69

4.3.13 GetPinvokeMap...69

4.3.14 GetFieldMarshal...69

4.3.15 GetRVA..70

4.3.16 GetTypeRefProps...70

4.3.17 GetMemberRefProps..70

4.3.18 GetModuleRefProps..71

4.3.19 GetPropertyProps..71

4.3.20 GetEventProps..72

4.3.21 GetMethodSemantics...73

4.3.22 GetClassLayout...73

4.3.23 GetSigFromToken..74

4.3.24 GetTypeSpecFromToken...74

4.3.25 GetUserString...74

4.3.26 GetNameFromToken..75

4.3.27 ResolveTypeRef...75

5 Appendix – IMetaDataTables...76

6 Appendix – MethodImpls..77

6.1 Intro...77

6.2 Details..77

6.3 ReNaming Recommendations...78

6.4 Notes..78

7 Appendix – NestedTypes..80

Page 5

Metadata Interfaces

7.1 Introduction...80

7.2 Definition..80

7.3 Supported Features..80

7.4 Visibility, Subclassing, and Member Access...82

7.5 Naming...83

7.6 Naked Instances...84

7.7 C++ “Member Classes”...84

7.8 C++ “Friends”..85

7.9 Example - Simple...85

7.10 Example – Less Simple..87

8 Appendix – ‘Distinguished’ Custom Attributes..89

8.1 Pseudo Custom Attributes (PCAs)...89

8.2 CAs that affect Runtime...90

Page 6

Metadata Interfaces

1 Overview of the Metadata API
This document defines a set of APIs for emitting and importing metadata.

Metadata is used to describe, on the one hand, runtime types (classes and
interfaces), fields and methods, and, on the other hand, internal implementation and
layout information that is used by the runtime to JIT-compile IL, load classes,
execute code, and interoperate with the COM classic or native world. This
information is an integral part of every runtime component. Metadata is not
embedded into the MSIL code that a compiler generates. So this information can be
used by runtime, tools, and services.

Compilers and tools emit metadata by calling the emit APIs during compilation and
link or, with RAD tools, as a part of building components or applications. The APIs
write-to and read-from in-memory data structures. At save time, these in-memory
structures are compressed and persisted in binary format into the target compilation
unit (.obj file), executable file, or stand-alone metadata binary file. When multiple
compilation units are linked to form an .EXE or .DLL, the emit APIs provide a method
used to merge the metadata sections from each compilation unit into a single
integrated metadata binary.

The loader and other runtime tools and services import metadata to obtain
information about components so that tasks such as loading and activation can be
completed.

All manipulation of metadata is performed through the metadata APIs, insulating
tools from the underlying data structures and enabling a pluggable persistence
format architecture that allows runtime binary representations, COM classic type
libraries, and other formats to be imported into or from memory transparently.

To learn more about the Runtime file format in general, of which the metadata
binary is a part, see the “PE File Format Extensions” spec. For a description of the
Runtime type model, refer to the “Virtual Object System” spec. To learn more about
interoperability with classic COM, refer to the “COM Interoperability” spec. To learn
more about interoperability with native platform APIs, refer to the “Platform Invoke
Metadata Guide”. To learn more about Assemblies, and their metadata APIs, see
“Assembly Metadata API” spec.

In order to emit and import Metadata at the low-level described in this spec, you
need to know two things:

 Each method, its arguments and return type – the API. That’s what this
document describes

 Any data structures you must supply as arguments. There are four:
bitmasks, signatures, custom attributes and marshalling descriptors. This
information is gathered together into the companion spec – “Metadata
Structures”

1.1Metadata Interfaces
At any time you might have several distinct areas of in-memory metadata. For
example, you may have one area that maps all of the metadata from an existing
module, held in a file on-disk. At the same time, you may be emitting metadata into
a distinct area of metadata, that you will afterwards save as a module into a new on-
disk file. (We use the word “module” to mean a file that contains metadata; typically

Page 7

Metadata Interfaces

it will be a .OBJ, .EXE or .DLL file that also contains MSIL code; but it can also be a
file containing only metadata.

We call each separate area of metadata a scope. Each scope corresponds to a
module. Usually that module has been saved, or will be saved, to an on-disk file.
But there’s no need to do so: scripting tools frequently generate in-memory
metadata that is never persisted into a file. We use the term scope because it
represents the scope within which metadata tokens are defined. That’s to say, a
metadata token with value N completely identifies an in-memory structure (for
example, holding details of a class definition) within a given scope. But that same
value N may correspond to a completely different in-memory structure for a different
scope.

To establish an in-memory metadata scope, use CoCreateInstance for
IMetadataDispenserEx to create a new scope or to open an existing set of metadata
data structures from a file or memory location. With each Define or Open, the caller
specifies which interface to receive: The emit interface, used to write to a metadata
scope, is IMetadataEmit. The import interface, which allows tools to read from a
metadata scope, is IMetadataImport.

The metadata interfaces described in this specification allow a component's metadata
to be accessed without the class being loaded by the runtime. The primary design
goals for this API include maximizing performance and minimizing overhead – the
metadata engine stops just short of providing direct access to the in-memory data
structures. On the other hand, when a class is loaded at runtime, the loader imports
the metadata into its own data structures, which can be browsed via the Runtime
Reflection services, documented as a separate specification. The Reflection services
do much more work for the client than the metadata APIs do, such as automatically
walking the inheritance hierarchy to obtain information about inherited methods and
fields; the metadata APIs return only the direct member declarations for a given
class and expect the API client to make additional calls to walk the hierarchy and
enumerate inherited methods. The former approach exposes a higher-level view of
metadata, where the latter approach puts the API client in complete control of
walking the data structures.

Consistent with the primary design goals, the metadata APIs perform a minimum of
semantic error checking. These methods assume that the tools and services that
emit metadata are enforcing the object system rules outlined in the VOS and that
any additional checking on the part of the metadata engine during development time
is superfluous. Specific comments about what checks are being performed
accompany the specification of each method in this document.

1.2Metadata Abstractions
Metadata stores declarative information about runtime types (classes, value types,
and interfaces), global-functions and global-variable. Each such abstraction in a
given metadata scope carries an identity as an mdToken (metadata token), where
an mdToken is used by the metadata engine to index into a specific metadata data
table in that scope. The metadata APIs return a token from each Define method and
it is this token that, when passed into the appropriate Get method, is used to obtain
its associated attributes. Note that an mdToken is not an immutable metadata
object identifier: when two scopes are merged, tokens from the import scope are
remapped into tokens in the emit scope. When a metadata scope is saved, there are
various format optimizations that can result in token remaps. Managing tokens is
discussed further in the next section.

Page 8

Metadata Interfaces

To be more concrete: a metadata token is a 4-byte value. The most-significant byte
specifies what type of token this is. For example, a value of 1 means it’s a TypeDef
token, whilst a value of 4 means it’s a FieldDef token. (For the full list, with their
values, see the CorTokenType enumeration in CorHdr.h) The lower 3 bytes give the
index of the row, within a MetaData table, that the token refers to. We call those
lower 3 bytes the RID, or Record IDentifier. So, for example, the metadata token
with value 0x01000007 is a ‘shorthand’ way to refer to row number 7 in the TypeDef
table, in the current scope. Similarly, token 0x0400001A refers to row number 26
(decimal) in the FieldDef table in the current scope. We never store anything in row
zero of a metadata table. So a metadata token, whose RID is zero, we call a “nil”
token. The metadata API defines a host of such nil tokens – one for each token type
(for example, mdTypeDefNil, with value 0x01000000).

[The above explanation of RIDs is conceptually correct – however, in reality, the
physical layout of data is much more complicated. Moreover, string tokens mdString
are slightly different: their lower 3 bytes are not a record identifier, but an offset to
their start location in the metadata string pool]

The following abstractions and corresponding mdToken types will be encountered in
the metadata APIs. More details on these abstractions are provided in the
externalization section of the VOS and, to some extent, with the appropriate Define
method in this API specification.

 Module (mdModule): The metadata in a given scope describes a compilation
unit, executable, or other development-, deployment-, or run-time unit, referred
to in this documentation generally as a module. It is possible, although not
required, to declare a name, GUID identifier, custom attributes, etc on the
module as a whole.

 Module references (mdModuleRef): Compile-time references to modules,
recording the source for type and member imports.

 Type declarations (mdTypeDef): Declarations of runtime reference types --
classes and interfaces – and of value types.

 Type references (mdTypeRef): References to runtime reference types and value
types, such as may occur when declaring variables as runtime reference or value
types or in declaring inheritance or implementation hierarchies. In a very real
sense, the collection of type references in a module is the collection of compile-
time import dependencies.

 Method definitions (mdMethodDef): Definitions of methods as members of
classes or interfaces or as global module-level methods.

 Parameter declarations (mdParamDef): The signature of a method
(mdMethodDef) includes the number and types of each of the method
parameters. Therefore, it is not necessary to emit a parameter declaration data
structure for each parameter. However, when there is additional metadata to
persist for the parameter, such as marshaling or type mapping information, an
optional parameter data structure may be created, identified by an mdParamDef
token.

 Field declarations (mdFieldDef): Declarations of data members as members of
classes or interfaces or as global module-level data members.

 Property declarations (mdProperty): Declarations of properties as members of
classes or interfaces.

Page 9

Metadata Interfaces

 Event declarations (mdEvent): Declarations of named events as members of
classes or interfaces.

 Member references (mdMemberRef): References to methods and fields. A
member reference is generated in metadata for every method invocation or field
access that is made by any implementation in this module and a token is
persisted in the IL stream. (Note that there is no runtime support for property or
event references)

 Interface implementations (mdIfaceImpl): Information about a specific class’s
implementation of a specific interface. This metadata abstraction allows
information to be persisted about the intersection that is neither specific to the
class nor to the interface.

 Method implementations (mdMethodImpl): Information about a specific class’s
implementation of a method inherited via interface inheritance. This metadata
abstraction allows information to be persisted that is specific to the
implementation rather than to the contract; method declaration information
cannot be modified by the implementing class.

 Custom attributes (mdCustomAttribute): Arbitrary data structures associated
with any metadata object that can be referenced with an mdToken (except that
custom attributes themselves cannot have custom attributes).

 Permission set (mdPermission): A declarative security permission set
associated with any one of: mdTypeDef, mdMethodDef and mdAssembly. For
further information, see the specification called “Declarative Security Support”

 Type constructor (mdTypeSpec): An mdTypeSpec token is used to obtain a
token for a type (e.g., a boxed value type) that can be used as input to any IL
instruction that takes a type. Refer to the Signature specification for details.

 Signature (mdSignature): An mdSignature token is only needed when passing a
full method signature to an IL instruction (e.g., calli) or to encode local variable
signatures used in the PE file. These are referred to as “stand-alone signatures”.
Otherwise, the binary signature encoding associated with declarations of
methods, fields, properties, or references to any of these, is supplied directly and
the metadata manages the associated blob heap transparently.

 User string (mdString). Like mdSignature, an mdString token is only needed
when passing a string to an IL instruction (e.g., ldstr). Otherwise, the metadata
APIs handle all strings (and the associated blob heap) transparently.

Note that there are not two separate token types mdFieldRef and mdMethodRef,
in the above list, as you might have expected. That’s because field and method
references are share the same table, and we have only the single, generic token type
mdMemberRef. Nonetheless, for purposes of clarity, this spec will talk about
mdFieldRef and mdMethodRef tokens as, invented, species of mdMemberRef tokens.

Runtime metadata is extensible. There are three scenarios where this is important:

 The Common Language Subset (CLS) is a specification for conventions that
languages and tools agree to support in a uniform way for better language
integration. The CLS may constrain parts of the VOS model, and the CLS may
introduce higher-level abstractions that are layered over the VOS. It is important
that the metadata be able to capture these sorts of development-time
abstractions that are used by tools even though they are not recognized or
supported explicitly by the runtime.

Page 10

Metadata Interfaces

 It should be possible to represent language-specific abstractions in metadata that
are neither VOS nor CLS language abstractions. For example, it should be
possible, over time, to enable languages like VC to not require separate header
files or IDL files in order to use types, methods, and data members exported by
compiled modules.

 It should be possible to encode in member signatures types and type modifiers
that are used in language-specific overloading.

This extensibility comes in the following forms:

 Every metadata object can carry custom attributes, and the metadata APIs
provide a way to declare, enumerate, and retrieve custom attributes. Custom
attributes may be identified by a type reference (mdTypeDef/Ref), where the
structure of the attribute is self-describing (via data members declared on the
type) and the value encoding may be browsed by any tool including the runtime
Reflection services.

 In addition to VOS type extensibility, it is possible to emit custom modifiers into
member signatures. Runtime will honor these modifiers for purposes of method
overloading and hiding, as well as for binding, but will not enforce any of the
language-specific semantics.

1.3Using the APIs and Metadata Tokens
The metadata APIs can be called from C++. The two header files that define the
public APIs and all necessary enums and constants, are CorHdr.h and Cor.h. The
way the metadata APIs are used will depend in part on the kind of client using them.
We can think of clients as falling into one of two general categories:

 Compilers, like VC, that build interim .obj files and then, in a separate linker
phase, merge the individual compilation units into a single target PE file

 RAD tools, that manage all code and data structures in the tool environment until
build time, at which time they build and emit a PE file in a single step

1.3.1 The Complile/Link Style of Interaction
In the compile/link style of interaction, a compiler front end will use the
IMetaDataDispenserEx API to establish an in-memory metadata scope and then use
the IMetaDataEmit API to declare types and members, working with the metadata
abstractions described in the previous section. However, the front end will not be
able to supply method implementation information (e.g., whether the
implementation is managed or unmanaged, IL or native code) or RVA information
because it is not known at this time. Instead, the backend and/or linker will need to
be able to supply this information later, as the actual code is compiled and emitted
into the PE file.

The complexity here is that the tool needs to be able to obtain information about the
target “save size” of the metadata binary in order to leave room for it in the PE file,
but it is not ready to save it into the file until the method (and module-level static
data member) RVAs are known and emitted into metadata. In order to calculate the
target save size correctly, the metadata engine must first perform any pre-save
optimizations, since these optimizations, ideally, make the target binary smaller.
Such optimizations might include sorting data structures for faster searching, or
optimizing away (early binding) mdTypeRefs and mdMemberRefs when the reference

Page 11

Metadata Interfaces

is to a type or member that is declared in the current scope. These sorts of
optimizations may result in remapping metadata tokens that the tool is going to
expect to be able to use again to emit the implementation and/or RVA information.
This means that the tool and the metadata engine must work together to track token
remaps.

The sequence of calls for persisting metadata during compilation, then, is:

IMetaDataEmit::SetHandler, to supply an IUnknown interface that the
metadata engine can use to query for IID_IMapToken to notify the client of
token remaps. SetHandler may be called at any point after the metadata
scope is created, but certainly before a call to GetSaveSize.

IMetaDataEmit::GetSaveSize, to obtain the save size of the metadata
binary. GetSaveSize uses the IMapToken interface supplied in SetHandler to
notify the client of any token remaps. Note that if SetHandler was not used to
supply an IMapToken interface, no optimizations are performed. This enables
a compiler that is emitting an interim .obj file to skip unneeded optimizations
that are likely to have to be redone after the link and Merge phase, anyway
(see below).

IMetaDataEmit::Save, to persist the metadata binary, after SetRVA and
other IMetaDataEmit methods are used, as needed, to emit the final
implementation metadata.

The next level of complication comes in the linker phase, when multiple compilation
units are to be merged into a single integrated PE file. In this case, not only do the
metadata scopes need to be merged, but the RVAs will change again as the new PE
file is emitted. In the merge phase, the IMetaDataEmit::Merge method, working with
a single import and a single emit scope with each call, remaps metadata tokens from
the import scope into the emit scope. In addition, the merge may encounter
continuable errors that it needs to be able to notify the client of. After the merge is
complete, emitting the final PE file involves a call to IMetaDataEmit::GetSaveSize,
and another round of token remapping.

The sequence of calls for emitting and persisting metadata by the linker is:

IMetaDataEmit::SetHandler, to supply an IUnknown interface that the
metadata engine can use to query for not only IID_IMapToken, as above, but
also for IID_IMetaDataError. The latter interface is used to notify the client of
any continuable errors that arise from Merge.

IMetaDataEmit::Merge, to merge a specified metadata scope into the
current emit scope. Merge uses the IMapToken interface to notify the client of
token remaps and it uses IMetaDataError to notify the client of continuable
errors.

IMetaDataEmit::GetSaveSize, to obtain the target save size of the
metadata binary. GetSaveSize uses the IMapToken interface supplied in
SetHandler to notify the client of any token remaps. Observe that a tool must
be prepared to handle token remaps in Merge and then again in GetSaveSize
after various format optimizations are performed. The last notification for a
token is the one that is the final mapping that the tool should rely on.

IMetaDataEmit::Save, to persist the metadata binary, after SetRVA and
other IMetaDataEmit methods are used, as needed, to emit the final
implementation metadata.

Page 12

Metadata Interfaces

1.3.2 The RAD Tool Style of Interaction
As in the compile/link style of interaction, a RAD tool will use the
IMetaDataDispenserEx API to establish an in-memory metadata scope and then use
the IMetaDataEmit API to declare types and members, working with the metadata
abstractions described in the previous section. In contrast to the compile/link style,
the RAD tool will typically emit the PE file in a single step. It will likely emit
declaration and implementation information in a single pass. And, it will probably
never need to call Merge. As such, the only reason it might have any need to handle
the complexity of token remaps is if it wants to take advantage of the pre-save
optimizations that are currently performed in GetSaveSize. Strictly speaking, though,
a tool that understands how to emit the metadata in a fully-optimized fashion to
start with doesn’t need the metadata engine to emit a reasonably optimized file.
Although it’s a little dangerous, because future implementations of the metadata
engine and file format might obsolete some optimizations and introduce others, there
is a clear set of rules for how to emit optimized metadata (see Emitting Optimized
Metadata Data Structures).

This means that, after emitting the metadata declarations and implementation
information, the sequence of calls is simply:

IMetaDataEmit::Save, to persist the metadata binary, after SetRVA and
other IMetaDataEmit methods are used, as needed, to emit the final
implementation metadata.

In the general case, there are probably styles of interaction that lie between these two. Some tools may
want the metadata engine to own optimizations but may not be interested in token remap information. Or,
they may want remap information only for some token types and not others. In truth, a compiler may not
even be interested in performing optimizations when emitting an .obj. In future milestones, we are looking
at a degree of tuning that is client-specified that offers a range of balance between complexity and
optimization.

1.3.3 IMapToken
Any client that implements IMapToken must implement the following method(s):

Map (ULONG tkImp, ULONG tkEmit);

where tkImp is the original token (as known to the client) and tkEmit is the new
token for that metadata object. When the token remap occurs during Merge, the
original token is scoped in the import (source) metadata scope and the new token is
scoped in the emit (target) metadata scope.

1.3.4 IMetaDataError
Any client that implements IMetaDataError must implement the following method(s):

OnError (HRESULT hr, mdToken token);

where hr is the recoverable error that occurred and token is the identity of the
metadata token that was being merged in when the error occurred.

Page 13

Metadata Interfaces

1.4Related Specifications
The following related specifications are augmented, implemented, or enforced by
several of the methods defined in this document:

 Reflection interfaces, which are managed versions of these unmanaged interfaces

 “PE File Format Extensions”, of which the metadata binary is a part.

 “Virtual Object System”, which defines the object model that underlies Runtime,
its externalization in metadata, and its implications for the runtime.

 “Metadata Structures”, which defines the binary encoding for signatures, custom
attributes, etc

 The “Common Language Subset”, which places a number of modeling restrictions
on the metadata. The metadata design accommodates but does not explicitly
enforce CLS rules.

 “COM Interoperability” and “Platform Invoke”, which describe requirements for
metadata to control how Runtime method invocations and field accesses are
mapped onto underlying legacy services.

1.5Coding Conventions
The following coding conventions are used by the Metadata API.

1.5.1 Handling String Parameters
The metadata API exposes all strings as UNICODE (the on-disk format for symbol
names is actually UTF8, but that is hidden from clients of the API).

Symbol Names

 String parameters that are symbol names are always assumed to be null-
terminated, and no [in] length parameter is needed. Embedded nulls are not
supported.

 If an [in] parameter string is too large to persist without truncation, an error will
be returned.

 Every returned string is a triple of three parameters (actual param names vary):
[in] ULONG cchString, [out]LPCWSTR wzString, [out] ULONG *pchString – where
cchString is the count of characters allocated in the buffer including the
terminating null, wzString is a pointer to the string buffer returned, and pchString
returns the size of the persisted string (including the terminating null) in the
event that the buffer did not allocate sufficient size to return the full string. If the
returned string was truncated, an error indication will be returned and the client
can reallocate the buffer and retry if desired.

User Strings

 User strings may have embedded nulls and should not have a null terminator.

 A length must be supplied with the [in] string parameter. The length supplied is
exactly the length that will be stored. If the string ends in a null, it is interpreted
to be part of the string value. If the string is null terminated, the length should
not include the terminating null.

Page 14

Metadata Interfaces

1.5.2 Optional Return Parameters
Many methods in the Metadata API that return information, have optional out
parameters – in the summary table for that method, in the “Required?” column, their
entry says “no”. This is common with returned strings, but occurs for other types of
parameter too. If you want that information returned from the call, provide a non-
null pointer value for that argument. If, on the other hand, you are not interested in
that information, simply supply a null pointer, and the method will skip over.

1.5.3 Storing Default Values
Constants can be stored into metadata as default values for Fields, Parameters and
Properties. This feature is provided in methods such as DefineField, DefineParam
and DefineProperty. The constant is specified using 3 parameters called:

 dwDefType – specifies the type of the constant value (for example,
ELEMENT_TYPE_UI2)

 pValue – a void* pointer to a blob giving the actual default value. (For example,
a pointer to the 4-byte DWORD holding 0x0000002A will store a DWORD value of
42 decimal into the metadata)

 cbValue – count of the bytes in the sequence pointed-to by pValue. This is only
required if dwDefType = ELEMENT_TYPE_STRING – in all other cases, the length
is inferred from the ELEMENT_TYPE_, obviously.

Note that such default values are not automatically inserted into initialization code,
or into statically-initialized data areas – they are merely recorded into metadata.

The type provided as a default value, via the dwDefType, is limited to being a
primitive, a string, or null. Specifically:

ELEMENT_TYPE_BOOLEAN ELEMENT_TYPE_WCHAR
ELEMENT_TYPE_I1 ELEMENT_TYPE_U1
ELEMENT_TYPE_I2 ELEMENT_TYPE_U2
ELEMENT_TYPE_I4 ELEMENT_TYPE_U4
ELEMENT_TYPE_I8 ELEMENT_TYPE_U8
ELEMENT_TYPE_R4 ELEMENT_TYPE_R8
ELEMENT_TYPE_STRING ELEMENT_TYPE_CLASS

(This list is a subset of the CorElementType enumeration in CorHdr.h)

In the particular case of ELEMENT_TYPE_CLASS, its value can only be null.

Indicate that you do not wish to specify a default value, by providing a value for
dwDefType of all-bits-set (-1).

1.5.4 Null Pointers for Return Parameters
Since the metadata APIs do a minimum of error checking, it’s useful to understand
when they expect that you will provide a non-null pointer for return parameters:

 In define methods, a non-null pointer is always required for the return token for
the thing that is being defined: we create one, you get back the token for it.
Don’t look at it if you don’t want it.

 In find methods, we also always expect to return the token for the thing we
successfully find.

Page 15

Metadata Interfaces

 In get methods, you may pass null in for parameters you are not interested in
getting back.

 In set methods, there’s generally no return. You pass in the token for the thing
to be updated, along with the values to update, and the metadata APIs perform
the update.

1.5.5 “Ignore This Argument”
Several methods in the metadata API allow you to change the value an item that was
defined earlier. For example:

HRESULT SetFieldProps(mdFieldDef fd, DWORD dwFieldFlags,

 DWORD dwDefType, void const *pValue, ULONG cbValue)

allows you to change dwFieldFlags, dwDefType and pValue (together with its new
cbValue), previously supplied in a call to DefineField. But what if you want to change
dwFieldFlags but not pValue (or vice versa)? How do you specify this? We obey the
following conventions for method parameters:

 Pointer – use a null pointer to indicate “ignore this argument”

 Value (typically a flags bitmask) – use a value of all bits set (–1) to indicate
“ignore this argument”

1.5.6 Error Returns
Almost all methods in the IMetadataDispenserEx, IMetaDataEmit and
IMetaDataImport interfaces return an HRESULT to indicate their result. This has the
value S_OK if the operation was successful, or another value that describes the
reason why the operation failed.

One general pattern across all the MetaData APIs is that if the caller provides a string
buffer that is too small to hold the results, then we copy as many characters as will
fit, but return the alternate success HRESULT of CLDB_S_TRUNCATION.

Recall that callers of the IMetadata* interfaces are compilers or tools – not end
users. It is the responsibility of these callers to always check the return status from
each call – since these reflect errors on the part of the direct caller (eg a compiler)
than of the end user (eg a programmer).

Page 16

Metadata Interfaces

2 IMetadataDispenserEx
The dispenser API is used to map existing metadata so that it can be inspected (and
added to), or to create a fresh in-memory area to define new metadata. In this
section, we also include methods to control how the metadata API operates.

2.1DefineScope

HRESULT DefineScope(REFCLSID rclsid, DWORD dwCreateFlags,

 REFIID riid, IUnknown **ppIUnk)

Create a fresh area in memory, into which you can create new metadata using the
MetaData Emit API. DefineScope creates a set of in-memory metadata tables of the
specified class, generates a unique guid (module version identifier, or mvid) for the
metadata, and creates an entry in the Module able for the compilation unit being
emitted. If successful, the requested metadata interface is returned. Note that a
developer may attach attributes to the metadata scope as a whole using
IMetadataEmit::SetModuleProps or IMetadataEmit::DefineCustomAttribute, as
appropriate.

in/out Parameter Description Required?

in rclsid The CLSID of the version of metadata structures to create yes

in dwCreateFlags Used to tailor DefineScope behavior. Must be 0 yes

in riid The IID of the interface required yes

out ppIUnk The returned interface, on success.

rclsic should be specified as CLSID_ CorMetaDataRuntime in this release

riid must be one of IID_IMetaDataEmit, IID_IMetaDataImport,
IID_IMetaDataAssemblyEmit or IID_IMetaDataAssemblyImport

2.2OpenScope

HRESULT OpenScope(LPCWSTR wzScope, DWORD dwOpenFlags,

 REFIID riid, IUnknown **ppIUnk)

Open an existing file, and map its metadata into memory. That in-memory copy of
the metadata can then be queried using methods from the IMetaDataImport or
added-to using method from the IMetaDataEmit interfaces. Note that the target file
must contain NGWS runtime metadata, else the method will fail.

in/out Parameter Description Required?

in wzScope target file yes

in dwOpenFlags 0 = open for read, 1 = open for write yes

in riid The IID of the interface required yes

out ppIUnk The returned interface

Page 17

Metadata Interfaces

riid must be one of IID_IMetaDataEmit, IID_IMetaDataImport,
IID_IMetaDataAssemblyEmit or IID_IMetaDataAssemblyImport

Example:

HRESULT h;
IMetaDataImport* p;
h = OpenScope (L”file:c\\App.Exe”, 0, IID_IMetaDataImport, (IUnknown**) &p);

2.3OpenScopeOnMemory

HRESULT OpenScopeOnMemory(LPCVOID pData, ULONG cbData,

 DWORD dwOpenFlags, REFIID riid, IUnknown **ppIUnk);

Treat the area of memory specified by the pData and cbData arguments as NGWS
runtime metaData. This metaData can then be queried using methods from the
IMetaDataImport interface. This is similar to the OpenScope method, except that
metaData of interest already exists in-memory, rather than in a file on-disk.

in/out Parameter Description Required?

in pData Pointer to start of memory yes

in cbData Size of the memory area, in bytes yes

in dwOpenFlags 0 = open for read, 1 = open for wrie yes

in riid The IID of the interface required yes

out ppIUnk The returned interface

riid must be one of IID_IMetaDataEmit, IID_IMetaDataImport,
IID_IMetaDataAssemblyEmit or IID_IMetaDataAssemblyImport

2.4SetOption
You can control how your calls to the metadata API are handled. These settings are
transient; they are not persisted to disk.

The settings are gathered into the following categories:

Duplicate checks Each time you call a method on IMetaDataEmit that creates a
new item, you can ask it to check whether the item already exists in the current
scope. You can control which items are checked and which are not. For example,
you can ask for checking on MethodDefs; in this case, when you call DefineMethod, it
will check that the method does not already exist in the current scope. This check
uses the key that uniquely identifies a given method: parent type, name and
signature

Ref-to-Def optimizations By default, the metadata engine will convert Refs to
Defs where it can (where the referenced item actually exists in the current scope).
You can control which Refs are optimized in this way

Notifications on token movement Controls which token remaps (during
metadata merge) call you back. (Use SetHandler to establish your IMapToken
interface)

ENC Modes – allow control over behaviour of EditAndContinue

Page 18

Metadata Interfaces

EmitOutOfOrder Allows you to control which out-of-order ‘errors’ call you back.
(Use SetHandler to establish your IMetaDataError interface). Emitting metadata
‘out-of-order’ is not fatal – it’s just that if you emit it in an order favoured by the
metadata engine, the metadata is more compact and efficient to search)

Import Options Specify which sorts of deleted metadata tokens are returned in
any enumeration. (See DeleteToken for more information)

Generate TCE Adaptors – yes or no

NameSpace Specifies a different namespace than the one provided by the type
library being imported.

ThreadSafetyOptions Specifies whether you want the metadata engine to take out
reader/writer locks to ensure thread safety (default assumes access is single-
threaded by the caller, so no locks are taken)

HRESULT SetOption (REFGUID optionId, const VARIANT *pvalue)

in/out Parameter Description Required?

in optionId Pointer to GUID that specifies required option yes

in pvalue Value to set yes

optionId argument must point to one of the following GUIDs, defined in Cor.h:

 MetaDataCheckDuplicatesFor. pvalue must be a variant of type UI4, holding a
bitmask of which duplicate checks you require. See the CorCheckDuplicatesFor
enum in CorHdr.h

 MetaDataRefToDefCheck. pvalue must be a variant of type UI4, holding a
bitmask of which checks you require. See the CorRefToDefCheck enum in
CorHdr.h

 MetaDataNotificationForTokenMovement. pvalue must be a variant of type UI4,
holding a bitmask of which notifications you require. See the
CorNotificationForTokenMovement enum in CorHdr.h

 MetaDataSetUpdate. pvalue must be a variant of type UI4, holding a bitmask of
which checks you require. See the CorSetUpdate enum in CorHdr.h

 MetaDataErrorIfEmitOutOfOrder. pvalue must be a variant of type UI4, holding a
bitmask of which checks you require. See the CorErrorIfEmitOutOfOrder enum in
CorHdr.h

 MetaDataImportOption. pvalue must be a variant of type UI4, holding a bitmask
of which deleted items you want reported in an enumeration of the metadata.
See the CorImportOptions enum in CorHdr.h

 MetaDataGenerateTCEAdapters. pvalue must be a variant of type BOOL. If set
true, then when we import a type library, we will translate event source
interfaces to add/remove methods.

 MetaDataTypeLibImportNamespace. pvalue must be a variant of type BSTR,
EMPTY or NULL. If pvalue represents a nil value, then the current namespace is
set to null; otherwise the current namespace is set to the string held in the
variant’s BSTR

Page 19

Metadata Interfaces

 MetaDataThreadSafetyOptions. pvalue must be a variant of type UI4, holding a
bitmask of which safety options you require. See the CorThreadSafetyOptions
enum in CorHdr.h

2.5GetOption
Returns the settings for the current metadata scope. See SetOption for details.

HRESULT GetOption(REFGUID optionId, const VARIANT *pvalue)

in/out Parameter Description Required?

in optionId Pointer to GUID that specifies required option yes

in pvalue Value to return yes

Page 20

Metadata Interfaces

3 IMetaDataEmit
The emitter API is used by compilers to generate in-memory and on-disk metadata.
This API is implemented directly over the low-level metadata engine APIs, generating
records into the various data structures, which are converted at “save” time to the
target on-disk format.

3.1Defining, Saving, and Merging Metadata

3.1.1 SetModuleProps

HRESULT SetModuleProps(LPCWSTR wzName)

Records a name for the current scope. This can be any string you want. It is for
information only. It is not used by the Runtime

in/out Parameter Description Required?

in wzName Module name in Unicode no

3.1.2 Save

HRESULT Save(LPCWSTR wzFile, DWORD dwSaveFlags)

Saves all of the metadata in the current scope to the specified file. The method
leaves all of the metadata intact

 in/out Parameter Description Required?

in wzFile Name of file to save to. If null, the in-memory copy will be
saved to the last location that was used

no

in dwSaveFlags [reserved] must be 0

3.1.3 SaveToStream

HRESULT SaveToStream(IStream *pIStream, DWORD dwSaveFlags)

Saves all of the metadata in the current scope to the specified stream. The method
leaves all of the metadata intact.

in/out Parameter Description Required?

in pIStream Writeable stream to save to yes

in dwSaveFlags [reserved] must be 0

3.1.4 SaveToMemory

HRESULT SaveToMemory(void *pbData, ULONG cbData)

Page 21

Metadata Interfaces

Saves all of the metadata in the current scope to the specified area of memory. The
method leaves all of the metadata intact.

in/out Parameter Description Required?

in pbData Start address at which to write metadata yes

in cbData Size of allocated memory, in bytes yes

3.1.5 GetSaveSize

HRESULT GetSaveSize(CorSaveSize fSave, DWORD *pdwSaveSize)

Calculates the space required, in bytes, to save all of the metadata in the current
scope. (Specifically, a call to the SaveToStream method would emit this number of
bytes)

If the caller implements the IMapToken interface (via SetHandler or Merge), then
GetSaveSize will perform two passes over the metadata in order to optimize and
compress it. Otherwise, no optimizations are performed.

If optimization is performed, the first pass simply sorts the metadata structures so
as to tune the performance of import-time searches. This step will likely result in
moving records around, with the side-effect that tokens the tool has retained for
future reference are invalidated. (Metadata does not inform its caller of these token
changes until after the second pass, however). In the second pass, various
optimizations are performed that are intended to reduce the overall size of the
metadata, such as optimizing away (early binding) mdTypeRefs and mdMemberRefs
when the reference is to a type or member that is declared in the current metadata
scope. In this pass, another round of token mapping occurs. After this pass, the
metadata engine notifies the caller, via its IMapToken interface, of any changed
token values.

in/out Parameter Description Required?

in fSave Requests accurate, or approximate no

out pdwSaveSize Size required to save file

fSave should be one of cssAccurate (the default), or cssQuick (see the CorSaveSize
enum in CorHdr.h). cssAccurate will return the exact save size but takes longer to
calculate. cssQuick will return a size, padded for safety, but takes less time to
calculate. fSave can also have the cssDiscardTransientCAs bit set – this tells
GetSaveSize that it can throw away discardable custom attributes

3.1.6 MergeEx

HRESULT MergeEx(IMetaDataImport *pImport, IMapToken *pIMap,

 IUnknown *pHandler)

Starts a merge of metadata from the scope defined by pImport into the current
metadata scope. In so doing, tokens from the imported scope are remapped into the
current scope. MergeEx uses the IMapToken interface supplied by the caller to notify

Page 22

Metadata Interfaces

the caller of each remap; it uses the IMetaDataError interface supplied by the caller
to notify the caller of any errors.

This routine can be called for several import scopes. The actual merge operation,
across all these import scopes is triggered by calling the routine MergeEndEx

in/out Parameter Description Required?

in pImport Identifies other metadata scope to be merged yes

in pIMap Interface on which to notify token remaps no

in pHandleer Interface on which to notify errors no

3.1.7 MergeEndEx

HRESULT MergeEndEx()

This routine triggers the actual merge of metadata, of all import scopes specified by
preceding calls to MergeEx into the current output scope.

During merge, various errors may be encountered, as follows:

The following special conditions apply to the merge:

 An MVID is never imported, since it is unique to that other metadata

 No existing module-wide properties are overwritten. So, if module properties
were already set for the current scope, no module properties are imported. But,
if module properties have not been set in the current scope, they will be imported
once-only, when they are first encountered. If they are encountered again, they
must be duplicates (eg, when merging .obj files during a VC link step); if they are
not duplicates, based on comparing the values of all module properties (except
MVID), we raise an error

 For TypeDefs, no duplicates will be merged into the current scope. The check for
duplicates is based on fully-qualified name + guid + version number. If there is
a match on name or on guid and any of the other two elements is different, we
raise an error. Else, if there is a full match on 3 items, MergeEx does a cursory
check to ensure the entries are indeed duplicates – we raise an error if they are
not. This cursory check is based on:

 Same member declarations, in same order. (However, members flagged as
mdPrivateScope are not included in this check; they are merged specially; see
later)

 Same class layout

Observe that this means that a TypeDef must always be fully and consistently
defined in every metadata scope in which it is declared; if its member
implementations (for a class) are spread across multiple compilation units (as
in VC), the full definition is assumed to be present in every scope and not
incremental to each scope. For example, if parameter names are relevant to
the contract, they must be emitted the same way into every scope; if they
are not relevant, they should not be emitted into metadata

The exception is that a TypeDef may have incremental members flagged as
mdPrivateScope. On encountering these, MergeEx will incrementally add
them to the current scope without regard for duplicates (since only the

Page 23

Metadata Interfaces

compiler understands the private scope, the compiler must be responsible for
enforcing rules)

 When merging members that have RVAs, we do not import/merge any of this
information – the compiler is expected to re-emit it

 Custom values or attributes are merged only at the time we merge the item they
are attached to. For example, custom values associated with a class will be
merged when the class is first encountered. If custom values are associated with
TypeDefs or MemberDefs that were specific to the compilation unit (e.g., time
stamp of member compile), these will not be handled specially and it is up to the
compiler to remove or update such metadata.

3.1.8 SetHandler

HRESULT SetHandler(IUnknown *pUnk)

Registers a handler interface through which the caller may receive notification of
errors (IMetaDataError) and of token remaps (IMapToken).

The metadata engine sends notification on the map token interface provided by
SetHandler() for compilers who do not generate records in an optimized way and
would like to save optimized. If IMapToken is not provided via SetHandler, no
optimization will be performed on save except where several import scopes have
been merged using the provided IMapToken on merge for each scope.

in/out Parameter Description Required?

in pUnk Handler to register yes

3.2Custom Attributes and Custom Values
This section explains two closely-related topics – custom attributes and custom
values. You use the same method, DefineCustomAttribute, to define both.

Custom attributes and custom values are just what they say – attributes or values
you can attach to a programming element, such as a method or field. But these
attributes or values are defined by the customer – the programmer and/or language
– rather than pre-defined by the runtime itself.

Think of a custom attribute as a triple of (tokenParent, tokenMethod, blob) stored
into metadata. The blob holds the arguments to the class constructor method
specified by tokenMethod. The runtime has a full understanding of the contents of
this blob; on request, it will instantiate the attribute-object that the blob represents,
attaching it to the item whose token is tokenParent.

A custom value, on the other hand, is a much simpler affair. Think of it as a triple
of (tokenParent, tokenRef, opaque-blob) stored into metadata. Only the caller
understands what that opaque-blob means and how it should be used; the runtime
has no knowledge whatsoever of the its contents. The tokenRef is a way for the
caller to associate a name string with the custom value. As before, the tokenParent
specifies the metadata item that the opaque-blob is attached to.

Note: although we include descriptions for how to use Custom Values, it is likely we
shall withdraw support for them before the product ships. Please therefore use only
Custom Attributes

Page 24

Metadata Interfaces

3.2.1 Using Custom Attributes
The model for using custom attributes has two steps. First, the programmer defines
a custom attribute-class, and the language emits that definition into the metadata,
just as it would for any regular class. Here is an example of defining an attribute-
class, called Location, in some invented programming language:

[attribute] class Location {
 string name;
 Location (string n) {name = n;}
}

Second, the programmer defines an instance of that attribute class (let’s call it an
attribute-object) and attaches it to some programming element. Here is an example
of defining two Location attribute-objects and attaching them to two classes,
Television and Refrigerator. Note that we define the attribute-object by providing a
literal string argument to its Location constructor method:

[Location (“Aisle 3”)] class Television { . . . }

[Location (“Aisle 42”)] class Refrigerator { . . . }

As a result, the Television class at runtime will always have an attribute-object
attached (whose name field holds the string “Aisle 3”) whilst the Refrigerator class at
runtime will have an attribute-object attached (whose name field holds the string
“Aisle 42”)

Note that attribute-classes are not distinguished in any way whatsoever by the
runtime – their definition within metadata looks just like any regular type definition.
Our use therefore of “attribute-class” in this spec is simply to help understanding.

Custom attribute-objects can be attached to any metadata item that has a metadata
token: mdTypeDef, mdTypeRef, mdMethod, mdField, mdParameter, etc. Duplicates
are supported, such that a given programming element may well have multiple
attribute-objects of the same attribute-class attached to it. [so, in the example
above, class Television might have two Location attribute-objects – with name fields
of “Aisle 42” and “Back Store”]

It is legal to attach a custom attribute-object to a custom attribute-class. (but you
cannot attach a custom-attribute object to any individual runtime object)

Custom attributes have the following characteristics:

 Require up-front design before attributes can be emitted

 Capitalize on the runtime infrastructure for class identity, structure, and
versioning

 Allow tools, services, and third parties (the primary customers for this
mechanism) to extend the types of information that may be carried in metadata
without having to depend on the runtime to maintain and version that
information

 Although each language or tool will provide a language-specific syntax and
conventions for using custom attributes, the self-describing nature of these
attributes will enable tools to provide drop-down lists and other developer aids

 Runtime Reflection services will support browsing over these custom attributes,
since they are self-describing.

Page 25

Metadata Interfaces

3.2.2 Using Custom Values
Note: although we include descriptions for how to use custom values, it is likely we
shall withdraw support for them before the product ships. Please therefore use only
custom attributes

The model for using custom values also has two steps. First, the compiler emits a
TypeRef, in effect to record a name for the custom value. The call to
DefineTypeRefByName returns the mdTypeRef token assigned – this is used as the
tkAttrib value, in the next step.

Next, the compiler calls DefineCustomAttribute, specifying the required tkParent,
tkAttrib (from the previous step), and the opaque value as the blob.

Note that the mdTypeRef token will never be resolved to a corresponding mdTypeDef
token. Note also that only one current language provides syntax to allow a
programmer to create a custom value, and that for one hard-wired case.

Custom value have the following characteristics:

 Simple in concept and low overhead

 User-selected string names may collide; unless a dev tool has sufficient
embedded knowledge of the attributes to provide drop-down lists, etc., this
approach is subject to spelling/format errors by developers

 The blob structure of the value is not self-describing and therefore cannot be
interpreted by anyone except the definer of the blob

 There’s no versioning support

3.2.3 DefineCustomAttribute

HRESULT DefineCustomAttribute(mdToken tkOwner, mdToken tkAttrib,

 void const *pBlob, ULONG cbBlob, mdCustomAttribute *pca)

Defines a custom attribute-object, or a custom value, attached to the specified
parent (tkOwner)

in/out Parameter Description Required?

in tkOwner Token for the owner item yes

in tkCtor Token that identifies the custom attribute yes

in pBlob Pointer to blob no

in cbBlob Count of bytes in pBlob no

out pca CustomAttribute token assigned

tkOwner may be any valid metadata token, except an mdCustomAttribute.

If tkCtor is an mdMethodDef or mdMemberRef, then you are defining a custom
attribute, and tkCtor is the token that identifies the constructor method to execute to
create the custom attribute-object. Alternatively, if tkCtor is an mdTypeRef, then
you are defining a custom value (yes, tkCtor is not an appropriate name in this case,
but as noted above, our focus is on custom attributes)

Page 26

Metadata Interfaces

The format of pBlob for defining a custom attribute is defined in the “Metadata
Structures” spec. (broadly speaking, the blob records the argument values to the
class constructor, together with zero or more values for named fields/properites – in
other words, the information needed to instantiate the object specified at the time
the metadata was emitted). If the constructor requires no arguments, then there is
no need to provide a blob argument.

3.2.4 SetCustomAttributeValue

HRESULT SetCustomAttributeValue(mdCustomAttribute pca,

 void const *pBlob, ULONG cbBlob)

Sets the value of an existing custom attribute to have a new value. The value that
was previously defined is replaced with this new value.

in/out Parameter Description Required?

in pca Token of target custom attribute yes

in pBlob Pointer to blob yes

in cbBlob Count of bytes in pBlob yes

3.3Building Type Definitions

3.3.1 DefineTypeDef

HRESULT DefineTypeDef(LPCWSTR wzName, CLASSVERSION *pVer,

 DWORD dwTypeDefFlags, mdToken tkExtends,

 mdToken rtkImplements[], mdTypeDef *ptd)

Defines a type. A flag in dwTypeDefFlags specifies whether the type being created is
a VOS Reference Type (class or interface) or a VOS value type.

Duplicates are disallowed. So, within any scope, wzName must be unique.

Depending on the parameters supplied, this method, as a side effect, may also
create an InterfaceImpl record for each interface inherited or implemented by this
type. None of these InterfaceImpl tokens are returned by this method – if a client
wants to later add/modify these InterfaceImpls, it must use IMetaDataImport to
enumerate them. If COM semantics of ‘default interface’ are desired, then it’s
important to supply the default interface as the first in rtkImplements[]; a custom
attribute set on the class will indicate that it does have a default interface (which is
always assumed to be the first InterfaceImpl declared for the class). Refer to the
COM Interop spec for more details.

Page 27

Metadata Interfaces

in/out Parameter Description Required?

in wzName Name of type in Unicode yes

in pVer Version number. Not checked. Rejected if specified for an
interface

no

in dwTypeDefFlags Typedef attributes yes

in tkExtends Token of the superclass no

in rtkImplements[] Array of tokens specifying the interfaces that this class or
interface implements

no

out ptd TypeDef token assigned

dwTypeDefFlags is a bitmask from the CorTypeAttr enum in CorHdr.h.

tkExtends must be an mdTypeDef or an mdTypeRef.

Each element of the rtkImplements[] array holds an mdTypeDef or an mdTypeRef.
The last element in the array must be mdTokenNil.

3.3.2 SetTypeDefProps

HRESULT SetTypeDefProps(mdTypeDef td, CLASSVERSION *pVer,

 DWORD dwTypeDefFlags, mdToken tkExtends,

 DWORD mdToken rtkImplements[])

Sets the attributes of an existing type, previously defined using the DefineTypeDef
method. This is useful when the original definition supplied only minimal
information, perhaps corresponding to a forward reference in the compiler’s source
language. Note that you cannot use this method to change the type’s name. In all
other respects however, SetTypeDefProps has essentially the same behavior as
DefineTypeDef and, depending on the parameters supplied, it may also create one or
more InterfaceImpl data structures.

If you supply a value for any argument, it will supersede the value you
supplied in the earlier call to DefineTypeDef. If you want to leave the
original value unchanged, mark that argument as “to be ignored” – see
section 1.5.5 for details.

in/out Parameter Description Required?

in td TypeDef token obtained from original call to DefineTypeDef yes

in pVer Version number no

in dwTypeDefFlags Typedef attributes no

in tkExtends Token of the superclass. Obtained from a previous call to
DefineImportType, or null.

no

in rtkImplements[] Array of tokens for the interfaces that this type implements.
These TypeRef tokens are obtained via DefineImportType

no

dwTypeDefFlags is a bitmask from the CorTypeAttr enumeration in CorHdr.h.

tkExtends must be an mdTypeDef or an mdTypeRef or nil

Page 28

Metadata Interfaces

Each element of rtkImplements[] is an mdTypeDef or an mdTypeRef. (Typically, you
obtain required TypeRef tokens by a call to DefineImportType) The last element in
the array must be mdTokenNil.

3.4Declaring and Defining Members

3.4.1 DefineMethod

HRESULT DefineMethod(mdTypeDef td, LPCWSTR wzName,

 DWORD dwMethodFlags, PCCOR_SIGNATURE pvSig, ULONG cbSig,

 ULONG ulCodeRVA, DWORD dwImplFlags, mdMethodDef *pmd)

Defines a method (of a class or interface), or a global-function. If a method, then
use td to specify the TypeDef token for its enclosing class or interface. If a global-
function, then set td to mdTokenNil.

The metadata API guarantees to persist methods in the same order as the caller
emits them for a given enclosing class or interface (its td argument).

Refer to the “Metadata Structures” spec for details on how to set the method
declaration flags (dwMethodFlags) and method implementation flags (dwImplFlags).

The runtime uses MethodDefs to set up vtable slots. In the case where one or more
slots need to be skipped (e.g., to preserve parity with a classic COM interface
layout), a dummy method would be defined in order to take up the slot(s) in the
vtable. The method would be defined using the “special name” flag
(mdRTSpecialName), with the name encoded as:

_VtblGap<SequenceNumber><_CountOfSlots>

where SequenceNumber is the sequence number of the method and
CountOfSlots is the number of slots to skip in the vtable.

If CountOfSlots is omitted, 1 is assumed. These dummy methods are not callable from
either managed or unmanaged code. Any attempt to call these methods, either from
managed or unmanaged code will generate an exception. Their only purpose is to
take up space in the vtable that the runtime generates for COM interoperability.
They have no impact on managed clients that may be using the interface.

The format of the signature blob is specified in a separate “Metadata Structures”
spec. (briefly, the blob captures the calling convention, the type of each parameter,
and the return type). The caller builds the signature blob. This API assumes it is a
valid method signature in the emit scope. No checks are performed; the signature is
persisted as supplied. If you need to specify additional information for any
parameters, use the SetParamProps method.

You should not define duplicate methods. That’s to say, the triple (td, wzName,
pvSig) should be unique. There is one exception to this rule: you can define a
duplicate triple so long as one of those definitions sets the mdPrivateScope bit in the
dwMethodFlags argument. (The mdPrivateScope bit means the compiler will not
emit a reference to this methodDef). A typical use is when defining a function that is
private to a compiland (the runtime does not recognize or support compiland scope).
Note that any mdPrivateScope methods do not affect the metadata ordering
guarantee. Ideally, tools and compilers would emit scoped statics after all the other

Page 29

Metadata Interfaces

methods, but it should be sufficient to say that even if mdPrivateScope members are
interleaved in method sequences they are simply ignored when it comes to layout.

Method implementation information is often not known at the time the method is
declared, e.g. in languages where the front-end calls DefineMethod but it is the
backend that supplies implementation information and the linker that supplies code
address information. As such, ulCodeRVA and dwImplFlags are not required to be
supplied with DefineMethod. They may be supplied later via SetMethodImplFlags or
SetRVA, as appropriate.

In some situations, such as PInvoke or COMinterop scenarios, the method body will
not be supplied, and ulCodeRVA will remain 0. In these situations, the method
should not be tagged as abstract, since the runtime will locate the implementation.
(See interop specs for more detail).

in/out Parameter Description Required?

in td Typedef token of parent no

in wzName Member name in Unicode yes

in dwMethodFlags Member attributes yes

in pvSig Method signature yes

in cbSig Count of bytes in pvSig yes

in ulCodeRVA Address of code no, may be 0

in dwImplFlags Implementation flags for method no, may be 0 or all 1s

out pmd Member token

dwMethodFlags is a bitmask from the CorMethodAttr enum in CorHdr.h.

dwImplFlags is a bitmask from the CorMethodImpl enum in CorHdr.h.

3.4.2 SetMethodProps

HRESULT SetMethodProps(mdMethodDef md, DWORD dwMethodFlags,

 ULONG ulCodeRVA, DWORD dwImplFlags)

Changes the settings for a previously-defined method.

in/out Parameter Description Required?

in md Token for method to be changed yes

in dwMethodFlags Member attributes no

in ulCodeRVA Address of code no

in dwImplFlags Implementation flags for method no

dwMethodFlags is a bitmask from the CorMethodAttr enumeration in CorHdr.h.

ulCodeRVA is the address at which the method’s code starts.

dwImplFlags is a bitmask from the CorMethodImpl enumeration in CorHdr.h.

Page 30

Metadata Interfaces

If you supply a value for any optional argument, that value will supersede the
previous, supplied to DefineMethod. If you want to leave the original value
unchanged, mark the argument as “to be ignored” – see section 1.5.5 for details.

3.4.3 DefineField

HRESULT DefineField(mdTypeDef td, LPCWSTR wzName,

 DWORD dwFieldFlags, PCCOR_SIGNATURE pvSig, ULONG cbSig,

 DWORD dwDefType, void const *pValue, ULONG cbValue,

 mdFieldDef *pmd)

Defines a field. The field may be specified as global (if td = mdTokenNil) or as a
member of an existing class or interface (td = the TypeDef token for that parent
class or interface).

The metadata API guarantees to persist the fields in the same order as the caller
emits them for a given parent (the td argument).

The format of the signature blob is specified in “Metadata Structures”. It is built by
the client and is assumed to be a valid type signature in the current scope. No
checks are performed: the signature is persisted as supplied.

You should not define duplicate fields. That’s to say, the triple (td, wzName and
pvSig) should be unique. However, there is one exception to this rule: you can
define a duplicate triple so long as one of those definitions sets the fdPrivateScope
bit in the dwFieldFlags argument. (The fdPrivateScope bit means this field was
emitted solely for use by the compiler – for example, to obtain a metadata token to
pass to IL. The compiler takes on responsiblity to never create a FieldRef in any
other module, to this field. A typical use is when defining a static local variable in a
method – static in the sense that its visibility is limited to the current compiland).

You can use this method to save a default value for the property, via the dwDefType,
pValue and cbValue parameters – see 1.5.3 for details.

Global data may need initialization upon module load. The design approach is for the compiler to emit one
or more function definitions that correspond to the initializers. Rather than providing any runtime support
for calling the initializers, the compiler will call them explicitly, in the appropriate sequence, from the
body of the module entry point. As such, there is neither special-purpose metadata nor runtime support
needed to initialize the module’s static data members.

Page 31

Metadata Interfaces

in/out Parameter Description Required?

in td Typedef token for the enclosing class or interface yes

in wzName Field name in Unicode yes

in dwFieldFlags Field attributes yes

in pvSig Field signature as a blob yes

in cbSig Count of bytes in pvSig yes

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for field no

in cbValue Size in bytes of pValue no

out pmd FieldDef token assigned

dwFieldFlags is a bitmask from the CorFieldAttr enumeration in CorHdr.h.

dwDefType is a value from the CorElementType enumeration in CorHdr.h. If you do
not want to define any constant value for this field, supply a value of
ELEMENT_TYPE_END for dwDefType.

3.4.4 SetFieldProps

HRESULT SetFieldProps(mdFieldDef fd, DWORD dwFieldFlags,

 DWORD dwDefType, void const *pValue, ULONG cbValue)

Sets the properties of an existing field. See the description of DefineField for more
information.

If you supply a value for any optional argument, that value will supersede
the previous, supplied to DefineField. If you want to leave the original value
unchanged, mark the argument as “to be ignored” – see section 1.5.5 for
details.

in/out Parameter Description Required?

in fd Token for the target field yes

in dwFieldFlags Field attributes no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for field no

in cbValue Size in bytes of pValue no

dwFieldFlags is a bitmask from the CorFieldAttr enum in CorHdr.h.

dwDefType is a value from the CorElementType enum in CorHdr.h. If you do not
want to define any constant value for this field, supply a value of
ELEMENT_TYPE_END.

3.4.5 DefineNestedType

HRESULT DefineNestedType(LPCWSTR wzName, CLASSVERSION *pVer,

Page 32

Metadata Interfaces

 DWORD dwTypeDefFlags, mdToken tkExtends,

 mdToken rtkImplements[],

 mdTypeDef tdEncloser, mdTypeDef *ptd)

Defines a type that is lexically nested within an enclosing type. This call is analogous
to DefineTypeDef – but has an extra argument, tdEncloser, to denote the type that
encloses this type. (see DefineTypeDef – section 3.3.1 for more detail)

in/out Parameter Description Required?

in wzName Name of type in Unicode yes

in pVer Version number. Not checked. Rejected if specified for an
interface

no

in dwTypeDefFlags Typedef attributes yes

in tkExtends Token of the superclass yes

in rtkImplements[] Array of tokens specifying the interfaces that this class or
interface implements

no

in tdEncloser Token of the enclosing type yes

out ptd TypeDef token assigned

Supply the simple, unmangled name of the type in wzName

dwFlags is a bitmask from the CorTypeAttr enum in CorHdr.h. You must set one of
the tdNestedXXX bits – that’s to say, one of tdNestedPublic, tdNestedPrivate,
tdNestedFamily, tdNestedAssembly, tdNestedFamANDAssem or
tdNestedFamORAssem.

tkExtends must be a TypeDef or a TypeRef

tdEncloser must be a TypeDef (in other words, the enclosing class is defined within
this same module). It cannot be a TypeRef.

Each element of the rtkImplements[] array holds an mdTypeDef or an mdTypeRef.
The last element in the array must be mdTokenNil.

3.4.6 DefineParam

HRESULT DefineParam(mdMethodDef md, ULONG ulParamSeq,

 LPCWSTR wzName, DWORD dwParamFlags, DWORD dwDefType,

 void const *pValue, ULONG cbValue, mdParamDef *ppd)

Defines extra information for a method parameter (beyond what could have been
supplied in the definition of its corresponding method signature)

You can use this method to save a default value for the property, via the dwDefType,
pValue and cbValue parameters – see 1.5.3 for details.

Note that even if you specify that all optional parameters to this call are to be
ignored (see 1.5.5), metadata will still create a ParamDef record and return its
assigned token.

Page 33

Metadata Interfaces

in/out Parameter Description Required?

in md Token for the method whose parameter is being defined yes

in ulParamSeq Parameter sequence number yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cbValue Size in bytes of pValue no

out ppd ParamDef token assigned

ulParamSeq specifies the parameter sequence number, starting at 1. Use a value of
0 to mean the method return value.

wzName is the name to give the parameter. If you specify null, this argument is
ignored. If you wish to remove any previous-supplied name, supply an empty
strring for wzName.

dwParamFlags is a bitmask from the CorParamAttr enumeration in CorHdr.h. If you
specify all-bits-set (-1), then this argument will be ignored (see 1.5.5)

3.4.7 SetParamProps

HRESULT SetParamProps(mdParamDef pd, LPCWSTR wzName,

 DWORD dwParamFlags, DWORD dwDefType,

 void const *pValue, ULONG cbValue)

Sets the attributes for a specified method parameter. See the description of
DefineParam for details.

in/out Parameter Description Required?

in pd Token for target parameter yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cbValue Size in bytes of pValue no

If you supply a value for any optional argument, that value will supersede the
previous, supplied to DefineParam. If you want to leave the original value
unchanged, mark the argument as “to be ignored” – see section 1.5.5 for details.

3.4.8 DefineMethodImpl

HRESULT DefineMethodImpl(mdTypeDef td, mdToken tkBody,

 mdToken tkDecl)

Page 34

Metadata Interfaces

Defines how a class implements a method that it inherits from an interface. td
specifies the class that is implementing the method. tkBody specifies the code that
is to be used to implement the method. tdDecl specifies the method in the interface
for which we are providing a code body

in/out Parameter Description Required?

in td Typedef token of the implementing class yes

in tkBody MethodDef or MethodRef token of the code body yes

in tkDecl MethodDef or MethodRef token of the interface method being
implemented

yes

3.4.9 SetRVA

HRESULT SetRVA(mdMethodDef md, ULONG ulRVA)

Sets or replaces the RVA for an existing MethodDef

in/out Parameter Description Required?

in tk Token for target method or method implementation yes

in ulRVA Address of code or data area yes

3.4.10SetFieldRVA

HRESULT SetFieldRVA(mdFieldDef fd, ULONG ulRVA)

Sets or replaces the RVA for an existing global-variable. In general, global-variables
don’t need to be declared at all in metadata: they are static data laid out by the
compiler and allocated in the PE file in which they are declared and used; access to
them is entirely an internal implementation issue. However, when a global variable
is to be exported to managed code from the module, a metadata declaration is
needed.

in/out Parameter Description Required?

in fd Token for target field yes

in ulRVA Address of code or data area yes

Page 35

Metadata Interfaces

3.4.11DefinePinvokeMap

HRESULT DefinePinvokeMap(mdToken tk, DWORD dwMappingFlags,

 LPCWSTR wzImportName, mdModuleRef mrImportDLL)

Defines information for a method that will be used by PInvoke (Runtime service that
supports inter-operation with unmanaged code)

in/out Parameter Description Required?

in tk Token for target method yes

in dwMappingFlags Flags used by Pinvoke to do the mapping no

in wzImportName Name of target export method in unmanaged DLL no

in mrImportDLL Token for target native DLL yes

tk is an mdMethodDef token

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h

wzImportName may be the simple name of the imported function (eg “MessageBox”)
or its ordinal, encoded as a decimal integer preceded by a # character (eg “#123”)

3.4.12SetPinvokeMap

HRESULT SetPinvokeMap(mdToken tk, DWORD dwMappingFlags,

 LPCWSTR wzImportName, mdModuleRef mrImportDLL)

Sets information for a method that will be used by PInvoke (runtime service that
supports inter-operation with unmanaged code)

in/out Parameter Description Required?

in tk Token to which mapping info applies yes

in dwMappingFlags Flags used by pinvoke to do the mapping no

in wzImportName Name of target export in native DLL no

in mdImportDLL mdModuleRef token for target unmanaged DLL no

tk is an mdMethodDef token

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h.

wzImportName may be the simple name of the imported function (eg “MessageBox”)
or its ordinal, encoded as a decimal integer preceded by a # character (eg “#123”)

3.4.13SetFieldMarshal

HRESULT SetFieldMarshal(mdToken tk, PCCOR_SIGNATURE pvUnmgdType,

 ULONG cbUnmgdType)

Page 36

Metadata Interfaces

Sets marshaling information for a field, method return, or method parameter.
Specifically, you specify the unmanaged type that this data item should be
marshalled to and from. See the “COM Interoperability” and “Platform Invoke” specs
for details on when/where unmananaged type information is used and for the format
of the unmanaged type signature blob

in/out Parameter Description Required?

in tk Token for target data item yes

in pvUnmgdType Signature for unmanaged type yes

in cbUnmgdType Count of bytes in pvUnmgdType yes

tk is an mdFieldDef or mdParamDef that specifies the target field or parameter

3.5Building Type and Member References

3.5.1 DefineTypeRefByName

HRESULT DefineTypeRefByName(mdToken tkResScope,

 LPCWSTR wzName, mdTypeRef *ptr)

Defines a reference to a type that exists in another module. This method does not
look into that other module. Therefore, attempting to resolve the type reference
might fail at runtime

in/out Parameter Description Required?

in tkResScope Token for the resolution scope: ModuleRef if defined
in same assembly as caller; AssemblyRef if defined
in a different assembly than caller; TypeRef if this is
a nested type; Module if defined in same module; or
nil

yes

in wzName Name of target type in Unicode yes

out ptr TypeRef token assigned

tkResScope must be an mdModuleRef, mdAssemblyRef, mdTypeRef, mdModule or
nil. These are used as follows:

 If the target Type is defined in a different module, but one which lies in the
same Assembly as the current module, then you should supply an
mdModuleRef to that other module (eg to “Foo.DLL”)

 If the target Type is defined in a module which lies in a different Assembly
from the current module, then you should supply an mdAssemblyRef to that
other Assembly (eg to “MyAssem” – no file extension)

 If the target Type is a nested Type, then supply an mdTypeRef to its
enclosing Type

 If the target Type exists in this same module, then supply an mdModule for
the current module – the one you obtain by calling GetModuleFromScope)
Note that this is a legal, but rare, case – you can almost use a TypeDef
instead!

Page 37

Metadata Interfaces

 If you don’t know the final module in which the reference will resolve, you
may supply a nil token. However, this is only valid as a temporary state. The
token must be fixed up by the time the Runtime loader ‘sees’ this TypeRef.
One example where this is used is when VC compiles separate .cpp files into
separate .obj files. The Linker ‘joins’ them together into one image (.dll
or .exe file) – as part of that process, it calls metadata Merge code with
optimizes these nil-scoped TypeRefs to be replaced by the corresponding
TypeDef. This ‘trick’ does not work if the TypeRef would have to resolve
outside the merged image

3.5.2 DefineImportType

HRESULT DefineImportType(IMetaDataAssemblyImport *pAssemImport,

 const void *pbHashValue, ULONG cbHashValue,

 mdExecutionLocation tkExec, IMetaDataImport *pImport,

 mdTypeDef tdImport, IMetaDataAssemblyEmit *pAssemEmit,

 mdTypeRef *ptr)

Defines a reference to a type that exists in another module or assembly. The
method looks up the tdImport token in that other module, specified via a
combination of pAssemImport, pbHashValue, cbHashValue, tkExec and pImport, and
retrieves its properties. It uses this information to define a TypeRef in the current
scope.

in/out Parameter Description Required?

in pAssemImport Assembly scope containing the tdImport TypeDef yes

in pbHashValue Blob holding hash for Assembly pAssemImport yes

in cbHashValue Count of bytes in pbHashValue yes

in tkExec Token for ExecutionLocation for Assembly pAssemImport yes

in pImport Metadata scope (module) holding target Type yes

in tdImport TypeRef token for target Type within pImport scope yes

in pAssemEmit Assembly scope for output yes

out ptr TypeRef token assigned

3.5.3 DefineMemberRef

HRESULT DefineMemberRef(mdToken tkImport, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdMemberRef *pmr)

Defines a reference to a member (field, method, global-variable, global-function)
that exists in another module. This method does not look up that other module; so
the compiler takes on responsibility to ensure the MemberRef will bind successfully at
runtime.

You specify the member you are interested in by giving its name (wzName), its
signature (pvSig, cbSig), and the a reference to the class or interface in that other

Page 38

Metadata Interfaces

module , for its class or interface (tkImport). If the target member is a global-
variable or global-function, then tkImport must be the mdModuleRef token for that
module.

You obtain the tkImport token from a previous call to DefineTypeRefByName,
DefineImportType, or DefineModuleRef.

You can specify tkImport as mdTokenNil. This indicates that the imported member’s
parent will be resolved later by the compiler or linker (the typical scenario is when a
global function or data member is being imported from a .obj file that will ultimately
be linked into the current module and the metadata merged). Ultimately, all
MemberRefs must be fully-resolved to have a consistent, loadable module.

Note: every member reference must have a reference scope that is one of:

 TypeRef token, if member is referenced on an imported type

 ModuleRef token, if member is a global-variable or global-function

 MethodDef token, if member is a call site signature for a vararg method defined
in the same module

 TypeSpec token, if member is a member of a constructed type (eg an array)

Note too: as an optimization (see Metadata Optimizations), tkImport may be an
mdMethodDef, if the reference is not really an import but is simply a callsite
reference that could not be optimized away. This can occur when a call is made to a
vararg function where additional arguments are passed on the call. In this case, we
can’t just optimize the MemberRef away if we otherwise could (see Metadata
Optimizations for details), but at the same time there is no need to incur the extra
runtime overhead to do a full resolution when the resolution may be early bound.
So, we persist the “parent” of the MemberRef as the MethodDef token of the method
declaration and the MemberRef is called “fully resolved.”

in/out Parameter Description Required?

in tkImport Token for the target member’s class or interface. Or, if the
member is global, the ModuleRef for that other file

yes

in wzName Name of the target member yes

in pvSig Signature of the target member yes

in cbSig Count of bytes in pvSig yes

out pmr MemberRef token assigned

tkImport must be one of mdTypeRef, mdModuleRef, mdMethodDef or mdTypeSpec,
or nil. In the latter case, we look up a the function declared global in the current
scope.

3.5.4 DefineImportMember

HRESULT DefineImportMember(IMetaDataAssemblyImport *pAssemImport,

 const void *pbHashValue, ULONG cbHashValue,

 mdExecutionLocation tkExec, IMetaDataImport *pImport,

 mdToken mbMember, IMetaDataAssemblyEmit *pAssemEmit,

 mdToken tkParent, mdMemberRef *pmr)

Page 39

Metadata Interfaces

Defines a reference to a member (field, method), global-variable or global-function,
that exists in another module.

Generally, before you create a MemberRef to any member in that other module, you
need to create a TypeRef for its enclosing class or module, that parallels its enclosing
class or module in the other module. It is this enclosing TypeRef of MemberRef that
you supply as the tkParent argument. So:

 If the target member is a field or method, then you must create a TypeRef, in the
current scope, for its enclosing class; do this with a call to DefineTypeRefByName
or DefineImportType

 If the target member is a global-variable or global-function (ie not a member of
any class or interface), then you must create a ModuleRef, in the current scope,
for that other module; do this with a call to DefineModuleRef.

There is one exception to having to supply a valid TypeRef or ModuleRef for the
tkParent argument: if the enclosing class, interface or module will be resolved later
by the compiler or linker, then supply it as mdTokenNil. (The only scenario is when
a global-function or global-variable is being imported from a .obj file that will
ultimately be linked into the current module and the metadata merged).

The method looks up the mbMember token in that other module, specified by
PImport, and retrieves its properties. It uses this information to call the
DefineMemberRef method, in the current scope.

in/out Parameter Description Required?

in pAssemImport Assembly scope containing the tdImport TypeDef no

in pbHashValue Blob holding hash for Assembly pAssemImport no

in cbHashValue Count of bytes in pbHashValue no

in tkExec Token for ExecutionLocation for Assembly pAssemImport no

in pImport Metadata scope (module) holding target Type yes

in mbMember MethodDef or FieldDef token for target member within
pImport scope

yes

in pAssemEmit Assembly scope for output no

in tkParent TypeRef or ModuleRef token for the class that owns the
target member member

yes

out ptr TypeRef token assigned

mdMember is an mdFieldDef, mdMethodDef or mdProperty

3.5.5 DefineModuleRef

HRESULT DefineModuleRef(LPCWSTR wzName, mdModuleRef *pmur)

Defines a reference to another module. Note that the method does not check
whether the specified external module actually exists.

wzName should be a file name and extension – but no drive letter or file path. For
example, “c:\MyApp\Widgets.dll” is wrong – use “Widgets.dll”

Page 40

Metadata Interfaces

in/out Parameter Description Required?

in wzName Name of the other metadata file. Typically, a DLL yes

out pmur ModuleRef token assigned

3.5.6 SetParent

HRESULT SetParent(mdMemberRef mr, mdToken tk)

Sets the parent of a MemberRef to a new value. This method is typically used by a
compiler or tool (like VC) that emits individual .obj files, each with its own metadata;
these .obj files are later merged into a single image. This method is used to fix up
module import scopes.

in/out Parameter Description Required?

in mr The MemberRef token to be re-parented yes

in tk Token for the new parent yes

The parent token (tk) may be any of mdTypeRef, mdModuleRef, mdMethodDef,
mdTypeDef or mdTokenNil

3.6Declaring Events and Properties

3.6.1 DefineProperty

HRESULT DefineProperty(mdTypeDef td, LPCWSTR wzProperty,

 DWORD dwPropFlags, PCCOR_SIGNATURE pvSig, ULONG cbSig,

 DWORD dwDefType, void const *pValue, ULONG cbValue,

 mdMethodDef mdSetter, mdMethodDef mdGetter,

 mdMethodDef rmdOtherMethods[], mdFieldDef fdBackingField,

 mdProperty *pmdProp)

A property is like a field within a class. But instead of accessing the value stored in
that field location, a property can execute set/get code. You might use this, for
example, to range-check a value before setting the property; but the code can also
be as complex as the developer chooses. A language may choose to have users
write syntax that looks like regular field access (x = foo.prop) but execute property
accessor code, ‘behind the scenes’.

Examples of using properties include:

 enhanced UI semantics, by presenting the object’s state as the values of its
properties and allowing the user to manipulate state by changing the values
through the UI

 enhanced language support, by abstracting a notion of a property name/identifier
that can be used in lieu of explicit method invocation in assignment statements
and expressions

Page 41

Metadata Interfaces

 rich infrastructure services such as transparent persistence for properties that are
tagged as being part of the persistent state of the object

A property is defined, using DefineProperty, in a similar way to how you would define
a method of a class. As for a method, you specify the property by giving its owner,
name, type, and formal parameter list. For indexed properties, the property can be
said to have a signature that is its return type plus the types of its parameters.

You can define more than just setter and getter methods for a property. Simply
provide their tokens in the rmdOtherMethods[] array.

In this version of the runtime, there is no built-in support for properties at runtime.
That’s to say, compilers that provide properties must resolve any compile-time
reference to a property into its corresponding method invocation; the metadata
provides the information necessary for the compiler to do that resolution. In support
of dynamic invocation, the Reflection APIs provide this same feature, to resolve
property-to-method.

You can use this method to save a default value for the property, via the dwDefType, pValue and
cbValue parameters – see 1.5.3 for details.

in/out Parameter Description Required?

in td Token for class or interface on which property is being
defined

yes

in wzProperty Name of property yes

in dwPropFlags Property flags yes

in pvSig Property signature yes

in cbSig Count of bytes in pvSig yes

in dwDefType Type of property’s default value no

in pValue Default value for property no

in cbValue Count of bytes in pValue no

in mdSetter Method that sets the property value no

in mdGetter Method that gets the property value no

in rmdOtherMethods[] Array of other methods associated with the property.
Terminate array with an mdTokenNil.

no

in fdBackingField Field on the same enclosing class or interface that backs
the property

no

out pmdProp Property token assigned

dwPropFlags is drawn from the CorPropertyAttr enum in CorHdr.h.

3.6.2 SetPropertyProps

HRESULT SetPropertyProps(mdProperty pr, DWORD dwPropFlags,

 DWORD dwDefType, void const *pValue, ULONG cbValue,

 mdMethodDef mdSetter, mdMethodDef mdGetter,

 mdMethodDef rmdOtherMethods[], mdFieldDef fdBackingField)

Page 42

Metadata Interfaces

Sets the information stored in metadata for a property, previously defined with a call
to DefineProperty.

You can use this method to save a default value for the property, via the dwDefType,
pValue and cbValue parameters – see 1.5.3 for details.

If you supply a value for any optional argument, that value will supersede
the previous, supplied to DefineProperty. If you want to leave the original
value unchanged, mark the argument as “to be ignored” – see section 1.5.5
for details.

in/out Parameter Description Required?

in pr Token for property to be changed yes

in dwPropFlags Property flags yes

in dwDefType Type of property’s default value no

in pValue Default value for property no

in cbValue Count of bytes in pValue no

in mdSetter Method that sets the property value no

in mdGetter Method that gets the property value no

in rmdOtherMethods[] Array of other methods associated with the property.
Terminate array with an mdTokenNil.

no

in fdBackingField Field on the same enclosing class or interface that backs
the property

no

dwPropFlags is drawn from the CorPropertyAttr enum in CorHdr.h.

3.6.3 DefineEvent
An event is treated in metadata in a similar manner to a property – as a collection of
methods defined upon a class or interface. But runtime provides no support for
events: the compiler must translate all references to events into calls to the
appropriate method.

HRESULT DefineEvent(mdTypeDef td, LPCWSTR wzEvent,

 DWORD dwEventFlags, mdToken tkEventType, mdMethodDef mdAddOn,

 mdMethodDef mdRemoveOn, mdMethodDef mdFire,

 mdMethodDef rmdOtherMethod[], mdEvent *pmdEvent)

Defines an event source for a class or interface.

Page 43

Metadata Interfaces

in/out Parameter Description Required?

in td Token of target class or interface yes

in wzEvent Name of event yes

in dwEventFlags Event flags no

in tkEventType Token for the Event class yes

in mdAddOn Method used to subscribe to the event, or nil yes

in mdRemoveOn Method used to unsubscribe to the event, or nil yes

in mdFire Method used (by a subclass) to fire the event yes

in rmdOtherMethods[] Array of tokens for other methods associated with the
event

no

out pmdEvent Event token assigned

td must be an mdTypeDef or mdTypeDefNil

wzEvent specifies the name of the event. This must be unique across all event
names that the class or interface exposes

dwEventFlags is drawn from the CorEventAttr enum in CorHdr.h

tkEventType must be an mdTypeDef, mdTypeRef or nil

mdAddOn, mdRemoveOn and mdFire must each be an mdMethodDef, mdMethodRef
or nil

rmdOtherMethods [] must each be an mdMethodDef, mdMethodRef. Terminate the
array with an mdMethodDefNil token.

3.6.4 SetEventProps

HRESULT DefineEvent(mdEvent ev, DWORD dwEventFlags,

 mdToken tkEventType, mdMethodDef mdAddOn,

 mdMethodDef mdRemoveOn, mdMethodDef mdFire,

 mdMethodDef rmdOtherMethod[])

Changes the properties of an existing event. See DefineEvent for more information.

If you supply a value for any argument, it will supersede the value you
supplied in the earlier call to DefineEvent. If you want to leave the original
value unchanged, mark that argument as “to be ignored” – see section 1.5.5
for details.

Page 44

Metadata Interfaces

in/out Parameter Description Required?

in ev Event token yes

in dwEventFlags Event flags no

in tkEventType Token for the Event class no

in mdAddOn Method used to subscribe to the event, or nil no

in mdRemoveOn Method used to unsubscribe to the event, or nil no

in mdFire Method used (by a subclass) to fire the event no

in rmdOtherMethods[] Array of tokens for other methods associated with the
event

no

3.7Specifying Layout Information for a Class

3.7.1 SetClassLayout

HRESULT SetClassLayout (mdTypeDef td, DWORD dwPackSize,

 COR_FIELD_OFFSET rFieldOffsets[], ULONG ulClassSize)

Sets the layout of fields for an existing class.

The original definition of the class, made by a call to DefineTypeDef, marked it as
having one of three layouts: tdAutoLayout, tdLayoutSequential or tdExplicitLayout.
Normally, you would specify tdAutoLayout, and let the runtime choose how best to
lay out the fields for objects of that class; for example, changing their order might
can result in faster garbage collection.

However you may want objects of a class laid out in-memory to match how
unmanaged code would have done that; in this case, choose tdLayoutSequential or
tdExplicit layout; and call SetClassLayout to complete the layout information, as
follows:

 tdLayoutSequential – specify the packing size between adjacent fields. Must be
1, 2, 4, 8 or 16 bytes. (A field will be aligned to its natural size, or to the packing
size, whichever results in the smaller offset)

 tdExplicitLayout – specifiy the offsets, at which each field starts. Or specify the
overall size (and optionally, the packing size)

Note that you can use this method to define unions (where multiple fields have the
same offset within the class)

in/out Parameter Description Required?

in td Token for the class being laid out yes

in dwPackSize Packing size: 1, 2, 4, 8 or 16 bytes no

in rFieldOffsets Array of mdFieldDef / ululByteOffset values for each field on
the class for which sequence or offset information is
specified. Terminate array with mdTokenNil.

no

in ulClassSize Overall size of these class objects, in bytes no

Page 45

Metadata Interfaces

The COR_FIELD_OFFSET is a simple struct with two fields: an mdFieldDef to define
the field, and a ULONG to specify the byte offset from the start of the object, at
which this field should start (offsets start at zero).

3.8Miscellaneous

3.8.1 GetTokenFromSig

HRESULT GetTokenFromSig(PCCOR_SIGNATURE pvSig, ULONG cbSig,

 mdSignature *pmsig)

Stores a signature into the Blob heap, returning a metadata token that can be used
to reference it later. That token represents an index into the StandAloneSig table.
This method creates new entries in metadata, so its name is perhaps misleading –
you might think of it instead as being “DefineStandAloneSig”

in/out Parameter Description Required?

in pvSig Signature to be persisted stored yes

in cbSig Count of bytes in pvSig yes

out pmsig Signature token assigned

3.8.2 GetTokenFromTypeSpec

HRESULT GetTokenFromTypeSpec(PCCOR_SIGNATURE pvSig, ULONG cbSig,

 mdTypeSpec *ptypespec)

Stores a type specification into the Blob heap, returning a metadata token that can
be used to reference it later. That token represents an index into the TypeSpec
table. This method creates new entries in metadata, so its name is perhaps
misleading – you might think of it instead as being “DefineTypeSpec”

in/out Parameter Description Required?

in pvSig Signature being defined yes

in cbSig Count of bytes in pvSig yes

out ptypespec TypeSpec token assigned

3.8.3 DefineUserString

HRESULT DefineUserString(LPCWSTR wzString, ULONG cchString,

 mdString *pstk)

Stores a user string into the UserString heap in metadata, returning a token that can
be used to retrieve it later. This token is unlike any other in metadata – it is not an
index for a row in a metadata table – its lower 3 bytes are the actual byte offset
within the UserString heap at which the string is stored.

Page 46

Metadata Interfaces

in/out Parameter Description Required?

in wzString User string to store yes

in cchString Count of (wide) characters in wzString yes

out pstk String token assigned

3.8.4 DeleteToken

HRESULT DeleteToken(mdToken tk)

Deletes the specified token from the current metadata scope. The only sorts of
token you can delete are: TypeDef, MethodDef, FieldDef, Event, Property, ComType
and CustomAttribute.

This support is for EditAndContinue and incremental-compilation scenarios – where a
compiler wants to make a small change to the metadata, without re-emitting all of it
again. The information identified by the token is not physically erased (an expensive
operation that would require a token remap). Instead, they are marked ‘deleted’ –
we set the xxRTSpecialName bit in their attributes flag, and append “_Delete” to
their name. For CustomAttribute, their parent is set to nil.

Compilers who use this method take on responsibility for dealing with any
inconsistencies it makes in the metadata (eg live references to these deleted tokens)

In order to use this method, you must first call SetOption, specifying the
MetaDataSetUpdate guid, and setting the MDUpdateIncremental flag. You must then
open reopen the scope in read-write mode.

in/out Parameter Description Required?

in tk Token to delete yes

3.9Order of Emission
If you call the methods in the IMetaDataEmit interface in a certain order, then the
metadata engine can store the resulting data in a compact form. If you break these
ordering constraints, then everything still works, but the metadata engine has to
introduce intermediate ‘map’ tables – these take up more space in the stored PE file,
and are slower to query at runtime. If you emit definitions in the following order,
you avoid these intermediate ‘map’ tables --

 Emit global functions and fields first

 If you emit TypeDef-A before TypeDef-B, then emit MethodDefs, FieldDefs,
Properties, and Events of TypeDef-A before those of TypeDef-B

 If you emit MethodDef-A before MethodDef-B, then emit any Parameters for
MethodDef-A before those of MethodDef-B

The reason for these rules is illustrated by the picture below –

Page 47

TypeDef Table
Field Table

Metadata Interfaces

Each time you call DefineTypeDef, the metadata engine stores the information you
supply into the next row of the TypeDef table. The picture shows a row for Type-A,
and one for Type-B. Similarly, each time you call DefineField, the metadata engine
stores the information you supply into the next row of the Field table. The TypeDef
table includes a column called FieldList that points to the first field for that type.
This picture shows what happens if you define in the order – Type-A, Type-B, Field-
A-1 thru Field-A-4, Field-B-1, Field-B-2. With this ordering, the fields owned by each
Type lie in a contiguous run in the Field table.

The next picture shows what happens if you interleave the definitions –

Here, the order of definition was: Type-A, Type-B, Field-A-1, Field-B-1, Field-A-2,
Field-B-2, Field-A-3, Field-A-4. The metadata engine creates an intermediate
FieldMap table – as far as the TypeDef table is concerned, it looks like all the Fields
for Type-A lie in a contiguous run – but their order in the Field table is not
contiguous.

Global functions and fields are parented by an artificial Type created by the Metadata
engine (it’s called <Module> and is always the first row in the TypeDef table) – in all
other respects, for ordering rules, they behave like members of a genuine Type.

Hopefully, this simple picture makes the ordering constraints easy to understand.
Just as you should emit a Type’s Fields so they lie in a contiguous run, the same
holds true for each Type’s Methods, Events and Properties. Similarly, for each
Method, emit its Parameters so they also lie in a contiguous run.

Note that there’s no other ordering constraint omitted by the above rules. In
particular, for our example, there’s no ordering constraint between definition of
Type-A’s fields, and definition of Type-B. To be absolutely clear, the following orders
are all good (we abbreviate Type-A to tA, and Field-A-1 to fA1, etc) –

tA tB fA1 fA2 fA3 fA4 fB1 fB2

tA fA1 tB fA2 fA3 fA4 fB1 fB2

Page 48

FieldList Column

A

B

TypeDef Table Field Table

FieldList Column

A

B

FieldMap Table

Metadata Interfaces

tA fA1 fA2 tB fA3 fA4 fB1 fB2

tA fA1 fA2 fA3 tB fA4 fB1 fB2

tA fA1 fA2 fA3 fA4 tB fB1 fB2

Note that, you can choose to emit definitions interleaved, but then have the
Metadata engine remove these intermediate ‘map’ tables before saving the metadata
to disk. This involves moving table rows to make them contiguous – but since these
row numbers, or RIDs, make up the corresponding metadata tokens, this results in a
remapping of tokens already assigned. If you want to do this, you must call
SetHandle (as explained earlier) to register for these token remap ‘events’ – you
must then fix up any affected tokens that you already generated into your IL code
stream. (most compilers jump thru any hoops they can to avoid doing this!)

Page 49

Metadata Interfaces

4 MetaDataImport
The import interface is used to consume an existing metadata section from a PE file
or other source (eg stand-alone runtime metadata binary or type library). The
design of these interfaces is intended primarily for tools/services that will be
importing type information (eg development tools) or managing deployed
components (eg resolution/activation services). The following groups of methods are
defined:

 Enumerating collections of items in the metadata scope

 Finding a specific item with a specific set of characteristics

 Getting properties of a specified item

 Resolving import references

4.1Enumerating Collections
To use the EnumXXX methods, you allocate an array to hold the results, then call the
required EnumXXX method. Of course, there might be more entries in the table than
your array can hold. Just keep calling EnumXXX until eventually the count argument
returns zero. Then tidy off by calling the CloseEnum method.

You can determine how many items are in the collection ahead of time by calling the
CountEnum method.

Example:

 const int dim = 5; // dimension of array

 HCORENUM enr = 0; // enumerator

 mdTypeDef toks[dim]; // array to hold returned tokens

 ULONG count; // count of tokens returned

 HRESULT h;

 h = pImp->EnumTypeDefs(&enr, toks, dim, &count);

 while(count > 0) {

 for(int i = 0; i < count; i++) cout << toks[i] << “ “;

 h = pImp->EnumTypeDefs(&enr, toks, dim, &count);

 }

 pImp->CloseEnum(enr);

In this example, pImp is the IMetaDataImport pointer returned from a previous call
to OpenScope. (We have omitted error handling to keep the example simple)

Note: When enumerating collections of members for a class, EnumMembers returns
only members defined directly on the class: it does not return any members that the
class inherits, even if it provides an implementation for those inherited members. To
enumerate those inherited members, the caller must explicitly walk the inheritance
chain (the rules for which may vary depending upon the language/compiler that
emitted the original metadata).

Page 50

Metadata Interfaces

4.1.1 CloseEnum Method

void CloseEnum(HCORENUM hEnum)

Frees the memory previously allocated for the enumeration. Note that the hEnum
argument is that obtained from a previous EnumXXX call (for example,
EnumTypeDefs)

in/out Parameter Description Required?

in hEnum Handle for the enumeration you wish to close yes

4.1.2 CountEnum Method

HRESULT CountEnum(HCORENUM hEnum, ULONG *pulCount);

Returns the number of items in the enumeration. Note that the hEnum argument is
that obtained from a previous EnumXXX call (for example, EnumTypeDefs).

in/out Parameter Description Required?

in hEnum Handle for the enumeration of interest yes

out pulCount Count of items in the enumeration

4.1.3 ResetEnum

HRESULT ResetEnum(HCORENUM hEnum, ULONG ulPos);

Reset the enumeration to the position specified by pulCount. So, if you reset the
enumeration to the value 5, say, then a subsequent call to the corresponding
EnumXXX method will return items, starting at the 5th (where counting starts at item
number zero). Note that the hEnum argument is that obtained from a previous
EnumXXX call (for example, EnumTypeDefs)

in/out Parameter Description Required?

out hEnum Handle for the enumeration of interest yes

in ulPos Item number to reset to yes

4.1.4 IsValidToken

BOOL IsValidToken(mdToken tk)

Returns true if tk is a valid metadata token in the current scope. [The method
checks the token type is one of those in the CorTokenType enumeration in CorHdr.h,
and then that its RID is less than or equal to the current count of those token types]

Page 51

Metadata Interfaces

in/out Parameter Description Required?

in tk Metadata token yes

4.1.5 EnumTypeDefs

HRESULT EnumTypeDefs(HCORENUM *phEnum, mdTypeDef rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all TypedDefs within the current scope. Note: the collection will contain
Classes, Interfaces, etc, as well as any TypeDefs added via an extensibility
mechanism.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.6 EnumInterfaceImpls

HRESULT EnumInterfaceImpls(HCORENUM *phEnum, mdTypeDef td,

 mdInterfaceImpl rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all interfaces implemented by the specified TypeDef. Tokens will be
returned in the order the interfaces were specified (through DefineTypeDef or
SetTypeDefProps).

[See GetInterfaceImplProps for more detail of how this method works]

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td Token specifying the TypeDef whose InterfaceImpls are required yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.7 EnumMembers

HRESULT EnumMembers(HCORENUM *phEnum, mdTypeDef cl,

 mdToken rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all members (fields and methods, but not properties or events) defined
by the class specified by cl. This does not include any members inherited by that
class; even in the case where this TypeDef actually implements an inherited method.

Page 52

Metadata Interfaces

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose members are required yes

out rTokens[] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

The tokens returned in the rTokens[] array will be of mdMethodDefs or mdFieldDefs

4.1.8 EnumMembersWithName

HRESULT EnumMembersWithName(HCORENUM *phEnum, mdTypeDef cl,

 LPCWSTR wzName, mdToken rTokens[], ULONG cTokens,

 ULONG *pcTokens)

Enumerates all members (fields and methods, but not properties or events) defined
by the specified TypeDef, and that also have the specified name. This does not
include any members inherited by the TypeDef; even in the case where this TypeDef
actually implements an inherited method. This method is like calling EnumMembers,
but discarding all tokens except those corresponding to the specified name.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose members are required yes

in wzName Name of members required. no

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

The tokens returned in the rTokens[] array will be mdMethodDefs or mdFieldDefs

4.1.9 EnumMethods

HRESULT EnumMethods(HCORENUM *phEnum, mdTypeDef cl,

 mdMethodDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all methods defined by the specified TypeDef. Tokens are returned in
the same order they were emitted. If you supply a nil token for the cl argument the
method will enumerate the global functions defined for the module as a whole.

Page 53

Metadata Interfaces

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl Token specifying the TypeDef whose methods are required no

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.10EnumMethodsWithName

HRESULT EnumMethodsWithName(HCORENUM *phEnum, mdTypeDef cl,

 LPCWSTR wzName, mdMethodDef rTokens[], ULONG cTokens,

 ULONG *pcTokens)

Enumerates all methods defined by the specified TypeDef (cl), and that also have the
specified name (wzName). This method is like calling EnumMethods, but discarding
all tokens except those corresponding to the specified name.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose methods are required yes

in wzName Name of methods required no

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

Note that supplying a nil token for the cl parameter will enumerate only the global
functions with that name defined for the module as a whole.

4.1.11EnumUnresolvedMethods

HRESULT EnumUnresolvedMethods(HCORENUM *phEnum,

 mdMethodDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all methods in the current scope that have been declared but are not
implemented.

The enumeration excludes all methods defined at modules scope (globals), or those
defined on Interfaces or Abstract classes. Beyond those, for each method marked
miForwardRef, it is included into the “unresolved” enumeration if either:

 mdPinvokeImpl = 0
 miRuntime = 0

Put another way, “unresolved” methods are class methods marked miForwardRef but
which are not implemented in unmanaged code (reached via PInvoke) nor
implemented internally by the Runtime itelf

Page 54

Metadata Interfaces

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.12EnumMethodSemantics

HRESULT EnumMethodSemantics(HCORENUM *phEnum, mdMethodDef mb,

 mdToken rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all semantics for a given method. (See GetMethodSemantics for how a
method’s semantics are derived)

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in md Token for required method yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.13EnumFields

HRESULT EnumFields(HCORENUM *phEnum, mdTypeDef cl,

 mdFieldDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all fields defined on a specified TypeDef. The tokens are returned in the
same order as originally emitted into metadata. If you specify cl as nil, the method
will enumerate all the global static data members defined in the current scope.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl Token specifying the TypeDef whose methods are required yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.14EnumFieldsWithName

HRESULT EnumFieldsWithName(HCORENUM *phEnum, mdTypeDef cl,

Page 55

Metadata Interfaces

 LPCWSTR wzName, mdFieldDef rFields[], ULONG cMax,

 ULONG *pcTokens)

Enumerates all fields defined by the specified TypeDef (cl), and that also have the
specified name (wzName).

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in cl TypeDef for the class whose fields are required yes

in wzName Name of field required no

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

Note that supplying a nil token for the cl parameter will enumerate any module-
global functions with the specified name.

4.1.15EnumParams

HRESULT EnumParams(HCORENUM *phEnum, mdMethodDef md,

 mdParamDef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all attributed parameters for the method specified by md. By attributed
parameters, we mean those parameters of a method which have been explicitly
defined via a call to DefineParam

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in md MethodDef for the method whose parameters are required yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

Note that you can find the number of parameters and their types from the signature
returned in GetMethodProps

4.1.16EnumMethodImpls

HRESULT EnumMethodImpls(HCORENUM *phEnum, mdTypeDef td,

 mdToken rBody[], mdToken rDecl[], ULONG cTokens,

 ULONG *pcTokens)

Enumerates all MethodImpls in the current scope for the TypeDef specified by td

Page 56

Metadata Interfaces

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td TypeDef for which MethodImpls are requested yes

out rBody [] Array to hold returned tokens for method bodies

out rDecl [] Array to hold returned tokens for method declarations

in cTokens Dimension of rBody and rDecl arrays yes

out pcTokens Number of tokens actually returned

4.1.17EnumProperties

HRESULT EnumProperties (HCORENUM *phEnum, mdTypeDef td,

 mdProperty rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all Property tokens for a specified class, interface or valuetype.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td Token for the type whose properties you want yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.18EnumEvents

HRESULT EnumEvents (HCORENUM *phEnum, mdTypeDef td, mdEvent rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all Event tokens for a specified type

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in td Token for the type on which the events are defined yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.19EnumTypeRefs

HRESULT EnumTypeRefs(HCORENUM *phEnum, mdTypeRef rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Page 57

Metadata Interfaces

Enumerates all TypeRef tokens that are defined in the current scope.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.20EnumMemberRefs

HRESULT EnumMemberRefs(HCORENUM *phEnum, mdToken tkParent,

 mdMemberRef rTokens[], ULONG cTokens, ULONG *pcTokens)

Enumerates all MemberRef tokens in the current scope for the specified parent.
tkParent may be a TypeRef, MethodDef, TypeDef, ModuleRef or nil; in the latter
case, we return tokens that reference global-fields or global-functions.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in tkParent Token of parent yes

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.21EnumModuleRefs

HRESULT EnumModuleRefs (HCORENUM *phEnum, mdModuleRef rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all module references in the current scope.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

Page 58

Metadata Interfaces

4.1.22EnumCustomAttributes

HRESULT EnumCustomAttributes (HCORENUM *phEnum, mdToken tk,

 mdToken tkType, mdCustomValue rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all custom attributes for a specified owner.

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

in tkOwner Token for owner. no

in tkType Token for constructor method, or mdTypeRef, or nil no

out rTokens [] Array to hold returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

tkOwner is the token for the owner – that’s to say, the metadata item this custom
attribute, or custom value, is attached to. If you specify tkOwner as nil, we
enumerate all custom attributes in the scope

If you want to enumerate custom attributes, then supply tkType as the
mdMethodDef or mdMemberRef token for its constructor method. If you want to
enumerate custom values, then supply tkType as the mdTypeRef token with which
that custom value was defined. tkType is used to filter the answer: if specified as
null, no filtering is done

4.1.23EnumSignatures

HRESULT EnumSignatures(HCORENUM *phEnum, mdSignature rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all stand-alone signatures defined within the current scope, by looking
at each row of the StandAloneSig table. These signatures were defined by previous
calls to the GetTokenFromSig method

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.24EnumTypeSpecs

HRESULT EnumTypeSpecs(HCORENUM *phEnum, mdTypeSpec rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Page 59

Metadata Interfaces

Enumerates all TypeSpecs defined within the current scope, by looking at each row
of the TypeSpec table. These TypeSpecs were previously defined by previous calls to
the GetTokenFromTypeSpec method

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

4.1.25EnumUserStrings

HRESULT EnumUserStrings(HCORENUM *phEnum, mdString rTokens[],

 ULONG cTokens, ULONG *pcTokens)

Enumerates all user strings stored within the current scope, by scanning the entire
UserString heap. These are the strings stored by previous calls to the
DefineUserString method

in/out Parameter Description Required?

inout phEnum Enumeration handle. Must be 0 on first call yes

out rTokens [] Array to hold the returned tokens

in cTokens Dimension of rTokens [] array yes

out pcTokens Number of tokens actually returned

WARNING: The only scenario in which this method is expected to be used is for a
metadata browser, rather than by a compiler

4.2Finding a Specific Item in Metadata

4.2.1 FindTypeDefByName

HRESULT FindTypeDefByName(LPCWSTR wzName, mdToken tkEncloser,

 mdTypeDef *ptd)

Finds the type definition (class, interface, value-type) with the given name. If this is
a nested type, supply tkEncloser as the TypeDef or TypeRef token for its
immediately-enclosing type. If this is not a nested type, supply tkEncloser as nil

in/out Parameter Description Required?

in wzName Name of required type yes

in tkEncloser Token for enclosing type, or nil no

out ptd Token for type definition

Page 60

Metadata Interfaces

4.2.2 FindMember

HRESULT FindMember(mdTypeDef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdToken *pmd)

Finds a specified member (field or method) in the current metadata scope. The
member you want is specified by td (its enclosing class or interface), wzName (its
name) and, optionally, its signature (pvSig, cbSig). If td is specified as mdTokenNil,
then the lookup is done for a global-variable or global-function. Recall that you may
have multiple members with the same name on a class or interface; supply its
signature to find the unique match.

FindMember only finds members that were defined directly on the class or interface;
it does not find inherited members. (FindMember is simply a helper method – it first
calls FindMethod; if that doesn’t find a match, it then calls FindField)

The signature passed in to FindMember must have been generated in the current
scope. That’s because signatures are bound to a particular scope. As discussed in
the Metadata-Structures Spec, a signature can embed a token that identifies the
enclosing Class or ValueType (the token is an index into the local TypeRef table). In
other words, you cannot build a runtime signature outside the context of the current
scope that can be used as input to FindMember.

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of the required member yes

in pvSig Signature of the required member no

in cbSig Count of bytes in pvSig no

out pmd Token for matching method or field

pmd can be an mdMethodDef or an mdFieldDef

4.2.3 FindMethod

HRESULT FindMethod(mdTypeDef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdMethodDef *pmd)

Finds a specified method in the current metadata scope. The field you want is
specified by td (its enclosing class or interface), wzName (its name) and optionally,
its signature (pvSig, cbSig). If td is specified as mdTokenNil, then the lookup is done
for a global-function.

See FindMember description for more details.

Page 61

Metadata Interfaces

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of required method yes

in pvSig Signature of the required method no

in cbSig Count of bytes in pvSig no

out pmd Token for matching method

4.2.4 FindField

HRESULT FindField(mdTypeDef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdFieldDef *pmd)

Finds a specified field in the current metadata scope. The field you want is specified
by td (its enclosing class or interface), wzName (its name) and optionally, its
signature (pvSig, cbSig). If td is specified as mdTokenNil, then the lookup is done
for a global-variable.

See FindMember description for more details.

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of required field yes

in pvSig Signature of the required field no

in cbSig Count of bytes in pvSig no

out pfd Token for matching field

4.2.5 FindMemberRef

HRESULT FindMemberRef(mdTypeRef td, LPCWSTR wzName,

 PCCOR_SIGNATURE pvSig, ULONG cbSig, mdMemberRef *pmr)

Finds a member reference in the current metadata scope. The reference you want is
specified by td (its owner class or interface), wzName (its name) and optionally, its
signature (pvSig, cbSig). If td is specified as mdTokenNil, then the lookup is done
for a global-variable or global-function.

The signature passed in to FindMember must have been generated in the current
scope. See FindMember description for details.

Page 62

Metadata Interfaces

in/out Parameter Description Required?

in td Token of enclosing type yes

in wzName Name of required member reference yes

in pvSig Signature of the required member no

in cbSig Count of bytes in pvSig no

out pmr Token for matching member reference

tr must be one of mdTypdDef, mdTypeRef, mdMethodDef, mdModuleRef or
mdTypeSpec or mdTokenNil.

4.2.6 FindTypeRef

HRESULT FindTypeRef(mdToken tkResScope, LPCWSTR wzName, mdTypeRef *ptr)

Returns information about an existing type reference

in/out Parameter Description Required?

in tkResScope Token for scope in which type is defined no

in wzName Name of required type yes

out ptr TypeRef token returned

tkResScope may be an mdModuleRef, mdAssemblyRef, mdTypeRef token (this is
required to disambiguate, for example, a reference to Type X in Assembly A, from a
reference to Type X in Assembly B). If the target type is nested, specify tkResScope
as the mdTypeRef token for its immediately-enclosing type

4.3Obtaining Properties of a Specified Object
These methods are specifically designed to return single-valued properties of
metadata items. When the property is a reference to another item, a token for that
item is returned for the property. Any pointer input type can be null to indicate that
the particular value is not being requested. To obtain properties that are essentially
collection objects (e.g., the collection of interfaces that a class implements), see the
earlier section on enumerations.

4.3.1 GetScopeProps

HRESULT GetScopeProps (LPWSTR wzName, ULONG cchName, ULONG *pchName,

 GUID *pmvid)

Gets the properties for the current metadata scope that were set with a previous call
to SetModuleProps.

Page 63

Metadata Interfaces

in/out Parameter Description Required?

out wzName Biffer to hold name of current module. no

in cchName Count of characters allocated in wzName buffer no

out pchName Actual count of characters returned

out pmvid Returned module VID

4.3.2 GetModuleFromScope

HRESULT GetModuleFromScope (mdModule *pModule)

Gets the token for the module definition for the current scope.

in/out Parameter Description Required?

out pModule Module token returned

4.3.3 GetTypeDefProps

HRESULT GetTypeDefProps (mdTypeDef td, LPWSTR wzTypeDef,

 ULONG cchTypeDef, ULONG *pchTypeDef, CLASSVERSION *pver,

 DWORD *pdwTypeDefFlags,

 mdToken *ptkExtends)

Gets the information stored in metadata for a specified type definition.

in/out Parameter Description Required?

in td Token for required type definition yes

out wzTypeDef Name of type. no

in cchTypedef Count of characters allocated in wzTypeDef buffer no

out pchTypedef Actual count of characters returned no

out pver Version number. no

out pdwTypeDefFlags Flags set on type definition. no

out ptdExtends Token for superclass. no

pdwTypeDefFlags is a bitmask from the CorTypeAttr enum in CorHdr.h.

ptdExtends is an mdTypeDef or mdTypeRef

4.3.4 GetNestedClassProps

HRESULT GetNestedClassProps (mdTypeDef tdNested,

 mdTypeDef *ptdEncloser)

Gets the enclosing class for a specified nested class.

Page 64

Metadata Interfaces

in/out Parameter Description Required?

in tdNested Token for required nested class yes

out ptdEncloser Token for the enclosing class yes

4.3.5 GetInterfaceImplProps

HRESULT GetInterfaceImplProps (mdInterfaceImpl iImpl,

 mdTypeDef *pClass, mdToken *ptkIface)

Gets the information stored in metadata for a specified interface implementation.

Each time you call DefineTypeDef or SetTypeDefProps to define a type, you can
specify which interfaces that class implements, if any. For example, suppose a class
has an mdTypeDef token value of 0x02000007. And suppose it implements three
interfaces whose types have tokens 0x02000003 (TypeDef), 0x0100000A (TypeRef)
and 0x0200001C (TypeDef). Conceptually, this information is stored into an
interface implementation table like this:

Row Number Class Token Interface Token

4

5 02000007 02000003

6 02000007 0100000A

7

8 02000007 0200001C

GetInterfaceImplProps will return the information held in the row whose token you
provide in the iImpl argument. (Recall, the token is a 4-byte value; the lower 3
bytes hold the row number, or RID; the upper byte holds the token type – 0x09 for
mdtInterfaceImpl).

[You obtain the value for iImpl by calling the EnumInterfaceImpls method]

in/out Parameter Description Required?

in iImpl Token for the required interface implementation yes

out pClass Token for the class. no

out ptkIface Token for the interface that pClass implements. no

ptkIface will be an mdTypeDef or an mdTypeRef

4.3.6 GetCustomAttributeProps

HRESULT GetCustomAttributeProps (mdCustomAttribute caOrCv,

 mdToken *ptkOwner, mdToken *ptkType,

 void const **ppBlob, ULONG *pcbBlob)

Returns information about a custom attribute or custom value.

Page 65

Metadata Interfaces

A custom attribute is stored as a blob whose format is understood by the metadata
engine, and by Reflection; essentially a list of argument values to a constructor
method which will create an instance of the custom attribute (see “Metadata
Structures” for how a custom attribute is stored)

A custom value is also stored as a blob, but its format is understood only by its
caller.

in/out Parameter Description Required?

in caOrCv Token for required custom attribute or custom value yes

out ptkOwner Token for owner

out ptkType Token for custom value or attribute no

out ppBlob Pointer to blob for custom attribute or value no

out pcbBlob Count of bytes in ppBlob no

ptk is the token for the owner – that’s to say, the metadata item this custom
attribute, or custom value, is attached to. A custom attribute can be attached to any
sort of owner, with the sole exception of an mdCustomAttribute. A custom value can
be attached to any sort of owner.

If caOrCv is a custom attribute, then ptkType is the mdMethodDef or mdMemberRef
token for its constructor method. If caOrCv is a custom value, then ptkType is an
mdTypeRef (that need not resolve to a matching TypeDef)

4.3.7 GetCustomAttributeByName

HRESULT GetCustomAttributeByName (mdToken tdOwner, LPCWSTR wzName,

 const void **ppBlob, ULONG *pcbBlob)

Returns the information stored for a custom attribute or custom value, where you
specify the target by its owner and name. See GetCustomAttributeProps for more
detail.

In the case of a custom value, the name is simply the name you gave it via your call
to DefineTypeRef. In the case of a genuine custom attribute, the name is the name
of the attribute class (see Section 3.2.3)

in/out Parameter Description Required?

in tdOwner Token for owner of custom attribute or custom value yes

in wzName Name of custom attribute or custom value yes

out ppBlob Pointer to blob for custom attribute or value yes

out pcbBlob Count of bytes in ppBlob yes

Note that it is quite legal to define multiple custom attributes for the same owner;
they may even have the same name. GetCustomAttributeByName returns only one
of those multiple instances (in fact, the first it encounters, but that behaviour is not
guaranteed). Use the EnumCustomAttributes if you want to find them all.

Note: if you need to determine whether this custom ‘blob’ is a custom value or a
genuine custom attribute, you need to check its token; that’s to say, the token

Page 66

Metadata Interfaces

supplied as the tkAttrib argument in the DefineCustomAttribute call that created it.
However, this token is not returned from GetCustomAttributeByName. Use either
GetCustomAttributeProps, or EnumCustomAttributes instead.

4.3.8 GetMemberProps

HRESULT GetMemberProps(mdToken md, mdTypeDef *pClass, LPWSTR wzName,

ULONG cchName, ULONG *pchName, DWORD *pdwAttr,

PCCOR_SIGNATURE *ppSig, ULONG *pcbSig, ULONG *pulCodeRVA,

DWORD *pdwImplFlags, DWORD *pdwDefType, void const **ppValue, ULONG

*pcbValue)

Gets the information stored in metadata for a specified member definition. This is a
simple helper method: if md is a MethodDef, then we call GetMethodProps; if md is a
FieldDef, then we call GetFieldProps. See these other methods for details.

4.3.9 GetMethodProps

HRESULT GetMethodProps(mdMethodDef md, mdTypeDef *pClass,

 LPWSTR wzName, ULONG cchName, ULONG *pchName,

 DWORD *pdwAttr, PCCOR_SIGNATURE *ppvSig, ULONG *pcbSig,

 ULONG *pulCodeRVA, DWORD *pdwImplFlags)

Retrieves a method definition in the current metadata scope. The method you want
is specified by md (its MethodDef token).

in/out Parameter Description Required?

in md Token of required method yes

out pClass Token for class in which this method is defined. no

out wzName Buffer to hold name of method. no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out ppvSig Pointer to signature of the required method. no

out pcbSig Count of bytes in ppvSig no

out pulCodeRVA RVA for code. no

out pdwImpleFlags Implementation flags. no

pdwAttr is from the CorMethodAttr enum in CorHdr.h.

4.3.10GetFieldProps

HRESULT GetFieldProps(mdFieldDef fd, mdTypeDef *pClass, LPWSTR wzName,

Page 67

Metadata Interfaces

ULONG cchMember, ULONG *pchMember, DWORD *pdwAttr, PCCOR_SIGNATURE

*ppvSig, ULONG *pcbSig, DWORD *pdwDefType, void const **ppValue,

ULONG *pcbValue)
Retrieves the information stored in metadata for a specified field.

in/out Parameter Description Required?

in fd Token of required field yes

out pClass Token for class on on which the field is defined. no

in wzName Buffer to hold name of property. no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out pdwAttr Attribute flags. no

out pdwDefType ELEMENT_TYPE_* for the constant value. no

out ppValue Pointer to the parameter default value. no

out pcbValue Count of bytes in ppValue no

pdwAttr is drawn from the CorParamAttr enum in CorHdr.h.

4.3.11GetParamProps

HRESULT GetParamProps (mdParamDef pd, mdMethodDef pmd,

 ULONG *pulSequence, LPWSTR wzName, ULONG cchName,

 ULONG *pchName, DWORD *pdwAttr, DWORD *pdwDefType,

 void const **ppValue, ULONG *pcbValue)

Retrieves the information stored in metadata for a specified parameter on a method,
or global-function.

in/out Parameter Description Required?

in pd Token of required parameter yes

in pmd Token for method on which the parameter is defined no

out pulSequence Ordinal value of parameter in method signature; 0 indicates the
return value

no

out wzName Buffer to hold name of parameter no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out pdwAttr Attribute flags no

out pdwDefType ELEMENT_TYPE_* for the constant value no

out ppValue Pointer to the parameter default value no

out pcbValue Count of bytes in ppValue no

pdwAttr is drawn from the CorParamAttr enum in CorHdr.h

Page 68

Metadata Interfaces

4.3.12GetParamForMethodIndex

HRESULT GetParamForMethodIndex(mdMethodDef md, ULONG ulParamSeq,

 mdParamDef *ppd)

Returns the definition of parameter number ulParamSeq for the method (or global-
function) whose token is md. A value of 0 for ulParamSeq denotes the return value;
parameters are numbered starting at 1.

in/out Parameter Description Required?

in md Token of target method yes

in ulParamSeq Ordinal value of parameter in method signature; 0 indicates the
return value

no

out ppd Pointer to the parameter defintion

4.3.13GetPinvokeMap

HRESULT GetPinvokeMap(mdToken tk, DWORD *pdwMappingFlags,

 LPCWSTR wzName, ULONG cchName,

 ULONG *pchName, mdModuleRef *pmrImportDLL)

Returns the PInvoke information stored for a given method. (PInvoke is a Runtime
service that supports inter-operation with unmanaged code)

in/out Parameter Description Required?

in tk Token for the method required yes

out pdwMappingFlags Flags stored to describe mapping yes

out wzName Buffer to hold name of method in unmanaged DLL no

in cchName Count of characters allocated in wzName buffer no

out pchName Actual count of characters returned no

out pmdImportDLL mdModuleRef token for target unmanaged DLL no

tk must be a MethodDef token

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h

4.3.14GetFieldMarshal

HRESULT GetFieldMarshal(mdToken tk, PCCOR_SIGNATURE *ppNativeType,

 ULONG *pcbNativeType)

Returns the marshaling information for a field, method return, or method parameter
(See SetFieldMarshal for details)

Page 69

Metadata Interfaces

in/out Parameter Description Required?

in tk Token for target data item yes

out ppNativeType Pointer to the native type signature

out pcbNativeType Actual count of bytes in ppNativeType

tk is an mdFieldDef or mdParamDef

4.3.15GetRVA

HRESULT GetRVA(mdToken tk, ULONG *pulCodeRVA, DWORD *pdwImplFlags)

Returns the code RVA and implementation flags for a given member.

in/out Parameter Description Required?

in tk Token for the required member yes

out pulRVA RVA for required member no

out pdwImplFlags Implementation flags for required member no

tk must be one of mdMethodDef mdFieldDef. In the latter case, the field must be a
global-variable

dwImplFlags is a bitmask from the CorMethodImpl enum in CorHdr.h (not relevant if
tk is an mdFieldDef)

4.3.16GetTypeRefProps

HRESULT GetTypeRefProps(mdTypeRef tr, mdToken *ptkResScope,

 LPWSTR wzName, ULONG cchName, ULONG *pchName)

Retrieve information for a type reference in the current metadata scope

in/out Parameter Description Required?

in tr Token of required method reference yes

out ptkResScope Token for resolution scope – a ModuleRef or AssemblyRef no

in wzName Buffer to hold name of type no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

4.3.17GetMemberRefProps

HRESULT GetMemberRefProps(mdMemberRef mr, mdToken *ptk,

 LPWSTR wzMember, ULONG cchMember, ULONG *pchMember,

 PCCOR_SIGNATURE *ppSig, ULONG *pcbSig)

Returns the information stored in metadata for a specified member reference.

Page 70

Metadata Interfaces

in/out Parameter Description Required?

in mr Token for required member reference yes

out ptk Token for class or interface on which member is defined. no

out wzName Buffer to hold name of member. no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied into wzName no

out ppSig Pointer to signature blob no

out pcbSig Count of bytes in ppSig no

4.3.18GetModuleRefProps

HRESULT GetModuleRefProps(mdModuleRef mr, LPWSTR wzName,

 ULONG cchName, ULONG *pchName)

Returns the information stored in metadata for a specified module reference.

in/out Parameter Description Required?

in mr Token for required module reference yes

out wzName Buffer to hold name no

in cchName Count of characters allocated in wzName buffer no

out pchName Actual count of characters returned no

4.3.19GetPropertyProps

HRESULT GetPropertyProps(mdProperty prop, mdTypeDef *pClass,

 LPWSTR wzName, ULONG cchName, ULONG *pchName,

 DWORD *pdwFlags, PCCOR_SIGNATURE *ppSig, ULONG *pbSig,

 DWORD *pdwDefType, const void **ppValue,

 ULONG *pcbValue, mdMethodDef *pmdSetter,

 mdMethodDef *pmdGetter, mdMethodDef rmdOtherMethods[],

 ULONG cMax, ULONG *pcOtherMethods, mdFieldDef *pmdBackingField)

Returns information stored in metadata for a specified property.

Page 71

Metadata Interfaces

in/out Parameter Description Required?

in prop Token of required property yes

out pClass Token for type on which the property is defined no

out wzName Buffer to hold name of property no

in cchName Count of wide characters in wzName no

out pchName Actual count of wide characters copied to wzName no

out pdwFlags Property flags no

out ppSig Pointer to property signature no

out pbSig Count of bytes in ppSig no

out pdwDefType ELEMENT_TYPE_* for the constant value no

out ppValue Pointer to the property default value no

out pcbValue Count of bytes in ppValue no

out pmdSetter Token for setter method no

out pmdGetter Token for getter method no

out rmdOtherMethods[] Array to hold tokens for other property methods no

in cMax Count of elements in the rmdOtherMethods array no

out pcOtherMethods Count of elements filled in mdOtherMethods array no

out pmdBackingFiled Token for property’s backing field no

pdwFlags is drawn from the CorPropertyAttr enum in CorHdr.h.

Note that only cMax other methods can be returned by this method. If the property
has more methods defined than you provide array space to hold, they are skipped
without warning.

4.3.20GetEventProps

HRESULT GetEventProps(mdEvent ev, mdTypeDef *pClass, LPCWSTR wzEvent,

 ULONG cchEvent, ULONG *pchEvent, DWORD *pdwEventFlags,

 mdToken *ptkEventType, mdMethodDef *pmdAddOn,

 mdMethodDef *pmdRemoveOn, mdMethodDef *pmdFire,

 mdMethodDef rOtherMethods[], ULONG cOtherMethods,

 ULONG *pcOtherMethods)

Returns the information previously defined for a given event. See DefineEvent for
more information

Page 72

Metadata Interfaces

in/out Parameter Description Required?

in ev Token of required event yes

out pClass Class or interface on which event is defined. no

out wzEvent Buffer to hold name of event. no

in cchEvent Length of wzEvent in (wide) characters no

out pchEvent Number of characters returned into wzEvent. no

out pdwEventFlags Event flags. no

out ptkEventType Token for the event class no

out pmdAddOn Method used to subscribe to the event no

out pmdRemoveOn Method used to unsubscribe to the event no

out pmdFire Method used (by a subclass) to fire the event no

out rOtherMethods[] Array to hold tokens for the event’s other methods no

in cOtherMethods Dimension of rOtherMethods array no

out pcOtherMethods Number of other methods actually returned no

4.3.21GetMethodSemantics

HRESULT GetMethodSemantics(mdMethodDef md, mdToken tkProp,

 DWORD *pdwSemantics)

Returns the semantic flags for a given property. Note that there is no Define method
that creates those flags – they are derived from the DefineProperty method – for
example, if a method was specified as a Getter, then that method’s semantic flags
would have the msGetter bit set.

in/out Parameter Description Required?

in md Token for required method yes

in tkProp Token for required property yes

out pdwSemantics Array to hold the method semantics DWORD

pdwSemantics is drawn from the CorMethodSemanticsAttr in CorHdr.h

4.3.22GetClassLayout

HRESULT GetClassLayout(mdTypeDef td, DWORD *pdwPackSize,

 COR_FIELD_OFFSET rFieldOffsets[], ULONG cMax,

 ULONG *pcFieldOffsets, ULONG *pulClassSize)

Returns the layout of fields for a class, defined by an earlier call to SetClassLayout.

Page 73

Metadata Interfaces

in/out Parameter Description Required?

in td Token for required class yes

out pdwPackSize Packing size: 1, 2, 4, 8 or 16 bytes no

out rOffsets [] Array to hold the offsets of class fields no

out cOffsets Dimension of rOffsets [] array no

out pcOffsets Number of offsets actually returned no

out pulClassSize Overall size of the class object, in bytes no

See SetClassLayout for more information.

4.3.23GetSigFromToken

HRESULT GetSigFromToken(mdSignature tkSig, PCCOR_SIGNATURE *ppSig,

 ULONG *pcbSig)

Returns the signature for a given standalone-signature token (the tkSig parameter
effectively indexes a row in the StandAloneSig table)

in/out Parameter Description Required?

in tkSig Token for the required signature yes

out ppSig Pointer to required signature blob

out pchSig Count of bytes in the signature blob pointed to by ppSig

4.3.24GetTypeSpecFromToken

HRESULT GetTypeSpecFromToken(mdTypeSpec typespec,

 PCCOR_SIGNATURE *ppSig, ULONG *pcbSig)

Returns the TypeSpec whose token is typespec (the typespec parameter effectively
indexes a row in the TypeSpec table)

in/out Parameter Description Required?

in typespec Token for the required TypeSpec yes

out ppSig Pointer to required TypeSpec

out pchSig Count of bytes in the TypeSpec pointed to by ppSig

4.3.25GetUserString

HRESULT GetUserString(mdString stk, LPWSTR wzString,

 ULONG cchString, ULONG *pchString)

Page 74

Metadata Interfaces

Returns the user string, previously stored into metadata (by the DefineUserString
method), whose token is stk.

in/out Parameter Description Required?

in stk Token for the required string yes

out wzString Buffer to hold the retrieved string no

in cchString Length of wzString buffer in (wide) characters no

out pchString Number of characters returned into wzString no

4.3.26GetNameFromToken

HRESULT GetNameFromToken(mdToken tk, MDUTF8CSTR *pwzName)

Returns a pointer, within metadata structures, to the name string for token tk. tk
must be one of mdModule, mdTypeRef, mdTypeDef, mdFieldDef, mdMethodDef,
mdParamDef, mdMemberRef, mdEvent, mdProperty, mdModuleRef, else the method
will return failure

in/out Parameter Description Required?

in tk Token to be inspected yes

out pwzName Pointer to the token’s name, in UTF8 format

4.3.27ResolveTypeRef

HRESULT ResolveTypeRef(mdTypeRef tr, REFIID riid, IUnknown **ppIScope,

 mdTypeDef *ptd)

Resolves a given TypeRef token, by looking for its definition in other modules. If
found, it returns an interface to that module scope in ppIScope, as well as the type
definition token, in that module, for the requested type.

in/out Parameter Description Required?

in tr Token for the type reference of interest yes

in riid Interface to return on the target scope yes

out ppIScope Returned interface on target scope

out ptd Token for a TypeDef

riid specifies the interface you would like returned for the module that holds the
definition of the referenced type. Typically this would be IID_IMetaDataImport; see
OpenScope for more information

Page 75

Metadata Interfaces

5 Appendix – IMetaDataTables
There is a further interface used to query Metadata – it is called IMetaDataTables,
and is defined in the Cor.h header file. It provides very low-level read-access to
Metadata information – at the level of the physical tables. The layout of these tables
is not guaranteed stable, and may change.

In order to see an example of how to use this API, see the sample code for the
“MetaInfo” tool which ships with the NGWS SDK. In particular, those code paths
corresponding to the “-raw” and “-heaps” command line switches to that tool.

Page 76

Metadata Interfaces

6 Appendix – MethodImpls

6.1Intro
A MethodImpl is a record in MetaData that allows a class to implement two or more
inherited methods, whose names and signatures match. For example, class C
implements interfaces I and J – both interfaces include a method int Foo (int). How
does C provide two implementations, one for I::Foo and one for J::Foo? [The only
solution today is for the programmer to avoid the name collision by changing one of
I::Foo or J::Foo]

6.2Details
MethodImpls record a 3-way association among tokens. The three items associated
together are:

 class being defined
 method whose body we want to use for the implementation
 method whose MethodTable slot we want to use

For example (all instances of the F function are assumed virtual) --

Interface I // DefineTypeDef returns tdI

int F (int) // DefineMethod returns mdFinI

Interface J // DefineTypeDef returns tdJ

int F (int) // DefineMethod returns mdFinJ

class C implements I, J // DefineTypeDef returns tdC

int F(int) rename I.F select I {...} // DefineMethod returns mdI.F

 // DefineMethodImpl (tdC, mdI.F, mrFinI)

int F(int) rename J.F select J {...} // DefineMethod returns mdJ.F

// DefineMethodImpl (tdC, mdJ.F, mrFinJ)

MethodImpls are stored in a 3-column table – TypeDef, MethodDef/Ref of body,
MethodDef/Ref of the ‘owner’ of the MethodTable slot. In this example, that second
column is a MethodDef that refers to the just-defined method body. So at this stage,
it seems we’re only really using two columns of the MethodImpl table . . .

However, instead of a class providing its own code, it may choose to reuse the code
body already supplied, for this method, by a super class. So, let’s add a base class
B, and change C like this:

Page 77

Metadata Interfaces

class B // DefineTypeDef returns tdB

int F (int) {...} // DefineMethod returns mdFinB

class C extends B implements I, J { // DefineTypeDef returns tdC

int F(int) rename I.F select I {...} // DefineMethod returns mdI.F

 // DefineMethodImpl (tdC, mdI.F, mrFinI)

int F(int) rename J.F select J uses B //

// DefineMethodImpl (tdC, mrFinB, mrFinJ)

We don’t require a MethodDef for the last method, since we are providing no code.
Instead, we hijack the code for method F provided by class B.

The prefix mr represents a MethodRef token. In the case where I, J, B and C all lie
in the same module, then MethodRefs such as mrFinB would be changed to the
corresponding MethodDef mdFinB through Ref-to-Def folding (or the compiler might
do so itself)

Note that the body referenced in a MethodImpl has two constraints:

 It must be a virtual function. It cannot be for a non-virtual

 It must be implemented by a parent of the current class. You cannot hijack
arbitrary virtual functions from classes that are unrelated to the current class
– even when their name and signature matches what’s required.

6.3ReNaming Recommendations
The I.F, J.F, etc names in the above examples were invented for illustration. These
mangled names might be provided by the user (if the compiler allows), or created
automatically by the compiler. Mangling is required only to avoid name collisions
within the class. With this proposal, the Runtime does not depend in any way upon
unmangling to work out what to do – that information is all captured unambiguously
in the MetaData tables.

All that said, we recommend that all compilers that target the Runtime adopt the
same name mangling scheme. This will make life easier for tools such as browsers,
debuggers, profilers, etc.

The suggested scheme is this: that the method Foo within class C which is going to
use the MethodTable slot provided by method Foo in interface IFace be called
IFace.Foo. Similarly, if the slot were provided by method Foo in base class BClass,
that the method be called BClass.Foo

The prefix should be the fully-qualified Interface or Class name.

We also recommend that compilers mark each MethodDef that has a MethodImpl
with mdSpecialName. Doing so alerts browsers that the method has been renamed,
or mangled, away from the method it implements.

6.4Notes
 The third column in a MethodImpl must be supplied as non-nil. (otherwise,

there’s a possible loophole that allows a compiler to use MethodImpls to
rename an inherited method within a sub-class)

Page 78

Metadata Interfaces

 MethodImpl tokens are not required
 We recommend that compilers use MethodImpls only in the case where there

is ambiguity. So, for example, if interface J had no method int F(int), then
there is no need to emit a MethodImpl. Put another way, there is no
requirement to emit a MethodImpl for every interface method that a class
implements – although this will work, it is discouraged to avoid the
consequent bloat in MetaData.

 A given method may have zero, one or more associated MethodImpls.
 A given class may have have multiple methods, all with the same name and

signature, for which it can provide code – via the class derivation tree
(single), via the interface tree (multiple), or defined within this class itself
(single). As before, wherever there is ambiguity over which vtable slot is to
be matched with a given implemenation, compilers should emit a
MethodImpl. This can even be required for the slot inherited from a base
class, B say, if class C itself defines a virtual int F(int) asking for a “new slot”

 With this design, there is no benefit in allocating a bit in the MethodImpl flags
field of each MethodDef as a hint bit – if set, then the method has an
associated MethodImpl? [This was considered for a previous design]

Page 79

Metadata Interfaces

7 Appendix – NestedTypes

7.1Introduction
This appendix summarizes support for nested types. It explains both how they are
stored and retrieved from Metadata, and the semantics given them by the runtime.
We include examples, and explanation/exploration of what is provided and what not.

7.2Definition
A Type is any of: Class, ValueType, Interface or Delegate. A NestedType is a Type
whose definition, in the source language, is lexically enclosed within the definition of
anotherTtype. We refer to these two by the names, “nested” Type and “encloser”
Type; sometimes as “nestee” and “nester”, respectively.

The support provided by the Runtime for nested Types is quite minimal. In essence,
Metadata provides an extra association for a NestedType – the TypeDef token of its
encloser. And, at runtime, the Execution Engine provides access from nestee
methods to members defined within its encloser.

7.3Supported Features
Here is the support provided for NestedTypes, both in Metadata, and at runtime, by
the Execution Engine:

1. We support NestedTypes, not inner types. The distinction is that NestedTypes
are only lexically nested; there is no access, by a sort of this or super pointer, to
the enclosing type

2. The layout of an enclosing type is based only on its fields – it is totally unaffected
by any Types that it nests. If the language wants the enclosing Type to be, for
example, a struct containing a nested struct, then the compiler must emit a field
definition into the enclosing type to hold that reference. Note that, whilst
Metadata preserves the order in which fields are defined, it does not preserve the
order for multiple NestedTypes within an encloser

3. The relationship between an enclosing type and a NestedType, with respect to
visibility and member access, is the same as that between a Type and its
method/field members:

o A NestedType does not have visibility independent of its enclosing Type.
That is:
[non-exported] class EnclosingClass // not visible outside of the assembly
{

public void Foo() {...} // visible only to anyone that can see
// EnclosingClass ... that is, only within
// the assembly

public class NestedClass {...} // ditto
}

 An enclosing type may control access to its nested type, by marking a
nested type with any of the member access rules: private, family, assembly,
assemblyORfamily, assemblyANDfamily, public. The runtime enforces these
member access rules

Page 80

Metadata Interfaces

4. A NestedType has access to all members of its enclosing type, without restriction.
In this regard, it behaves just like a part of the implementation of the enclosing
type. That is:

[exported] class EnclosingClass {
family static int i;
private static int j;
public class NestedClass {

void bar () {
j = 1; // OK
EnclosingClass.j = 1; // OK
i = 1; // OK
EnclosingClass.i = 1; // OK

}
}

}

5. NestedTypes may be nested arbitrarily deep

6. A NestedType may be subtyped, and may subtype another Type, entirely
independently of its nesting hierarchy. For example:

class A {
family static int i;
class X {

 X() {
i = 1; // OK – sets A.i

 A.i = 1; // OK – same effect as previous line
}

}
}
class Y : A.X {
void foo() {

i = 1; // won’t compiler - unknown identifier
A.i = 1; // won’t compile - i not accessible - Y not in the scope of A,

// even though Y inherits from A.X
}

}
class B : A {
class Z : X {

void bar () {
i = 1; // OK – sets the i field (in base class A)
A.i = 1; // OK – allowed since Z, via inheritance from X, is within

// the scope of A
B.i = 1; // OK – since B derives from A

}
}

}

Note that in the bar method, all 3 assignments update the same field (ie the same
cell in memory). As another example, a NestedType could inherit from its enclosing
type:

public class EnclosingClass {
public static int i;
private static int j;
private virtual void Foo() { }
public class NestedClass : EnclosingClass {

 private override void Foo() { }
void bar () {

j = 1; // OK
this.j = 1; // OK
i = 1; // OK
this.i = 1; // OK

}
}

}

As the above examples illustrate, resolving references through the inheritance chain
and through the nesting hierarchy can get complex. Lightning will give precedence

Page 81

Metadata Interfaces

to the inheritance chain; if there is no resolution within that chain, then it will
traverse the nesting hierarchy.

7. When emitting metadata:

o A NestedType will be emitted using DefineNestedType:

o Mark its visibility nested (see revised type visibility rules, below).

o Like any member within a Type, its name must be unique within that
Type. Because the Type is a NestedType, it does not conflict with any
module-level Type of the same name. There is no need for compilers to
mangle the name of the nestee in order to make it unique at module-
level. The runtime loader will take account of the Type’s nested status
when it comes to find the right Type to load.

o The definition of a NestedType must occur in the same module as that of
its encloser

o In the current implementation, metadata actually preserves the order of
emitted TypeDefs; however, tools should not rely that metadata
enumerations will return NestedTypes before, or after, their enclosers

o The TypeDef for a NestedType has one extra item of metadata, compared
with a regular TypeDef. This additional item is the token for its enclosing
type. This is persisted internally in a two-column look-aside table, holding
the Typedefs of nestee and encloser. The Runtime uses this to determine
whether the enclosing Type is, or is not, visible outside of the assembly. Note
that because we losslessly capture the nesting hierarchy in metadata, there is
no parsing of mangled type names required to “guess” the nesting structure

o References to a NestedType will be emitted as TypeRefs. Upon resolution,
the Runtime will observe that the visibility is nested and thus will apply
member access rules

8. While importing a metadata file, suppose a language or tool, that is blind to
NestedTypes, stumbles upon the definition of a NestedType. Firstly, it must
recognize the Type as nested because it has one of the possible tdNestedXXX bits
set in its TypeDef flags. [Every language or tool must recognize all bits in the
CorTypeAttr enum – including tdNestedXXX. It need not implement the
semantics those bits demand; it can simply stay away; but it must know enough
to make that choice] Having found a NestedType, the compiler/tool has two
choices:

o Don't expose that nested type

o Expose that nested type as a module-level type, iff its encloser were
visible and the member access rule on the nested type is NestedPublic

9. You can freely nest all Types – Classes, ValueTypes, Interfaces and Delegates.
[The common case will be a Class which nests an Interface, but Runtime supports
any permutations]

7.4Visibility, Subclassing, and Member Access
Types carry visibility rules, one of:

 public -- meaning it is visible to any type in the same assembly, and may
be exported outside of the assembly

Page 82

Metadata Interfaces

 non-public -- meaning it is visible to any type in the same assembly and
may NOT be exported outside of the assembly

 nested -- meaning it does not have visibility independent of its enclosing
type; note that languages that do not support NestedTypes will either
need to simply not expose these Types during import, or will need to test
to make sure that member access rule on such a type is 'public' and the
enclosing Type is visible before exposing the Type

Types carry subclassing rules, one of:

 sealed -- meaning that it may not be subclassed

 non-sealed -- meaning that any class that has visibility to the Type (see
above) may subclass it

If a Type author wants to restrict subclassing to “this assembly” and yet make the
Type available more widely, he could declare a non-sealed class with non-public
visibility and a derived sealed Type that’s visible to the world (public).

Note: A Class may also be abstract, in which case it cannot be directly instantiated
and must be subclassed with full implementations provided for all of its members.
As such, an abstract Class cannot be sealed

Types may specify access rules for their members, one of:

 private -- meaning that only this declaring Type may access the member

 family -- meaning that only a subtype of this Type may access the member

 assembly -- meaning that any Type in the same assembly as this Type may
access the member

 familyANDassembly -- meaning that only subtypes in the same assembly as
this Type may access the member

 familyORassembly -- meaning that any Type in the same assembly as this
Type may access the member, as well as any subtype of the Type

 public -- meaning that any Tlass that has visibility to this Type may access
the member

Any subtype that has access to a member may override the implementation for the
member, if virtual, or may hide the member, if non-virtual.

7.5Naming
Within a module, all Types must of course have a unique name. And within a Type,
all NestedTypes must of course have a unique name. Note that Metadata does not
require that the names of NestedTypes be unique within the module.

[Note that a previous proposed design for nested types did require that names of
nested types be module-wide unique. Since it would be unreasonable for the
language to pass this burden upwards to its users, it required the language to
generate a uniqufied name for each nested type. A de facto standard of emerged
earlier during development of concatenating the type names together, with a $
separator character. This would generate AA$BB as the name for the inner class in
the last example. Whilst this worked OK for each language individually, it required
that the mangling scheme be agreed across all languages that used the Runtime and
wanted to share code]

Page 83

Metadata Interfaces

Let’s recap on an earlier example to clarify the problem:

class A { => DefineTypeDef (“A”) returns tokA
class B { => DefineNestedType (“B”, tdNestedPublic, tokA) returns tokB

class C { => DefineNestedType (“C”, tdNestedFamily, tokB) returns tokC
}

}
}

The problem comes in creating a TypeRef. For example, what TypeRef’s do you emit
in response to a source statement like:

A.B.C.foo (42)

The answer is, that the compiler should emit one MemberRef, for foo, and 3
TypeRefs, for C, B and A. The resolution scope for each TypeRef is the token for its
encloser. The resolution scope for A is the assembly or module where it is defined.
Here’s the DefineTypeRefByName prototype, as a reminder:

DefineTypeRefByName (mdToken tkResolutionScope, LPCWSTR szNamespace,
 LPCWSTR szType, mdTypeRef *ptr)

In order to resolve this reference, walk ‘up the tree’ towards the root. Since this is
driven by token, rather than by name, we find a unique path to the root. (If done by
name, we could start with 10 “foo”s. We would end up with one unique path to root,
but the interim tracking cost would be high)

This scheme works because NestedTypes must be defined within the same module as
their enclosing type – never by a TypeRef.

[This proposed scheme replaces the current de facto practice where the compile
invents a mangled name of ABC or similar. With this new proposal, we don’t
mangle names. And we circumvent the view that a TypeRef for ABC refers to a
global class with a name of ABC]

7.6Naked Instances
A language may choose, at its discretion, to allow a user to create an instance of a
NestedType, without any encloser instance – in our running example, an instance of
B, without any instance of A. So:

public static void main(String[] args) {
A.B b = new A.B(); // create a ‘naked’ B object
b.bi = 9; // works fine

}

There is no instance of A to enclose B. Again, the Runtime has no qualms about any
code that creates naked instances of a NestedType. So long as the language allows
the user to name them, and therefore identify their TypeDef token, Runtime is
content.

7.7C++ “Member Classes”
The methods within a C++ member (ie nested) class have no special access to the
members of an enclosing class. So, in the following example declaration,

Page 84

Metadata Interfaces

class A {
private: static int i;
class B {

void m();
}

}

method m cannot reference the private field i of its enclosing class. However, in the
definition of Runtime NestedTypes, it is clear that the Runtime would allow such an
access to proceed – it would pass verification and run. Does this represent a
problem?

The answer is no. The C++ compiler can use the support provided by Runtime for
NestedTypes; it can deny any attempted access to field i by method m at compile
time, and so preserve the semantics of the language. If another language imports
that module’s metadata there is again no problem, since it cannot emit code that
runs within the nested lexical scope of class A. [It can of course emit code that
attempts to access field i from outside of class A, but the Runtime would correctly fail
that access since the field is marked private]

7.8C++ “Friends”
Friends will not be supported in first release of the Runtime. We had earlier
proposed to introduce a 'friends' mechanism, whereby a TypeDef could carry an
explicit set of TypeDef/Ref tokens that are its Friends. Those friends would be
allowed to have access to all of the members of the declaring type. This had been
introduced in lieu of NestedTypes, in order to support some of the nested type
semantics; however, with the above proposal to support NestedTypes, we will not
provide direct support for “friends”. But languages that have a notion of 'friend' may
still carry such information as CustomAttributes in metadata.

7.9Example - Simple
Here is an example, of a nested class definition, using SMC-like syntax:

public class A { // DefineTypeDef(“A”, tdPublic) => tdA
public static int asi; // DefineField(“asi”, fdPublic|fdStatic, sig) => fdasi
public int aii; // DefineField(“aii”, fdPublic, sig) => fdaii
public class B { // DefineNestedType(“B”, tdNestedPublic, tdA) => tdB

 public static int bsi; // DefineField(“bsi”, fdPublic|fdStatic, sig) => fdbsi
public int bii; // DefineField(“bi, fdPublic, sig) => fdbi

 }
}

In compiling this fragment, the compiler will tell Metadata about two classes. One
class is called A and has visibility public -- that’s to say, it can be seen outside of its
assembly. To convey this info, the compiler calls DefineTypeDef, passing the name
A, and a flags value of tdPublic (it can pass other goop too, but I’m only talking
about those arguments that affect the real picture). This call returns a TypeDef
token for A; let’s call it tdA. Class A has one static field, asi, of type int. The
compiler calls DefineField, passing the name asi, a flags value of fdPublic|fdStatic,
and a signature of ELEMENT_TYPE_I4. This call returns a FieldDef token, which we’ll
call fdasi. Class A also has one instance field, aii, of type int. The compiler calls
DefineField, passing the name aii, a flags value of fdPublic, and a signature of
ELEMENT_TYPE_I4. This call returns a FieldDef token, which we’ll call fdaii.

The other class is called B and has visibility nestedPublic. The compiler calls
DefineNestedType, passing the name B, a flags value of tdNestedPublic, and an
encloser of tdA. This call returns a TypeDef token for B; let’s call it tdB. Class B has

Page 85

Metadata Interfaces

one static field, bsi, of type int. The compiler calls DefineField, passing the name bsi,
a flags value of fdPublic|fdStatic, and a signature of ELEMENT_TYPE_I4. This call
returns a FieldDef token, which we’ll call fdbsi. Class B also has one instance field,
bii, of type int. The compiler calls DefineField, passing the name bii, a flags value of
fdPublic, and a signature of ELEMENT_TYPE_I4. This call returns a FieldDef token,
which we’ll call fdbii.

From this point forwards in time, Metadata recognizes class B as nested solely
because its flags value is one of the tdNestedXXX bunch – that’s to say, one of
tdNestedPublic, tdNestedPrivate, tdNestedFamily, tdNestedAssembly,
tdNestedFamANDAssem or tdNestedFamORAssem.

Note that, as far as Metadata is concerned, the only thing different about class B
compared with class A, is that it is marked as “nested”, and therefore has an
associated encloser class (defined via tdA). Conversely, class A is not nested – its
flags value is simply tdPublic – and it therefore has no associaated encloser.

Note too that, as explained above, an instance of class A (ie an A object) has only
one field, which we called aii. In particular, there is no field containing a reference to
a B object; nor yet space allocated within the body of A to hold a B object. So, if we
attempt to compile the following code fragment, it will fail, as noted in the
comments:

public static void main(String[] args) {
A a = new A(); // create an A object
a.aii = 42; // works fine
a.bii = 9; // doesn’t work - no such field
a.B.bii = 9; // doesn’t work - no such field

}

Let’s go on and now create an instance of the nestee and see how nester and nestee
relate:

public static void main(String[] args) {
A a = new A(); // create an A object
A.B b = new A.B(); // create a B object
A.asi = 1; //
a.aii = 2; //
A.B.bsi = 3; //
b.bsi = 4; // reach static field via object
b.bii = 4; //

}

So far there is nothing at all surprising – the user of course has to specify he wants
to create that nested class B – saying B on its own doesn’t work since there is no
TypeDef for anything called B (just a NestedTypeDef). Each language may invent its
own syntax for how to ‘reach’ B – the example has chosen the ‘obvious’ one of A.B.
But apart from this naming wrinkle, everything would work the same if, instead of
the nested B, we had been creating and operating upon a class C, defined at top
level.

Where the behaviour of nested types does differ is that they lie within the lexical
scope of their encloser, and so have unbridled access to all fields, properties and
methods of that encloser – even if those fields, properties and methods are marked
private. In this respect, the nested type is on a par with other methods and
properties defined within the encloser. Here is an example that illustrates this:

Page 86

Metadata Interfaces

public class Foo {
 public class A {
 private static int asi = 1;
 private int aii = 2;
 public static void ShowAsi() {Console.WriteLine("A.asi = " + A.asi);}
 public void ShowAii() {Console.WriteLine(" aii = " + aii);}

 public class B {
 private static int bsi = 3;
 private int bii = 4;
 public static void ShowBsi() {Console.WriteLine("B.bsi = " + B.bsi);}
 public void ShowBii() {Console.WriteLine(" bii = " + bii);}
 public static void bsm() {
 asi = 10; // same as: A.asi = 10;
 bsi = 11; // same as: B.bsi = 11;
 }
 public void bim(A x) {
 asi = 13; // same as: A.asi = 13;
 bsi = 14; // same as: B.bsi = 14;
 bii = 15;
 x.asi = 16;
 x.aii = 17;
 }
 }
 }

 public static void main (String[] args) {
 A a = new A();
 A.B b = new A.B();
 A.ShowAsi(); a.ShowAii(); A.B.ShowBsi(); b.ShowBii();
 A.B.bsm(); Console.WriteLine(">>>>>>>call A.B.bsm");
 A.ShowAsi(); a.ShowAii(); A.B.ShowBsi(); b.ShowBii();
 b.bim(a); Console.WriteLine(">>>>>>>call b.bim");
 A.ShowAsi(); a.ShowAii(); A.B.ShowBsi(); b.ShowBii();
 }
}

This program shows how, from within the static method A.B.bsm, we can update the
private static field of our encloser class, A.asi. Similarly, from within the instance
method b.bim, we can update the private instance field aii of any A object that we
are passed as an argument.

Note that the visibility of a nested class affects whether it can be exported outside of
the assembly in which it is defined. However, that visibility is qualified by that of its
encloser. So, if the nested class has public visibility, but its encloser has non-public
visibility, the nested class cannot be exported. This is a simple consequence of the
fact their is no way to actually actually name the nested class from outside the
assembly.

7.10 Example – Less Simple
Our simple example pointed out that the Runtime does not include any field in an
encloser object, A, that references an object of its nested class, B. However, the
user may explicitly add a field within A that holds a reference to a B. He may even
add a ‘backpointer’ to an instance of his encloser, like this:

Page 87

Metadata Interfaces

public class AA {
public int aii;
public BB pbb; // DefineField(“pbb”, fdPublic, sig) => fdpbb
public class BB {

public int bii;
public AA paa; // DefineField(“paa”, fdPublic, sig) => fdpaa

}
}

With this definition of AA, we can write programs like the following, and things work
fine:

public static void main(String[] args) {
AA aa = new AA(); // create an AA object
AA.BB bb = new AA.BB(); // create a BB object
aa.pbb = bb; // hook ‘em one way

 bb.paa = aa; // hook ‘em the other
aa.aii = 1; // works fine
aa.pbb.bii = 2; // works fine
bb.paa.aii = 3; // works fine, even if aii were private

}

A language may choose to hide all of this plumbing detail from their users, and
present a model that automatically provides an object reference field with the
encloser, and nestee, etc. The point is, Metadata will not generate such plumbing.
If a language wants it, the compiler must emit, via DefineField calls, as shown in the
code comment above.

Such additions, by the compiler, can clearly be used as a route to implement “inner”
classes

Page 88

Metadata Interfaces

8 Appendix – ‘Distinguished’ Custom Attributes
The Metadata engine implements two sorts of Custom Attribute, called (genuine)
Custom Attributes, and pseudo Custom Attributes. In the remainder of this
appendix, we’ll abbreviate these terms to CA and PCA. Both CAs and PCAs are
‘handed over’ to Metadata via the DefineCustomAttribute method. But they are
treated differently, as follows:

 a CA is stored directly into the metadata. The ‘blob’ which holds its defining
data is not checked or parsed. That ‘blob’ can be retrieved later

 a PCA is recognized because its name is one of a handful on Metadata’s hard-
wired list of PCAs. The engine parses its ‘blob’ and uses this information to
set bits and/or fields within the Metadata tables. The engine then totally
discards the ‘blob’. So you cannot retrieve that ‘blob’ later – it doesn’t exist

PCAs therefore serve to capture user ‘directives’, using the same familiar syntax the
compiler provides for regular CAs – but these ‘directives’ are then stored into the
more space-efficient form of metadata tables. Tables are also faster to check at
runtime than full-bloodied (genuine) CAs. An example of a PCA is the
SerializableAttribute – if the compiler calls DefineCustomAttribute with this PCA as an
argument, the Metadata engine simply sets the tdSerializable bit on the target class
definition.

Many CAs are invented by higher layers of software – Metadata stores them, and
returns them, without knowing, or caring, what they ‘mean’. But all PCAs, plus a
handful of regular CAs are of special interest to compilers and to the Runtime. An
example of such ‘distinguished’ CAs is System.Reflection.DefaultMemberAttribute.
This is stored in metadata as a regular CA ‘blob’, but Reflection uses this CA when
called to Invoke the default member (property) for a Class.

This appendix lists all of the PCAs and ‘distinguised’ CAs – where ‘distinguished’
means that the Runtime and/or Compilers pay direct attention to them.

Note that it is a Frameworks design guideline that all CAs should be named to end in
“Attribute” (Neither Metadata or Runtime check, or care, about this convention)

8.1Pseudo Custom Attributes (PCAs)
The Metadata engine checks for the following CAs, as part of the processing for the
DefineCustomAttribute method. The check is solely on their name – for example
“DllImportAttribute” – their namespace is ignored. If a name match is found, the
Metadata engine parses the ‘blob’ argument and sets bits and/or fields within the
Metadata tables. It then throws the ‘blob’ on the floor (this is the definition of a PCA
– see above):

System.InteropServices.DllImportAttribute
System.InteropServices.GuidAttribute
System.InteropServices.ComImportAttribute
System.InteropServices.MethodImplAttribute
System.InteropServices.MarshalAsAttribute
System.InteropServices.PreserveSigAttribute
System.InteropServices.InAttribute
System.InteropServices.OutAttribute

Page 89

Metadata Interfaces

System.SerializableAttribute
System.NonSerializedAttribute

For a definition of these PCAs, see the online doc for Base Class Libraries, or the
“Data Interop” spec.

8.2CAs that affect Runtime
The Runtime ‘pays attention’ to the CAs listed below. So, if a compiler attaches any
of these CAs to a programming element (Class, Field, Assembly, etc, etc), then it will
affect how that element is treated at runtime. For further details on this long list of
CAs, consult the online doc for the Base Class Library, or appropriate specs in the
area that each covers.

CAs that control runtime behavior of the JIT-compiler and the debugger:

System.Diagnostics.DebuggableAttribute
System.Diagnostics.DebuggerHiddenAttribute
System.Diagnostics.DebuggerStepThroughAttribute
System.Diagnostics.DebuggableAmbivalentAttribute

CA that is used by Reflection’s Invoke call – it invokes the property for the Type
defined in this CA:

System.Reflection.DefaultMemberAttribute

CAs that control behavior of Interop services (inter-operation with ‘classic’ COM
objects, and PInvoke dispatch to unmanaged code):

System.Runtime.InteropServices.ComConversionLossAttribute
System.Runtime.InteropServices.ComEmulateAttribute
System.Runtime.InteropServices.ComImportAttribute
System.Runtime.InteropServices.ComRegisterFunctionAttribute
System.Runtime.InteropServices.ComSourceInterfacesAttribute
System.Runtime.InteropServices.ComUnregisterFunctionAttribute
System.Runtime.InteropServices.DispIdAttribute
System.Runtime.InteropServices.ExposeHResultAttribute
System.Runtime.InteropServices.FieldOffsetAttribute
System.Runtime.InteropServices.GlobalObjectAttribute
System.Runtime.InteropServices.HasDefaultInterfaceAttribute
System.Runtime.InteropServices.IDispatchImplAttribute
System.Runtime.InteropServices.ImportedFromTypeLibAttribute
System.Runtime.InteropServices.InterfaceTypeAttribute
System.Runtime.InteropServices.NoComRegistrationAttribute
System.Runtime.InteropServices.NoIDispatchAttribute
System.Runtime.InteropServices.PredeclaredAttribute
System.Runtime.InteropServices.StructLayoutAttribute
System.Runtime.InteropServices.TypeLibFuncAttribute
System.Runtime.InteropServices.TypeLibTypeAttribute
System.Runtime.InteropServices.TypeLibVarAttribute

CAs that affect behavior of remoting:

System.Runtime.Remoting.ContextAttribute
System.Runtime.Remoting.Synchronization
System.Runtime.Remoting.ThreadAffinity
System.Runtime.Remoting.OneWayAttribute

Page 90

Metadata Interfaces

CAs that affect the security checks performed upon method invocations at runtime:

System.Security.DynamicSecurityMethodAttribute
System.Security.Permissions.SecurityAttribute
System.Security.Permissions.CodeAccessSecurityAttribute
System.Security.Permissions.EnvironmentPermissionAttribute
System.Security.Permissions.FileDialogPermissionAttribute
System.Security.Permissions.FileIOPermissionAttribute
System.Security.Permissions.IsolatedStoragePermissionAttribute
System.Security.Permissions.IsolatedStorageFilePermissionAttribute
System.Security.Permissions.PermissionSetAttribute
System.Security.Permissions.PublisherIdentityPermissionAttribute
System.Security.Permissions.ReflectionPermissionAttribute
System.Security.Permissions.RegistryPermissionAttribute
System.Security.Permissions.SecurityPermissionAttribute
System.Security.Permissions.SiteIdentityPermissionAttribute
System.Security.Permissions.StrongNameIdentityPermissionAttribute
System.Security.Permissions.UIPermissionAttribute
System.Security.Permissions.ZoneIdentityPermissionAttribute
System.Security.Permissions.PrincipalPermissionAttribute
System.Security.SuppressUnmanagedCodeSecurityAttribute
System.Security.UnverifiableCodeAttribute

CA that denotes a TLS (thread-local storage) field:

System.ThreadStatic

The following CAs are used by the ALink tool to transfer information between
Modules and Assemblies (they are temporarily ‘hung off’ a TypeRef to a class called
AssemblyAttributesGoHere) then merged by ALink and ‘hung off’ the Assembly:

System.Runtime.CompilerServices.AssemblyOperatingSystemAttribute
System.Runtime.CompilerServices.AssemblyProcessorAttribute
System.Runtime.CompilerServices.AssemblyCultureAttribute
System.Runtime.CompilerServices.AssemblyVersionAttribute
System.Runtime.CompilerServices.AssemblyKeyFileAttribute
System.Runtime.CompilerServices.AssemblyKeyNameAttribute
System.Runtime.CompilerServices.AssemblyDelaySignAttribute

Page 91

	1 Overview of the Metadata API
	1.1 Metadata Interfaces
	1.2 Metadata Abstractions
	1.3 Using the APIs and Metadata Tokens
	1.3.1 The Complile/Link Style of Interaction
	1.3.2 The RAD Tool Style of Interaction
	1.3.3 IMapToken
	1.3.4 IMetaDataError

	1.4 Related Specifications
	1.5 Coding Conventions
	1.5.1 Handling String Parameters
	1.5.2 Optional Return Parameters
	1.5.3 Storing Default Values
	1.5.4 Null Pointers for Return Parameters
	1.5.5 “Ignore This Argument”
	1.5.6 Error Returns

	2 IMetadataDispenserEx
	2.1 DefineScope
	2.2 OpenScope
	2.3 OpenScopeOnMemory
	2.4 SetOption
	2.5 GetOption

	3 IMetaDataEmit
	3.1 Defining, Saving, and Merging Metadata
	3.1.1 SetModuleProps
	3.1.2 Save
	3.1.3 SaveToStream
	3.1.4 SaveToMemory
	3.1.5 GetSaveSize
	3.1.6 MergeEx
	3.1.7 MergeEndEx
	3.1.8 SetHandler

	3.2 Custom Attributes and Custom Values
	3.2.1 Using Custom Attributes
	3.2.2 Using Custom Values
	3.2.3 DefineCustomAttribute
	3.2.4 SetCustomAttributeValue

	3.3 Building Type Definitions
	3.3.1 DefineTypeDef
	3.3.2 SetTypeDefProps

	3.4 Declaring and Defining Members
	3.4.1 DefineMethod
	3.4.2 SetMethodProps
	3.4.3 DefineField
	3.4.4 SetFieldProps
	3.4.5 DefineNestedType
	3.4.6 DefineParam
	3.4.7 SetParamProps
	3.4.8 DefineMethodImpl
	3.4.9 SetRVA
	3.4.10 SetFieldRVA
	3.4.11 DefinePinvokeMap
	3.4.12 SetPinvokeMap
	3.4.13 SetFieldMarshal

	3.5 Building Type and Member References
	3.5.1 DefineTypeRefByName
	3.5.2 DefineImportType
	3.5.3 DefineMemberRef
	3.5.4 DefineImportMember
	3.5.5 DefineModuleRef
	3.5.6 SetParent

	3.6 Declaring Events and Properties
	3.6.1 DefineProperty
	3.6.2 SetPropertyProps
	3.6.3 DefineEvent
	3.6.4 SetEventProps

	3.7 Specifying Layout Information for a Class
	3.7.1 SetClassLayout

	3.8 Miscellaneous
	3.8.1 GetTokenFromSig
	3.8.2 GetTokenFromTypeSpec
	3.8.3 DefineUserString
	3.8.4 DeleteToken

	3.9 Order of Emission

	4 MetaDataImport
	4.1 Enumerating Collections
	4.1.1 CloseEnum Method
	4.1.2 CountEnum Method
	4.1.3 ResetEnum
	4.1.4 IsValidToken
	4.1.5 EnumTypeDefs
	4.1.6 EnumInterfaceImpls
	4.1.7 EnumMembers
	4.1.8 EnumMembersWithName
	4.1.9 EnumMethods
	4.1.10 EnumMethodsWithName
	4.1.11 EnumUnresolvedMethods
	4.1.12 EnumMethodSemantics
	4.1.13 EnumFields
	4.1.14 EnumFieldsWithName
	4.1.15 EnumParams
	4.1.16 EnumMethodImpls
	4.1.17 EnumProperties
	4.1.18 EnumEvents
	4.1.19 EnumTypeRefs
	4.1.20 EnumMemberRefs
	4.1.21 EnumModuleRefs
	4.1.22 EnumCustomAttributes
	4.1.23 EnumSignatures
	4.1.24 EnumTypeSpecs
	4.1.25 EnumUserStrings

	4.2 Finding a Specific Item in Metadata
	4.2.1 FindTypeDefByName
	4.2.2 FindMember
	4.2.3 FindMethod
	4.2.4 FindField
	4.2.5 FindMemberRef
	4.2.6 FindTypeRef

	4.3 Obtaining Properties of a Specified Object
	4.3.1 GetScopeProps
	4.3.2 GetModuleFromScope
	4.3.3 GetTypeDefProps
	4.3.4 GetNestedClassProps
	4.3.5 GetInterfaceImplProps
	4.3.6 GetCustomAttributeProps
	4.3.7 GetCustomAttributeByName
	4.3.8 GetMemberProps
	4.3.9 GetMethodProps
	4.3.10 GetFieldProps
	4.3.11 GetParamProps
	4.3.12 GetParamForMethodIndex
	4.3.13 GetPinvokeMap
	4.3.14 GetFieldMarshal
	4.3.15 GetRVA
	4.3.16 GetTypeRefProps
	4.3.17 GetMemberRefProps
	4.3.18 GetModuleRefProps
	4.3.19 GetPropertyProps
	4.3.20 GetEventProps
	4.3.21 GetMethodSemantics
	4.3.22 GetClassLayout
	4.3.23 GetSigFromToken
	4.3.24 GetTypeSpecFromToken
	4.3.25 GetUserString
	4.3.26 GetNameFromToken
	4.3.27 ResolveTypeRef

	5 Appendix – IMetaDataTables
	6 Appendix – MethodImpls
	6.1 Intro
	6.2 Details
	6.3 ReNaming Recommendations
	6.4 Notes

	7 Appendix – NestedTypes
	7.1 Introduction
	7.2 Definition
	7.3 Supported Features
	7.4 Visibility, Subclassing, and Member Access
	7.5 Naming
	7.6 Naked Instances
	7.7 C++ “Member Classes”
	7.8 C++ “Friends”
	7.9 Example - Simple
	7.10 Example – Less Simple

	8 Appendix – ‘Distinguished’ Custom Attributes
	8.1 Pseudo Custom Attributes (PCAs)
	8.2 CAs that affect Runtime

