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1 Introduction
This spec is a companion to the Metadata Interfaces spec.  It describes data 
structures that you can emit into metadata – specifically

 bitmasks
 signatures
 custom attributes
 marshalling specs

The first is quite simple – you just need to know the names of the bits, what they 
mean, and what are the legal combinations.  The others are moderately complex 
binary formats – each is defined in this spec via syntax charts and/or simple BNF 
grammars

2 Bitmasks
This section explains the various bitmasks used to define attributes of Types, 
Methods, Fields, etc.  All of the enums described in this section are defined in 
CorHdr.h, which ships with the NGWS SDK

2.1Token Types [CorTokenType]
These are the values of the top byte in any metadata token that says what kind 
of token it is.  Unlike other lists in this spec, we includes the value assigned to 
each member:

mdtModule  0x00000000 
mdtTypeRef 0x01000000 
mdtTypeDef 0x02000000 
mdtFieldDef 0x04000000 
mdtMethodDef 0x06000000 
mdtParamDef 0x08000000 
mdtInterfaceImpl 0x09000000 
mdtMemberRef 0x0a000000 
mdtCustomAttribute 0x0c000000 
mdtPermission 0x0e000000 
mdtSignature 0x11000000 
mdtEvent 0x14000000 
mdtProperty 0x17000000 
mdtModuleRef 0x1a000000 
mdtTypeSpec 0x1b000000 
mdtAssembly 0x21000000
mdtAssemblyRef 0x25000000
mdtFile 0x29000000
mdtComType 0x2a000000
mdtManifestResource 0x2b000000
mdtExecutionLocation 0x2d000000
mdtString 0x70000000 
mdtName 0x71000000
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2.2Scope Open Flags [CorOpenFlags]
These are used on IMetadataDispenser::OpenScope to specify the sort of access you 
want

ofRead : open scope for read
ofWrite : open scope for write
ofCopyMemory : open cope with memory.  Metadata keeps own copy
ofCacheImage : EE maps but does not perform relocs or verify image

2.3Options for Size Calculation [CorSaveSize]
These are used on IMetaDataEmit::GetSaveSize to specify the sort of calculation you 
want

cssAccurate : find exact save size; accurate but slow
cssQuick : estimate save size; may pad estimate; but fast
cssDiscardTransientCAs : remove all Custom Attributes that are marked 
discardable

2.4Flags for Types [CorTypeAttr]
You can define three kinds of Type in metadata – reference types (classes and 
interfaces), valuetypes (includes enums) and unmanaged valuetypes.  You define 
any of those types using:

IMetaDataEmit::DefineTypeDef – to make the initial definition
IMetaDataEmit::SetTypeDefProps – to change the attributes for a previously-
defined type

Both DefineTypeDef and SetTypeDefProps include a DWORD parameter, called 
dwTypeDefFlags, that is a bitmask of the CorTypeAttr enum.  The individual bits 
within the CorTypeAttr enum are defined as follows:

Visibility : whether a type can be ‘seen’ outside of its assembly.

tdNotPublic : type cannot be seen outside of its assembly
tdPublic : type can be seen outside of its assembly

Accessibility of a nested class

tdNestedPrivate : class is nested.  Accessible only by methods in its own, or 
its enclosing type
tdNestedFamily : class is nested.  Accessible only by methods within its 
family; ie, its own type and any sub-types
tdNestedAssembly : class is nested.  Accessible only by methods within its 
assembly
tdNestedFamANDAssem : class is nested.  Accessible only by methods 
lying in the intersection of its family and assembly
tdNestedFamORAssem : class is nested.  Accessibile only by methods lying 
in the union of its family and assembly

Layout of a class

tdAutoLayout : fields will be laid out at the whim of the runtime
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tdLayoutSequential : fields will be laid out sequentially, in the order the 
fields were emitted to the metadata.  You can control the gaps between fields 
by specifying a packing size (by a call to SetClassLayout)
tdExplicitLayout : fields will be laid out at the offsets specified (by a call to 
SetClassLayout)

Class semantics : these define the sort of type-definition.

tdClass : this is a class
tdInterface : this is an interface
tdValueType : this is a valuetype
tdUnmanagedValueType : is never allocated from the GC heap

Additional Class Semantics : these are used, in addition to the preceding “class 
semantic” flags, to refine what sort of type is being defined

tdAbstract : abstract (cannot be instantiate)
tdSealed : class cannot be derived-from
tdSpecialName : class is special : its name says how

Implementation Attributes

tdSerializable : class can be serialized

Interop Attributes

tdAnsiClass  : strings are marshalled to unmanaged ANSI strings
tdUnicodeClass : strings are marshalled to unmanaged UNICODE strings
tdAutoClass : strings are marshalled to unmanaged ANSI or UNICODE, as 
determined by the platform, at runtime

Reserved for internal use : do not set these via the metadata APIs

tdRTSpecialName : class is treated specially by the runtime
tdImport : class or interface is defined in a type library
tdLateInit : class can be initialized lazily by runtime
tdHasSecurity : used internally

Figure 1 shows, with a  sign, which flags can be set for each kind or type-definition: 
class, interface, valuetype, and unmanaged valuetype.  Conversely, the blank boxes 
show which settings are illegal.  The table includes horizontal, shaded bands: these 
gather together flags that are mutually exclusive.  Specifically:

 If defining a nested type or valuetype, you must set exactly one of the block of 
flags tdNestedPublic thru tdNestedFamOrAssem

 If defining a class, valuetype or unmanaged valuetype, you must set exactly one 
of tdAutoLayout, tdLayoutSequential or tdExplicitLayout

Figure 1 – Legal Flag Combinations from CorTypeAttr

Class Interface ValueType Unmgd ValueType

tdClass          

tdInterface          

tdValueType          

tdUnmanagedValueType          

tdNotPublic    

tdPublic    
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tdNestedPublic       

tdNestedPrivate       

tdNestedFamily       

tdNestedAssembly       

tdNestedFamANDAssem       

tdNestedFamOrAssem       

tdAutoLayout      

tdLayoutSequential      

tdExplicitLayout      

tdAbstract    

tdSealed      

tdSpecialName    

tdRTSpecialName    

Notes:

The runtime also takes note of each Type’s inheritance chain to decide how to treat 
them –

 System.ValueType
 System.Enum
 System.MarshalByRefObject
 System.ContextBoundObject

2.5Flags for Fields [CorFieldAttr]
Fields are defined using IMetadataEmit::DefineField.  The flags you can set are as 
follows:

Field Accessibility

fdPublic : accessible by any methods
fdPrivate : accessible only by methods in its own type
fdFamily : accessible only by methods within its family; ie, its own type and 
any subtypes
fdAssembly : accessible only by methods within its assembly
fdFamANDAssem : accessible only by methods lying in the intersection of 
its family and assembly
fdFamORAssem  : accessible only by methods lying in the union of its family 
and assembly
fdPrivateScope : field cannot be referenced (typically used by a compiler to 
mark a field which is a static local variable in a method)

Field Contract
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fdStatic : field is defined for a type (else an instance field).  Note this flag is 
encoded into a field signature; you don’t need to specify both, but if you do, 
they should match
fdInitOnly : field value may be set only during initialize (in the class 
constructor).  The runtime checks this behaviour; and JITs use this flag to 
optimize their code.  Note that a field cannot be marked both fdInitOnly and 
fdLiteral (see next)
fdLiteral : value is compile-time constant.  It might be optimized away by 
the compiler; in this case, the value is ‘burned’ into the IL stream, and no 
memory is allocated to hold this value.  It is illegal to take the address of a 
literal field.  Note that a field cannot be marked both fdLiteral and fdInitOnly. 
If a field is marked fdLiteral, it must also be marked fdStatic.
fdNotSerialized : field will not be serialized (unless class author implements 
ISerializable)
fdSpecialName : field is special : its name says in what way
fdPinvokeImpl : field is reached via PInvoke dispatch

Reserved for internal use : do not set these via the metadata APIs

fdRTSpecialName
fdHasFieldMarshal
fdHasSecurity
fdHasDefault
fdHasFieldRVA

2.6Flags for Methods [CorMethodAttr]
Methods are defined using IMetadataEmit::DefineMethod.  The flags you can set are 
as follows:

Method Accessibility

mdPublic : callable by any method
mdPrivate : callable only by methods in its own, or its parent type
mdFamily : callable only by methods within its family; ie, its own type and 
any sub-types
mdAssem : callable only by methods within its assembly
mdFamANDAssem : callable only by methods lying in the intersection of its 
family and assembly
mdFamORAssem  : callable only by methods lying in the union of its family 
and assembly
mdPrivateScope : method cannot be called (typically used by a compiler for 
a method whose scope is restricted to its compiland;  eg C++ static global 
function)

Method Contract

mdStatic : method is defined for a type (else an instance method).  Note this 
flag is encoded into a field signature; you don’t need to specify both, but if 
you do, they should match
mdFinal : method may not be over-ridden by a sub-class.  Mutually exclusive 
with mdAbstract
mdVirtual : method is virtual
mdAbstract : method has no implementation in this class.  Mutually 
exclusive with mdFinal
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mdHideBySig : method is hidden by name + signature, else just by name
mdUnmanagedExport : method is managed, but exported via the EAT, to 
unmanaged code (runtime inserts a marshalling thunk)
mdPinvokeImpl : method is called via PInvoke dispatch
mdSpecialName : method is special : its name says in what way.  Used, for 
example, for operator overload

Vtable Layout 

mdReuseSlot : reuse an existing slot.  Note that if the superclass’ 
declaration is deleted, and you have no references to that method in your 
implementation, then your declaration will be used to create the slot (may 
hide)
mdNewSlot : method always gets a new slot (hides)

Reserved for internal use : do not set these via the metadata APIs

mdRTSpecialName : method is treated specially by the runtime.  If set, you 
must also set the mdSpecialName bit  (eg “.ctor”)
mdHasSecurity
mdRequireSecObject

2.7Flags for Method Parameters [CorParamAttr]
Method parameters are defined using IMetadataEmit::DefineParam and 
SetParamProps.  The flags you can set are as follows:

Flags

pdIn : input parameter
pdOut : output parameter
pdLcid : LCID
pdRetVal : return value from a method
pdOptional : parameter is optional

Reserved for internal use : do not set these via the metadata APIs

pdHasDefault
pdHasFieldMarshal
pdReserved3
pdReserved4

2.8Flags for Properties [CorPropertyAttr]
Properties are defined using IMetadataEmit::DefineProperty.  The flags you can set 
are as follows:

Flags

prSpecialName : property is special : its name says in what way.  Used, for 
example, for operator overloading

Reserved for internal use : do not set these via the metadata APIs

prRTSpecialName : property is treated specially by the runtime.  If set, you 
must also set the prSpecialName bit 
prHasDefault
prReserved2 : reserved
prReserved3 : reserved
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prReserved4 : reserved

2.9Flags for Events [CorEventAttr]
Events are defined using IMetadataEmit::DefineEvent.  The flags you can set are as 
follows:

evSpecialName : event is special : its name says in what way.  Used, for 
example, for operator overloading
evRTSpecialName : event is treated specially by the runtime.  If set, you 
must also set evSpecialName

2.10 Flags for MethodSemantics 

[CorMethodSemanticsAttr]
These flags describe the particular role played by each method defined (in a group) 
by a call to IMetaDataEmit::DefineProperty or to DefineEvent.  They are derived 
from the way the methods were provided to the IMetaDataEmit::DefineProperty or 
DefineEvent call.   This enumeration is used to return information from the 
IMetaDataImport::GetMethodSemantics call.  Note that there is no corresponding 
DefineMethodSemantics call.    The flags that can be set in the returned information 
are as follows:

msSetter : the setter method for this property
msGetter : the getter method for this property
msOther : one of the ‘other’ methods defined for this property
msAddon : the AddOn method for the event
msRemoveOn : the RemoveOn method for the event
msFire : the Fire method for the event

2.11 Flags for Method Implementations 

[CorMethodImpl]
Method implementations are defined using IMetadataEmit::DefineMethod, 
DefineMethodImpl and SetRVA.  The flags you can set are as follows:

Method Implementation

miNative : implemented as native (machine) code.  Mutually exclusive with 
miIL and miOPTIL
miIL : implemented as IL.  Mutually exclusive with miNative and miOPTIL
miOPTIL : implemented as OPTIL.  Mutually exclusive with miNative and 
miIL
miRuntime : implementation is provided by the runtime.  For example, 
runtime supplies class initializer for a COM+ 1.0 class
miUnmanaged : implemented as unmanaged code
miManaged : implemented as managed code
miForwardRef : a forward reference (in C++) to a method whose 
implementation is provided in another module 
miOLE : signature has been changed to return an HRESULT, with the real 
return value as a parameter
miSynchronized : method is single-threaded

Page 10 of 41



Metadata Structures

miNoInlining : JIT is not allowed to inline this method
miOneWay : method returns void and all parameters are in-only.  Can be 
executed synchronously or asynchronously with respect to the caller.  On 
return, caller cannot assume the method has been executed yet

Reserved for internal use : do not set this flag via the metadata APIs

miInternalCall : reserved (indicates a fast call within minimal, or no, stack 
frame)

2.12 Flags for Security [CorDeclSecurity]
Security attributes are declared using IMetadataEmit::DefinePermissionSet.  The 
flags you can set are listed below.  Please see the Permissions spec for their 
meaning:

dclActionNil :
dclRequest :
dclDemand :
dclAssert :
dclDeny : 
dclPermitOnly :
dclLinktimeCheck : 
dclInheritanceCheck :
dclRequestMinimum :
dclRequestOptional :
dclRequestRefuse :
dclPrejitGrant :
dclPrejitDenied :

2.13 Struct for Field Offsets 

[COR_FIELD_OFFSET]
This struct is used by IMetaDataEmit::SetClassLayout.  It has two fields, as follows:

    mdFieldDef ridOfField;
    ULONG ulOffset; 

2.14 Typedef for Signatures [PCOR_SIGNATURE]
This type is used everywhere a metadata method takes a signature as an argument. 
In fact, it is simply a typedef for a pointer to an unsigned byte, so giving the 
definition doesn’t help!  However, for what it’s worth, here’s the definition:

typedef unsigned __int8      COR_SIGNATURE

typedef COR_SIGNATURE* PCOR_SIGNATURE

See section 3 for details on how signature ‘blobs’ should be formatted

2.15 Flags for PInvoke Interop [CorPinvokeMap]
Attributes that control how unmanaged methods are invoked, and how their 
arguments are mashalled via PInvoke, are defined using 
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IMetadataEmit::DefinePinvokeMap or SetPinvokeMap.  All of the flags below can be 
applied only to a method, never to a field.  The flags you can set are as follows:

Flags

pmNoMangle : directs PInvoke to take the name precisely as specified; it 
will not peform a fuzzy match on the name (eg specify Foo, but look for FooA, 
FooW, Foo).  Can be applied only to methods.
pmCharSetNotSpec : no character set specified for marshalling
pmCharSetAnsi : marshal managed Strings to ASCII strings
pmCharSetUnicode : marshal managed Strings to Unicode strings
pmCharSetAuto : marshal managed Strings to ASCII or Unicode, as 
determined by current platform.  Note, this is determined at compile time, not 
runtime.
pmPinvokeOLE : returns an HRESULT 
pmSupportsLastError : save last error encountered whilst executing 
unmanaged code: can be interrogated later

Calling Convention Flags

pmCallConvWinapi : will use the calling convention for the actual windows 
platform; this is determined at run time
pmCallConvCdecl : use CDECL
pmCallConvStdcall : use STDCALL
pmCallConvThiscall : not supported
pmCallConvFastcall : not supported

Note that you can set only one of the calling convention flags

2.16 SetOptions: Duplicate Checking 

[CorCheckDuplicatesFor]
These flags are used in calling IMetadataDispenser::SetOption to control what 
checking the metadata API does for duplicates.  The flags you can set in the bitmask 
are:

MDNoDupChecks 
MDDupTypeDef
MDDupInterfaceImpl
MDDupMethodDef
MDDupTypeRef
MDDupMemberRef
MDDupMethodImpl
MDDupCustomValue
MDDupCustomAttribute
MDDupParamDef
MDDupPermission
MDDupProperty
MDDupEvent
MDDupFieldDef
MDDupSignature
MDDupModuleRef
MDDupTypeSpec
MDDupImplMap
MDDupOrdinalMap

Page 12 of 41



Metadata Structures

MDDupAssemblyRef
MDDupFile
MDDupComType
MDDupManifestResource
MDDupExecutionLocation
MDDupDefault : the default, set to MDNoDupChecks | MDDupTypeRef | 
MDDupMemberRef | MDDupSignature | MDDupTypeSpec
MDDupAll : set all bits on
MDDupENC : default for Edit & Continue – same as MDDupAll

2.17 SetOptions: Ref-to-Def Optimizations 

[CorRefToDefCheck]
These flags are used in calling IMetadataDispenser::SetOption to control ref-to-def 
optimizations.  The flags you can set in the bitmask are:

MDRefToDefNone
MDTypeRefToDef
MDMemberRefToDef
MDRefToDefDefault : default, = MDTypeRefToDef | MDMemberRefToDef
MDRefToDefAll : set all bits on

2.18 SetOptions: Token Remap Notification 

[CorNotificationForTokenMovement]
These flags are used in calling IMetadataDispenser::SetOption to specify which token 
remaps are notified to you.  The flags you can set in the bitmask are:

MDNotifyNone
MDNotifyMethodDef
MDNotifyMemberRef
MDNotifyFieldDef
MDNotifyTypeRef
MDNotifyTypeDef
MDNotifyParamDef
MDNotifyMethodImpl
MDNotifyInterfaceImpl
MDNotifyProperty
MDNotifyEvent
MDNotifySignature
MDNotifyTypeSpec
MDNotifyCustomValue
MDNotifyCustomAttribute
MDNotifySecurityValue
MDNotifyPermission 
MDNotifyModuleRef 
MDNotifyNameSpace 
MDNotifyDebugTokens : covers all debug tokens
MDNotifyAssemblyRef 
MDNotifyFile 
MDNotifyComType
MDNotifyResource
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MDNotifyExecutionLocation
MDNotifyDefault : MDNotifyTypeRef | MDNotifyMethodDef | 
MDNotifyMemberRef |  MDNotifyFieldDef
MDNotifyAll  : set all bits on

2.19 SetOptions: Edit & Continue [CorSetENC]
These flags are used in calling IMetadataDispenser::SetOption to specify options for 
your Edit And Continue scope.  You can set just one of the following values – this is 
not a bitmask:

MDUpdateENC : ENC mode.  Tokens don't move; can be updated
MDUpdateFull : normal update mode
MDUpdateExtension : extension mode.  Tokens don't move, adds only
MDUpdateIncremental : incremental compilation
MDUpdateDelta : if ENC on, save only deltas

2.20 SetOptions: Out-of-Order Errors 

[CorErrorIfEmitOutOfOrder]
These flags are used in calling IMetadataDispenser::SetOption to specify which sorts 
of out-of-order emit ‘errors’ you are notified of.

MDErrorOutOfOrderNone : do not generate any errors for out of order emit
MDMethodOutOfOrder : generate error when methods are emitted out of 
order
MDFieldOutOfOrder : generate error when fields are emitted out of order
MDParamOutOfOrder : generate error when params are emitted out of 
order
MDPropertyOutOfOrder : generate error when properties are emitted out of 
order
MDEventOutOfOrder : generate error when events are emitted out of order
MDErrorOutOfOrderDefault : default = do not generate any errors
MDErrorOutOfOrderAll : set all bits on

2.21 SetOptions: Hide Deleted Tokens 

[CorImportOptions]
These flags are used in calling IMetadataDispenser::SetOption, in an Edit & Continue 
regime, to specify which sorts of deleted tokens are returned in enumerations.

MDImportOptionAllTypeDefs : all TypeDefs
MDImportOptionAllMethodDefs : all MethodDefs
MDImportOptionAllFieldDefs : all FieldDefs
MDImportOptionAllProperties : all Properties
MDImportOptionAllEvents : all Events
MDImportOptionAllCustomAttributes : all CustomAttributes
MDImportOptionAllComTypes : all ComTypes
MDImportOptionDefault : default is none
MDImportOptionAll : set all bits on
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2.22 Flags for Assemblies [CorAssemblyFlags]
Assemblies are defined using IMetadataEmit::DefineAssembly.  The flags you can set 
are as follows:

afImplicitComTypes : ComType definitions are implicit within the files
afImplicitResources : resource definitions are implicit within the files
afSideBySideCompatible: assembly is side by side compatible
afNonSideBySideAppDomain : assembly cannot execute with other 
versions if they are executing in the same application domain
afNonSideBySideProcess  : assembly cannot execute with other versions if 
they are executing in the same process
afNonSideBySideMachine  : assembly cannot execute with other versions if 
they are executing on the same machine

2.23 Flags for Assembly Reference 

[CorAssemblyRefFlags]
Assembly references are defined using IMetadataEmit::DefineAssemblyRef.  The 
flags you can set are as follows:

arFullOriginator : assembly ref holds the full (undotted) originator

2.24 Flags for Manifest Resources 

[CorManifestResourceFlags]
Manifest resources are defined using IMetadataEmit::DefineManifestResource.  The 
flags you can set are as follows:

mrPublic : the resource is exported from the assembly

mrPrivate : the resource is private to the assembly

2.25 Flags for Files [CorFileFlags]
File attributes are defined using IMetadataEmit::DefineFile.  The flags you can set 
are as follows:

ffWriteable : the file is writeable post-build

ffContainsNoMetaData : the file contains no metadata

2.26 Element Types in the runtime 

[CorElementType]
These element types are used in defining method and field signatures.  Many of 
these require no explanation, and are simply listed by-name.  See the Signatures 
Spec for more detail.  The total list is:

‘Simple’ Types

ELEMENT_TYPE_END : used to terminate arrays of info in the metadata API 
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ELEMENT_TYPE_VOID
ELEMENT_TYPE_BOOLEAN
ELEMENT_TYPE_CHAR
ELEMENT_TYPE_I1 
ELEMENT_TYPE_U1 
ELEMENT_TYPE_I2 
ELEMENT_TYPE_U2 
ELEMENT_TYPE_I4 
ELEMENT_TYPE_U4 
ELEMENT_TYPE_I8 
ELEMENT_TYPE_U8 
ELEMENT_TYPE_R4 
ELEMENT_TYPE_R8 
ELEMENT_TYPE_STRING 

‘Non-Simple’ Types

ELEMENT_TYPE_PTR
ELEMENT_TYPE_BYREF 
ELEMENT_TYPE_VALUETYPE 
ELEMENT_TYPE_CLASS 
ELEMENT_TYPE_ARRAY : the most general array – multi-dimensional, with 
lower and upper bounds 
ELEMENT_TYPE_COPYCTOR : copy-construct the argument
ELEMENT_TYPE_TYPEDBYREF
ELEMENT_TYPE_VALUEARRAY 
ELEMENT_TYPE_I : native integer – will JIT to the platform’s ‘natural’ size
ELEMENT_TYPE_U : native unsigned integer – will JIT to the platform’s 
‘natural’ size 
ELEMENT_TYPE_R : native real – will JIT JIT to the platform’s ‘natural’ size
ELEMENT_TYPE_FNPTR : function pointer 
ELEMENT_TYPE_OBJECT : a shortcut for System.Object
ELEMENT_TYPE_SZARRAY : single dimension array with zero lower bound
ELEMENT_TYPE_GENERICARRAY : ‘open’ array – no rank or dimensions 
information

Modifiers

ELEMENT_TYPE_CMOD_REQD : required NGWS modifier; if a compiler 
imports a type with this modifier set, it should only use the type if it 
‘understands’ the required semantic of the language that defined the type
ELEMENT_TYPE_CMOD_OPT : optional NGWS modifier; if a compiler 
imports a type with this modifier set, it is OK to use
ELEMENT_TYPE_MODIFIER : set this bit, together with either of the 
following:

ELEMENT_TYPE_SENTINEL : sentinel to mark end of predefined arguments 
in a varargs method signature
ELEMENT_TYPE_PINNED : object is pinned against garbage reclamation

2.27 Calling Conventions [CorCallingConvention]
These types are used in defining method and field signatures.  They are used by the 
JIT to determine which sequence of machine code to generate.  See the Signatures 
Spec for more detail.
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Calling Conventions

IMAGE_CEE_CS_CALLCONV_DEFAULT : use default calling convention; 
determined at runtime
IMAGE_CEE_CS_CALLCONV_VARARG : C’s “vararg” (variable number of 
arguments)
IMAGE_CEE_CS_CALLCONV_FIELD : denotes this signature is a field, not 
a method
IMAGE_CEE_CS_CALLCONV_LOCAL_SIG : field is a method-local variable
IMAGE_CEE_CS_CALLCONV_PROPERTY : ‘field’ is a property
IMAGE_CEE_CS_CALLCONV_UNMGD : calls unmanaged code

Modifier Bits : ‘or’ these bits into the previous values, if required (actually two bits 
in the high nybble of the calling convention byte)

IMAGE_CEE_CS_CALLCONV_HASTHIS : JIT a ‘this’ argument for this 
method
IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS : this parameter is explicitly 
in the signature

2.28 Unmanaged Calling Conventions 

[CorUnmanagedCallingConvention]
These types are used in defining method signatures.  They are used by the JIT to 
determine which sequence of machine code to generate.  Each is self-describing:

IMAGE_CEE_UNMANAGED_CALLCONV_C
IMAGE_CEE_UNMANAGED_CALLCONV_STDCALL 
IMAGE_CEE_UNMANAGED_CALLCONV_THISCALL 
IMAGE_CEE_UNMANAGED_CALLCONV_FASTCALL 

2.29 Argument Types [CorArgType]
These types are used in defining method signatures.  See section 3 for more detail

IMAGE_CEE_CS_END 
IMAGE_CEE_CS_VOID
IMAGE_CEE_CS_I4
IMAGE_CEE_CS_I8
IMAGE_CEE_CS_R4
IMAGE_CEE_CS_R8
IMAGE_CEE_CS_PTR
IMAGE_CEE_CS_OBJECT
IMAGE_CEE_CS_STRUCT4
IMAGE_CEE_CS_STRUCT32
IMAGE_CEE_CS_BYVALUE

2.30 Native Types [CorNativeType]
These are used to define rules when marshalling method arguments between 
managed and unmanaged code, for example, in the IMetaDataEmit::SetFieldMarshal 
method.  See the DataTypeMarshaling spec for details.
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NATIVE_TYPE_BOOLEAN : 4 byte boolean value: TRUE = non-zero, FALSE 
= 0
NATIVE_TYPE_I1 
NATIVE_TYPE_U1
NATIVE_TYPE_I2 
NATIVE_TYPE_U2 
NATIVE_TYPE_I4 
NATIVE_TYPE_U4 
NATIVE_TYPE_I8 
NATIVE_TYPE_U8 
NATIVE_TYPE_R4 
NATIVE_TYPE_R8 
NATIVE_TYPE_BSTR : Basic string
NATIVE_TYPE_LPSTR : ASCII string
NATIVE_TYPE_LPWSTR : Unicode string
NATIVE_TYPE_LPTSTR : choose LPSTR or LPWSTR, depending on compile-
time platform
NATIVE_TYPE_FIXEDSYSSTRING : string in a fixed-length buffer
NATIVE_TYPE_STRUCT : C-style struct
NATIVE_TYPE_INTF : COM interface
NATIVE_TYPE_SAFEARRAY : OLE automation safe array
NATIVE_TYPE_FIXEDARRAY : fixed-length array
NATIVE_TYPE_INT : native integer – will JIT to the platform’s ‘natural’ size
NATIVE_TYPE_UINT : native unsigned integer – will JIT to the platform’s 
‘natural’ size
NATIVE_TYPE_BYVALSTR : used only by Visual Basic
NATIVE_TYPE_ANSIBSTR : length-prefixed ASCII string
NATIVE_TYPE_TBSTR : choose BSTR or ANSIBSTR, depending on compile-
time platform
NATIVE_TYPE_VARIANTBOOL : 2-byte boolean value: TRUE = -1, FALSE 
= 0
NATIVE_TYPE_FUNC 
NATIVE_TYPE_LPVOID : blind pointer (no deep marshaling)
NATIVE_TYPE_ASANY
NATIVE_TYPE_R : native real – will JIT to the platform’s ‘natural’ size
NATIVE_TYPE_ARRAY
NATIVE_TYPE_LPSTRUCT : pointer to a C-style struct
NATIVE_TYPE_CUSTOMMARSHALER :  custom marshaler native type. 

3 Signatures
The word signature is conventionally used to describe the type info for a function or 
method – that’s to say, the type of each of its parameters, and the type of its return 
value.  Within Metadata, we extend the use of the word signature to also describe 
the type info for fields, properties and local variables.  Each Signature is stored as a 
(counted) byte array in the Blob heap.  There are five sorts of Signature, as follows:

 MethodDefSig
 MethodRefSig – differs from a MethodDefSig only for VARARG calls
 FieldSig
 PropertySig
 LocalVarSig
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You can tell which sort of Signature blob you are looking at from the value of its 
leading byte (see later)

This section defines the binary blob format for each sort of Signature.  For the most 
part, we use syntax diagrams (hopefully easier to understand than formal XML or 
EBNF)

Note that Signatures are ‘compressed’ before being stored into the blob heap.  It’s 
actually the compiler or code generator who is responsible for compressing them, 
before passing them into the metadata engine.  However, all compilers use the same 
small family of helper functions, defined in Cor.h, to do this task – 

 CorSigCompressData / CorSigUncompressData
 CorSigCompressSignedInt / CorSigUncompressSignedInt
 CorSigCompressToken / CorSigUncompressToken

(Note that CorSigCompressSignedInt is not currently used to build in Signatures).  In 
order to uncompress a value in a Signature, you must know (from its position in the 
Signature) whether to call CorSigUncompressData or CorSigUncompressToken 

Signatures include two modifiers called:

 ELEMENT_TYPE_BYREF – this element ‘points’ to data item which may be 
allocated from the GC heap, or from elsewhere.  It may ‘point’ to the start of 
an object, or to the interior of an object.  Either way, the GC is notified of its 
existence; if it actually ‘points’ into the heap, then GC knows to update its 
value if it moves the object pointed-to during a garbage collection.  This 
modifier can only occur in the definition of Param (section 3.10) or RetType 
(section 3.11).  It may not occur within the definition of a Field (section 3.4)  
[conceptually you could imagine a runtime that did support BYREF fields, but 
ours doesn’t – BYREFs, especially those that point into the interior of an 
object in the GC heap, are expensive to track – since there’s no very strong 
requirement for BYREF fields, we excluded them]

 ELEMENT_TYPE_PTR – this element ‘points’ to a data item which is not 
allocated from the GC heap.  This modifier can occur in the definition of 
Param (section 3.10) or RetType (section 3.11) or Field (section 3.4)

3.1MethodDefSig
A MethodDefSig is indexed by the Method.Signature column.  It captures the 
signature of a method or global function.  The syntax chart for a MethodDefSig looks 
like this:
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This chart uses the following abbreviations:

 HASTHIS for IMAGE_CEE_CS_CALLCONV_HASTHIS
 EXPLICITTHIS for IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS
 DEFAULT for IMAGE_CEE_CS_CALLCONV_DEFAULT
 VARARG for IMAGE_CEE_CS_CALLCONV_VARARG

The first byte of a Signature is composed of two nybbles: the high nybble holds the 
HASTHIS or EXPLICITTHIS (or no) modifier; the low nybble holds the calling 
convention – DEFAULT or VARARG.  (Strictly speaking, a compiler composes the 
value as described, but then calls the CorSigCompressData helper function in Cor.h 
to compress it into 1, 2 or 4 bytes, as required – with the definitions in force today, 
this always results in a 1-byte item) 

ParamCount is an integer that holds the number of parameters (0 or more).  It can 
be any number between 0 and 0x1FFF.FFFF  The compiler compresses it too, using 
CorSigCompressData, before storing into the blob (ParamCount counts just the 
method parameters – it does not include the method’s return type)

The RetType item describes the type of the method’s return value (see later)

The Param item describes the type of each of the method’s parameters (see later).  
There must be ParamCount instances of the Param item.

3.2MethodRefSig
A MethodRefSig is indexed by the MemberRef.Signature column.  This provides the 
callsite Signature for a method.  Normally, this callsite Signature must match exactly 
the Signature specified in the definition of the target method.  For example, if a 
method Foo is defined that takes two uint32s and returns void; then any callsite 
must index a signature that takes exactly two uint32s and returns void.  In this case, 
the syntax chart for a MethodRefSig is identical with that for a MethodDefSig – see 
section 3.1

The Signature at a callsite differs from that at its definition, only for a method with 
the VARARG calling convention.  In this case, the callsite Signature is extended to 
include info about the extra VARARG arguments (for example, corresponding to the 
“...” in C syntax).  The syntax chart for this case is:
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This chart uses the following abbreviations:

 HASTHIS for IMAGE_CEE_CS_CALLCONV_HASTHIS
 EXPLICITTHIS for IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS
 VARARG for IMAGE_CEE_CS_CALLCONV_VARARG
 SENTINEL for ELEMENT_TYPE_SENTINEL

This starts just like the MethodDefSig for a VARARG method (see section 3.1).  But 
we then append an ELEMENT_TYPE_SENTINEL token, followed by extra Param items 
to describe the extra VARARGE arguments.  Note that the ParamCount item must tell 
us the total number of Param items in the Signature – before and after the 
SENTINEL byte. 

In the unusual case that a callsite supplies no extra arguments, the signature should 
not include a SENTINEL (this is the route is shown by the lower arrow that bypasses 
SENTINEL and goes to the end of the MethodRefSig definition)

3.3StandAloneMethodSig
A StandAloneMethodSig is indexed by the StandAloneSig.Signature column.  It is 
typically created as preparation for executing a calli instruction.  It is very similar to 
a MethodRefSig, in that it represents a callsite signature, but its calling convention 
may specify an unmanaged target (the calli instruction invokes either managed, or 
unmanaged code).  Its syntax chart looks like this:
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This chart uses the following abbreviations:

 HASTHIS for IMAGE_CEE_CS_CALLCONV_HASTHIS
 EXPLICITTHIS for IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS
 DEFAULT for IMAGE_CEE_CS_CALLCONV_DEFAULT
 VARARG for IMAGE_CEE_CS_CALLCONV_VARARG
 C for IMAGE_CEE_CS_CALLCONV_C
 STDCALL for IMAGE_CEE_CS_CALLCONV_STDCALL
 THISCALL for IMAGE_CEE_CS_CALLCONV_THISCALL
 FASTCALL for IMAGE_CEE_CS_CALLCONV_FASTCALL
 SENTINEL for ELEMENT_TYPE_SENTINEL

This is the most complex of the various method signatures.  We have combined two 
separate charts into one, using shading.  Thus, for the following calling conventions:

DEFAULT (managed)
STDCALL, THISCALL and FASTCALL (unmanaged)

the signature ends just before the SENTINEL item (these are all non vararg 
signatures).  However, for the managed and unmanaged vararg calling conventions:

VARARG (managed)
C (unmanaged)

the signature can include the SENTINEL and final Param items (it doesn’t have to).  
These options are what is intended by the shading of boxes in the syntax chart
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3.4FieldSig
A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature 
column (in the case where it specifies a reference to a field, not a method, of 
course).   The Signature captures the field’s definition.  The field may be a static or 
instance field in a class, or it may be a global variable.  The syntax chart for a 
FieldSig looks like this:

This chart uses the following abbreviations:

 FIELD  for IMAGE_CEE_CS_CALLCONV_FIELD

Type is defined in section 3.12

3.5PropertySig
A PropertySig is indexed by the Property.Type column.  It captures the type info for 
a Property – that’s to say:

 how many parameters are supplied to its setter method
 the base type of the Property – the type returned by its getter method
 type info for each parameter in the getter method – that’s to say, the index 

parameters

The syntax chart for a PropertySig looks like this:

This chart uses the following abbreviations:

 PROPERTY for IMAGE_CEE_CS_CALLCONV_PROPERTY

Type specifies the type returned by the Getter method for this property.  Type is 
defined in section 3.12.  Param is defined in section 3.10

ParamCount is an integer that holds the number of index parameters in the getter 
methods (0 or more).  It can be any number between 0 and 0x1FFF.FFFF    The 
compiler compresses it, using CorSigCompressData, before storing into the blob (it 
almost inevitably ends up as a single byte)   (ParamCount counts just the method 
parameters – it does not include the method’s base type of the Property)
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3.6LocalVarSig
A LocalVarSig is indexed by the StandAloneSig.Signature column.  It captures the 
type of all the local variables in a method.  Its syntax chart looks like this:

This chart uses the following abbreviations:

 LOCAL_SIG for IMAGE_CEE_CS_CALLCONV_LOCAL_SIG
 BYREF for ELEMENT_TYPE_BYREF

Constraint is defined in section 3.9   Type is defined in section 3.12

Count is an unsigned integer that holds the number of local variables.  It can be any 
number between 1 and 0xFFFF (constrained by the IL instruction set).  The compiler 
compresses it, using CorSigCompressData, before storing into the blob (it almost 
always compresses into one byte)

There must be Count instances of the Constraint*-BYREF?-Type chain in the 
LocalVarSig

A LocalVarSig is created by Compilers and other code generators.  For example, 
ILASM generates a LocalVarSig in response to the .locals directive

3.7CustomMod
The CustomMod (custom modifier) item in Signatures has a syntax chart like this:

This chart uses the following abbreviations:

 CMOD_OPT for ELEMENT_TYPE_CMOD_OPT
 CMOD_REQD for ELEMENT_TYPE_CMOD_REQD

The CMOD_OPT or CMOD_REQD value is compressed using CorSigCompressData – 
their values today are small numbers, so they always compress to a single byte.
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This item is followed by an metadata token that indexes a row in the TypeDef table 
or the TypeRef table.  However, these tokens are encoded and compressed – see 
section 3.8 for details

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely 
ignore it entirely.  Conversely, if the CustomModifier is tagged CMOD_REQD, any 
importing compiler must ‘understand’ the semantic implied by this CustomModifier in 
order to reference the surrounding Signature.

A typical use for a CustomModifier is for VC++ to tag a const parameter to a method

3.8TypeDefEncoded and TypeRefEncoded
These items are compact ways to store a TypeDef or TypeRef token in a Signature.

Consider a regular TypeRef token, such as 0x01000012.  The top byte of 0x01 tells 
us this is a TypeRef token (see the CorTokenType enum in CorHdr.h).  The lower 3 
bytes (0x000012) index row number 0x12 in the TypeRef table

The encoded version of this TypeRef token is made up as follows:

a)  encode the table that this token indexes as the least significant 2 bits.  The bit 
values to use are defined in Cor.h, as follows:

const static mdToken g_tkCorEncodeToken[4] = {mdtTypeDef, 
mdtTypeRef, mdtTypeSpec, mdtBaseType};

b) shift the 3-byte row index (0x000012 in our example) left by 2 bits and OR into 
the 2-bit encoding from step a)

c) call CorSigCompressData on the resulting value

For our example, we end up with the following encoded value:

a)  encoded = g_tkCorEncodToken[1] = 0b0001

b)  encoded = ( 0x000012 << 2 ) |  0x01

            = 0x48 | 0x01

            = 0x49

c)  encoded = CorSigCompressData (0x49) 

            = 0x49

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 
bytes of space in the Signature blob, we encode it as a single byte.

Note that there are two helper functions in Cor.h – CorSigCompressToken and 
CorSigUncompressToken that combine these steps together (encoding the target 
table type and compressing)

3.9Constraint
The Constraint item in Signatures currently has only one possible value – 
ELEMENT_TYPE_PINNED, which specifies that the target type is pinned in the 
runtime heap, and will not be moved by the actions of garbage collection.  Note that 
the Compiler calls CorCompressData to compress the value for Modifier before 
inserting into the Signature blob; but today’s value is small enough that it 
compresses to a single byte.
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A Constraint can only be applied within a LocalVarSig (not a FieldSig).  The Type of 
the local variable must either be a reference type (in other words, it points to the 
actual variable – for example, an Object, or a String); or it must include the BYREF 
item.  The reason is that local variables are allocated on the runtime stack – they are 
never allocated from the runtime heap; so unless the local variable points at an 
object allocated in the GC heap, pinning makes no sense.

[Note: in previous versions, Constraint could also include a VOLATILE value.  
However, this constraint was removed from the Signature – compilers instead issue 
IL instructions that indicate the target variable is volatile]

3.10 Param
The Param (parameter) item in Signatures has a syntax chart like this:

This chart uses the following abbreviations:

 BYREF for ELEMENT_TYPE_BYREF
 TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF

CustomMod is defined in section 3.7.  Type is defined in section 3.12

A TYPEDBYREF is a simple structure of two DWORDs – one indicates the type of the 
parameter, the other, its value.  This struct is pushed on the stack by the caller.  So, 
only at runtime, is the type of the parameter actually provided.  TYPEDBYREF was 
originally introduced to support VB’s “refany” argument-passing technique

3.11 RetType
The RetType (return type) item in Signatures has a syntax chart like this:
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RetType is identical to Param except for one extra possibility, that it can include the 
type VOID.  This chart uses the following abbreviations:

 BYREF for ELEMENT_TYPE_BYREF
 TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (see section 3.10)
 VOID for ELEMENT_TYPE_VOID

CustomMod is defined in section 3.7.  Type is defined in section 3.12

3.12 Type
The Type item in Signatures can be quite complicated.  Below is a simple EBNF 
grammar for Type.  As usual, “|” separates alternatives, “*” denotes zero or more 
occurrences, “?” denotes zero or one occurrence.  Note that the last four productions 
are all recursive: PTR, GENERICARRAY and SZARRAY are left-recursive, whilst ARRAY 
is right-recursive.

Type :=   Intrinsic 
| VALUETYPE TypeDefOrRefEncoded
| CLASS         TypeDefOrRefEncoded
| STRING
| OBJECT
| PTR CustomMod*  VOID
| FNPTR MethodDefSig
| FNPTR MethodRefSig
| PTR CustomMod*  Type
| ARRAY     Type ArrayShape
| GENERICARRAY CustomMod*  Type
| SZARRAY CustomMod*  Type

For compactness, we have missed out the ELEMENT_TYPE_ prefixes in this list.  So, 
for example, “CLASS” is shorthand for ELEMENT_TYPE_CLASS (see the 
CorElementType enum defined in CorHdr.h)

3.12.1 Intrinsic
This represents the set of simple value types provided by the runtime.  They are 
defined as follows:
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BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I  | U  | R

However, CLS (Common Language Subset) does not support this full range of 
intrinsic types – it excludes those in listed in the CLS rule below

3.12.2ARRAY  Type  ArrayShape
The ARRAY production describes the most general definition of an array – multi-
dimensional, specifying size and lower bounds for each dimension.  There are two 
specialized versions of ARRAY – SZARRAY and GENERICARRAY.  Compilers must 
specify these specialized versions when possible to do so

3.12.3GENERICARRAY  CustomMod* Type
The GENERICARRAY production describes an infrequently-used, special-case of 
ARRAY – that’s to say, one whose element type is known, but nothing else – no rank, 
sizes or bounds.  (This signature is emitted by C# for an “int[?]” array)

3.12.4SZARRAY  CustomMod* Type
The SZARRAY production describes a frequently-used, special-case of ARRAY – that’s 
to say, a single-dimension (rank 1) array, with a zero lower bound, and no specified 
size

3.13 ArrayShape
An ArrayShape has the following syntax chart:

Rank is an integer (compressed using CorSigCompressData) that specifies the 
number of dimensions in the array (must be 1 or more).  NumSizes is a compressed 
integer that says how many dimensions have specified sizes (it must be 0 or more).  
Size is a compressed integer specifying the size of that dimension – the sequence 
starts at the first dimension, and goes on for a total of NumSizes items.  Similarly, 
NumLoBounds is a compressed integer that says how many dimensions have 
specified lower bounds (it must be 0 or more). And LoBound is a compressed integer 
specifying the lower bound of that dimension – the sequence starts at the first 
dimension, and goes on for a total of NumLoBounds items.  Note that you cannot 
‘skip’ dimensions in these two sequences – but you are allowed to specify less than 
all Rank dimensions.  Here are a few examples, all for element type I4:
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Type Rank NumSizes Size* NumLoBounds LoBound*

[0..2] I4 1 1 3 0

[,,,,,,] I4 6 0

[0..3, 0..2,,,,] I4 6 2 4  3 0

[1..2, 6..8] I4 2 2 2  3 2 1  6

[5, 3..5, , ] I4 3 2 5  3 2 0  3

Note that definitions can nest, since the Type may itself be an array

Note: the runtime cares only about Rank when checking for a signature match; it 
ignores any dimension sizes or lower bounds.  For the first release, we recommend 
that all languages emit an ARRAY Signature with NumSizes = NumLoBounds = 0. 

3.14 Short Form Signatures
The general specification for signatures leaves some leeway in how to encode certain 
items.  For example, it appears legal to encode a String as either

 long-form:    ( ELEMENT_TYPE_CLASS, TypeRef-to-System.String )
 short-form:   ELEMENT_TYPE_STRING

Only the short form is valid.  Below is a list of all possible long-form and short-form 
items.  (As usual, for compactness, we miss out the ELEMENT_TYPE_ prefix – so 
VALUETYPE is short for ELEMENT_TYPE_VALUETYPE)

Note: arrays must be encoded in signatures using one of ELEMENT_TYPE_ARRAY, 
ELEMENT_TYPE_SZARRAY or ELEMENT_TYPE_GENERICARRAY.  There is no long form 
involving a TypeRef to System.Array
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Prefix TypeRef to:

CLASS System.String STRING
CLASS System.Object OBJECT
VALUETYPE System.Void VOID
VALUETYPE System.Boolean BOOLEAN
VALUETYPE System.Char CHAR
VALUETYPE System.Byte U1
VALUETYPE System.SByte I1
VALUETYPE System.Int16 I2
VALUETYPE System.UInt16 U2
VALUETYPE System.Int32 I4
VALUETYPE System.UInt32 U4
VALUETYPE System.Int64 I8
VALUETYPE System.UInt64 U8
VALUETYPE System.SysInt I
VALUETYPE System.SysUInt U
VALUETYPE System.SingleResult R
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4 Custom Attributes
Programmers can attach CustomAttributes a programming element, such as a 
method or field.  Each CustomAttribute is defined, by the programmer, as a regular 
Type to Metadata. 

A CustomAttribute within metadata is a triple of (tokenParent, tokenMethod, blob) 
stored into metadata.  The blob holds the arguments to the class constructor method 
specified by tokenMethod.  The runtime has a full understanding of the contents of 
this blob; on request, it will instantiate the attribute-object that the blob represents, 
attaching it to the item whose token is tokenParent.

4.1Using Custom Attributes
The model for using CustomAttributes has two steps.  First, the programmer defines 
a custom attribute-class, and the language emits that definition into the metadata, 
just as it would for any regular class.  Here is an example of defining an attribute-
class, called Location, in some invented programming language:

[attribute] class Location {
    string name;
    Location (string n) {name = n;}
}

Second, the programmer defines an instance of that attribute class (let’s call it an 
attribute-object) and attaches it to some programming element.  Here is an example 
of defining two Location attribute-objects and attaching them to two classes, 
Television and Refrigerator.  Note that we define the attribute-object by providing a 
literal string argument to its Location constructor method:

[Location (“Aisle 3”)]  class Television { . . . }

[Location (“Aisle 42”)] class Refrigerator { . . . }

As a result, the Television class at runtime will always have an attribute-object 
attached (whose name field holds the string “Aisle 3”) whilst the Refrigerator class at 
runtime will have an attribute-object attached (whose name field holds the string 
“Aisle 42”)

Note that attribute-classes are not distinguished in any way whatsoever by the 
runtime – their definition within metadata looks just like any regular type definition.  
Our use therefore of “attribute-class” in this spec is simply to help understanding.

Custom attribute-objects can be attached to any metadata item that has a metadata 
token: mdTypeDef, mdTypeRef, mdMethod, mdField, mdParameter, etc.  Duplicates 
are supported, such that a given programming element may well have multiple 
attribute-objects of the same attribute-class attached to it.  [so, in the example 
above, class Television might have two Location attribute-objects – with name fields 
of “Aisle 42” and “Back Store”]

It is legal to attach a custom attribute-object to a custom attribute-class.  But we 
disallow attaching a custom-attribute object to a custom attribute-object.

CustomAttributes have the following characteristics:

 Require up-front design before attributes can be emitted
 Capitalize on the runtime infrastructure for class identity, structure, and 

versioning
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 Allow tools, services, and third parties (the primary customers for this 
mechanism) to extend the types of information that may be carried in metadata 
without having to depend on the runtime to maintain and version that 
information

 Although each language or tool will provide a language-specific syntax and 
conventions for using custom attributes, the self-describing nature of these 
attributes will enable tools to provide drop-down lists and other developer aids

 Runtime reflection services will support browsing over these custom attributes, 
since they are self-describing.

4.2 Persisted Format of an Attribute-Object
The data required to instantiate an object of an attribute-class is saved into Metadata 
in three parts: 

 Prolog
 Constructor arguments
 Named Fields or Properties

Each constructor argument, each named field and each named property is written 
into metadata just as if it had been saved, using the NGWS binary serializer.  [We 
make a few optimizations that avoid duplicating information that already exists 
elsewhere in the metadata]

In order to help compilers emit arguments, named fields and named properties, 
without using NGWS serialization, we specify how to serialize a chosen subset of VOS 
objects – the specific subset that compilers have requested for custom attributes.

It might help to have an example in mind, as we discuss the formats.  Here is a 
simple one, written in C# 

[attribute (VOSElementtype.All) ]
public class Attrib {
    public readonly string Name;
    public variant Whim;
    public int Depth { get{...}; set{...} }
    public Attrib(string n)        { this.Name = n; }
    public Attrib(string n, int d) { this.Name = n; this.Depth = d; }
}
[Attrib(“Monday”)]                       class Ex1 { . . . }
[Attrib(“Tuesday”, 2)]                   class Ex2 { . . . }
[Attrib(“Friday”, Whim=42]               class Ex3 { . . . }
[Attrib(“Green”, Depth=3, Whim=”yellow”) class Ex4 { . . . }

This example defines an attribute-class called Attrib, with two fields – Name and 
Whim, and one property, Depth.  It defines two constructors –  the first takes one 
positional argument; the second takes two. 

Following the definition of Attrib we show it used to attribute four classes called Ex1 
through Ex4.  Ex1 is hooked to an Attrib object using the single-argument 
constructor.  Ex2 is hooked to an Attrib object using the two-argument constructor.  
Ex3 is hooked to an Attrib object using a constructor which takes the one-argument 
constructor, and sets the named field Whim.  The outcome of this is to instantiate an 
Attrib object with Name of “Friday” and Whim (a variant field) holding the integer 
value 42.  Finally, Ex4 is hooked to an Attrib object using the one-argument 
constructor, augmented by values for the Depth property and the Whim field.
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Note any class may have multiple attribute-objects ‘hooked’ to it.  These can be of 
different types, or even of the same type.

All binary data is persisted in little-endian format (least signficant bytes come first 
in the file). The format for floats and doubles is IEEE-754.  For 8-byte doubles, the 
more-significant 4 bytes is emitted after the less-significant 4 bytes.  There is just 
one exception to the little-endian rule – the “PackedLen” count that precedes a string 
– a one-two-or-four byte item – is always encoded big-endian.

Note that, if the constructor method takes no arguments, and you don’t want to 
specify any extra named fields or properties, you can omit the blob entirely.

4.3 Prolog
The prolog  simply identifies the blob that follows.  It consists of a two-byte ID.  In 
the first release, set this to the value 1.

The prolog is obviously a hedge against future extensions to this blob format.

4.4 Constructor Arguments
We define a new enumeration, SERIALIZATION_TYPE_, which specifies data types.  
Where members correspond directly to runtime ELEMENT_TYPE_’s, we use the same 
name and value.  Where members correspond to specific serialization types, we 
choose a value beyond the range used by the ELEMENT_TYPE_ enum.  (See later for 
detailed list)

This spec provides a blow-by-blow account of how to serialize the following subset:

SERIALIZATION_TYPE_BOOLEAN SERIALIZATION_TYPE_CHAR 
SERIALIZATION_TYPE_I1 SERIALIZATION_TYPE_U1 
SERIALIZATION_TYPE_I2 SERIALIZATION_TYPE_U2 
SERIALIZATION_TYPE_I4     SERIALIZATION_TYPE_U4 
SERIALIZATION_TYPE_I8     SERIALIZATION_TYPE_U8 
SERIALIZATION_TYPE_R4 SERIALIZATION_TYPE_R8 
SERIALIZATION_TYPE_STRING SERIALIZATION_TYPE_TYPE

plus (a subset of) VARIANT.  Also, a one-dimensional, zero-based array (SZARRAY) 
of any of those types.  (The subset of VARIANT excludes DateTime, TimeSpan, 
Decimal, Currency and Object)

The signature for a class constructor will be stored in metadata, as a MethodDef or 
MethodRef.  This specifies the number, order and type of each parameter.  
Therefore, we store the actual arguments into the PE file as dense binary, with no 
type descriptions and with no alignment packing.  For each argument, emit the 
following data:

 For intrinsics, just their value (in their full field width)
 For STRING, a count of the number of bytes in the string (after encoding) 

followed immediately by the characters of the string in UTF8 format.  (The 
count is encoded as a “PackedLen” – see below details)  Note that the count 
represents the overall length, in bytes, of the UTF8 sequence.  In general, 
this is not the same as the number of UTF8 characters, since different UTF8 
characters can occupy between 1 and 3 bytes

 For VARIANT, a one-byte tag, defining which type this instance of the Variant 
corresponds to, followed by its actual value.  Again, for this spec, we limit 
attention to those Variant types in the SERIALIZATION_TYPE_ list above
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 For SZARRAY, the number of elements as an I4, followed by the value (in its 
full field width) of each element

For arguments of type System.Enum, emit the actual value of their underlying type.  
[As a specific example, a particular Enum might use 4-byte integers as its underlying 
type, and should therefore be saved as a SERIALIZATION_TYPE_I4 value]

For arguments of System.Type, emit the actual type as a String, including the full 
assembly name of the defining module

Note that SERIALIZATION_TYPE_BOOLEAN items are encoded in a single byte, with 
False = 0 and True = 1.  [This contrasts with how NGWS lays out Booleans in 
memory – a single Boolean occupies 4 bytes, whereas each element of a Boolean 
array occupies just 1 byte]

If the attribute-class provides several constructors, overload resolution to the 
appropriate MethodDef or MethodRef must be done at compile time (ie, no late-
binding).  Runtime cannot therefore perform automatic widening (for example, store 
16 bit integer, but widen to signature’s parameter type of 32 bits)

For the length-in-bytes of a UTF8 string, we use the standard 1,2 or 4 byte 
“PackedLen” encoding used within Metadata (see the description of helper routine 
CorSigCompressData in section 3):

 If the length-in-bytes lies between 0 and 127, encode as a one-byte integer 
(bit #7 is obviously clear, integer held in bits #6 thru #0)

 If the length-in-bytes lies between 2^8 and 2^14 encode as a two-byte 
integer with bit #15 set, bit #14 clear (integer held in bits #13 thru #0)

 Otherwise, encode as a 4-byte integer, with bit #31 set, bit #30 set, bit #29 
clear (integer held n bits #28 thru #0)

 A null string should be represented with the reserved single byte 0xFF, and no 
following data.  (The value of 0xFF is a reserved value in Metadata’s count 
prefix)

The table below shows several examples.  The first column shows an example count 
value (one-byte, two-byte and three-byte).  The second column shows the 
corresponding size, expressed as a normal integer.

Metadata Count Value Corresponding Size
0x03 0x03
0x7F 0x7F (7 bits set)
0x8080 0x80
0x8081 0x81
0x83FF 0x3FF (14 bits set)
0xC0008400 0x8400
0xDFFFFFFF 0x1FFFFFFF (29 bits set)

Thus, by examining the most significant bits of a “PackedLen” field, code can 
determine whether it occupies 1, 2 or 4 bytes, as well as its value.  For this to work, 
the “PackedLen” is stored in big-endian order – most significant byte at the 
smallest offset within the file.  [see CPackedLen::GetLength and 
CPackedLen::PutLength methods in the Lightning source tree at 
$/Com99/Src/Utilcode/StgPooli.cpp code for details]

There is clearly scope to compact the above binary format, in the same way that 
existing metadata structures have been optimized to avoid “bloat”.  Possible 
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techniques are legion.  The first release of the runtime does not include any such 
optimizations (except for “PackedLen”)

4.5 Constructor Arguments – Example 1
Foo (int a, char[] b, String c);

int a = 7;

char[] b = new char[] {‘A’, ‘B’, ‘C’, ‘D’};

String c = “Today”;

Foo (a, b, c);

Note that this example snippet uses a language that stores each ”char” as a two-
byte Unicode character (contrast with C++ single-byte “char”).  The arguments to 
the Foo constructor would be encoded as follows:

0100 07000000 04000000 41424344 05 546F646179 0000

We start with the Prolog – a 2-byte value of 1.  Next comes the first argument –  a 
4-byte value of 7.  The second argument, a 4-element char array, is represented by 
a 4-byte count-of-array-elements with value 4, followed by the four ASCII characters 
A thru D (each “char” element starts as a 2-byte Unicode value, but is compressed 
into a single byte when converted into Utf8).  The third argument consists of the 
UTF8-encoded string “Today”; its length in bytes (5) fits into a single count byte, 
followed by 5 characters, each encoded into a single byte.  [I have added whitespace 
for clarity – it’s not really there of course]).  The last value is a two-byte value of 
zero, giving the total number of named fields and named properties (see later).  
Note that the display of bytes is the same as they would appear in memory – each 
byte occupies the next highest address in memory

4.6 Constructor Arguments – Example 2
Enum Colors {Red, Green, Blue};

Bar (Variant a, Colors b, bool[] c);

Variant a = “Hello”;

Colors b = Colors.Green;

bool[] b = new bool[] {false, true, true};

Bar (a, b, c);

The arguments to the Bar constructor would be encoded as follows:

0100 0E 05 48656C6C6F 01000000 03000000 00 01 01 0000

The Prolog is followed by the first argument, a VARIANT; it starts with a single-byte 
tag value 0x0E (SERIALIZATION_TYPE_STRING), and follows with a 5-byte string for 
“Hello” – a one-byte count, plus 5 bytes of UTF8 encoded characters.  The second 
argument is an enumeration with a 4-byte integer base type; we serialize Green as 
its value (of 1).  The third argument is a 3-element BOOLEAN array – so we have a 
4-byte element count with value 3, followed by 3 bytes for each boolean value, in 
order (False = 0, True = 1).  (Recall that BOOLEAN arrays are stored with one byte 
per element.  This contrasts with a simple BOOLEAN, which is stored as a 4-byte 
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quantity).  The last value is a two-byte value of zero, giving the total number of 
named fields and named properties (see later).

4.7 Constructor Arguments – Example 3
Zog (Variant[] a, short[] b);

Variant[] a = new Variant[] {123, “Hello”, 11.0};

short[] b = new short[] {42, 7};

Zog (a, b);

The arguments to the Zog constructor would be encoded as follows:

0100 03000000 08 7B000000 0E 05 48656C6C6F 0D BA5E353F40100C49 02000000 
2A00 0700 0000

The first argument is a VARIANT array with 3 elements; so we start with a 4-byte 
element count with value 3.  Element 0 of the VARIANT array is an integer, which is 
encoded with a single-byte tag value of 08 (SERIALIZATION_TYPE_I4), followed by 
its 4-byte value (123 decimal, 7B hex).  Element 1 of the VARIANT array is a String, 
which is encoded with a single-byte tag value of 0E 
(SERIALIZATION_TYPE_STRING), followed by the byte-count of 05 and the UTF8 
string for “Hello”.  Element 2 of the VARIANT array is a double, so it starts with a 
single-byte tag value 0D (SERIALIZATION_TYPE_R8), and follows with the 8-byte 
binary floating-point representation for 11.0

The second argument is a short array with 2 elements.  We start with a 4-byte count 
of elements.  Then follows two shorts – 42 decimal (2A hex) and 7 decimal.  The last 
value is a two-byte value of zero, giving the total number of named fields and named 
properties (see later).

4.8 Named Fields and Properties
Named fields and properties are optional components for specifying an attribute-
object.  We allow them to be specified in any order (languages may choose to 
impose tighter constraints).  Therefore, the serialized format defines each named 
field or property by recording a quad giving {FieldOrProperty, type, name, value}, in 
the obvious way.

We include Field-or-Property, as well as type, so that we can, at instantiation time, 
perform overload resolution of the named field or property.

We start with a 2-byte count specifying the total number of named fields and 
properties to follow.  This count must always be supplied – if there are none, the 
count must be zero.

Whether each item is a field or property is specified with the one-byte tag 
SERIALIZATION_TYPE_FIELD or SERIALIZATION_TYPE_PROPERTY.  The field or 
property name is encoded as a string – compacted byte-count plus UTF8 sequence.  
The type is encoded as its corresponding SERIALIZATION_TYPE_ member.  Its value 
is similarly encoded exactly as described already – name (string) and value.  The 
name is encoded as a String, defined above (compacted byte-count, followed by a 
UTF8 sequence).  The value too is encoded exactly as defined before.

Page 35 of 41



Metadata Structures

4.9 Named Field – Example
 [Attrib(“Friday”, Whim=42)] class Ex3 { . . . }

The arguments to the Attrib constructor would be encoded as follows:

0100 06 467269646179 0100 53 51 04 5768696D 08 2A000000

We start with the Prolog – a 2-byte value of 1.  Next comes the positional argument 
–  the String “Friday”.  Next we have a 2-byte count with value 1, telling us there is 
one named item to follow.  Next comes the constant SERIALIZATION_TYPE_FIELD.  
Next its type, SERIALIZATION_TYPE_VARIANT.  Next its name (“Whim”).  Finally its 
actual type (SERIALIZATION_TYPE_I4) and its 4-byte value of 42 (2A hex).

4.10 General Case
This spec documents a subset of the general NGWS binary serialization format, as an 
aid for compilers who wish to serialize objects ‘by-hand’.   So, the format for saving 
attribute-objects is piece-wise identical to the format used for serializing VOS 
objects.  That’s to say, if you look at the binary layout for any constructor argument, 
it is identical (ok, we’ve included a couple of optimizations) to how it would look in a 
binary-serialized stream. 

[The general-case serialized object includes extra fields.  For example, each 
serialized object is assigned an ObjectID to support references to it from other 
objects in the graph.  This is omitted for Strings in the serialized constructor 
arguments]

So, what if an attribute-class actually defined an argument of some user-defined 
class, Quix?  How does the general serialized format look?  The answer is, as you 
would expect, that the Quix object, as an argument to the attribute-class 
constructor, is persisted into the metadata, in the same format as if it had been 
instantiated as a regular VOS object and serialized.

Suppose the following example:

[attribute(VOSElementtype.All)]

public class Attrib {

    public readonly string Name;

    public variant Whim;

    public int Depth;

    public Attrib(string n, Quix q) { . . . }

}

// Instantiate and setup aQuix

[Attrib(“Friday”, aQuix)] class Ex5 { . . . }

The arguments to the Attrib constructor would be encoded as follows:

0100 06 467269646179 0100 11 . . . . 

We start with the Prolog – a 2-byte with value 1.  Next comes the first argument –  
the String “Friday”.  Next we have the serialized aQuix – 
SERIALIZATION_TYPE_CLASS, then the binary blob for its field values. 
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Serializing arbitrary object graphs is clearly more complex than the subset of cases 
we have described above.  Whilst the general case is addressed in the Spec for 
Binary Format Serialization, we will call out one aspect, that could arise in this last 
example.  The Attrib constructor expects a Quix object; however, at compile time, it 
could be given an instance of a class derived from Quix.  In this case, we need to 
include instance-type information, rather than just declaration-type information.  [In 
fact, if you look back at Variant examples, this same two-level typing occurs there 
too]

Note: saving attribute-objects by serializing the object is not supported in the first 
release of the runtime

4.11  SERIALIZATION_TYPE_ enum
SERIALIZATION_TYPE_BOOLEAN = ELEMENT_TYPE_BOOLEAN
SERIALIZATION_TYPE_CHAR = ELEMENT_TYPE_CHAR
SERIALIZATION_TYPE_I1 = ELEMENT_TYPE_I1
SERIALIZATION_TYPE_U1 = ELEMENT_TYPE_U1
SERIALIZATION_TYPE_I2 = ELEMENT_TYPE_I2
SERIALIZATION_TYPE_U2 = ELEMENT_TYPE_U2
SERIALIZATION_TYPE_I4 = ELEMENT_TYPE_I4
SERIALIZATION_TYPE_U4 = ELEMENT_TYPE_U4
SERIALIZATION_TYPE_I8 = ELEMENT_TYPE_I8
SERIALIZATION_TYPE_U8 = ELEMENT_TYPE_U8
SERIALIZATION_TYPE_R4 = ELEMENT_TYPE_R4
SERIALIZATION_TYPE_R8 = ELEMENT_TYPE_R8
SERIALIZATION_TYPE_STRING = ELEMENT_TYPE_STRING
SERIALIZATION_TYPE_VALUETYPE = ELEMENT_TYPE_VALUETYPE
SERIALIZATION_TYPE_CLASS = ELEMENT_TYPE_CLASS
SERIALIZATION_TYPE_SZARRAY = ELEMENT_TYPE_SZARRAY
SERIALIZATION_TYPE_ARRAY = ELEMENT_TYPE_ARRAY
SERIALIZATION_TYPE_TYPE = 0x50
SERIALIZATION_TYPE_VARIANT = 0x51
SERIALIZATION_TYPE_FIELD = 0x53
SERIALIZATION_TYPE_PROPERTY = 0x54
SERIALIZATION_TYPE_ENUM = 0x55
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5 CustomAttributes – Syntax
This section summarizes the syntax charts for defining CustomAttribute objects, 
detailed in section 4.  It makes no sense unless you have read that section (and 
even then).

A valid Custom Attribute has the following syntax chart:

All binary values are stored in little-endian format (except PackedLen items – used 
only as counts for the number of bytes to follow in a Utf8 string)

CustomAttrib starts with a Prolog – a U2, with value 0x0001

Next comes a description of the fixed arguments for the constructor method.  Their 
number and type is found by examining that constructor method’s MethodDef; this 
info is not repeated in the CustomAttrib itself.  As the syntax chart shows, there can 
be zero or more FixedArgs.  (note that VARARG constructor methods are not allowed 
in the definition of Custom Attributes)

Next is a description of the optional “named” fields and properties.  This starts with 
NumNamed – a U2 giving the number of “named” properties or fields that follow.  
Note that NumNamed must always be present.  If its value is zero, there are no 
“named” properties or fields to follow (and of course, in this case, the CustomAttrib 
must end immediately after NumNamed)  In the case where NumNamed is non-zero, 
it is followed by NumNamed repeats of NamedArgs

SZARRAY is the single byte SERIALIZATION_TYPE_SZARRAY

NumElem is a U4 specifying the number of elements in the SZARRAY
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VARIANT is the single byte SERIALIZATION_TYPE_VARIANT

(Note, as the syntax chart shows, that each FixedArg can be an SZARRAY of 
SerType-Vals, or an SZARRAY of VARIANTs of SerType-Vals or just a regular 
SerType-Val)

A SerType is defined as one of:

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 

               | STRING | TYPE

where we have omitted the SERIALIZATION_TYPE_ prefix for briefness.  So, for 
example, “STRING” is short for SERIALIZATION_TYPE_STRING.

Val is the binary representation for each of those SerTypes.  So, BOOLEAN is a U1 
with value 0 (false) or 1 (true); CHAR is a two-byte unicode character; I1 thru R8 all 
have their obvious meaning (stored in the same byte order as held in a little-endian 
machine memory, such as an x86); STRING and TYPE are a little more complicated, 
as follows:

For STRING, the following Val item is a PackedLen value for the number of bytes in 
the string, followed by the string, encoded in Utf8.

The Val item following a TYPE is the same as for STRING – that’s because we persist 
a TYPE as its stringified type name (including the defining assembly name)

FIELD is the single byte SERIALIZATION_TYPE_FIELD

PROPERTY is the single byte SERIALIZATION_TYPE_PROPERTY
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SZARRAY is the single byte SERIALIZATION_TYPE_SZARRAY

NumElem is a U4 specifying the number of elements in the SZARRAY

VARIANT is the single byte SERIALIZATION_TYPE_VARIANT

SerType was defined above.  This represents the simple type of the FIELD or 
PROPERTY; if the previous VARIANT item were included, then it represents the base 
type of that VARIANT

ENUM is the single byte SERIALIZATION_TYPE_ENUM.  This is followed by a SerType 
giving the base type of this enum.  (this choice allows for an attribute class that 
defines, for example, two fields with the same name – one with type I4, the other 
with type enum, represented as I4s)

Name is the name of this field or name – just its simple name within the attribute 
class (which we know, via the metadata token for the constructor method).  It is 
encoded like all other names – PackedLen byte count of the follow-on Utf8 string.

Val was defined above.  This is repeated NumElem times

6 Marshalling Descriptor
A Marshalling Descriptor is like a signature – it’s a blob of binary data.  It describes 
how a field or parameter (which, as usual, covers the method return, as parameter 
number 0) should be marshalled when calling to or from unmanaged coded via 
PInvoke dispatch or IJW (“It Just Works”) thunking.

The blob has the following format –

MarshalSpec :==
  NativeInstrinsic
| CUSTOMMARSHALLER  Guid  UnmanagedType  ManagedType  Cookie
| FIXEDARRAY  NumElem  ArrayElemType
| SAFEARRAY   SafeArrayElemType
| ARRAY  ArrayElemType  ParamNum  ElemMult  NumElem

NativeInstrinsic :== 
  BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8
| BSTR | LPSTR | LPWSTR | LPTSTR | FIXEDSYSSTRING | STRUCT
| INTF |FIXEDARRAY | INT | UINT | BYVALSTR | ANSIBSTR | TBSTR
| VARIANTBOOL | FUNC | LPVOID | ASANY | R | LPSTRUCT | ERROR | MAX

For compactness, we have omitted the NATIVE_TYPE_ prefixes in the above lists.  
So, for example, “ARRAY” is shorthand for NATIVE_TYPE_ARRAY (see the 
CorNativeType enum defined in CorHdr.h)  Note that NativeIntrinsic excludes those 
elements of the CorNativeType enum commented as “deprecated”

Guid is a counted-Utf8 string – eg “{90883F05-3D28-11D2-8F17-00A0C9A6186D}” 
– it must include leading { and trailing } and be exactly 38 characters long

UnmanagedType is a counted-Utf8 string – eg “Point”

ManagedType is a counted-Utf8 string – eg “System.Util.MyGeometry” – it must be 
the fully-qualified name (namespace and name) of a managed Type defined within 
the current Assembly (that Type must implement ICustomMarshaller, and provides a 
“to” and “from” marshalling method)
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Cookie is a counted-Utf8 string – eg “123” – an empty string is allowed

NumElem is an integer that tells us how many elements are in the array

ArrayElemType :== 
   NativeInstrinsic |  BOOLEAN | I1 | U1 | I2 | U2
|  I4 | U4 | I8 | U8 | R4 | R8 | BSTR | LPSTR | LPWSTR | LPTSTR
| FIXEDSYSSTRING | STRUCT | INTF | INT | UINT | BYVALSTR 
| ANSIBSTR | TBSTR | VARIANTBOOL | FUNC | LPVOID | ASANY
| R | LPSTRUCT | ERROR | MAX

The value MAX is used to indicate “no info”

SafeArrayElemType :== I2 | I4 | R4 | R8 | CY | DATE | BSTR | DISPATCH |
| ERROR | BOOL | VARIANT | UNKNOWN | DECIMAL | I1 | UI1 | UI2
| UI4 | INT | UINT

where each is prefixed by VT_.  Note that these VT_xxx form a subset of the 
standard OLE constants (defined, for example, in the file WType.h that ships with 
Visual studio, installed to the default directory “Program Files\Microsoft Visual 
Studion\VC98\Include”)

ParamNum is an integer, which says which parameter in the method call provides 
the number of elements in the array – see below

ElemMult is an integer (says by what factor to multiply – see below)

For example, in the method declaration:

Foo (int ar1[], int size1, byte ar2[], int size2)

The ar1 parameter might own a row in the FieldMarshal table, which indexes a 
MarshalSpec in the Blob heap with the format:

ARRAY  MAX  2  1  0

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY.  There is no 
additional info about the type of each element (signified by that NATIVE_TYPE_MAX). 
The value of ParamNum is 2, which tells us that parameter number 2 in the method 
(the one called “size1”) will tell us the number of elements in the actual array – let’s 
suppose its value on a particular call were 42.  The value of ElemMult is 1.  The value 
of NumElem is 0.  The calculated total size, in bytes, of the array is given by the 
formula:

if ParamNum == 0 
SizeInBytes = NumElem * sizeof (elem)

else
SizeInBytes = ( @ParamNum * ElemMult  +  NumElem ) * sizeof (elem)

endif

We have used the syntax “@ParamNum” to denote the value passed in for parameter 
number ParamNum – it would be 42 in this example.  The size of each element is 
calculated from the metadata for the ar1 parameter in Foo’s signature – an 
ELEMENT_TYPE_I4 of size 4 bytes.

Note that, just as in signature blobs, every simple scalar, such as integers or Utf8 
byte-counts, are stored in compressed format, using the CorSigCompressData helper 
routines (see section 3 for details)
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