
Platform Invoke Metadata Guide

NGWS

Platform Invoke Metadata Guide

This is preliminary documentation and subject to change

Last updated: 8 June 2000

This spec is aimed at compiler writers who will be emitting metadata for Platform
Invocation services (PInvoke) For a broad overview of the Platform Invocation
Services from a component or application developer’s point of view, refer to the
Platform Invoke Usage Guide

Page 1

Platform Invoke Metadata Guide

Table Of Contents
1 Overview of PInvoke Marshalling...2

2 Overview of PInvoke Metadata..3

3 Metadata for Methods..5

3.1 DefineMethod for PInvoke...5

3.2 DefineMethodImpl for PInvoke...6

3.3 DefinePinvokeMap for PInvoke...6

3.4 SetPinvokeMap for PInvoke...7

3.5 Method Signatures for Plnvoke...7

4 Metadata for Function Parameters...7

4.1 DefineParam for PInvoke...8

4.2 SetParamProps for PInvoke...8

5 Metadata for Struct Arguments...8

5.1 DefineTypeDef for PInvoke..9

5.2 DefineField for PInvoke...9

5.3 SetClassLayout for PInvoke (Sequential)..10

5.4 SetClassLayout for PInvoke (Explicit)..10

6 Metadata for Explicit Marshalling..11

6.1 SetFieldMarshal for PInvoke...11

7 Custom Attributes...12

1 Overview of PInvoke Marshalling
Platform Invocation Services, abbreviated throughout this spec to “PInvoke”, allows
managed code to call unmanaged functions that are implemented in a DLL. PInvoke
takes care of finding and invoking the correct function, as well as marshalling its
managed arguments to and from their unmanaged counterparts (integers, strings,
arrays, structures, etc).

PInvoke was intended primarily to allow managed code to call existing, unmanaged
code, typically written in C. A good example is the several thousand functions that
comprise the Win32 API.

As mentioned above, PInvoke marshals function arguments between managed and
unmanaged code. For simple data types (bytes, integers, floats, etc), or arrays of
those simple types, marshalling is straightforward. Even for strings, so long as you
specify whether the unmanaged code expects an Ansi string, a Unicode string, or a
BSTR, marshalling is again without problems.

But marshalling of structured arguments presents a problem. (Structured types are
also known as structs, records, aggregates, etc, depending upon which source
language we are discussing. We shall call them “structs” in this spec). Given free-
rein, the runtime will lay out the fields of a managed struct in the ‘most efficient’

Page 2

Platform Invoke Metadata Guide

way. What is ‘most efficient’? Well, it includes making garbage collection fast and
space-efficient. It can also take account of access patterns. The point is, that the
runtime’s choice of layout will rarely match what unmanaged code (typically C)
expects, and has hard-wired into its machine code as fixed offsets – where fields of a
struct are laid out in the lexical order they were defined in the source code.

[As an aside, you might wonder how user’s managed code can ever ‘find’ the right
fields in a class which the runtime lays out in memory at its own whim. The answer
is that field access within MSIL is done via metadata tokens; in effect, these provide
the ‘name’ of the field to be accessed, rather than its predefined byte offset within
the managed struct]

So, somehow, at runtime, PInvoke must ‘manufacture’ and hand over a struct,
holding fields in the exact order and size that unmanaged code expects. The way it
does this is firstly to disallow runtime’s normal freedom for how it lays out managed
structs (classes or valuetypes); instead, it directs the runtime to lay the struct out in
managed memory in the way most-nearly expected by the unmananaged user of this
struct. We call such an item a “formatted type”.

For many cases, we can achieve an exact, byte-by-byte, match between the
managed object and the struct the unmanaged code expects; in these cases, we say
the managed and unmanaged struct are “isomorphic”. When PInvoke calls the
unmanaged code, it can either pin the managed object (so that it will not be moved
by garbage collection), and hand a pointer to the managed code; or it can allocate
some memory (unmanaged heap or stack) and do a fast, ‘blind’, byte-by-byte copy
from the managed isomorphic object. Either technique results in low overhead.

But there are some cases (non-isomorphic), where PInvoke must carry out
marshalling – copying and reformatting of data – at runtime. This is slower than if
the struc were isomorphic. The common cases which destroy isomorphism include:

 managed string is Unicode, but the unmanaged code expects Ansi

 managed argument or field is boolean; this occupies 1 byte in managed memory,
but 2 or 4 bytes in unmanaged structures

A programmer can avoid the inefficiency incurred with managed boolean fields by
declaring them as 2-byte or 4-byte integers instead.

In all other respects, except its predefined field layout in memory, a “formatted”
object looks just like a regular managed object. In particular, managed code can
read and write all its fields with MSIL instructions.

When it comes to call an unmanaged function, PInvoke locates the DLL where it
lives, loads that DLL into process memory, finds the function address in memory,
pushes its arguments onto the stack (marshalling if required) and transfers control to
the address for the unmanaged code. If the arguments are isomorphic, then no
marshalling is required.

2 Overview of PInvoke Metadata
This document specifies what information a tool or compiler must emit into metadata
to describe how PInvoke should call an unmanaged function from the Runtime. This
information includes the location of the target function (which DLL it lives in) and its
signature (number of arguments, their type, and any function return type).

Each compiler provides a construct for its users to decorate methods and arguments
with the required PInvoke information. For example, managed C++ provides the

Page 3

Platform Invoke Metadata Guide

“sysimport” attribute, whilst Visual Basic provides the “DECLARE” statement. The
compiler parses the decoration and emits the corresponding language-neutral
metadata that will be used by PInvoke.

Information required by PInvoke falls into three kinds:

 Define the NGWS method that corresponds to the unmanaged function. This
includes its name, location, arguments and return type

 Where the unmanaged code expects a struct argument, define an NGWS class
that corresponds to the unmanaged struct – its fields, layout and alignment

 Where the default marshalling provided by PInvoke is not what you want,
override with a different marshalling behaviour

Building PInvoke metadata can be quite simple. Here is an example (the source
language doesn’t matter; its intent should be clear):
class C {
 [sysimport(dll = "user32.dll")]
 public static extern int MessageBoxA(int h, string m, string c, int type);
 public static int Main() {
 return MessageBoxA(0, "Hello World!", "Caption", 0);
 }
}

To build the corresponding PInvoke metadata, you need only call DefineMethod,
DefinePinvokeMap and DefineParam for each parameter. (Individual compilers may
choose to structure their definitions differently – a DefineMethod followed by a
SetMethodProps, for example, but the suggested sequence is possible)

On the other hand, building PInvoke metadata can also come quite involved, as
witnessed by the size of this spec, and the other specs, listed below, that support it.
This happens if your unmanaged function accepts struct arguments, and requires
non-default marshalling. Here is a second, more complicated example:

[sysstruct(format=ClassFormat.Auto)]
public class LOGFONT {
 public const int LF_FACESIZE = 32;
 public int lfHeight;
 public int lfWidth;
 public int lfEscapement;
 public int lfOrientation;
 public int lfWeight;
 public byte lfItalic;
 public byte lfUnderline;
 public byte lfStrikeOut;
 public byte lfCharSet;
 public byte lfOutPrecision;
 public byte lfClipPrecision;
 public byte lfQuality;
 public byte lfPitchAndFamily;
 [nativetype(NativeType.FixedSysString, size=LF_FACESIZE)]
 public string lfFaceName;
};

class C {
 [sysimport(dll="gdi32.dll",charset=CharacterSet.Auto)]
 public static extern int CreateFontIndirect(
 [in, nativetype(NativeType.NativeTypePtr)]

Page 4

Platform Invoke Metadata Guide

 LOGFONT lplf // characteristics
);
 public static void Main() {
 LOGFONT lf = new LOGFONT();
 lf.lfHeight = 9;
 lf.lfFaceName = "Arial";
 int i = CreateFontIndirectA(lf);
 Console.WriteLine(i);
 }
}

To build the PInvoke metadata for this example requires calls to most of the
following routines in the IMetaDataEmit interface:

DefineMethod: Define a method, with its NGWS method signature

DefinePinvokeMap: Specify PInvoke info for a method

DefineTypeDef: Define an NGWS class or valuetype, used as an argument to a
PInvoke-dispatched function

DefineField: Define a data field within a class

SetClassLayout: Supply additional info on the class layout, such as field packing

SetFieldMarshal: Supply non-default marshaling for a function argument, function
return value, or a field within a struct

For more info on specific areas touched upon in this spec, see the following
documents:

 Platform Invoke Usage Guide for an overview of PInvoke from the user’s
perspective

 Metadata Interfaces for an overview of metadata, and details of specific routines

 MetadataStructures for the format of signatures (methods and fields)

 DataTypeMarshaling for details of all the field marshalling supported by Pinvoke
(much of it shared with COM Interop)

3 Metadata for Methods
You must define a managed method, that describes the target unmanaged function
you wish to reach via PInvoke. You may include several methods in a given class
that describe unmanaged functions, or you can define a separate class and method
for each unmanaged function; the choice is yours.

In the descriptions that follow, all metadata methods are defined on the
IMetaDataEmit interface.

Page 5

Platform Invoke Metadata Guide

3.1DefineMethod for PInvoke
For each unmanaged function you want to call via PInvoke, you must define a
managed method, that describes that target unmanaged function. For this, use
DefineMethod. This routine is used to define all managed methods to the metadata.
However, when used for methods that match to PInvoke-dispatched native functions,
some of the arguments have particular restrictions. These are listed in the next
table.

in/out Parameter Description Required?

in td TypeDef token of parent no

in wzName Member name in Unicode yes

in dwMethodFlags Member attributes yes

in pvSig Method signature yes

in cbSig Count of bytes in pvSig yes

in ulCodeRVA Address of code must be 0

in dwImplFlags Implementation flags for method no, may be all 1s

out pmd Member token

dwMethodFlags is a bitmask from the CorMethodAttr enum in CorHdr.h. You must:
set mdStatic; clear mdSynchronized; clear mdAbstract

pvSig must be a valid NGWS method signature. Each parameter must be a valid
NGWS (as opposed to unmanaged) data type. See the MetadataStructures spec for
how to compose an NGWS method signature; take special note of the
CorCallingConvention enum in CorHdr.h

ulCodeRVA must be zero

dwImplFlags is a bitmask from the CorMethodImpl enum in CorHdr.h. You must: set
miNative; set miUnmanaged

3.2DefineMethodImpl for PInvoke
If you are defining the implementation for a method that is defined by an interface,
you use DefineMethodImpl. This routine accepts only a subset of what DefineMethod
accepts, because some of the inherited information cannot be changed (for example,
the name of the method). Whilst this is used for regular managed methods, we do
not support its use for PInvoke.

3.3DefinePinvokeMap for PInvoke
Use DefinePinvokeMap to provide further information about a method already
defined by the DefineMethod call above.

Page 6

Platform Invoke Metadata Guide

in/out Parameter Description Required?

in tk Token for target method – a MethodDef or MethodImpl yes

in dwMappingFlags Flags used by Pinvoke to do the mapping yes

in wzImportName Name of target export method in unmanaged DLL no

in mdImportDLL mdModuleRef token for target DLL yes

dwMappingFlags is a bitmask from the CorPinvokeMap enum in CorHdr.h. You can
set the following flags:

 pmNoMangle – if set, function name is used as-is in searching the target native
DLL (ie, no fuzzy matching)

 pmCharSetAnsi, pmCharSetUnicode, pmCharSetAuto – set one as appropriate

 pmSupportLastError – if set, user can query last error set within the unmanaged
method

3.4SetPinvokeMap for PInvoke
Use SetPinvokeMap to provide further information, or change the information, you
supplied in an earlier call to DefinePinvokeMap. The arguments, their meanings and
restrictions are exactly as for DefinePinvokeMap, above.

3.5Method Signatures for Plnvoke
The call to DefineMethod includes an argument, called pvSig, that takes the
signature of the method. This blob specifies the method’s signature – the type for
each argument, and for the return type, if any. The format of this blob is defined in
the MetadataStructures spec. This section summarizes details of the signature that
are specific to its use for PInvoke:

 All data types must be NGWS data types, even though they end up, after PInvoke
dispatch, as arguments to an unmanaged function

 PInvoke provides default, automatic marshaling of simple (non-struct)
arguments, and of simple fields within struct arguments. The defaults are chosen
using heuristics about the NGWS data type declaration, target platform, and
method-level ansi/unicode/auto attribute. (This default marshaling can be over-
ridden if required – see SetFieldMarshal)

 In the NGWS method signature, a struct argument should be declared as an
NGWS class or valuetype that carries layout information (what we called a
“formatted type” in the discussion above).

4 Metadata for Function Parameters
You should specify the direction of each parameter to an unmanaged function.
That’s to say, whether it is an in, out, or inout parameter. In the cases where a copy
of the corresponding argument is made for the unmanaged code to access (typically,
for a non-isomorphic struct passed by-reference), the setting of these flags is
important. In these cases, PInvoke does the following:

Page 7

Platform Invoke Metadata Guide

 in: make a copy of the managed struct for the unmanaged code to access. This
struct is not copied back to the managed caller

 out: create a freshly-initialized, unmanaged struct for the unmanaged code to
access. This struct is copied back to the managed caller

 inout: make a copy of the managed struct for the unmanaged code to access.
This struct is copied back to the managed caller

Note that where a struct is isomorphic, but specified only as in or as out, PInvoke
may, for reasons of efficiency, pin the managed struct and pass a reference to that
struct to the unmanaged code. In such cases, the behaviour that results will be as if
you had asked for inout.

4.1DefineParam for PInvoke
To specify each parameter’s direction, call DefineParam. Do not specify a default
value – dwDefType, pValue or cbValue.

in/out Parameter Description Required?

in md Token for the method whose parameter is being defined yes

in ulParamSeq Parameter sequence number yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cbValue Size in bytes of pValue no

out ppd ParamDef token assigned

ulParamSeq specifies the parameter sequence number, starting at 1. Use a value of
0 to mean the method return value

wzName is the name to give the parameter. If you specify null, this argument is
ignored

dwParamFlags is a bitmask from the CorParamAttr enumeration in CorHdr.h. Set the
pdIn and/or pdOut bits in this mask

4.2SetParamProps for PInvoke
As an alternative to DefineParam, you may use SetParamProps. This is an unlikely
scenario, except perhaps during an incremental compilation session. However, for
the record, here is the detail – the same restrictions apply as for DefineParam

Page 8

Platform Invoke Metadata Guide

in/out Parameter Description Required?

in pd Token for target parameter yes

in wzName Name of parameter in Unicode no

in dwParamFlags Flags for parameter no

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for parameter no

in cbValue Size in bytes of pValue no

5 Metadata for Struct Arguments
As mentioned previously, a PInvoke-called function can accept struct arguments.
Such arguments are expressed as NGWS classes or valuetypes that include layout
information (“formatted types”). This section describes details of how to specify
layout in the DefineTypeDef call you make to define those classes.

5.1DefineTypeDef for PInvoke
Although supported, it is unlikely that a compiler will define methods or properties
for a “formatted type” – that’s to say, for a managed class or valuetype, whose
purpose is to describe a matching unmanaged struct argument for a PInvoke-called
function. Routinely, the type definition will include only fields – no methods, no
properties, no superclass, no interfaces-to-implement. With these simplifications,
the arguments to DefineTypeDef for a PInvoke struct, are as follows:

in/out Parameter Description Required?

in wzName Name of type in Unicode yes

in pVer Version number. Specify as null no

in dwTypeDefFlags Typedef attributes yes

in tkExtends Token of the superclass. Specify as zero yes

in rtkImplements[] Array of tokens specifying the interfaces that this class or
interface implements (inherits via interface inheritence).
Specify as null

no

out ptd TypeDef token assigned

dwTypeDefFlags is a bitmask from the CorTypeAttr enum in CorHdr.h. You must set
either tdLayoutSequential, or tdExplicitLayout (not both). You should set
tdAnsiClass, tdUnicodeClass or tdAutoClass.

If your struct has no unions, then set tdLayoutSequential, and, if necessary, call
SetClassLayout to provide more details. If you are in the unfortunate position that
your struct includes unions (sometimes called overlays, depending upon source
language), or your struct includes weird padding between fields, then you must set
tdExplicitLayout, and follow with a call to SetClassLayout to provide more details.

The string formatting flags say how managed strings (which are always encoded in
Unicode) should be marshalled to and from unmanaged code:

Page 9

Platform Invoke Metadata Guide

 tdAnsiClass – PInvoke will marshal to unmanaged Ansi

 tdUnicodeClass – PInvoke will pin, or copy, to unmanaged Unicode (no format
change of the individual characters required)

 tdAutoClass – PInvoke will choose tdAnsiClass or tdUnicodeClass, by inspecting
which platform it is being executed upon

5.2DefineField for PInvoke
Having defined the struct using DefineTypeDef, the next step is to define each field
in the struct, using DefineField. Just follow the usual rules for using DefineField;
there are no special rules to apply just because these are fields of a struct that will
be used for PInvoke. As a reminder, here are the arguments for the Definefield
method:

in/out Parameter Description Required?

in td Typedef token for the enclosing class yes

in wzName Field name in Unicode yes

in dwFieldFlags Field attributes yes

in pvSig Field signature as a blob yes

in cbSig Count of bytes in pvSig yes

in dwDefType ELEMENT_TYPE_* for the constant value no

in pValue Constant value for field no

in cbValue Size in bytes of pValue no

out pmd FieldDef token assigned

dwFieldFlags is a bitmask from the CorFieldAttr enumeration in CorHdr.h

dwDefType is a value from the CorElementType enumeration in CorHdr.h. If you do
not want to define any constant value for this field, supply a value of
ELEMENT_TYPE_END

For details of how to construct the signature blob, see the MetadataStructures spec

5.3SetClassLayout for PInvoke (Sequential)
If you told DefineTypeDef that your struct was tdLayoutSequential, then you should
call SetClassLayout to further define the field layout.

in/out Parameter Description Required?

in td Token for the class being laid out yes

in dwPackSize Packing size: 1, 2, 4, 8 or 16 bytes no

in rFieldOffsets Array of mdFieldDef / ululByteOffset values for each field.
Specify as zero

no

in ulClassSize Overall size of these class objects, in bytes no

Page 10

Platform Invoke Metadata Guide

dwPackSize is the packing size between adjacent fields. For each field in sequence,
the runtime looks at its size, and current offset within the struct. It lays the field
down to start at its natural offset, or the pack size, whichever results in the smaller
offset. This matches precisely the semantics of the C and C++ #pragma pack
compiler directive

rFieldOffsets is not required in this instance. Specify it as zero

ulClassSize is optional. If you specify this argument, then PInvoke will marshal this
struct argument by making a blind, byte-by-byte copy of the managed object. [This
technique is used by Visual C++]

5.4SetClassLayout for PInvoke (Explicit)
If you told DefineTypeDef that your struct was tdExplicitLayout, then you must call
SetClassLayout to further define the field layout.

in/out Parameter Description Required?

in td Token for the class being laid out yes

in dwPackSize Packing size. Specify as zero no

in rFieldOffsets Array of mdFieldDef / ululByteOffset values for each field on
the class for which sequence or offset information is
specified. Terminate array with mdTokenNil.

no

in ulClassSize Overall size of these class objects. Specify as zero no

rFieldOffsets is an array of COR_FIELD_OFFSETs. The COR_FIELD_OFFSET struct is
defined in CorHdr.h, but repeated here for convenience:

typedef struct COR_FIELD_OFFSET {

 mdFieldDef tokField;

 ULONG ulOffset;

} COR_FIELD_OFFSET;

The tokField is the token for the target field; the ulOffset is the byte offset within the
struct at which it starts. The struct is assumed to start at offset 0. (So, if you
specify just one field, 4 bytes wide, with a ulOffset of 1000, then you create a
managed struct that is 1004 bytes long). Terminate the rFieldOffsets[] array with a
field token of mdTokenNil.

6 Metadata for Explicit Marshalling
If the default marshaling provided by PInvoke is just what you need, then you can
skip this section. However, if you want to specify non-default marshaling for any of
the following items:

 function return value

 function argument

 field within a struct that is a function argument

then you must specify the requested behaviour using SetFieldMarshal.

Page 11

Platform Invoke Metadata Guide

Both PInvoke and COM Interop provide marshaling of data between managed and
unmanaged code. And for most data types, they share the same marshalling code.
The marshalling behaviour is specified in the DataTypeMarshaling spec. Please
consult this spec for details of PInvoke’s default marshaling (in most cases the same
as for COM Interop), as well as the valid alternatives you may specify for non-default
marshalling.

6.1SetFieldMarshal for PInvoke
For each item that requires non-default marshaling, call SetFieldMarshal and specify
which native type the item should be marshalled to.

in/out Parameter Description Required?

in tk Token for target item yes

in pvUnmgdType Signature for unmanaged type yes

in cbUnmgdType Count of bytes in pvUnmgdType yes

For details of how to build the native type signature, see the MetadataStructures
spec

7 Custom Attributes
Compilers can alternatively set marshaling information by emitting certain pre-
defined Custom Attributes (eg the MarshalAsAttribute). This enables compilers to
use their generic code, that parses and handles all Custom Attributes, to be used to
direct the operation of the runtime for PInvoke marshalling.

For details on Custom Attributes in general, see the Metadata Interfaces spec. For
details of those specific Custom Attributes used to define PInvoke marshaling
information, see the DataTypeMarshalling spec

Each compiler is free to choose which way it emits metadata – depending upon the
tradeoff it chooses among the following factors:

1. compile-time speed and efficiency
2. ease of use
3. good argument checking
4. good isolation or genericity
5. whether the compiler itself is written in managed or unmanaged code

Broadly speaking, using unmanaged metadata-emit APIs is good for 1. Using
unmanaged metadata-emit APIs, together with pre-defined Custom Attributes
provides some level of 4, at the cost of slowing compilation. Use of Reflection Emit
(only works for case 5) is good for 2, 3 and 4.

Page 12

	1 Overview of PInvoke Marshalling
	2 Overview of PInvoke Metadata
	3 Metadata for Methods
	3.1 DefineMethod for PInvoke
	3.2 DefineMethodImpl for PInvoke
	3.3 DefinePinvokeMap for PInvoke
	3.4 SetPinvokeMap for PInvoke
	3.5 Method Signatures for Plnvoke

	4 Metadata for Function Parameters
	4.1 DefineParam for PInvoke
	4.2 SetParamProps for PInvoke

	5 Metadata for Struct Arguments
	5.1 DefineTypeDef for PInvoke
	5.2 DefineField for PInvoke
	5.3 SetClassLayout for PInvoke (Sequential)
	5.4 SetClassLayout for PInvoke (Explicit)

	6 Metadata for Explicit Marshalling
	6.1 SetFieldMarshal for PInvoke

	7 Custom Attributes

