
IL Instruction Set Specification Specification

NGWS runtime

IL Instruction Set Specification

Version 1.9 Final

Copyright  1999 Microsoft Corporation. All rights reserved.

Last updated: 8 June 2000

This is preliminary documentation and subject to change

Page 1

IL Instruction Set Specification Specification

Table of Contents
1 Introduction to the Runtime IL Instruction Set..6

1.1 Data Types... 6

1.1.1 Numeric Data Types..6

1.1.2 Object References..8

1.1.3 Runtime Pointer Types.. 8

1.2 Instruction Variant Table...10

1.2.1 Opcode Encodings... 11

1.3 Stack Transition Diagram..14

1.4 English Description...15

1.5 Verifiability..15

1.6 Operand Type Table..15

1.7 Signature Matching..19

2 Base Instructions..21

add - add numeric values...22

add.ovf.<signed> - add integer values with overflow check.................................23

and - bitwise AND... 24

arglist - get argument list...25

beq.<length> – branch on equal...26

bge.<length> – branch on greater than or equal to..27

bge.un.<length> – branch on greater than or equal to, unsigned or unordered.....28

bgt.<length> – branch on greater than...29

bgt.un.<length> – branch on greater than, unsigned or unordered........................30

ble.<length> – branch on less than or equal to..31

ble.un.<length> – branch on less than or equal to, unsigned or unordered...........32

blt.<length> – branch on less than...33

blt.un.<length> – branch on less than, unsigned or unordered..............................34

bne.un<length> – branch on not equal or unordered...35

br.<length> – unconditional branch...36

break – breakpoint instruction... 37

brfalse.<length> - branch on false, null, or zero..38

brtrue.<length> - branch on non-false or non-null..39

call – call a method.. 40

calli– indirect method call...42

ceq - compare equal... 43

Page 2

IL Instruction Set Specification Specification

cgt - compare greater than...44

cgt.un - compare greater than, unsigned or unordered..45

ckfinite – check for a finite real number..46

clt - compare less than... 47

clt.un - compare less than, unsigned or unordered..48

conv.<to type> - data conversion...49

conv.ovf.<to type> - data conversion with overflow detection.............................51

conv.ovf.<to type>.un – unsigned data conversion with overflow detection........53

cpblk - copy data from memory to memory..55

div - divide values..56

div.un - divide integer values, unsigned..57

dup – duplicate the top value of the stack..58

endfilter – end filter clause of SEH...59

endfinally – end finally clause of an exception block...60

initblk - initialize a block of memory to a value..61

jmp – jump to method..62

jmpi – jump via method pointer...63

ldarg.<length> - load argument onto the stack..64

ldarga.<length> - load an argument address..65

ldc.<type> - load numeric constant...66

ldftn - load method pointer...68

ldind.<type> - load value indirect onto the stack..69

ldloc - load local variable onto the stack...71

ldloca.<length> - load local variable address..72

ldnull – load a null pointer...73

leave.<length> – exit a protected region of code...74

localloc – allocate space in the local dynamic memory pool................................75

mul - multiply values... 76

mul.ovf.<type> - multiply integer values with overflow check............................77

neg - negate..78

nop – no operation...79

not - bitwise complement...80

or - bitwise OR...81

pop – remove the top element of the stack..82

rem - compute remainder...83

rem.un - compute integer remainder, unsigned...84

Page 3

IL Instruction Set Specification Specification

ret – return from method..85

shl - shift integer left..86

shr - shift integer right... 87

shr.un - shift integer right, unsigned..88

starg.<length> - store a value in an argument slot...89

stind.<type> - store value indirect from stack...90

stloc - pop value from stack to local variable..91

sub - subtract numeric values..92

sub.ovf.<type> - subtract integer values, checking for overflow..........................93

switch – table switch on value...94

tail. (prefix code) – subsequent call terminates current method............................95

unaligned. (prefix code) – subsequent pointer instruction may be unaligned.......96

volatile. (prefix code) - subsequent pointer reference is volatile...........................97

xor - bitwise XOR..98

3 Object Model Instructions... 99

box – convert value type to object reference...100

callvirt – call a method associated, at runtime, with an object............................101

castclass – cast an object to a class..103

cpobj - copy a value type...104

initobj - initialize a value type... 105

isinst – test if an object is an instance of a class or interface, returning NULL or
an instance of that class or interface..106

ldelem.<type> – load an element of an array..107

ldelema – load address of an element of an array..109

ldfld – load field of an object...110

ldflda – load field address..111

ldlen – load the length of an array...112

ldobj - copy value type to the stack...113

ldsfld – load static field of a class..114

ldsflda – load static field address...115

ldstr – load a literal string..116

ldtoken - load the runtime representation of a metadata token...........................117

ldvirtftn - load a virtual method pointer...118

mkrefany – push a typed reference on the stack..119

newarr – create a zero-based, one-dimensional array..120

newobj – create a new object...121

Page 4

IL Instruction Set Specification Specification

refanytype – load the type out of a typed reference...122

refanyval – load the address out of a typed reference...123

rethrow – rethrow the current exception..124

sizeof – load the size in bytes of a value type..125

stelem.<type> – store an element of an array..126

stfld – store into a field of an object..128

stobj - store a value type from the stack into memory...129

stsfld – store a static field of a class..130

throw – throw an exception...131

unbox – Convert boxed value type to its raw form...132

4 Annotations..133

ann.call – start of simple calling sequence..134

ann.catch – start an exception filter or handler..135

ann.data – multi-byte no operation..136

ann.dead – stack location is no longer live..137

ann.def – SSA definition node...138

ann.hoisted– start of the simple portion of a hoisted calling sequence...............139

ann.hoisted_call – start of complex argument evaluation...................................140

ann.live – mark a stack location as live...141

ann.phi – SSA  node... 142

ann.ref.<length> – SSA reference node...143

5 Sample Code Sequences..144

5.1 Value types.. 144

Page 5

IL Instruction Set Specification Specification

1 Introduction to the Runtime IL Instruction Set
This specification is a detailed description of the NGWS runtime Intermediate Language
(IL) instruction set. The runtime Execution Engine Architecture Specification,
Architecture.doc, describes the architecture of the runtime Execution Engine (EE) and
provides an overview of a large number of issues relating to the IL instruction set. That
overview is essential to an understanding of the instruction set as described here.

Each instruction description describes a set of related EE machine instructions. Each
instruction definition consist of five parts:

 A table describing the binary format, assembly language notation and description of
each variant of the instruction. See the Instruction Variant Table section.

 A stack transition diagram that describes the state of the evaluation stack before and
after the instruction is executed. See the Stack Transition Diagram section.

 An English description of the instruction. See the English Description section.

 A list of exceptions that might be thrown by the instruction. See the EE Architecture
Specification for more details.

 A section describing the verifiability conditions associated with the instruction. See
the Verifiability section.

In addition, operations that have a numeric operand also specify an operand type table
that describes how they operate based on the type of the operand. See the Operand Type
Table section.

1.1Data Types
While the Virtual Object System defines a rich type system and the Common Language
Specification specifies a subset that can be used for language interoperability, the
Execution Engine itself deals with a much simpler set of types. These types, collectively
known as the “basic EE types,” are:

 A subset of the full numeric types (I4, I8, I, and F)

 Object references (O) but without distinction between the type of object referenced

 Pointer types (U, *, and &) without distinction as to the type pointed to

1.1.1 Numeric Data Types
The EE only tracks the numeric types I4 (4 byte signed integers), I8 (8 byte signed
integers), I (native size integers), and F (native size floating point numbers). The IL
instruction set, however, allows additional data types to be implemented:

 Short integers. The model is that the evaluation stack only holds 4 or 8 byte
integers, but other locations (arguments, local variables, statics, array elements,
fields) may hold 1 or 2 byte integers. Loading from these locations onto the stack
either zero-extends (ldind.u*, ldelem.u*, etc.) or sign-extends (ldind.i*, ldelem.i*,
etc.) to a 4 byte value. Storing to integers (stind.u1, stelem.i2, etc.) truncates. Use
the conv.ovf.* instructions to detect when this truncation results in a value that
doesn’t correctly represent the original value.

Page 6

Architecture.doc
Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

Convert instructions that yield short integer values actually leave an I4 (32-bit) value
on the stack, but it is guaranteed that only the low bits have meaning (i.e. the more
significant bits are all zero for the unsigned conversions or a sign extension for the
signed conversions). To correctly simulate the full set of short integer operations a
conversion to the short form is required before the div, rem, shr, comparison and
conditional branch instructions.

In addition to the explicit conversion instructions there are four cases where the EE
handles short integers in a special way:

1. Assignment to a local (stloc) or argument (starg) whose type is declared to be a
short integer type automatically truncates to the size specified for the local or
argument.

2. Loading from a local (ldloc) or argument (ldarg) whose type is declared to be a
short signed integer type automatically sign extends.

3. Calling a procedure with an argument that is a short integer type is equivalent to
assignment to the argument value, so it truncates.

4. Returning a value from a method whose return type is a short integer can be
thought of as storing into a short integer within the called procedure (i.e. the EE
automatically truncates) and loading from a short integer within the calling
procedure (i.e. the EE automatically zero- or sign-extends).

In the last two cases it is up to the native calling convention to determine whether
values are actually truncated or extended, as well as whether this is done in the called
procedure or the calling procedure. The IL instruction sequence is unaffected and it
is as though the IL sequence included an appropriate conv instruction.

 4 byte integers. The shortest value actually stored on the stack is a 4-byte integer.
These can be converted to 8-byte integers or native-size integers using conv.*
instructions. Native-size integers can be converted to 4-byte integers, but doing so is
not portable across architectures. The conv.i4 and conv.u4 can be used for this
conversion if loss of precision is desirable; the conv.ovf.i4 and conv.ovf.u4
instructions can be used to detect the loss of information. Arithmetic operations
allow 4-byte integers to be combined with native size integers, resulting in native size
integers. 4-byte integers may not be directly combined with 8-byte integers (they
must be converted to 8-byte integers first).

 Native size integers. Native size integers can be combined with 4-byte integers
using any of the normal arithmetic instructions, and the result will be a native-size
integer. Native size integers must be explicitly converted to 8-byte integers before
they can be combined with 8-byte integers.

 8 byte integers. Supporting 8 byte integers on 32 bit hardware is expensive, whereas
32 bit arithmetic is available and efficient on current 64 bit hardware. For this reason,
numeric instructions allow I4 and I data types to be intermixed (yielding the largest
type used as input), but these types cannot be combined with I8s. Instead, an I or I4
must be explicitly converted to I8 before it can be combined with an I8.

 Unsigned integers. Special instructions are used to interpret integers on the stack as
though they were unsigned, rather than tagging the stack locations as being unsigned.

 Floating point numbers. Storage locations for floating point numbers (statics, array
elements, and fields of classes) are of fixed size. The supported storage sizes are R4
(4 byte real numbers in IEEE754 single precision format), R8 (8 byte real numbers in
IEEE754 double precision format), and RPrecise (a fixed size for any given

Page 7

IL Instruction Set Specification Specification

architecture, at least 64 bits wide, and as precise as can be efficiently supported on
that architecture).

Everywhere else (on the evaluation stack, as arguments, as return types, and as local
variables) floating point numbers are represented using the internal F type. This type
can be thought of as starting at the size of value loaded from storage and then
expanding as needed. This design allows the EE to choose a platform-specific high-
performance representation for floating point numbers until they are placed in storage
locations. For example, it may be able to leave floating point variables in hardware
registers that provide more precision than a user has requested. At the same time, IL
generators can force operations to respect language-specific rules for representations
through the use of conversion instructions.

When a value of type F is put in a storage location it is automatically coerced to the
required size, which may involve a loss of precision or the creation of an out-of-range
marker (a NaN). To detect values that cannot be converted to a particular storage
type, use a conversion instruction (conv.r4, conv.r8, conv.r4result, conv.r8result, or
conv.rprecise) and then check for a non-finite value using ckfinite. To detect
underflow when converting to a particular storage type, a comparison to zero is
required before and after the conversion.

1.1.2 Object References
Object references (type O) are completely opaque. There are no arithmetic instructions
that allow object references as operands, and the only comparison operations permitted
are equality (and inequality) between two object references. There are no conversion
operations defined on object references. Object references are created by certain IL
object instructions (notably newobj and newarr). Object references can be passed as
arguments, stored as local variables, returned as values, and stored in arrays and as fields
of objects.

1.1.3 Runtime Pointer Types
There are three kinds of pointers: unmanaged pointer, managed pointers, and transient
pointers. For pointers into the same array or object (see the EE Architecture
Specification_), the following arithmetic operations are defined:

 Adding an integer to a pointer, where the integer is interpreted as a number of bytes,
results in a pointer of the same kind.

 Subtracting an integer (number of bytes) from a pointer results in a pointer of the
same kind. Note that subtracting a pointer from an integer is not permitted.

 Two pointers, regardless of kind, can be subtracted from one another, producing an
integer that specifies the number of bytes between the addresses they reference.

None of these operations is allowed in verifiable code.

It is important to understand the impact on the garbage collector of using arithmetic on
the different kinds of pointers. Since unmanaged pointers never reference memory that is
controlled by the garbage collector, performing arithmetic on them can endanger the
memory safety of the system (hence it is not verifiable) but since they are not reported to
the garbage collector there is no impact on its operation. Similarly, transient pointers are
not reported to the garbage collector and arithmetic can be performed without impact on
garbage collection.

Page 8

Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

Managed pointers, however, are reported to the garbage collector. As part of garbage
collection both the contents of the location to which they point and the pointer itself can
be modified. The garbage collector will ignore managed pointers if they point into
memory that is not under its control (the evaluation stack, the call stack, static memory,
or memory under the control of another allocator). If, however, a managed pointer refers
to memory controlled by the garbage collector it must point to either a field of an object,
an element of an array, or the address of the element just past the end of an array. If
address arithmetic is used to create a managed pointer that refers to any other location (an
object header or a gap in the allocated memory) the garbage collector’s operation is
unspecified.

1.1.3.1Unmanaged Pointers

Unmanaged pointers are the traditional pointers used in languages like C and C++. There
are no restrictions on their use, although for the most part they result in code that cannot
be verified. While it is perfectly legal to mark locations that contain unmanaged pointers
as though they were unsigned integers (and this is, in fact, how they are treated by the
EE), it is often better to mark them as unmanaged pointers to a specific type of data. This
is done by using ELEMENT_TYPE_PTR in a signature for a return value, local variable or an
argument (see the Metadata Structures Specification) or by using a pointer type for a field
or array element.

Unmanaged pointers are not reported to the garbage collector and can be used in any way
that an integer can be used.

 It is best to think of unmanaged pointers as unsigned (i.e. use conv.ovf.u rather than
conv.ovf.i, etc.).

 Verifiable code cannot use unmanaged pointers to reference memory (i.e. it treats
them as integers, not pointers).

 Unverified code can pass an unmanaged pointer to a method that expects a managed
pointer. This is safe only if one of the following is true:

1. The unmanaged pointer refers to memory that is not in memory managed by the
garbage collector

2. The unmanaged pointer refers to a field within an object

3. The unmanaged pointer refers to an element within an array

4. The unmanaged pointer refers to the location where the element following the last
element in an array would be located

1.1.3.2Managed Pointers (type &)
Managed pointers (&) may point to a field of an object, a field of a value type, an
element of an array, or the address where an element just past the end of an array would
be stored (for pointer indexes into managed arrays). Managed pointers cannot be null,
and they must be reported to the garbage collector, even if they do not point to managed
memory.

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for a return
value, local variable or an argument or by using a by-ref type for a field or array element.
See the Metadata Structures Specification for details.

Page 9

MetadataStructures.doc
MetadataStructures.doc

IL Instruction Set Specification Specification

 Managed pointers can be passed as arguments and stored in local variables.

 If you pass a parameter by reference, the corresponding argument is a managed
pointer.

 Managed pointers cannot be stored in static variables, array elements, or fields of
objects or value types.

 Managed pointers are not interchangeable with object references.

 A managed pointer cannot point to another managed pointer, but it can point to an
object reference or a value type.

 Managed pointers that do not point to managed memory can be converted (using
conv.u or conv.ovf.u) into unmanaged pointers, but this is not verifiable.

 Unverified code that erroneously converts a managed pointer into an unmanaged
pointer can seriously compromise the integrity of the EE. This conversion is only
safe if one of the following is known to be true:

1. the managed pointer does not point into the garbage collector’s memory area

2. the memory referred to has been pinned for the entire time that the unmanaged
pointer is in use

3. a garbage collection cannot occur while the unmanaged pointer is in use

1.1.3.3Transient Pointers (type *)
Transient pointers (*) are intermediate between managed and unmanaged pointers. They
are created within the EE by certain IL instructions, but users cannot declare locations of
this type. When a transient pointer is passed as an argument, returned as a value, or
stored into a user-visible location it is converted either to a managed pointer or an
unmanaged pointer depending on the type specified for the destination.

 The IL instructions that create transient pointers (ldloca, ldarga, ldsflda when the
type of the field is not an object) are guaranteed to produce pointers to data that is not
in managed memory.

 Transient pointers need not be reported to the garbage collector, and they are
automatically converted to managed or unmanaged pointers when necessary (on
method call or when stored into a local or argument that requires a managed pointer).

 Transient pointers can exist only on the evaluation stack within a single method.

 The verifier treats transient pointers as managed pointers.

1.2Instruction Variant Table
Each variant of an instruction is described in this table. The format column of the table
describes the reference opcode assigned to the instruction variant, along with any
arguments that follow the instruction in the instruction stream. A typical instruction
format entry might look like

FE 0A <U2>

Boldface numbers represent literal bytes in the instruction stream. In the example above
the instruction is encoded by the byte FE followed by the byte 0A. Italicized type names
represent numbers that should follow in the instruction stream. In the example above a 2-

Page 10

IL Instruction Set Specification Specification

byte quantity that is to be treated as an unsigned integer directly follows the FE 0A
opcode.

Any of the fixed size primitive types (I1, U1, I2, U2, I4, U4, I8, U8, R4, and R8) can
appear in opcode format descriptions. These types define the number of bytes for the
argument and how it should be interpreted (signed, unsigned or floating point). In
addition, a metadata token can appear, indicated as <T>. Tokens are encoded as a 4-byte
unsigned integer. All argument numbers are encoded least significant byte first (little
endian). Bytes for instruction opcodes and arguments are packed as tightly as possible
(no alignment padding is done).

The assembly format column defines an assembly code mnemonic (see the Assembler
Programmers' Reference) for the instruction variant. For those instructions that have
instruction stream arguments, this column also assigns names to each of the arguments to
the instruction. For each instruction argument, there is a name in the assembly format.
These names are used later in the instruction description.

1.2.1 Opcode Encodings
The IL opcode space is encoded using one, two, and four byte opcodes. One byte
encodings range from 0x00 through 0xEF and are all reserved, even if not currently in
use. Two byte encodings start with 0xF0 through 0xFE. Of these, the set beginning with
0xFE are reserved for future expansion by Microsoft and the other sets are unspecified
and must not be used. Four byte encodings begin with 0xFF and must not be used.

The currently defined encodings are specified in Table 1

0x00 nop

0x01 break

0x02 ldarg.0

0x03 ldarg.1

0x04 ldarg.2

0x05 ldarg.3

0x06 ldloc.0

0x07 ldloc.1

0x08 ldloc.2

0x09 ldloc.3

0x0a stloc.0

0x0b stloc.1

0x0c stloc.2

0x0d stloc.3

0x0e ldarg.s

0x0f ldarga.s

0x10 starg.s

0x11 ldloc.s

0x12 ldloca.s

0x13 stloc.s

0x14 ldnull

0x15 ldc.i4.m1

0x16 ldc.i4.0

0x17 ldc.i4.1

0x18 ldc.i4.2

0x19 ldc.i4.3

0x1a ldc.i4.4

0x1b ldc.i4.5

0x1c ldc.i4.6

0x1d ldc.i4.7

0x1e ldc.i4.8

0x1f ldc.i4.s

0x20 ldc.i4

0x21 ldc.i8

0x22 ldc.r4

0x23 ldc.r8

Page 11

./Assembler%20Programmers'%20Reference.doc
./Assembler%20Programmers'%20Reference.doc

IL Instruction Set Specification Specification

0x25 dup 0x26 pop

Page 12

IL Instruction Set Specification Specification

0x27 jmp

0x28 call

0x29 calli

0x2a ret

0x2b br.s

0x2c brfalse.s

0x2d brtrue.s

0x2e beq.s

0x2f bge.s

0x30 bgt.s

0x31 ble.s

0x32 blt.s

0x33 bne.un.s

0x34 bge.un.s

0x35 bgt.un.s

0x36 ble.un.s

0x37 blt.un.s

0x38 br

0x39 brfalse

0x3a brtrue

0x3b beq

0x3c bge

0x3d bgt

0x3e ble

0x3f blt

0x40 bne.un

0x41 bge.un

0x42 bgt.un

0x43 ble.un

0x44 blt.un

0x45 switch

0x46 ldind.i1

0x47 ldind.u1

0x48 ldind.i2

0x49 ldind.u2

0x4a ldind.i4

0x4c ldind.i8

0x4d ldind.i

0x4e ldind.r4

0x4f ldind.r8

0x50 ldind.ref

0x51 stind.ref

0x52 stind.i1

0x53 stind.i2

0x54 stind.i4

0x55 stind.i8

0x56 stind.r4

0x57 stind.r8

0x58 add

0x59 sub

0x5a mul

0x5b div

0x5c div.un

0x5d rem

0x5e rem.un

0x5f and

0x60 or

0x61 xor

0x62 shl

0x63 shr

0x64 shr.un

0x65 neg

0x66 not

0x67 conv.i1

0x68 conv.i2

0x69 conv.i4

0x6a conv.i8

0x6b conv.r4

0x6c conv.r8

Page 13

IL Instruction Set Specification Specification

0x6d conv.u4

0x6e conv.u8

0x6f callvirt

0x70 cpobj

0x71 ldobj

0x72 ldstr

0x73 newobj

0x74 castclass

0x75 isinst

0x76 conv.r.un

0x77 ann.data.s

0x78 box

0x79 unbox

0x7a throw

0x7b ldfld

0x7c ldflda

0x7d stfld

0x7e ldsfld

0x7f ldsflda

0x80 stsfld

0x81 stobj

0x82 conv.ovf.i1.un

0x83 conv.ovf.i2.un

0x84 conv.ovf.i4.un

0x85 conv.ovf.i8.un

0x86 conv.ovf.u1.un

0x87 conv.ovf.u2.un

0x88 conv.ovf.u4.un

0x89 conv.ovf.u8.un

0x8a conv.ovf.i.un

0x8b conv.ovf.u.un

0x8d newarr

0x8e ldlen

0x8f ldelema

0x90 ldelem.i1

0x91 ldelem.u1

0x92 ldelem.i2

0x93 ldelem.u2

0x94 ldelem.i4

0x96 ldelem.i8

0x97 ldelem.i

0x98 ldelem.r4

0x99 ldelem.r8

0x9a ldelem.ref

0x9b stelem.i

0x9c stelem.i1

0x9d stelem.i2

0x9e stelem.i4

0x9f stelem.i8

0xa0 stelem.r4

0xa1 stelem.r8

0xa2 stelem.ref

0xb3 conv.ovf.i1

0xb4 conv.ovf.u1

0xb5 conv.ovf.i2

0xb6 conv.ovf.u2

0xb7 conv.ovf.i4

0xb8 conv.ovf.u4

0xb9 conv.ovf.i8

0xba conv.ovf.u8

0xc2 refanyval

0xc3 ckfinite

0xc6 mkrefany

0xc7 ann.call

0xc8 ann.catch

0xc9 ann.dead

0xca ann.hoisted

0xcb ann.hoisted_call

0xcc ann.lab

Page 14

IL Instruction Set Specification Specification

0xcd ann.def

0xce ann.ref.s

0xcf ann.phi

0xd0 ldtoken

0xd1 conv.u2

0xd2 conv.u1

0xd3 conv.i

0xd4 conv.ovf.i

0xd5 conv.ovf.u

0xd6 add.ovf

0xd7 add.ovf.un

0xd8 mul.ovf

0xd9 mul.ovf.un

0xda sub.ovf

0xdb sub.ovf.un

0xdc endfinally

0xdd leave

0xde leave.s

0xdf stind.i

0xe0 conv.u

0xfe 0x00 arglist

0xfe 0x01 ceq

0xfe 0x02 cgt

0xfe 0x03 cgt.un

0xfe 0x04 clt

0xfe 0x05 clt.un

0xfe 0x06 ldftn

0xfe 0x07 ldvirtftn

0xfe 0x08 jmpi

0xfe 0x09 ldarg

0xfe 0x0a ldarga

0xfe 0x0b starg

0xfe 0x0c ldloc

0xfe 0x0d ldloca

0xfe 0x0e stloc

0xfe 0x0f localloc

0xfe 0x11 endfilter

0xfe 0x12 unaligned.

0xfe 0x13 volatile.

0xfe 0x14 tail.

0xfe 0x15 initobj

0xfe 0x16 ann.live

0xfe 0x17 cpblk

0xfe 0x18 initblk

0xfe 0x19 ann.ref

0xfe 0x1a rethrow

0xfe 0x1c sizeof

0xfe 0x1d refanytype

0xfe 0x22 ann.data

0xfe 0x23 ann.arg

Table 1: Opcode Encodings

1.3Stack Transition Diagram
The stack transition diagram displays the state of the evaluation stack before and after the
instruction is executed. Below is a typical stack transition diagram.

…, value1, value2

…, result

Page 15

IL Instruction Set Specification Specification

This diagram indicates that the stack must have at least two elements on it, and in the
definition the topmost value (“top of stack” or “most recently pushed”) will be called
value2 and the value underneath (pushed prior to value2) will be called value1. (In
diagrams like this, the stack grows to the right, along the page). The instruction removes
these values from the stack and replaces them by another value, called result in the
description.

1.4English Description
The English description describes any details about the instructions that are not
immediately apparent once the format and stack transition have been described.

1.5Verifiability
Memory safety is a property that ensures programs running in the same address space are
correctly isolated from one another (see the EE Architecture Specification_). Thus, it is
desirable to test whether programs are memory safe prior to running them.
Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the
runtime can test a stronger restriction, called verifiability. Every program that is verified
is memory safe, but some programs that are not verifiable are still memory safe.

It is perfectly acceptable to generate IL code that is not verifiable, but which is known to
be memory safe by the compiler writer. Several important uses of IL instructions are not
verifiable, such as the pointer arithmetic versions of add that are required for the faithful
and efficient compilation of C programs. For non-verifiable code, memory safety is the
responsibility of the compiler writer.

IL contains a verifiable subset. The Verifiability description gives details of the
conditions under which a use of an instruction falls within the verifiable subset of IL.
The verifier tracks the types of values in much finer detail than is required for the basic
functioning of the EE, because it is checking that an IL code sequence respects not only
the basic rules of the EE with respect to the safety of garbage collection, but also the
typing rules of the Virtual Object System. This helps to guarantee the sound operation of
the entire EE. The descriptions therefore make the distinction between “verification
types” and “EE types”, the latter already having been described in Section 1.1.

The verifiability section of each operation description specifies requirements both for
correct IL generation and for verification. Correct IL generation always requires
guaranteeing that the top items on the stack correspond to the types shown in the stack
transition diagram. The verifiability section specifies only requirements for correct IL
generation that not captured in that diagram. The verifier tests both the requirements for
correct IL generation and the specific verification conditions that are described with the
instruction. The operation of IL sequences that do not meet the IL correctness
requirements is unspecified. The operation of IL sequences that meet the correctness
requirements but is not verifiable may violate typesafety and hence violate security or
memory access constraints.

1.6Operand Type Table
Many IL operations take numeric operands on the stack. These fall into several different
categories, depending on how they deal with the types of the operands. The following
operand tables summarize the legal operand types and the resulting type. Notice that the
type referred to here is the type as tracked by the Execution Engine rather than the more

Page 16

Architecture.doc

IL Instruction Set Specification Specification

detailed types used by tools such as the IL verifier. The types tracked by the EE are: I4,
I8, I, F, O, &, and *.

Table 2: Binary Numeric Operations

A op B (used for add, div, mul, rem, and sub, applies to all instructions unless specific
instructions are specified in the table). The shaded uses are not verifiable, while items
marked “-“ indicate incorrectly formed IL sequences.

B’s type
A’s type

I4 I8 I F & O *

I4 I4 - I - & (add) - * (add)

I8 - I8 - - - - -

I I - I - & (add) - * (add)

F - - - F - - -

& & (add,
sub)

- & (add,
sub)

- I (sub) - I (sub)

O - - - - - - -

* * (add,
sub)

- * (add,
sub)

- I (sub) - I (sub)

Table 3: Unary Numeric Operations

Used for the neg instruction. All these uses of this instruction are verifiable.

Operand
Type

I4 I8 I F & O *

Result
Type

I4 I8 I F - - -

Table 4: Binary Comparison or Branch Operations

These return a boolean value or branch based on the top two values on the stack. Used
for beq, bge, bge.un, bgt, bgt.un, ble, ble.un, blt, blt.un, bne, bne.un, ceq, cgt, cgt.un,
clt, clt.un. Items marked “” indicate that all instructions are valid. Items marked “-”
indicate invalid IL sequences. If only a subset of instructions are permitted, the valid
instructions are shown in the corresponding cell.

I4 I8 I F & O *

I4  -  - - - -

I8 -  - - - - -

I  -  - beq[.s],
bne.un[.s],
ceq

- beq[.s],
bne.un[.s],
ceq

F - - -  - - -

Page 17

IL Instruction Set Specification Specification

& - - beq[.s],
bne.un[.s],
ceq

-  (Note) -  (Note)

O - - - - - beq[.s],
bne.un[.s],
ceq

-

* - - beq[.s],
bne.un[.s],
ceq

-  (Note) -  (Note)

Note: Except for beq, bne.un (or short versions) or ceq these combinations only make sense if both
operands are known to be pointers to elements of the same array.

Table 5: Integer Operations

These operate only on integer types. Used for and, div.un, not, or, rem.un, shl, shr,
xor. The div.un and rem.un instructions treat their arguments as unsigned integers and
produce the bit pattern corresponding to the unsigned result. As described in the EE
Specification, however, the EE makes no distinction between signed and unsigned
integers on the stack. The not instruction is unary and returns the same type as the input.
The shl and shr instructions return the same type as their first operand and their second
operand must be of type U. All items marked “-“ indicate incorrectly formed IL
sequences, while the others are verifiable.

I4 I8 I F & O *

I4 I4 - I - - - -

I8 - I8 - - - - -

I I - I - - - -

F - - - - - - -

& - - - - - - -

O - - - - - - -

* - - - - - - -

Table 6: Overflow Arithmetic Operations

These operations generate an exception if the result cannot be represented in the target
data type. Used for add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, sub.ovf.un
The shaded uses are not verifiable, while items marked “-“ indicate incorrectly formed IL
sequences.

I4 I8 I F & O *

I4 I4 - I - &
add.ovf.
un

- *
add.ovf.
un

I8 - I8 - - - - -

I I - I - &
add.ovf.

- *
add.ovf.

Page 18

IL Instruction Set Specification Specification

un un

F - - - - - - -

& &
add.ovf.
un,
sub.ovf.u
n

- &
add.ovf.
un,
sub.ovf.u
n

- I
sub.ovf.u
n

- I
sub.ovf.u
n

O - - - - - - -

* *
add.ovf.
un,
sub.ovf.u
n

- *
add.ovf.
un,
sub.ovf.u
n

- I
sub.ovf.u
n

- I
sub.ovf.u
n

Table 7: Conversion Operations

These operations convert from one numeric type to another. The result type is
guaranteed to be representable as the data type specified as part of the operation (i.e. the
conv.u2 instruction returns a value that can be stored in a U2). The stack, however, can
only store values that are a minimum of 4 bytes wide. Used for the conv.<to type>,
conv.ovf.<to type>, and conv.ovf.<to type>.un instructions. The shaded uses are not
verifiable, while items marked “-“ indicate incorrectly formed IL sequences.

Output
Operand

I1/U1
I2/U2

I4/U4 I8 U8 I

I4 Truncate1 No-op Sign extend Zero extend Sign extend

I8 Truncate1 Truncate1 No-op No-op Truncate1

I Truncate1 Truncate1 Sign extend Zero extend No-op

F Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02

& - - - Stop GC
Tracking

-

O - - - - -

* - - - Zero extend -

Output
Operand

U All R Types &

I4 Zero extend To Float -

I8 Truncate1 To Float -

I No-op To Float -

F Trunc to 02 Change Precision3 -

& Stop GC Tracking - No-op

O - - -

Page 19

IL Instruction Set Specification Specification

* No-op - Start GC Tracking

Note 1: “Truncate” means that the number is truncated (i.e. the higher-order
bits are set to zero) to the desired size. If the destination type is signed, the
most-significant bit of the truncated value is then sign-extended to fill the full
output size. Thus, converting 257 (0x101) to I1 or U1 yields 1, but truncating
129 (0x81) to U1 yields 129 (0x81) while truncating it to I1 yields –126
(0xF...F81)

Note 2: “Trunc to 0” means that the floating point number will be converted to
an integer by truncation toward zero. Thus 1.1 is converted to 1 and –1.1 is
converted to –1.

Note 3: Converts from the current precision available on the evaluation stack to
the precision specified by the instruction. If the stack has more precision than
the output size the conversion is performed using the IEEE 754 “round to
nearest” mode to compute the low order bit of the result.

1.7Signature Matching
While the EE deals only with 7 types (I4, I, I8, F, O, &, and *) the metadata supplies a
much richer model for parameters of methods. The verifier is responsible for ensuring
the detailed type matching expected for memory safety. The shaded uses are not
verifiable, while the items marked “No” are incorrect IL sequences. The EE uses the
following rules when passing data from one method to another:

Stack
Paramet
er

I4 I I8 F & O *

I1 Note 1 Note 1 No No No No No

U1 Note 1 Note 1 No No No No No

I2 Note 1 Note 1 No No No No No

U2 Note 1 Note 1 No No No No No

I4 OK Note 1 No No No No No

U4 As is Note 2 No No No No No

I8 Sign
extend

Sign
extend

OK No No No No

U8 Zero
extend

Zero
extend

OK No No No No

I Sign
extend

OK No No No No No

U Zero
extend

Zero
extend

No No Note 3 No No GC
tracking

R4 No No No Round No No No

R8 No No No Round No No No

R No No No Round No No No

Page 20

IL Instruction Set Specification Specification

Class No No No No No OK No

Value
Type
(Note 4)

Note 5 Note 5 Note 5 Note 5 No No No

By-Ref
(&)

No Start GC
tracking

No No OK No Start GC
tracking

Ref Any
(Note 6)

No No No No No No No

1. The EE provides an implicit conv.* instruction to generate the correct parameter type.

2. On a 32-bit machine passing an I argument to a U4 parameter involves no
conversion. On a 64-bit machine it is treated as described in note 1.

3. See Section 1.1.3.2. This conversion is not provided automatically by the EE.

4. The EE’s stack can contain a value type. These may only be passed if the particular
value type on the stack exactly matches the class required by the corresponding
parameter.

5. Passing a primitive type to a parameter that is required to be a value type is not
allowed

6. There are special instructions to construct and pass a Ref Any.

Page 21

IL Instruction Set Specification Specification

2 Base Instructions
These instructions form a “Turing Complete” set of basic operations. They are
independent of the object model that may be employed. Operations that are specifically
related to the Virtual Object System’s object model are contained in the Object Model
Instructions section. Annotations, which are used with OptIL but can be ignored by
most IL processors, are described in the Annotations section.

Page 22

IL Instruction Set Specification Specification

add - add numeric values

Format Assembly
Format

Description

58 add Add two values, returning a new value

Stack Transition:

…, value1, value2

…, result
Description:

The add instruction adds value2 to value1 and pushes the result on the stack. Overflow is
not detected for integral operations (but see add.ovf); floating point overflow returns +inf
or -inf.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

None.

Verifiability:

See Table 2: Binary Numeric Operations.

Page 23

IL Instruction Set Specification Specification

add.ovf.<signed> - add integer values with overflow check

Format Assembly
Format

Description

D6 add.ovf Add signed integer values with overflow check.

D7 add.ovf.un Add unsigned integer values with overflow check.

Stack Transition:

…, value1, value2

…, result
Description:

The add.ovf instruction adds value1 and value2 and pushes the result on the stack. The
acceptable operand types and their corresponding result data type is encapsulated in
Table 6: Overflow Arithmetic Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type.

Verifiability:

See Table 6: Overflow Arithmetic Operations.

Page 24

IL Instruction Set Specification Specification

and - bitwise AND

Format Instruction Description

5F and Bitwise AND of two integral values, returns an
integral value

Stack Transition:

…, value1, value2

…, result
Description:

The and instruction computes the bitwise AND of the top two values on the stack and
pushes the result on the stack. The acceptable operand types and their corresponding
result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

Page 25

IL Instruction Set Specification Specification

arglist - get argument list

Format Assembly
Format

Description

FE 00 arglist return argument list handle for the current method

Stack Transition:

…

…, argListHandle
Description:

The arglist instruction returns an opaque handle (an unmanaged pointer, type I)
representing the argument list of the current method. This handle is valid only during the
lifetime of the current method. The handle can, however, be passed to other methods as
long as the current method is on the thread of control. The arglist instruction may only
be executed within a method that takes a variable number of arguments.

Rationale: This instruction is needed to implement the C ‘va_*’ macros used to
implement procedures like ‘printf’. It is intended for use with the class library
implementation of System.ArgIterator.

Exceptions:

None.

Verifiability:

It is incorrect IL generation to emit this instruction except in the body of a method whose
signature indicates it accepts a variable number of arguments. Within such a method its
use is verifiable, but the verifer requires that the result be treated as a specific value type
which is private to the System.ArgIterator class.

Page 26

IL Instruction Set Specification Specification

beq.<length> – branch on equal

Format Assembly
Format

Description

3B <I4> beq target branch to target if equal

2E <I1> beq.s target branch to target if equal, short form

Stack Transition:

…, value1, value2

…
Description:

The beq instruction transfers control to target if value1 is equal to value2. The effect is
identical to performing a ceq instruction followed by a brtrue target. Target is
represented as a signed offset (4 bytes for beq, 1 byte for beq.s) from the beginning of
the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification_ for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 27

IL Instruction Set Specification Specification

bge.<length> – branch on greater than or equal to

Format Assembly
Format

Description

3C <I4> bge target branch to target if greater than or equal to

2F <I1> bge.s target branch to target if greater than or equal to, short form

Stack Transition:

…, value1, value2

…
Description:

The bge instruction transfers control to target if value1 is greater than or equal to value2.
The effect is identical to performing a clt instruction followed by a brfalse target. Target
is represented as a signed offset (4 bytes for bge, 1 byte for bge.s) from the beginning of
the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 28

IL Instruction Set Specification Specification

bge.un.<length> – branch on greater than or equal to,
unsigned or unordered

Format Assembly
Format

Description

41 <I4> bge.un target branch to target if greater than or equal to (unsigned or
unordered)

34 <I1> bge.un.s target branch to target if greater than or equal to (unsigned or
unordered), short form

Stack Transition:

…, value1, value2

…
Description:

The bge.un instruction transfers control to target if value1 is greater than or equal to
value2, when compared unsigned (for integer values) or unordered (for float point
values). The effect is identical to performing a clt.un instruction followed by a brfalse
target. Target is represented as a signed offset (4 bytes for bge.un, 1 byte for bge.un.s)
from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 29

IL Instruction Set Specification Specification

bgt.<length> – branch on greater than

Format Assembly
Format

Description

3D <I4> bgt target branch to target if greater than

30 <I1> bgt.s target branch to target if greater than, short form

Stack Transition:

…, value1, value2

…
Description:

The bgt instruction transfers control to target if value1 is greater than value2. The effect
is identical to performing a cgt instruction followed by a brtrue target. Target is
represented as a signed offset (4 bytes for bgt, 1 byte for bgt.s) from the beginning of the
instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 30

IL Instruction Set Specification Specification

bgt.un.<length> – branch on greater than, unsigned or
unordered

Format Assembly
Format

Description

42 <I4> bgt.un target branch to target if greater than (unsigned or unordered)

35 <I1> bgt.un.s target branch to target if greater than (unsigned or unordered),
short form

Stack Transition:

…, value1, value2

…
Description:

The bgt.un instruction transfers control to target if value1 is greater than value2, when
compared unsigned (for integer values) or unordered (for float point values). The effect is
identical to performing a cgt.un instruction followed by a brtrue target. Target is
represented as a signed offset (4 bytes for bgt.un, 1 byte for bgt.un.s) from the beginning
of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 31

IL Instruction Set Specification Specification

ble.<length> – branch on less than or equal to

Format Assembly
Format

Description

3E <I4> ble target branch to target if less than or equal to

31 <I1> ble.s target branch to target if less than or equal to, short form

Stack Transition:

…, value1, value2

…
Description:

The ble instruction transfers control to target if value1 is less than or equal to value2. The
effect is identical to performing a cgt instruction followed by a brfalse target. Target is
represented as a signed offset (4 bytes for ble, 1 byte for ble.s) from the beginning of the
instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 32

IL Instruction Set Specification Specification

ble.un.<length> – branch on less than or equal to, unsigned or
unordered

Format Assembly
Format

Description

43 <I4> ble.un target branch to target if less than or equal to (unsigned or
unordered)

36 <I1> ble.un.s target branch to target if less than or equal to (unsigned or
unordered), short form

Stack Transition:

…, value1, value2

…
Description:

The ble.un instruction transfers control to target if value1 is less than or equal to value2,
when compared unsigned (for integer values) or unordered (for float point values). The
effect is identical to performing a cgt.un instruction followed by a brfalse target. Target
is represented as a signed offset (4 bytes for ble.un, 1 byte for ble.un.s) from the
beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 33

IL Instruction Set Specification Specification

blt.<length> – branch on less than

Format Assembly
Format

Description

3F <I4> blt target branch to target if less than

32 <I1> blt.s target branch to target if less than, short form

Stack Transition:

…, value1, value2

…
Description:

The blt instruction transfers control to target if value1 is less than value2. The effect is
identical to performing a clt instruction followed by a brtrue target. Target is
represented as a signed offset (4 bytes for blt, 1 byte for blt.s) from the beginning of the
instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 34

IL Instruction Set Specification Specification

blt.un.<length> – branch on less than, unsigned or unordered

Format Assembly
Format

Description

44 <I4> blt.un target branch to target if less than (unsigned or unordered)

37 <I1> blt.un.s target branch to target if less than (unsigned or
unordered), short form

Stack Transition:

…, value1, value2

…
Description:

The blt.un instruction transfers control to target if value1 is less than value2. The effect
is identical to performing a clt.un instruction followed by a brtrue target. Target is
represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s) from the beginning
of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 35

IL Instruction Set Specification Specification

bne.un<length> – branch on not equal or unordered

Format Assembly
Format

Description

40 <I4> bne.un target branch to target if unequal or unordered

33 <I1> bne.un.s target branch to target if unequal or unordered, short form

Stack Transition:

…, value1, value2

…
Description:

The bne.un instruction transfers control to target if value1 is not equal to value2, when
compared unsigned (for integer values) or unordered (for float point values). The effect is
identical to performing a ceq instruction followed by a brfalse target. Target is
represented as a signed offset (4 bytes for bne.un, 1 byte for bne.un.s) from the
beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee that the top two items on the stack correspond to the types shown in Table 4:
Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 36

IL Instruction Set Specification Specification

br.<length> – unconditional branch

Format Assembly Format Description

38 <I4> br target branch to target

2B <I1> br.s target branch to target, short form

Stack Transition:

…,

…
Description:

The br instruction unconditionally transfers control to target. Target is represented as a
signed offset (4 bytes for br, 1 byte for br.s) from the beginning of the instruction
following the current instruction.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Rationale: While a leave instruction can always be used instead of a br instruction,
doing so may increase the resources required to compile from IL to native code and/or
lead to inferior native code. Therefore IL generators should use a br instruction in
preference to a leave instruction when both are legal.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 37

IL Instruction Set Specification Specification

break – breakpoint instruction

Format Assembly
Format

Description

01 break inform a debugger that a breakpoint has been reached.

Stack Transition:

…,

…
Description:

The break instruction is for debugging support. It signals the EE to inform the debugger
that a break point has been tripped. It has no other effect on the interpreter state.

The break instruction has the smallest possible instruction size so that code can be
patched with a breakpoint with minimal disturbance to the surrounding code.

Exceptions:

None.

Verifiability:

The break instruction is always verifiable.

Page 38

IL Instruction Set Specification Specification

brfalse.<length> - branch on false, null, or zero

Format Assembly
Format

Description

39 <I4> brfalse target branch to target if value is zero (false)

2C <I1> brfalse.s target branch to target if value is zero (false), short form

39 <I4> brnull target branch to target if value is null (alias for brfalse)

2C <I1> brnull.s target branch to target if value is null (alias for brfalse.s),
short form

39 <I4> brzero target branch to target if value is zero (alias for brfalse)

2C <I1> brzero.s target branch to target if value is zero (alias for brfalse.s),
short form

Stack Transition:

…, value

…
Description:

The brfalse instruction transfers control to target if value (of any integral type) is zero
(false). If value is non-zero (true) execution continues at the next instruction.

If the value is an object reference (type O), a managed pointer (type &) or transient
pointer (type *), then brnull (an alias for brfalse) transfers control if it represents the null
object (see ldnull).

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the
beginning of the instruction following the current instruction.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee there is a minimum of one item on the stack.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 39

IL Instruction Set Specification Specification

brtrue.<length> - branch on non-false or non-null

Format Assembly
Format

Description

3A <I4> brtrue target branch to target if value is non-zero (true)

2D <I1> brtrue.s target branch to target if value is non-zero (true), short form

3A <I4> brinst target branch to target if value is a non-null object reference
(alias for brtrue)

2D <I1> brinst.s target branch to target if value is a non-null object reference,
short form (alias for brtrue.s)

Stack Transition:

…, value

…
Description:

The brtrue instruction transfers control to target if value (of any integral type) is nonzero
(true). If value is zero (false) execution continues at the next instruction.

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers
control if it represents an instance of an object (i.e. isn’t the null object reference, see
ldnull).

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the
beginning of the instruction following the current instruction.

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL must observe all of the control transfer rules specified above and must
guarantee there is a minimum of one item on the stack.

In addition, verifiable code requires the type-consistency of the stack, locals and
arguments for every possible way of reaching the destination instruction. See the verifier
specification for more details.

Page 40

IL Instruction Set Specification Specification

call – call a method

Format Assembly
Format

Description

28 <T> call method Call method described by method

Stack Transition:

…, arg1, arg2 … argn

…, retVal (not always returned)
Description:

The call instruction calls the method indicated by the descriptor method. Method is a
metadata token (either a methodref or methoddef, see the Metadata Specification) that
indicates the method to call and the number, type, and order of the arguments that have
been placed on the stack to be passed to that method as well as the calling convention to
be used. See the EE Architecture Specification for a detailed description of the IL calling
sequence. The call instruction may be immediately preceded by a tail. prefix to specify
that the current method state should be released before transferring control. If the call
would transfer control to a method of higher trust than the origin method the stack frame
will not be released; instead, the execution will continue silently as if the tail. prefix had
not been supplied.

The metadata token carries sufficient information to know whether the call is to a static
method, an instance method, or a global function. In all of these cases the destination
address is determined from the metadata token (See the callvirt instruction for calling
virtual methods or methods on interfaces).

The arguments are placed on the stack in left-to-right order. That is, the first argument is
computed and placed on the stack, then the second argument, etc. There are three
important special cases:

1. Calls to an instance (or virtual, see below) method must push that instance reference
(the this pointer) before any of the user-visible arguments. The this pointer must not
be null. The signature carried in the metadata does not contain an entry in the
parameter list for the this pointer but uses a bit to indicate whether the method
requires passing the this pointer (see the Metadata Specification).

2. It is legal to call a virtual method using call (rather than callvirt); this indicates that
the method is to be resolved using the class specified by method rather than as
specified dynamically from the object being invoked. This is used, for example, to
compile calls to “methods on super” (i.e. the statically known parent class).

3. The call instruction may not be used to call a delegate’s Invoke method: callvirt
must be used instead.

Exceptions:

SecurityException may be thrown if the runtime system security does not grant the
caller access to the called method. The security check may occur when the IL is
converted to native code rather than at runtime.

Verifiability:

Page 41

./COR%20Metadata%20Interfaces.doc
Architecture.doc
./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

Correct IL ensures that the stack contains the correct number and type of arguments for
the method being called.

For a typical use of the call instruction, the verifier checks that (a) method refers to a
valid methodref or methoddef token; (b) the types of the objects on the stack are
consistent with the types expected by the method call, and (c) the method is accessible
from the callsite.

The call instruction may also be used to call an object’s superclass constructor, or to
initialize a value type location by calling an appropriate constructor, both of which are
treated as special cases by the verifier. A call annotated by tail. is also a special case.

Page 42

IL Instruction Set Specification Specification

calli– indirect method call

Format Assembly
Format

Description

29 <T> calli
callsitedescr

Call method indicated on the stack with arguments
described by callsitedescr.

Stack Transition:

…, arg1, arg2 … argn, ftn

… retVal (not always returned)

Description:

The calli instruction calls ftn (a pointer to a method entry point) with the arguments arg1
… argn. The types of these arguments are described by the signature callsitedescr. See
the EE Architecture Specification for a description of the IL calling sequence. The calli
instruction may be immediately preceded by a tail. prefix to specify that the current
method state should be released before transferring control. If the call would transfer
control to a method of higher trust than the origin method the stack frame will not be
released; instead, the execution will continue silently as if the tail. prefix had not been
supplied.

The ftn argument is assumed to be a pointer to native code (of the target machine) that
can be legitimately called with the arguments described by callsitedescr (a metadata
token for a stand-alone signature, see the Metadata Specification). Such a pointer can be
created using the ldftn or ldvirtftn instructions, or have been passed in from native code.

The standalone signature specifies the number and type of parameters being passed, as
well as the calling convention (see the Metadata Specification). The calling convention is
not checked dynamically, so code that uses a calli instruction will not work correctly if
the destination does not actually use the specified calling convention.

The arguments are placed on the stack in left-to-right order. That is, the first argument is
computed and placed on the stack, then the second argument, etc. The argument-building
code sequence for an instance or virtual method must push that instance reference (the
this pointer, which must not be null) before any of the user-visible arguments.

Exceptions:

SecurityException may be thrown if the runtime system security does not grant the
caller access to the called method. The security check may occur when the IL is
converted to native code rather than at runtime.

Verifiability:

Correct IL requires that the function pointer contains the address of a method whose
signature matches that specified by callsitedescr and that the arguments correctly
correspond to the types of the destination function’s parameters.

The verifier checks that ftn is a pointer to a function generated by ldftn or ldvirtfn.
Since these pointers may not be passed as values in verifiable code, this means that the
pointer must have been generated somewhere in the current method body.

Page 43

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc
Architecture.doc

IL Instruction Set Specification Specification

ceq - compare equal

Format Assembly
Format

Description

FE 01 ceq push 1 (of type I4) if value1 equals value2, else 0

Stack Transition:

…, value1, value2

…, result
Description:

The ceq instruction compares value1 and value2. If value1 is equal to value2, then 1 (of
type I4) is pushed on the stack. Otherwise 0 (of type I4) is pushed on the stack.

For floating point number, ceq will return 0 if the numbers are unordered (either or both
are NaN). The infinite values are equal to themselves.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Exceptions:

None.

Verifiability:

Correct IL provides two values on the stack whose types match those specified in Table
4: Binary Comparison or Branch Operations. There are no additional verification
requirements.

Page 44

IL Instruction Set Specification Specification

cgt - compare greater than

Format Assembly
Format

Description

FE 02 cgt push 1 (of type I4) if value1 > value2, else 0

Stack Transition:

…, value1, value2

…, result

Description:

The cgt instruction compares value1 and value2. If value1 is strictly greater than value2,
then 1 (of type I4) is pushed on the stack. Otherwise 0 (of type I4) is pushed on the stack

For floating point numbers, cgt returns 0 if the numbers are unordered (that is, if one or
both of the arguments are NaN).

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g
+infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Exceptions:

None.

Verifiability:

Correct IL provides two values on the stack whose types match those specified in Table
4: Binary Comparison or Branch Operations. There are no additional verification
requirements.

Page 45

IL Instruction Set Specification Specification

cgt.un - compare greater than, unsigned or unordered

Format Assembly
Format

Description

FE 03 cgt.un push 1 (of type I4) if value1 > value2, unsigned or
unordered, else 0

Stack Transition:

…, value1, value2

…, result

Description:

The cgt.un instruction compares value1 and value2. A value of 1 (of type I4) is pushed
on the stack if any of the following is true:

 for floating point numbers, value1 is not ordered with respect to value2

 for integer values, value1 is strictly greater than value2 when considered as unsigned
numbers

Otherwise 0 (of type I4) is pushed on the stack.

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g
+infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Exceptions:

None.

Verifiability:

Correct IL provides two values on the stack whose types match those specified in Table
4: Binary Comparison or Branch Operations. There are no additional verification
requirements.

Page 46

IL Instruction Set Specification Specification

ckfinite – check for a finite real number

Format Assembly
Format

Description

C3 ckfinite throw ArithmeticException if value is not a finite
number

Stack Transition:

…, value

…, value

Description:

The ckfnite instruction throws ArithmeticException if value (a floating point number) is
either a “not a number” value (NaN) or +- infinity value. Ckfinite leaves the value on
the stack if no exception is thrown. Execution is unspecified if value is not a floating
point number.

Exceptions:

ArithmeticException is thrown if value is not a ‘normal’ number.

Note: A special exception or a subclass of ArithmeticException may be more
appropriate so that the offending value can be passed to the exception handler.

Verifiability:

Correct IL guarantees that value is a floating-point number. There are no additional
verification requirements.

Page 47

IL Instruction Set Specification Specification

clt - compare less than

Format Assembly
Format

Description

FE 04 clt push 1 (of type I4) if value1 < value2, else 0

Stack Transition:

…, value1, value2

…, result

Description:

The clt instruction compares value1 and value2. If value1 is strictly less than value2, then
1 (of type I4) is pushed on the stack. Otherwise 0 (of type I4) is pushed on the stack

For floating point numbers, clt will return 0 if the numbers are unordered (that is one or
both of the arguments are NaN).

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g
+infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Exceptions:

None.

Verifiability:

Correct IL provides two values on the stack whose types match those specified in Table
4: Binary Comparison or Branch Operations. There are no additional verification
requirements.

Page 48

IL Instruction Set Specification Specification

clt.un - compare less than, unsigned or unordered

Format Assembly
Format

Description

FE 05 clt.un push 1 (of type I4) if value1 < value2, unsigned or
unordered, else 0

Stack Transition:

…, value1, value2

…, result

Description:

The clt.un instruction compares value1 and value2. A value of 1 (of type I4) is pushed
on the stack if any of the following is true:

 value1 is strictly less than value2 (as for clt)

 for floating point numbers, value1 is not ordered with respect to value2

 for integer values, value1 is strictly less than value2 when considered as unsigned
numbers

Otherwise 0 (of type I4) is pushed on the stack.

Unlike clt, clt.un returns 1 if the numbers are unordered (that is, if one or both of the
arguments are NaN).

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g
+infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch
Operations.

Exceptions:

None.

Verifiability:

Correct IL provides two values on the stack whose types match those specified in Table
4: Binary Comparison or Branch Operations. There are no additional verification
requirements.

Page 49

IL Instruction Set Specification Specification

conv.<to type> - data conversion

Format Assembly
Format

Description

67 conv.i1 Convert to I1, pushing I4 on stack

68 conv.i2 Convert to I2, pushing I4 on stack

69 conv.i4 Convert to I4, pushing I4 on stack

6A conv.i8 Convert to I8, pushing I8 on stack

6B conv.r4 Convert to R4, pushing F on stack

6C conv.r8 Convert to R8, pushing F on stack

D2 conv.u1 Convert to U1, pushing I4 on stack

D1 conv.u2 Convert to U2, pushing I4 on stack

6D conv.u4 Convert to U4, pushing I4 on stack

6E conv.u8 Convert to U8, pushing I8 on stack

D3 conv.i Convert to I, pushing I on stack

E0 conv.u Convert to U, pushing I on stack

76 conv.r.un Convert unsigned integer to floating point, pushing F
on stack

Stack Transition:

…, value

…, result
Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that
converted value on the top of the stack. Note that integer value of 4 bytes or less are
extended to I4 (not I) when they are loaded onto the evaluation stack, and floating point
values are converted to the F type.

Conversion from floating point numbers to integral values truncates the number toward
zero. When converting from an R8 to an R4, precision may be lost. If value is too large
to fit in an R4, the IEEE positive infinity (if value is positive) or IEEE negative infinity
(if value is negative) is returned. If overflow occurs converting one integer type to
another the high order bits are silently truncated. If the result is smaller than an I4, then
the value is sign-extended to fill the slot.

If overflow occurs converting a floating-point type to an integer the value returned is
unspecified. The conv.r.un operation takes an unsigned integer off of the stack and
replaces it with a floating-point number with precision sufficient to represent the integer
exactly where possible, or type RPrecise (see Section 1.1.1).

No exceptions are ever thrown. See conv.ovf for instructions that will throw an
exception when the result type can not properly represent the result value.

Page 50

IL Instruction Set Specification Specification

The acceptable operand types and their corresponding result data type is encapsulated in
Table 7: Conversion Operations.

Exceptions:

None.

Verifiability:

Correct IL has at least one value, of a type specified in Table 7: Conversion Operations,
on the stack. The same table specifies a restricted set of types that are acceptable in
verified code.

Page 51

IL Instruction Set Specification Specification

conv.ovf.<to type> - data conversion with overflow detection

Format Assembly
Format

Description

B3 conv.ovf.i1 Convert to an I1 (on the stack as I4) and throw an
exception on overflow

B5 conv.ovf.i2 Convert to an I2 (on the stack as I4) and throw an
exception on overflow

B7 conv.ovf.i4 Convert to an I4 (on the stack as I4) and throw an
exception on overflow

B9 conv.ovf.i8 Convert to an I8 (on the stack as I8) and throw an
exception on overflow

B4 conv.ovf.u1 Convert to a U1 (on the stack as I4) and throw an
exception on overflow

B6 conv.ovf.u2 Convert to a U2 (on the stack as I4) and throw an
exception on overflow

B8 conv.ovf.u4 Convert to a U4 (on the stack as I4) and throw an
exception on overflow

BA conv.ovf.u8 Convert to a U8 (on the stack as I8) and throw an
exception on overflow

D4 conv.ovf.i Convert to an I (on the stack as I) and throw an
exception on overflow

D5 conv.ovf.u Convert to a U (on the stack as I) and throw an
exception on overflow

Stack Transition:

…, value

…, result
Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that
converted value on the top of the stack. If the value cannot be represented, an exception
is thrown.

Conversions from floating point numbers to integral values truncate the number toward
zero. Note that integer value of 4 bytes or less are extended to I4 (not I) on the evaluation
stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 7: Conversion Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type

Page 52

IL Instruction Set Specification Specification

Verifiability:

Correct IL has at least one value, of a type specified in Table 7: Conversion Operations,
on the stack. The same table specifies a restricted set of types that are acceptable in
verified code.

Page 53

IL Instruction Set Specification Specification

conv.ovf.<to type>.un – unsigned data conversion with
overflow detection

Format Assembly
Format

Description

82 conv.ovf.i1.un Convert unsigned to an I1 (on the stack as I4) and
throw an exception on overflow

83 conv.ovf.i2.un Convert to unsigned an I2 (on the stack as I4) and
throw an exception on overflow

84 conv.ovf.i4.un Convert to unsigned an I4 (on the stack as I4) and
throw an exception on overflow

85 conv.ovf.i8.un Convert to unsigned an I8 (on the stack as I8) and
throw an exception on overflow

86 conv.ovf.u1.un Convert to unsigned a U1 (on the stack as I4) and
throw an exception on overflow

87 conv.ovf.u2.un Convert to unsigned a U2 (on the stack as I4) and
throw an exception on overflow

88 conv.ovf.u4.un Convert to unsigned a U4 (on the stack as I4) and
throw an exception on overflow

89 conv.ovf.u8.un Convert to unsigned a U8 (on the stack as I8) and
throw an exception on overflow

8A conv.ovf.i.un Convert to unsigned an I (on the stack as I) and throw
an exception on overflow

8B conv.ovf.u.un Convert to unsigned a U (on the stack as I) and throw
an exception on overflow

Stack Transition:

…, value

…, result
Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that
converted value on the top of the stack. If the value cannot be represented, an exception
is thrown. The item at the top of the stack is treated as an unsigned value.

Conversions from floating point numbers to integral values truncate the number toward
zero. Note that integer value of 4 bytes or less are extended to I4 (not I) on the
evaluation stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 7: Conversion Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type

Page 54

IL Instruction Set Specification Specification

Verifiability:

Correct IL has at least one value, of a type specified in Table 7: Conversion Operations,
on the stack. The same table specifies a restricted set of types that are acceptable in
verified code.

Page 55

IL Instruction Set Specification Specification

cpblk - copy data from memory to memory

Format Instruction Description

FE 17 cpblk Copy data from memory to memory

Stack Transition:

…, destaddr, srcaddr, size

…
Description:

The cpblk instruction copies size (of type U4) bytes from address srcaddr (of type *, I,
or &) to address destaddr (of type *, I, or &). The behavior of cpblk is unspecified if the
source and destination areas overlap.

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the
machine (but see the unaligned. prefix instruction). The cpblk instruction may be
immediately preceded by the unaligned. prefix instruction to indicate that either the
source or the destination is unaligned. It is an appropriate expansion of methods like C’s
memcpy.

The operation of the cpblk instruction may be altered by an immediately preceding
volatile. or unaligned. prefix instruction.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:

The cpblk instruction is never verifiable. Correct IL ensures the conditions specified
above.

Page 56

IL Instruction Set Specification Specification

div - divide values

Format Assembly
Format

Description

5B div Divide two values to return a quotient or floating point
result

Stack Transition:

…, value1, value2

…, result
Description:

The div instruction computes value1 divided by value2 and pushes the result on the stack.
The type of the values and result are the same.

Floating point division is per IEE754 spec. In particular division of a finite number by 0
produces the correctly signed infinite value and

0 / 0 = NaN

infinity / infinity = NaN.

X / infinity = 0

The acceptable operand types and their corresponding result data type is encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

Integral operations throw ArithmeticException if the result can not be represented in the
result type. This can happen if value1 is the maximum negative value, and value2 is -1.

Integral operations throw DivideByZeroException if value2 is zero.

Note: On the x86 an ArithmeticOverflowException is thrown when computing
(minint div –1).

Floating-point operations never throw an exception (they produce NaNs instead, see the
EE Architecture Specification).

Verifiability:

See Table 2: Binary Numeric Operations.

Page 57

Architecture.doc

IL Instruction Set Specification Specification

div.un - divide integer values, unsigned

Format Assembly
Format

Description

5C div.un Divide two values, unsigned, returning a quotient

Stack Transition:

…, value1, value2

…, result
Description:

The div instruction computes value1 divided by value2, both taken as unsigned integers,
and pushes the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5.

Exceptions:

DivideByZeroException is thrown if value2 is zero.

Verifiability:

See Table 5: Integer Operations.

Page 58

IL Instruction Set Specification Specification

dup – duplicate the top value of the stack

Format Assembly
Format

Description

25 dup duplicate value on the top of the stack

Stack Transition:

…, value

…, value, value
Description:

The dup instruction duplicates the top element of the stack.

Exceptions:

None.

Verifiability:

No additional requirements.

Page 59

IL Instruction Set Specification Specification

endfilter – end filter clause of SEH

Format Assembly
Format

Description

FE 11 endfilter End filter clause of SEH exception handling

Stack Transition:

…, value

…
Description:

Return from filter clause of an exception (see the Exception Handling section of the EE
Architecture Specification for an overview or the Exception Specification for details).
Value (which must be of type I4 and is one of a specific set of values) is returned from
the filter clause. It should be one of:

 exception_continue_execution (-1) to continue execution at the instruction after the
one which raised the exception (currently treated as 0)

 exception_continue_search (0) to continue searching for an exception handler

 exception_execute_handler (1) to start the second phase of exception handling
where finally blocks are run until the handler associated with this filter clause is
located. Then the handler is executed.

Other integer values will produce unspecified results.

The entry point of a filter, as shown in the method’s exception table, must be the
(lexically) first instruction in the filter’s code block. The endfilter must be the (lexically)
last instruction in the filter’s code block (hence there can only be one endfilter for any
single filter block). After executing the endfilter instruction, control logically flows back
to the runtime exception handling mechanism.

Control cannot be transferred into a filter block except through the exception mechanism.
Control cannot be transferred out of a filter block except through the use of a throw
instruction or executing the final endfilter instruction. In particular, it is not legal to
execute a ret or leave instruction within a finally block. It is not legal to embed a try
block within a filter block.

Exceptions:

None.

Verifiability:

Correct IL guarantees the control transfer restrictions specified above. There are no
additional verification requirements.

Page 60

Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

endfinally – end finally clause of an exception block

Format Assembly
Format

Description

DC endfinally End finally clause of an exception block

Stack Transition:

…

…
Description:

Return from finally clause of an exception block, see the Exception Handling section of
the EE Architecture Specification or the Exception Specification for details. Signals the
end of the finally clause so that stack unwinding can continue until the exception handler
is invoked. The endfinally instruction transfers control back to the Runtime exception
mechanism. This then searches for the next finally clause in the exception chain or
enters the exception handler chosen during the first pass of exception handling.

An endfinally instruction may only appear lexically within a finally block. Unlike the
endfilter instruction, there is no requirement that the block end with an endfinally
instruction, and there can be as many endfinally instructions within the block as required.

Control cannot be transferred into a finally block except through the exception
mechanism. Control cannot be transferred out of a finally block except through the use
of a throw instruction or executing the endfinally instruction. In particular, it is not legal
to “fall out” of a finally block or to execute a ret or leave instruction within a finally
block.

Exceptions:

None.

Verifiability:

Correct IL guarantees the control transfer restrictions specified above. There are no
additional verification requirements.

Page 61

Architecture.doc

IL Instruction Set Specification Specification

initblk - initialize a block of memory to a value

Format Assembly
Format

Description

FE 18 initblk Set a block of memory to a given byte

Stack Transition:

…, addr, value, size

…
Description:

The initblk instruction sets size (of type U4) bytes starting at addr (of type I, &, or *) to
value (of type U1). initblk assumes that addr is aligned to the natural size of the
machine (but see the unaligned. prefix instruction). It is an appropriate expansion of
methods like C’s memset.

The operation of the initblk instructions may be altered by an immediately preceding
volatile. or unaligned. prefix instruction.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:

The initblk instruction is never verifiable. Correct IL code ensures the restrictions
specified above.

Page 62

IL Instruction Set Specification Specification

jmp – jump to method

Format Assembly
Format

Description

27 <T> jmp method Exit current method and jump to specified method

Stack Transition:

…

…
Description:

Transfer control to the method specified by method, which is a metadata token (either a
methodref or methoddef, see the Metadata Specification). The current arguments are
transferred to the destination method.

The evaluation stack must be empty when this instruction is executed. The calling
convention, number and type of arguments at the destination address must match that of
the current method.

The jmp instruction cannot be used to transferred control out of a try, filter, catch, or
finally block. See the Exception Specification .

Exceptions:

None.

Verifiability:

The jmp instruction is never verifiable. Correct IL code obeys the control flow
restrictions specified above.

Page 63

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

jmpi – jump via method pointer

Format Assembly
Format

Description

FE 08 jmpi Exit current method and jump to specified method

Stack Transition:

… ftn

…
Description:

Transfer control to the method specified by ftn, which must be a pointer to native code
(of the target machine) that can be legitimately called with the arguments to the current
method. Such a pointer can be created using the ldftn or ldvirtftn instructions, or have
been passed in from native code. The stack must be empty except for the ftn when this
instruction is executed; the verifier checks this.

The current method signature specifies the number and type of parameters being passed,
as well as the calling convention (see the Metadata Specification). The calling
convention is not checked dynamically, so code that uses a jmpi instruction will not work
correctly if the destination does not actually use the specified calling convention.

The jmpi instruction cannot be used to transferred control out of a try, filter, catch, or
finally block. See the Exception Specification.

Rationale: The jmpi instruction is used in a stylized manner for C++ adjustor thunks. It
is also useful as an optimization of the tail. calli sequence for certain operations in
functional programming languages.

Exceptions:

None.

Verifiability:

The jmpi instruction is never verifiable. Correct IL code obeys the control flow
restrictions specified above.

Page 64

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldarg.<length> - load argument onto the stack

Format Assembly
Format

Description

FE 09 <U2> ldarg num Load argument numbered num onto stack.

0E <U1> ldarg.s num Load argument numbered num onto stack, short form.

02 ldarg.0 Load argument 0 onto stack

03 ldarg.1 Load argument 1 onto stack

04 ldarg.2 Load argument 2 onto stack

05 ldarg.3 Load argument 3 onto stack

Stack Transition:

…

…, value
Description:

The ldarg num instruction pushes the incoming argument numbered num (see the EE
Architecture Specification) onto the evaluation stack. The ldarg instruction can be used
to load a value type or a primitive value onto the stack by copying it from an incoming
argument. The type of the value is the same as the type of the argument, as specified by
the current method’s signature.

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for
loading any one of the first 4 arguments. The ldarg.s instruction is an efficient encoding
for loading the 5th through 256th argument.

For procedures that take a variable-length argument list, the ldarg instructions can be
used only for the initial fixed arguments, not those in the variable part of the signature.

Arguments that hold an integer value smaller than 4 bytes long are expanded to type I4
when they are loaded onto the stack. Floating-point values are expanded to their native
size (type F).

Exceptions:

None.

Verifiability:

Correct IL guarantees that num is a valid argument index. See the Verifier Specification
for more details on how the verifier determines the type of the value loaded onto the
stack.

Page 65

Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

ldarga.<length> - load an argument address

Format Assembly
Format

Description

FE 0A <U2> ldarga argNum fetch the address of argument argNum.

0F <U1> ldarga.s argNum fetch the address of argument argNum, short form

Stack Transition:

…,

…, address of argument number argNum
Description:

The ldarga instruction fetches the address (of type *, i.e. transient pointer) of argument
argNum. The address will always be aligned to a natural boundary on the target machine
(cf. cpblk and initblk). The short form (ldarga.s) should be used for arguments 0 through
255.

For procedures that take a variable-length argument list, the ldarga instructions can be
used only for the initial fixed arguments, not those in the variable part of the signature.

Rationale: ldarga is used for by-ref parameter passing (see the EE Architecture
Specification). In other cases, ldarg and starg should be used.

Exceptions:

None.

Verifiability:

Correct IL ensures that argNum is a valid argument index. See the Verifier Specification
for more details.

Page 66

Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

ldc.<type> - load numeric constant

Format Assembly
Format

Description

20 <I4> ldc.i4 num Push num of type I4 onto the stack as I4.

21 <I8> ldc.i8 num Push num of type I8 onto the stack as I8.

22 <R4> ldc.r4 num Push num of type R4 onto the stack as F.

23 <R8> ldc.r8 num Push num of type R8 onto the stack as F.

16 ldc.i4.0 Push 0 onto the stack as I4.

17 ldc.i4.1 Push 1 onto the stack as I4.

18 ldc.i4.2 Push 2 onto the stack as I4.

19 ldc.i4.3 Push 3 onto the stack as I4.

1A ldc.i4.4 Push 4 onto the stack as I4.

1B ldc.i4.5 Push 5 onto the stack as I4.

1C ldc.i4.6 Push 6 onto the stack as I4.

1D ldc.i4.7 Push 7 onto the stack as I4.

1E ldc.i4.8 Push 8 onto the stack as I4.

15 ldc.i4.m1 Push -1 onto the stack as I4.

15 ldc.i4.M1 Push -1 of type I4 onto the stack as I4 (alias for
ldc.i4.m1).

1F <I1> ldc.i4.s num Push num onto the stack as I4, short form.

Stack Transition:

…

…, num
Description:

The ldc num instruction pushes number num onto the stack. There are special short
encodings for the integers –128 through 127 (with especially short encodings for –1
through 8). All short encodings push 4 byte integers on the stack. Longer encodings are
used for 8 byte integers and 4 and 8 byte floating point numbers.

There are three ways to push an 8 byte integer constant onto the stack

1. use the ldc.i8 instruction for constants that must be expressed in more than 32 bits

2. use the ldc.i4 instruction followed by a conv.i8 for constants that require 9 to 32 bits

3. use a short form instruction followed by a conv.i8 for constants that can be expressed
in 8 or fewer bits

Page 67

IL Instruction Set Specification Specification

There is no way to express a floating point constant that has a larger range or greater
precision than a 64 bit IEEE 754 number, since these representations are not portable
across architectures.

Exceptions:

None.

Verifiability:

The ldc instruction is always verifiable.

Page 68

IL Instruction Set Specification Specification

ldftn - load method pointer

Format Assembly
Format

Description

FE 06 <T> ldftn method Push a pointer to a method referenced by method on
the stack

Stack Transition:

…

…, ftn
Description:

The ldftn instruction pushes an unmanaged pointer (type I) to the native code
implementing the method described by method (a metadata token, either a methoddef or
methodref, see the Metadata Specification) onto the stack. The value pushed can be
called using the calli instruction if it references a managed method (or a stub that
transitions from managed to unmanaged code).

The value returned points to native code using the calling convention specified by
method. Thus a method pointer can be passed to unmanaged native code (e.g. as a
callback routine). Note that the address computed by this instruction may be to a thunk
produced specially for this purpose (for example, to re-enter the IL interpreter when a
native version of the method isn’t available).

Exceptions:

None.

Verifiability:

Correct IL requires that method is a valid methoddef or methodref token. The verifier
tracks the type of the value pushed in more detail than the “I” type, remembering that it is
a method pointer. Such a method pointer can then be used with calli or to construct a
delegate.

Page 69

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldind.<type> - load value indirect onto the stack

Format Assembly Format Description

46 ldind.i1 Indirect load value of type I1 as I4 on stack.

48 ldind.i2 Indirect load value of type I2 as I4 stack.

4A ldind.i4 Indirect load value of type I4 as I4 stack.

4C ldind.i8 Indirect load value of type I8 as I8 stack.

47 ldind.u1 Indirect load value of type U1 as I4 stack.

49 ldind.u2 Indirect load value of type U2 as I4 stack.

4A ldind.u4 Indirect load value of type U4 as I4 stack.
(alias for ldind.i4).

4E ldind.r4 Indirect load value of type R4 as F stack.

4C ldind.u8 Indirect load value of type U8 as I8 stack
(alias for ldind.i8).

4F ldind.r8 Indirect load value of type R8 as F stack.

4D ldind.i Indirect load value of type I as I stack

50 ldind.ref Indirect load value of type object ref as O
on stack.

Stack Transition:

…, addr

…, value
Description:

The ldind instruction indirectly loads a value from address addr (an integer, I, managed
pointer, &, or transient pointer, *) onto the stack. The source value is indicated by the
instruction suffix. All of the ldind instructions are shortcuts for a ldobj instruction that
specifies the corresponding built-in value class.

Note that integer value of 4 bytes or less are extended to I4 (not I) when they are loaded
onto the evaluation stack. Floating point values are converted to F type when loaded
onto the evaluation stack.

Correct IL ensures that the ldind instructions is used in a manner consistent with the type
of the pointer.

The address specified by addr must be aligned to the natural size of objects on the
machine or an InvalidAddressException may occur (but see the unaligned. prefix
instruction). The results of all IL instructions that return addresses (e.g. ldloca and
ldarga) are safely aligned. For datatypes larger than 1 byte, the byte ordering is
dependent on the target CPU. Code that is written that depends on byte ordering may not
run on all platforms.

Page 70

IL Instruction Set Specification Specification

The operation of the ldind instructions may be altered by an immediately preceding
volatile. or unaligned. prefix instruction.

Rationale: Signed and unsigned forms for the small integer types are needed so that the
EE can know whether to sign extend or zero extend. The ldind.u8 and ldind.u4 variants
are provided for convenience; they are simply aliases for ldind.i8 and ldind.i4
respectively.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:

Correct IL only uses an ldind instruction in a manner consistent with the type of the
pointer. These instructions cannot be used in verified code.

Page 71

IL Instruction Set Specification Specification

ldloc - load local variable onto the stack

Format Assembly
Format

Description

FE 0C<U2> ldloc indx Load local variable of index indx onto stack.

11 <U1> ldloc.s indx Load local variable of index indx onto stack, short
form.

06 ldloc.0 Load local variable 0 onto stack.

07 ldloc.1 Load local variable 1 onto stack.

08 ldloc.2 Load local variable 2 onto stack.

09 ldloc.3 Load local variable 3 onto stack.

Stack Transition:

…

…, value
Description:

The ldloc indx instruction pushes the contents of the local variable with index indx onto
the evaluation stack. Local variables are initialized to 0 before entering the method only
if the initialize flag on the method is true (see the EE Architecture Specification). The
ldloc.0, ldloc.1, ldloc.2, and ldloc.3 instructions provide an efficient encoding for
accessing the first four local variables. The ldloc.s instruction provides an efficient
encoding for accessing the 5th through 256th local variable.

The type of the value is the same as the type of the local variable, which is specified in
the method header. See the EE Architecture Specification.

Local variables that are smaller than 4 bytes long are expanded to type I4 when they are
loaded onto the stack. Floating-point values are expanded to their native size (type F).

Exceptions:

None.

Verifiability:

Correct IL ensures that indx is a valid local index. See the Verifier Specification for
more details about how the verifier determines the type of local variables.

Page 72

Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

ldloca.<length> - load local variable address

Format Assembly
Format

Description

FE 0D <U2> ldloca index Load address of local variable with index indx

12 <U1> ldloca.s index Load address of local variable with index indx, short
form

Stack Transition:

…

…, address
Description:

The ldloca instruction pushes the address of the local variable with index onto the stack.
The value pushed on the stack is already aligned correctly for use with instructions like
ldind and stind. The result is a transient pointer (type *). The ldloca.s instruction
provides an efficient encoding for use with the first 256 local variables.

Exceptions:

None.

Verifiability:

Correct IL ensures that indx is a valid local index. See the Verifier Specification for
more details on how the verifier determines the type of a local variable.

Page 73

IL Instruction Set Specification Specification

ldnull – load a null pointer

Format Assembly
Format

Description

14 ldnull Push null GC reference on the stack

Stack Transition:

…

…, null value
Description:

The ldnull pushes a null reference (type O) on the stack. It is not legal to dereference
this null value. They are used to initialize locations before they become live or when
they become dead.

Exceptions:

None.

Verifiability:

The ldnull instruction is always verifiable, and produces a value that the verifier
considers compatible with any other reference type.

Page 74

IL Instruction Set Specification Specification

leave.<length> – exit a protected region of code

Format Assembly
Format

Description

DD <I4> leave target Exit a protected region of code.

DE <I1> leave.s target Exit a protected region of code, short form

Stack Transition:

…,

…,
Description:

The leave instruction unconditionally transfers control to target. Target is represented as
a signed offset (4 bytes for leave, 1 byte for leave.s) from the beginning of the instruction
following the current instruction.

The leave instruction is similar to the br instruction, but it can be used to exit a try,
filter, or catch block whereas the ordinary branch instructions can only be used to
transfer control within such a block. It ensures that the appropriate surrounding finally
blocks are executed.

It is not legal to use a leave instruction to exit a finally block. To ease code generation
for exception handlers it is legal from within a catch block to use a leave instruction to
transfer control to any instruction within the associated try block.

If an instruction has one or more prefix codes, control can only be transferred to the first
of these prefixes.

Exceptions:

None.

Verifiability:

Correct IL requires the destination be within the current method. The verifier will check
the type-consistency of the stack, locals and arguments for every possible way of
reaching the destination instruction. See the Verifier Specification for more details.

Page 75

IL Instruction Set Specification Specification

localloc – allocate space in the local dynamic memory pool

Format Assembly
Format

Description

FE 0F localloc Allocate space from the local memory pool.

Stack Transition:

…, size

…, address
Description:

The localloc instruction allocates size (type U) bytes from the local dynamic memory
pool and returns the address (a transient pointer, type *) of the first allocated byte. The
block of memory returned is initialized to 0 only if the initialize flag on the method is
true (see the EE Architecture Specification). The area of memory is newly allocated.
When the current method returns the local memory pool is available for reuse.

Address is aligned so that any primitive data type can be stored there using the stind
instructions and loaded using the ldind instructions.

The evaluation stack must be empty when this instruction is executed.

Rationale: Localloc is used to create local aggregates whose size must be computed at
runtime. It can be used for C’s intrinsic alloca method.

Exceptions:

ExecutionEngineException is thrown if the stack is not empty at the time this
instruction is executed.

StackOverflowException is thrown if there is insufficient memory to service the
request.

Verifiability:

Correct IL only uses this instruction within a method that has a non-zero local allocation
area size. This instruction is never verifiable.

Page 76

Architecture.doc

IL Instruction Set Specification Specification

mul - multiply values

Format Assembly
Format

Description

5A mul Multiply values

Stack Transition:

…, value1, value2

…, result
Description:

The mul instruction multiplies value1 by value2 and pushes the result on the stack.
Integral operations silently truncate the upper bits on overflow (see mul.ovf).

For floating point types, 0 * infinity = NaN.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

None.

Verifiability:

See Table 2: Binary Numeric Operations.

Page 77

IL Instruction Set Specification Specification

mul.ovf.<type> - multiply integer values with overflow check

Format Assembly
Format

Description

D8 mul.ovf Multiply signed integer values. Signed result must fit
in same size

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result
must fit in same size

Stack Transition:

…, value1, value2

…, result
Description:

The mul.ovf instruction multiplies integers, value1 and value2, and pushes the result on
the stack. An exception is thrown if the result will not fit in the result type.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 6: Overflow Arithmetic Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type.

Verifiability:

See Table 7: Conversion Operations.

Page 78

IL Instruction Set Specification Specification

neg - negate

Format Assembly
Format

Description

65 neg Negate value

Stack Transition:

…, value

…, result
Description:

The neg instruction negates value and pushes the result on top of the stack. The return
type is the same as the operand type.

Negation of integral values is standard twos complement negation. In particular,
negating the most negative number (which does not have a positive counterpart) yields
the most negative number. To detect this overflow use the sub.ovf instruction instead
(i.e. subtract from 0).

Negating a floating point number cannot overflow; negating NaN returns NaN.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 3: Unary Numeric Operations.

Exceptions:

None.

Verifiability:

See Table 3: Unary Numeric Operations.

Page 79

IL Instruction Set Specification Specification

nop – no operation

Format Assembly
Format

Description

00 nop Do nothing

Stack Transition:

…,

…,
Description:

The nop operation does nothing. It is intended to fill in space if bytecodes are patched.

Exceptions:

None.

Verifiability:

The nop instruction is always verifiable.

Page 80

IL Instruction Set Specification Specification

not - bitwise complement

Format Assembly
Format

Description

66 not Bitwise complement

Stack Transition:

…, value

…, result
Description:

Compute the bitwise complement of the integer value on top of the stack and leave the
result on top of the stack. The return type is the same as the operand type.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

Page 81

IL Instruction Set Specification Specification

or - bitwise OR

Format Instruction Description

60 or Bitwise OR of two integer values, returns an integer.

Stack Transition:

…, value1, value2

…, result
Description:

The or instruction computes the bitwise OR of the top two values on the stack and leaves
the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

Page 82

IL Instruction Set Specification Specification

pop – remove the top element of the stack

Format Assembly
Format

Description

26 pop pop a value from the stack

Stack Transition:

…, value

…
Description:

The pop instruction removes the top element from the stack.

Exceptions:

None.

Verifiability:

No additional requirements.

Page 83

IL Instruction Set Specification Specification

rem - compute remainder

Format Assembly
Format

Description

5D rem Remainder of dividing value1 by value2

Stack Transition:

…, value1, value2

…, result
Description:

result = value1 rem value2 satisfies the following conditions:

 (n*value2)+result = value1,

where n is an integer,

0 ≤ |result| < |value2|, and

sign(result) = sign(value2)

The rem instruction computes result and pushes it on the stack.

For floating point types, rem is defined by the IEEE 754 spec. In particular, if value2 is
zero or value1 is infinity the result is NaN. If value2 is infinity, the result is value1
(negated for –infinity).

The acceptable operand types and their corresponding result data type is encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

Integral operations throw DivideByZeroException if value2 is zero.

Note: On the x86 an ArithmeticOverflowException is thrown when computing
(minint rem –1).

Example:

+14 rem +3 is 2 (n = 4)

+14 rem -3 is -1 (n = 5)

-14 rem +3 is 1 (n = -5)

-14 rem -3 is -2 (n = 4)

Verifiability:

See Table 2: Binary Numeric Operations.

Page 84

IL Instruction Set Specification Specification

rem.un - compute integer remainder, unsigned

Format Assembly
Format

Description

5E rem.un Remainder of unsigned dividing value1 by value2

Stack Transition:

…, value1, value2

…, result
Description:

result = value1 rem.un value2 satisfies the following conditions:

 (n*value2)+result = value1,

where n is an integer,

0 ≤ result < value2

The rem.un instruction computes result and pushes it on the stack. Rem.un treats its
arguments as unsigned integers, while rem treats them as signed integers. Rem.un is
unspecified for floating point numbers.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Exceptions:

The instruction throws DivideByZeroException if value2 is zero.

Note: There is a known bug (5414) that causes JITted code on the x86 to throw
a divide overflow when computing (minint rem –1).

Verifiability:

See Table 5: Integer Operations.

Page 85

IL Instruction Set Specification Specification

ret – return from method

Format Assembly
Format

Description

2A Ret Return from method, possibly returning a value

Stack Transition:

 retVal on callee evaluation stack (not always present)

…, retVal on caller evaluation stack (not always present)
Description:

Return from the current method. The return type of the current method determines the
type of value to be fetched from the top of the stack and copied onto the stack of the
method that called the current method. The evaluation stack for the current method must
be empty except for the value to be returned.

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally
block. From within a try or catch, use the leave instruction with a destination of a ret
instruction that is outside all enclosing exception blocks. Because the filter and finally
blocks are logically part of exception handling, not the method in which their code is
embedded, correctly generate IL does not perform a method return from within a filter or
finally. See the Exception Specification.

Exceptions:

None.

Verifiability:

Correct IL obeys the control constraints describe above. Verification requires that the
type of retVal is compatible with the declared return type of the current method.

Page 86

IL Instruction Set Specification Specification

shl - shift integer left

Format Assembly
Format

Description

62 shl Shift an integer to the left (shifting in zeros)

Stack Transition:

…, value, shiftAmount

…, result
Description:

The shl instruction shifts value (an integer) left by the number of bits specified by
shiftAmount. shiftAmount is of type U. The return type is the same as value. The return
value is unspecified if shiftAmount is greater than or equal to the size of value.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

Page 87

IL Instruction Set Specification Specification

shr - shift integer right

Format Assembly
Format

Description

63 shr Shift an integer right, (shift in sign), return an integer

Stack Transition:

…, value, shiftAmount

…, result
Description:

The shr instruction shifts value (an integer) right by the number of bits specified by
shiftAmount. shiftAmount is of type U. The return type is the same as value. The return
value is unspecified if shiftAmount is greater than or equal to the width of value. shr
replicates the high order bit on each shift, preserving the sign of the original value in the
result.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

Page 88

IL Instruction Set Specification Specification

shr.un - shift integer right, unsigned

Format Assembly
Format

Description

64 shr.un Shift an integer right, (shift in zero), return an integer

Stack Transition:

…, value, shiftAmount

…, result
Description:

The shr.un instruction shifts value (an integer) right by the number of bits specified by
shiftAmount. shiftAmount is of type U4. The return type is the same as value. The return
value is unspecified if shiftAmount is greater than or equal to the width of value. Shr.un
inserts a zero bit on each shift.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

Page 89

IL Instruction Set Specification Specification

starg.<length> - store a value in an argument slot

Format Assembly
Format

Description

FE 0B <U2> starg num Store a value to the argument numbered num

10 <U1> starg.s num Store a value to the argument numbered num, short
form

Stack Transition:

… value

…,
Description:

The starg num instruction pops a value from the stack and places it in argument slot num
(see the EE Architecture Specification). The type of the value must match the type of the
argument, as specified in the current method’s signature. The starg.s instruction
provides an efficient encoding for use with the first 256 arguments.

For procedures that take a variable argument list, the starg instructions can be used only
for the initial fixed arguments, not those in the variable part of the signature.

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the
value as it moves from the stack to the argument. Floating-point values are rounded from
their native size (type F) to the size associated with the argument.

Exceptions:

None.

Verifiability:

Correct IL requires that num is a valid argument slot.

The verifier also checks that the basic EE type of the value matches the basic EE type of
the argument, as specified in the current method’s signature. The verifier then considers
the new verification type of the argument slot to then be the same as the verification type
of value (verification types are more detailed than EE types). The rules change slightly if
the address of the argument slot has been taken prior to this instruction using ldarga - see
the Verifier Specification for more details.

Page 90

Architecture.doc

IL Instruction Set Specification Specification

stind.<type> - store value indirect from stack

Format Assembly
Format

Description

52 stind.i1 Store value of type I1 into memory at address

53 stind.i2 Store value of type I2 into memory at address

54 stind.i4 Store value of type I4 into memory at address

55 stind.i8 Store value of type I8 into memory at address

56 stind.r4 Store value of type R4 into memory at address

57 stind.r8 Store value of type R8 into memory at address

DF stind.i Store value of type I into memory at address

51 stind.ref Store value of type object ref (type O) into memory at
address

Stack Transition:

…, addr, val

…
Description:

The stind instruction stores a value val at address addr (an unmanaged pointer, type I,
transient pointer, type *, or managed pointer, type &). The address specified by addr
must be aligned to the natural size of val or an InvalidAddressException may occur (but
see the unaligned. prefix instruction). The results of all IL instructions that return
addresses (e.g. ldloca and ldarga) are safely aligned. For datatypes larger than 1 byte, the
byte ordering is dependent on the target CPU. Code that is written that depends on byte
ordering may not run on all platforms.

Type safe operation requires that the stind instruction be used in a manner consistent
with the type of the pointer. Code that uses the stind instruction cannot be verified
except in certain stylized sequences.

The operation of the stind instruction may be altered by an immediately preceding
volatile. or unaligned. prefix instruction.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:

Correct IL ensures that addr be a pointer whose type is known and is assignment
compatible with that of val. These instructions are not verifiable.

Page 91

IL Instruction Set Specification Specification

stloc - pop value from stack to local variable

Format Assembly
Format

Description

FE 0E <U2> stloc indx Pop value from stack into local variable indx.

13 <U1> stloc.s indx Pop value from stack into local variable indx, short
form.

0A stloc.0 Pop value from stack into local variable 0.

0B stloc.1 Pop value from stack into local variable 1.

0C stloc.2 Pop value from stack into local variable 2.

0D stloc.3 Pop value from stack into local variable 3.

Stack Transition:

…, value

…
Description:

The stloc indx instruction pops the top value off the evalution stack and moves it into
local variable indx (seethe EE Architecture Specification). The type of value must match
the type of the local variable as specified in the current method’s locals signature. The
stloc.0, stloc.1, stloc.2, and stloc.3 instructions provide an efficient encoding for the first
four local variables; the stloc.s instruction provides an efficient encoding for the 5th

through 256th local variables.

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value
as it moves from the stack to the argument. Floating-point values are rounded from their
native size (type F) to the size associated with the argument.

Exceptions:

None.

Verifiability:

Correct IL requires that indx is a valid local index.

The verifier also checks that the basic EE type of the value matches the basic EE type of
the local, as specified in the current method’s locals signature. The verifier then
considers the new verification type of the argument slot to then be the same as the
verification type of value (verification types are more detailed than EE types). The rules
change slightly if the address of the local variable has been taken prior to this instruction
using ldloca - see the Verifier Specification for more details.

Page 92

Architecture.doc

IL Instruction Set Specification Specification

sub - subtract numeric values

Format Assembly
Format

Description

59 sub Subtract value2 from value1, returning a new value

Stack Transition:

…, value1, value2

…, result
Description:

The sub instruction subtracts value2 from value1 and pushes the result on the stack.
Overflow is not detected for the integral operations (see sub.ovf); for floating point
operands, sub returns +inf on positive overflow, -inf on negative overflow, and zero on
floating point underflow.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

None.

Verifiability:

See Table 2: Binary Numeric Operations.

Page 93

IL Instruction Set Specification Specification

sub.ovf.<type> - subtract integer values, checking for overflow

Format Assembly
Format

Description

DA sub.ovf Subtract I from an I. Signed result must fit in same
size

DB sub.ovf.un Subtract U from a U. Unsigned result must fit in same
size

Stack Transition:

…, value1, value2

…, result
Description:

The sub.ovf instruction subtracts value2 from value1 and pushes the result on the stack.
The type of the values and the return type is specified by the instruction. An exception
is thrown if the result does not fit in the result type.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 6: Overflow Arithmetic Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type.

Verifiability:

See Table 6: Overflow Arithmetic Operations.

Page 94

IL Instruction Set Specification Specification

switch – table switch on value

Format Assembly Format Description

45 <U4> <I4>… <I4> switch t1, t2 … tn jump to one of n values

Stack Transition:

…, value

…,
Description:

The switch instruction implements a table jump. The format of the instruction itself is a
U4 representing the number of targets N, followed by N I4 values representing target
locations. The targets are represented as offsets from the beginning of the instruction
following the switch instruction.

The switch instruction pops value (an I4) off the stack and compares it as an unsigned
integer to N. If value is less than N, value is used as an index into the target array
(starting at 0), and execution continues at the selected target. If value is not less than N,
execution continues at the next instruction (fall through).

Control transfers into and out of try, catch, filter, and finally blocks cannot be
performed by the ordinary branch instructions (use the leave instruction instead). These
transfers are severely restricted; see the Exception Specification for details. If an
instruction has one or more prefix codes, control can only be transferred to the first of
these prefixes.

Exceptions:

None.

Verifiability:

Correct IL obeys the control transfer constraints listed above. In addition, verification
requires the type-consistency of the stack, locals and arguments for every possible way of
reaching all destination instructions. See the verifier specification for more details.

Page 95

IL Instruction Set Specification Specification

tail. (prefix code) – subsequent call terminates current method

Format Assembly
Format

Description

FE 14 tail. Subsequent call terminates current method

Description:

The tail. instruction must immediately precede a call, calli, or callvirt instruction. It
indicates that the current method’s stack frame should be removed before the call
instruction is executed. It implies that the value returned from the following call is also
the value returned by the current method, and the call can therefore be converted into a
cross-method jump.

The stack must be empty except for the arguments being transferred by the following
call. The instruction following the call instruction must be a ret. Thus the only legal
code sequence is

tail.
call (or calli or callvirt) somewhere
ret

Correct IL must not branch to the call instruction, but it may branch to the subsequent
ret.

The current frame cannot be discarded when control is transferred from untrusted code to
trusted code, since this would jeopardize code identity security. Runtime security checks
may therefore cause the tail. to be ignored, leaving a standard call instruction. Similarly,
in order to allow the exit of a synchronized region to occur after the call returns, the tail.
prefix is ignored when used to exit a method that is marked synchronized.

There may also be implementation-specific restrictions that prevent the tail. prefix from
being obeyed in certain cases. While an implementation is free to ignore the tail. prefix
under these circumstances, they should be clearly documented as they can affect the
behavior of programs.

Rationale: tail. calls allow some linear space algorithms to be converted to constant
space algorithms and are required by some functional programming languages. In the
presence of ldloca and ldarga instructions it isn’t always possible for a compiler from IL
to native code to optimally determine when a tail. can be automatically inserted.

Exceptions:

None.

Verifiability:

Correct IL obeys the control transfer constraints listed above. In addition, no transient or
managed pointers can be passed to the method being called if they point into the stack
frame that is about to be removed. The return type of the method being called must be
compatible with the return type of the current method. Verification requires that no
transient or managed pointers are passed to the method being called, since it does not
track pointers into the current frame. See the Verification Specification for more details.

Page 96

IL Instruction Set Specification Specification

unaligned. (prefix code) – subsequent pointer instruction may
be unaligned

Format Assembly
Format

Description

FE 12 <U1> unaligned.
alignment

Subsequent pointer instruction may be unaligned

Stack Transition:

..., addr

..., addr
Description:

Unaligned. specifies that address (an unmanaged pointer, I) on the stack is not aligned to
the natural size of the immediately following ldind, stind, ldfld, stfld, ldobj, stobj,
initblk, or cpblk instruction. That is, for a ldind.i4 instruction the alignment of addr
may not be to a 4-byte boundary. For initblk and cpblk the default alignment is
architecture dependent (4-byte on 32-bit CPUs, 8-byte on 64-bit CPUs). Code generators
that do not restrict their output to a 32-bit word size (see the EE Architecture
Specification and the File Format Specification) must use unaligned. if the alignment is
not known at compile time to be 8-byte.

The value of alignment must be 1, 2, or 4 and means that the generated code should
assume that addr is byte, double byte, or quad byte aligned, respectively. Note that
transient pointers (type *) are always aligned.

While the alignment for a cpblk instruction would logically require two numbers (one for
the source and one for the destination), there is no noticeable impact on performance if
only the lower number is specified.

The unaligned. and volatile. prefixes may be combined in either order. They must
immediately precede a ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk
instruction. Only the volatile. prefix is allowed for the ldsfld and stsfld instructions.

Exceptions:

None.

Verifiability:

Correct IL requires that unaligned. be immediately followed by instructions as listed
above.

Page 97

./File%20Format%20Spec.doc
Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

volatile. (prefix code) - subsequent pointer reference is volatile

Format Assembly
Format

Description

FE 13 volatile. Subsequent pointer reference is volatile

Stack Transition:

..., addr

..., addr
Description:

volatile. specifies that addr is a volatile address (i.e. it may be subject to change by an
external action) and the results of reading that location cannot be cached or that multiple
stores to that location cannot be suppressed. Marking an access as volatile. affects only
that single access; other accesses to the same location must be marked separately. Access
to volatile locations need not be performed atomically.

The unaligned. and volatile. prefixes may be combined in either order. They must
immediately precede a ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk
instruction. Only the volatile. prefix is allowed for the ldsfld and stsfld instructions.

Exceptions:

None.

Verifiability:

Correct IL requires that volatile. be immediately followed by instructions as listed above.

Page 98

IL Instruction Set Specification Specification

xor - bitwise XOR

Format Assembly
Format

Description

61 xor Bitwise XOR of integer values, returns an integer

Stack Transition:

..., value1, value2

..., result
Description:

The xor instruction computes the bitwise XOR of the top two values on the stack and
leaves the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

Page 99

IL Instruction Set Specification Specification

3 Object Model Instructions
The instructions described in the base instruction set are independent of the object model
being executed. Those instructions correspond closely to what would be found on a real
CPU. The object model instructions are less primitive than the base instructions in the
sense that they could be built out of the base instructions and calls to the underlying
operating system.

Rationale: The object model instructions provide a common, efficient implementation of
a set of services used by many (but by no means all) higher-level languages. They embed
in their operation a set of conventions defined by the Lightning Virtual Object System
(VOS). This include (among other things):

Field layout within an object

Layout for late bound method calls (vtables)

Memory allocation and reclamation

Exception handling

Boxing and unboxing to convert between reference-based Objects and Value Types

For more details, see the Virtual Object System Specification

Page 100

IL Instruction Set Specification Specification

box – convert value type to object reference

Format Assembly
Format

Description

78 <T> box valueType Convert valueTypePtr of type valueType to a true
object reference

Stack Transition:

…, valueTypePtr

…, obj
Description:

Effectively a value type has two separate representations (see the EE Architecture
Specification) within the runtime:

 A ‘raw’ form used when a value type is embedded within another object.

 A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so
it can exist as independent entity.

The box instruction converts the ‘raw’ pointer valueTypePtr (a managed pointer, &, a
transient pointer, *, or unmanaged pointer, I), which must point to an instance of a value
type, into an instance of type Object (of type O). This is accomplished by creating a
new object instance and copying the data from valueTypePtr into the newly allocated
object. ValueType is a metadata token (a typeref or typedef, see the Metadata
Specification) indicating the type of valueTypePtr.

Exceptions:

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

TypeLoadException is thrown if class cannot be found. This is typically detected when
IL is converted to native code rather than at runtime.

Verifiability:

Correct IL ensures that valueTypePtr points to a location of the correct value type, and
that valueType is a typeref or typedef metadata token for that value type.

Page 101

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc
Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

callvirt – call a method associated, at runtime, with an object

Format Assembly
Format

Description

6F <T> callvirt method Call a method associated with obj

Stack Transition:

…, obj, arg1, … argN

…, returnVal (not always returned)
Description:

The callvirt instruction calls a late-bound method on an object. That is, the method is
chosen based on the runtime type of obj rather than the compile-time class visible in the
method metadata token. Callvirt can be used to call both virtual methods and interface
methods. See the EE Architecture Specification for a detailed description of the IL calling
sequence. The callvirt instruction may be immediately preceded by a tail. prefix to
specify that the current stack frame should be released before transferring control. If the
call would transfer control to a method of higher trust than the origin method the stack
frame will not be released.

method is a metadata token (a methoddef or methodref, see the Metadata Specification)
that provides the name, class and signature of the method to call. In more detail, callvirt
can be thought of as follows. Associated with obj is the class of which it is an instance. If
obj’s class defines a non-static method that matches the indicated method name and
signature, this method is called. Otherwise all classes in the superclass chain of obj’s
class are checked in order. It is an error if no method is found.

Callvirt pops the object and the arguments off the evaluation stack before calling the
method. If the method has a return value, it is pushed on the stack upon method
completion. On the callee side, the obj parameter is accessed as argument 0, arg1 as
argument 1 etc.

The arguments are placed on the stack in left-to-right order. That is, the first argument is
computed and placed on the stack, then the second argument, etc. The this pointer
(always required for callvirt) must be pushed before any of the user-visible arguments,
and it is not allowed to be null. The signature (carried in the metadata associated with
method) need not contain an entry in the parameter list for the this pointer (see the
Metadata Specification).

Note that a virtual method may also be called using the call instruction.

Exceptions:

MissingMethodException may be thrown if a non-static method with the indicated
name and signature could not be found in obj’s class or any of its superclasses. This is
typically detected when IL is converted to native code, rather than at runtime.

NullReferenceException is thrown if obj is null.

SecurityException may be thrown if the runtime system security does not grant the
caller access to the called method. The security check may occur when the IL is
converted to native code rather than at runtime.

Page 102

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc
Architecture.doc

IL Instruction Set Specification Specification

Verifiability:

Correct IL ensures that the destination method exists and the values on the stack
correspond to the types of the parameters of the method being called.

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the
verification type of obj is consistent with the method being called, (c) the verification
types of the objects on the stack are consistent with the types expected by the method
call, and (d) the method is visible from the callsite. A callvirt annotated by tail. is a
special case.

Page 103

IL Instruction Set Specification Specification

castclass – cast an object to a class

Format Assembly
Format

Description

74 <T> castclass class Cast obj to class

Stack Transition:

…, obj

…, obj2
Description:

The castclass instruction attempts to cast obj (an O) to the class. Class is a metadata
token (a typeref or typedef, see the Metadata Specification) indicating the desired class.
If the class of the object on the top of the stack does not implement class (if class is an
interface) and is not a subclass of class (if class is a regular class) then an
InvalidCastException is thrown.

If obj is null, castclass succeeds and returns null. This behavior differs from isInst.

Notice that the castclass instruction may change the representation of the object: obj and
obj2 need not be identical.

Exceptions:

InvalidCastException is thrown if obj cannot be cast to class.

TypeLoadException is thrown if class cannot be found. This is typically detected when
IL is converted to native code rather than at runtime.

Verifiability:

Correct IL ensures that class is a valid TypeRef or TypeDef token, and that obj is always
either null or a reference to an object, i.e. of type O. Verifiable code may require the use
of castclass to correctly detect the type of an object, as described in the verifier
specification.

Page 104

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

cpobj - copy a value type

Format Assembly
Format

Description

70 <T> cpobj classTok Copy a value type from srcValObj to destValObj

Stack Transition:

…, destValObj, srcValObj

…,
Description:

The cpobj instruction copies the value type located at the address specified by srcValObj
(an unmanaged pointer, I, a transient pointer, *, or a managed pointer, &) to the address
specified by destValObj (also a pointer). Behavior is unspecified if srcValObj and
dstValObj are not pointers to instances of the class represented by classTok (a typeref or
typedef, see the Metadata Specification), or if classTok does not represent a value type.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Rationale: Verified code uses this instruction only when both srcValObj and destValObj
are known to contain valid addresses, so an implementation may choose to check
addresses or not without affecting the security of verified code.

Verifiability:

Correct IL ensures that classTok is a valid TypeRef or TypeDef token for a value type,
as well as that srcValObj and destValObj are both pointers to locations of that type.

Verification requires, in addition, that srcValObj and destValObj are both either transient
or managed pointers (not unmanaged pointers).

Page 105

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

initobj - initialize a value type

Format Assembly Format Description

FE 15 <T> initobj classTok Initialize a value type

Stack Transition:

…,addrOfValObj

…,
Description:

The initobj instruction initializes all the fields of the object represented by the address
addrOfValObj (of type I, &, or *) to null or a 0 of the appropriate primitive type. After
this method is called, the instance is ready for the constructor method to be called.
Behavior is unspecified if either valObj is a not pointer to instances of the class
represented by classTok (a typeref or typedef, see the Metadata Specification), or
classTok does not represent a value type.

Notice that, unlike newobj, the constructor method is not called by initobj. Initobj is
intended for initializing value types, while newobj is used to allocate and initialize
objects.

Exceptions:

None.

Verifiability:

Correct IL ensures that classTok is a valid typeref or typedef token specifying a value
type, and that valObj is a pointer to an instance of that value type.

Page 106

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

isinst – test if an object is an instance of a class or interface,
returning NULL or an instance of that class or interface

Format Assembly
Format

Description

75 <T> isinst class test if obj is an instance of class, returning NULL or an
instance of that class or interface

Stack Transition:

…, obj

…, result
Description:

The isinst instruction tests whether obj (type O) is an instance of class. Class is a
metadata token (a typeref or typedef, see the Metadata Specification) indicating the
desired class. If the class of the object on the top of the stack implements class (if class
is an interface) or is a subclass of class (if class is a regular class) then it is cast to the
type class and the result is pushed on the stack, exactly as though castclass had been
called. Otherwise NULL is pushed on the stack. If obj is NULL, isinst returns NULL.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when
IL is converted to native code rather than at runtime.

Verifiability:

Correct IL ensures that class is a valid typeref or typedef token indicating a class, and
that obj is always either null or an object reference, i.e. of type O.

Page 107

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldelem.<type> – load an element of an array

Format Assembly
Format

Description

90 ldelem.i1 Load the element at index with type I1 onto the top of
the stack as an I4

92 ldelem.i2 Load the element at index with type I2 onto the top of
the stack as an I4

94 ldelem.i4 Load the element at index with type I4 onto the top of
the stack as an I4

96 ldelem.i8 Load the element at index with type I8 onto the top of
the stack as an I8

91 ldelem.u1 Load the element at index with type U1 onto the top of
the stack as an I4

93 ldelem.u2 Load the element at index with type U2 onto the top of
the stack as an I4

94 ldelem.u4 Load the element at index with type U4 onto the top of
the stack as an I4 (alias for ldind.i4)

96 ldelem.u8 Load the element at index with type U8 onto the top of
the stack as an I4 (alias for ldind.i8)

98 ldelem.r4 Load the element at index with type R4 onto the top of
the stack as an F

99 ldelem.r8 Load the element at index with type R8 onto the top of
the stack as an F

97 ldelem.i Load the element at index with type I onto the top of
the stack as an I

9A ldelem.ref Load the element at index, an object, onto the top of
the stack as an O

Stack Transition:

…, array, index

…, value
Description:

The ldelem instruction loads the value of the element with index index (of type U) in the
zero-based one-dimensional array array and places it on the top of the stack. Arrays are
objects and hence represented by a value of type O. The return value is indicated by the
instruction.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the
array class provides a LoadElement method.

Page 108

IL Instruction Set Specification Specification

Note that integer value of 4 bytes or less are extended to I4 (not I) when they are loaded
onto the evaluation stack. Floating point values are converted to F type when loaded
onto the evaluation stack.

Exceptions:

NullReferenceException is thrown if array is null.

IndexOutOfRangeException is thrown if index is larger than the bound of array.

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required
type.

Verifiability:

Correct IL code requires that array is either null or an array.

Page 109

IL Instruction Set Specification Specification

ldelema – load address of an element of an array

Format Assembly
Format

Description

8F <T> ldelema class Load the address of element at index onto the top of
the stack

Stack Transition:

…, array, index

…, value
Description:

The ldelema instruction loads the address of the element with index index (of type U) in
the zero-based one-dimensional array array (of element type class) and places it on the
top of the stack. Arrays are objects and hence represented by a value of type O. The
return value is a managed pointer (type &).

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the
array class provides a LoadElementAddress method.

Exceptions:

NullReferenceException is thrown if array is null.

IndexOutOfRangeException is thrown if index is larger than the bound of array.

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required
type.

Verifiability:

Correct IL ensures that class is a typeref or typedef token to a class, and that array is
indeed always either null or an array.

Page 110

IL Instruction Set Specification Specification

ldfld – load field of an object

Format Assembly
Format

Description

7B <T> ldfld field Push the value of field of object obj on the stack

Stack Transition:

…, obj

…, value
Description:

The ldfld instruction pushes onto the stack the value of a field of obj. obj must be an
object (type O), a managed pointer (type &), an unmanaged pointer (type I), a transient
pointer (type *), or an instance of a value type. The use of an unmanaged pointer is not
permitted in verified code. field is a metadata token (a fieldref or fielddef, see the
Metadata Specification) that must refer to a field member. The return type is that
associated with field. ldfld pops the object reference off the stack and pushes the value
for the field in its place. The field may be either an instance field (in which case obj must
not be null) or a static field.

The ldfld instruction may be preceded by either or both of the unaligned. and
volatile. prefixes.

Exceptions:

NullReferenceException is thrown if obj is null and the field is not static.

MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when IL is converted to native code, not at runtime.

Verifiability:

Correct IL ensures that field is a valid token referring to a non-static field, and that obj
will always have a type compatible with that required for the lookup being performed.
For verifiable code, obj may not be an unmanaged pointer.

Page 111

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldflda – load field address

Format Assembly
Format

Description

7C <T> ldflda field Push the address of field of object obj on the stack

Stack Transition:

…, obj

…, address
Description:

The ldflda instruction pushes the address of a field obj. obj is either an object, type O, a
managed pointer, type &, an unmanaged pointer, type I, or a transient pointer, type *.
The use of an unmanaged pointer is not allowed in verified code. The value returned by
ldflda is a managed pointer (type &) unless obj is an unmanaged pointer, in which case it
is an unmanaged pointer (type I).

field is a metadata token (a fieldref or fielddef, see the Metadata Specification) that must
refer to a field member.

Exceptions:

NullReferenceException is thrown if obj is null and the field isn’t static.

MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when IL is converted to native code, not at runtime.

Verifiability:

Correct IL ensures that field is a valid fieldref token and that obj will always have a type
compatible with that required for the lookup being performed.

Note: Using ldflda to compute the address of a static, init-only field and then using the
resulting pointer to modify that value outside the body of the class initializer may lead to
unpredictable behavior. It cannot, however, compromise memory integrity or type safety
so it is not tested by the verifier.

Page 112

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldlen – load the length of an array

Format Assembly
Format

Description

8E ldlen push the length (of type U) of array on the stack

Stack Transition:

…, array

…, length
Description:

The ldlen instruction pushes the length of array (a zero-based, one-dimensional array) on
the stack.

Arrays are objects and hence represented by a value of type O. The return value is a U.

Exceptions:

NullReferenceException is thrown if array is null.

Verifiability:

Correct IL ensures that array is indeed always either null or a zero-based, one
dimensional array.

Page 113

IL Instruction Set Specification Specification

ldobj - copy value type to the stack

Format Assembly
Format

Description

71 <T> ldobj classTok Copy instance of value type classTok to the stack.

Stack Transition:

…, addrOfValObj

…, valObj

Description:

The ldobj instruction copies the value pointed to by addrOfValObj (of type managed
pointer, &, transient pointer, *, or unmanaged pointer, U) to the top of the stack. The
number of bytes copied depends on the size of the class represented by classTok.
ClassTok is a metadata token (a typeref or typedef, see the Metadata Specification)
representing a value type.

Rationale: The ldobj instruction is used to pass a value type as a parameter. See the EE
Architecture Specification.

It is unspecified what happens if valObj is not an instance of the class represented by
ClassTok or if ClassTok does not represent a value type.

The operation of the ldobj instruction may be altered by an immediately preceding
volatile. or unaligned. prefix instruction.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when
IL is converted to native code rather than at runtime.

Verifiability:

Correct IL ensures that classTok is a metadata token representing a value type and that
valObj is a pointer to a location containing an initialized value of the type specified by
classTok. Verifiable code additionally requires that valObj is a transient or managed
pointer.

Page 114

Architecture.doc
Architecture.doc
./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldsfld – load static field of a class

Format Assembly Format Description

7E <T> ldsfld field Push the value of field on the stack

Stack Transition:

…,

…, value
Description:

The ldsfld instruction pushes the value of a static (shared among all instances of a class)
field on the stack. field is a metadata token (a fieldref or fielddef, see the Metadata
Specification) referring to a static field member. The return type is that associated with
field.

The ldsfld instruction may have a volatile. prefix.

Exceptions:

Verifiability:

Correct IL ensures that field is a valid metadata token referring to a static field member.

Page 115

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldsflda – load static field address

Format Assembly Format Description

7F <T> ldsflda field Push the address of the static field, field, on the stack

Stack Transition:

…,

…, address
Description:

The ldsflda instruction pushes the address (a transient pointer, type *, if field refers to a
type whose memory is managed; otherwise an unmanaged pointer, type I) of a static field
on the stack. field is a metadata token (a fieldref or fielddef, see the Metadata
Specification) referring to a static field member.

Exceptions:

MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when IL is converted to native code, not at runtime.

Verifiability:

Correct IL ensures that field is a valid metadata token referring to a static field member.

Page 116

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldstr – load a literal string

Format Assembly
Format

Description

72 <T> ldstr string push a string object for the literal string

Stack Transition:

…,

…, string
Description:

The ldstr instruction pushes a new string object representing the literal stored in the
metadata as string (which must be a string literal, see the Metadata Specification).

The ldstr instruction allocates memory and performs any format conversion required to
convert from the form used in the file to the string format required at runtime. The EE
guarantees that the result of a ldstr instruction referring to two metadata tokens that have
the same sequence of characters returns precisely the same string object (a process known
as “string interning”).

Exceptions:

None.

Verifiability:

Correct IL requires that mdToken is a valid string literal metadata token.

Page 117

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ldtoken - load the runtime representation of a metadata token

Format Assembly
Format

Description

D0 <T> ldtoken token Convert metadata token to its runtime representation

Stack Transition:

…

…, unmanaged pointer
Description:

The ldtoken instruction pushes an unmanaged pointer (type I) to the runtime
representation of a metadata token. The token must be one of:

A methoddef or methodref describing a particular method, in which case the description
of the method (not the address, cf. ldftn and ldvirtftn) is pushed on the stack.

A typedef or typeref describing a class, value type, or implementation.

A fielddef or fieldref describing a particular field of a class, value type, or
implementation.

The value pushed on the stack is useful only for special-purpose class library routines
such as those that are used for type-safe access to a variable argument list (see the arglist
instruction).

Exceptions:

None.

Verifiability:

Correct IL requires that token describes a valid metadata token.

Page 118

IL Instruction Set Specification Specification

ldvirtftn - load a virtual method pointer

Format Assembly
Format

Description

FE 07 <T> ldvirtftn mthd Push address of virtual method mthd on the stack

Stack Transition:

… object

…, ftn
Description:

The ldvirtftn instruction pushes an unmanaged pointer (type I) to the native code
implementing the virtual method associated with object and described by the method
reference mthd (a metadata token, either a methoddef or methodref, see the Metadata
Specification) onto the stack. The value pushed can be called using the calli instruction if
it references a managed method (or a stub that transitions from managed to unmanaged
code).

The value returned points to native code using the calling convention specified by
method. Thus a method pointer can be passed to unmanaged native code (e.g. as a
callback routine) if that routine expects the corresponding calling convention. Note that
the address computed by this instruction may be to a thunk produced specially for this
purpose (for example, to re-enter the EE when a native version of the method isn’t
available).

Exceptions:

None.

Verifiability:

Correct IL ensures that method is a valid methoddef or methodref token. The verifier
tracks the type of the value pushed in more detail than the “I” type, remembering that it is
a method pointer. Such a method pointer can then be used in verified code with calli or
to construct a delegate.

Page 119

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

mkrefany – push a typed reference on the stack

Format Assembly
Format

Description

C6 <T> mkrefany class push a typed reference to ptr of type class onto the
stack

Stack Transition:

…, ptr

…, typedRef
Description:

The mkrefany instruction supports the passing of dynamically typed references. Ptr must
be a pointer (type &, *, or I) which is the address of a piece of data. Class is the class
token (a typeref or typedef, see the Metadata Specification) describing the type of ptr.
Mkrefany pushes a typed reference on the stack, an opaque descriptor of ptr and class.
The only legal operation on a typed reference on the stack is to pass it to a method that
requires a typed reference as a parameter. The callee can then use the refanytype and
refanyval instructions to retrieve the type (class) and address (ptr) respectively.

The verifier will fail if it cannot deduce that ptr is a pointer to an instance of class.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when
IL is converted to native code rather than at runtime.

Verifiability:

Correct IL ensures that class is a valid typeref or typedef token describing some type
and that ptr is pointer to that type. Verification additionally requires that ptr be a
transient or managed pointer.

Page 120

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

newarr – create a zero-based, one-dimensional array

Format Assembly
Format

Description

8D <T> newarr etype create a new array with elements of type etype

Stack Transition:

…, numElems

…, array
Description:

The newarr instruction pushes a reference to a new zero-based, one-dimensional array
whose elements are of type elemtype, a metadata token (a typeref or typedef, see the
Metadata Specification). Numelems (of type U) indicates the array bound (note: this is an
unsigned integer). Valid array indexes are 0 ≤ index < numElems. The elements of an
array can be any type, including value types.

Zero-based, one-dimensional arrays of numbers are created using a metadata token
referencing the appropriate value type (System.Int32, etc.). Elements of the numeric
arrays are initialized to 0 of the appropriate type.

One-dimensional arrays that aren’t zero-based and multidimensional arrays are created
using newobj rather than newarr. More commonly, they are created using the methods
of System.Array class in the NGWS Base Framework.

Exceptions:

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

Verifiability:

Correct IL ensures that elemType is a valid typeref or typedef token.

Page 121

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

newobj – create a new object

Format Assembly
Format

Description

73 <T> newobj ctor allocate an uninitialized object and call ctor

Stack Transition:

…, arg1, … argN

…, obj
Description:

The newobj instruction creates a new object or a new instance of a value type. Ctor is a
metadata token (a methodref or methodef that must be marked as a constructor, see the
Metadata Specification) that indicates the name, class and signature of the constructor to
call. If a constructor exactly matching the indicated name, class and signature cannot be
found, MissingMethodException is thrown.

The newobj instruction allocates a new instance of the class associated with constructor
and initializes all the fields in the new instance to 0 (of the proper type) or null as
appropriate. It then calls the constructor with the given arguments along with the newly
created instance. After the constructor has been called, the now initialized object
reference is pushed on the stack.

From the constructor’s point of view, the uninitialized object is argument 0 and the other
arguments passed to newobj follow in order.

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the
other hand, all other arrays (more than one dimension, or one-dimensional but not zero-
based) are created using newobj.

Value types are not usually created using newobj. They are usually allocated either as
arguments or local variables, using newarr (for zero-based, one-dimensional arrays), or
as fields of objects. Once allocated, they are initialized using initobj. However, the
newobj instruction can be used to create a new instance of a value type on the stack,
which can then be passed as an argument, stored in a local, etc.

Exceptions:

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

MissingMethodException is thrown if a constructor method with the indicated name,
class and signature could not be found. This is typically detected when IL is converted to
native code, rather than at runtime.

Verifiability:

Correct IL ensures that constructor is a valid methodref or methoddef token, and that
the arguments on the stack are compatible with those expected by the constructor. The
verifier considers a delegate constructor as a special case, checking that the method
pointer passed in as the second argument under the notional type I does indeed refer to a
method of the correct type.

Page 122

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

refanytype – load the type out of a typed reference

Format Assembly
Format

Description

FE 1D refanytype Push the type token stored in a typed reference

Stack Transition:

…, TypedRef

…, type
Description:

Retrieves the type token embedded in TypedRef. See the mkrefany instruction.

Exceptions:

None.

Verifiability:

The refanytype instruction is always verifiable.

Page 123

IL Instruction Set Specification Specification

refanyval – load the address out of a typed reference

Format Assembly
Format

Description

C2 <T> refanyval type Push the address stored in a typed reference

Stack Transition:

…, TypedRef

…, address
Description:

Retrieves the address (of type &) embedded in TypedRef. The type of reference in
TypedRef must match the type specified by type (a metadata token, either a typedef or a
typeref, see the Metadata Specification). See the mkrefany instruction.

Exceptions:

None.

Verifiability:

The refanyval instruction is always verifiable.

Page 124

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

rethrow – rethrow the current exception

Format Assembly Format Description

FE 1A rethrow Rethrow the current exception

Stack Transition:

…,

…,
Description:

The rethrow instruction is only permitted within the body of a catch handler (see the
Exception Specification). It throws the same exception that was caught by this handler.

Exceptions:

The original exception is thrown.

Verifiability:

Correct IL uses this instruction only within the body of a catch handler.

Page 125

IL Instruction Set Specification Specification

sizeof – load the size in bytes of a value type

Format Assembly
Format

Description

FE 1C <T> sizeof
valueType

Push the size, in bytes, of a value type as a U4

Stack Transition:

…,

…, size (4 bytes, unsigned)
Description:

Returns the size, in bytes, of a value type. ValueType must be a metadata token (a
typeref or typedef, see the Metadata Specification) the specifies a value type.

Rationale: The definition of a value type can change between the time the IL is generated
and the time that it is loaded for execution. Thus, the size of the type is not always known
when the IL is generated. The sizeof instruction allows IL code to determine the size at
runtime without the need to call into the base class library. The computation can occur
entirely at JIT time.

Exceptions:

None.

Verifiability:

Correct IL ensures that valueType is a typeref or typedef referring to a value type.

Page 126

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

stelem.<type> – store an element of an array

Format Assembly
Format

Description

9C stelem.i1 Replace array element at index with the I1 value on the
stack

9D stelem.i2 Replace array element at index with the I2 value on the
stack

9E stelem.i4 Replace array element at index with the I4 value on the
stack

9F stelem.i8 Replace array element at index with the I8 value on the
stack

A0 stelem.r4 Replace array element at index with the R4 value on
the stack

A1 stelem.r8 Replace array element at index with the R8 value on
the stack

9B stelem.i Replace array element at index with the i value on the
stack

A2 stelem.ref Replace array element at index with the ref value on
the stack

Stack Transition:

…, array, index, value

…,
Description:

The stelem instruction replaces the value of the element with zero-based index index (of
type U) in the one-dimensional array array with value. Arrays are objects and hence
represented by a value of type O.

Note that stelem.ref implicitly casts value to the element type of array before assigning
the value to the array element. This cast can fail, even for verified code. Thus the
stelem.ref instruction may throw the InvalidCastException.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the
array class provides a StoreElement method.

Exceptions:

NullReferenceException is thrown if array is null.

IndexOutOfRangeException is thrown if index is larger than the bound of array.

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required
type.

Verifiability:

Page 127

IL Instruction Set Specification Specification

Correct IL requires that array be a zero-based, one-dimensional array.

Page 128

IL Instruction Set Specification Specification

stfld – store into a field of an object

Format Assembly
Format

Description

7D <T> stfld field Replace the value of field of the object obj with val

Stack Transition:

…, obj, value

…,
Description:

The stfld instruction replaces the value of a field of an obj (an O) or via a pointer (type I,
&, or *) with value. field is a metadata token (a fieldref or fielddef, see the Metadata
Specification) that refers to a field member reference. stfld pops the value and the object
reference off the stack and updates the object.

The stfld instruction may have a prefix of either or both of unaligned. and volatile..

Exceptions:

NullReferenceException is thrown if obj is null and the field isn’t static.

MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when IL is converted to native code, not at runtime.

Verifiability:

Correct IL ensures that field is a valid token referring to a non-static field, and that obj
and value will always have types appropriate for the assignment being performed. For
verifiable code, obj may not be an unmanaged pointer.

Note: Using stfld to change the value of a static, init-only field outside the body of the
class initializer may lead to unpredictable behavior. It cannot, however, compromise
memory integrity or type safety so it is not tested by the verifier.

Page 129

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

stobj - store a value type from the stack into memory

Format Assembly
Format

Description

81 <T> stobj classTok Store a value of type classTok from the stack into
memory

Stack Transition:

…, addr, valObj

…,

Description:

The stobj instruction copies the value type valObj into the address specified by addr (a
pointer of type I, *, or &). The number of bytes copied depends on the size of the class
represented by classTok. ClassTok is a metadata token (a typeref or typedef, see the
Metadata Specification) representing a value type.

It is unspecified what happens if valObj is not an instance of the class represented by
ClassTok or if classTok does not represent a value type.

The operation of the stobj instruction may be altered by an immediately preceding
volatile. or unaligned. prefix instruction.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when
IL is converted to native code rather than at runtime.

Verifiability:

Correct IL ensures that classTok is a metadata token representing a value type and that
valObj is a pointer to a location containing an initialized value of the type specified by
classTok. In addition, verifiable code requires that valObj be a transient or managed
pointer.

Page 130

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

stsfld – store a static field of a class

Format Assembly
Format

Description

80 <T> stsfld field Replace the value of field with val

Stack Transition:

…, val

…,
Description:

The stsfld instruction replaces the value of a static field with a value from the stack. field
is a metadata token (a fieldref or fielddef, see the Metadata Specification) that must refer
to a static field member. Stsfld pops the value off the stack and updates the static field.

The stsfld instruction may be prefixed by volatile..

Exceptions:

MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when IL is converted to native code, not at runtime.

Verifiability:

Correct IL ensures that field is a valid token referring to a static field, and that value will
always have a type appropriate for the assignment being performed.

Page 131

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

throw – throw an exception

Format Assembly Format Description

7A throw Throw an exception

Stack Transition:

…, object

…,
Description:

The throw instruction throws the exception object (type O) on the stack. For details of
the exception mechanism, see the Exception Specification .

While the EE permits any object to be thrown, the common language subset (CLS)
describes a specific exception class that must be used for language interoperability.

Exceptions:

NullReferenceException is thrown if obj is null.

Verifiability:

Correct IL ensures that class a valid TypeRef token indicating a class, and that obj is
always either null or an object reference, i.e. of type O.

Page 132

IL Instruction Set Specification Specification

unbox – Convert boxed value type to its raw form

Format Assembly
Format

Description

79 <T> unbox valuetype Extract the value type data from obj, its boxed
representation

Stack Transition:

…, obj

…, valueTypePtr
Description:

Effectively a value type has two separate representations (see the EE Architecture
Specification) within the runtime:

 A ‘raw’ form used when a value type is embedded within another object.

 A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so
it can exist as an independent entity.

The unbox instruction converts obj (of type O), the boxed representation of a value type,
to valueTypePtr (a managed pointer, type &), its unboxed form. ValueType is a metadata
token (a typeref or typedef, see the Metadata Specification) indicating the type of value
type contained within obj. If obj is not a boxed instance of ValueType, an
InvalidCastException is thrown.

Unlike box, which is required to make a copy of a value type for use in the object, unbox
is not required to copy the value type from the object. Typically it simply computes the
address of the value type that is already present inside of the boxed object.

Exceptions:

InvalidCastException is thrown if obj is not a boxed valueType.

NullReferenceException is thrown if obj is null.

TypeLoadException is thrown if class cannot be found. This is typically detected when
IL is converted to native code rather than at runtime.

Verifiability:

Correct IL ensures that valueType is a typeref or typedef metadata token for some value
type, and that obj is always an object reference, i.e. of type O.

Page 133

./COR%20Metadata%20Interfaces.doc
Architecture.doc
Architecture.doc

IL Instruction Set Specification Specification

4 Annotations
In addition to the instructions described earlier, IL includes a set of instructions that can
be ignored by most processors. They are used to convey additional information for the
use of particular IL processors (typically for use in OptIL, a specialized version of IL
created by an optimizing compiler and consumed by a special JIT compiler). See the
separate OptIL specification.

Page 134

IL Instruction Set Specification Specification

ann.call – start of simple calling sequence

Format Assembly
Format

Description

C7 <T> ann.call
signature

Begin the calling sequence for a method of the
specified signature

Stack Transition:

…,

…,
Description:

The ann.call instruction flags the start of a simple calling sequence that will be
terminated by a call instruction (call, calli, callvirt, jmp, or jmpi) and will pass
arguments as specified by signature, a metadata token (a stand-alone signature, see the
Metadata Specification). As with the calli instruction, signature specifies the number and
type of the arguments being passed as well as the calling convention.

There are significant restrictions on the code that is permitted to occur between the
ann.call instruction and the call instruction with which it corresponds. These are
documented in the OptIL specification.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 135

http://comrtime/specs/miscellaneous/COM+%20OPT-IL%20Specification.doc
./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ann.catch – start an exception filter or handler

Format Assembly
Format

Description

C8 ann.catch start an exception filter or handler

Stack Transition:

…,

…,
Description:

The ann.catch instruction indicates that an exception filter or handler is beginning. At
these locations the stack contains an item that cannot be predicted by a simple scan of the
IL instruction stream.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 136

IL Instruction Set Specification Specification

ann.data – multi-byte no operation

Format Assembly
Format

Description

FE 22 <U4> … ann.data count
…

multi-byte no operation

Stack Transition:

…,

…,
Description:

The ann.data instruction allows uninterpreted information to be inserted in the
instruction stream. There are count bytes of data following the 4-byte count in the
instruction.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 137

IL Instruction Set Specification Specification

ann.dead – stack location is no longer live

Format Assembly
Format

Description

C9 <U2> ann.dead
location

stack location is no longer live

Stack Transition:

…,

…,
Description:

The ann.dead instruction notifies an IL processor that a stack location (local variable or
argument) that would otherwise appear to contain a legitimate value should not, in fact,
be reported to the garbage collector. If location is 0 or greater, the locationth local
variable is now dead. If location is negative, the locationth argument (numbered from –1
as leftmost argument) is now dead. See the OptIL specification for details of the OptJIT
liveness tracking algorithm.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 138

IL Instruction Set Specification Specification

ann.def – SSA definition node

Format Assembly
Format

Description

CD ann.def SSA definition node

Stack Transition:

…,

…,
Description:

The ann.def instruction is used to embed an SSA (single static assignment) graph into the
IL instruction stream. The ann.def instruction assigns a node number to the output of the
next IL instruction. The node numbers are assigned sequentially, from 0, through the
method. A new node number is allocated for each ann.def and ann.phi instruction.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 139

IL Instruction Set Specification Specification

ann.hoisted– start of the simple portion of a hoisted calling
sequence

Format Assembly
Format

Description

CA ann.hoisted start of the simple portion of a hoisted calling sequence

Stack Transition:

…,

…,
Description:

The ann.hoisted instruction must follow an ann.hoisted_call instruction. It indicates
that the complex portion of the argument evaluation has been completed and that the
subsequent instructions are part of a simple calling sequence. The overall calling
sequence begins with the ann.hoisted instruction and terminates with the subsequent call
instruction (call, calli, callvirt, jmp, or jmpi). See the OptIL specification. for details.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 140

IL Instruction Set Specification Specification

ann.hoisted_call – start of complex argument evaluation

Format Assembly
Format

Description

CB <T> ann.hoisted_call
signature

start of argument evaluation for a call to a method with
the specified signature

Stack Transition:

…,

…,
Description:

The ann.hoisted_call instruction flags the start of a calling sequence that will be
terminated by a call instruction (call, calli, callvirt, jmp, or jmpi) and will pass
arguments as specified by signature, a metadata token (a stand-alone signature, see the
Metadata Specification). As with the calli instruction, signature specifies the number and
type of the arguments being passed as well as the calling convention.

Unlike calls that use the ann.call instruction the arguments to be passed with
ann.hoisted_call can be arbitrarily complex, but the calling sequence is divided into two
parts. The complex evaluation is performed starting with the ann.hoisted_call
instruction, then argument computation, then an ann.hoisted instruction, then a simple
calling sequence. The details are documented in the OptIL specification.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 141

./COR%20Metadata%20Interfaces.doc

IL Instruction Set Specification Specification

ann.live – mark a stack location as live

Format Assembly
Format

Description

FE 16 <U2> ann.live
location

Mark a stack location as live

Stack Transition:

…,

…,
Description:

The ann.live instruction notifies an IL processor that a stack location (local variable or
argument) that would otherwise appear not to contain a legitimate value should, in fact,
be reported to the garbage collector. If location is 0 or greater, the locationth local
variable is now live. If location is negative, the locationth argument (numbered from –1
as leftmost argument) is now live. See the OptIL specification for details of the OptJIT
liveness tracking algorithm.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 142

IL Instruction Set Specification Specification

ann.phi – SSA  node

Format Assembly
Format

Description

CF <U1>
<U2> …

ann.def n node1

…
SSA definition node

Stack Transition:

…,

…,
Description:

The ann.phi instruction is used to embed an SSA (single static assignment) graph into
the IL instruction stream. The ann.phi instruction indicates that n existing nodes (nodei)
are to be merged into a new node. Node numbers are assigned sequentially, from 0,
through the method. A new node number is allocated for each ann.def and ann.phi
instruction.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 143

IL Instruction Set Specification Specification

ann.ref.<length> – SSA reference node

Format Assembly
Format

Description

FE 19 <U2> ann.ref n SSA definition node

CE <U1> ann.ref.s n SSA definition node, short form

Stack Transition:

…,

…,
Description:

The ann.ref instruction is used to embed an SSA (single static assignment) graph into the
IL instruction stream. The ann.ref instruction specifies that the output of the next IL
instruction is the same as the value computed at node n. The node numbers are assigned
sequentially, from 0, through the method. A new node number is allocated for each
ann.def and ann.phi instruction.

Exceptions:

None.

Verifiability:

Not verifiable.

Page 144

IL Instruction Set Specification Specification

5 Sample Code Sequences
There should be sample on delegates, value types, ref-any, and varargs at the very least.

5.1Value types
To be supplied. Fragments:

For example, to create a value type MyValueType in the third local variable, use the
following code sequence:

 ldloca 3 ; Load address of variable

 dupRef ; For constructor

 initobj MyValueType ; Clear the instance

 call MyValueType::<init> ; Call the constructor

For example, to pass local variable 3 as a parameter to a method, the following code is
generate:

 ldloca 3 ; Address of local variable 3

 ldobj ; Copy to stack

For example, if the second argument to a method is a value type named MyValueType
that contains a field named MyField, the contents of that field can be accessed as
follows:

 ldarga 2 ; Address of argument 2

 ldfld MyValueType::MyField

For example consider the body of an instance method of a value type that returns a value
type as a result. This will have two hidden parameters: argument 0 is the this pointer (a
by-ref pointer to the method’s instance) and argument 1 is the address where the return
value should be stored. So to return the instance itself as the result, the following code is
generated:

 ldarga 0 ; Address of instance itself

 ldarga 1 ; Address for returned value

 cpobj ; Copy this to return value

Page 145

	1 Introduction to the Runtime IL Instruction Set
	1.1 Data Types
	1.1.1 Numeric Data Types
	1.1.2 Object References
	1.1.3 Runtime Pointer Types
	1.1.3.1 Unmanaged Pointers
	1.1.3.2 Managed Pointers (type &)
	1.1.3.3 Transient Pointers (type *)

	1.2 Instruction Variant Table
	1.2.1 Opcode Encodings

	1.3 Stack Transition Diagram
	1.4 English Description
	1.5 Verifiability
	1.6 Operand Type Table
	1.7 Signature Matching

	2 Base Instructions
	3 Object Model Instructions
	4 Annotations
	5 Sample Code Sequences
	5.1 Value types

