
The IL Assembly Language Programmers' Reference PDC Release

NGWS Runtime

The IL Assembly Language
Programmers’ Reference

(PDC Release)

Copyright  2000 Microsoft Corporation. All rights reserved.
Last updated: 6/15/2000

This is preliminary documentation and subject to change.

Page 1

The IL Assembly Language Programmers' Reference PDC Release

Table of Contents
1 Introduction..8

1.1 Audience...8

1.2 Overview...8

1.3 Execution Engine...9

1.4 Validation and Verification..9

1.5 The NGWS SDK IL Tools...10

1.5.1 The Assembler..10

1.5.2 The Disassembler... 12

1.5.3 The Assembly Linker..14

1.5.4 The Module Verifier..16

1.5.5 The Debugger... 16

1.5.6 Compilers..17

2 Hello World Example.. 18

3 General Syntax...19

3.1 General Syntax Notation...19

3.2 Terminals..19

3.3 Identifiers..20

3.4 Labels and Lists of Labels...21

3.5 Lists of Hex Bytes...21

3.6 Floating point numbers...21

3.7 Source Line Information...22

4 Assemblies, Manifests and Modules...23

4.1 Assemblies, Modules, Types and Namespaces..23

4.2 Defining an Assembly..23

4.2.1 Information about the Assembly..24

4.2.2 Manifest Resources..26

4.2.3 Files in the Assembly...26

4.2.4 Operational Characteristics of Assemblies...27

4.3 Referencing Assemblies...27

4.4 Referencing Modules... 28

4.5 Declarations in a Module..28

4.6 Export Declarations...29

4.6.1 The .comtype directive..30

5 Types... 31

Page 2

The IL Assembly Language Programmers' Reference PDC Release

5.1 The Type System..31

5.2 Types... 32

5.3 Type References, Assemblies and Modules...34

5.4 Inheritance, Type Conformance and Subtypes...35

5.4.1 Conformance and Subtyping in the IL Verifier....................................35

5.4.2 Conformance and Subtyping at Runtime..36

6 Visibility, Accessibility and Hiding..37

6.1 Visibility..37

6.2 Hiding..37

6.3 Accessibility.. 38

6.3.1 Family Access... 38

6.3.2 Privatescope Acess...39

7 Classes...40

7.1 Defining a Class..40

7.1.1 Built-in Class Attributes..41

7.2 Contents of a Class...44

7.3 Special Members of Types..45

7.3.1 Inheritance of Virtual Methods..45

7.3.2 Instance constructors...46

7.3.3 Instance Finalizer...46

7.3.4 Class constructors..46

7.4 Nested Types...48

7.5 Controlling Layout.. 49

7.5.1 Explicit Layout Control of Instances...49

7.5.2 Explicit Layout of the Vtable..50

7.6 Global (Non-class) Data and Methods...51

8 Interfaces..53

8.1 Requirements on classes that implement interfaces...................................53

8.2 MethodImpls..54

9 Value Types.. 56

9.1 Overview of Value Types..56

9.2 Methods on Value Types...56

9.3 Boxing and Unboxing..57

9.4 Initializing Value Types..57

9.5 Copy Constructors on Value Types...58

9.6 Using Value Types for C++ Classes...59

Page 3

The IL Assembly Language Programmers' Reference PDC Release

9.6.1 Represent the Class as a Value Type...59

9.6.2 Represent the Vtable as another Value Type..60

10 Special Types..61

10.1 Arrays...61

10.2 Delegates... 62

10.2.1 Changes to Delegates...62

10.2.2 Moved Delegate Combine Methods...62

10.2.3 Members of Delagates...63

10.3 Enumerations (Enums)...63

10.4 Pointer Types... 64

10.5 Function Pointer Types...67

11 Signatures... 68

11.1 Method Signatures...68

11.1.1 Marshal...69

11.2 Local Variable Signatures...69

11.3 Primitive Types in Signatures...70

11.4 Native Data Types..71

12 Methods.. 75

12.1 Method Head..75

12.1.1 Method Name... 76

12.1.2 Kinds of Calls...76

12.2 Method Body..76

12.2.1 .locals...77

12.2.2 .param... 77

12.2.3 .vtentry..78

12.3 Predefined Attributes on Methods...78

12.3.1 Accessibility Information..79

12.3.2 Method Contract Attributes...79

12.3.3 Virtual Method Table Information..80

12.3.4 Implementation Attributes...80

12.3.5 Interoperation Attributes..80

12.3.6 Other Attributes...81

12.4 Implementation Attributes of Methods...81

12.4.1 Code Implementation Attributes..81

12.4.2 Managed or Unmanaged Information...82

12.4.3 Implementation Information..82

Page 4

The IL Assembly Language Programmers' Reference PDC Release

12.4.4 Interoperation..82

12.5 Scope Blocks... 83

12.6 Method Calls.. 83

12.6.1 Call Convention...84

12.7 Global Methods..84

12.7.1 Managed Native Calling Conventions...84

12.7.2 Accessing Unmanaged Methods...86

12.7.3 Exporting Managed Methods to the Unmanaged World.....................90

13 Fields... 91

13.1 Field Attributes..91

13.2 Predefined Attributes on Fields..92

13.2.1 Accessibility Information..93

13.2.2 Field Contract Attributes..93

13.2.3 Interoperation Attributes..93

13.2.4 Other Attributes...94

13.3 Global Fields...94

13.3.1 Initializing Static Data...94

13.3.2 Unmanaged Thread-local Storage..96

13.4 Embedding Data in a PE File...96

13.4.1 Data Decleration..97

13.4.2 Accessing Data...98

14 Properties..99

14.1 Property Head..99

14.2 Property Declarations...99

15 Events..101

15.1 Event Head...101

15.2 Event Declaration.. 101

16 Declarative Security...102

17 Custom Attributes...103

17.1 Custom Attribute Usage: CLS Conventions...104

17.2 Attributes Used by the Runtime...104

17.2.1 Pseudo Custom Attributes..105

17.2.2 Attributes Defined by the CLS...105

17.2.3 Custom Attributes for JIT Compiler and Debugger..........................106

17.2.4 Custom Attributes for Reflection...106

17.2.5 Custom Attributes for Remoting..106

Page 5

The IL Assembly Language Programmers' Reference PDC Release

17.2.6 Custom Attributes for Security..106

17.2.7 Custom Attributes for TLS...108

17.2.8 Custom Attributes for the Assembly Linker.......................................108

17.2.9 Attributes Provided for Language Interop...108

18 Exception Handling...110

18.1 Try Block..110

18.2 Handlers..111

18.3 Throwing an Exception...112

19 IL Instructions... 113

19.1 Overview...113

19.2 Opcodes by Category...113

19.2.1 General Instruction Syntax...113

19.2.2 Numeric and Logical Operations...113

19.2.3 Control Flow...118

19.2.4 Moving Data... 121

19.2.5 Object Management..122

19.2.6 Annotations..125

20 Sample IL Programs..126

20.1 Mutually Recursive Program (with tail calls)...126

20.2 Using Value Types... 128

21 Appendix A: ILASM Complete Grammar..132

21.1 Assembler Grammar...132

21.2 Instruction syntax..147

21.2.1 Comments...147

21.2.2 Labels.. 147

21.2.3 Full Grammar for Instructions..147

21.2.4 Instructions with no operand..149

21.2.5 Instructions that Refer to Parameters or Local Variables................150

21.2.6 Instructions that Take a Single 32-bit Integer Argument..................150

21.2.7 Instructions that Take a Single 64-bit Integer Argument..................151

21.2.8 Instructions that Take a Single Floating Point Argument.................151

21.2.9 Branch instructions...151

21.2.10 Instructions that Take a Method as an Argument.........................152

21.2.11 Instructions that Take a Field of a Class as an Argument.............152

21.2.12 Instructions that Take a Type as an Argument..............................153

21.2.13 Instructions that Take a String as an Argument............................153

Page 6

The IL Assembly Language Programmers' Reference PDC Release

21.2.14 Instructions that Take a Signature as an Argument......................153

21.2.15 Instructions that Take a Metadata Token as an Argument..........154

21.2.16 The SSA Φ-Node Instruction..154

21.2.17 Switch instruction..154

Page 7

The IL Assembly Language Programmers' Reference PDC Release

1 Introduction
NGWS IL is the intermediate language emitted by all compilers that target the NGWS
(Next Generation Windows Services) SDK runtime. While IL can be directly interpreted,
the Runtime’s “JIT compilers” can also convert IL to native machine code. These
compilers normally run in a “Just-In-Time” (JIT) mode, converting methods from NGWS
IL to native code only when the method is about to run the first time. They can also be
used in a more traditional mode by converting an entire assembly (see section 4.1) to
native code and then saving the native code for future use.

Tools that generate IL can benefit from the many services provided by the Runtime,
including the IL support for early and late binding, and the fact that code compiled to IL
will run on any platform supported by the Runtime. IL is simple and fast to generate,
which is essential in RAD (rapid application development) environments, where speed of
compilation and ease of debugging are of primary importance. The Runtime manages the
native code generated from IL so that this code may benefit from features such as cross-
language inheritance, code access security, garbage-collection, and simplified COM
programming.

1.1Audience
This specification is intended for people interested in generating or analyzing programs
that will be executed by the NGWS runtime. This includes those who write compilers
that target the NGWS runtime (either with native code or IL), development tools or
environments, or program analysis tools.

For further information about the EE, IL, and metadata, see the following specifications:

- The Virtual Object System (VOS) specification (See NGWS SDK, “Technical
Overview of the NGWS Runtime”)

- The IL Instruction Set specification

- The Metadata specification

- The File Format specification

- The Base Class Library specification

This document assumes that the reader is familiar with the concept of a DLL (dynamic
link library). More information on dynamic link libraries can be found in MSDN.

1.2Overview
This document focuses on writing programs directly in IL, and relies heavily on the
syntax of ilasm, the IL assembler shipped with the NGWS SDK. In order to understand
the process of creating programs in IL, it discusses

- Execution, i.e. the Execution Engine, a model of a machine that might directly
execute IL;

- Typing, i.e. the underlying type system and the declarations used to define types;

- Instructions, i.e. the operations of the IL instruction set;

Page 8

http://msdn.microsoft.com/library/default.asp?PP=/library/toc/psdk/psdk2-1-0.xml&tocPath=psdk2-1-0&URL=/library/psdk/winbase/dll_512r.htm
./File%20Format%20Spec.doc
./COR%20Metadata%20Interfaces.doc
ILinstrset.doc

The IL Assembly Language Programmers' Reference PDC Release

- Deployment, i.e. assemblies, manifests and modules. Assemblies which are the
unit of deployment in NGWS, and the declarations required to package an
application or component for distribution;

- Additional Features, such as global methods, global fields, and interoperation
with existing (unmanaged) code.

1.3Execution Engine
The NGWS execution engine (EE) is responsible for executing PE (portable executable)
files. The EE translates PE files into native code. Further, the EE provides the program
with an environment to run in.

The EE is described in detail in the Architecture specification.

However, one service of the EE is worth noting here. The EE has a garbage collector that
will automatically take care unreferenced objects and memory blocks.

1.4Validation and Verification
Validation refers to a set of tests that can be performed on a NGWS PE file , in isolation,
to check that the file format, metadata, and IL are self-consistent. The PEVerify tool
(part of the NGWS SDK) can perform these tests and report on any errors. In general,
PEVerify is an excellent way to test the correctness of any files generated by compilers,
assemblers, or file-to-file transformation tools. It is intended for use by the developers of
these tools, as a means to test that they are producing acceptable output. Code that does
not pass the tests in PEVerify can crash the Execution Engine and the JIT compilers; it is
not safe to run under any circumstances.

Verification refers to a set of tests that check for consistency between separately
compiled modules. In conjunction with the validation tests, verification ensures that the
program cannot access memory or other resources to which it is not granted access.
These tests are usually performed immediately prior to converting a method containing
IL code into managed native code. The PEVerify tool can also perform these tests, but
since the tests are sensitive to metadata from other assemblies the fact that a file passes
these tests at one point in time does not guarantee that it will always pass these tests.

The following graph makes this relationship clearer (see next paragraph for description):

Page 9

Syntactically correct IL

Valid IL

Typesafe IL

Verifiable IL

Architecture.doc

The IL Assembly Language Programmers' Reference PDC Release

Figure 1: Relationship between sets of languages. (Figure not drawn to scale)

In the above figure, the outer circle contains all code permitted by the IL syntax. The next
circle, which is solid gray, represents all code that is valid IL. Note that even if the
assembler accepts an IL program, or a program follows the syntax described in this
document, this code may still not be valid, because valid code must adhere to the other
restrictions presented in this document. Also, the assembler may accept a somewhat more
liberal syntax than presented in this document. The dotted inner circle represents all type
safe code. Finally, the innermost circle contains all code that is verifiable. This document
will use the term verifiable to mean code that passes PEVerify.

Verification is a very stringent test. There are many programs that will pass validation but
will fail verification. The NGWS runtime cannot guarantee that these programs do not
access memory or resources to which they are not granted access. Nonetheless, they may
have been correctly constructed so that they do not access these resources. It is thus a
matter of trust, rather than mathematical proof, whether it is safe to run these programs.
Therefore, the NGWS runtime allows an unsafe subset of code, that is code that does not
pass verification, to be executed subject to administrative trust controls.

In general, IL is used most often with a type-safe programming language whose
compilers emit IL that can be verified, but it is possible to generate IL for unsafe
languages, such as C and C++. The IL emitted by the compilers for unsafe languages
cannot, in general, be verified, but it will execute as a NGWS unmanaged application.

The complete set of rules for validation of the file format and metadata are covered in a
separate specification. Use of the assembler guarantees that the file format is valid,
although it is possible to create invalid metadata. Use of System.Reflection.Emit
guarantees that both the file format and the metadata are valid. The rules for emitting
valid as well as verifiable IL instruction sequences are included in the IL Instruction Set
Specification and summarized below.

More information on verification can be found in the Verifier Specification.

1.5The NGWS SDK IL Tools

1.5.1 The Assembler
There are five primary ways to write programs that run under the NGWS runtime:

- Write them in a programming language that generates the appropriate file format.

- Use the Reflection and ReflectionEmit classes in the NGWS SDK Base Class
Library to produce an assembly on disk, in memory, or written to a stream.

- Write a compiler or other tool that directly generates the appropriate file format,
using the information contained in the File Format and Metadata API
specifications.

- Write a program directly in IL and convert it to an assembly using the ilasm
program.

- Write a program in several separate parts, directly in IL, convert each to a module
using ilasm and then combine them into an assembly using the al program (see
section 1.5.3).

Page 10

The IL Assembly Language Programmers' Reference PDC Release

This document concentrates on the last two mechanisms, using the syntax of ilasm as a
means of describing the overall workings of the NGWS runtime. One of the best ways to
learn any new assembly language is to examine the output of other tools that produce that
language. For that reason, Microsoft supplies a program, ildasm, that can take any file
that can be executed by the NGWS runtime and produces output that can be used as input
to ilasm.

ilasm takes IL as input and generates a PE file containing the IL and the required
metadata. The resulting executable can be run to determine whether the IL performs as
expected. The IL Assembler allows tools developers to concentrate on IL generation
without being concerned with emitting IL in the PE file format. This tool is intended
primarily for testing the performance of small sequences of IL and to test IL generation
strategies.

An alternive to ilasm is the use of Reflection and ReflectionEmit to execute programs.
This option is chosen rather by scripting languages and is described in considerably more
detail in the Base Class Library documentation. This document provides cross-references
to that material so that readers can understand what methods in ReflectionEmit produce
the effect of various directives and attributes provided in the IL syntax of ilasm.

Although the IL Assembler is helpful in the early stages of generating IL, it has some
limitations: it does not emit all possible runtime PE file features, and it cannot produce a
COFF file that can be statically linked with other files (an .obj file).

For those who need complete control over the NGWS executable file format it is possible
to directly generate the contents of the file. For this reason, Microsoft supplies a complete
specification of the file format with the exception of the on-disk layout of the NGWS
metadata. Metadata is written to a file by using the Metadata APIs, which are described
elsewhere. As with ReflectionEmit, this document provides cross-references to these
APIs so they may be used when ilasm is not sufficient.

There is a companion tool, ildasm, that takes a PE file containing IL code and creates a
text file suitable as input to the IL Assembler. This ability to round trip code can be
useful, for example, when compiling code in a programming language which doesn’t
support all of the runtime's metadata attributes. The code can be compiled, then the
output run through ildasm, and the resulting IL text file can be had edited to add the
missing attributes. This can then be run through the IL Assembler to produce a final
runnable file.

In order to make this round tripping possible, the assembler does not perform some
simple optimizations that are provided by other assemblers: it does not deduce whether to
use short or long forms of instructions, but requires the input to be explicit. It does,
however, check for out-of-range conditions where this is possible.

1.5.1.1 Usage of ilasm
Usage: ilasm [Options] <sourcefile> [Options]

Option Description

/LISTING type a formatted list file

/NOLISTING don't type a formatted list file (default)

/QUIET don't report assembly progress

/DLL compile to .dll

/EXE compile to .exe (default)

Page 11

The IL Assembly Language Programmers' Reference PDC Release

Option Description

/DEBUG include debug metadata

/RES=<resourcefile> link the specified resource file (*.res) into resulting .exe
or .dll

/OUT=<targetfile> compile to file with specified name (must have extension)

/OWNER protect the resulting file against disassembling

/OWNER=<ownersname> protect the resulting file against unauthorised
disassembling

(<ownername> will be required to disassemble the file)

<ownername> is arbitrary string of alphanumeric
characters, without spaces in between (use underscores)

Key may be '-' or '/'.

Options are recognized by first 3 characters.

Default source file extension of IL files is “.il”.

1.5.2 The Disassembler
The NGWS SDK diassembler is called ildasm.

Usage: ildasm [options] <file_name> [options]

Options for output redirection: Description

/OUT=<file name> Direct output to file rather than to GUI.

/TEXT Direct output to created console window rather than to
GUI.

Options for GUI or file/console
output (EXE and DLL files
only):

Description

/OWNER=<owner name> Set owner name to disassemble a protected PE file.

/BYTES Show actual bytes (in hex) as instruction comments.

/RAWEH Show exception handling clauses in raw form.

/TOKENS Show metadata tokens of classes and members.

/SOURCE Show original source lines as comments.

/LINENUM Include references to original source lines.

/VISIBILITY=<vis>[+<vis>...] Only disassemble the items with specified visibility.

Page 12

The IL Assembly Language Programmers' Reference PDC Release

Options for GUI or file/console
output (EXE and DLL files
only):

Description

(<vis> = PUB | PRI | FAM | ASM | FAA | FOA | PSC)

/PUBONLY Only disassemble the public items (same as
/VIS=PUB).

/QUOTEALLNAMES Include all names into single quotes.

/NOBAR Suppress disassembly progress bar window pop-up.

The following options are valid for file/console output only (if /OUT is specified):

Options for EXE and DLL
files:

Description

/NOIL Suppress IL assembler code output.

/HEADER Include file header information in the output.

/ALL Combination of /HEADER, /BYTES, /TOKENS

Options for EXE, DLL, OBJ and
LIB files:

Description

/ITEM=<class>[::<method><sig>] Disassembles the specified item only

Options for LIB files only: Description

/OBJECTFILE=<obj_file_name> Show MetaData of a specific object file in library

/BYREF=<class1,class2,..> Marks the classes as marshaledbyref (non-GUI)

Option key is '-' or '/', options are recognized by first 3 characters.

Example: ildasm /tok /byt myfile.exe /out=myfile.il

1.5.2.1 The Disassembler for Power Users
For advanced users, the disassembler provides the following additional command line
options:

For all following options, the option ADV has to be used as the first option:

Usage: ildasm /ADV [options] <file_name> [options]

In addition to the options above, the following additional options are supported:

Page 13

The IL Assembly Language Programmers' Reference PDC Release

Advanced options for EXE and
DLL files:

Description

/STATS Include statistics on the image.

/CLASSLIST Include list of classes defined in the module.

Advanced options for
EXE,DLL,OBJ and LIB files:

Description

/METADATA[=<specifier>] Show MetaData, where <specifier> is:

MDHEADER Show MetaData header information and sizes.

HEX Show more things in hex as well as words.

CSV Show the header sizes in Comma Separated format.

UNREX Show unresolved externals.

VALIDATE Validate the consistency of the metadata.

1.5.2.2 Roundtrips
ildasm and ilasm can be used to round trip code. This means that managed code
compiled by any compiler can be disassembled, inspected by the user, and then again
reassembled. ildasm has a somewhat extended syntax to support this. Those syntax
elements are documented in this guide, but are marked “for round trip only”.

It is not possible to ildasm to disassemble native code, such that it is not possible to round
trip any program that depends on native code.

This is especially true for Microsoft VC code. The VC linker will automatically add a
method called _CRTStartup to an exe. This method contains native code and is a
problem for the disassembler. In order to make it possible to round trip, the linker has to
be instructed not to add this method. This can be done by specifying an explicit entry
point as in the following example:

cl /com+ <filename> /link entry:main

where main is the main method of the program. This will make it possible to round trip
the code, but with the catch that since the CRT startup didn’t run, no CRT method, like
printf, can be called. Only managed methods, like WriteLine, must to be used.

1.5.3 The Assembly Linker
The assembly linker resolves the references of a PE file. It is called al.

Usage: al [options] [sources]

Options: Description

/METADATA[=<specifier>] Show MetaData, where <specifier> is:

/? or /help display usage information

Page 14

The IL Assembly Language Programmers' Reference PDC Release

Options: Description

@<filename> read command-line options from the file

/algid:<id> algorithm used to hash files (in hexadecimal)

/base[address]:<addr> set the default base address of the DLL

/bugreport:<filename> create a bug report file

/comp[any]:<text> company name

/config[uration]:<text> configuration string

/copy[right]:<text> copyright message

/c[ulture]:<text> supported culture

/delay[sign][+|-] delay sign this assembly

/descr[iption]:<text> description

/flags:<flags> assembly flags (in hexadecimal)

/fullpaths display files using fully-qualified filenames

/i[nstall][:<filename>] install this assembly into the assembly cache

/keyf[ile]:<filename> file containing key to sign the assembly

/keyn[ame]:<text> key container name of key to sign assembly

/main:<method> the fully-qualified method name of the entrypoint

/nologo suppress the display of the startup banner

/os:<os>.<maj>.<min> operating system, major and minor version constants

/out:<filename> file to create for the assembly manifest

/proc[essor]:<proc> processor constant (in hexadecimal)

/prod[uct]:<text> product name

/productv[ersion]:<text> product version

/title:<text> title

/trade[mark]:<text> trademark message

/t[ype]:lib|exe|win create a DLL, console app, or GUI app

/v[ersion]:<version> version (use * to auto-generate remaining numbers)

/win32icon:<filename> use given icon for auto-generated Win32 resource

/win32res:<filename> use given RES or OBJ file for Win32 resource

'/out' or '/install' must be specified.

Page 15

The IL Assembly Language Programmers' Reference PDC Release

Source Description

<filename>[,<targetfile>] add file to assembly

/embed[resource]:<filename>[,<name>[,Y|N]] embed the file as a resource
in the assembly

/link[resource]:<filename>[,<name>[,<targetfile>[,Y|N]]] link the file as a resource to
the assembly

At least one source input is required.

1.5.4 The Module Verifier
The verifier validates and verifies PE files. It is valled PEVerify.

Usage: PEverify <image file> [Options]

Options: Description

/IL Verify only the PE structure and IL

/MD Verify only the PE structure and MetaData

/CLS Verify only the PE structure and CLS
compliance

/NOCLS Verify only the PE structure and MetaData, w/o
CLS compliance

/UNIQUE Disregard repeating error codes

/HRESULT Display error codes in hex format

/CLOCK Measure and report verification times

/IGNORE=<hex.code>[,<hex.code>...] Ignore specified error codes

/IGNORE=@<file name> Ignore error codes specified in <file name>

/BREAK=<maxErrorCount> Abort verification after <maxErrorCount>
errors

/quiet Display only file and Status. Do not display all
errors.

PEVerify will return a list of warnings and errors for each problem it encounters. If
PEVerify returns one or more errors, the code is not verifiable in the environment
PEVerify was executed. The code may be verifiable in another environment.

1.5.5 The Debugger
A special debugger is included with the tools. It is called cordbg. More detailed
documentation can be found in the Debugger Reference.

Page 16

CorDebugRef.doc

The IL Assembly Language Programmers' Reference PDC Release

1.5.6 Compilers
There are a number of compilers that can be used to create either IL code or a PE file,
which can be inspected by ildasm. The following is a short list of those compilers:

Language Compiler

C# csc

Visual C++ cl /com+

Visual Basic vbc

Page 17

The IL Assembly Language Programmers' Reference PDC Release

2 Hello World Example
In this section we give a simple example to illustrate the general “feel” of NGWS IL. We
are all familiar with “Hello world”, which might be written in a managed language, like
C#, as follows.

public static main() {

System.Console.Write("Hello world\n");

}

The salutation is written by calling Write, a static method found in the NGWS SDK class
System.Console. This example might compile into the following IL. The italicized line
numbers are for explanatory purposes and are not part of the IL program.

1

2

3

4

5

6

7

8

.assembly 'hello.exe' { }

.method public static void main() il managed {

 .entrypoint

 .maxstack 1

 ldstr "Hello world\n"

 call void System.Console::Write(class System.String)

 ret

}

The .assembly declaration on line 1 declares the assembly name for this program.
Assemblies are the packaging unit for executable content for the NGWS runtime. The
.method declaration on line 2 defines the global method main – the declaration gives
main’s signature (void, no parameters) and its attributes (il, managed). Lines 3–8 are the
body of the method, enclosed in braces. Lines 3 and 4 indicate that this method is the
entry point for the assembly (.entrypoint), and that this method requires at most one
stack slot (.maxstack).

The method has only three instructions. The ldstr instruction on line 5 pushes the string
constant "Hello world\n" onto the stack and the call instruction on line 6 invokes
System.Console::Write, passing the string as its only argument (note that string literals
in IL are instances of the standard class System.String.) As shown, call instructions
must include the full signature for the callee. Finally, line 7 returns (ret) from main.

Page 18

The IL Assembly Language Programmers' Reference PDC Release

3 General Syntax
This section describes aspects of the NGWS IL syntax that are common to many parts of
the grammar.

3.1General Syntax Notation
This following sections use the EBNF1 syntax notation. The following is a brief summary
of this notation.

Bold items are terminals. Items placed in angle brackets (e.g. <int64>) are names of
syntax classes and must be replaced by actual instances of the class. Items placed in
square brackets (e.g. [<float>]) are optional, and any item followed by * can appear zero
or more times. The character “|” means that the items on either side of it are acceptable,
and in this document each option introduced by a “|” is given on a separate line. The
options are sorted in alphabetical order (to be more specific: in ASCII order, ignoring “<”
for syntax classes, and case-insentive).

IL is a case-sensitive language. All terminals must be used with the same case as
specified in this reference.

3.2Terminals
The simple syntax classes used in the grammar are:

<int32> is either a decimal number or “0x” followed by a hexadecimal number, and must
be representable in 32 bits.

<int64> is either a decimal number or “0x” followed by a hexadecimal number, and must
be representable in 64 bits.

<float> is whatever is accepted by the C function strtodwhich converts a string to a
double precision floating point number.

<hexbyte> is a hexadecimal number that fits into one byte.

<QSTRING> is a string surrounded by double quote (″) marks. Within the quoted string
the character “\” can be used as an escape character, with “\t” for a tab character, “\n” for
a new line character, or to insert an arbitrary byte into the string when followed by three
octal digits can be used. A long string can be broken across multiple lines by using “\” as
the last character in a line, in which case the line break isn’t entered into the generated
string.

<SQSTRING> is similar to <QSTRING> with the difference that it is surround by single
quote (′) marks instead of double quote marks.

<ID> is a contiguous set of characters which starts with an alphabetic character, “_”, “$”,
or “@” and is followed by any number of alphanumeric characters, “_”, “@,” or “?”. An
<ID> is used in only two ways

- As a label of an IL instruction

- As an <id> which can either be an <ID> or an <SQSTRING>, so that special
characters can be included.

1 See "What Can Be Done About the Unnecessary Diversity of Notation for Syntactic Definitions?", Niklaus Wirth,
journal CACM, volume 20, number 11, November 1977, pages 822-823.

Page 19

The IL Assembly Language Programmers' Reference PDC Release

Thus a grammar such as

<Top> ::= <int32> | float <float> | floats [<float> [, <float>]*] | else <QSTRING>

would consider the following all to be legal:

12

float 3

float –4.3e7

floats

floats 2.4

floats 2.4, 3.7

else “Something \t weird”

but all of the following to be illegal:

else 3

3, 4

float 4.3, 2.4

float else

stuff

3.3Identifiers
Identifiers are used to name entities. The IL syntax allows the use of any identifier that
can be formed using the Unicode character set. To achieve this an identifier is placed
within single quotation marks. However, the single quotation marks are not necessary if
the identifier conforms to the specification of an <ID>. There is no fixed maximum
length for an identifier. This is summarized in the following grammar.

<id> ::=

 <ID>

| <SQSTRING>

Examples of <id>:

A Test $Test
@Foo?

‘Weird Identifier’ ‘Odd\102Char’ ‘Embedded\nReturn’ ?
X

To prevent name clashes, several <id>’s may be combined to form the qualified name of
an entity. E.g., one <id> may specify a certain module, another the submodule, and a
third one the actual name of the entity, which is a part of the submodule. The <id>’s are
separated by a dot (.). An <id> formed in this way is called a <dottedname>.

<dottedname> ::= <id> [. <id>]*

Page 20

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_crt_unicode.3a_.the_wide.2d.character_set.htm

The IL Assembly Language Programmers' Reference PDC Release

3.4Labels and Lists of Labels
A simple label is just an <ID>. A label cannot contain any of the complicated characters
allowed in an <id>. A list of labels is comma separated, and can be any combination of
these simple labels and integers. The integers are byte offsets that can be used instead of
labels. However, these integers are intended for use only by a disassembler, e.g. ildasm,
and not for use by a programmer.

<label> ::= <id>

<labels> ::= <labeloroffset> [, <labeloroffset>]*

<labeloroffset> ::=

 <int32> /* For round trip use only */

| <label>

IL distinguishes between two kinds of labels: code labels and data labels. Code labels are
always followed by a colon (“:”) and specify the position of an instruction to be executed.
In contrast to code labels, data labels do not have the colon character and specify the
location of a piece of data. The data label may not be used as a code label, and a code
label may not be used as a data label.

<codeLabel> ::= <label> :

<dataLabel> ::= <label>

3.5Lists of Hex Bytes
A list of bytes is simply zero or more hex bytes. Hex bytes are pairs of characters 0 – 9, a
– f, or A – F.

<bytes> ::= <hexbyte> [<hexbyte>*]

3.6Floating point numbers
There are two different ways to specify a floating point number:

1. The regular way is to type in the floating point number while using the dot (“.”)
for the decimal point and “e” or “E” in front of the exponent. Both the decimal
point and the exponent are optional.

2. The second way is to convert from an integer to a floating point number by using
either the keyword float32 or float64 and indicating the integer to be converted in
parentheses.

<float64> ::=

 float32 (<int32>)

| float64 (<int64>)

Page 21

The IL Assembly Language Programmers' Reference PDC Release

| <realnumber>

3.7Source Line Information
To aid with debugging source line information may be included in the PDB (Program
Database) file associated with an assembly file. There are two directives that can be used
to accomplish this:

- .line takes a line number and an optional single quoted string that specifies the
name of the file the line number is referring to

- #line takes both a line number and a (required) double quoted string that specifies
the name of the file the line number is referring to

#line is only used for compatibility purposes.

<externSourceDecl> ::=

 .line <int32> [<SQSTRING>]

| #line <int32> <QSTRING>

Page 22

The IL Assembly Language Programmers' Reference PDC Release

4 Assemblies, Manifests and Modules

4.1Assemblies, Modules, Types and Namespaces
It is important to understand the difference between assemblies, modules, types and
namespaces, all of which are mechanisms for grouping constructs, but each of which play
a different role in the NGWS runtime.

An assembly is the unit of deployment of software in the NGWS runtime, and is thus the
largest of the groups above. An assembly can be thought as a group of one or more files
that belong together, along with various properties that identify the unit of software to the
mechanisms that manage the installation and removal of software within a host
environment.

A module is a single file containing executable content within an assembly, conceptually
corresponding to a DLL or EXE in a native code environment. A module will typically
contain a number of types and other declarations, and may itself be an assembly if the
assembly only contains one module.

A type specifies a set of data and behaviors associated with each other. All values have a
certain type and may only be assigned to variables of that support the type. Types may
themselves contain nested types. Each type is fully defined within a single module.

A namespace is syntactic sugar to prevent name clashes, and while it may appear contain
types (e.g. System.Object) and other namespaces (e.g. System.XML), there is no
semantics associated with this containment.

4.2Defining an Assembly
An IL file does not necessarily define an assembly – it only does so if it contains a
manifest. A manifest describes an assembly and contains information that is used by the
assembler, other tools and the EE itself. An IL file that does not define an assembly must
define a module reference and can be used in conjunction with the al assembly linker.
Defining modules references is covered in Section 4.4.

An IL file may need to access other, external assemblies, which it does by specifying
aspects of the manifests for these assemblies. This information is then used by the EE to
determine which assembly is to be used.

If a manifest is given, it should appear at the beginning of an IL file. The manifest does
not appear as a single declaration, rather it is begun by using the .assembly directive, and
other declarations add further information. The following grammar specifies all the
relevant declarations:

<decl> ::= Section

 .assembly <asmAttr>* <dottedname> { <asmDecl>* } 4.2.1

| .file [nometadata] <dottedname> [.hash = (<bytes>)] 4.2

| .manifestres [public | private] <dottedname>

[(<QSTRING>)] { <manResDecl>* }

4.2.2

| … 4.5

Page 23

The IL Assembly Language Programmers' Reference PDC Release

All manifest declarations must be made at the top level.

The .assembly directive begins the manifest and specifies to which assembly the current
module belongs to. Each module may only contain one .assembly directive. After
the .assembly directive any number of <asmAttr>’s may be provided. A <dottedname>
specifies the name of the assembly and is followed by the assembly declarations in
braces.

The .assembly directive is required for executables. However, it is optional for modules
(dll files). If such a library has an assembly declaration, it will in its own assembly. If a
library does not have an assembly declaration, it will be part of the assembly it is used in.

Assembly names should not contain the file extension.

The .manifestres directive introduces a manifest resource declaration, described in
section 4.2.2.

The following grammar shows the attributes allowed after a .assembly directive.

<asmAttr> ::= Description Section

 implicitcom COM Types are implicit, must be set in V1 4.2.4

| noappdomain One instance of assembly only per application domain 4.2.4

| nomachine One instance only per process 4.2.4

| noprocess One instance only per machine, install time 4.2.4

4.2.1 Information about the Assembly
The following grammar shows the information you may specify about an assembly. This
information is used by the NGWS SDK linker to determine if the assembly can be
executed in a particular execution context. For example, if the assembly contains native
code for some particular platform, then the .processor directive should be specified.
Similarly, if you record a version number, then you can ensure that client code links to
precisely the right version of the software, even if other versions are executing side-by-
side.

<asmDecl> ::= Description

 .hash algorithm <int32> Hash algorithm ID

| .title <QSTRING> [(<QSTRING>)] The optional QSTRING is a description

| .custom <customDecl> Custom attributes

| .locale = (<bytes>) Information about the locale

| .locale <QSTRING> Information about the locale

| .originator = (<bytes>) Information about the originator

| .os <int32> .ver <int32> :

<int32>

OS ID, major version and minor version

| .processor <int32> Processor ID

| .ver <int32> : <int32> : <int32>

: <int32>

Major version, minor version, revision, and
build

Page 24

The IL Assembly Language Programmers' Reference PDC Release

The hash algorithm id is defined in the header file wincrypt.h which usally comes with
Microsoft Visual Studio. The ID is the object identifier stored in one of the constants of
the form CALG_<algorithm>, where <algorithm> is the name of the algorithm.

The following table lists the constants and their corresponding value:

Constant Value (decimal)

CALG_MD2 32769

CALG_MD4 32770

CALG_MD5 32771

CALG_SHA 32772

CALG_SHA1 32772

CALG_MAC 32773

CALG_RSA_SIGN 9216

CALG_DSS_SIGN 8704

CALG_RSA_KEYX 41984

CALG_DES 26113

CALG_3DES_112 26121

CALG_3DES 26115

CALG_RC2 26114

CALG_RC4 26625

CALG_SEAL 26626

CALG_DH_SF 43521

CALG_DH_EPHEM 43522

CALG_AGREEDKEY_ANY 43523

CALG_KEA_KEYX 43524

CALG_HUGHES_MD5 40963

CALG_SKIPJACK 26122

CALG_TEK 26123

CALG_CYLINK_MEK 26124

CALG_SSL3_SHAMD5 32776

CALG_SSL3_MASTER 19457

CALG_SCHANNEL_MASTER_HASH 19458

CALG_SCHANNEL_MAC_KEY 19459

CALG_SCHANNEL_ENC_KEY 19463

CALG_PCT1_MASTER 19460

CALG_SSL2_MASTER 19461

Page 25

The IL Assembly Language Programmers' Reference PDC Release

Constant Value (decimal)

CALG_TLS1_MASTER 19462

CALG_RC5 26125

CALG_HMAC 32777

4.2.2 Manifest Resources
A manifest resource is simply a named item of data associated with an assembly. As the
name implies, it includes resources for the assembly, e.g. bitmaps, references to files, etc.
A manifest resource is introduced using the following declaration, which adds the
manifest resource to the assembly manifest begun by the .assembly declaration.

| .manifestres [public | private] <dottedname>

[(<QSTRING>)] { <manResDecl>* }

4.2.2

If the the manifest resource is declared public it is exported from the assembly. If it
declared private it is not exported and only available from within the assembly. The
<dottedname> is the name of the resource followed by an optional description in
parentheses. The actual manifest resource declarations are provided in braces.

The following grammar defines a manifest resource declaration.

<manResDecl> ::= Description Section

 .assembly extern <dottedname> Manifest resource is in
external assembly with name
<dottedname>.

4.2.2

| .custom <customDecl> Custom attribute. 17

| .file <dottedname> at <int32> Manifest resource is in file
<dottedname> at offset
<int32>.

4.2.2

4.2.3 Files in the Assembly
Assemblies may contain files, e.g. documentation and other files that are used during
execution. The declaration .file is used to add the specification of such a file to the
manifest of the assembly:

<decl> ::= Section

 .file [nometadata] <dottedname> [.hash = (<bytes>)] 4.2

| …

The attribute nometadata is specified if the file does not contain any metadata, an
example of such a file is a resource file.

The <bytes> after the optional .hash specify a hash value computed for the file. The
NGWS EE will recompute this hashvalue when this file is referenced and report an error
if it does not match. This ensures that the correct file is used and changes to the file do

Page 26

The IL Assembly Language Programmers' Reference PDC Release

not break the code. The algorithm used to calculate this hash value is specified with .hash
algorithm (see section 4.2.1).

4.2.4 Operational Characteristics of Assemblies
To understand the noappdomain, noprocess and nomachine attributes for assemblies,
you have to first understand that the execution model of the NGWS EE permits each
machine to have several running instances of the EE, each as an operating system-
process. In turn, each process may contain several “application domains”, which are
isolated areas of execution, and each applicaion domain may have many threads of
execution.

Assemblies have various operational characteristics with regard to these dynamic
structures. For example global, static variables are either copied once per machine,
process, and/or application domain. Similarly, there is the question of how many copies
of the JITted code exist for the assembly – is it one per machine, process or application
domain? In NGWS these characteristics are all specified at the granularity of assemblies.

In particular, an instance of an assembly corresponds to one full set of generated data
structures that result from loading and preparing an assembly for execution, most notable
global, static variables and the underlying JITted code. The choice between “per app
domain” and “per process” depends partly on whether app domains will be unloaded – if
“per proceess” is chosen and the app domain is unloaded then the space taken up by the
JITted code will not be freed until the entire EE process has terminated.

Per-machine assemblies only make sense in the context of install-time JIT compilation.

The above flags specify the granularity at which instances should be created.
Combinations of the flags are invalid.

4.3Referencing Assemblies
When you want to refer to constructs in an external assembly, you must first use a
.assembly extern declaration to define some information about the assembly you wish to
access, and to give the resulting assembly a name for the purposes of the rest of your IL
file. .assembly extern declarations are thus used for the resolution of names that refer to
external entitites. The declaration includes the external assembly name, an optional alias
for the assembly provided after the as clause, and a sequence of further declarations in
braces. The option fullorigin specifies that the the assembly reference holds the full
(unhashed) originator.

<decl> ::= Section

| .assembly extern [fullorigin] <dottedname> [as <QSTRING>]

{ <asmRefDecl>* }

4.2.1

The following is the grammar for a .assembly extern declaration:

<asmRefDecl> ::= Description

 .hash = (<bytes>) Hash Blob for file references

| .custom <customDecl> Custom attributes

| .locale = (<bytes>) Information about the locale

| .locale <QSTRING> Information about the locale

Page 27

The IL Assembly Language Programmers' Reference PDC Release

| .originator = (<bytes>) Information about the originator

| .os <int32> .ver <int32> :

<int32>

OS ID, major version and minor version

| .processor <int32> Processor ID

| .ver <int32> : <int32> : <int32>

: <int32>

Major version, minor version, revision, and
build

These declarations are very similar to those for .assembly declarations, with the
exception of the .hash value. You may determine appropriate settings for these by using
ildasm on the assembly you wish to access.

The assembly mscorlib contains all System classes and methods. This assembly may
always be referenced implicitly, so that all System methods can be used without having
to explicitly reference the assembly.

4.4Referencing Modules
Instead of referring to a contruct via its containing assembly, you may instead need to
refer to it via its module, in particular if the construct is part of another module in the
same assembly. To do this, you must first use a .module declaration to define some
information about the module you wish to access.

<decl> ::=

| .module [[extern] <dottedname>]

Only the name of the module need be specified, and no other information about it.

4.5Declarations in a Module
The remainder of an IL file is a sequence of declarations specifying the contents of a
module. A single file input to the IL assembler is a sequence of declarations, defined as
follows:

<ILFile> ::= Section

| <decl>* 6

Declarations are specified by the following grammar. More information on each option
can be found in the corresponding section.

<decl> ::= Section

| .class <classHead> { <classDecl>* } 6

| .custom <customDecl> 17

| .data <datadecl> 13.4.1

| .export [<exportAttr*>] <dottedname> { <exportDecl>* } 4.6

| .field <fieldDecl> 13

| .method <methodHead> { <methodDecl>* } 12

Page 28

The IL Assembly Language Programmers' Reference PDC Release

| .namespace <dottedname> { <decl>* } 7.1

| .vtfixup <vtfixupDecl> 7.5.2.2

| <externSourceDecl> 3.7

| <securityDecl> 16

Example:

.assembly MyAssembly.dll { .ver 1 : 2 : 1 : 4 }
Nothing but a manifest for an assembly.

.class Foo { .field int32 Bar }

Declare a class named Foo with one (public by default) field named Bar which
must hold a 32-bit integer.

4.6Export Declarations
.export is used to export types from a module or assembly. The .export declaration is
used only in the main file of the assembly. This way, all exported types are specified at
one place and there is no need to check all files to determine which types are exported.

As shown in the grammar below, after any number of attributes, the name under which
the types exported is specified. Finally, the export declarations follow.

<decl> ::= Section

| .export [<exportAttr*>] <dottedname> { <exportDecl>* } 4.6

The following grammar shows the attributes of an .export declaration:

<exportAttr> ::= Section

 nested assembly 6

| nested famandassem 6

| nested family 6

| nested famorassem 6

| nested private 6

| nested public 6

| public 6

The following grammar shows the declaration of an .export declaration:

<exportDecl> ::= Description

 .class <int32> Specifies a class

| .custom <customDecl> Custom attributes

| .file <dottedname> Specifies a file

| .nestedtype <dottedname> Specifies a nested type

Page 29

The IL Assembly Language Programmers' Reference PDC Release

4.6.1 The .comtype directive
The .comtype directive is for disassembling purposes only. It should not be used. Instead
of .comtype, the .export directive should be used, which can be used for the same
purpose (see section 4.6).

<decl> ::= Section

| .comtype <comtypeHead> { <comtypeDecl>* } /* roundtrip

only */

4.2.1

Page 30

The IL Assembly Language Programmers' Reference PDC Release

5 Types
Types are an abstract way of describing values and specifying what operations can be
defined on the values. The NGWS type system includes both reference types (pointers
and object references) and value types (primitive numeric types and user defined types
which are passed by copying the value). User defined types may contain fields (data
members), methods, properties and events. There are also types manufactured
automatically by the NGWS runtime from a description of the type, such as pointers and
arrays.

Section 6 describes reference types which are defined by classes. Section 9 describes
value types while section 9.6 describes the automatically created types.

More information on types can be also found in the VOS spec.

5.1The Type System
The following diagrams give an overview of the NGWS type system.

Page 31

The IL Assembly Language Programmers' Reference PDC Release

5.2Types
The following grammar completely specifies all types that can be used in the NGWS type
system:

<type> ::= Description Section

 bool Boolean 5.2

| char Unicode character 5.2

| class <className> User defined reference type.
Recall that <className>
includes information about
nested types and a resolution
scope.

5.2

| float32 32-bit floating point number 5.2

| float64 64-bit floating point number 5.2

| int8 Signed 8-bit integer 5.2

| int16 Signed 16-bit integer 5.2

| int32 Signed 32-bit integer 5.2

| int64 Signed 64-bit integer 5.2

| method <callConv> <type> * (

<signature>)

Function type 10.5

| native float Internal floating point
representation

5.2

| native int Signed integer whose size varies
depending on platform (32- or
64-bit)

5.2

| native unsigned int Unsigned integer whose size
varies depending on platform
(32- or 64-bit)

5.2

| <type> & Managed pointer (by-ref) to
<type>. Note that <type> cannot
itself be a managed pointer.

10.4

| <type> * Unmanaged pointer to <type> 10.4

| <type> [] Zero-based, one-dimensional
array of <type>.

5.2

| <type> [[<bound> [,<bound>]*]] Array with specified rank
(number of dimensions) and
element type, and bounds as
shown above.

5.2

| <type> modopt (<className>) Custom modifier that may be
ignored by the caller.

5.2

| <type> modreq (<className>) Custom modifer that the caller
must understand in order to use
this parameter.

5.2

Page 32

The IL Assembly Language Programmers' Reference PDC Release

| <type> pinned For use in local signatures only,
this local is pinned so that the
value it references will not be
moved by the garbage collector
for the duration of this method.

5.2

| typedref Typed reference, created by
mkrefany instr.

5.2

| value class <className> User defined value type. 5.2

| unsigned int8 Unsigned 8-bit integers 5.2

| unsigned int16 Unsigned 16-bit integers 5.2

| unsigned int32 Unsigned 32-bit integers 5.2

| unsigned int64 Unsigned 64-bit integers 5.2

| void No type. Only allowed as a
return type or as part of void *

5.2

| wchar Unicode character 5.2

Bounds are used by arrays and are defined as follows:

<bound> ::= Description

 <int32> zero lower bound, <int32> upper bound

| <int32> ... lower bound only specified

| <int32> ... <int32> both bounds specified

In several situations the grammar permits the use of a slightly simpler mechanism for
specifying types, by just allowing type names (e.g. “System.Object”) to be used instead
of the full algebra (e.g. “class System.Object”). These are called type specifications:

<typeSpec> ::= Section

 [[.module] <dottedname>]

| <className> 5.3

| <type> 5.2

The fundamental types are specified in CorHdr.h as ELEMENT_TYPE_xxxTypes are
primarily used as part of signatures, which can be constructed using
System.Reflection.Emit.SignatureHelper. To construct a new type, use
System.Reflection.Emit.TypeBuilder to define its fields, methods, properties, and
events, then call the CreateType method to finalize the definition. Once a type has been
defined, a new instance can be created using the CreateInstance method on the class
System.Reflection.Type.

Page 33

The IL Assembly Language Programmers' Reference PDC Release

5.3Type References, Assemblies and Modules
Types include names, via the “<className>” grammar element. Names of nested classes
(see section 7.4) are formed by using the outer class name, a slash (“/”) and the name of
the nested class.

Types and type names must typically be resolved by the EE. For example, types for
primitive types will be self-contained, but when the EE finds a type name used to specify
a class type (E.g. “class MyClass”), it must find the definition for this class.

Type names may define extra information specifying how resolution should happen:

<className> ::= Section

 [<resolutionScope>] <dottedname> [/ <dottedname>]* 3.1

<resolutionScope> ::=

 [.module <externFileName>]

| [<assemblyRefName>]

<externFileName> ::= Section

 <dottedname> 3.1

<assemblyRefName> ::= Section

 <dottedname> 3.1

If the type is located in another module within the same assembly, a type reference is
used and a module reference is attached to the type reference. If the type is located in
another assembly, an assembly reference is attached to the type reference. A module
reference must have been declared by a prior .module directive, and an assembly
reference must have been defined by a prior .assembly extern directive (see section
4.2.4).

The ilasm tool converts type names to either a type references or a direct references to a
type definition. The latter is used if the assembler can find the actual definition of the type
within the module being created.

Method and fields are referenced in a similar fashion (see section 12.6 for method
references).

On occasion a class name can be used in isolation. In these cases the names may again be
prefixed by a resolution scope, via the <className> non-terminal.

Examples of types with resolution scopes:

class [Assembly.exe]Foo.Bar/C

A reference to the type named C nested inside of the type named Foo.Bar
in another module, named Assembly.exe. Notice that there must already
have been a top-level .assembly extern directive that defines the name
“Assembly.exe”

class [.module X.mod]C.D

Page 34

The IL Assembly Language Programmers' Reference PDC Release

A reference to the named C.D in the module named X.mod in the current
assembly. There must be a top-level .file directive to define X.mod.

class [mscorlib.dll]System.Console
This is the proper way to refer to a class defined in the NGWS SDK base
class library. The name of the type is System.Console and it is found in
the assembly named mscorlib.dll. As you would expect, you must have
a .assembly extern directive to define mscorlib.dll before this reference.

The following shows the grammar for a type specification:

5.4Inheritance, Type Conformance and Subtypes
Reference types may be related to each other by inheritance and other rules, for example
System.String is related to System.Object. We say that System.String is a subtype of
System.Object, or alternatively that the former conforms to the latter, or that there exist
implicit conversions between values of one type to the other type. If one type conforms
to another this means that it provides the same members, contracts, and member
signatures as the other type. The behavior of the types may differ.

The NGWS SDK supports multiple type inheritance. This is achieved by inheriting
interfaces using the implements keyword in the class head (see section 6 for more
information on classes).

The rules for conformance between reference types are as follows:

- In the trivial case, a type always conforms to itself;

- If a type B is a class type and has a superclass A, then type B conforms to type A;

- If a type B is a class or interface type and supports interfaces I1, ... In, then type B
conforms to each of I1 through In;

- All reference types conform to System.Object;

- All array types conform to System.Array;

- An array type B[...] conforms to an array type A[...] if type C conforms to type A.
This applies if the rank of the two types is identical, and in the case of single
dimensional arrays if one of the types has lower bound 0 then both must. The
bounds are otherwise ignored.

5.4.1 Conformance and Subtyping in the IL

Verifier
Conformance is most crucial during verification when using the IL instructions that call
methods, perform stores, and return values from methods (call, callvirt, stfld, ret, starg,
stloc etc.). The exact rules applied by the verifier vary, but typically a variable may be
assigned any value that has a type that conforms to the declared type of the variable. E.g.,
if a variable has type A, and B conforms to A, then the variable may be assigned values
of type B.

Page 35

The IL Assembly Language Programmers' Reference PDC Release

5.4.2 Conformance and Subtyping at Runtime
Types and type conformance is also relevant at runtime: the exact type of an object is the
type of which its value is an instance. E.g. in the above case, even though the declared
type is A, the exact type will be B (or even some subtype of B). Exact types may be
compared and checked by using IL instructions such as castclass and isinst, as well as
the facilities available in the reflection library.

Page 36

The IL Assembly Language Programmers' Reference PDC Release

6 Visibility, Accessibility and Hiding
The VOS makes use of three different ideas that must be mapped back to the desired
language semantics:

Visibility controls whether or not a type is visible outside of the assembly in which it is
defined. If a type is not visible to a method then no reference to that type can be resolved
and the name of the type and its members does not participate in any way in name
resolution at runtime.

Hiding controls which member names inherited from its base class are available during
runtime name binding.

Accessibility does not affect name lookup directly (except for one case having to do with
choosing the method implementation used to fulfill an interface method definition). Only
visibility and hiding are considered when determining how a member reference should be
resolved. Once resolved, the accessibility of the chosen member is examined and the
lookup may fail (rather than the member being ignored) if the accessibility condition is
not met.

The following sections provide more detail about these topics.

6.1Visibility
Visibility is attached only to top-level types, and there are only two possibilities: visible
to types within the same assembly, or visible to types regardless of assembly.

For nested types (i.e. types that are members of another type) the nested type has an
accessibility that allows visibility to be further refined. While a top-level type might be
thought of as having either public or assembly accessibility, a nested type may have any
of the 7 accessibility modes (see below) for its visibility.

Because the visibility of a top-level type controls the visibility of the names of all of its
members, a nested type cannot be more visible than the type in which it is nested. That
is, if the outer type is visible only within an assembly then a nested type with public
accessibility is still only available within the assembly. By contrast, a nested class that
has assembly accessibility is restricted to use within the assembly even if the outer class
is visible outside the assembly.

The following table summarizes this:

Visibility Description

Public The type may be exported from the assembly.

Assembly The type is only visible within the assembly.

Nested The type has the same visibility as its outer type.

6.2Hiding
Hiding applies to individual members of a type (nested types are not considered to be
members for this purpose). The VOS specifies two mechanisms for hiding:

hide-by-name, meaning that the introduction of a name in a given class hides all
inherited members of the same kind (method or field) with the same name.

Page 37

The IL Assembly Language Programmers' Reference PDC Release

Hide-by-name-and-sig, meaning that the introduction of a name in a given class hides
any inherited member of the same kind but with precisely the same type (for fields) or
signature (for methods, properties, and events).

6.3Accessibility
There are seven accessibility modes. These can be applied to members of a type and to
nested types.

Nested classes have also an accessibility associated with them in addition to their nested
visibility.

The following table shows and describes the accessibility attributes:

Accessibility Description

Public Accessible by all referents.

Family or Assembly Accessible only to referents that qualify for Family or
Assembly access, but not necessarily both.

Assembly Accessible only to referents in the same assembly that
contains the implementation of the type.

Family and Assembly Accessible only to referents that qualify for both Family
and Assembly access.

Family Accessible only by referents whose base class (immediate
or indirect) defined the member or type in question.

Private Accessible only to referents in the implementation of the
exact type that defines the member.

Privatescope Not accessible by a reference, but only with a member
definition token.

Not all accessibility attributes may be used with all members. In the following sections,
for each type of member the permitted accessibility attributes are described.

The following two subsections give more information on attributes containing family and
on privatescope accessibility.

6.3.1 Family Access
Most accessibility modes can be completely tested statically (i.e. at JIT time and, except
for versioning problems, at source code compilation time). The modes that involve
family, however, are different. There are two rules, one enforced by the verifier and one
by the Execution Engine. The Execution Engine rule is statically testable, and is simply
that access to a family member is available only to methods within that class and any of
its subclasses.

The verification rule is stricter. It ensures that methods of a given class can only access
family members of objects that belong to the method’s class (or a subtype of the
method’s class). If the object is the original this pointer for an instance or virtual method,
then the condition is automatically satisfied. Otherwise, however, the object must be
known to the verifier to belong to the class of the method (or one of its subtypes). This
may be true either because the statically declared type of the object satisfies the condition

Page 38

The IL Assembly Language Programmers' Reference PDC Release

or because the IL generator has inserted an explicit castclass instruction to force the
object to be tested at runtime.

6.3.2 Privatescope Acess
privatescope effectively restricts access to the member to the same compilation unit that
defines them, allowing a compiler complete control over accessibility. This access mode
is most useful for implementing concepts like function-local static variables.

Page 39

The IL Assembly Language Programmers' Reference PDC Release

7 Classes
Classes define the reference types of the NGWS type system. The NGWS type system
supports single code inheritance and multiple type inheritance. At runtime classes may be
instantiated, allocating an object on the heap and creating a reference to this location.
Only the reference to an object may be passed around and not an object itself. This is
unlike value types, described in more detail in chapter 9.

Classes have members. NGWS supports the following groups of members:

- fields

- methods

- properties

- events

- nested classes

Fields are typed memory locations that store the data of classes and their instances. Fields
are described in more detail in chapter 13.

Methods implement the behavior of classes. They are described in further detail in
chapter 12.

Properties are constructs that look like fields, but are implemented via methods. These
methods allow access and/or mutation of data that is internal to the object. Other methods
may be associated with properties, too. More information on properties can be found in
chapter 14.

Events are similar to methods but are executed when an the appropriate event is fired.
More about events can be found in chapter 15.

Nested classes are classes defined inside other classes. They are defined by their own top-
level .class declarations and are not normally considered “members”, but have similar
access restrictions. Nested classes are described in more detail in section 7.4.

7.1Defining a Class
Classes may be defined at the top-level of an assembly program as the following excerpt
from the grammar for an IL assembly file shows:

<decl> ::= Section

 .class <classHead> { <classDecl>* } 6

| .namespace <dottedname> { <decl>* } 7.1

| … 4.5

<classHead> ::=

 <classAttr>* <id> [extends <className>] [implements <className> [,

<className>]*]

Page 40

The IL Assembly Language Programmers' Reference PDC Release

Namespaces can be used to prevent conflicts with duplicate class names within an
assembly. Namespaces are introduced by the .namespace directive. Each namespace has
a <dottedname> and contains all its declarations in braces. Namespaces may be nested.

Namespaces are syntactic sugar. The assembler will automatically combine the
<dottedname> of a namespace with the name of a class. Declaring a class “MyClass” in
namespace “MySpace” would have the same effect as giving the class directly the name
“’MySpace.MyClass’”, quoted in single quotes to permit the use of the “.”.

A class declaration consists of

- any number of class attributes (see section 7.1.1)

- a name (an <id>)

- an optional superclass (see section 5.4)

- an optional list of interfaces to be implemented (see also section 8)

- a number of declarations specifying the contents of the class (apart from nested
classes)

The extends or implements clause contain specifictions of type names (see section 7.4).
A <className> is a <dottedname>.

The class name may also be prefixed by a resolution scope, which specifies the context in
which the class name is resolved. Resolution scopes are described in section 5.3.

The extends keyword defines the superclass of a class, a kind of inheritance called “code
inheritance”. In the NGWS SDK a class always inherits code from exactly one other
class. If no class is specified, the class will inherit from System.Object.

The implements keyword defines the interfaces of a class, a kind of inheritance called
“multiple type inheritance”. Zero, one or more interfaces may be specified, and, given
that interfaces may indeed inherit from further interfaces, the class will actually support
the transitive closure of all interfaces, i.e. the immediate interfaces, the superinterfaces to
those and so on.

The inheritance structure creates a hierarchy of classes and interfaces. This hierarchy
must be acyclic.

7.1.1 Built-in Class Attributes
Predefined attributes of a class may be grouped into attributes that specify visibility, class
layout information, class semantics information, special semantics, implementation
attributes, interoperation information, and information on special handling. The following
subsections provide additional information on each group of predefined attributes.

The following grammar shows and describes the attributes of a class:

<classAttr> ::= Description Section

 abstract Class is abstract. 7.1.1.4

| ansi Used for string marshaling across managed/
unmanaged boundary.

7.1.1.6

| auto Auto layout of class. 7.1.1.2

Page 41

The IL Assembly Language Programmers' Reference PDC Release

| autochar Specifies to use platform specific char marshal across
boundary.

7.1.1.6

| explicit Layout of fields are provided explicitly. 7.1.1.2

| import The class is imported from COM. 7.1.1.5

| interface The declaration is an interface declaration. 7.1.1.3

| lateinit Initialize class as late as possible. 7.1.1.7

| nested assembly Assembly accessibility for nested class. 7.1.1.1

| nested famandassem Family and Assembly accessibility for nested class. 7.1.1.1

| nested family Family accessibility for nested class. 7.1.1.1

| nested famorassem Family or Assembly accessibility for nested class. 7.1.1.1

| nested private Private accessibility for nested class. 7.1.1.1

| nested public Public accessibility for nested class. 7.1.1.1

| not_in_gc_heap Specifies that the class shall not be allocated in
garbage collected heap.

7.1.1.3

| private Private accessibility. 7.1.1.1

| public Public accessibility. 7.1.1.1

| rtspecialname Special treatement by runtime. 7.1.1.7

| sealed The class cannot be subclassed anymore. 7.1.1.4

| sequential The class is layed out sequentially. 7.1.1.2

| serializable Specifiles that the fields of the class may be output to
a stream.

7.1.1.5

| specialname Special treatment by tools. 7.1.1.7

| unicode Used for string marshaling across
managed/unmanaged boundary.

7.1.1.6

| value Declares a value type. 7.1.1.3

7.1.1.1 Visibility and Accessibility Attributes
The visibility attributes are nested assembly, nested famandassem, nested family,
nested famorassem, nested private, nested public, private, and public. Visibility
attributes are described in section 6.1 and accessibility attributes are described in section
6.3. The nested in front of the visibility attribute specifies that the class is a nested class
(see section 7.4). Top-level classes may only have public or assembly visibility. Nested
classes have nested visibility, which mean that they have the same visbility as their outer
class. In addition nested classes have an accessibility attribute, which specifies the range
from which they can be referenced.

The visibility assembly can be specified by not using any other visibility attribute.

Visibility attributes are exclusive. The default is assembly.

Page 42

The IL Assembly Language Programmers' Reference PDC Release

7.1.1.2 Class Layout Attributes
The class layout attributes are auto, explicit, and sequential. These attributes are used to
specify how the fields of a class are arranged. Layout attributes are exclusive and the
default is auto.

Auto specifies that the layout is done by the runtime.

Explicit specifies that the layout of the fields is explicitly provided.

Sequential specifies that the fields are layed out in sequential order by the runtime.

7.1.1.3 Class Semantics Attributes
The class semantics attributes are interface, not_in_gc_heap, and value. interface and
value cannot be specified together. Not_in_gc_heap can only be used in connection with
value.

These attributes specify what kind of type is defined. interface specifies that an interface
is defined, while value specifies that a value type is defined. The default is the definition
of a reference type by a class, in which case no class semantics attribute is used.

If not_in_gc_heap is used with value, an instance of the value type will not be allocated
on garbage collected heap. E.g., it may be allocated on the stack instead. Instance of
refernce types are always allocated on garbage allocated heap.

7.1.1.4 Special Sematics Attributes
Attributes that specify special semantics are abstract and sealed. Both attributes are
exclusive.

abstract specifies that this class may not be instantiated. Interfaces are implicitly abstract
and may not be defined to be abstract. Typically, even though not necessary, abstract
classes contain one or more abstract methods (see section 12.3.4). If a class contains
abstract methods, it must be declared as an abstract class.

Sealed specifies that subclasses of the class may not override any virtual methods of this
class. This effectively means that all virtual methods become instance methods.

7.1.1.5 Implementation Attributes
The implementation attributes are import and serializable. This attributes may be
combined.

Import specifies that the class (or interface) is imported from COM.

Serializable indicates that the fields of the class may be output through a data stream.
E.g., the class may be sent over the network or saved to a file.

7.1.1.6 Interoperation Attributes
These attributes are for interoperation with COM and mainly focus on the treatment of
strings of type LPSTR. The attributes are ansi, autochar, and unicode. These attributes
are exclusive and the default is ansi.

While autochar specifies that the interpretation is done automatically, the other two
interpret LPSTR as an ANSI string or Unicode string, respectively.

Page 43

The IL Assembly Language Programmers' Reference PDC Release

7.1.1.7 Special Handling Attributes
The thre attributes that are used for special handling are lateinit, rtspecialname and
specialname. These attributes may be combined.

Lateinit instructs the runtime to initialize the class as late as possible, rather than
initializing classes at load time or soon after that.

Rtspecialname signals a special name to the runtime, while specialname signals a
special name to some other tool.

7.2Contents of a Class
A class may contain any number of further declarations. The following grammar shows
the grammar for a these declarations and provides a description for each item.

<classDecl> ::= Description Section

 .class <classHead> { <classDecl>* } Defines a nested class. 7.2

| .comtype <comtypeHead>

{ <comtypeDecl>* } /* for round

trip only */

Exports a COM type, use
.export instead.

7.2

| .custom <customDecl> Custom attribute. 17

| .data <datadecl> Defines static data
associated with the class.

7.2

| .event <eventHead> { <EventDecl>* } Defines an event. 7.2

| .export [public | private]

<dottedname> { <exportDecl>* }

Specifies entities to
export.

4.6

| .field <fieldDecl> Declares a field belonging
to the class.

7.2

| .method <methodHead> { <methodDecl>* } Declares a method of the
class.

7.2

| .override <typeSpec> :: <methodName>

with <callConv> <type> <typeSpec>

:: <methodName> (<signature>)

Specifies that the first
method is overriden by the
definition of the new
method.

7.2

| .pack <int32> Used for explicit layout of
fields. Fields are put at
byte multiples of <int32>.
E.g., .pack 8 would
specify that fields should
be stored at addresses that
are a multiple of 8.

7.2

| .property <propHead> { <PropDecl>* } Defines a property of the
class.

7.2

| .size <int32> Specifies that a memory
block of <int32> many
bytes shall be allocated for
an instance of the class.

7.2

Page 44

The IL Assembly Language Programmers' Reference PDC Release

Used for explicit layout
only.

| <externSourceDecl> .line or #line 3.7

| <securityDecl> .permission or .capability 16

The directives .event, .field, .method, and .property are used to declare members of a
class. These members are discussed in more detail in the following sections and chapters.

The directive .class inside a class declaration is used to create a nesteded type.

7.3Special Members of Types
This section discusses some special members of a classes and other types. These
members are virtual methods, instance and class constructors, and finalizers.

7.3.1 Inheritance of Virtual Methods
A virtual method specifies a contract that all of its implementations are expected to
support. When a concrete class has a parent that declares a virtual method the child class
must also provide an implementation for that virtual method. By default, the parent’s
implementation will be used for the child.

The sealed attribute indicates that no class may use it as a parent. Introducing a new
virtual method in a sealed class is legal and is precisely the same as introducing the
method as an instance method. All enums and value types are sealed.

The final attribute on a virtual method prohibits any child class from providing its own
implementation of this virtual method. However, a new virtual method with the same
name and signature may be introduced via the newslot attribute. This can be thought of
as creating a new method that happens to have the same name.

If a child class wishes to provide its own implementation (called “overriding”) it may do
so only if it could have called the method it would override2. An override is specified by
either of two methods:

- By providing a direct implementation of the virtual method using a methodef
(and not specifying it to be newslot) and providing the location of the code which
implements the method.

- By providing a MethodImpl whose declaration part is a methodef or methodref
for the virtual method, either specifying this class or any parent class that defines
the same virtual method3.

When a virtual method is introduced for the first time in the inheritance hierarchy, it can
be done in either of two ways. The preferred method is to use a methoddef that provides
the location of the code that implements the method and is marked as newslot. This
explicitly marks the virtual method as creating a new contract and will therefore always
create a new slot in the object layout to hold the implementation of this virtual method
(even if, later, a parent class defines a virtual method with the same name and signature).

2 This requirement may be relaxed before V1 is released, since some languages appear to
require the looser rule that any inherited virtual method my be overridden.
3 This may not be permitted in V1.

Page 45

The IL Assembly Language Programmers' Reference PDC Release

It is also possible not to mark the method as newslot and a new slot will be created if no
existing virtual method with that name and signature is located. This is not
recommended, however, since it allows a parent class to “capture” this implementation if
a version change in the parent introduces a virtual method with the same name and
signature.

When computing the assignment of method implementation to slots, if a class provides a
method body for a virtual method that is not marked newslot, then the execution engine
will try to find an inherited virtual slot to reuse. It searches the chain of parents looking
for a virtual method with the same name and signature. This search ignores intervening
static or instance methods of the same name and signature, and it also ignores the “hide-
by-name” attribute. If it is unable to locate an existing virtual method in any of its parents
a new slot is created, exactly as though the definition had been marked newslot.

7.3.2 Instance constructors
Instance constructors initialize an instance of a class or value type. An instance
constructor is called when an instance of a class is created.

An instance constructor must not be static or virtual. It must be named .ctor and marked
with rtspecialname. Instance constructors may take parameters, but may not return a
value. Instance constructors may be overloaded, such that a class may have several
instance constructors. Each instance constrcutor must have a unique signature. At
instantiation time, this signature is specified and determines which constructor is called.

7.3.3 Instance Finalizer
The finalizer gives classes a chance to execute some final code before they become
garbage collected. The finalize method is invoked when the GC determines that the
current object is no longer being referenced by any other object.

The finalize method is defined in the class System.Object as follows:

family virtual void Finalize();

Finalize does nothing by default. If an object holds references to any resources, Finalize
should be overridden in order to free these resources before the object is discarded by the
GC.

This method can be overridden by a derived class, but only if necessary. Reclamation by
the GC will tend to take much longer if a Finalize operation must be run. Finalize may
take any action, including resurrecting an object (that is, making the object accessible
again) after it has been cleaned up by the GC. However, the object can only be
resurrected once; the GC will not call Finalize on resurrected objects.

However, Finalize operations are not guaranteed to be run. If the resource must be freed,
the Dispose() design pattern is recommended.

7.3.4 Class constructors
Classes may contain special methods called class constructors to initialize the class itself.

Interfaces, classes, and value types may all have type initializers. This method must be
static, take no parameters, return no value, be marked with rtspecialname and be named
.cctor. Thus a class may only have one type initializer. Most type initializers are simple
methods that initialize static fields of the type from stored constants or via simple

Page 46

The IL Assembly Language Programmers' Reference PDC Release

computations. There are, however, no direct limitations on what code is permitted in a
type initializer.

Instance constructors are a kind of static method. Thus, they may only access static fields.
Instance constructors have a special privilege in that they may write into static fields in
the class that have the initonly attribute.

7.3.4.1 Execution Guarantees
There are three fundamental guarantees about type initialization.

1. The type initializer always starts running before
 any instance of the type is created
 any static member (method or field) of the type is referenced

2. A type intializer is run exactly once for any given type, unless explicitly called by
user code.

3. No method other than one called directly or indirectly from the type initializer will be
able to access members of a type before its initializer completes execution.

7.3.4.2 Delaying Type Initialization
Classes and interfaces can be marked as either “late initialize required” or “early initialize
allowed” based on the lateinit attribute. Requiring them to be initialized late ensures that
the type initializer will be called no earlier than absolutely required to meet the first of the
guarantees. Allowing early initialization relaxes this requirement and allows the JIT and
the Execution Engine to initialize the class at any earlier time, allowing them to optimize
performance but at the possible cost of predictable behavior. Early initialization is always
performed on value types (it is illegal to set both value and lateinit).

7.3.4.3 Races and Deadlocks
Consider the following two class definitions:

class A
{ static A a; static B b;
 runtime special .cctor () { b=null; a=B.a; }
}
class B
{ static A a; static B b;
 runtime special .cctor () { a=null; b=A.b; }
}

After loading these two classes, any attempt to reference any of the static variables causes
a problem, since the type initializer for each of A and B requires that the type initializer
of the other be invoked first. If we required that no access to a type was permitted until
its initializer had completed we would create a deadlock situation. Instead, the NGWS
SDK provides a weaker guarantee: the initializer will have started to run, but it need not
have completed. But this alone would allow the full uninitialized state of a class to be
visible, which would it difficult to guarantee repeatable results.

There are similar, but more complex, problems when class initialization takes place in a
multi-threaded system such as the NGWS runtime. In these cases, for example, two
separate threads might start attempting to access static variables of separate classes (A
and B) and then each would have to wait for the other to complete initialization.

Page 47

The IL Assembly Language Programmers' Reference PDC Release

The NGWS runtime deals with these problems by ensuring that all three of the guarantees
are met, as well as provide two additional guarantees to code that is called out of the class
initializers:

1. Static variables of a class are in a known state prior to any access whatsoever.

2. Type initialization alone cannot create a deadlock unless some code called from a
class initializer (directly or indirectly) explicitly invokes blocking operations.

A rough outline of the algorithm is as follows:

1. At class load time (hence prior to initialization time) store zero or null into all
static variables of the class.

2. If the type is initialized you are done.
3. If the type is not yet initialized, try to take an initialization lock.

 If successful, record this thread as responsible for initializing the type and
proceed to step 4.

 If not, see whether this thread or any thread waiting for this thread to complete
already holds the lock.

a. If so, return since blocking would create a deadlock. This thread will
now see an incompletely initialized state for the type, but no deadlock
will arise.

b. If not, block until the type is initialized then return.
4. Initialize the parent type and then all interfaces implemented by this type.
5. Execute the type initialization code for this type.
6. Mark the type as initialized, release the initialization lock, awaken any threads

waiting for this type to be initialized, and return.

7.4Nested Types
One type may be nested within another. All references to the nested type are through its
enclosing type. The nested type has its own accessibility, and references to the nested
type must therefore have access to both the enclosing type and the nested type itself.

The parent of a nested type is completely independent of the enclosing type. Methods
defined within a nested type are treated as part of the enclosing type and as children of
their parent type.

Consider:

public class A extends System.Object
{ family int AfamInt;
 private int AprivInt;
}
public class B extends System.Object
{ family int BfamInt;
 private int BprivInt;

Page 48

The IL Assembly Language Programmers' Reference PDC Release

 public class C extends A // nested in B, parent is A
 { public int Foo(B myB, A myA)
 { this.BfamInt := 3; // Illegal, not a B
 this.BprivInt := 3; // Illegal, not a B
 myB.BfamInt := 3; // OK, nested in B
 myB.BprivInt := 4; // OK, nested in B
 this.AfamInt := 3; // OK, child of A
 this.AprivInt := 4; // Illegal, not member of A
 myA.AfamInt := 3; // Not verifiable but OK
 }
 }
 public int Foo(B myB, A myA)
 { this.BfamInt := 3; // OK
 this.BprivInt := 3; // OK
 myB.BfamInt := 3; // OK
 myB.BprivInt := 4; // OK
 this.AfamInt := 3; // Illegal, doesn’t inherit from A
 this.AprivInt := 4; // Illegal, doesn’t inherit from A
 myA.AfamInt := 3; // Illegal, doesn’t inherit from A
 }
}

Objects of type “C inside of B”

Are a subtype of A. Hence, their this contains all of the fields, methods, properties, and
events of any other instance of A.

Have access to all the members of any instances of type B.

Are not a subtype of B. Hence, their this does not contain the fields, methods, properties
or events of a B.

7.5Controlling Layout
In some cases, it may be useful to control the layout of fields of an instance. A set of
directives make this possible.

Further it may be also desirable to control the layout of a virtual method table. Also this
is possible using the NGWS IL.

7.5.1 Explicit Layout Control of Instances
Classes that require explicit layout control must be marked with the class attribute
explicit (see section 7.1.1.2).

The two directives that control layout of fields are .pack and .size.

.pack specifies to put fields at specified byte multiples. E.g., .pack 8 would specify that
fields should be stored at addresses that are a multiple of 8.

.size specifies that a memory block of the specified amount of bytes shall be allocated for
an instance of the class. E.g., .size 32 would leave a blob of 32 bytes for the instance.
This can be used to store values in the blob by using pointers into the blob. However, this
is only possible with unmanaged code.

Further, fields may be placed at certain indexes. This index is specified in brackets before
the field attributes. A class that uses this feature must be declared explicit.

Page 49

The IL Assembly Language Programmers' Reference PDC Release

7.5.2 Explicit Layout of the Vtable
Virtual methods are implemented using a vtable (virtual method table). Rather than
calling the method directly, the method call is redirected through the table, which
contains the addresses of the virtual methods. These addresses may be overriden by
subtypes, which has the effect of redirecting the call to the new implementation.

7.5.2.1 The override Directive
Usually, the runtime will automatically determine which method overrides wich method,
by matching its name or signature depending whether hide_by_name or
hide_by_signature is used.

The syntax for .override is as follows:

<classDecl> ::= Section

 .override <typeSpec> :: <methodName> with <callConv> <type>
<typeSpec> :: <methodName> (<signature>)

7.5.1

| … 7.2

The first method specification will be overriden by the method specification following
the with.

If a particular method that has a different name, but a compatible signature, shall override
a method, the .override directive may be used. The .override directive simply specifies
that the slot for the specified method in the virtual method table shall be replaced by the
new definition.

7.5.2.2 The vtfixup Directive
In some cases when interoperation with unmanaged code is required, the position of the
slot used for the virtual method table might need to be specified exactly. In addition, the
unmanaged code might not use the correct calling convention to invoke a managed
method.

Both of these problems are solved by the .vtfixup directive. This directive may appear
several times only at the top level of an IL assembly file, as shown by the following
grammar:

<decl> ::= Section

 .vtfixup <vtfixupDecl> 7.5.2.2

| … 4.5

The virtual method table does not need to be a contiguous block of memory. It may be
separated into sevaral chunks of memory. Each chunk is called an virtual method table
entry, and has an entry number associated with it. Each entry must caputure a contiguous
block of memory and is divided into slots. The slots contain a pointer that points to the
actual code.

The entries are numbered by the order of their declaration within a file. The syntax does
not provide a way for explicit numbering, such that a tool that uses this feature must keep
track of the entry numbers.

Page 50

The IL Assembly Language Programmers' Reference PDC Release

Each entry occupies a certain size at a certain memory location. This memory location
with the desired size must be reserved using the .data directive.

The syntax for .vtfixup takes the desired number of slots the declared virtual method
table entry in brackets. Note that the number of slots is different from the size of the
memory block required for .data directive and must be calculated. Following the number
of slots are any number of attributes and the label at which the memory block was
reserved. This is shown by the following grammar:

<vtfixupDecl> ::=

 [<int32>] <vtfixupAttr>* at <dataLabel>

The following grammar shows the attributes that can be used with the .vtfixup directive:

<vtfixupAttr> ::=

 fromunmanaged

| int32

| int64

The attributes int32 and int64 are exclusive. int32 is the default. These attributes specify
the width of each slot. If int32 is used, the slots are 32 bits wide, if int64 is used the solts
are 64 bits wide. If int64 is used and the pointers on the target machine are only 32 bits
wide, they higher order bits of the slot will be filled with zeros and ignored.

If fromunmanaged is specified, the runtime will automatically generate a thunk that will
convert the unmanaged method call to a managed call, call the method, and return the
result to the unmanaged environment.

7.6Global (Non-class) Data and Methods
In addition to classes with static members, many languages have the notion of data and
methods that are not part of a class at all. These are referred to as “global”. They are
modeled in the NGWS SDK as static fields or static methods with a parent of
mdTokenNil rather than a typeref or typedef.

It is simplest to understand global data and methods in the NGWS SDK by imagining
that they are simply members of a fictitious abstract public class, <module>, that doesn’t
implement any interfaces. The parallel is very close indeed. The only noticeable
difference is in how definitions of this fictitious class are treated by the metadata merge
code (used by tools such as a linker), the NGWS SDK class loader, and Reflection, all of
which follow the same rules.

For an ordinary type, if the metadata merges two different definitions of the same type, it
simply discards one definition on the assumption they are equivalent and that any
anomaly will be discovered when the class is loaded. For the special (fictitious) class that
holds global members, however, members are unioned across all compilation units at
merge time. If the same name appears to be defined for cross-compilation-unit use in
multiple compilation units then there is an error. In detail:

 If no member of the same kind (field vs method), name, and signature exists, then
add this member to the output class.

 If there are duplicates and no more than one has an accessibility of
mdPrivateScope, then save them all in the output class.

Page 51

The IL Assembly Language Programmers' Reference PDC Release

 If there are duplicates and two or more have an accessibility other than
mdPrivateScope then keep all of the mdPrivateScope members as well as any
one of the other duplicates, silently dropping any additional members that don’t
have mdPrivateScope.

Page 52

The IL Assembly Language Programmers' Reference PDC Release

8 Interfaces
An interface is a class declaration where the interface attribute is set. This implies
various constraints, for example that:

 all its methods are virtual;

 it has no fields;

 it does not inherit from a class.

An interface, IA, that promises to provide an implementation of another interface, IB,
requires that any concrete class that implements IA must also implement IB.

Interfaces do not have instance methods. All virtual methods on interfaces have public
accessibility. The interface itself must not provide an implementation of its virtual
methods.

Interfaces may have static (but not instance) fields.

Interfaces may have static methods, provided they supply an implementation for them.
This is used, for example, to provide a class constructor for the interface itself to initialize
its static fields.

For CLS compatibility, Interfaces may not contain instance fields, and the only static
method they may provide is a type initializer (named .cctor and marked with both
mdSpecialName and mdRTSpecialName).

When a class contract requires an implementation for an interface the Execution Engine
follows a simple set of rules to determine which method body will be used to implement,
for instances of this class, each virtual method of the interface. A MethodImpl (see also
section 12) can be used when the default behavior does not capture the programmer’s
intention.

8.1Requirements on classes that implement

interfaces
A concrete (i.e. non-abstract) class must provide an implementation for

 all methods that it introduces

 all virtual methods of interfaces that it implements

 all virtual methods it inherits from its parent

The implementation of virtual methods may be provided by:

 directly specifying an implementation

 inheritance from its parent class

 use of an explicit MethodImpl (see below)4.

A class (concrete or abstract) may provide

4 In V1 it may not be possible to use a MethodImpl to supply the implementation of an
inherited virtual method. Their use may be restricted to providing an implementation of a
virtual method on an interface, not inherited from a parent class. This remains an open
issue.

Page 53

The IL Assembly Language Programmers' Reference PDC Release

 implementations for instance, static, and virtual methods that it introduces

 implementations for methods declared in interfaces that it has specified it will
implement, or that its parent class has specified it will implement

 alternative implementations for virtual methods inherited from its parent

 implementations for instance, static, and virtual methods inherited from an
abstract parent class that did not provide an implementation

A class whose parent class defines a virtual method is permitted to override it with a
more permissive accessibility, provided the original method could have been called by
the overriding method5. Table 1 shows what is permitted.

For CLS compatibility, the accessibility of a virtual method must not be changed when it
is overridden.

OVERRIDE? PARENT

CHILD Private Family Assembly F & A F or A Public

Private No No No No No No

Family No Yes No No No No

Assembly No No Same
assembly

No No No

F & A No No No Same
assembly

No No

F or A No Yes Same
assembly

Yes Same
assembly

No

Public No Yes Yes Yes Yes Yes

Table 1. Legal Widening of Access to a Virtual Method

8.2MethodImpls
MethodImpls are a mechanism used to explicitly specify, for a given class, what method
body should be used to implement a virtual method. The virtual method may be inherited
from its parent6 or be a method on an interface that the class implements. MethodImpls
can be thought of as a very inexpensive mechanism for providing a “forwarding stub”
which receives calls to one method (the declaration) and implements them by calling
another (the body).

A MethodImpl can be provided as part of the implementation of a class (the
implementing class). It specifies, using a methoddef or methodref, two methods: a
declaration and a body. The body provides the implementation for the declaration.

The body must refer to a method implemented in the implementing class or one of its
parent classes. The signature of the body must match that of the associated declaration (it

5 In V1 it may not be possible to widen the accessibility of an inherited virtual method.
This remains an open issue.
6 It is an open issue whether in V1 a MethodImpl will be allowed to specify the
implementation of a virtual method inherited from a parent.

Page 54

The IL Assembly Language Programmers' Reference PDC Release

must have the same calling convention, return type, and parameter types). The method
specified by the body must have an accessibility that would allow it to be called from a
method in the implementing class.

Note: in V1 the body must refer to a method implemented directly in the implementing
class; it cannot be an inherited method implementation.

The declaration must refer to a method that can be overridden by the implementing
class. That is, it must be a virtual method inherited from one of its parents or an interface
method from an interface that it implements. In addition, the original declaration must
specify a method that it would be legal to call from the implementing class (see the
earlier table).

Imagine a class A that declares it implements an interface I, and we are interested in the
question “what method implements I::Foo()”. We define a matching method definition as
a definition for a virtual method with the same calling convention, return type, and return
type as was declared for I::Foo().

The detailed rules for determining which method body implements a particular interface
method are as follows:

1. if A provides a MethodImpl for I::Foo()
the MethodImpl specifies the method to use. If a MethodImpl is supplied but the
body isn’t a matching method definition, a class loader exception is generated.

2. otherwise , if A itself provides a matching method definition for a public method
named Foo
use that method

3. otherwise , if the immediate parent of A implements the same interface and
provides an implementation for I::Foo()
use whatever implementation A’s parent provides,

4. otherwise , if any parent of A provides a matching method definition for a public
method named Foo
use the method from the closest parent, even if that parent does not implement the
interface,

5. otherwise,
leave the slot empty if class A is abstract or generate a class loader exception if
class A is concrete.

Page 55

The IL Assembly Language Programmers' Reference PDC Release

9 Value Types
A value type is introduced by a .class declaration where the value attribute is given. In
contrast to reference types, when an instance of value type is created, the object is stored
directly in the variable rather than a reference to the object. Thus, if a value type is passed
to another variable or to an argument as part of a method call, a new copy is created.

Value types may be used like reference types. If a reference to a value type is needed, the
runtime will automatically convert it into a reference type by boxing the value type and
when needed unbox it again. More about boxing can be found in section 9.3.

9.1Overview of Value Types
The following list gives additional information about value types:

1. Defining a value type also creates a corresponding boxed type.

2. In types, the unboxed type is referred to using “value class <className>” and the
boxed type is referred to using “class <className>”. These correspond to
ELEMENT TYPE_VALUETYPE and ELEMENT_TYPE_CLASS in the C++
header file cor.h that comes with the NGWS SDK.

3. In metadata generally, the unboxed form is referred to using a TypeDef or TypeRef
and the boxed form is referred to using a TypeSpec (derived from a signature that
starts with ELEMENT_TYPE_CLASS).

4. A value type can have all the same kinds of members as any other type (static,
instance, and virtual methods; static and instance fields; properties; and events).

5. A value type, in its boxed form, can inherit from any type that does not define
instance fields. In V1, boxed value types must inherit from System.Value.

6. System.Value is the base type for value types. It provides special behavior for some
of the virtual methods inherited by all types (such as GetHashCode and Equals).

7. Value types are sealed and must be marked as such.

8. Value types can have explicit layout control for fields, as can any class.

CLS: Boxed versions of value types are not allowed in the CLS. A boxed instance of a
value type should be treated as System.Object.

9.2Methods on Value Types
A value type is authored in its unboxed form. That is, the this pointer is considered to be
a managed pointer to the type, not an object reference. The Execution Engine
automatically creates unboxing stubs when needed (instance and virtual methods).

Unboxed form Boxed form Interface Object

Call managed
pointer to value
type

object reference illegal object reference

Callvirt illegal illegal object reference object reference

Table 2: Type of “this” given IL instruction and class of method as specified in methodref/methoddef

Page 56

The IL Assembly Language Programmers' Reference PDC Release

To call an instance method defined directly on a value type a call instruction is used. The
methodref or methoddef used to call the method differs based on whether the instance is
boxed or unboxed. For an unboxed instance, use a methodref/methoddef whose parent
is a typedef/typeref/typespec to the value type. For a boxed instance, use a
methodref/methoddef whose parent is a typespec referring to the value type (with a
signature starting with ELEMENT_TYPE_CLASS).

To call an instance method defined directly on System.Object or System.Value a call
instruction is used. The instance must be boxed, and the methodref/methoddef used to
specify the method must have a parent of System.Value or System.Object.

This mechanism can also be used to call, with an unboxed instance of the value type, a
virtual or instance method whose implementation is known to exist for the particular
value type. The methodref/methodef must have a parent that is a
typedef/typeref/typespec for the value type. Notice that, even though a virtual method is
being called, a call instruction is used. Because the call is being made with an unboxed
instance, the exact type is known at compile time and a dynamic lookup is avoided. This
is version brittle, however, since removing the implementation for the particular value
class will cause the code to fail.

To call a virtual method with a boxed instance of the value type, a callvirt instruction is
used. The methodref/methoddef can have a parent of System.Object, System.Value, or
an interface that the value type explicitly implements.

9.3Boxing and Unboxing
An instance of a (unboxed) value type can be converted to an instance of the
corresponding boxed type through the built-in operation box. Boxing requires making a
copy of the value type.

An instance of a boxed value type can be converted to an instance of the corresponding
unboxed type through the built-in operation unbox. Unboxing returns a managed pointer
to the unboxed type that shares state with the original object.

Both boxed and unboxed value types are marshal by value (not reference) and are not
contextful. This means that value types, boxed or unboxed, are copied in remoting
scenarios (across application domain boundaries) and thus do not have a strong notion of
identity. Within a single application domain, but across contexts, boxed value types retain
their identity.

9.4Initializing Value Types
The Execution Engine makes only the following guarantees about the creation of
instances of value types:

 Static, thread-local, and context-relative variables are initialized to null (for boxed
instances) or all fields are zeroed/nulled (for unboxed instances)

 All elements of an array of value types are either null (for boxed instances) or all
fields are zeroed/nulled (for unboxed instances)

 Local variables are not initialized in any way, unless the method is marked to
zero-initialize its frame, in which case a boxed instance is null or an unboxed
instance has all its fields zeroed/nulled

Page 57

The IL Assembly Language Programmers' Reference PDC Release

Value types may have any number of initializers, including a “default initializer” which
has no parameters. The default initializer is optional. An initializer is recognized because
it is marked with the rtspecialname and specialname attributes and named .ctor.

If a value type has an initializer, an instance of its unboxed type can be created as would
an instance of a class: the newobj instruction is used along with the initializer and its
parameters to allocate and initialize the instance.

Verification requires that all fields of a value type be written before they are read or the
address of the value type is passed to a method other than an intializer for the value type.
Every initializer for the value type is required to store into every field of the value type
(this applies recursively, when one value type is embedded as a field of another value
type).

The only way to create a boxed instance of a value type is by using the box operation.
Since this requires a managed pointer pointer to an unboxed instance it may be necessary
to create a local variable to hold the unboxed value prior to boxing it.

The initobj instruction calls the default initializer if one exists or zeroes the object if
there is no default initializer. This allows IL code generators to produce verifiable code
that is resilient to the introduction or removal of a default initializer. For use within a
default initializer, the zeroobj instruction clears the memory associated with an object.

CLS: CLS compliant producer tools must provide a way for developers to call the default
initializer of a value class if it exists. Tools are urged to insert calls to the default
initializer automatically, but this is not required. Programmers who expect their value
types to be used from another language must be prepared to handle the case where the
state has been zeroed but no initializer has been called.

The Base Class Library provides System.Array::Initialize() to call the default initializer
(if one exists) on or zero (if there is no default initializer) all instances in an array of
unboxed value types.

9.5Copy Constructors on Value Types
A value type can have a copy constructor, which is simply an initializer (i.e. it is named
.ctor and has the specialname and rtspecialname attributes set) with a particular well-
known signature (it is a virtual method with one argument whose type is an unmanaged
pointer to the value type). The copy constructor is not called automatically, and is not
supported on boxed instances (i.e. the garbage collector will not call it).

Languages that support copy construction (such as ISO C++) must insert IL code to do
the copy construction as appropriate. The managed code convention is that the caller
makes the copy and then passes the address of that copy to the callee.

In order to interoperate with unmanaged code that passes the copy constructed values on
the stack P/Invoke may call the copy constructor an additional time to construct a copy
on the unmanaged stack. This behavior is triggered (if needed) by a particular custom
modifier applied to the parameter which must be copy constructed:
ELEMENT_TYPE_CMOD_REQUIRED followed by a type reference To Be Decided.
This modifier may only be place in front of a parameter whose type is a managed pointer
to a value type.

CLS: Copy constructors are not part of the CLS

Page 58

The IL Assembly Language Programmers' Reference PDC Release

9.6Using Value Types for C++ Classes
Where possible, languages that provide features in their object system not directly
supported by the NGWS SDK should use value types with visible field members to
represent their classes. The following rules, designed for compiling C++ to IL, expose as
many features of the underlying object model to other languages as is possible with the
VOS.

For C++, the trick is that managed languages will import C++ classes as value types and
will see C++ virtual and instance methods on those types as static methods with an
explicit unmanaged this pointer. The C++ compiler is fully responsible for handling
multiple inheritance, so other languages can use methods that are defined in C++ using
multiple inheritance even though they could not define such methods themselves. In
addition, because value types are sealed, it is not possible to extend frameworks created
in C++ from another language.

Similar rules can be devised for most languages.

9.6.1 Represent the Class as a Value Type
1. Define a custom attribute, possibly in a reserved part of the System namespace, to

indicate that a value type is a VOS representation of a language-specific class.
The custom attribute may have fields that provide more information of use to a
browser that understands the language-specific semantics. Mark all value types
that represent unmanaged classes with instances of this custom attribute.

2. Describe the object layout as a value type, possibly with explicit layout control.
Static methods, static fields, and instance fields can be defined on the value class
directly. There will of necessity be a field for a pointer to the vtable and all
constructors for the class must store the appropriate value (see below) into this
field.

3. Instance and virtual methods should be converted to static methods with one more
parameter than the original C++ method had. This additional parameter is the
first parameter, functions as the this parameter, and its type is “unmanaged
pointer to the value type.” These methods should have a custom attribute attached
so that browsers (and the compiler itself) can distinguish “true” static methods
from these “introduced” static methods.

4. The method body for instance and virtual methods has access to the pointer to the
original object through its first parameter, and through this can access the vtable,
and via the vtable the function pointers to the virtual methods. The compiler can
use explicit address arithmetic to adjust the address of the object or vtable to
handle multiple inheritance, etc. The calli instruction is used to call through the
function pointers in the vtable.

5. Classes that have user supplied copy constructors or destructors can’t be boxed,
can’t be fields of managed types, and can’t be passed by value directly. For this
reason, there is a special metadata bit that means “unless you understand the
custom attribute on this type, you shouldn’t use it.” Most C++ classes are usable
by other languages just as any other value type would be and should not set this
bit.

6. A value type can have a copy constructor, which is simply an initializer (i.e. it is
named .ctor and has the mdSpecialName and mdRTSpecialName bits set) with
a particular well-known signature (it is a method with one argument whose type is

Page 59

The IL Assembly Language Programmers' Reference PDC Release

an unmanaged pointer to the value type). The copy constructor is not called
automatically, and is not supported on boxed instances (i.e. the garbage collector
will not call it).

7. For classes that have a copy constructor, the compiler must insert code to do the
copy construction as appropriate. The managed code convention is that the caller
makes the copy and then passes the address of that copy to the callee. Thus
methods that take a copy-constructed parameter appear in the C++ source code to
be called by value, while in the IL they appear to be passed as a pointer to the
copy. In addition, to allow automatic interoperation with unmanaged code via
P/Invoke, copy-constructed parameters must be marked with a particular required
custom attribute (via ELEMENT_TYPE_CMOD_REQUIRED).

9.6.2 Represent the Vtable as another Value

Type
1. The vtable itself should be the value of a static variable with specified RVA. The

type of this variable should be a class with unique mangled name (or a type nested
within the object’s type), explicit layout, and with named fields of type “function
pointer to native method with correct signature.”

2. The data for the vtable should be stored in an appropriate section of the PE file
and the appropriate fixups must be stored in the NGWS SDK header within the
PE file. If unmanaged compatibility is required the entries may be forced to 32
bits wide and the PE file header marked for 32-bit architectures only. Otherwise,
the entries should be 64 bits wide.

Page 60

The IL Assembly Language Programmers' Reference PDC Release

10 Special Types

10.1 Arrays
An array is a contiguous memory block that stores a collection of values of the same
type.

An array type is defined by specifying the element type of the array, the rank (number
of dimensions) of the array, and the upper and lower bounds of each dimension of the
array. All of these are included in any signature of an array type, although they may be
marked as dynamically (rather than statically) supplied. Hence, no separate definition of
the array type is needed.

Values of an array type are objects; hence an array type is a kind of object type. Array
objects are defined by the VOS to be a repetition of locations where values of the array
element type are stored. The number of repeated values is determined by the rank and
bounds of the array.

Only type signatures, not location signatures, are allowed as array element types.

Exact array types are created automatically by the VES when they are required. Hence,
the operations on an array type are defined by the VOS. These generally are: indexing the
array to read and write a value, computing the address of an element of the array (a
managed pointer), and querying for the rank, bounds, and the total number of values
stored in the array.

CLS Note: CLS-compliant tools are only required to support arrays whose elements are
of types supported by the CLS and which have zero lower bounds for all dimensions.

For a CLS consumer there is no need to accept arrays of other types.

For a CLS extender there is no need to provide syntax to define other types of arrays or to
extend interfaces or classes that use other array types.

For a CLS framework other array types may not appear in exposed members.

Array types form a hierarchy, with all array types inheriting from the type System.Array.
This is an abstract class that represents all arrays regardless of the type of their elements
or their rank. Arrays of one dimension with zero lower bound for their elements
(sometimes called vectors) have a type based on the type of the elements in the array,
regardless of the upper bound. Arrays with more than one dimension or one dimension
but with non-zero lower bound have the same type if they have the same element type
and rank, regardless of lower bound on the array. Zero-dimensional arrays are not
supported.

Consider the following examples, using the syntax of the IL Assembler (ilasm):

Static specification of type Actual type constructed Allowed in CLS?

Int32[] vector of int32 Yes

int32[0..5] vector of int32 Yes

int32[1..5] array, rank 1, of int32 No

int32[,] array, rank 2, of int32 Yes

int32[0..3, 0..5] array, rank 2, of int32 Yes

Page 61

The IL Assembly Language Programmers' Reference PDC Release

Static specification of type Actual type constructed Allowed in CLS?

int32[1.., 0..] array, rank 2, of int32 No

10.2 Delegates
The classical COM implementation of delegates suffers from a number of problems:

 Compilers must specify the entire definition of the delegate class in metadata,
bloating the metadata

 Because delegates are type distinct, each such class requires the overhead of an
entire runtime class description

 Over time there are additional features that can be easily added to delegates using
new methods (async, for example) but this is inhibited by the compiler providing
the definition

 In a future version it would be extremely convenient if function pointers, method
pointers, and delegates could be handled polymorphically by the calli instruction

 Both single-cast and multi-cast delegates are supported. There is serious support
for removing multi-cast and leaving this to infrastructure services (eventing).

Due to these considerations the NGWS SDK moves delegates from their current status of
type-distinct compiler-defined types toward the basic model of function pointers and
arrays, which are specified structurally by the compiler and then manufactured on
demand by the runtime. This does not remove any functionality, since type-distinct
delegates can be recreated through the use of a value class with a single field (the
underlying delegate).

10.2.1 Changes to Delegates
For the NGWS SDK, the following changes to delegates were made:

 A level of abstraction for compilers that use the unmanaged Metadata APIs was
introduced.

 The methods related to combining delegates from the System.Delegate class to an
independent class were moved.

In a future version (not during V1) we will consider extending the calli instruction to be
polymorphic across function pointers and delegates with the equivalent signature.

With regard to the existing specification on implementing delegates, the only change is in
creating the delegate class. Over time, the implementation of the verifer and the castclass
and isinst instructions may be changed to allow delegates with the same signature to be
considered equivalent. Compiler changes would be required to make this visible to users,
but the infrastructure can be changed without impact.

10.2.2 Moved Delegate Combine Methods
The NGWS SDK has removed the existing Combine method off of System.Delegate
and into a separate class. This new class, over time, will be extended to allow a variety of
combination methods including, for example,

Page 62

The IL Assembly Language Programmers' Reference PDC Release

 The ability to continue on to the next combined element even if an exception
occurs.

 The ability to call the combined delegates asynchronously.

 The ability to combine delegates with function pointers or explicit functions with
the correct signature (not in V1).

10.2.3 Members of Delagates
Delagates need to define four Methods (no Fields), as follows:

Member Definition

A constructor public specialname rtspecialname instance void .ctor (class
System.Object, int32) runtime managed

Invoke method public final virtual instance <retType> Invoke (<p1Type>,
<p2Type>, . . .) runtime managed

BeginInvoke method public final virtual instance class System.IasyncResult
BeginInvoke (<p1Type> , <p2Ttype>, . . . , class
System.AsyncCallbackDelegate, class System.Object)
runtime managed

EndInvoke method public final virtual instance <retType> EndInvoke
(<p1Type> , <p2Type>, . . . , class System.IasyncResult)
runtime manage

For the BeginInvoke method, any Out-ByRef parameters need to be excluded.

For the EndInvoke method, any in parameters parameters need to be excluded.

10.3 Enumerations (Enums)
Enumerations (enums) provide type-distinct classes that are equivalent to an underlying
built-in integer type. Like integers, enums can be either boxed or unboxed. In their
unboxed form (only) they automatically convert to and from their underlying type.
Enums also provide a name scope to provide names for values of this new type. They do
not provide a guarantee that values of this type have one of the named values (unlike
Pascal). Enumerations are marked in the metadata by setting both the tdEnum and the
tdValueType bits.

CLS: Enums may only have underlying types of I1, I2, I4, or I8

Enums may have only one instance field and it must be marked with the bits
fdRTSpecialName and fdSpecialName.

CLS: The field must be named .value.

The type of the instance field may be any built-in integer type, called the “underlying
type” of the enum.

Enums, when boxed, inherit from System.Enum and must be explicitly marked as such.

Enums must not have any methods and are sealed (and must be marked as such).
Because they cannot have methods they cannot implement interfaces.

Page 63

The IL Assembly Language Programmers' Reference PDC Release

Besides the one instance field, all other fields must be static literal fields (Init-only static
fields are not supported). These must be optimized away by the compiler and no space
will be allocated at runtime for these fields. The fields and their values are visible through
Reflection.

CLS: All fields of an enum must be public.

Enums may not have properties or events.

When used in a signature, enums are encoded as ELEMENT_TYPE_VALUETYPE (for
historical reasons). For binding purposes enums are distinct from their underlying type.
This is used, for example, during the mapping from a methodref to its corresponding
methoddef.

For verification purposes and all uses within the Execution Engine, an unboxed enum
automatically coerces to and from its underlying type.

Enums can be boxed to a corresponding boxed instance type. This type is not the same as
the boxed type of the underlying type, so that the enum remains type distinct.

Because the unboxed from can be coerced to its underlying type and from there to any
other enum with the same underlying type, an enum can be boxed to any corresponding
type. The choice is dictated by the typeref/typedef/typespec used in the box instruction.
Similarly, a boxed enum can be unboxed to the enum, its underlying type, or any enum
that has the same underlying type.

10.4 Pointer Types
A pointer type is defined by specifying a location signature for the location the pointer
references. Any signature of a pointer type includes this location signature. Hence, no
separate definition of the pointer type is needed.

While pointer types are Reference Types, values of a pointer type are not objects, and
hence it is not possible, given a value of a pointer type, to determine its exact type. The
VOS provides two typesafe operations on pointer types: one to load the value from the
location referenced by the pointer and the other to store an assignment compatible value
into that location. The VOS also provides three type unsafe operations on pointer types
(byte-based address arithmetic): adding and subtracting integers from pointers, and
subtracting one pointer from another. The results of the first two operations are pointers
to the same type signature as the original pointer. See the IL Instruction Set specification
for details.

CLS Note Pointer types are not part of the CLS.

For CLS consumer there is no need to pointer types.

For CLS extender there is no need to provide syntax to define or access pointer types.

For CLS framework pointer types must not be externally exposed.

The syntax for declaring a pointer type is as follows:

<type> ::= Section

 <type> & 10.4.1.2

| <type> * 10.4.1.3

| … 5.2

Page 64

ILInstrSet.doc

The IL Assembly Language Programmers' Reference PDC Release

The * indicates a transient pointer, while the & indicates a managed pointer. The type for
unmanaged pointers is unsigend integer (U).

For pointers into the same array or object (see the EE Architecture Specification_), the
following arithmetic operations are defined:

 Adding an integer to a pointer, where the integer is interpreted as a number of bytes,
results in a pointer of the same kind.

 Subtracting an integer (number of bytes) from a pointer results in a pointer of the
same kind. Note that subtracting a pointer from an integer is not permitted.

 Two pointers, regardless of kind, can be subtracted from one another, producing an
integer that specifies the number of bytes between the addresses they reference.

None of these operations is allowed in verifiable code.

It is important to understand the impact on the garbage collector of using arithmetic on
the different kinds of pointers. Since unmanaged pointers never reference memory that is
controlled by the garbage collector, performing arithmetic on them can endanger the
memory safety of the system (hence it is not verifiable) but since they are not reported to
the garbage collector there is no impact on its operation. Similarly, transient pointers are
not reported to the garbage collector and arithmetic can be performed without impact on
garbage collection.

Managed pointers, however, are reported to the garbage collector. As part of garbage
collection both the contents of the location to which they point and the pointer itself can
be modified. The garbage collector will ignore managed pointers if they point into
memory that is not under its control (the evaluation stack, the call stack, static memory,
or memory under the control of another allocator). If, however, a managed pointer refers
to memory controlled by the garbage collector it must point to either a field of an object,
an element of an array, or the address of the element just past the end of an array. If
address arithmetic is used to create a managed pointer that refers to any other location (an
object header or a gap in the allocated memory) the garbage collector’s operation is
unspecified.

10.4.1.1 Unmanaged Pointers

Unmanaged pointers are the traditional pointers used in languages like C and C++. There
are no restrictions on their use, although for the most part they result in code that cannot
be verified. While it is perfectly legal to mark locations that contain unmanaged pointers
as though they were unsigned integers (and this is, in fact, how they are treated by the
EE), it is often better to mark them as unmanaged pointers to a specific type of data. This
is done by using ELEMENT_TYPE_PTR in a signature for a return value, local variable or an
argument or by using a pointer type for a field or array element.

 Unmanaged pointers are not reported to the garbage collector and can be used in any
way that an integer can be used.

 It is best to think of unmanaged pointers as unsigned (i.e. use conv.ovf.u rather than
conv.ovf.i, etc.).

 Verifiable code cannot use unmanaged pointers to reference memory (i.e. it treats
them as integers, not pointers).

Page 65

Architecture.doc

The IL Assembly Language Programmers' Reference PDC Release

 Unverified code can pass an unmanaged pointer to a method that expects a managed
pointer. This is safe only if one of the following is true:

1. The unmanaged pointer refers to memory that is not in memory managed by the
garbage collector

2. The unmanaged pointer refers to a field within an object

3. The unmanaged pointer refers to an element within an array

4. The unmanaged pointer refers to the location where the element following the last
element in an array would be located

10.4.1.2 Managed Pointers
Managed pointers (&) may point to a field of an object, a field of a value type, an
element of an array, or the address where an element just past the end of an array would
be stored (for pointer indexes into managed arrays). Managed pointers cannot be null,
and they must be reported to the garbage collector, even if they do not point to managed
memory.

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for a return
value, local variable or an argument or by using a by-ref type for a field or array element.

 Managed pointers can be passed as arguments and stored in local variables.

 If you pass a parameter by reference, the corresponding argument is a managed
pointer.

 Managed pointers cannot be stored in static variables, array elements, or fields of
objects or value types.

 Managed pointers are not interchangeable with object references.

 A managed pointer cannot point to another managed pointer, but it can point to an
object reference or a value type.

 Managed pointers that do not point to managed memory can be converted (using
conv.u or conv.ovf.u) into unmanaged pointers, but this is not verifiable.

 Unverified code that erroneously converts a managed pointer into an unmanaged
pointer can seriously compromise the integrity of the EE. This conversion is only
safe if one of the following is known to be true:

1. the managed pointer does not point into the garbage collector’s memory area

2. the memory referred to has been pinned for the entire time that the unmanaged
pointer is in use

3. a garbage collection cannot occur while the unmanaged pointer is in use

10.4.1.3 Transient Pointers
Transient pointers (*) are intermediate between managed and unmanaged pointers. They
are created within the EE by certain IL instructions, but users cannot declare locations of
this type. When a transient pointer is passed as an argument, returned as a value, or
stored into a user-visible location it is converted either to a managed pointer or an
unmanaged pointer depending on the type specified for the destination.

Page 66

The IL Assembly Language Programmers' Reference PDC Release

 The IL instructions that create transient pointers (ldloca, ldarga, ldsflda when the
type of the field is not an object) are guaranteed to produce pointers to data that is not
in managed memory.

 Transient pointers need not be reported to the garbage collector, and they are
automatically converted to managed or unmanaged pointers when necessary (on
method call or when stored into a local or argument that requires a managed pointer).

 Transient pointers can exist only on the evaluation stack within a single method.

 The verifier treats transient pointers as managed pointers.

10.5 Function Pointer Types
The NGWS SDK supports function pointers. In contrast to delagates, function pointers
are not object. A function pointer has a type, which is the signature of the method
including its calling convention.

The following grammar shows the syntax for the a function pointer type.

<type> ::= Section

 method <callConv> <type> * (<signature>) 10.5

| … 5.2

Variables that have the type of the function pointer may store a pointer to the function
which may be used to call the method.

A pointer to a function is obtained with the ldftn instruction (see section 19.2.4). A
function may be called with a pointer with the calli instruction (see section 19.2.3.4).

Page 67

The IL Assembly Language Programmers' Reference PDC Release

11 Signatures
Signatures capture the part of contracts that can be enforced by the runtime. There are
two kinds of signatures: those that are used to describe the parameters to methods,
properties, and events (called “method signatures” for simplicity) and those that are used
to describe the local variables of a procedure.

11.1 Method Signatures
Method signatures are used to specify the types of parameters to methods, properties, and
events. In addition, they are used to specify the arguments passed to a method that is
called through a function pointer rather than directly by name.

Signatures can be created using System.Reflection.Emit.SignatureHelper. They are
most easily accessed using the method GetParameters on
System.Reflection.MethodBase and GetIndexParameters on
System.Reflection.PropertyInfo.

As shown by the following grammar, a signature consists of any number of paramters.

<signature> ::= [<param> [, <param>]*]

The information about an individual parameter can be seen through a
System.Reflection.ParameterInfo and can be created using
System.Reflection.Emit.ParameterBuilder.

<param> ::=

 ...

| [<paramAttr>*] <type> [marshal ([<nativeType>])] [<id>]

An individual parameter must either be the special token “. . .” or have a defined type and
optionally have additional information.

The id, if present, is the name of the parameter. A parameter may be referenced either by
using its name or the zero based index of the paramter.

The special value “. . .” can only occur once in a signature. For signatures on methods,
properties, and events, it must be the last parameter. When describing arguments passed
via a function pointer, however, it separates the arguments being past as part of the
normal (fully described) parameter list and those that are being passed as part of the
variable argument list.

The attributes in <paramAttr>* specify special handling of certain parameters (see
CorHdr.h under CorParamAttr):

<paramAttr> ::=

 [in]

| [lcid]

| [opt]

| [out]

| [retval]

Page 68

The IL Assembly Language Programmers' Reference PDC Release

- in and out specify whether a managed reference or pointer parameter is used to
supply input to the method, return a value from the method, or both. If neither is
specified in is assumed.

- retval should only appear on one parameter of a method, and that parameter must
be a pointer type. It is used only on interfaces that are being exposed to
unmanaged COM clients, and is the parameter through which the NGWS SDK
return value will be made visible to those clients.

- opt indicates that this and all subsequent parameters are optional.

- lcid indicates that this parameter provides the locale ID to unmanaged COM
clients.

The default value of optional parameters can be set using the method SetConstant on
type System.Reflection.Emit.ParameterBuilder. There is no syntax in the
assembler for this.

Examples:

int32
a single parameter of type 32-bit integer, it is an input parameter

class [mscorlib.dll]System.Reflection.MethodBase, [in][out] int32&

MyInt
a pair of parameters. The type of the first is System.Reflect.MethodBase from
the assembly named mscorlib.dll and it is an input parameter. The second
parameter is an in/out parameter named MyInt and it is a managed pointer to a
32-bit integer.

String marshal (lpstr), ...
a method that takes one or more arguments, with the first one being a managed
string which must be marshaled to an unmanaged LPSTR. This would only make
sense if the method implementation was marked as being unmanaged.

String, …, int32, single
this might be the signature of a call site to the method described just above. The
“…” must appear in the same place in both and the type of the first argument
(given here) must match the type of the first parameter (given above). In addition
to this required argument we are passing two additional arguments of the
specified types.

11.1.1 Marshal
The keyword marshal is used to specify how this parameter should be marshaled to or
from unmanaged COM or via Pinvoke; it is used only if the implementation of the
method is declared to be via COM or Pinvoke (see also section 12.7.2).

11.2 Local Variable Signatures
The local variables of a method are also described by a signature, although the syntax is
slightly different from that for methods, since it is not possible to specify attributes (in,
out, etc.) or marshaling for local variables.

Page 69

The IL Assembly Language Programmers' Reference PDC Release

A <localsSignature> is simply a comma separated list of one or more local variable
descriptions.

<localsSignature> ::= <local> [, <local>]*

Information about local variables can be created using the
System.Reflection.Emit.LocalBuilder class.

<local> ::= [[<int32>]] <type> [<id>]

The assembler allows nested local variable scopes to be provided and allows locals in
nested scopes to share the same location as those in the outer scope. The information
about local names, scoping, and overlapping of scoped locals is persisted to the PDB
(debugger symbol) file rather than the PE file itself.

The integer in brackets that precedes the <type>, if present, specifies the local number
(starting with 0) being described. This allows nested locals to reuse the same location as a
local in the outer scope. It is not legal to overlap two local variables unless they have the
same type. The identifier, if present, is the name of the local within the current scope.

11.3 Primitive Types in Signatures
The NGWS SDK built-in types have corresponding value types defined in the Base Class
Library. The list of these classes must be known to all compilers because it is not legal
for them to be referenced (in their unboxed form) in signatures by their value type names,
they must be referenced by the ELEMENT_TYPE defined for that purpose (see
CorHdr.h). When using System.Reflection.Emit this is taken care of by the
SignatureBuilder.

Care must be taken when using the assembler since it will accept not only the built-in
name of the type but the syntax value class followed by the name as used in the Base
Class Library. This latter form, while it can be specified, will not execute correctly. This
error is detected by PEVerify.

Name in ilasm CLS
Type

Type in Base
Class Library

Description Name from
CorHdr.h

(ELEMENT_TYPE
_xxx)

bool Yes System.Boolean Boolean (true/false) BOOLEAN

char Yes System.Char Unicode Character CHAR

class
System.Object

Yes System.Object Object or boxed
value type

OBJECT

class
System.String

Yes System.String Unicode String STRING

float32 Yes System.Single IEEE 32-bit
floating point

R4

Page 70

The IL Assembly Language Programmers' Reference PDC Release

Name in ilasm CLS
Type

Type in Base
Class Library

Description Name from
CorHdr.h

(ELEMENT_TYPE
_xxx)

float64 Yes System.Double IEEE 64-bit
floating point

R8

int8 No System.Sbyte Signed 8-bit integer I1

int16 Yes System.Int16 Signed 16-bit
integer

I2

int32 Yes System.Int32 Signed 32-bit
integer

I4

int64 Yes System.Int64 Signed 64-bit
integer

I8

native int No Singed, native size
integer

I

native
unsigned int

No System.Int7 Unsigned, native
size integer

U

typedref No System.Typed-
Reference

Pointer and runtime
type

TYPEDBYREF

unsigned int8 Yes System.Byte Unsigned 8-bit
integer

U1

unsigned
int16

No System.Uint16 Unsigned 16-bit
integer

U2

unsigned
int32

No System.Uint32 Unsigned 32-bit
integer

U4

unsigned
int64

No System.Uint64 Unsigned 64-bit
integer

U8

wchar Yes System.Char Unicode Character CHAR

11.4 Native Data Types
This section is a brief summary of native types. More information about native types can
be found in the Data Marshaling specification (see the NGWS SDK).

The NGWS SDK provides automatic marshaling to and from a variety of native
(unmanaged) data types and corresponding managed data types. This information can be
set using the SetMarshal method on the class
System.Reflection.Emit.ParameterBuilder. The complete list of these types is in
CorHdr.h as the enumeration CorNativeType.

The following table lists all native types and provides a description for each of them.

7 In the NGWS SDK, not all mathematical operations are supported for this type. Future
versions may support more operations.

Page 71

The IL Assembly Language Programmers' Reference PDC Release

<nativeType> ::= Description

 [] Native array. Type and size are determined at
runtime by the actual marshaled array.

| as any Dynamic type that determines the type of an Object
at runtime and marshals the Object as that type.

| bool Boolean. 4-byte integer value where a non-zero
value represents TRUE and 0 represents FALSE.

| [ansi] bstr A COM style BSTR with a prepended length and
Unicode (or ANSI) characters. (Not supported for
StringBuilder)

| byvalstr A string in a fixed length buffer.

| custom (<QSTRING> ,

<QSTRING>)

Custom marshaller. The first string is a custom
marshaller type name. The second string is an
optional cookie.

| error Return value for HRESULT methods that failed.

| fixed array [int32] A fixed size array of length <int32>

| fixed sysstring [int32] A fixed size system string of length <int32>

| float Size agnostic floating point number.

| float32 32-bit floating point number.

| float64 64-bit floating point number.

| [unsigned] int Signed or unsigned size-agnostic integer

| [unsigned] int8 Signed or unsigned 8-bit integer

| [unsigned] int16 Signed or unsigned 16-bit integer

| [unsigned] int32 Signed or unsigned 32-bit integer

| [unsigned] int64 Signed or unsigned 64-bit integer

| interface A COM interface pointer. The GUID of the interface
is obtained from the class metadata.

| lpstr A pointer to a null terminated array of ANSI
characters.

| lpstruct A pointer to a C-style structure. Used to marshal
managed formatted classes and value types.

| lptstr A pointer to a null terminated array of platform
characters.

| lpvoid An un-typed 4-byte pointer.

| lpwstr A pointer to a null terminated array of Unicode
characters.

| <nativeType> * Pointer to <nativeType>.

| <nativeType> [] Array of <nativeType>. The length is determined at
runtime by the size of the actual marshaled array.

| <nativeType> [int32] Array of <nativeType> of size <int32>.

Page 72

The IL Assembly Language Programmers' Reference PDC Release

| <nativeType> [.size .param =

int32 [* int32]]

<nativeType> [.size .param = paramIndex * mult]

Array of <nativeType>. The size of the array is
specified by a parameter with index paramIndex. An
optional multiplier may be provided to increase the
size by some factor.

| method A function pointer.

| safearray [<variantType>] An OLE Automation SafeArray. The optional
<variantType> supplies the unmanaged type of the
elements within the array when it is necessary to
differentiate among string types.

| struct A C-style structure, used to marshal managed
formatted classes and value types.

| tbstr A COM style BSTR with a prepended length and
platform dependent characters format (rarely used).
ANSI is used on Win9x, and Unicode on WinNT and
Win2K.

| variant bool Boolean. 2-byte integer value where the value –1
represents TRUE and 0 represents FALSE.

The following grammar specifies a variant types. These are used for marshalling. All
items that are marked /* roundtrip only */ should not be used, however might
be generated by the disassembler. The native constants for variants types for older
versions of Windows can be found in MSDN.

<variantType> ::= Description

 blob /* roundtrip only */ Bytes prefixed with the length.

| blob_object /* roundtrip only */ Blob contains an object.

| bstr A COM style BSTR with a prepended length
and Unicode characters. (Not supported for
StringBuilder)

| bool Boolean. 4-byte integer value where a non-zero
value represents TRUE and 0 represents
FALSE.

| carray /* roundtrip only */ C style array.

| cf /* roundtrip only */ Clipboard format.

| clsid /* roundtrip only */ Class ID.

| currency A currency structure.

| date A data strucuture.

| decimal 16 byte fixed point number

| error Return value for HRESULT methods that failed.

| filetime /* roundtrip only */ Structure for a file time.

| float32 32-bit single precision floating point number.

| float64 64-bit double precision floating point number.

Page 73

http://msdn.microsoft.com/library/psdk/mts20sp1/errorcodes_16ib.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/sdkdoc/daosdk/daglos04_4fs5.htm

The IL Assembly Language Programmers' Reference PDC Release

| hresult Standard return type.

| idispatch * COM style IDispatch interface.

| [unsigned] int

 /* roundtrip only */

Signed or unsigned size-agnostic integer

| [unsigned] int8 Signed or unsigned 8-bit integer

| [unsigned] int16 Signed or unsigned 16-bit integer

| [unsigned] int32 Signed or unsigned 32-bit integer

| [unsigned] int64

 /* roundtrip only */

Signed or unsigned 64-bit integer

| iunknown * Native pointer to COM style IUnknown
interface.

| lpstr /* roundtrip only */ A pointer to a null terminated array of ANSI
characters.

| lpwstr /* roundtrip only */ A pointer to a null terminated array of Unicode
characters.

| null /* roundtrip only */ SQL style null.

| record User defined type.

| safearray /* roundtrip only */ A safe array.

| storage /* roundtrip only */ Storage structure.

| stored_object

 /* roundtrip only */

Store contains an object.

| stream /* for roundtrip only */ A stream.

| streamed_object

 /* for roundtrip only */

Stream contains an object.

| userdefined

 /* for roundtrip only */

User defined type.

| variant * Native pointer to a variant type.

| <variantType> & Managed pointer to variant.

| <variantType> [] Array of variant, size is unspecified.

| <variantType> vector A variant vector.

Page 74

The IL Assembly Language Programmers' Reference PDC Release

12 Methods
Methods specify the behavior of a program. There are several kinds of methods in the
NGWS SDK:

- global methods (section 12.6)

- static methods of a class (section 12.3.2.1)

- instance methods of a class (section 12.3.2.2)

- virtual methods of a class (section 12.3.2.3)

- instance constructors, a special kind of instance method (section 7.3.2)

- class constructors, a special kind of static method (sections 7.3.3)

However, all methods have a common syntax as described in this chapter. A method
definition consists of the keyword .method, a method head, and the body surrounded by
braces, which contains the actual instructions to be executed.

<method> ::= .method <methodHead> { <methodDecl>* }

The following sections will give more details on these parts of a method definition.

12.1 Method Head
The method head contains important information for the identification and correct
handling of a method by the runtime. The head of a method also functions as an interface
to other methods.

The method head consists of

- any number of predefined method attributes (section 12.3)

- an optional description of the kind of call to use

- a return type with optional attributes (section 11.1)

- optinal marshalling information (see also section 11.1.1)

- a method name

- a signature in brackets

- and any number of implementation attributes (section 12.3.4)

as also shown by the following syntax rule:

<methodHead> ::=

 <methAttr>* [<callKind>] [<paramAttr>*] <type> [marshal (

[<nativeType>])] <methodName> (<signature>) <implAttr>*
In the NGWS SDK, there are no attributes that can be used with the return type.
However, future versions may have return type attributes, which is reflected in the
grammar. Existing <paramAttr>’s should not be used with the return type.

Method that do not have return value must use the keyword void as the return type. void
is an instance of System.Void.

Page 75

The IL Assembly Language Programmers' Reference PDC Release

12.1.1 Method Name
Most method names are a <dottedname>. The exception are constructors. Instance
constructors of a type always have the name .ctor, while static (class) constructors of a
type always have the name .cctor.

<methodName> ::=

 .cctor

| .ctor

| <dottedname>

12.1.2 Kinds of Calls
The NGWS SDK supports various kinds of method calls. The two managed kinds of calls
are default and vararg. default specifies the standard kind of call of the NGWS SDK.
Vararg is specifies that the method accepts a variable number of arguments and thus
needs to be called in a special way.

The unmanaged kinds of calls are primarily to support languages which are similar to C+
+ and cannot compile the method as a managed method.

Unmanaged cdecl ist the calling convention used by standard C. unmanaged stdcall
specifies a standard C++ call. unmanaged fastcall is a special optimized C++ calling
convention. Unmanaged thiscall is a C++ call that passes a this pointer to the method.

<callKind> ::=

 default

| unmanaged cdecl

| unmanaged fastcall

| unmanaged stdcall

| unmanaged thiscall

| vararg

12.2 Method Body
The method body contains the instruction of a program. However, it may also contain
labels, additional syntactic forms and many directives that provide additional information
to the assembler and are helpful in the compilation of methods of some languages.

The following table shows the syntax for the body of a method and describes each item.
More information about some of the directives can be found in the following subsections.

<methodDecl> ::= Description Section

 .custom <customDecl> Definition of custom
attributes.

17

| .data <datadecl> Emits data to the data section
of the method.

13.4

| .emitbyte <int32> Emits an int32 to the code
section of the method.

12.2

Page 76

The IL Assembly Language Programmers' Reference PDC Release

| .entrypoint Specifies that this method is
the entrypoint to the
application (only one such
method is allowed).

12.2

| .locals [init] (<localsSignature>) Defines a set of local
variables for this method.

12.2.1

| .maxstack <int32> Definies the maximum size of
the stack, specified by the
int32.

12.2

| .override <typeSpec>::<methodName> Sets this method as the
implementation for the
method specified in the
instruction.

12.2

| .param [<int32>] [= <fieldInit>] Sets method parameter
number <int32> as the owner
of the following custom
attributes.

12.2.2

| .vtentry <int32> : <int32> .vtentry <entry> : <slot> 12.2.3

| .zeroinit Specifies that all local
variables are initialized to
zero in this method.

12.2

| <externSourceDecl> .line or #line 3.7

| <instr> An instruction 19

| <codeLabel> : A label 3.4

| <scopeBlock> See below 12.5

| <securityDecl> .permission or .capability 16

| <sehBlock> An exception block 18

12.2.1 .locals
.locals is used to define local variables for this method. If init is specified, default
constructors are called for each local variable. The <localsSignature> lists the local
variables. Each local variable receive a zero based index that is unique within the method.
The index is assigned in increasing order based using the order of declaration beginning
at the start of the method. A local variable can be either accessed by its optional name, or
by its unique index. See also the desciption of scoping blocks in section 12.5.

12.2.2 .param
Sets method parameter number <int32> as the owner of the following custom attributes.
.param[0] specifies the return value. All of the method’s own custom attributes must be
declared before the first .param directive. <fieldInit> if used specifies the default value.

Page 77

The IL Assembly Language Programmers' Reference PDC Release

12.2.3 .vtentry
Places the token of this method at the specified slot of the virtual method table entry.
Used together with <vtfixupDecl> (section 7.5.2.2).

12.3 Predefined Attributes on Methods
Predefined attributes of a method are attributes which provide important information for
the caller of a method. Predefined attributes of a method specify information about
accessibility, contract information, virtual method table information, implementation
attributes, interoperation attributes, as well as information on special handling.

The following subsections contain additional information on each group of predefined
attributes of a method.

<methAttr> ::= Description Section

 abstract Specifies that the
method is an abstract
method.

12.3.4

| assembly Assembly accessibility 12.3.1

| famandassem Family and Assembly
accessibility

12.3.1

| family Family accessibility 12.3.1

| famorassem Family or Assembly
accessibility

12.3.1

| final Specifies that this
method cannot be
overriden by
subclasses.

12.3.2

| hidebysig Hide by signature. 12.3.2

| newslot Specifies that this
method shall get a new
slot in the virtual
method table.

12.3.3

| pinvokeimpl ([<QSTRING> [as <QSTRING>]]

[<pinvAttr>*])

pinvokeimpl([“DLL_n
ame” [as
“ExportName”]]
[attributes])

12.3.5

| private Private accessibility 12.3.1

| privatescope Privatescope
accessibility.

12.3.1

| public Public accessibility. 12.3.1

| rtspecialname The method name
needs to be treated in a
special way by the
runtime.

12.3.6

Page 78

The IL Assembly Language Programmers' Reference PDC Release

| specialname The method name
needs to be treated in a
special way by some
tool.

12.3.4

| static Specifies that this
method is a static
method of a type.

12.3.2

| unmanagedexp Marks for exports to
unmanaged world.

12.3.5

| virtual Specifies that this
method is a virtual
method.

12.3.2

12.3.1 Accessibility Information
The accessibility attributes are assembly, famandassem, family, famorassm, private,
privatescope and public. These attributes are exclusive. The default is privatescope.
Accessibility attributes are described in section 6.3. privatescope is the most restrictive
attribute and specifies that the method cannot be accessed unless the method definition
token is provided.

12.3.2 Method Contract Attributes
Method contract attributes are final, hidebysig, static, and virtual. These attributes may
be combined, except a method may not be static and virtual at the same time. Only virtual
methods may be final. Abstract methods may not be final. Only virtual methods may use
hidebysig.

Final methods may not be overriden by subclasses of this class. This makes sure the
functionality provided by the implementing class is not modified by other
implementations.

Hidebysig hides implementations of the parent class using the full signature and not just
the name. The defualt is hide by name, which hides all methods with the same name
regardless of signature. Instead of the hidden method, the new method is executed.

Static and virtual specify type of method to be defined. The default is an instance
method. The following subsections briefly describe each kind of method.

12.3.2.1 Static Methods
Static methods may access only be used with static fields (see section 13) of a class or
call only other static methods. They may be called without creating an instance of the
class. Static methods are very similar to global methods, but are a member of a type.

12.3.2.2 Instance Methods
In contrast to static methods, instance methods accept a this pointer and thus require that
an instance of the class be created. Instance methods can access to all fields of a class and
possibly their parent classes and may call any other method of a class and possibly their
parent classes.

Page 79

The IL Assembly Language Programmers' Reference PDC Release

The this pointer is not included in the signature, but is automatically added to the
signature of a method as the first parameter. However, when an instance method is called
the an instance of the class must be passed to the method as the first argument explicitly,
even though this argument is not apparent from the signature.

12.3.2.3 Virtual Methods
Virtual methods need to be used in Object Oriented Programming (OOP). A virtual
method is like an instance method, except that its call is redirected through a virtual
method table. Subclasses of this class may override the entries in this virtual method
table, which means that rather than the original implementation the implementation of the
subclass is called.

The this pointer must be passed to virtual methods similar to instance methods.

12.3.3 Virtual Method Table Information
The only attribute in this group is newslot. Newslot can only be used with virtual
methods and specifies that this method shall get a new slot in the virtual method table,
and not override a method from the parent class. Calls to the method by the superclasses
of this method, will be redirected to the implementation of the superclass of this class.
However, calls of this class and its subclasses will be redirected to the new
implementation, or to any overriding version. However, the implemenation of the
superclass may still be overriden by subclasses by using an explicit reference to the
implementation of the superclass.

The default is that the implemenation of the subclass overrides the implementation of the
superclass.

12.3.4 Implementation Attributes
The two implementaion attributes are abstract and specialname. Abstract can only be
used with non-final virtual methods. This attributes may be combined.

Abstracts specifies that the method is not provided and needs to be defined by a subclass.
Abstract methods can only appear in abstract classes (see section 7.1).

specialname indicates that the name of this method has special meaning to some tools.

12.3.5 Interoperation Attributes
These attributes are for interoperation with COM+ 1.x and classical COM applications.
These attributes are pinvokeimpl and unmanagedexp. This attributes may be combined.

Pinvokeimpl instructs the runtime to use the platform invoke functionalityto invoke an
unmanaged method in the specified dll with the specified export name. (see also
12.7.2.2).

unmanagedexp marks this method for export to an unmanaged environment.

Page 80

The IL Assembly Language Programmers' Reference PDC Release

12.3.6 Other Attributes
The attribute rtspecialname indicates that the method name shall be treated in a special
way by the runtime. Examples of special names are “ctor” (constructor) and “cctor”
(class constructor).

12.4 Implementation Attributes of Methods
Implementation attributes of a method are attributes that provide important additional
information to the runtime. They contain information about required special handling by
the runtime or more information on the code implemented by the method.
Implementation attributes may also contain additional information on interoperation with
classical COM.

The following subsections contain additional information on each group of
implementation attributes..

<implAttr> ::= Description Section

 forwardref Specifies that the body of this method is
not specified with this declaration.

12.4.3

| il Specifies that the method contains
standard il code.

12.4.1

| internalcall Used only for disassembling purposes. 12.4.3

| managed Specifies that the method is a managed
method.

12.4.2

| native Specifies that the method contains native
code.

12.4.1

| noinlining Spefies that the runtime shall not attempt
to inline the method.

12.4.3

| ole Indicates method signature is mangled to
return HRESULT, with the return value
as a parameter.

12.4.4

| oneway Specifies “fire and forget” convention. 12.4.3

| optil Specifies that the method contains OptIL
code.

12.4.1

| runtime The body of the method is not defined
but produced by the runtime.

12.4.1

| synchronized The method will be executed in a single
threaded fashion.

12.4.3

| unmanaged Specifies that the method is unmanaged. 12.4.2

12.4.1 Code Implementation Attributes
The code implementation attributes are il, native, optil, and runtime. This attributes are
exclusive. The default is il.

Page 81

The IL Assembly Language Programmers' Reference PDC Release

This attributes specify the type of code the method contains. runtime specifies that the
implemenation of the method is automatically provided by the runtime and is primarily
used for for the constructor and invoke method of delagates.

12.4.2 Managed or Unmanaged Information
The two option here are managed or unmanaged. The default is managed.

Managed code is code that provides enough information to allow the NGWS SDK
runtime to provide a set of core services, which include

- Given an address inside the code for a method, locate the metadata describing the
method

- Walk the stack

- Handle exceptions

- Store and retrieve security information

Only managed code may access managed data. To produce verifiable IL code a compiler
must produce managed code.

12.4.3 Implementation Information
The attributes in this group are forwardref, internalcall, synchronized, noinlining, and
oneway. The attributes may be combined.

Forwardref specifies that the body of the method is specified with another declaration
that is part of the assembly. This is similar to a forward declaration in C.

internalcall is a special token used by the disassembler for some methods and must not
be used. The explicit use of internalcall will cause the execution engine to throw a
System.Security.SecurityException.

synchronized specifies that the whole body of the method shall be single threaded. If this
method is an instance or virtual method a lock on the object will be obtained before the
method is entered. If this method is a static method a lock on the class will be obtained
before the method is entered. If a lock cannot be obtained the requesting thread will be
suspended and placed on a waiting queue until it is granted the lock. This may cause dead
locks.

Noinlining specifies that the runtime shall not inline this method. Inlining refers to the
process of replacing the call instruction with the body of the called method. This may be
done by the runtime for optimization methods in some cases.

Once a oneway method is called, the caller will not hear back from the method. The
method will be executed and terminate on its own. The caller is encouraged to continue
with its normal processing. The method must return void and have only in parameters
(see section 11.1). Once the method is called, the method may have synchronous or
asynchronous side-effects with respect to the caller.

12.4.4 Interoperation
The attribute ole used for compatibility with unmanaged COM. It instructs the runtime to
convert the signature of a method when for calls in both directions unmanaged to
managed and managed to unmanaged.

Page 82

The IL Assembly Language Programmers' Reference PDC Release

The conversion from managed to unmanaged appends the return value of a method to its
parameter list as an out, retval paramter with the corresponding pointer type of the return
type. The new return type of the method becomes HRESULT. Instead of throwing an
exception, the HRESULT value will indicate success or failure.

The conversion from unmanaged to managed is the opposite way.

12.5 Scope Blocks
Scope blocks are syntactic sugar primary for readability and debugging purposes. They
may be also used by compilers.

A scope block defines the scope in which a local variable is accessible by its name. Scope
blocks may be nested, such that a reference of a local variable will be first tried to resolve
in the inner most scope block, than at the next level, and so on until the top-most level,
which is the method declaration level, is reached. A declaration in an inner scope block
hide declarations in the outer layers.

If duplicate declarations are used, the reference will be resolved to the first occurrence.
Duplicate declarations are not recommended.

Scoping does not affect the life time of a local variable. All local variables are created
and initialized when the method is entered. They stay alife until the execution of the
method is completed.

The scoping does not affect the accessibility of a local variable by its zero based index.
All local variables are accessible from anywhere within the method by their index.

The index is assigned to a local variable in the order of declaration. Scoping is ignored
for indexing purposes. Thus, each local variable is assigned the next available index
starting at the top of the method.

<scopeBlock> ::= { <methodDecl>* }

12.6 Method Calls
Non-virtual methods are called with using the call instruction. The call instruction takes a
method reference as part of the instruction and expects the arguments of the method on
the stack. The first argument is pushed first onto the stack. For instance methods, the first
argument is the this pointer to the instance.

The syntax for a call instruction is as follows:

call <callConv> <type> [<typeSpec> ::] <methodName> (<signature>)

The main difference to a method definition head (see section 12.1) is that a call
convention, rather than a call kind is needed. In addition, a call doesn’t take predifined
and implementation attributes.

Virtual methods are called using the callvirt instruction, which has the same syntax as
the call instruction.

Method may be also called using a pointer to the method with the calli instruction.

The syntax for calli does not need to include the method name:

calli <callConv> <type> (<signature>)

Page 83

The IL Assembly Language Programmers' Reference PDC Release

A pointer to a method is loaded with the ldftn instruction. More about this instruction can
be found in section 19.2.3.4.

12.6.1 Call Convention
A call convention includes a call kind (see section 12.1.2). In addition it has the optional
keywords instance, or instance explicit.

<callConv> ::= [instance [explicit]] [<callKind>]

By default, the method call will be treated as call to a static method. If instance is
specified, the method call will be treated as a method call that accepts a this pointer.
callvirt instrcutions need to be always instance.

Explicit applies only to instance methods. If explicit is specified, the method this pointer
is included explictly in the method signature. This is used only in the declaration of
function pointers in connection with the calli instruction. It is not used with the call or
callvirt instruction.

12.7 Global Methods

12.7.1 Managed Native Calling Conventions
There are two managed native calling conventions used on the x86. These may be
changed over time. They are described here for completeness and because knowledge of
these conventions allows an unsafe mechanism for bypassing the overhead of a managed
to unmanaged code transition.

12.7.1.1 Standard x86 Calling Convention
The standard native calling convention is a variation on the fastcall convention used by
VC. It differs primarily in the order in which arguments are pushed on the stack.

The only values that can be passed in registers are managed and unmanaged pointers,
object references, and the built-in integer types I1, U1, I2, U2, I4, U4, I and U. Enums are
passed as their underlying type. All floating point values and 8-byte integer values are
passed on the stack. When the return type is a value type that can’t be passed in a register,
the caller must create a buffer to hold the result and passes the address of this buffer as a
hidden parameter.

Arguments are passed in left-to-right order, starting with the this pointer (for instance and
virtual methods), followed by the return buffer pointer if needed, followed by the user-
specified argument values. The first of these that can be placed in a register is put into
ECX, the next in EDX, and all subsequent ones are passed on the stack.

The return value is handled as follows:

- Floating point values are returned on the top of the hardware FP stack.

- Integers up to 32 bits long are returned in EAX.

- 64-bit integers are passed with EAX holding the least significant 32 bits and EDX
holding the most significant 32 bits.

Page 84

The IL Assembly Language Programmers' Reference PDC Release

- All other cases require the use of a return buffer, through which the value is
returned.

In addition, there is a guarantee that if a return buffer is used a value is stored there only
upon ordinary exit from the method. The buffer is not allowed to be used for temporary
storage within the method and its contents will be unaltered if an exception occurs while
executing the method.

Consider the following examples.

1. static System.Int32 F(System.Int32 x)
The incoming argument (x) is placed in ECX; the return value is in EAX

2. static double F(System.Int32 x, y, z)
x is passed in ECX, y in EDX, z on the top of stack; the return value is on the top
of the floating point (FP) stack

3. static double F(System.Int32 x, double y, z)
x is passed in ECX, y on the top of the stack (not FP stack), z in EDX; the return
value is on the top of the FP stack

4. virtual double F(System.Int32 x, System.Int64 y, z)
this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the
stack (hence z is top of stack); the return value is on the top of the FP stack

5. virtual System.Int64 F(System.Int32 x, double y, z)
 this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the
stack (hence z is top of stack); the return value is in EDX/EAX

6. virtual System.Variant F(System.Int32 x, double y, z)
Recall that System.Variant is a value type. Hence this is passed in ECX, a
pointer to the return buffer is passed in EDX, x is pushed then y then z (hence z is
top of stack); the return value is stored in the return buffer.

12.7.1.2 Varargs x86 Calling Convention
All user-specified arguments are passed on the stack, pushed in left-to-right order.
Following the last argument (hence on “top of stack” upon entry to the method body) a
special “cookie” is passed which provides information about the types of the arguments
that have been pushed.

As with the standard calling convention, the this pointer and a return buffer (if either is
needed) are passed in ECX and/or EDX.

Values are returned in the same way as for the standard calling convention.

12.7.1.3 Fast Calls to Unmanaged Code
Transitions from managed to unmanaged code require a small amount of overhead to
allow exceptions and garbage collection to correctly determine the execution context. On
an x86 processor, under the best circumstances, these transitions take approximately 5
instructions per call/return from managed to unmanaged code. In addition, any method
that includes calls with transitions incurs an 8 instruction overhead spread across the
calling method’s prolog and epilog.

This overhead can become a factor in performance of certain applications. For use in
unverifiable code only, there is a mechanism to call from managed code to unmanaged
code without the overhead of a transition. A “fast native call” is accomplished by the use
of a calli instruction which indicates that the destination is managed even though the code

Page 85

The IL Assembly Language Programmers' Reference PDC Release

address to which it refers is unmanaged. This can be arranged, for example, by
initializing a variable of type function pointer in unmanaged code.

Clearly, this mechanism must be tightly constrained since the transition is essential if
there is any possibility of a garbage collection or exception occurring while in the
unmanaged code. The following restrictions apply to the use of this mechanism:

1. The unmanaged code must follow one of the two managed calling conventions
(regular and varargs) that are specified below. In V1, only the regular calling
convention is supported for fast native calls.

2. The unmanaged code must not execute for any extended time, since garbage
collection cannot begin while executing this code. It is wise to keep this under
100 instructions under all control flow paths.

3. The unmanaged code must not throw an exception (managed or unmanaged),
including access violations, etc. Page faults are not considered an exception for
this purpose.

4. The unmanaged code must not call back into managed code.

5. The unmanaged code must not trigger a garbage collection (this usually follows
from the restriction on calling back to managed code).

6. The unmanaged code must not block. That is, it must not call any OS-provided
routine that might block the thread (synchronous I/O, explicitly acquiring locks,
etc.) Again, page faults are not a problem for this purpose.

7. The managed code that calls the unmanaged method must not have a long, tight
loop in which it makes the call. The total time for the loop to execute should
remain under 100 instructions or the loop should include at least one call to a
managed method. More technically, the method including the call must produce
“fully interruptible native code.” Post-V1 there may be a way to indicate this as a
requirement on a method.

Note : restrictions 2 through 6 apply not only to the unmanaged code called directly,
but to anything it may call.

12.7.2 Accessing Unmanaged Methods

12.7.2.1 Via COM Interop
Unmanaged COM operates primarily by publishing uniquely identified interfaces and
then sharing them between implementers (traditionally called “servers”) and users
(traditionally called “clients”) of a given interface. It supports a rich set of types for use
across the interface, and the interface itself can supply named constants and static
methods, but it does not supply instance fields, instance methods, or virtual methods.

The NGWS SDK provides mechanisms useful to both implementers and users of existing
Unmanaged COM interfaces. The goal is to permit programmers to deal with managed
data types (thus eliminating the need for explicit memory management) while at the same
time allowing interoperability with existing unmanaged servers and clients. COM
Interop does not support the use of global functions (i.e. methods that aren’t part of a
managed class), static functions, or parameterized constructors.

- Given an existing Unmanaged COM interface definition as a type library, the
tlbimp tool produces a file that contains the metadata describing that interface.

Page 86

The IL Assembly Language Programmers' Reference PDC Release

The types it exposes in the metadata are managed counterparts of the unmanaged
types in the original interface.

- Implementers of an existing Unmanaged COM interface can import the metadata
produced by tlbimp and then write managed classes that provide the
implementation of the methods required by that interface. The metadata specifies
the use of managed data types in many places, and the NGWS SDK provides
automatically marshaling (i.e. copying with reformatting) of data between the
managed and unmanaged data types.

- Implementers of a new service can simply write a managed program whose
publicly visible types adhere to a simple set of rules. They can then run the
tlbexp tool to produce a type library for Unmanaged COM users. This set of
rules guarantees that the data types exposed to the Unmanaged COM user are
unmanaged types that can be marshaled automatically by the NGWS SDK.

- Implementers run the comreg tool to register their implementation with
Unmanaged COM for location and activation purposes.

- Users of existing Unmanaged COM interfaces simply import the metadata
produced by tlbimp. They can then reference the (managed) types defined there
and the NGWS SDK uses the assembly mechanism and activation information to
locate and instantiate instances of objects implementing the interface. Their code
is the same whether the implementation of the interfaces is provided using
Unmanaged COM (unmanaged) code or the NGWS SDK (managed) code: the
interfaces they see use managed data types, and hence do not need explicit
memory management.

- For some existing Unmanaged COM interfaces, the NGWS SDK execution
engine provides an implementation of the interface. In some cases the EE allows
the user to specify all or parts of the implementation; for others it provides the
entire implementation.

12.7.2.2 Using Platform Invoke
Umnanged methods may be invoked using the platfrom invoke functionality of the
NGWS runtime. Platfrom invoke will handle everything needed to make the call work. It
will automatically switch from managed to unmanaged state and back and also handle
necessary conversions. Methods that need to be called using platform invoke, are marked
as pinvokeimpl. Pinvokeimpl takes an optional name of the dll with an optional name of
the exported method and any number of attributes.

A function declared with pinvokeimpl does not have a body.

If the exported name is not specified, the declared name is assumed. If the no dll name is
specified the current module is assumed. Thus, both unmanaged methods in the same PE
file and in another PE file may be invoked with the pinvokeimpl command.

<methAttr> ::= Description Section

 pinvokeimpl ([<QSTRING> [as

<QSTRING>]] [<pinvAttr>*])

pinvokeimpl([“DLL_name”
[as “ExportName”]]
[attributes])

12.7.2.2

| … 12.3

The following grammar shows the attributes of a pinvokeimpl instruction.

Page 87

The IL Assembly Language Programmers' Reference PDC Release

<pinvAttr> ::= Description

 Ansi ANSI character set.

| autochar Determine character set automatically.

| cdecl Standard C style call.

| fastcall C style fastcall.

| lasterr Indicates that method supports C style last error
querying.

| nomangle Pinvoke is to use the member name as specified.

| ole Indicates method signature is mangled to return
HRESULT, with the return value as a parameter.

| stdcall Standard C++ style call.

| thiscall The method accepts an implicit this pointer.

| unicode Unicode character set.

| winapi Pinvoke will use native callconv appropriate to
target windows platform.

12.7.2.3 Via Function Pointers
Unmanaged pointers can also be called via function pointers. There is no difference
between calling managed or unmanaged fuctions with pointers. However, the unmanaged
function needs to be declared with pinvokeimpl as decribed in section 12.7.2.2. Calling
managed methods with function pointers is described in section 12.6.

12.7.2.4 Unmanaged Mechanisms: “It Just Works” and

“Platform Invoke”
It Just Works (IJW) scenarios are designed for programmers who wish to use existing
unmanaged data types for interoperation with unmanaged code. The NGWS SDK
provides very little marshaling support and, since the data types are unmanaged, the
programmer is required to deal directly with lifetime and memory management. Users
can write their own custom marshaling code to wrap existing unmanaged code if they
wish to provide a managed view.

The primary issue in IJW is to guarantee that execution cannot transfer from managed
code to unmanaged code (or vice versa) without first executing transition code supplied
by the NGWS SDK. This transition primarily deals with exception handling and garbage
collection. To support this, IJW relies on the following:

- Instances of the type System.ArgIterator are marshaled specially across the
managed/unmanaged boundary, so that they appear to unmanaged code as the
type required by the C++ va_* macros or functions.

- Function pointers are not marshaled across the boundary. It is the responsibility
of the user to convert pointers as needed across the boundary, and the NGWS
SDK provides a mechanism for doing this conversion. By considering
managed/unmanaged to be part of the type of a function pointer, this work can be
handled automatically by a compiler.

Page 88

The IL Assembly Language Programmers' Reference PDC Release

Platform Invoke (Pinvoke) is a combination of the transition management provided by It
Just Works with data marshaling similar to that provided by COM Interop. It allows
existing APIs to be called from managed code, with automatic conversion between some
managed types and their unmanaged equivalents.

12.7.2.5 Calling from Managed to Unmanaged
From the point of view of an IL code generator, both IJW and Pinvoke are handled in the
same way for calls to statically named methods. There is a call to a method using the
ordinary IL mechanisms (a call, callvirt, or jmp instruction) that specifies a destination
by way of a metadata token. When resolved at runtime, the metadata token is discovered
to be associated with a methoddef that is specially marked to indicated it is implemented
by unmanaged code. This definition effectively provides two signatures: one for the
managed side (indicating how it is being called) and one for the unmanaged side
(indicating how it is implemented).

It is the job of the NGWS SDK execution engine and any IL-to-native-code compilers to
cooperate to make sure that the transition is done correctly, including any possible data
marshaling. When the data types are identical in both of the signatures, no marshaling
occurs. Where the type as passed by the (managed) caller differs from the type expected
by the (unmanaged) receiver, the Pinvoke marshaling rules are invoked to convert the
data types.

For calls or jumps via a function pointer, the mechanism is slightly different. The ldftn
and ldvirtftn instructions construct a pointer to an entry point and the type conveys
whether it is a managed or unmanaged entry point. There is a Base Class Library routine
(unsafe but known to the verifier) that takes a function pointer and converts it from any
given calling convention to any other, by producing a transition stub as needed.

12.7.2.6 Calls from Unmanaged to Managed
Just as there are two ways to call from managed to unmanaged (direct and via a pointer),
there are two ways to call from unmanaged to managed. Since the call is arising in
unmanaged code, however, there is no simple way to arrange for a direct call to a
managed method. For IJW, the VC compiler and linker arrange that any unmanaged code
that tries to call managed code will do so by one of two mechanisms:

- If the managed code is in the same module as the call site, the linker arranges for
an entry in a table that represents the managed address, and forces the jump or call
to go via that table entry. When the module is loaded, the NGWS SDK execution
engine is started (because the module has managed code in it) and this table is
updated to contain transition thunks for use when calling from unmanaged to
managed code.

- If the managed code is in a different module than the call site, the linker uses its
existing mechanism to make an entry in the Import Address Table requesting the
appropriate unmanaged entry point. The exporting module will have exported
this entry point, and made it point to a table entry (also fixed up by the NGWS
SDK execution engine) to perform the transition.

The situation is somewhat easier for function pointers. The assumption is that the
function pointer is already pointing to a transition function. This will have been
generated either because

Page 89

The IL Assembly Language Programmers' Reference PDC Release

- The marshaling code saw a managed function pointer or delegate in the managed
signature and a pointer to an unmanaged function in the unmanaged signature and
so produced the necessary stub, or

- The compiler saw a type mismatch between an attempt to pass or store a pointer
to a managed function where a pointer to an unmanaged function was required,
so it called the Base Class Library function mentioned earlier to produce the
transition function.

12.7.3 Exporting Managed Methods to the

Unmanaged World
The .vtfixup directive can be used to export managed method to the unmanaged world.
More information about this command can be found in section 7.5.2.2.

Page 90

The IL Assembly Language Programmers' Reference PDC Release

13 Fields
Fields store the data of a program. The NGWS SDK allows the declaration of

- global fields (section 13.3)

- instance fields of a type (section 13.2)

- static fields of a type (section 13.2)

This section specifies the syntax common to all fields. A field is defined by using the
.field directive and a field declaration:

<field> ::= .field <fieldDecl>

The <fieldDecl> has the following parts:

- an optional integer specifying the offset if specific layout of a class is desired

- any number of field attributes (see section 13.1)

- a type

- a name

- and either a <fieldInit> form or a data label

This is also shown by the following grammar.

<fieldDecl> ::= Comments

 [[<int32>]] <fieldAttr>* <type> <id>

 [= <fieldInit> |

at <dataLabel>]

[<int32>] is field offset, for explicit
layout only, ignored in global fields;
at <label> specifies the data item
label

The optional field offset is ignored for global fields. For classes, the field will be stored at
the specified offset for the class. Classes that use this feature must be declared explicit
(see also section 7.1.1.2).

Global fields must have a data label associated with them. The data label specifies where
the data of the field is located.

13.1 Field Attributes
Field attributes can be optionally added to a field declaration. The use of field attributes
may not be combined with a data label.

Field attributes are for metadata only. They do not have any affect on the actual value of
the field and do not create any instructions. Thus, the <fieldInit> option does not
initialize the field with any value but puts a value associated with this field into the
metadata. Field attributes are typically used with literal fields (see section 13.2.2).

The following table lists the options for a field init. The used type has to agree with the
type of the field. The description column provides additional information.

<fieldInit> ::= Description

 bytearray (<bytes>) Array of type U1 (8 bit). <bytes> specifies the actual bytes.

| float32 (<float64>) 32 bit floating point number, with the floating point number

Page 91

The IL Assembly Language Programmers' Reference PDC Release

specified in parentheses. The number needs to fit in 32 bits.

| float32 (<int32>) <int32> is binary representation of float

| float64 (<float64>) 64 bit floating point number, with the floating point number
specified in parentheses.

| float64 (<int64>) <int64> is binary representation of double

| int8 (<int8>) 8 bit integer with the integer specified in parentheses.

| int16 (<int16>) 16 bit integer with the integer specified in parentheses.

| int32 (<int32>) 32 bit integer with the integer specified in parentheses.

| int64 (<int64>) 64 bit integer with the integer specified in parentheses.

| <QSTRING> String. <QSTRING> is stored as ASCII

| wchar * (<QSTRING>) Pointer to a string. <QSTRING> is converted to Unicode.

13.2 Predefined Attributes on Fields
Predefined attributes of a field specify information about accessibility, contract
information, interoperation attributes, as well as information on special handling.

The following subsections contain additional information on each group of predefined
attributes of a field.

<fieldAttr> ::= Derscription Section

 assembly Assembly
accessibility.

13.2.1

| famandassem Family and Assembly
accessibility.

13.2.1

| family Family accessibility. 13.2.1

| famorassem Family or Assembly
accessibility.

13.2.1

| initonly Field can only be
mutated inside a
constructor.

13.2.2

| literal Field represents a
constant literal.

13.2.2

| marshal ([<nativeType>]) Marshaling
information.

13.2.3

| notserialized Field is not serialized
with other fields of the
class.

13.2.2

| pinvokeimpl ([<QSTRING> [as <QSTRING>]]

[<pinvAttr>*])

pinvokeimpl([“DLL_
name” [as
“ExportName”]]
[attributes])

13.2.3

| private Private accessibility. 13.2.1

Page 92

The IL Assembly Language Programmers' Reference PDC Release

| privatescope Privatescope
accessibility.

13.2.1

| public Public accessibility. 13.2.1

| rtspecialname Special treatement by
runtime.

13.2.4

| specialname Special name for other
tools.

13.2.4

| static Field is a static field. 13.2.2

13.2.1 Accessibility Information
The accessibility attributes are assembly, famandassem, family, famorassm, private,
privatescope and public. These attributes are exclusive. The default is privatescope.
Accessibility attributes are described in section 6.3. privatescope is the most restrictive
attribute and specifies that the field cannot be accessed unless the field definition token is
provided.

13.2.2 Field Contract Attributes
Method contract attributes are initonly, literal, static and notserialized. These attributes
may be combined. Only static fields may be literal.

Static specifies that the field is associated with the type itself rather than with an instance
of the type, which is true for instance variables. Thus, the field can be accessed without
having an instance of a class, e.g. by static methods. As an effect of this static, this field
is shared between all instances of a class and any modification of this field will affect all
instances.

Initonly fields may only be mutated inside of a (class or instance) constructor. Once the
constructor exits, initonly fields behave like constants. This feature may be used to
initalize constants, which have values that cannot be computed at compile time.

Notserialized specifies that this field is not serialized when an instance of this class is
serialized (see section 7.1.1.5).

literal specifies that this field represents a constant value. literal fields do not have any
other purpose than for debugging. Literal fields become part of the metadata but cannot
are not added as variables to the name space of a class. Thus, they cannot be accessed by
the code. literal fields may be assigned a value by using the <initField> syntax (see
section 13).

13.2.3 Interoperation Attributes
The attribute pinvokeimpl is used for interoperation with COM+ 1.x and classical COM
applications. Pinvokeimpl specifies that the field is defined and shall be imported from
an unmanaged environment in the specified dll with the specified export name. (see also
13.4.2).

The attribute marshal is used for marshalling the field to a native type whenever it is
used by unmanaged code and marshalling it back to the managed form such that it can be

Page 93

The IL Assembly Language Programmers' Reference PDC Release

continue to be used by managed code. This feature is also used for interoperation with
COM+ 1.x and classical COM.

13.2.4 Other Attributes
The attribute rtspecialname indicates that the field name shall be treated in a special way
by the runtime.

In contrast to respecialname, specialname indicates that the field name special meaning
to some tools.

13.3 Global Fields
The use of metadata allows the static data to be significantly more self-describing, since
the metadata associates name and type information with it. Some forms of layout
(overlapping static areas, as in FORTRAN COMMON and EQUIVALENCE) will be
hard to describe, but the metadata is capable of describing arbitrary formats provided they
do not contain embedded references to managed objects.

In the NGWS model, there are at least three kinds of static fields:

1. The existing NGWS SDK static fields. Space for these is allocated and
initialized (zeroed/nulled) by the NGWS SDK class loader.

2. Static fields that represent data laid out within the same PE file. The metadata
for these fields contains an additional RVA field that specifies where in the
image the static variable is located. The NGWS class loader neither allocates nor
initializes the space.

CLS: There is no requirement to consume or emit these

3. Static fields that represent unmanaged data laid out in and exported by another
PE file via unmanaged DLL export mechanism. The metadata for these fields
contains both the name of the PE file in which the data resides as well as the
name by which it was exported from that file. The NGWS class loader neither
allocates nor initializes the space.

CLS: There is no requirement to consume or emit these

In all cases, a type initializer method can be used to update the values of static fields prior
to the first attempt to access them. The definition of a static field can be marked with
Custom Attributes (to be defined post-V1) to indicate section placement, padding, etc.

13.3.1 Initializing Static Data
Many languages that support static data (i.e. variables that have a lifetime that is the
entire program) provide for a means to initialize that data before the program begins
running. There are three common mechanisms for doing this, and each is supported in
the NGWS SDK.

13.3.1.1 Data Known at Link Time
When the correct value to be stored into the static data is known at the time the program
is linked (or compiled for those languages with no linker step), the actual value can be
stored directly into the PE file, typically into the .data area (see section 13.4). References

Page 94

The IL Assembly Language Programmers' Reference PDC Release

to the variable are made directly to the location where this data has been placed in
memory, using the OS supplied fix-up mechanism to adjust any references to this area if
the file loads at an address other than the one assumed by the linker.

In the NGWS SDK, this technique can be used directly if the static variable has one of
the primitive numeric types or is a value type with explicit class layout and no embedded
references to managed objects. In this case the data is laid out in the .data area as usual
and the static variable is assigned a particular RVA (i.e. offset from the start of the PE
file) using an appropriate call into the (managed “reflection emit” or unmanaged)
metadata APIs.

This mechanism, however, does not interact well with the NGWS SDK notion of an
application domain. An application domain is intended to isolate two applications
running in the same OS process from one another by guaranteeing that they have no
shared data. Since the PE file is shared across the entire process, any data accessed via
this mechanism is visible to all application domains in the process, thus violating the
application domain isolation boundary.

13.3.1.2 Data Known at Load Time
When the correct value is not known until the PE file is loaded (for example, if it contains
values computed based on the load addresses of several PE files) it is possible to supply
arbitrary code to run as the PE file is loaded and while the OS holds a process-wide lock.

 This mechanism, while available in the NGWS SDK, is strongly discouraged. The
details are provided in the File Format specification.

13.3.1.3 Data Known at Run Time
When the correct value cannot be determined until class layout is computed, the user
must supply code as part of a type initializer to initialize the static data. The guarantees
about class initialization are covered under Topic 6. As will be explained below, global
statics are modeled in the NGWS SDK as though they belonged to a class, so the same
guarantees apply to both global and class statics.

Because the layout of managed classes need not occur until a class is first referenced, it is
not possible to statically initialize managed classes by simply laying the data out in the
PE file. Instead, there is a class initialization process that proceeds in three steps:

1. All static variables are zeroed.

2. Any static that has been specially marked in the metadata to be initialized with a
constant managed string or primitive numeric type is initialized by the EE.

3. The user-supplied class initialization procedure, if any, is invoked as described in
Topic 6.

Within a class initialization procedure there are several techniques:

- Generate explicit code that stores constants into the appropriate fields of the
static variables. For small data structures this can be efficient, but it requires that
the initializer be JITted, which may prove to be both a code space and an
execution time problem.

- Box value types. When the static variable is simply a boxed version of a
primitive numeric type or a value type with explicit layout, introduce an
additional static variable with known RVA that holds the unboxed instance and
then simply use the IL box instruction to create the boxed copy.

Page 95

The IL Assembly Language Programmers' Reference PDC Release

- Create a managed array from a static native array of data. The NGWS SDK
base class library will supply a method that can be used to convert a native array
of primitive numeric types or value types with explicit layout and no embedded
object references into a managed array. The values are stored as static data at a
known RVA.

- Default initialize a managed array of a value type. The NGWS SDK base class
library will provide a method that will call the default constructor (or zero the
storage if there is no default constructor) for every element of an array of
unboxed value types.

- Use Base Class Library deserialization. The NGWS SDK base class library
provides serialization and deserialization services. An object can be converted to
a serialized form, stored in the .data section and accessed using a static variable
with known RVA of type “native array of 8-bit unsigned integers”. The
corresponding deserialization mechanism can then be called in the class
initializer.

13.3.2 Unmanaged Thread-local Storage
There are two mechanisms for dealing with thread-local storage: an unmanaged
mechanism and a managed mechanism. The unmanaged mechanism has a number of
restrictions which are carried forward directly into the NGWS SDK. For example, the
amount of thread local storage is determined when the PE file is loaded and cannot be
expanded. The amount is computed based on the static dependencies of the PE file,
DLLs that are loaded as a program executes cannot create their own thread local storage
through this mechanism. The managed mechanism, which does not have these
restrictions, is described elsewhere.

Each PE file has a particular section whose initial contents are copied whenever a new
thread is created. There is a particular native code sequence that can be used to locate the
start of this section for the current thread. NGWS SDK respects this mechanism. That is,
when a reference is made to a static variable with a fixed RVA in the PE file and that
RVA is in the thread-local section of the PE, the native code generated from the IL will
use the thread-local access sequence.

This has two important consequences:

- A static variable with a specified RVA must reside entirely in a single section of
the PE file. The RVA specifies where the data begins and the type of the variable
specifies how large the data area is.

- When a new thread is created it is only the data from the PE file that is used to
initialize the new copy of the variable. There is no opportunity to run the class
initializer. For this reason it is probably wise to restrict the use of unmanaged
thread local storage to the primitive numeric types and value types with explicit
layout that have a fixed initial value and no class initializer.

13.4 Embedding Data in a PE File
There are several ways to declare a data field that is stored in a PE file. In all cases, the
.data directive is used.

Data can be embedded in a PE file by using the .data directive at the top-level.

<decl> ::= Section

Page 96

The IL Assembly Language Programmers' Reference PDC Release

 .data <datadecl> 13.4

| … 4.5

Data may also be declared as part of a class:

<classDecl> ::= Section

 .data <datadecl> 13.4

| … 7.2

Yet another alternative is to declare data inside a method:

<methodDecl> ::= Section

 .data <datadecl> 13.4

| … 12.2

In all cases, the data should be declared with the entity in which it is used. E.g., data used
only by a method should be delared in that method. Uneffected by where the data is
declared, it is accessible anywhere inside the assembly.

13.4.1 Data Decleration
The data declaration of a .data directive contains the optional attribute tls to specify
thread local storage. Further, it contains an optional data label and the body which defines
the actual data. The label will be almost always used.

<dataDecl> ::= [tls] [<dataLabel> =] <ddBody>

The body consists either of one data item or a list of data items in braces. A list of data
items is similar to an array.

<ddBody> ::=

 <ddItem>

| { <ddItemList> }

A list of items consists of any number of items:

<ddItemList> ::= <ddItem> [, <ddItemList>]*

A data item declares the type of the data and provides the data in parentheses. If an array
needs to be specified, the size of the array is provided in brackets, after the initialization
value for each item of the array.

<ddItem> ::=

 & (<id>)

| bytearray (<bytes>)

| char * (<QSTRING>)

Page 97

The IL Assembly Language Programmers' Reference PDC Release

| float32 [(<float64>)] [[<int32>]]

| float64 [(<float64>)] [[<int32>]]

| int8 [(<int8>)] [[<int32>]]

| int16 [(<int16>)] [[<int32>]]

| int32 [(<int32>)] [[<int32>]]

| int64 [(<int64>)] [[<int32>]]

| wchar * (<QSTRING>)

13.4.2 Accessing Data
The data can be accessed through a static variable. A static variable, either at the top level
or inside a class needs to be declared at the position of the data. The syntax for this is as
follows:

<fieldDecl> ::= <fieldAttr>* <type> <id> at <dataLabel>

This is similar to a regular <fieldDecl>. After the at the label pointing to the location at
which the data is stored is inserted. One of the field attributes must be static.

The data can then be accessed through the static variable. The variable may be accessed
also by other modules or assemblies.

To export the data to the unmanaged world, the static variable needs to appear in a type
that is exported.

Page 98

The IL Assembly Language Programmers' Reference PDC Release

14 Properties
Portperties are similar to fields. However, instead of being just a field, properties have a
list of methods associated with them to retrieve and mutate fields. It is important to
understand that a property itself is not a field.

Porperties are always associated with a field that contains the data. In addition they have
a get and set method, which retrieve or mutate the property, respectively. In higher level
languages, assignment to a property might invoke the set method of the property. On the
IL level, the invocation needs to be specified explicitly, similar to a method call.
Properties may also have other methods assoiated with them.

When a property is created, a field for it is created automatically.

A property is very similar to having a separte class for a field, that defines its setters and
getters and using a reference to an instance of the class, instead of storing the value of the
field. However, the use of properties makes this object oriented approach of managing
data easier and allows the definition of the needed methods in the same place as the field.

A property is declared by the using the .property directive, followed by a property head
and property declarations in braces. Proprties are defined only inside of classes.

<classDecl> ::= Section

 .property <propHead> { <PropDecl>* } 14

| … 7.1

14.1 Property Head
The property head may contain the keywords specialname or rtspecialname.
specialname marks the name of the property for other tools, while rtspecialname marks
the name of the property as special for the runtime.

Similar to methods, a call kind is specified (see section 12.1.2), a type and a name, and
finally its prarameters in parentheses.

<propHead> ::=

 [specialname|rtspecialname]* <callKind> <type> <id> (<signature>)

The <callKind>, <type>, and parameters of a property have to be the same as for the get
method of the property.

14.2 Property Declarations
A property may contain any number of property declarations in its body. The following
table shows these and provides short descriptions for them:

<propDecl> ::= Description Section

 .backing <type> <id> Backing field of the
property. For
documentation
purposes.

14.2

Page 99

The IL Assembly Language Programmers' Reference PDC Release

| .custom <customDecl> Custom attribute. 14.2

| .get <callConv> <type> [<typeSpec> ::]

<methodName> (<signature>)

Specifies the getter
for the property.

14.2

| .other <callConv> <type> [<typeSpec> ::]

<methodName> (<signature>)

Specifies the another
method for the
property.

14.2

| .set <callConv> <type> [<typeSpec> ::]

<methodName> (<signature>)

Specifies a setter for
the property.

14.2

| <externSourceDecl> .line or #line 3.7

As described above, .backing specifies the field in the class that is associated with this
property, by its type and name. This is for documentation purposes only, and may be
omitted.

.get specifies the get method for this property, providing a method specification. The
method needs to be defined in the type specified by <typeSpec> or in this class. Only one
get method may exist. The <callKind>, <type> and parameters for a the get method have
to be the same as in the property declaration. The get method should take parameters only
if the field is an indexed field. The get method should return the value of the property.

.set specifies the set method for this property, similar to .get. Only one set method may
exist. The return type of set should be void. The set method should have the same
<callKind> as the property. It will take the new parameter as a value and may take
additional arguments for indexed fields.

.other can be used to specify several other methods associated with this property.

In addition, custom attributes or source line declarations may be specified.

Page 100

The IL Assembly Language Programmers' Reference PDC Release

15 Events
The NGWS SDK supports the event model of programming. Special event handlers may
be provided that handle Windows and custom events.

Events are declared inside classes with the .event directive. Following the directive is an
event head and any number of event declarations.

<classDecl> ::= Section

 .event <eventHead> { <EventDecl>* } 15

| … 7.1

15.1 Event Head
The event head may contain the keywords specialname or rtspecialname. specialname
marks the name of the property for other tools, while rtspecialname marks the name of
the event as special for the runtime.

Further, the event head contains the type and a name for the event.

<eventHead> ::=

 [specialname | rtspecialname]* [<typeSpec>] <id>

15.2 Event Declaration
The event declaration has the following syntax:

<eventDecl> ::= Description Section

 .addon <callConv> <type> [<typeSpec> ::]

<methodName> (<signature>)

AddOn method
for event.

15.2

| .custom <customDecl> Custom
attribute.

15.2

| .fire <callConv> <type> [<typeSpec> ::]

<methodName> (<signature>)

Fire method
for event.

15.2

| .other <callConv> <type> [<typeSpec> ::]

<methodName> (<signature>)

Other
method.

15.2

| .removeon <callConv> <type> [<typeSpec> ::]

<methodName> (<signature>)

RemoveOn
method for
method.

15.2

| <externSourceDecl> .line or #line 3.7

The AddOn method is called by an object that wants to be notified when this event
occurs. The RemoveOn method is called by an object that does not want to be notified
anymore by when this event occurs.

The Fire method is called to fire this event and notifiy all registerd objects.

Page 101

The IL Assembly Language Programmers' Reference PDC Release

16 Declarative Security
The NGWS SDK has a sophisticated security system. Programs may specify what
permission they need in order to run correctly. However, this feature is currently not
available for IL assembly code. It might or might not be available in the final product or a
future version.

The following grammar is for round tripping use only. It will be used by ildasm to
display code compiled from other languages. However, it is not recommended using the
following directives with the current version of ilasm.

<securityDecl> ::=

 .capability <secAction> = (<bytes>)

| .capability <secAction> <SQSTRING>

| .permission <secAction> <className> (<nameValPairs>)

In .permission, <className> specifies the permission class and <nameValPairs> show
the settings. In .capability the bytes show the serialized version of the security settings.

<secAction> ::= Description

 assert Assert permission so callers don’t need.

| demand Demand permission of all caller.

| deny Deny permissions so checks will fail.

| inheritcheck Demand permission of a subclass.

| linkcheck Demand permission of caller.

| permitonly Reduce permissions so check will fail.

| prejitdeny Persisted grant set at prejit time.

| prejitgrant Persisted denied set at prejit time.

| reqmin Request minimum permissions to run.

| reqopt Request optional additional permissions.

| reqrefuse Refuse to be granted these permissions.

| request Hint that permission may be required.

<nameValPairs> ::= <nameValPair> [, <nameValPair>]*

<nameValPair> ::= <SQSTRING> = <SQSTRING>

Page 102

The IL Assembly Language Programmers' Reference PDC Release

17 Custom Attributes
Custom attributes add user-defined annotations to the metadata. Custom attributes allow
an instance of a type to be stored with any element of the metadata. This mechanism can
be used to store application specific information at compile time and access it either at
runtime or when another tool reads the metadata. While any user-defined type can be
used as an attribute it is expected that most attributes will be instances of types whose
parent is System.Attribute. The NGWS SDK predefines some attribute types and uses
them to control runtime behavior. Some languages predefine attribute types to represent
language features not directly represented in the VOS. Users or other tools are welcome
to define and use additional attribute types.

Custom attributes are declared using the directive .custom. Follwed by this directive is a
custom attribute type, and either an optional <bytes> in parentheses or a string as shown
by the following grammar:

<customDecl> ::=

 <customAttrType> [= (<bytes>) | = <QSTRING>]

A custom attribute type is either a type specification or a calling convention, followed by
a type, followed by an optional type specification and by a method name and parameters
in parentheses.

<customAttrType> ::=

 <callConv> <type> [<typeSpec> ::] <methodName> (<signature>)

| <typeSpec>

There are fundamentally three kinds of attributes that can be created:

- Those that are specified with only a type for the attribute. The type is used simply
to identify the attribute, and there is no value specified for the attribute itself.
These can serve as simple flags, where the existence of the attribute is sufficient
to convey all the necessary information. These are specified by providing a
typeSpec for the customAttrType and providing no additional data. These
attributes are not CLS compliant.

- Similar to the above, but providing data along with the type. These are specified
using a typeSpec for the customAttrType and providing arbitrary additional.
These, too, are not CLS compliant.

- Providing a type initializer and an encoded value that specifies the arguments to
be passed to that initializer and the names and values of specific fields that should
be initialized. These are specified using the more complex form of
customAttrType to specify the type initializer (named .ctor) and the syntax
beginning with = to specify the encoding of the value according to the separate
specification. These are the only form that is CLS compliant.

While it is possible to use the assembler to create a custom attribute that has a method
reference other than a constructor, the meaning of this is unspecified and it should be
avoided.

Page 103

The IL Assembly Language Programmers' Reference PDC Release

17.1 Custom Attribute Usage: CLS Conventions
In order to allow languages to provide a consistent view of custom attributes across
language boundaries, a set of conventions is very helpful. The Base Class Library
provides support for several different conventions defined by the CLS:

- Attributes must be instances of the class System.Attribute, which provides static
methods to test whether attributes exist on a metadata element and retrieve their
value if so.

- The use of a particular attribute class may be restricted in various ways by placing
an attribute on the attribute class. The System.AttributeUsageAttribute is used
to specify these restrictions:

- What kinds of metadata (types, methods, assemblies, etc.) may have the attribute
applied to them. By default, instances of an attribute class can be applied to any
metadata item.

- Multiple instances of the attribute class can be applied to a given piece of
metadata. By default, only one instance of any given attribute class can be applied
to a single metadata item.

- Do not inherit the attribute when applied to a type. By default, any attribute
attached to a type should be inherited to types that derive from it. If multiple
instances of the attribute class are allowed, the inheritance performs a union of the
attributes inherited from the parent and those explicitly applied to the child type.
If multiple instance are not allowed, then an attribute of that type applied directly
to the child overrides the attribute supplied by the parent.

Notice that, since these are CLS rules and not part of the VOS itself, tools are required to
specify explicitly the custom attributes they intend to apply to any given metadata item.
That is, compilers or other tools that generate metadata must implement the “allow
multiple” and “inherit” rules. The Execution Engine and Reflection will not supply
attributes automatically.

17.2 Attributes Used by the Runtime
The Metadata engine implements two sorts of Custom Attribute, called (genuine) Custom
Attributes, and pseudo Custom Attributes. In the remainder of this document, we’ll
abbreviate these terms to CA and PCA. Both CAs and PCAs are “handed over” to
Metadata via the DefineCustomAttribute method. But they are treated differently, as
follows:

- a CA is stored directly into the metadata. The “blob” which holds its defining data
is not checked or parsed. That “blob” can be retrieved later

- a PCA is recognized because its name is one of a handful on Metadata’s hard-
wired list of PCAs. The engine parses its “blob” and uses this information to set
bits and/or fields within the Metadata tables. The engine then totally discards the
“blob.” So you cannot retrieve that ‘blob’ later – it doesn’t exist

PCAs therefore serve to capture user “directives,” using the same familiar syntax the
compiler provides for regular CAs – but these ‘directives’ are then stored into the more
space-efficient form of metadata tables. Tables are also faster to check at runtime than
full-bloodied (genuine) CAs. An example of a PCA is the SerializableAttribute – if the
compiler calls DefineCustomAttribute with this PCA as an argument, the Metadata
engine simply sets the tdSerializable bit on the target class definition.

Page 104

The IL Assembly Language Programmers' Reference PDC Release

Many CAs are invented by higher layers of software – Metadata stores them, and returns
them, without knowing, or caring, what they “mean.”. But all PCAs, plus a handful of
regular CAs are of special interest to compilers and to the Runtime. An example of such
“distinguished” CAs is System.Reflection.DefaultMemberAttribute. This is stored in
metadata as a regular CA “blob,” but Reflection uses this CA when called to Invoke the
default member (property) for a Class.

The following subsections lists all of the PCAs and “distinguised” CAs – where
“distinguished” means that the Runtime and/or Compilers pay direct attention to them.

Note that it is a Frameworks design guideline that all CAs should be named to end in
“Attribute” (Neither Metadata or Runtime check, or care, about this convention).

For further details on this long list of special CAs, consult the Base Class Library, or
appropriate specs in the area that each covers.

17.2.1 Pseudo Custom Attributes
The Metadata engine checks for the following CAs, as part of the processing for the
DefineCustomAttribute method. The check is solely on their name – for example
“DllImportAttribute” – their namespace is ignored. If a name match is found, the
Metadata engine parses the “blob” argument and sets bits and/or fields within the
Metadata tables. It then throws the “blob” on the floor (this is the definition of a PCA –
see above). All these are attributes can be found in System.

Attribute Description

NonSerializedAttribute

SerializableAttribute

17.2.2 Attributes Defined by the CLS
The CLS specifies certain custom attributes and requires that conformant languages
support them. These attributes are located under System.

Attribute Description

AttributeUsageAttribute Used to specify how an attribute is intended to be used.

ObsoleteAttribute Indicates that an element is not to be used.

CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant
through an instance field on the attribute object.

17.2.3 Custom Attributes for JIT Compiler and

Debugger
The CAs that control runtime behavior of the JIT-compiler and the debugger can be
found on System.Diagnostics.

Page 105

The IL Assembly Language Programmers' Reference PDC Release

Attribute Description

DebuggableAmbivalentAttribute

DebuggableAttribute

DebuggerHiddenAttribute

DebuggerStepThroughAttribute

17.2.4 Custom Attributes for Reflection
CA in System.Reflection that is used by Reflection’s Invoke call – it invokes the
property for the Type defined in this CA:

Attribute Description

DefaultMemberAttribute Defines the member of a type that is the default member used by
InvokeMember.

17.2.5 Custom Attributes for Remoting
CAs that affect behavior of remoting can be found in System.Runtime.Remoting.

Attribute Description

ContextAttribute Root for all context attributes.

OneWayAttribute

Synchronization

ThreadAffinity Refinement of Synchronized Context.

17.2.6 Custom Attributes for Security
The following CAs affect the security checks performed upon method invocations at
runtime.

The CAs in the following table can be found in System.Security.

Attribute Description

DynamicSecurityMethodAttribute

SuppressUnmanagedCodeSecurityAttribute

UnverifiableCodeAttribute

The CAs in this table can be found in System.Security.Permissions.

Attribute Description

CodeAccessSecurityAttribute This is the base attribute class for declarative security using

Page 106

The IL Assembly Language Programmers' Reference PDC Release

Attribute Description

custom attributes.

EnvironmentPermissionAttribute Custom attribute class for declarative security with
EnvironmentPermission.

FileDialogPermissionAttribute Custom attribute class for declarative security with
FileDialogPermission.

FileIOPermissionAttribute Custom attribute class for declarative security with
FileIOPermission.

IsolatedStorageFilePermissionAttribute Custom attribute class for declarative security with
IsolatedStorageFilePermission.

IsolatedStoragePermissionAttribute Custom attribute class for declarative security with
IsolatedStoragePermission.

PermissionSetAttribute Allows declarative security actions to be performed against
permission sets rather than individual permissions.

PrincipalPermissionAttribute A PrincipalPermissionAttribute can be used to declaratively
demand that users running your code belong to a specified
role or have been authenticated.

PublisherIdentityPermissionAttribute Custom attribute class for declarative security with
PublisherIdentityPermission.

ReflectionPermissionAttribute Custom attribute class for declarative security with
ReflectionPermission.

RegistryPermissionAttribute

SecurityAttribute This is the base attribute class for declarative security from
which CodeAccessSecurityAttribute is derived.

SecurityPermissionAttribute

SiteIdentityPermissionAttribute Custom attribute class for declarative security with
SiteIdentityPermission.

StrongNameIdentityPermissionAttribute Custom attribute class for declarative security with
StrongNameIdentityPermission.

UIPermissionAttribute Custom attribute class for declarative security with
UIPermission.

ZoneIdentityPermissionAttribute Custom attribute class for declarative security with
ZoneIdentityPermission.

17.2.7 Custom Attributes for TLS
A CA that denotes a TLS (thread-local storage) field can be found in System.

Attribute Description

ThreadStaticAttribute Provides for type member fields that are relative for the thread.

Page 107

The IL Assembly Language Programmers' Reference PDC Release

17.2.8 Custom Attributes for the Assembly Linker
The following CAs are used by the al tool to transfer information between modules and
assemblies (they are temporarily ‘hung off’ a TypeRef to a class called
AssemblyAttributesGoHere) then merged by al and ‘hung off’ the assembly. These
attributes can be found in System.Runtime.CompilerServices.

Attribute Description

AssemblyCultureAttribute

AssemblyDelaySignAttribute

AssemblyKeyFileAttribute

AssemblyKeyNameAttribute

AssemblyOperatingSystemAttribute

AssemblyProcessorAttribute

AssemblyVersionAttribute

17.2.9 Attributes Provided for Language Interop
There are a number of custom attributes for interoperation with COM 1.x and classical
COM. These attributes are located under System.Runtime.InteropServices in
the class hierarchy. More information can also be found in Base Class Library
specification.

These attributes are shown in the following table.

Attribute Description

ComAliasNameAttribute Applied to a parameter or field to indicate the COM alias for the
parameter or field type.

ComConversionLossAttribute

ComEmulateAttribute Used on a class to indicate that the class is an emulator class for
another COM+ class.

ComImportAttribute Used to indicate that a class or interface definition was imported from
a COM type library.

ComRegisterFunctionAttribute Used on a method to indicate that the method should be called when
the assembly is registered for use from COM.

ComSourceInterfacesAttribute Identifies the list of interfaces that are sources of events for the class.

ComUnregisterFunctionAttribute Used on a method to indicate that the method should be called when
the assembly is unregistered for use from COM.

ComVisibleAttribute Can be applied to an individual type or to an entire assembly to
control COM visibility.

DispIdAttribute Custom attribute to specify the COM DISPID of a Method or Field.

DllImportAttribute Used to indicate that a method is implemented as a P/Invoke method
in unmanaged code.

FieldOffsetAttribute Used along with the System.Runtime.InteropServices.

Page 108

The IL Assembly Language Programmers' Reference PDC Release

Attribute Description

StructLayoutAttribute.LayoutKind set to Explicit to indicate he
physical position of each field within a class.

GuidAttribute Used to supply the GUID of a class, interface or an entire type library.

HasDefaultInterfaceAttribute Used to specify that a class has a COM default interface.

IdispatchImplAttribute

ImportedFromTypeLibAttribute Custom attribute to specify that a module is imported from a COM
type library.

InAttribute Used on a parameter or field to indicate that data should be marshaled
in to the caller.

InterfaceTypeAttribute Controls how a managed interface is exposed to COM clients
(IDispatch derived or IUnknown derived).

MarshalAsAttribute This attribute is used on fields or parameters to indicate how the data
should be marshaled between managed and unmanaged code.

MethodImplAttribute

NoComRegistrationAttribute Used to indicate that an otherwise public, COM-creatable type shuld
not be registered for use form com applications.

NoIDispatchAttribute This attribute is used to control how the class responds to queries for
an IDispatch Interface.

OutAttribute Used on a parameter or field to indicate that data should be marshaled
out from callee back to caller.

PreserveSigAttribute Used to indicate that Hresult/retval signature transformation that
normally takes place during Interop calls should be suppressed.

ProgIdAttribute Custom attribute that allows the user to specify the prog ID of a
COM+ class.

StructLayoutAttribute Typically the runtime controls the physical layout of the data
members of a class.

TypeLibFuncAttribute Contains the FUNCFLAGS that were originally imported for this
function from the COM type library.

TypeLibTypeAttribute Contains the TYPEFLAGS that were originally imported for this type
from the COM type library.

TypeLibVarAttribute Contains the VARFLAGS that were originally imported for this
variable from the COM type library.

Page 109

The IL Assembly Language Programmers' Reference PDC Release

18 Exception Handling
This section is a brief summary of the NGWS SDK exception handling. More
information can be found in the Architecture specification.

The EE supports an exception handling model based on the idea of exception objects and
protected blocks of code. When an exception occurs, an object is created to represent the
exception. All exceptions objects are boxed instances of some subclass of
System.Exception. Users can create their own exception classes by subclassing
System.Exception.

A protected block, called <sehBlock> in the grammar may appear in a method as shown
by the following excerpt:

<methodDecl> ::= Section

 <sehBlock> 18

| … 12.2

A protected block consists of a try block, and one or more handlers, called <sehClause>
in the grammar.

<sehBlock> ::=

 <tryBlock> <sehClause> [<sehClause>*]

18.1 Try Block
The try block contains the instructions that may throw an exception which needs to be
handled. Try block are declared by the .try directive. There are two ways to define a try
block.

The first way simply uses a scope block (see section 12.5) after .try directive that
contains the instructions to be protected.

In the second way, the instructions that shall be protected need to be enclosed by two
labels. The first label is defined at the first instruction to be protected, while the second
label is defined at the first instruction that does not need to be protected, i.e. after the last
instruction that needs to be protected.

There is yet another way permitted by the syntax, but only to be used by disassemblers
for enabling round tripping of the code. Instead of the labels, the addresses the labels
represents may be used.

The three ways are summarized in the grammar below:

<tryBlock> ::= Descriptions

 .try <int32> to <int32> For disassembler only

| .try <label> to <label> Second label is exclusive, pointing to first instruction after
the try block; both labels must be already defined in the
preceding code

| .try <scopeBlock> <scopeBlock> contains the instructions to be protected

Page 110

Architecture.doc

The IL Assembly Language Programmers' Reference PDC Release

18.2 Handlers
There are four kinds of handlers for protected blocks. A single protected block can have
exactly one handler associated with it:

1. A finally handler which must be executed whenever the block exits, regardless of
whether that occurs by normal control flow or by an unhandled exception.

2. A fault handler which must be executed if an exception occurs, but not on completion
of normal control flow.

3. A type-filtered handler (catch) that handles any exception of a specified class or any
of its sub-classes.

4. A user-filtered handler (filter) that runs a user-specified set of IL instructions to
determine whether the exception should be ignored (i.e. execution should resume),
handled by the associated handler, or passed on to the next protected block.

The handlers are specified by the following grammar.

<sehClause> ::=

 catch <className> <handlerBlock>

| fault <handlerBlock>

| filter <int32> <handlerBlock>

| filter <label> <handlerBlock>

| finally <handlerBlock>

The <className> after catch specifies the class of exception to be caught.

The <label> in the filter clause specifies the code that checks the exception. The integer
is used only for round tripping purposes.

When an exception is thrown, the execution engine will first check for a filter clause. The
filter code specifies whether the method wishes to handle the exception. If yes, the
execution engine will proceede with the corresponding type-filtered handler. Otherwise,
the next method in the call stack will be investigated, and so on. If no method that wishes
to handle the exception can be found, the exception is dump to the default ouput.

Within the exception filter, code executes within the same context of the procedure that
caused the exception. In other words, all local variables contain the same values they
contained when the exception occurred.

The following grammar shows a handler block:

<handlerBlock> ::= Description

 handler <int32> to <int32> For dissassembler only

| handler <label> to <label> Second label is exclusive, pointing to first instruction
after the handler block;both labels must be already
defined in the preceding code

| <scopeBlock> <scopeBlock> contains the instructions of the handler
block

In the above grammar, the labels enclose the instructions of the handler block.
Alternatively, the handler block is just a scope block.

Page 111

The IL Assembly Language Programmers' Reference PDC Release

The option with the integers is inteded for the round tripping use only.

18.3 Throwing an Exception
To throw an exception the instruction throw is used. To throw the same exception from a
catch block the rethrow instruction is used.

A protected block may be left using the leave instruction. A branch may not be used to
leave a protected block. When a protected block is left, the corresponding finally clause
will be automatically executed. The leave instruction may appear in either a try block or
a catch block.

A filter block may be exited with the endfilter instruction only. The endfilter instruction
expects an argument on the stack that defines whether this method will handle the
exception or not. The two possible values are:

- EXCEPTION_CONTINUE_SEARCH (= 0): Indicates that the handler cannot
process this exception and that the execution engine should offer the exception to
the next handler on the list.

- EXCEPTION_EXECUTE_HANDLER (= 1): Indicates that the handler can
process the exception and that the execution engine should halt the search for any
other handlers and use the code at this handler’s handler offset to process the
exception.

A finally block may be exited only with a endfinally instruction.

Page 112

The IL Assembly Language Programmers' Reference PDC Release

19 IL Instructions

19.1 Overview
See the separate IL Instruction Set specification for details.

19.2 Opcodes by Category
See the Architecture specification for details on exceptions, rules for valid IL sequences
and verifiable code. Note that all opcodes can throw the general
System.ExecutionEngineException.

19.2.1 General Instruction Syntax
The general instruction syntax is as follows:

<instr> ::= <instruction>[.ovf][.un]

<instruction> specifies the desired instruction. The suffix .ovf specifies that the
instruction checks for overflow. The suffix .un specifies that the instruction treats its
operands on the stack as unsigned values. The optional suffixes can only be used with
specific instructions as shown in the following sections.

Arguments may be passed to instructions in two ways (possibly combined). One way is
using the stack. Another way is as a direct argument, which is assembled as a part of the
instruction.

19.2.2 Numeric and Logical Operations
These operations deal with the top one or two items on the evaluation stack, typically
popping their arguments and pushing a result. See the Architecture specification for
details on exceptions, rules for valid IL sequences and verifiable code. In general, valid
IL requires that the types of the operand(s) are numeric, and for binary operations they
must be of the same basic numeric type (I4, I8, or float). Many operations in this category
may throw System.ArithmeticException.

Pointers (type & and *) are considered to be unsigned integer values representing byte
addresses. Thus, for example, subtraction of two pointers returns an answer that has an
integer type.

19.2.2.1 Unary Operations
The top of the evaluation stack must be a numeric type (integer type for not) and the
result is of the same type.

neg arithmetic negation (i.e. subtract from zero).
Not bitwise logical complement.

19.2.2.2 Binary Numeric Operations, No Overflow Check
The following table summarizes the result type based on the type of the top two items on
the evaluation stack. A op B (applies to all instructions unless specific instructions are

Page 113

Architecture.doc
Architecture.doc
ILinstrset.doc

The IL Assembly Language Programmers' Reference PDC Release

specified in the table). The shaded uses are not verifiable, while items marked “-“
indicate incorrectly formed IL sequences, as are any uses where either operation is an
object reference. If only a subset of instructions are permitted, the valid instructions are
shown in the corresponding cell.

B’s type

A’s type

I4 I8 I F &(by-ref) *
(transient
pointer)

I4 I4 - I - & (add) * (add)

I8 - I8 - - - -

I I - I - & (add) * (add)

F - - - F - -

& &(add, sub) - &(add, sub) - I (sub) I (sub)

* * (add, sub) - * (add, sub) - I (sub) I (sub)

add signed addition, ignore overflow
div signed division, may throw System.DivideByZeroException
mul signed multiplication, ignore overflow
rem signed remainder, may throw System.DivideByZeroException
sub signed subtraction, ignore overflow

19.2.2.3 Binary Integer Operations, No Overflow Check
These operate only on integer types. The div.un and rem.un instructions treat their
arguments as unsigned integers and produce the bit pattern corresponding to the unsigned
result. The EE makes no distinction between signed and unsigned integers on the stack.
The shl, shr, and shr.un instructions return the same type as their first operand and their
second operand must be of type U. All items marked “-“ indicate invalid IL sequences,
while the others are verifiable. If only a subset of instructions are permitted, the valid
instructions are shown in the corresponding cell. Use of any other data types for either
operand is invalid IL.

I4 I8 I

I4 I4 - I

I8 - I8 -

I I - I

and bitwise logical AND
div.un unsigned division, may throw System.DivideByZeroException
or bitwise logical OR
rem.un unsigned remainder, may throw System.DivideByZeroException
shl left shift
shr right shift
shr.un unsigned right shift
xor bitwise logical XOR

Page 114

The IL Assembly Language Programmers' Reference PDC Release

19.2.2.4 Operations with Overflow Checks
These operations generate a System.OverflowException exception if the result cannot
be represented in the target data type. This table shows the returned type given the two
operands on the top of the evaluation stack. The shaded uses are not verifiable, while
items marked “-” indicate invalid IL sequences. If only a subset of instructions are
permitted, the valid instructions are shown in the corresponding cell. These instructions
are also invalid if either operand is a floating point number or an object reference.

I4 I8 I & (by-ref) *
(transient
pointer)

I4 I4 - I &
add.ovf.un

*
add.ovf.un

I8 - I8 - - -

I I - I &
add.ovf.un

*
add.ovf.un

& &
add.ovf.un,
sub.ovf.un

- &
add.ovf.un,
sub.ovf.un

I
sub.ovf.un

I
sub.ovf.un

* *
add.ovf.un,
sub.ovf.un

- *
add.ovf.un,
sub.ovf.un

I
sub.ovf.un

I
sub.ovf.un

In the case of an overflow, the instructions below throw a System.OverflowException.

add.ovf signed addition
add.ovf.un unsigned addition
mul.ovf signed multiplication
mul.ovf.un unsigned multiplication
sub.ovf signed subtraction
sub.ovf.un unsigned subtraction

19.2.2.5 Comparison Operations
These operations compare the top two elements on the evaluation stack and push either a
4-byte zero for false or a 4-byte one for true. The following table summarizes legal
combinations of operands for these instructions. Items marked “” indicate that all
instructions are valid. Items marked “-” indicate invalid IL sequences. If only a subset of
instructions are permitted, the valid instructions are shown in the corresponding cell.

I4 I8 I F & O *

I4  -  - - - -

I8 -  - - - - -

I  -  - ceq - ceq

F - - -  - - -

& - - ceq -  (Note) -  (Note)

Page 115

The IL Assembly Language Programmers' Reference PDC Release

I4 I8 I F & O *

O - - - - - ceq, cgt,
cle.un

-

* - - ceq -  (Note) -  (Note)

Note: Except for ceq these combinations only make sense if both operands are known to be pointers
to elements of the same array.

Ceq compare for equality
cgt compare for greater than, signed
cgt.un compare for greater than, unsigned or unordered (floating point)
clt compare for less than, signed
clt.un compare for less than, unsigned

19.2.2.6 Conversions
These operations convert the top of the evaluation stack into the specified numeric type.
The result type is guaranteed to be representable as the data type specified as part of the
operation (i.e. the conv.u2 instruction returns a value that can be stored in a U2). The
stack, however, can only store values that are a minimum of 4 bytes wide.

A value on the stack that has type I is automatically converted by the runtime into the
destination type when it is stored to a location that is of type I4, I2 or I1. However, this
feature needs to be enjoyed with special care. Such a conversions might throw a
System.OverflowException. In order not to be confronted with surprises, compiler
writers and other developpers are strongly encouraged to use explicit type conversions in
every case. This will gurantee that the code does not cause unexpected behavior due to
implicit type conversions when executed on a 64 bit platform.

In the following table, the shaded uses are not verifiable, while items marked “-“ indicate
invalid IL sequences. If only a subset of instructions are permitted, the valid instructions
are shown in the corresponding cell. It is invalid IL for either operand to be an object
reference.

Output
Operand

I1/U1
I2/U2

I4/U4 I8 U8 I

I4 Truncate1 No-op Sign extend Zero extend Sign extend

I8 Truncate1 Truncate1 No-op No-op Truncate1

I Truncate1 Truncate1 Sign extend Zero extend No-op

F Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02

& (by-ref) - - - Stop GC
Tracking

-

* (transient
pointer)

- - - Zero extend -

Output
Operand

U All R Types & (by-ref)

I4 Zero extend To Float -

Page 116

The IL Assembly Language Programmers' Reference PDC Release

Output
Operand

U All R Types & (by-ref)

I8 Truncate1 To Float -

I No-op To Float -

F Trunc to 02 Change Precision3 -

& Stop GC Tracking - No-op

* No-op - Start GC Tracking

Note 1: “Truncate” means that the number is truncated (i.e. the higher-order bits are set to zero) to the
desired size. If the destination type is signed, the most-significant bit of the truncated value is then sign-
extended to fill the full output size. Thus, converting 257 (0x101) to I1 or U1 yields 1, but truncating 129
(0x81) to U1 yields 129 (0x81) while truncating it to I1 yields –126 (0xF...F81).

Note 2: “Trunc to 0” means that the floating point number will be converted to an integer by truncation
toward zero. Thus 1.1 is converted to 1 and –1.1 is converted to –1.

Note 3: Converts from the current precision available on the evaluation stack to the precision specified by
the instruction. If the stack has more precision than the output size the conversion is performed using the
IEEE 754 “round to nearest” mode to compute the low order bit of the result.

The general syntax for conv instructions is as follows:

<conv instruction> ::= conv.<to type> | conv.ovf.<to type>[.un]

<to type> specifies the type to which type the operand on top of the stack shall be
converted.

The optional suffix .ovf specifies that overflow checking is done before converting. A
System.OverflowException is thrown if the operand is not in the range permitted by
the destination type. The .ovf suffix cannot be used for floating point conversions.
Floating point conversions change the precision of the operand, or result in infinity if the
operand is too large (or negative infinity if the operand is too small) for the destination
type (i.e., in conversions from float64 to float32).

The optional suffix .un specifies that the operand shall be treated as an unsigned value.
As a consequence of this, using the .un suffix has a more restricive effect than just using
the .ovf suffix. A System.OverflowException will be thrown if the operand is negative
or outside the range permitted by the destination type. The .un suffix does not make
sense, and thus cannot be used, without the .ovf suffix. The exception is conv.r.un,
which converts only unsigned integers to a floating point numbers (of type F). conv.r.un
cannot be used to convert from one floating point type to another. The .un suffix cannot
be used with other floating type conversions.

The following is a complete list of all conv instructions:

conv.i convert to signed integer (4- or 8-byte depending on platform)
conv.i1 convert to signed 1 byte integer
conv.i2 convert to signed 2 byte integer
conv.i4 convert to signed 4 byte integer
conv.i8 convert to signed 8 byte integer
conv.ovf.i like conv.i, but may throw System.OverflowException

conv.ovf.i.un like conv.ovf.i, but does throw exception for negative values
conv.ovf.i1 like conv.i1, but may throw System.OverflowException

Page 117

The IL Assembly Language Programmers' Reference PDC Release

conv.ovf.i1.un like conv.ovf.i1, but does throw exception for negative values
conv.ovf.i2 like conv.i2, but may throw System.OverflowException

conv.ovf.i2.un like conv.ovf.i2, but does throw exception for negative values
conv.ovf.i4 like conv.i4, but may throw System.OverflowException

conv.ovf.i4.un like conv.ovf.i4, but does throw exception for negative values
conv.ovf.i8 like conv.i8, but may throw System.OverflowException

conv.ovf.i8.un like conv.ovf.i8, but does throw exception for negative values
conv.ovf.u like conv.u, but may throw System.OverflowException

conv.ovf.u.un like conv.ovf.u, but does throw exception for negative values
conv.ovf.u1 like conv.u1, but may throw System.OverflowException

conv.ovf.u1.un like conv.ovf.u1, but does throw exception for negative values
conv.ovf.u2 like conv.u2, but may throw System.OverflowException

conv.ovf.u2.un like conv.ovf.u2, but does throw exception for negative values
conv.ovf.u4 like conv.u4, but may throw System.OverflowException

conv.ovf.u4.un like conv.ovf.u4, but does throw exception for negative values
conv.ovf.u8 like conv.u8, but may throw System.OverflowException

conv.ovf.u8.un like conv.ovf.u8, but does throw exception for negative values
conv.r.un convert to system-specified floating point from unsigned integer
conv.r4 convert to IEEE 32-bit floating point
conv.r8 convert to IEEE 64-bit floating point
conv.u convert to unsigned integer (4- or 8-byte depending on platform)
conv.u1 convert to unsigned 1 byte integer
conv.u2 convert to unsigned 2 byte integer
conv.u4 convert to unsigned 4 byte integer
conv.u8 convert to unsigned 8 byte integer

19.2.3 Control Flow
The operations described in the following sections alter the normal flow of control from
one IL instruction to the next. There are three main ways to alter the control flow:

1. branch instructions

2. procedure calls

3. exceptions

Branch instructions can be further subdivided into unconditional and conditional
branches. There are unary, binary, and multi-way conditional branch instructions. Branch
instructions can only branch to a label within the current block of code.

Branch instructions take in addition to their operands on the stack a label as an argument
to which the control flow shall be redirected if the branch condition is met.

19.2.3.1 Unconditional Branch Instructions
The .s suffix indicates that the distance can be expressed in a signed 8-bit number
(distances are in bytes from the end of the current instruction). See also the leave and
leave.s instructions in Section 19.2.3.5.

Page 118

The IL Assembly Language Programmers' Reference PDC Release

br branch within current method
br.s branch within current method

19.2.3.2 Unary Compare-and-Branch and Multi-Way

Branch Instructions
These instructions branch depending on the value of the topmost stack item. The .s suffix
indicates that the distance can be expressed in a signed 8-bit number (distances are in
bytes from the end of the current instruction).

Brfalse branch if zero
brfalse.s branch if zero
brinst branch if non-null object reference
brinst.s branch if non-null object reference
brnull branch if null object reference
brnull.s branch if null object reference
brtrue branch if not zero
brtrue.s branch if not zero
brzero branch if zero
brzero.s branch if not zero
ckfinite check that the top of stack is a finite floating point number, generating a

System.ArithmeticException if the value is a NaN or an infinity
switch multi-way 0-based branch depending on value on top of evaluation stack

19.2.3.3 Binary Compare-and-Branch Instructons
These operations compare the top two elements on the evaluation stack and branch if a
specific condition is true. They can be considered abbreviations for sequences of
instructions using the binary comparison instructions followed by either a brtrue (or
brtrue.s) or a brfalse (or brfalse.s) instruction. See Section 19.2.2.5 for a table of valid
and verifiable operand types. The .s suffix indicates that the distance can be expressed in
a signed 8-bit number (distances are in bytes from the end of the current instruction).

The following table summarizes legal combinations of operands for these instructions.
Items marked “” indicate that all instructions are valid. Items marked “-” indicate
invalid IL sequences. If only a subset of instructions are permitted, the valid instructions
are shown in the corresponding cell.

I4 I8 I F & O *

I4  -  - - - -

I8 -  - - - - -

I  -  - beq[.s],
bne.un[.s]

- beq[.s],
bne.un[.s]

F - - -  - - -

& - - beq[.s],
bne.un[.s]

-  (Note) -  (Note)

O - - - - - beq[.s], -

Page 119

The IL Assembly Language Programmers' Reference PDC Release

I4 I8 I F & O *

bne.un[.s]

* - - beq[.s],
bne.un[.s]

-  (Note) -  (Note)

Note: Except for beq, bne.un (or short versions) these combinations only make sense if both operands
are known to be pointers to elements of the same array.

Beq based on ceq and brtrue

beq.s based on ceq and brtrue.s

bge based on clt and brfalse

bge.s based on clt and brfalse.s

bge.un based on clt.un and brfalse

bge.un.s based on clt.un and brfalse.s

bgt based on cgt and brtrue

bgt.s based on cgt and brtrue.s

bgt.un based on cgt.un and brtrue

bgt.un.s based on cgt.un and brtrue.s

ble based on cgt and brfalse

ble.s based on cgt and brfalse.s

ble.un based on cgt.un and brfalse

ble.un.s based on cgt.un and brfalse.s

blt based on clt and brtrue

blt.s based on clt and brtrue.s

blt.un based on clt.un and brtrue

blt.un.s based on clt.un and brtrue.s

bne.un based on ceq.un and brfalse

bne.un.s based on ceq.un and brfalse.s

19.2.3.4 Procedure Call and Related Instructions
These instructions move the flow of control to another procedure. See also callvirt and
ldvirtftn in Section 19.2.5

arglist returns handle to current argument list on stack (for varargs methods)
call call a method specified by type, name, and signature
calli call a method specified by function pointer
jmp branch with current arguments to another method
jmpi branch with current arguments to another method using function pointer
ldftn create function pointer from type, name, and signature
ret return from the current method, possibly returning a value
tail. Convert subsequent instruction to a tailcall version (drop current stack

frame before call)

Page 120

The IL Assembly Language Programmers' Reference PDC Release

19.2.3.5 Exception Handling
The following instructions specify the control flow of exceptional code. The .s suffix
indicates that the distance can be expressed in a signed 8-bit number (distances are in
bytes from the end of the current instruction).

Endfilter mark end of a filter handler
endfinally mark end of a fault or finally handler
leave unconditional branch that may exit a try block
leave.s unconditional branch that may exit a try block
rethrow throw the current exception again (out of a catch handler)
throw throw an exception

19.2.3.6 Other Control Flow Instructions
The instructions in this section are considered to be instructions that belong to the group
of control flow instructions, however don’t belong to any of the above sections.

Nop ignored
break invoke debugger if attached

19.2.4 Moving Data
The instructions presented in this sections may be used to move data from one location to
another.

Method arguments and locals are numbered from 0. Argument 0 is the this pointer for
instance and virtual methods. Valid IL requires that any argument or local is used
consistently, always containing either an integer, floating point number, class, or instance
of a specific value class.

Cpblk copy block of data from one part of memory to another (not verifiable).
Dup duplicate top element of evaluation stack
initblk zero block of data in memory (not verifiable).
Ldarg, ldarg.0, ldarg.1, ldarg.2,

ldarg.3, ldarg.s
load argument onto evaluation stack. Ldarg.0 through ldarg.3 are short
encodings for accessing the first four arguments. Ldarg.s is used for
arguments numbered 4 through 255.

Ldarga load address of an argument
ldarga.s load address of an argument, short form, for arguments 0 through 255
ldc.i4, ldc.i4.0, ldc.i4.1, ldc.i4.2,

ldc.i4.3, ldc.i4.4, ldc.i4.5, ldc.i4.6,

ldc.i4.7, ldc.i4.8, ldc.i4.M1, ldc.i4.m1,

ldc.i4.s
load constant as a 4-byte signed integer onto the evaluation stack. There is
a short encoding for constants –1 (denoted “m1”) through 8. ldc.i4.s is for
encoding constants that fit, signed, in one byte.

Ldc.i8 load an 8-byte integer constant onto the evaluation stack
ldc.r4 load a 32-bit floating point constant onto the evaluation stack

Page 121

The IL Assembly Language Programmers' Reference PDC Release

ldc.r8 load a 64-bit floating point constant onto the evaluation stack
ldind.i, ldind.i1, ldind.i2, ldind.i4,

ldind.i8, ldind.r4, ldind.r8, ldind.ref,

ldind.u1, ldind.u2, ldind.u4, ldind.u8
load indirect through a pointer, type of data loaded is specified as a suffix
to the instruction (not verifiable).

Ldloc, ldloc.0, ldloc.1, ldloc.2,

ldloc.3, ldloc.s
load value of a local variable (numbered from 0) onto the evaluation stack.
There are special small encodings for locals 0 through 3. ldloc.s is used
for locals 4 through 255.

Ldloca load address of local variable onto stack, long form (locals 256 and over)
ldloca.s load address of local variable onto stack, short form (locals 0 through 255)
ldnull load the null object reference
localloc allocate space for additional locals, dynamically. The evaluation stack

must be empty when this instruction is executed.
Pop remove the top item from the evaluation stack
starg store top of evaluation stack into an argument, for arguments 256 and over
starg.s store top of evaluation stack into an argument, for arguments 0 through

255
stind.i, stind.i1, stind.i2, stind.i4,

stind.i8, stind.r4, stind.r8, stind.ref
store the top of the evaluation stack into the address specified by a pointer,
which is the second item on the stack. The type of data stored is specified
by the suffix to the instruction. Valid IL requires that the suffix
corresponds to the basic type (integer, float, object) of the value on the top
of the stack. (Not verifiable).

Stloc, stloc.0, stloc.1, stloc.2,

stloc.3, stloc.s
store the top of the evaluation stack into a local variable. There are short
encodings for locals 0 through 3. stloc.s is used for locals 4 through 255.

Unaligned. Indicates that the subsequent operation may reference data that is not
aligned to the natural size of the target machine. Valid only before
ldind.*, stind.*, ldfld, stfld, ldobj, stobj, initblk, or
cpblk.

Volatile. Indicates that the subsequent operation my reference data that is read or
written asynchronously. Valid only before ldind, stind, ldfld,
ldsfld, stfld, stsfld, ldobj, stobj, initblk, or cpblk.

19.2.5 Object Management
The IL instruction set has direct support for creating objects, zero-based one-dimensional
arrays, typed-references, and strings. It also support casting between object types with
runtime type checking, copying instances of value types, accessing fields of classes and
value types, and converting between the boxed and unboxed forms of value types.

Page 122

The IL Assembly Language Programmers' Reference PDC Release

Box convert an unboxed (copy-by-value) instance of a value type into the
boxed (copy-by-reference) version by allocating a System.Object on the
heap.

Callvirt call a virtual method given an object and arguments on the evaluation
stack and the types, name, and signature of the virtual method as direct
arguments. If the object is null a System.NullReferenceException is
thrown.

Castclass convert an object to any of its parent classes, specified as part of the
instruction, or raise System.InvalidCastException.

cpobj copy an instance of a value type from one location to another. The top of
the evaluation stack points to the source object and the other argument
points to the destination.

Initobj zero the contents of a value type. The top of the stack is the address of the
instance to be zeroed.

Isinst the top of the stack must be an object reference and a type is passed as a
direct argument. If the top of the stack is an instance of that type it is left
on the stack, otherwise it is replaced by a null object reference. In either
case, it is guaranteed that the top of the stack can be considered to be of
the specified type.

ldelem.i, ldelem.i1, ldelem.i2, ldelem.i4,

ldelem.i8, ldelem.r4, ldelem.r8, ldelem.ref,

ldelem.u1, ldelem.u2, ldelem.u4, ldelem.u8

load an element out of a zero-based, one-dimensional array, with range
and type checking. The type of the array must match the suffix of the
instruction or a System.ArrayTypeMistmatchException is raised. An
out of range subscript results in a System.IndexOutOfRangeException,
while an attempt to access an element of the null array results in a
System.NullReferenceException.

ldelema load the address of an element of a zero-based, one-dimensional array,
with range and type checking. The index is the top operand on the stack,
the array is the second on the stack. The type is expected as a direct
argument to the instruction.

Ldfld load the contents of a field of an object.
Ldflda load the address of a field of an object. The object must not be derived

from System.MarshalByRefObject or System.ContextBoundObject.
ldlen load the length of a zero-based, one-dimensional array.
Ldobj load an instance of a value type onto the evaluation stack. The top of the

evaluation stack is a pointer to the instance.
Ldsfld load the contents of a static field of a class onto the evaluation stack.
Ldsflda load the address of a static field of a class onto the evaluation stack.
Ldstr load a literal instance of System.String onto the evaluation stack.
Ldtoken load a token representing a type, field, or method onto the evaluation

stack. The token is of type U (unsigned 32- or 64-bits, depending on

Page 123

The IL Assembly Language Programmers' Reference PDC Release

platform) and can be used for efficient type comparisons, method lookup,
etc.

ldvirtftn load a function pointer that references the implementation, in a given
object, of a particular virtual method. This function pointer can then be
used with the calli instruction. The method is computed at the time the
ldvirtftn instruction is executed, not when the calli occurs (i.e. it returns a
function pointer, not a C++ “pointer to virtual function”).

Mkrefany make a typed reference (runtime typed pointer to memory). A pointer to
memory is passed on the top of the stack, and the type of data stored at
that location is passed as part of the instruction itself. Verification requires
that the type specified in the instruction and the type of the pointer match,
and the verifier will fail if it cannot show this to be true. Thus, only
stylized uses of mkrefany are verifiable.

Newarr allocate and zero-initialize a zero-based, one-dimensional array. The top
of the evaluation stack specifies the total number of elements in the array,
and the instruction itself specifies the data type of the elements.

Newobj allocate and initialize an object. The initializer (see Section 7.3.2) to call is
specified as part of the instruction itself. The arguments, if any, to that
initializer must be on the evaluation stack.

Refanytype given a typed reference on the evaluation stack, extract the type of the
pointer from it. This will be the same value that would have been
computed by a ldtoken instruction given the type used when the typed
reference was created using mkrefany.

Refanyval given a typed reference on the evaluation stack, extract the pointer from it.
See also mkrefany.

Sizeof returns the size in bytes of an instance of a value type. The value type is
specified as part of the instruction.

Stelem.i, stelem.i1, stelem.i2, stelem.i4,

stelem.i8, stelem.r4, stelem.r8, stelem.ref

store an item into an element of an array, with type and range checking.
The type is specified by the suffix of the instruction and (for stelem.ref)
the object itself; any mismatch results in a
System.ArrayTypeMismatchException. The top of the stack contains
the value to be stored. The second item on the stack is the index, an
unsigned integer. A System.IndexOutOfRangeException will be thrown
if the index is larger than the size of the array. Below the index is the array
itself, which will result in a System.NullReferenceException if it is
null. To store an unboxed value type into an array, use ldelema and stobj
rather than stelem.*.

stfld store the top of the stack into a field of an object. The item below the top
of stack must be an object reference or a pointer to an unboxed value type
instance.

Stobj store an unboxed instance of a value type (on the top of the stack) at the
address specified by the pointer below it on the evaluation stack.

Page 124

The IL Assembly Language Programmers' Reference PDC Release

Stsfld Store the top of the evaluation stack into a static field, specified as part of
the instruction.

Unbox Return a pointer to the unboxed instance of a value type that is stored
within the boxed instance on the top of the evaluation stack. The type of
the boxed instance (from the object on the stack) must match the type
desired (from the instruction set) or a System.InvalidCastException is
thrown. The result is a by-ref (managed pointer), not a copy of the data in
the object. A copy can be made by using ldobj to copy the data onto the
evaluation stack or cpobj to copy into another location that has already
been computed.

19.2.6 Annotations
Annotations are ignored by all the NGWS SDK tools that convert IL into managed native
code. Their opcodes are reserved and their formats specified for completeness only. More
information on these instruction can be found in the IL Instruction Set specification.

Ann.call

ann.catch

ann.data

ann.data.s

ann.dead

ann.def

ann.hoisted

ann.hoisted_call

ann.lab

ann.live

ann.phi

ann.ref

ann.ref.s

Page 125

ILinstrset.doc

The IL Assembly Language Programmers' Reference PDC Release

20 Sample IL Programs

20.1 Mutually Recursive Program (with tail

calls)
Consider this managed C++ program:

#import <mscorlib.dll>

[managed] class EvenOdd
{ static bool IsEven(int N)
 { return (N==0) ? true : IsOdd(N-1);
 }
 static bool IsOdd(int N)
 { return (N==0) ? false : IsEven(N-1);
 }
public:
 static void Test(int N)
 { Console::Write(N);
 Console::Write(L” is “);
 if (IsEven(N)) Console::WriteLine(S”even”);
 else Console::WriteLine(S”odd”);
 return;
 }
};
void start()
{ EvenOdd::Test(5); EvenOdd::Test(2);
 EvenOdd::Test(100); EvenOdd::Test(1000001);
 return;
}

This can be hand-translated into the following IL assembly program. Notice that
references to types must use the fully qualified name (like “System.String”). This is
independent of the “/NOAUTOINHERIT” flag to the assembler, which governs whether
classes defined by the IL code implicitly inherit from System.Object.

.assembly test.exe { }

.class EvenOdd
{ .method private static bool IsEven(int32 N) il managed
 { .maxstack 2
 ldarg.0 // N
 ldc.i4.0
 bne.un NonZero
 ldc.i4.1
 ret
NonZero:
 ldarg.0
 ldc.i4.1
 sub
 tail. Call bool EvenOdd::IsOdd(int32)
 ret
 } // end of method ‘EvenOdd::IsEven’

Page 126

The IL Assembly Language Programmers' Reference PDC Release

 .method private static bool IsOdd(int32 N) il managed
 { .maxstack 2
 // Demonstrates use of argument names and labels
 // Notice that the assembler does not covert these
 // automatically to their short versions
 ldarg N
 ldc.i4.0
 bne.un NonZero
 ldc.i4.0
 ret
NonZero:
 ldarg N
 ldc.i4.1
 sub
 tail. Call bool EvenOdd::IsEven(int32)
 ret
 } // end of method ‘EvenOdd::IsOdd’

 .method public static void Test(int32 N) il managed
 { .maxstack 1
 ldarg N
 call void System.Console::Write(int32)
 ldstr “ is “
 call void System.Console::Write(class System.String)
 ldarg N
 call bool EvenOdd::IsEven(int32)
 brfalse LoadOdd
 ldstr “even”
Print:
 call void System.Console::WriteLine(class System.String)
 ret
LoadOdd:
 ldstr “odd”
 br Print
 } // end of method ‘EvenOdd::Test’
} // end of class ‘EvenOdd’

//Global method

.method public static void main() il managed
{ .entrypoint
 .maxstack 1
 ldc.i4.5
 call void EvenOdd::Test(int32)
 ldc.i4.2
 call void EvenOdd::Test(int32)
 ldc.i4 100
 call void EvenOdd::Test(int32)
 ldc.i4 1000001
 call void EvenOdd::Test(int32)
 ret
} // end of global method ‘main’

Page 127

The IL Assembly Language Programmers' Reference PDC Release

20.2Using Value Types
Consider the following program in pseudo code:

value class Rational extends Object implements Icomparable
{ int Numerator, Denominator;

 virtual bool Icomparable::CompareTo(Object o)
 { return (this.Numerator==((boxed Rational) o)->Numerator) &&
 (this.Denominator==((boxed Rational) o)->Denominator);
 }

 virtual String Object::ToString()
 { StringBuilder SB = new StringBuilder();
 SB.AppendFormat(“The value is: {0}/{1}”,
 (Object) this.Numerator,
 (Object) this.Denominator);
 return SB.ToString();
 }

 Rational Mul(Rational By)
 { Rational Result;
 Result.Numerator = this.Numerator * By.Numerator;
 Result.Demominator = this.Denominator * By.Denominator;
 return Result;
 }
}

Main()
{ Rational Half = { 1, 2 }, Third = { 1, 3 }, Temporary;
 Object H = (Object) Half, T = (Object) Third;
 WriteLine(H.Icomparable::CompareTo(H)); // Interface call
 WriteLine(Half.CompareTo(T)); // Virtual call
 WriteLine(Half.ToString()); // Virtual call
 WriteLine(T.ToString()); // Virtual call on Object
 WriteLine((Half.Mul(Third)).ToString());
}

Which translates into verifiable IL as follows:

.assembly rational.exe { }

.class value sealed Rational extends System.ValueType
 implements System.Icomparable
{ .field int32 Numerator
 .field int32 Denominator

 .method virtual int32 CompareTo(class System.Object o)
 // Implements Icomparable::CompareTo(Object)
 { ldarg.0 // this as managed pointer
 ldfld int32 value class Rational::Numerator
 ldarg.1 // o as object
 unbox value class Rational
 ldfld int32 value class Rational::Numerator
 beq.s TryDenom
 ldc.i4.0
 ret

Page 128

The IL Assembly Language Programmers' Reference PDC Release

TryDenom:
 ldarg.0 // this as managed pointer
 ldfld int32 value class Rational::Denominator
 ldarg.1 // o as object
 unbox value class Rational
 ldfld int32 class Rational::Denominator
 ceq
 ret
 }
 .method virtual class System.String ToString()
 // Implements Object::ToString
 { .locals init (class System.Text.StringBuilder SB,
 class System.String S,
 class System.Object N,
 class System.Object D)
 newobj void System.Text.StringBuilder::.ctor()
 stloc.s SB
 ldstr “The value is: {0}/{1}”
 stloc.s S
 ldarg.0 // Managed pointer to self
 dup
 ldflda int32 value class Rational::Numerator
 box System.Int32
 stloc.s N
 ldflda int32 value class Rational::Denominator
 box System.Int32
 stloc.s D
 ldloc.s SB
 ldloc.s S
 ldloc.s N
 ldloc.s D
 call instance class System.Text.StringBuilder
 System.Text.StringBuilder::AppendFormat(class System.String,
 class System.Object,
 class System.Object)
 callvirt instance class System.String System.Object::ToString()
 ret
 }
 .method value class Rational Mul(value class Rational)
 { .locals init (value class Rational Result)

 ldloca.s Result
 dup
 ldarg.0 // this
 ldfld int32 value class Rational::Numerator
 ldarga.s 1 // arg
 ldfld int32 value class Rational::Numerator
 mul
 stfld int32 value class Rational::Numerator
 ldarg.0 // this
 ldfld int32 value class Rational::Denominator
 ldarga.s 1 // arg
 ldfld int32 value class Rational::Denominator
 mul
 stfld int32 value class Rational::Denominator
 ldloc.s Result
 ret

Page 129

The IL Assembly Language Programmers' Reference PDC Release

 }
}
.method void main()
{ .entrypoint
 .locals init (value class Rational Half,
 value class Rational Third,
 value class Rational Temporary,
 class System.Object H,
 class System.Object T)
 // Initialize Half, Third, H, and T
 ldloca.s Half
 dup
 ldc.i4.1
 stfld int32 value class Rational::Numerator
 ldc.i4.2
 stfld int32 value class Rational::Denominator
 ldloca.s Third
 dup
 ldc.i4.1
 stfld int32 value class Rational::Numerator
 ldc.i4.3
 stfld int32 value class Rational::Denominator
 ldloca.s Half
 box value class Rational
 stloc.s H
 ldloca.s Third
 box value class Rational
 stloc.s T
 // WriteLine(H.Icomparable::CompareTo(H))
 // Call CompareTo via interface using boxed instance
 ldloc H
 dup
 callvirt int32 System.Icomparable::CompareTo(class System.Object)
 call void System.Console::WriteLine(bool)
 // WriteLine(Half.CompareTo(T))
 // Call CompareTo via value type directly
 ldloca.s Half
 ldloc T
 call instance int32
 value class Rational::CompareTo(class System.Object)
 call void System.Console::WriteLine(bool)
 // WriteLine(Half.ToString())
 // Call virtual method via value type directly
 ldloca.s Half
 call instance class System.String class Rational::ToString()
 call void System.Console::WriteLine(class System.String)
 // WriteLine(T.ToString)
 // Call virtual method inherited from Object, via boxed instance
 ldloc T
 callvirt class System.String System.Object::ToString()
 call void System.Console::WriteLine(class System.String)
 // WriteLine((Half.Mul(T)).ToString())
 // Mul is called on two value types, returning a value type
 // ToString is then called directly on that value type
 // Note that we are required to introduce a temporary variable
 // since the call to ToString requires a managed pointer (address)
 ldloca.s Half

Page 130

The IL Assembly Language Programmers' Reference PDC Release

 ldloc.s Third
 call instance value class Rational
 Rational::Mul(value class Rational)
 stloc.s Temporary
 ldloca.s Temporary
 call instance class System.String Rational::ToString()
 call void System.Console::WriteLine(class System.String)
 ret
}

Page 131

The IL Assembly Language Programmers' Reference PDC Release

21 Appendix A: ILASM Complete Grammar

21.1 Assembler Grammar
The input file to the assembler must be considered legal according to the grammar for
<IL File> given here. Items in bold face are lexical tokens to be typed exactly as
specified here.

IL assembler is a case-sensitive language, like C/C++ or C#. It means that all keywords,
instructions, and other lexical tokens are to be used exactly as specified here (e.g., .class,
not .Class). The names of classes, methods, fields, etc. are also case-sensitive.

The syntactic classes below are sorted in alphabetical order (case-insensitive).

<IL file> ::= <decl>*

<asmAttr> ::= Section

 implicitcom 4.2

| noappdomain 4.2

| nomachine 4.2

| noprocess 4.2

<asmDecl> ::= Section

 .hash algorithm <int32> 4.2.1

| .title <QSTRING> [(<QSTRING>)] 4.2.1

| .custom <customDecl> 17

| .locale = (<bytes>) 4.2.1

| .locale <QSTRING> 4.2.1

| .originator = (<bytes>) 4.2.1

| .os <int32> .ver <int32> : <int32> 4.2.1

| .processor <int32> 4.2.1

| .ver <int32> : <int32> : <int32> : <int32> 4.2.1

<asmRefDecl> ::= Section

 .hash = (<bytes>) 4.2.1

| .custom <customDecl> 17

| .locale = (<bytes>) 4.2.1

| .locale <QSTRING> 4.2.1

| .originator = (<bytes>) 4.2.1

| .os <int32> .ver <int32> : <int32> 4.2.1

| .processor <int32> 4.2.1

Page 132

The IL Assembly Language Programmers' Reference PDC Release

| .ver <int32> : <int32> : <int32> : <int32> 4.2.1

<assemblyRefName> ::= Section

 <dottedname> 3.2

<bound> ::= Section

 <int32> 5.2

| <int32> … 5.2

| <int32> … <int32> 5.2

<bytes> ::= Section

 <hexbyte> [<hexbyte>*] 3.5

<callConv> ::= Section

 [instance [explicit]] [<callKind>] 12.6.1

<callKind> ::= Section

 default 12.1.2

| unmanaged cdecl 12.1.2

| unmanaged fastcall 12.1.2

| unmanaged stdcall 12.1.2

| unmanaged thiscall 12.1.2

| vararg 12.1.2

<classAttr> ::= Section

 abstract 7.1.1.4

| ansi 7.1.1.6

| auto 7.1.1.2

| autochar 7.1.1.6

| explicit 7.1.1.2

| import 7.1.1.5

| interface 7.1.1.3

| lateinit 7.1.1.7

| nested assembly 7.1.1.1

| nested famandassem 7.1.1.1

| nested family 7.1.1.1

| nested famorassem 7.1.1.1

Page 133

The IL Assembly Language Programmers' Reference PDC Release

| nested private 7.1.1.1

| nested public 7.1.1.1

| not_in_gc_heap 7.1.1.3

| private 7.1.1.1

| public 7.1.1.1

| rtspecialname 7.1.1.7

| sealed 7.1.1.4

| sequential 7.1.1.2

| serializable 7.1.1.5

| specialname 7.1.1.7

| unicode 7.1.1.6

| value 7.1.1.3

<classDecl> ::= Section

 .class <classHead> { <classDecl>* } 7.2

| .comtype <comtypeHead> { <comtypeDecl>* } /* for round

trip only */

7.2

| .custom <customDecl> 17

| .data <datadecl> 7.2

| .event <eventHead> { <EventDecl>* } 7.2

| .export [public | private] <dottedname> { <exportDecl>* } 4.6

| .field <fieldDecl> 7.2

| .method <methodHead> { <methodDecl>* } 7.2

| .override <typeSpec> :: <methodName> with <callConv>

<type> <typeSpec> :: <methodName> (<signature>)

7.2

| .pack <int32> 7.2

| .property <propHead> { <PropDecl>* } 7.2

| .size <int32> 7.2

| <externSourceDecl> 3.7

| <securityDecl> 16

<classHead> ::= Section

 <classAttr>* <id> [extends <className>] [implements

<className> [, <className>]*]

7.1

<className> ::= Section

 [<resolutionScope>] <dottedname> [/ <dottedname>]* 5.3

Page 134

The IL Assembly Language Programmers' Reference PDC Release

<codeLabel> ::= Section

 <label> : 3.4

<comtAttr> ::= Section

 nested assembly 6

| nested famandassem 6

| nested family 6

| nested famorassem 6

| nested private 6

| nested public 6

| private 6

| public 6

<comtypeDecl> ::= Section

 .assembly extern <dottedname> 4.2.1

| .class int32 -

| .comtype <dottedname> -

| .custom <customDecl> 17

| .exeloc <dottedname> -

| .file <dottedname> -

<comtypeHead> ::= Section

 <comtAttr>* <dottedname> (<QSTRING>) -

<customAttrType> ::= Section

 <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

17

| <typeSpec> 17

<customDecl> ::= Section

 <customAttrType> [= (<bytes>) | = <QSTRING>] 17

<dataDecl> ::= Section

 [tls] [<dataLabel> =] <ddBody> 13.4.1

<ddBody> ::= Section

Page 135

The IL Assembly Language Programmers' Reference PDC Release

 <ddItem> 13.4.1

| { <ddItemList> } 13.4.1

<ddItem> ::= Section

 & (<id>) 13.4.1

| bytearray (<bytes>) 13.4.1

| char * (<QSTRING>) 13.4.1

| float32 [(<float64>)] [[<int32>]] 13.4.1

| float64 [(<float64>)] [[<int32>]] 13.4.1

| int8 [(<int8>)] [[<int32>]] 13.4.1

| int16 [(<int16>)] [[<int32>]] 13.4.1

| int32 [(<int32>)] [[<int32>]] 13.4.1

| int64 [(<int64>)] [[<int32>]] 13.4.1

| wchar * (<QSTRING>) 13.4.1

<ddItemList> ::= Section

 <ddItem> [, <ddItemList>]* 13.4.1

<dataLabel> ::= Section

 <label> 3.4

<decl> ::= Section

 .assembly <asmAttr>* <dottedname> { <asmDecl>* } 4.2.1

| .assembly extern [fullorigin] <dottedname> [as <QSTRING>]

{ <asmRefDecl>* }

4.2.1

| .class <classHead> { <classDecl>* } 6

| .comtype <comtypeHead> { <comtypeDecl>* } 7.2

| .custom <customDecl> 17

| .data <datadecl> 13.4.1

| .export [<exportAttr*>] <dottedname> { <exportDecl>* } 4.6

| .field <fieldDecl> 13

| .file [nometadata] <dottedname> [.hash = (<bytes>)] 4.2

| .manifestres [public | private] <dottedname>

[(<QSTRING>)] { <manResDecl>* }

4.2.2

| .method <methodHead> { <methodDecl>* } 12

| .module [[extern] <dottedname>] 4.4

Page 136

The IL Assembly Language Programmers' Reference PDC Release

| .namespace <dottedname> { <decl>* } 7.1

| .vtfixup <vtfixupDecl> 7.5.2.2

| <externSourceDecl> 3.7

| <securityDecl> 16

<dottedname> ::= Section

 <id> [. <id>]* 3.1

<eventDecl> ::= Section

 .addon <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

15.2

| .custom <customDecl> 15.2

| .fire <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

15.2

| .other <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

15.2

| .removeon <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

15.2

| <externSourceDecl> 3.7

<eventHead> ::= Section

 [specialname | rtspecialname]* [<typeSpec>] <id> 15.1

<exportAttr> ::= Section

 nested assembly 6

| nested famandassem 6

| nested family 6

| nested famorassem 6

| nested private 6

| nested public 6

| public 6

<exportDecl> ::= Section

 .class <int32> 4.6

| .custom <customDecl> 4.6

| .file <dottedname> 4.6

| .nestedtype <dottedname> 4.6

Page 137

The IL Assembly Language Programmers' Reference PDC Release

<externFileName> ::= Section

 <dottedname> 3.1

<externSourceDecl> ::= Section

 .line <int32> [<SQSTRING>] 3.7

| #line <int32> <QSTRING> 3.7

<fieldAttr> ::= Section

 assembly 13.2.1

| famandassem 13.2.1

| family 13.2.1

| famorassem 13.2.1

| initonly 13.2.2

| literal 13.2.2

| marshal ([<nativeType>]) 13.2.3

| notserialized 13.2.2

| pinvokeimpl ([<QSTRING> [as <QSTRING>]] [<pinvAttr>*]) 13.4.2

| private 13.2.1

| privatescope 13.2.1

| public 13.2.1

| rtspecialname 13.2.4

| specialname 13.2.4

| static 13.2.2

<fieldDecl> ::= Section

 [[<int32>]] <fieldAttr>* <type> <id>

[= <fieldInit> | at <dataLabel>]

13

<fieldInit> ::= Section

 bytearray (<bytes>) 13.1

| float32 (<float64>) 13.1

| float32 (<int32>) 13.1

| float64 (<float64>) 13.1

| float64 (<int64>) 13.1

| int8 (<int8>) 13.1

| int16 (<int16>) 13.1

| int32 (<int32>) 13.1

Page 138

The IL Assembly Language Programmers' Reference PDC Release

| int64 (<int64>) 13.1

| <QSTRING> 13.1

| wchar * (<QSTRING>) 13.1

<float64> ::= Section

 float32 (<int32>) 3.6

| float64 (<int64>) 3.6

| <realnumber> 3.6

<handlerBlock> ::= Section

 handler <int32> to <int32> /* For round trip use only */ 18.2

| handler <label> to <label> 18.2

| <scopeBlock> 18.2

<id> ::= Section

 <ID> 3.1

| <SQSTRING> 3.1

<implAttr> ::= Section

 forwardref 12.4.3

| il 12.4.1

| internalcall 12.4.3

| managed 12.4.2

| native 12.4.1

| noinlining 12.4.3

| ole 12.4.4

| oneway 12.4.3

| optil 12.4.1

| runtime 12.4.1

| synchronized 12.4.3

| unmanaged 12.4.2

<label> ::= Section

 <id> 3.4

<labels> ::= Section

 <labeloroffset> [, <labeloroffset>]* 3.4

Page 139

The IL Assembly Language Programmers' Reference PDC Release

<labeloroffset> ::= Section

 <int32> /* For round trip use only */ 3.4

| <label> 3.4

<local> ::= Section

 [[<int32>]] <type> [<id>] 11.2

<localsSignature> ::= Section

 <local> [, <local>]* 11.2

<manResDecl> ::= Section

 .assembly extern <dottedname> 4.2.2

| .custom <customDecl> 17

| .file <dottedname> at <int32> 4.2.2

<methAttr> ::= Section

 abstract 12.3.4

| assembly 12.3.1

| famandassem 12.3.1

| family 12.3.1

| famorassem 12.3.1

| final 12.3.2

| hidebysig 12.3.2

| newslot 12.3.3

| pinvokeimpl ([<QSTRING> [as <QSTRING>]] [<pinvAttr>*]) 12.7.2.2

| private 12.3.1

| privatescope 12.3.1

| public 12.3.1

| rtspecialname 12.3.6

| specialname 12.3.4

| static 12.3.2

| unmanagedexp 12.3.5

| virtual 12.3.2

<methodDecl> ::= Section

 .custom <customDecl> 17

Page 140

The IL Assembly Language Programmers' Reference PDC Release

| .data <datadecl> 13.4

| .emitbyte <int32> 12.2

| .entrypoint 12.2

| .locals [init] (<localsSignature>) 12.2.1

| .maxstack <int32> 12.2

| .override <typeSpec>::<methodName> 12.2

| .param [<int32>] [= <fieldInit>] 12.2.2

| .vtentry <int32> : <int32> 12.2.3

| .zeroinit 12.2

| <externSourceDecl> 3.7

| <instr> 19

| <codeLabel> 3.4

| <scopeBlock> 12.5

| <securityDecl> 16

| <sehBlock> 18

<methodHead> ::= Section

 <methAttr>* [<callKind>] [<paramAttr>*] <type>

[marshal ([<nativeType>])] <methodName>

(<signature>) <implAttr>*

12.1

<methodName> ::= Section

 .cctor 12.1.1

| .ctor 12.1.1

| <dottedname> 12.1.1

<nameValPair> ::= Section

 <SQSTRING> = <SQSTRING> 16

<nameValPairs> ::= Section

 <nameValPair> [, <nameValPair>]* 16

<nativeType> ::= Section

 [] 11.4

| as any 11.4

| bool 11.4

| [ansi] bstr 11.4

Page 141

The IL Assembly Language Programmers' Reference PDC Release

| byvalstr 11.4

| custom (<QSTRING> , <QSTRING>) 11.4

| error 11.4

| fixed array [int32] 11.4

| fixed sysstring [int32] 11.4

| float 11.4

| float32 11.4

| float64 11.4

| [unsigned] int 11.4

| [unsigned] int8 11.4

| [unsigned] int16 11.4

| [unsigned] int32 11.4

| [unsigned] int64 11.4

| interface 11.4

| lpstr 11.4

| lpstruct 11.4

| lptstr 11.4

| lpvoid 11.4

| lpwstr 11.4

| <nativeType> * 11.4

| <nativeType> [] 11.4

| <nativeType> [int32] 11.4

| <nativeType> [.size .param = int32 [* int32]] 11.4

| method 11.4

| safearray <variantType> 11.4

| struct 11.4

| tbstr 11.4

| variant bool 11.4

<param> ::= Section

 ... 11.1

| [<paramAttr>*] <type> [marshal ([<nativeType>])] [<id>] 11.1

<paramAttr> ::= Section

 [in] 11.1

| [lcid] 11.1

Page 142

The IL Assembly Language Programmers' Reference PDC Release

| [opt] 11.1

| [out] 11.1

| [retval] 11.1

<pinvAttr> ::= Section

 ansi 12.7.2.2

| autochar 12.7.2.2

| cdecl 12.7.2.2

| fastcall 12.7.2.2

| lasterr 12.7.2.2

| nomangle 12.7.2.2

| ole 12.7.2.2

| stdcall 12.7.2.2

| thiscall 12.7.2.2

| unicode 12.7.2.2

| winapi 12.7.2.2

<propDecl> ::= Section

 .backing <type> <id> 14.2

| .custom <customDecl> 14.2

| .get <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

14.2

| .other <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

14.2

| .set <callConv> <type> [<typeSpec> ::] <methodName>

(<signature>)

14.2

| <externSourceDecl> 3.7

<propHead> ::= Section

 [specialname|rtspecialname]* <callKind> <type> <id>

(<signature>)

14.1

<resolutionScope> ::= Section

 [.module <externFileName>] 4.4

| [<assemblyRefName>] 4.3

<scopeBlock> ::= Section

 { <methodDecl>* } 12.5

Page 143

The IL Assembly Language Programmers' Reference PDC Release

<secAction> ::= Section

 assert 16

| demand 16

| deny 16

| inheritcheck 16

| linkcheck 16

| permitonly 16

| prejitdeny 16

| prejitgrant 16

| reqmin 16

| reqopt 16

| reqrefuse 16

| request 16

<securityDecl> ::= Section

 .capability <secAction> = (<bytes>) 16

| .capability <secAction> <SQSTRING> 16

| .permission <secAction> <className> (<nameValPairs>) 16

<sehBlock> ::= Section

 <tryBlock> <sehClause> [<sehClause>*] 18

<sehClause> ::= Section

 catch <className> <handlerBlock> 18.2

| fault <handlerBlock> 18.2

| filter <int32> <handlerBlock> 18.2

| filter <label> <handlerBlock> 18.2

| finally <handlerBlock> 18.2

<signature> ::= Section

 [<param> [, <param>]*] 11.1

<tryBlock> ::= Section

 .try <int32> to <int32> /* For round trip use only */ 18.1

| .try <label> to <label> 18.1

| .try <scopeBlock> 18.1

Page 144

The IL Assembly Language Programmers' Reference PDC Release

<type> ::= Section

 bool 5.2

| char 5.2

| class <className> 5.2

| float32 5.2

| float64 5.2

| int8 5.2

| int16 5.2

| int32 5.2

| int64 5.2

| method <callConv> <type> * (<signature>) 10.5

| native float 5.2

| native int 5.2

| native unsigned int 5.2

| <type> & 10.4

| <type> * 10.4

| <type> [] 5.2

| <type> [[<bound> [,<bound>]*]] 5.2

| <type> modopt (<className>) 5.2

| <type> modreq (<className>) 5.2

| <type> pinned 5.2

| typedref 5.2

| value class <className> 5.2

| unsigned int8 5.2

| unsigned int16 5.2

| unsigned int32 5.2

| unsigned int64 5.2

| void 5.2

| wchar 5.2

<typeSpec> ::= Section

 [[.module] <dottedname>]

| <className> 5.3

| <type> 5.2

Page 145

The IL Assembly Language Programmers' Reference PDC Release

<variantType> ::= Section

 blob /* for roundtrip only */ 11.4

| blob_object /* for roundtrip only */ 11.4

| bstr 11.4

| bool 11.4

| carray /* for roundtrip only */ 11.4

| cf /* for roundtrip only */ 11.4

| clsid /* for roundtrip only */ 11.4

| currency 11.4

| date 11.4

| decimal 11.4

| error 11.4

| filetime /* for roundtrip only */ 11.4

| float32 11.4

| float64 11.4

| hresult /* for roundtrip only */ 11.4

| idispatch * 11.4

| [unsigned] int /* for roundtrip only */ 11.4

| [unsigned] int8 11.4

| [unsigned] int16 11.4

| [unsigned] int32 11.4

| [unsigned] int64 /* for roundtrip only */ 11.4

| iunknown * 11.4

| lpstr /* for roundtrip only */ 11.4

| lpwstr /* for roundtrip only */ 11.4

| null /* for roundtrip only */ 11.4

| record 11.4

| safearray /* for roundtrip only */ 11.4

| storage /* for roundtrip only */ 11.4

| stored_object /* for roundtrip only */ 11.4

| stream /* for roundtrip only */ 11.4

| streamed_object /* for roundtrip only */ 11.4

| userdefined /* for roundtrip only */ 11.4

| variant * 11.4

| <variantType> & 11.4

| <variantType> [] 11.4

Page 146

The IL Assembly Language Programmers' Reference PDC Release

| <variantType> vector 11.4

<vtfixupAttr> ::= Section

 fromunmanaged 7.5.2.2

| int32 7.5.2.2

| int64 7.5.2.2

<vtfixupDecl> ::= Section

 [<int32>] <vtfixupAttr>* at <dataLabel> 7.5.2.2

21.2 Instruction syntax

21.2.1 Comments
The assembler supports both single line comments (started with “//”) and multi-line
comments (started with “/*” and ending with “*/”).

21.2.2 Labels
A label is specified by a string of characters (technically, an <ID>) followed by a colon.
For example:

 ldc.i4 1

mylabel:

 ldc.i4 2

 br.1 mylabel

Forward branches are allowed.

21.2.3 Full Grammar for Instructions
The remainder of this section describes all of the instruction formats supported by the
assembler. The full syntax is here, and each individual instruction format is described in
subsequent sections. Instruction names are case-sensitive.

While each section specifies the exact list of instructions that are included in a grammar
class, this information is subject to change over time. The precise format of an
instruction can be determined can be found by combining the information in the file
opcode.def (in the SDK) with the information in the following table:

Grammar Class Format(s) Specified in opcode.def

<instr_brtarget> InlineBrTarget, ShortInlineBrTarget

Page 147

The IL Assembly Language Programmers' Reference PDC Release

<instr_field> InlineField

<instr_i> InlineI, ShortInlineI

<instr_i8> InlineI8

<instr_method> InlineMethod

<instr_none> InlineNone

<instr_phi> InlinePhi

<instr_r> InlineR, ShortInlineR

<instr_rva> InlineRVA

<instr_sig> InlineSig

<instr_string> InlineString

<instr_switch> InlineSwitch

<instr_tok> InlineTok

<instr_type> InlineType

<instr_var> InlineVar, ShortInlineVar

<instr> ::=

 <instr_brtarget> <int32>

 | <instr_brtarget> <label>

 | <instr_field> <type> [<typeSpec> ::] <id>

 | <instr_i> <int32>

 | <instr_i8> <int64>

 | <instr_method>

 <callConv> <type> [<typeSpec> ::] <methodName> (<signature>)

 | <instr_none>

 | <instr_phi> <int16>*

 | <instr_r> (<bytes>) // <bytes> represent the binary image of

// float or double (4 or 8 bytes, respectively)

 | <instr_r> <float64>

 | <instr_r> <int64> // integer is converted to float with possible

// loss of precision

 | <instr_sig> <callConv> <type> (<signature>)

 | <instr_string> bytearray (<bytes>)

 | <instr_string> <QSTRING>

 | <instr_switch> (<labels>)

 | <instr_tok> field <type> [<typeSpec> ::] <id>

 | <instr_tok> method

 <callConv> <type> [<typeSpec> ::] <methodName> (<signature>)

 | <instr_tok> <typeSpec>

 | <instr_type> <typeSpec>

Page 148

The IL Assembly Language Programmers' Reference PDC Release

 | <instr_var> <int32>

 | <instr_var> <localname>

21.2.4 Instructions with no operand
These instructions require no operands, so they simply appear by themselves.

<instr> ::= <instr_none>

<instr_none> ::= // Derived from opcode.def

add | add.ovf | add.ovf.un | and |

ann.catch | ann.def | ann.hoisted | ann.lab |

arglist | break | ceq | cgt |

cgt.un | ckfinite | clt | clt.un |

conv.i | conv.i1 | conv.i2 | conv.i4 |

conv.i8 | conv.ovf.i | conv.ovf.i.un | conv.ovf.i1 |

conv.ovf.i1.un | conv.ovf.i2 | conv.ovf.i2.un | conv.ovf.i4 |

conv.ovf.i4.un | conv.ovf.i8 | conv.ovf.i8.un | conv.ovf.u |

conv.ovf.u.un | conv.ovf.u1 | conv.ovf.u1.un | conv.ovf.u2 |

conv.ovf.u2.un | conv.ovf.u4 | conv.ovf.u4.un | conv.ovf.u8 |

conv.ovf.u8.un | conv.r.un | conv.r4 | conv.r8 |

 conv.u | conv.u1 | conv.u2 | conv.u4 |

 conv.u8 | cpblk | div | div.un |

 dup | endfilter | endfinally | initblk |

jmpi | ldarg.0 | ldarg.1 | ldarg.2 |

ldarg.3 | ldc.i4.0 | ldc.i4.1 | ldc.i4.2 |

ldc.i4.3 | ldc.i4.4 | ldc.i4.5 | ldc.i4.6 |

ldc.i4.7 | ldc.i4.8 | ldc.i4.M1 | ldelem.i |

ldelem.i1 | ldelem.i2 | ldelem.i4 | ldelem.i8 |

ldelem.r4 | ldelem.r8 | ldelem.ref | ldelem.u1 |

ldelem.u2 | ldelem.u4 | ldind.i | ldind.i1 |

ldind.i2 | ldind.i4 | ldind.i8 | ldind.r4 |

ldind.r8 | ldind.ref | ldind.u1 | ldind.u2 |

ldind.u4 | ldlen | ldloc.0 | ldloc.1 |

ldloc.2 | ldloc.3 | ldnull | localloc |

mul | mul.ovf | mul.ovf.un | neg |

nop | not | or | pop |

refanytype | rem | rem.un | ret |

rethrow | shl | shr | shr.un |

stelem.i | stelem.i1 | stelem.i2 | stelem.i4 |

stelem.i8 | stelem.r4 | stelem.r8 | stelem.ref |

stind.i | stind.i1 | stind.i2 | stind.i4 |

stind.i8 | stind.r4 | stind.r8 | stind.ref |

stloc.0 | stloc.1 | stloc.2 | stloc.3 |

Page 149

The IL Assembly Language Programmers' Reference PDC Release

sub | sub.ovf | sub.ovf.un | tail. |

throw | volatile. | xor

Examples:

ldlen

not

21.2.5 Instructions that Refer to Parameters or

Local Variables
These instructions take one operand, which references a parameter or local variable of the
current method. The variable can be referenced by its number (starting with variable 0)
or by name (if the names are supplied as part of a signature using the form that supplies
both a type and a name).

<instr> ::= <instr_var> <int32> |

 <instr_var> <localname>

<instr_var> ::= // Derived from opcode.def

ann.dead | ann.live | ann.ref

ann.ref.s | ldarg | ldarg.s | ldarga

ldarga.s | ldloc | ldloc.s | ldloca

ldloca.s | starg | starg.s | stloc

stloc.s

Examples:

stloc 0 // store into 0th local

ldarg X3 // load from argument named X3

21.2.6 Instructions that Take a Single 32-bit

Integer Argument
These instructions take one operand, which must be a 32-bit integer.

<instr> ::= <instr_i> <int32>

<instr_i> ::= // Derived from opcode.def

ldc.i4 | ldc.i4.s | unaligned.
Examples:

ldc.i4 123456 // Load the number 123456

ldc.i4.s 10 // Load the number 10

Page 150

The IL Assembly Language Programmers' Reference PDC Release

21.2.7 Instructions that Take a Single 64-bit

Integer Argument
These instructions take one operand, which must be a 64-bit integer.

<instr> ::= <instr_i8> <int64>

<instr_i8> ::= // Derived from opcode.def

ldc.i8

Examples:

ldc.i8 0x123456789AB

ldc.i8 12

21.2.8 Instructions that Take a Single Floating

Point Argument
These instructions take one operand, which must be a floating point number.

<instr> ::= <instr_r> <float64> |

 <instr_r> <int64> |

<instr_r> (<bytes>) // <bytes> is binary image

<instr_r> ::= // Derived from opcode.def

ldc.r4 | ldc.r8

Examples:

ldc.r4 10.2

ldc.r4 10

ldc.r4 0x123456789ABCDEF

ldc.r8 (00 00 00 00 00 00 F8 FF)

21.2.9 Branch instructions
The assembler does not optimize branches. The branch must be specified explicitly as
using either the short or long form of the instruction. If the displacement is too large for
the short form, then the assembler will display an error.

<instr> ::=

<instr_brtarget> <int32> |

<instr_brtarget> <label>
<instr_brtarget> ::= // Derived from opcode.def

ann.data | ann.data.s | beq | beq.s | bge | bge.s |

bge.un | bge.un.s | bgt | bgt.s | bgt.un | bgt.un.s |

ble | ble.s | ble.un | ble.un.s | blt | blt.s |

Page 151

The IL Assembly Language Programmers' Reference PDC Release

blt.un | blt.un.s | bne.un | bne.un.s | br | br.s |

brfalse | brfalse.s | brtrue | brtrue.s | leave | leave.s

Example:

br.s 22
br foo

21.2.10 Instructions that Take a Method as an

Argument
These instructions reference a method, either in another class (first instruction format) or
in the current class (second instruction format).

<instr> ::=

 <instr_method>

 <callConv> <type> [<typeSpec> ::] <methodName> (<signature>)

<instr_method> ::= // Derived from opcode.def

ann.call | ann.hoisted_call | call | callvirt | jmp |

ldftn | ldvirtftn | newobj

Examples:

call instance int32 C.D.E::X(class W, native int)

ldftn vararg char F(...) // Global Function F

21.2.11 Instructions that Take a Field of a Class as

an Argument
These instructions reference a field of a class.

<instr> ::=

<instr_field> <type> <typeSpec> :: <id>

<instr_field> ::= // Derived from opcode.def

ldfld | ldflda | ldsfld | ldsflda | stfld | stsfld

Examples:

ldfld native int X::IntField

stsfld int32 Y::AnotherField

Page 152

The IL Assembly Language Programmers' Reference PDC Release

21.2.12 Instructions that Take a Type as an

Argument
These instructions reference a type.

<instr> ::= <instr_type> <typeSpec>

<instr_type> ::= // Derived from opcode.def

box | castclass | cpobj | initobj | isinst |

ldelema | ldobj | mkrefany | newarr | refanyval |

sizeof | stobj | unbox

Examples:

initobj System.Console

sizeof class X

21.2.13 Instructions that Take a String as an

Argument
These instructions take a string as an argument.

<instr> ::= <instr_string> <QSTRING>

<instr_string> ::= // Derived from opcode.def

ldstr

Examples:

ldstr “This is a string”

ldstr “This has a\nnewline in it”

21.2.14 Instructions that Take a Signature as an

Argument
These instructions take a stand-alone signature as an argument.

<instr> ::= <instr_sig> <callConv> <type> (<signature>)

<instr_sig> ::= // Derived from opcode.def

calli

Examples:

calli class A.B(wchar *)

calli vararg bool(int32[,] X, ...)

// Returns a boolean, takes at least one argument. The first

// argument, named X, must be a two-dimensional array of

Page 153

The IL Assembly Language Programmers' Reference PDC Release

// 32-bit ints

21.2.15 Instructions that Take a Metadata Token

as an Argument
This instruction takes a metadata token as an argument. The token can reference a type, a
method, or a field of a class.

<instr> ::= <instr_tok> <typeSpec> |

 <instr_tok> method

 <callConv> <type> <typeSpec> :: <methodName>

 (<signature>) |

 <instr_tok> method

 <callConv> <type> <methodName>

 (<signature>) |

 <instr_tok> field <type> <typeSpec> :: <id>

<instr_tok> ::= // Derived from opcode.def

ldtoken

Examples:

ldtoken class System.Console

ldtoken method int32 X::Fn()

ldtoken method bool GlobalFn(int32 &)

ldtoken field class X.Y Class::Field

21.2.16 The SSA Φ-Node Instruction
This instruction embeds a static single assignment (SSA) Φ-Node into the instruction
stream as an annotation.

<instr> ::= <instr_phi> <int16>*

<instr_phi> ::= // Derived from opcode.def

ann.phi

Examples:

ann.phi 10 3 15

ann.phi 3 –2 0x3

21.2.17 Switch instruction
The switch instruction takes a set of labels or decimal relative values.

<instr> ::= <instr_switch> (<labels>)

Page 154

The IL Assembly Language Programmers' Reference PDC Release

<instr_switch> ::= // Derived from opcode.def

switch
Examples:

switch (0x3, –14, Label1)

switch (5, Label2)

Page 155

	1 Introduction
	1.1 Audience
	1.2 Overview
	1.3 Execution Engine
	1.4 Validation and Verification
	1.5 The NGWS SDK IL Tools
	1.5.1 The Assembler
	1.5.1.1 Usage of ilasm

	1.5.2 The Disassembler
	1.5.2.1 The Disassembler for Power Users
	1.5.2.2 Roundtrips

	1.5.3 The Assembly Linker
	1.5.4 The Module Verifier
	1.5.5 The Debugger
	1.5.6 Compilers

	2 Hello World Example
	3 General Syntax
	3.1 General Syntax Notation
	3.2 Terminals
	3.3 Identifiers
	3.4 Labels and Lists of Labels
	3.5 Lists of Hex Bytes
	3.6 Floating point numbers
	3.7 Source Line Information

	4 Assemblies, Manifests and Modules
	4.1 Assemblies, Modules, Types and Namespaces
	4.2 Defining an Assembly
	4.2.1 Information about the Assembly
	4.2.2 Manifest Resources
	4.2.3 Files in the Assembly
	4.2.4 Operational Characteristics of Assemblies

	4.3 Referencing Assemblies
	4.4 Referencing Modules
	4.5 Declarations in a Module
	4.6 Export Declarations
	4.6.1 The .comtype directive

	5 Types
	5.1 The Type System
	5.2 Types
	5.3 Type References, Assemblies and Modules
	5.4 Inheritance, Type Conformance and Subtypes
	5.4.1 Conformance and Subtyping in the IL Verifier
	5.4.2 Conformance and Subtyping at Runtime

	6 Visibility, Accessibility and Hiding
	6.1 Visibility
	6.2 Hiding
	6.3 Accessibility
	6.3.1 Family Access
	6.3.2 Privatescope Acess

	7 Classes
	7.1 Defining a Class
	7.1.1 Built-in Class Attributes
	7.1.1.1 Visibility and Accessibility Attributes
	7.1.1.2 Class Layout Attributes
	7.1.1.3 Class Semantics Attributes
	7.1.1.4 Special Sematics Attributes
	7.1.1.5 Implementation Attributes
	7.1.1.6 Interoperation Attributes
	7.1.1.7 Special Handling Attributes

	7.2 Contents of a Class
	7.3 Special Members of Types
	7.3.1 Inheritance of Virtual Methods
	7.3.2 Instance constructors
	7.3.3 Instance Finalizer
	7.3.4 Class constructors
	7.3.4.1 Execution Guarantees
	7.3.4.2 Delaying Type Initialization
	7.3.4.3 Races and Deadlocks

	7.4 Nested Types
	7.5 Controlling Layout
	7.5.1 Explicit Layout Control of Instances
	7.5.2 Explicit Layout of the Vtable
	7.5.2.1 The override Directive
	7.5.2.2 The vtfixup Directive

	7.6 Global (Non-class) Data and Methods

	8 Interfaces
	8.1 Requirements on classes that implement interfaces
	8.2 MethodImpls

	9 Value Types
	9.1 Overview of Value Types
	9.2 Methods on Value Types
	9.3 Boxing and Unboxing
	9.4 Initializing Value Types
	9.5 Copy Constructors on Value Types
	9.6 Using Value Types for C++ Classes
	9.6.1 Represent the Class as a Value Type
	9.6.2 Represent the Vtable as another Value Type

	10 Special Types
	10.1 Arrays
	10.2 Delegates
	10.2.1 Changes to Delegates
	10.2.2 Moved Delegate Combine Methods
	10.2.3 Members of Delagates

	10.3 Enumerations (Enums)
	10.4 Pointer Types
	10.4.1.1 Unmanaged Pointers
	10.4.1.2 Managed Pointers
	10.4.1.3 Transient Pointers

	10.5 Function Pointer Types

	11 Signatures
	11.1 Method Signatures
	11.1.1 Marshal

	11.2 Local Variable Signatures
	11.3 Primitive Types in Signatures
	11.4 Native Data Types

	12 Methods
	12.1 Method Head
	12.1.1 Method Name
	12.1.2 Kinds of Calls

	12.2 Method Body
	12.2.1 .locals
	12.2.2 .param
	12.2.3 .vtentry

	12.3 Predefined Attributes on Methods
	12.3.1 Accessibility Information
	12.3.2 Method Contract Attributes
	12.3.2.1 Static Methods
	12.3.2.2 Instance Methods
	12.3.2.3 Virtual Methods

	12.3.3 Virtual Method Table Information
	12.3.4 Implementation Attributes
	12.3.5 Interoperation Attributes
	12.3.6 Other Attributes

	12.4 Implementation Attributes of Methods
	12.4.1 Code Implementation Attributes
	12.4.2 Managed or Unmanaged Information
	12.4.3 Implementation Information
	12.4.4 Interoperation

	12.5 Scope Blocks
	12.6 Method Calls
	12.6.1 Call Convention

	12.7 Global Methods
	12.7.1 Managed Native Calling Conventions
	12.7.1.1 Standard x86 Calling Convention
	12.7.1.2 Varargs x86 Calling Convention
	12.7.1.3 Fast Calls to Unmanaged Code

	12.7.2 Accessing Unmanaged Methods
	12.7.2.1 Via COM Interop
	12.7.2.2 Using Platform Invoke
	12.7.2.3 Via Function Pointers
	12.7.2.4 Unmanaged Mechanisms: “It Just Works” and “Platform Invoke”
	12.7.2.5 Calling from Managed to Unmanaged
	12.7.2.6 Calls from Unmanaged to Managed

	12.7.3 Exporting Managed Methods to the Unmanaged World

	13 Fields
	13.1 Field Attributes
	13.2 Predefined Attributes on Fields
	13.2.1 Accessibility Information
	13.2.2 Field Contract Attributes
	13.2.3 Interoperation Attributes
	13.2.4 Other Attributes

	13.3 Global Fields
	13.3.1 Initializing Static Data
	13.3.1.1 Data Known at Link Time
	13.3.1.2 Data Known at Load Time
	13.3.1.3 Data Known at Run Time

	13.3.2 Unmanaged Thread-local Storage

	13.4 Embedding Data in a PE File
	13.4.1 Data Decleration
	13.4.2 Accessing Data

	14 Properties
	14.1 Property Head
	14.2 Property Declarations

	15 Events
	15.1 Event Head
	15.2 Event Declaration

	16 Declarative Security
	17 Custom Attributes
	17.1 Custom Attribute Usage: CLS Conventions
	17.2 Attributes Used by the Runtime
	17.2.1 Pseudo Custom Attributes
	17.2.2 Attributes Defined by the CLS
	17.2.3 Custom Attributes for JIT Compiler and Debugger
	17.2.4 Custom Attributes for Reflection
	17.2.5 Custom Attributes for Remoting
	17.2.6 Custom Attributes for Security
	17.2.7 Custom Attributes for TLS
	17.2.8 Custom Attributes for the Assembly Linker
	17.2.9 Attributes Provided for Language Interop

	18 Exception Handling
	18.1 Try Block
	18.2 Handlers
	18.3 Throwing an Exception

	19 IL Instructions
	19.1 Overview
	19.2 Opcodes by Category
	19.2.1 General Instruction Syntax
	19.2.2 Numeric and Logical Operations
	19.2.2.1 Unary Operations
	19.2.2.2 Binary Numeric Operations, No Overflow Check
	19.2.2.3 Binary Integer Operations, No Overflow Check
	19.2.2.4 Operations with Overflow Checks
	19.2.2.5 Comparison Operations
	19.2.2.6 Conversions

	19.2.3 Control Flow
	19.2.3.1 Unconditional Branch Instructions
	19.2.3.2 Unary Compare-and-Branch and Multi-Way Branch Instructions
	19.2.3.3 Binary Compare-and-Branch Instructons
	19.2.3.4 Procedure Call and Related Instructions
	19.2.3.5 Exception Handling
	19.2.3.6 Other Control Flow Instructions

	19.2.4 Moving Data
	19.2.5 Object Management
	19.2.6 Annotations

	20 Sample IL Programs
	20.1 Mutually Recursive Program (with tail calls)
	20.2 Using Value Types

	21 Appendix A: ILASM Complete Grammar
	21.1 Assembler Grammar
	21.2 Instruction syntax
	21.2.1 Comments
	21.2.2 Labels
	21.2.3 Full Grammar for Instructions
	21.2.4 Instructions with no operand
	21.2.5 Instructions that Refer to Parameters or Local Variables
	21.2.6 Instructions that Take a Single 32-bit Integer Argument
	21.2.7 Instructions that Take a Single 64-bit Integer Argument
	21.2.8 Instructions that Take a Single Floating Point Argument
	21.2.9 Branch instructions
	21.2.10 Instructions that Take a Method as an Argument
	21.2.11 Instructions that Take a Field of a Class as an Argument
	21.2.12 Instructions that Take a Type as an Argument
	21.2.13 Instructions that Take a String as an Argument
	21.2.14 Instructions that Take a Signature as an Argument
	21.2.15 Instructions that Take a Metadata Token as an Argument
	21.2.16 The SSA Φ-Node Instruction
	21.2.17 Switch instruction

