
Profiling

NGWS runtime

Profiling

This is preliminary documentation and subject to change

Last updated: 8 June 2000

Page 2

Profiling

Page 3

Profiling

Table of Contents
1 Profiling – Introduction..7

2 Goals for the Profiling APIs...7

3 Non-goals for the Profiling APIs...8

4 Profiling APIs – Overview...8

5 Profiling APIs – Recurring Concepts..10

5.1 IDs...10

5.2 Return Values..10

5.3 Notification Thread...10

5.4 Nesting of Notifications..11

6 ICorProfilerCallback – Details..11

6.1 Runtime..12

6.1.1 Initialize...12

6.1.2 Shutdown...12

6.2 AppDomain..12

6.2.1 AppDomainCreationStarted...12

6.2.2 AppDomainCreationFinished..13

6.2.3 AppDomainShutdownStarted...13

6.2.4 AppDomainShutdownFinished..13

6.3 Assembly..13

6.3.1 AssemblyLoadStarted...14

6.3.2 AssemblyLoadFinished..14

6.3.3 AssemblyUnloadStarted..14

6.3.4 AssemblyUnloadFinished...15

6.4 Module..15

6.4.1 ModuleLoadStarted..15

6.4.2 ModuleLoadFinished...15

6.4.3 ModuleUnloadStarted...15

6.4.4 ModuleUnloadFinished..16

6.4.5 NotifyModuleAttachedToAssembly..16

6.5 Class..16

6.5.1 ClassLoadStarted...16

6.5.2 ClassLoadFinished..17

6.5.3 ClassUnloadStarted..17

6.5.4 ClassUnloadFinished...17

Page 4

Profiling

6.6 Function..18

6.6.1 JITCompilationStarted..18

6.6.2 JITCompilationFinished...18

6.6.3 FunctionUnloadStarted...18

6.6.4 JITCachedFunctionSearchStarted...19

6.6.5 JITCachedFunctionSearchFinished..19

6.6.6 JITFunctionPitched...20

6.6.7 JITInlining..20

6.7 Thread..20

6.7.1 ThreadCreated..21

6.7.2 ThreadDestroyed...21

6.7.3 ThreadAcquiringMonitor..21

6.7.4 ThreadBlockedMonitor..21

6.7.5 ThreadAcquiredMonitor...22

6.7.6 ThreadReleasedMonitor..22

6.7.7 ThreadAssignedToOSThread..23

6.8 Remoting..23

6.8.1 RemotingClientInvocationStarted...23

6.8.2 RemotingClientSendingMessage...24

6.8.3 RemotingClientReceivingReply...24

6.8.4 RemotingClientInvocationFinished..24

6.8.5 RemotingServerReceivingMessage...25

6.8.6 RemotingServerInvocationStarted..25

6.8.7 RemotingServerInvocationReturned...25

6.8.8 RemotingServerSendingReply..25

6.9 Transitions..26

6.9.1 UnmanagedToManagedTransition...26

6.9.2 ManagedToUnmanagedTransition...26

6.9.3 COMClassicWrapperCreated..27

6.9.4 COMClassicWrapperDestroyed...27

6.10 Runtime Suspension...28

6.10.1 RuntimeSuspendStarted...28

6.10.2 RuntimeSuspendFinished..29

6.10.3 RuntimeSuspendAborted..29

6.10.4 RuntimeResumeStarted..29

6.10.5 RuntimeResumeFinished...29

Page 5

Profiling

6.10.6 RuntimeThreadSuspended..29

6.10.7 RuntimeThreadResumed...30

6.11 Garbage Collection...30

6.11.1 ObjectAllocated...30

6.11.2 ObjectsAllocatedByClass...30

6.11.3 MovedReferences..31

6.11.4 ObjectReferences..33

6.11.5 RootReferences...33

6.12 Exceptions...34

6.12.1 ExceptionThrown...34

6.12.2 ExceptionSearchFunctionEnter...35

6.12.3 ExceptionSearchFunctionLeave..35

6.12.4 ExceptionSearchFilterEnter...35

6.12.5 ExceptionSearchFilterLeave...35

6.12.6 ExceptionSearchCatcherFound...35

6.12.7 ExceptionOSHandlerEnter...36

6.12.8 ExceptionOSHandlerLeave..36

6.12.9 ExceptionUnwindFunctionEnter..37

6.12.10 ExceptionUnwindFunctionLeave...37

6.12.11 ExceptionUnwindFinallyEnter...37

6.12.12 ExceptionUnwindFinallyLeave..37

6.12.13 ExceptionCatcherEnter...38

6.12.14 ExceptionCatcherLeave..38

7 ICorProfilerInfo...39

7.1 ForceGC..39

7.2 GetAppDomainInfo...39

7.3 GetAssemblyInfo..39

7.4 GetClassFromObject...40

7.5 GetClassFromToken..40

7.6 GetClassIDInfo...41

7.7 GetCodeInfo..41

7.8 GetEventMask..42

7.9 GetFunctionFromIP...42

7.10 GetFunctionFromToken..43

7.11 GetFunctionInfo...43

7.12 GetHandleFromThread..43

Page 6

Profiling

7.13 GetILFunctionBodyAllocator...44

7.14 GetILFunctionBody...44

7.15 GetModuleInfo...44

7.16 GetModuleMetaData..45

7.17 GetObjectSize..45

7.18 GetStaticClassSize..46

7.19 GetThreadInfo..46

7.20 GetCurrentThreadID...46

7.21 SetEnterLeaveFunctionHooks...47

7.22 SetEventMask..47

7.23 SetFunctionIDMapper..47

7.24 SetFunctionReJIT..48

7.25 SetILFunctionBody..48

7.26 SetILInstrumentedCodeMap...48

7.27 SetILMapFlag...49

7.28 GetInprocInspectionInterface...49

7.29 GetInprocInspectionThisThread..50

7.30 GetThreadcontext...50

7.31 GetTokenAndMetadataFromFunction...50

8 Memory Allocation Interface (IMethodMalloc : IUnknown).........................51

8.1 Alloc...51

9 Profiling Enumerations...52

9.1 COR_PRF_MONITOR...52

9.2 COR_PRF_ID..53

10 Profiling Type Definitions..54

10.1 COR_IL_MAP...54

10.2 COR_PRF_JIT_MAP...54

10.3 FunctionIDMapper..55

10.4 FunctionEnter..55

10.5 FunctionExit...55

10.6 FunctionTailcall..56

11 Profiler Picker...57

12 Security Issues in Profiling..58

13 Design Considerations..59

14 Unmanaged Code..60

Page 7

Profiling

1 Profiling – Introduction
Profiling, in this document, means monitoring the performance and memory usage of
a program, which is executing on the NGWS runtime. This document details the
interfaces, provided by the runtime, to access such information. Typically, a very
limited audience will use these APIs – developers of profiling tools.

Just to give the flavor, a typical use for profiling is to measure how much time
(elapsed, or wall-clock, and/or CPU time) is spent within each routine, or within all
code that is executed from a given root routine. To do this, a profiler asks the
runtime to inform it whenever execution enters or leaves each routine; the profiler
notes the wall-clock and CPU time for each such event, and accumulates the results
at the end of the program.

Note: we use the term routine in this document to mean a section of code that has
an entry point and an exit point. Different languages use different names for this
same concept -- function, procedure, method, co-routine, subroutine, etc.

Profiling an NGWS program requires more support than profiling conventionally-
compiled machine code. This is because NGWS routines are JIT-compiled
(converting Intermediate Language into native machine code) at runtime – a profiler
cannot discover in advance what the generated code will be, nor where within the
address space of the process it will be loaded. The profiling APIs safely provide this
missing information

In addition, the runtime may choose to discard the machine code it has JIT-compiled
for a class, in order to free up memory for more urgent uses – we refer to this
process as code pitching. The memory released may be used to hold the results of
JIT-compiling a totally different routine. Clearly, a profiling tool needs to be
informed this has happened, as it could confuse the profiling statistics of the old
routine with that of the new.

Note that JIT-compiling routines at runtime provides good opportunities, as the APIs
allow a profiler to change the in-memory IL code stream for a routine, and then
request that it be JIT-compiled anew. In this way, the profiler can dynamically add
instrumentation code to particular routines that need deeper investigation. Although
this approach is possible in conventional scenarios, it’s much easier to do this for the
NGWS runtime

2 Goals for the Profiling APIs
 Expose information that existing profilers will require for a user to determine and

analyze performance of a program run on the NGWS runtime. Specifically:

 Execution engine startup and shutdown events
 Application domain creation and shutdown events
 Assembly loading and unloading events
 Module load/unload events
 Classic Com callable wrappers creation and destruction events
 JIT-compiles, and code pitching events
 Class load/unload events
 Thread birth/death/synchronization
 Routine entry/exit events

Page 8

Profiling

 Exceptions
 Transitions between managed and unmanaged execution
 Transitions between different runtime contexts
 Security checks
 Information about runtime suspensions
 Information about the runtime memory heap and garbage collection activity

 Callable from any COM-compatible language

 Efficient, in terms of CPU and memory consumption – the act of profiling should
not cause such a big change upon the program being profiled that the results are
misleading

 Useful to both sampling and non-sampling profilers. [A sampling profiler inspects
the profilee at regular clock ticks – maybe 5 milliseconds apart, say. A non-
sampling profiler is informed of events, synchronously with the thread that
causes them]

3 Non-goals for the Profiling APIs
 Support for profiling unmanaged code. Existing mechanisms must instead be

used to profile unmanaged code. The NGWS profiling APIs work only for
managed code. However, we provide the profiler with managed/unmanaged
transition events to determine the boundaries between managed and unmanaged
code.

 Information needed to check bounds. The runtime provides intrinsic support for
bounds checking of all managed code.

4 Profiling APIs – Overview
The profiling APIs within NGWS allow you to monitor the execution and memory
usage of a running application. Typically, these APIs will be used to write a code
profiler package. In the sections that follow, we will talk about a profiler as a
package built to monitor execution of any managed application.

The profiling APIs are implemented as two COM interfaces, shown in the diagram
below. One is implemented by the runtime (ICorProfilerInfo), the other is
implemented by the profiler (ICorProfilerCallback).

Page 9

Application

Runtime Profiler

ICorProfilerInfo

ICorProfilerCallback

Profiling

The ICorProfilerCallback interface consists of methods with names like
ClassLoadStarted, ClassLoadFinished, FunctionEnter, FunctionLeave. So, each time
the runtime loads/unloads a class, or enters/leaves a function, it calls the
corresponding method in the profiler’s ICorProfilerCallback interface. (And similarly
for all of the other notifications; see later for details)

So, for example, a simple profiler could measure code performance via the two
notifications FunctionEnter and FunctionLeave. It simply timestamps each
notification, accumulates results, then outputs a list indicating which functions
consumed most cpu time, or most wall-clock time, during execution of the
application.

So, if it helps, you can think of the ICorProfilerCallback interface as the “notifications
API”.

The other interface involved for profiling is ICorProfilerInfo. The profiler calls this, as
required, to obtain more information to help its analysis. For example, whenever the
runtime calls FunctionEnter it supplies a value for the FunctionId. The profiler can
discover more information about that FunctionId by calling the
ICorProfilerInfo::GetFunctionInfo to discover the function’s parent class, its name,
etc, etc.

The picture so far describes what happens once the application and profiler are
running. But how are the two connected together when an application is started?
Well, the runtime makes the connection during its initialization in each process. It
decides whether to connect to a profiler, and which profiler that should be,
depending upon the value for two environment variables, checked one after the
other:

 Cor_Enable_Profiling – only connect with a profiler if this environment variable
exists and is set to a non-zero value.

 Cor_Profiler – connect with the profiler with this CLSID or ProgID (which must
have been stored previously in the Registry). The Cor_Profiler environment
variable is defined as a string: eg
 set Cor_Profiler={32E2F4DA-1BEA-47ea-88F9-C5DAF691C94A}
or

set Cor_Proflier="MyProfiler"
The profiler class is the one that implements ICorProfilerCallback

When both checks above pass, the runtime creates an instance of the profiler in a
similar fashion to CoCreateInstance. The profiler is not loaded through a direct call
to CoCreateInstance so that a call to CoInitialiaze may be avoided, which requires
setting the threading model. It then calls the ICorProfilerCallback::Initialize method
in the profiler. The signature of this method is:

HRESULT Initialize(IUnknown *pICorProfilerInfoUnk, DWORD
*pdwRequestedEvents)

The profiler must QueryInterface pICorProfilerInfoUnk for an ICorProfilerInfo
interface pointer and save it so that it can call for more info during later profiling. It
then sets the pdwRequestedEvents bitmask to say which categories of notifications it
is interested in. For example:

*pdwRequestedEvents = COR_PRF_MONITOR_CALLS |
COR_PRF_MONITOR_GC

Page 10

Profiling

if interested only in function enter/leave notifications and Garbage Collection
notifications. The profiler then simply returns, and we’re off and running!

By setting the notifications mask in this way, the profiler can limit which notifications
it receives. This obviously helps you to build a simpler, or special-purpose profiler; it
also reduces wasted cpu time in sending notifications that the profiler would simply
‘drop on the floor’ (see later for details)

You can see from the above explanation that only one profiler can be profiling any
process at one time.

Note: we provide a simple GUI tool, called “Profiler Picker” which helps set and
inspect the profiler Registry settings (see later)

The profiler must be implemented as an inproc32 COM server – a DLL which is
mapped into the same address space as the process being profiled. We do not
support any other type of COM server; if a profiler, for example, wants to monitor
applications from a remote computer, it must implement ‘collector agents’ on each
machine, which batch results and communicate them to the central data collection
machine.

5 Profiling APIs – Recurring Concepts
This brief section explains a few concepts that apply throughout the profiling APIs,
rather than repeat them with the description of each method.

5.1IDs
Runtime notifications supply an ID for reported classes, threads, AppDomains, etc.
These IDs can be used to query the runtime for more info. These IDs are simply the
address of a block in memory that describes the item; however, they should be
treated as opaque handles by any profiler.

Because IDs are simply memory addresses, ObjectIDs point into the garbage-
collected heap and may change their value with each garbage collection. Thus, an
ObjectID value is only valid between the time it is received and when the next
garbage collection begins. The runtime also supplies notifications that allow a
profiler to update its internal maps that track objects, so that a profiler may maintain
a valid ObjectID across garbage collections.

5.2Return Values
As a profiler, you can return a status, as an HRESULT, for each notification the
runtime gives you. That status may have the value S_OK or E_FAIL. However, in
first release, the runtime ignores this status value in every callback except
ObjectReference (see method description below).

5.3Notification Thread
In most cases, the notifications are executed by the same thread as generated the
event. Such notifications (for example, FunctionEnter and FunctionLeave) don’t need
to supply the explicit ThreadID. Also, the profiler might choose to use thread-local
storage to store and update its analysis blocks, as compared with indexing into
global storage, based off the ThreadID of the affected thread.

Page 11

Profiling

Each notification in the lists below document which thread does the call – either the
thread which generated the event, or some utility thread (eg garbage collector)
within the runtime. For any callback that might be invoked by a different thread,
you can call the ICoreProfilerInfo::GetCurrentThreadID to discover the thread that
generated the event.

5.4Nesting of Notifications
Notifications to a profilers follow the obvious nesting sequence. For example, after
an AssemblyUnloadStarted, the profiler should expect to see a flurry of
ModuleUnloadStarted notifications; then a flurry of ClassUnloadStarted notifications;
and so on. The nesting looks like this:

AssemblyUnloadStarted (AssemA)
ModuleUnloadStarted (ModuleA)

ClassUnloadStarted (ClassA)
FunctionUnloadStarted (FuncA)
FunctionUnloadFinished (FuncA)
. . .

ClassUnloadFinished (ClassA)
. . .

ModuleUnloadFinished (ModuleA)
. . .

AssemblyUnloadFinished (AssemA)

6 ICorProfilerCallback – Details
As explained earlier, the ICorProfilerCallback interface is the “notifications API” that a
profiler implements. Though the interface contains many methods, understanding
them is easier once you realize they fall into about 12 categories, and that often
within a category, they come “four at a time”. The categories are:

Assemblies, AppDomains, Modules, Classes, Objects, Functions, Threads,
Interop, Exceptions, Garbage Collections, Remoting, and runtime Suspensions

If we take Modules as an example, they have four notifications, recording the birth
(start and finish) and death (start and finish) of a given Module. Their names are:

 ModuleLoadStarted, ModuleLoadFinished

 ModuleUnloadStarted, ModuleUnloadFinished

And we follow a similar naming scheme throughout the API.

Almost all of the notifications provide an ID to the item being of interest – for
example, ModuleID, ClassID, FunctionID. These are opaque 32-bit handles. A
profiler uses them to keep track of notifications (for example, the number of times
each function in an application is called). The profiler can also use that ID to ask for
more information about the item, via the ICorProfilerInfo methods provided by the
runtime. The IDs are valid to use until you receive a callback indicating the specific
ID has been unloaded, deleted or otherwise invalidated.

The next sections list all the methods on ICorProfilerCallback, gathered together into
categories

Page 12

Profiling

6.1Runtime

6.1.1 Initialize
The NGWS runtime calls Initialize to setup the code profiler whenever a new NGWS
application is started. The call provides an IUnknown interface pointer that should be
QI'd for an ICorProfilerInfo interface pointer, and a pointer to a DWORD that should
be filled out with all of the values from the COR_PRF_MONITOR enum that the
profiler wishes to receive events for.

HRESULT Initialize(IUnknown *pICorProfilerInfoUnk, DWORD *pdwRequestedEvents);

Parameter Description

[in] pICorProfilerInfoUnk A pointer to an IUnknown object within the runtime
which can be QueryInterface’d for an IcorProfilerInfo
interface pointer. The profiler can call methods in this
object to obtain more info about notifications

[out] pdwRequestedEvents The profiler sets this bitmask to tell runtime which
notifications it wants to receive. The bit values are
defined in the COR_PRF_MONITOR enum in CorProf.h.
This is the only opportunity to enable callbacks that
are a part of COR_PRF_MONITOR_IMMUTABLE, since
they can no longer be changed after returning from
this function.

6.1.2 Shutdown
The NGWS runtime calls Shutdown to notify the code profiler that the
applicationlication is exiting. This is the profiler's last opportunity to safely call
functions on the ICorProfilerInfo interface. After returning from this function the
runtime will proceed to unravel its internal data structures and any calls to
ICorProfilerInfo are undefined in their behaviour.

HRESULT Shutdown()

6.2AppDomain

6.2.1 AppDomainCreationStarted
Called when an AppDomain creation has begun. The id is not valid for any
information request until after the AppDomain has been fully created. One may only
cache the id provided in AppDomainCreationStarted for later use.

HRESULT AppDomainCreationStarted(AppDomainID appDomainId)

Page 13

Profiling

Parameter Description

[in] appDomainId ID for the AppDomain being created

6.2.2 AppDomainCreationFinished
Called when an AppDomain creation has finished. The hrStatus provides the success
or failure of the operation.

HRESULT AppDomainCreationFinished(AppDomainID appDomainId, HRESULT hrStatus)

Parameter Description

[in] appDomainId ID for the AppDomain just created

[in] hrStatus Status for whether the AppDomain creation succeeded

6.2.3 AppDomainShutdownStarted
Notify that runtime is starting to shut down an
AppDomainAppDomainShutdownStarted is the last point at which the AppDomainID
is valid for calls to the ICorProfilerInfo interface

Syntax

HRESULT AppDomainShutdownStarted(AppDomainID appDomainId)

Parameter Description

[in] appDomainId ID for the AppDomain being shut down

6.2.4 AppDomainShutdownFinished
Notify that runtime has finished shutting down an AppDomain. You cannot use
appDomainId to query the runtime for info during or after this notification – it is
supplied only so the profiler knows which AppDomain has just been shut down. The
hrStatus provides the success or failure of the operation.

HRESULT AppDomainShutdownFinished(AppDomainID appDomainId, HRESULT hrStatus)

Parameter Description

[in] appDomainId ID for the AppDomain just shut down

[in] hrStatus Status for whether the AppDomain shutdown succeeded

6.3Assembly
You might expect that runtime would notify an assembly load, followed by one or
more module loads for that assembly. However, what actually happens is that

Page 14

Profiling

runtime notifies you of a module load, then the load of its containing assembly; after
that you may obtain zero or more notifications of module loads for that assembly.
Thus, the “first child begets the parent”.

There is another, unusual path through module loading to be aware of. That is when
a module is loaded via a legacy mechanism, such as a call to the Win32 LoadLibrary
routine, or implicitly due to entries in the Import Address Table of the current image.
In such cases, you will see a module load notification. Some time later (when the
runtime actually needs to execute code from that ‘legacy’ module) it will discover
which assembly it is a part of. At that point, runtime will notify you by calling your
ModuleAttachedToAssembly method.

6.3.1 AssemblyLoadStarted
Called when an Assembly load has begun. The id is not valid for any information
request until after the assembly has been fully loaded. One may only cache the id
provided in AssemblyLoadStarted for later use.

HRESULT AssemblyLoadStarted(AssemblyID assemblyId)

Parameter Description

[in] assemblyID ID for the Assembly being loaded

6.3.2 AssemblyLoadFinished
Called when an Assembly load has begun. The id is now valid for any information
request through the ICorProfilerInfo interface. The hrStatus provides the success or
failure of the operation.

HRESULT AssemblyLoadFinished(AssemblyID assemblyId, HRESULT hrStatus)

Parameter Description

[in] assemblyId ID for the Assembly just loaded

[in] hrStatus Status for whether the Assembly load succeeded

6.3.3 AssemblyUnloadStarted
Called before and after an assembly is unloaded. AssemblyUnloadStarted is the last
point at which the AssemblyID is valid for calls to the ICorProfilerInfo interface.

HRESULT AssemblyUnloadStarted(AssemblyID assemblyId)

Parameter Description

[in] assemblyId ID for the Assembly being unloaded

Page 15

Profiling

6.3.4 AssemblyUnloadFinished
Notify that runtime has finished unloading an Assembly. You cannot use assemblyId
to query the runtime for info after this notification – it is supplied only so the profiler
knows which Assembly has just been unloaded. The hrStatus provides the success
or failure of the operation.

HRESULT AssemblyUnloadFinished(AssemblyID assemblyId, HRESULT hrStatus)

Parameter Description

[in] appDomainId ID for the Assembly just unloaded

[in] hrStatus Status for whether the Assembly unload succeeded

6.4Module

6.4.1 ModuleLoadStarted
The runtime calls ModuleLoadStarted to notify the code profiler that a module is
about to be loaded. The ModuleID is not valid in calls to ICorProfilerInfo until the
profiler receives a ModuleLoadFinished callback for the same ModuleID

HRESULT ModuleLoadStarted(ModuleID moduleId)

Parameter Description

[in] moduleId ID for the Module being loaded

6.4.2 ModuleLoadFinished
The runtime calls ModuleLoadFinished to notify the code profiler that a module has
been loaded. The hrStatus provides the success or failure of the operation.

HRESULT ModuleLoadFinished(ModuleID moduleId, HRESULT hrStatus)

Parameter Description

[in] moduleId ID for the Module just loaded

[in] hrStatus Status for whether the Module load succeeded

6.4.3 ModuleUnloadStarted
Called before a module is being unloaded. Use this event to collect final statics that
require the ModuleID to be valid. After returning from ModuleUnloadStarted, the
ModuleID is no longer valid.

HRESULT ModuleUnloadStarted(ModuleID moduleId)

Page 16

Profiling

Parameter Description

[in] moduleId ID for the Module being unloaded

6.4.4 ModuleUnloadFinished
Notify that runtime has finished unloading a Module. You cannot use moduleId to
query the runtime for info after this notification – it is supplied only so the profiler
knows which Module just been unloaded. The hrStatus provides the success or
failure of the operation.

HRESULT ModuleUnloadFinished(ModuleID moduleId, HRESULT hrStatus)

Parameter Description

[in] moduleId ID for the Module just shut unloaded

[in] hrStatus Status for whether the Module unload succeeded

6.4.5 NotifyModuleAttachedToAssembly
The runtime calls NotifyModuleAttachedToAssembly to notify the code profiler that a
module has been attached to an assembly. A module can get loaded through legacy
means, (i.e., Import Address Table or LoadLibrary) or through a metadata reference.
The runtime loader therefore has many code paths for determining what assembly a
module lives in. It is therefore possible that after a NotifyModuleLoadFinished event,
the module does not know what assembly it is in and getting the parent AssemblyID
is not possible. This event is fired when the module is officially attached to its parent
assembly. Calling GetModuleInfo after this point will return the proper parent
assembly.

Syntax

HRESULT NotifyModuleAttachedToAssembly(ModuleID moduleId, AssemblyID

assemblyId);

Parameter Description

[in] moduleId The ModuleID of the module loaded.

[in] assemblyId The AssemblyID of the parent assembly.

6.5Class

6.5.1 ClassLoadStarted
Notify that runtime is starting to load a class. You cannot use classId to query the
runtime for info until after the class load is finished. The ClassID is not valid for calls
to the ICorProfilerInfo interface until the profiler receives a ClassLoadFinished event
for the same ClassID.

Page 17

Profiling

HRESULT ClassLoadStarted(ClassID classId)

Parameter Description

[in] classId ID for the class being loaded

6.5.2 ClassLoadFinished
The runtime calls ClassLoadFinished to notify the code profiler that a class has been
loaded. The ClassID is now valid for calls to the ICorProfilerInfo interface. The
hrStatus provides the success or failure of the operation.

HRESULT ClassLoadFinished(ClassID classId, HRESULT hrStatus)

Parameter Description

[in] classId ID for the Class just created

[in] hrStatus Status for whether the class load succeeded

6.5.3 ClassUnloadStarted
The given class is about to be unloaded. Use this event to gather final status and
clean up anything that requires the ClassID to be valid. After returning from this
callback the ClassID is no longer valid in calls to the ICorProfilerInfo interface.

HRESULT ClassUnloadStarted(ClassID classId)

Parameter Description

[in] classId ID for the class being unloaded

6.5.4 ClassUnloadFinished
Notify that runtime has finished unloading a class. You cannot use classId to query
the runtime for info after this notification – it is supplied only so the profiler knows
which class has just been unloaded. The hrStatus provides the success or failure of
the operation.

HRESULT ClassUnloadFinished(ClassID classId, HRESULT hrStatus)

Parameter Description

[in] classId ID for the class just unloaded

[in] hrStatus Status for whether the class unload succeeded

Page 18

Profiling

6.6Function

6.6.1 JITCompilationStarted
The runtime calls JITCompilationStarted to notify the code profiler that the JIT
compiler is starting to compile a function.

The fIsSafeToBlock argument tells the profiler whether or not blocking will affect the
operation of the runtime. If true, blocking may cause the runtime to wait for the
calling thread to return from this callback, especially if the runtime is attempting a
suspension. Although this will not harm the runtime, it will skew the profiling results.

HRESULT JITCompilationStarted(FunctionID functionId, BOOL

fIsSafeToBlock)

Parameter Description

[in] functionId ID for the function being JIT-compiled

[in] fIsSafeToBlock whether it’s safe to perform a time consuming operation
while profiling

6.6.2 JITCompilationFinished
The runtime calls JITCompilationFinished to notify the code profiler that the JIT
compiler has finished compiling a function. The FunctionID is now valid in
ICorProfilerInfo APIs. The hrStatus provides the success or failure of the operation

The fIsSafeToBlock argument tells the profiler whether or not blocking will affect the
operation of the runtime. If true, blocking may cause the runtime to wait for the
calling thread to return from this callback. Although this will not harm the runtime, it
will skew the profiling results.

HRESULT JITCompilationFinished(FunctionID functionId, HRESULT hrStatus, BOOL

fIsSafeToBlock)

Parameter Description

[in] functionId ID for the function just created

[in] hrStatus Status for whether the JIT-compile succeeded

[in] fIsSafeToBlock whether it’s safe to perform a time consuming operation
while profiling

6.6.3 FunctionUnloadStarted
The runtime calls FunctionUnloadStarted to notify the code profiler that a function is
being unloaded. After returning from this call, the FunctionID is no longer valid.

NOTE: currently not implemented.

HRESULT FunctionUnloadStarted(FunctionID functionId)

Page 19

Profiling

Parameter Description

[in] functionId ID for the function being unloaded

6.6.4 JITCachedFunctionSearchStarted
This notifies the profiler when a search for a prejitted function is starting. You return
pbUseCachedFunction to tell runtime whether it should use the function found or not.
In the latter case, runtime will JIT-compile the function (resulting in a matched pair
of JITCompilationStarted and JITCompilationFinished notification) instead of using
the cached version. NOTE: the FunctionID is not valid for calls to any
ICorProfilerInfo APIs until the profiler has received the corresponding
JITCompilationFinished.

HRESULT JITCachedFunctionSearchStarted(FunctionID functionId, BOOL
*pbUseCachedFunction)

Parameter Description

[in] functionId ID for the function being unloaded

[out] pbUseCachedFunction  if true, the EE uses the cached function (if
applicable)

 if false, the EE jits the function instead of using
a pre-jitted version.

6.6.5 JITCachedFunctionSearchFinished
Notify that runtime has finished searching for a previously-JIT-compiled function.
This notification occurs only when a module is found to contain pre-JIT-compiled
code. The result tells you whether it found the function or not.

HRESULT JITCachedFunctionSearchFinished(FunctionID functionId,

COR_PRF_JIT_CACHE result)

Parameter Description

[in] functionId ID for the function being searched for

[in] result Whether function was found in JIT cache

There are two possible results:

 COR_PRF_CACHED_FUNCTION_FOUND

 COR_PRF_CACHED_FUNCTION_NOT_FOUND

Note that the COR_PRF_JIT_CACHE enum at the moment has only two values – in
effect, found or not found. We keep it as an enum (rather than use a BOOL) as a

Page 20

Profiling

placeholder for future extensions – for example, to report the version of the JIT-
compiled function that was found as current or old.

6.6.6 JITFunctionPitched
The runtime calls JITFunctionPitched to notify the profiler that a jitted function was
removed from memory. If the pitched function is called in the future, the profiler will
receive new JIT compilation events as it is re-jitted. NOTE: the FunctionID is not
valid until it is re-jitted. When it is re-jitted, it will use the same FunctionID value.

HRESULT JITFunctionPitched(FunctionID functionId)

Parameter Description

[in] functionId ID for the function that is being pitched.

6.6.7 JITInlining
The runtime calls JITInlining to notify the profiler that the jitter is about to inline
calleeId into callerId. Set pfShouldInline to FALSE to prevent the callee from being
inlined into the caller, and set to TRUE to allow the inline to occur.

NOTE: Inlined functions do not provide Enter/Leave events, so if you desire an
accurate callgraph, you should set FALSE. Be aware that setting FALSE will affect
performance, since inlining typically increases speed and reduces separate jitting
events for the inlined method.

HRESULT JITInlining(FunctionID callerId, FunctionID calleeId, BOOL
*pfShouldInline)

Parameter Description

[in] callerId ID for the function that will have the callee inlined into it

[in] calleeId ID for the function to be inlined

[out] pfShouldInline  Set to TRUE to allow the inline to occur

 Set to FALSE to prevent the inline from occurring

Note that you can disable all JIT-lining in the Initialize callback by setting the bit
COR_PRF_DISABLE_INLINING

6.7Thread
Note that unlike other categories, we do not provide separate Started and Finished
notifications on thread create and destroy. This simplification was chosen simply
because the number of instructions executed for these operations by the runtime is
quite small; also, it seems reasonable that profilers should attribute the cycles
consumed to that thread, rather than gathered as “runtime overhead”

Page 21

Profiling

6.7.1 ThreadCreated
The runtime calls ThreadCreated to notify the code profiler that a thread has been
created. The ThreadID is valid immediately.

HRESULT ThreadCreated(ThreadID threadId)

Parameter Description

[in] threadId ID for the thread just created

6.7.2 ThreadDestroyed
The runtime calls ThreadDestroyed to notify the code profiler that a thread has been
destroyed. The ThreadID is no longer valid.

HRESULT ThreadDestroyed(ThreadID ThreadId)

Parameter Description

[in] threadId ID for the thread just destroyed

6.7.3 ThreadAcquiringMonitor
The runtime calls ThreadAcquiringMonitor to notify the code profiler that a thread is
attempting to acquire a monitor on an object.

NOTE: currently not implemented.

HRESULT ThreadAcquiringMonitor(ThreadID threadId, MonitorID monitorId,

 ObjectID objectId, ClassID classId)

Parameter Description

[in] threadId ID for the thread acquiring the monitor

[in] monitorId ID for the monitor being acquired

[in] objectId ID for the object whose monitor is being acquired

[in] classId ID of the class of the object identified by objectId

6.7.4 ThreadBlockedMonitor
Notify that a thread’s execution has blocked, waiting to acquire a monitor. This
notification will occur between a ThreadAcquiringMonitor and a subsequent
ThreadAcquiredMonitor notification – but only if the thread could not acquire the
monitor because it was held by another thread. [It might be thought this notification
is not required – after all, why not simply count the time between Acquiring and
Acquired? – because that time difference could be due to a thread scheduling switch

Page 22

Profiling

rather than a genuine stall. The ThreadBlockMonitor notification allows a profiler to
measure genuine contention on the monitor].

NOTE: currently not implemented.

HRESULT ThreadBlockedMonitor(ThreadID threadId, MonitorID monitorId,

 ObjectID objectId, ClassID classId)

Parameter Description

[in] threadId ID for the thread that just blocked

[in] monitorId ID for the monitor that the thread is blocked on

[in] objectId ID for the object whose monitor is being acquired

[in] classId ID of the class of the object identified by objectId

6.7.5 ThreadAcquiredMonitor
Notify that a thread has acquired a monitor

NOTE: currently not implemented.

HRESULT ThreadAcquiredMonitor(ThreadID threadId, MonitorID monitorId,

 ObjectID objectId, ClassID classId)

Parameter Description

[in] threadId ID for the thread that just acquired the monitor

[in] monitorId ID for the monitor being acquired

[in] objectId ID for the object whose monitor is being acquired

[in] classId ID of the class of the object identified by objectId

6.7.6 ThreadReleasedMonitor
Notify that a thread has just released a monitor

NOTE: currently not implemented.

HRESULT ThreadReleasedMonitor(ThreadID threadId, MonitorID monitorId,

 ObjectID objectId, ClassID classId)

Page 23

Profiling

Parameter Description

[in] threadId ID for the thread that just released the monitor

[in] monitorId ID for the monitor that the thread just released

[in] objectId ID for the object whose monitor was just released

[in] classId ID of the class of the object identified by objectId

6.7.7 ThreadAssignedToOSThread
Notify that a runtime thread has just been assigned to execute by the assigned OS
thread. During its execution lifetime, a given runtime thread may be switched
between different threads, or not – at the whim of both the runtime and external
components running within the process. This notification is called immediately after
a ThreadCreated event to indicate what OS thread the newly-created runtime thread
will execute on.

HRESULT ThreadAssignedToOSThread(ThreadID managedThreadId, DWORD

osThreadId)

Parameter Description

[in] managedThreadId ID for the managed thread

[in] osThreadId ID for the OS thread mated with the managed thread

6.8Remoting
NOTE: each of the following pairs of callbacks will occur on the same thread

 RemotingClientInvocationStarted and RemotingClientSendingMessage

 RemotingClientReceivingReply and RemotingClientInvocationFinished

 RemotingServerInvocationReturned and RemotingServerSendingReply

 RemotingServerInvocationStarted and RemotingServerReceivingMessage

6.8.1 RemotingClientInvocationStarted
The runtime calls RemotingClientInvocationStarted to notify the profiler that a
remoting call has begun. This event is the same for synchronous and asynchronous
calls.

HRESULT RemotingClientInvocationStarted()

Page 24

Profiling

6.8.2 RemotingClientSendingMessage
The runtime calls RemotingClientSendingMessage to notify the profiler that a
remoting call is requiring the the caller to send an invocation request through a
remoting channel.

HRESULT RemotingClientSendingMessage(GUID *pCookie, BOOL fIsAsync)

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will
correspond with the the value provided in
RemotingServerReceivingMessage, if the channel
succeeds in transmitting the message, and if GUID
cookies are active on the server-side process. This allows
easy pairing of remoting calls, and the creation of a
logical call stack.

[in] fIsAsync is true if the call is asynchronous.

6.8.3 RemotingClientReceivingReply
The runtime calls RemotingClientReceivingReply to notify the profiler that the
server-side portion of a remoting call has completed and that the client is now
receiving and about to process the reply.

HRESULT RemotingClientReceivingReply(GUID *pCookie, BOOL fIsAsync)

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will
correspond with the the value provided in
RemotingServerSendingReply, if the channel succeeds in
transmitting the message, and if GUID cookies are active
on the server-side process. This allows easy pairing of
remoting calls.

[in] fIsAsync is true if the call is asynchronous

6.8.4 RemotingClientInvocationFinished
The runtime calls RemotingClientInvocationFinished to notify the profiler that a
remoting invocation has run to completion on the client side. If the call was
synchronous, this means that it has also run to completion on the server side. If the
call was asynchronous, a reply may still be expected when the call is handled. If the
call is asynchronous, and a reply is expected, then the reply will occur in the form of
a call to RemotingClientReceivingReply and an additional call to
RemotingClientInvocationFinished to indicate the required secondary processing of
an asynchronous call.

HRESULT RemotingClientInvocationFinished();

Page 25

Profiling

6.8.5 RemotingServerReceivingMessage
The runtime calls RemotingServerReceivingMessage to notify the profiler that the
process has received a remote method invocation (or activation) request. If the
message request is asynchronous, then the request may be serviced by any arbitrary
thread.

HRESULT RemotingServerReceivingMessage(GUID *pCookie, BOOL fIsAsync)

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will
correspond with the the value provided in
RemotingClientSendingMessage, if the channel succeeds
in transmitting the message, and if GUID cookies are
active on the client-side process. This allows easy pairing
of remoting calls.

[in] fIsAsync is true if the call is asynchronous.

6.8.6 RemotingServerInvocationStarted
The runtime calls RemotingServerInvocationStarted to notify the profiler that the
process is invoking a method due to a remote method invocation request.

HRESULT RemotingServerInvocationStarted()

6.8.7 RemotingServerInvocationReturned
The runtime calls RemotingServerInvocationReturned to notify the profiler that the
process has finished invoking a method due to a remote method invocation request.

HRESULT RemotingServerInvocationReturned()

6.8.8 RemotingServerSendingReply
The runtime calls RemotingServerSendingReply to notify the profiler that the
process has finished processing a remote method invocation request and is about to
transmit the reply through a channel.

HRESULT RemotingServerSendingReply(GUID *pCookie, BOOL fIsAsync)

Page 26

Profiling

Parameter Description

[in] pCookie if remoting GUID cookies are active, this value will
correspond with the value provided in
RemotingClientReceivingReply, if the channel succeeds in
transmitting the message, and if GUID cookies are active
on the client-side process. This allows easy pairing of
remoting calls.

[in] fIsAsync is true if the call is asynchronous.

6.9Transitions

6.9.1 UnmanagedToManagedTransition
The runtime calls UnmanagedToManagedTransition to notify the code profiler that a
transition from unmanaged code to managed code has occurred. functionId is always
the ID of the callee, and reason indicates whether the transition was due to a call
into managed code from unmanaged, or a return from an unmanaged function called
by a managed one.

Note that if the reason is COR_PRF_TRANSITION_RETURN, then the functioned is
that of the unmanaged function, and will never have been jitted. Unmanaged
functions still have some basic information associated with them, such as a name,
and some metadata.

Note that if the reason is COR_PRF_TRANSITION_RETURN and the callee was a
PInvoke call indirect, then the runtime does not know the destination of the call and
functionId will be NULL.

Note that if the reason is COR_PRF_TRANSITION_CALL then it may be possible that
the callee has not yet been JIT-compiled.

HRESULT UnmanagedToManagedTransition(FunctionID functionId,

COR_PRF_TRANSISTION_REASON reason)

Parameter Description

[in] functionId ID of the callee

[in] reason May be either COR_PRF_TRANSITION_CALL or
COR_PRF_TRANSITION_RETURN.

6.9.2 ManagedToUnmanagedTransition
The runtime calls ManagedToUnmanagedTransition to notify the code profiler that a
transition from managed code to unmanaged code has occurred. functionId is always
the ID of the callee, and reason indicates whether the transition was due to a call
into unmanaged code from managed, or a return from an managed function called
by an unmanaged one.

Page 27

Profiling

Note that if the reason is COR_PRF_TRANSITION_CALL, then the functionId is that of
the unmanaged function, and will never have been jitted. Unmanaged functions still
have some basic information associated with them, such as a name, and some
metadata.

Note that if the reason is COR_PRF_TRANSITION_CALL and the callee is a PInvoke
call indirect, then the runtime does not know the destination of the call and
functionId will be NULL.

HRESULT UnmanagedToManagedTransition(FunctionID functionId,

COR_PRF_TRANSISTION_REASON reason)

Parameter Description

[in] functionId ID of the callee

[in] reason May be either COR_PRF_TRANSITION_CALL or
COR_PRF_TRANSITION_RETURN.

6.9.3 COMClassicWrapperCreated
Notify that the runtime has created a COM-Callable-Wrapper, or CCW; this is a proxy
object that allows unmanaged Apps to call managed COM objects

NOTE: currently unimplemented.

HRESULT COMClassicWrapperCreated(ClassID wrappedClassId, REFGUID

implementedIID, void* pUnk, ULONG cSlots)

Parameter Description

[in] wrapperClassId ID of the managed class the CCW gives access to

[in] implementedIID IID of the interface this CCW provides access to

[in] punk pointer to the CCW’s IUnknown interface

[in] cSlots number of slots in the CCW vtable

6.9.4 COMClassicWrapperDestroyed
Notify that the runtime has destroyed a CCW (see COMClassicWrapperCreated,
above)

HRESULT COMClassicWrapperDestroyed(ClassID wrappedClassId, REFGUID

implementedIID, void* pUnk)

Page 28

Profiling

Parameter Description

[in] wrapperClassId ID of the managed class the CCW gave access to

[in] implementedIID IID of the interface this CCW provided access to

[in] punk pointer to the CCW’s IUnknown interface

6.10 Runtime Suspension

6.10.1 RuntimeSuspendStarted
The runtime calls RuntimeSuspendStarted to notify the code profiler that the
runtime is about to suspend all of the runtime threads. All runtime threads that are
in unmanaged code are permitted to continue running until they try to re-enter the
runtime, at which point they will also suspend until the runtime resumes. This also
applies to new threads that enter the runtime. All threads within the runtime are
either suspended immediately if they are in interruptible code, or asked to suspend
when they do reach interruptible code.

suspendReason make be any of the following values:

 COR_PRF_SUSPEND_FOR_GC: the runtime is suspending to service a GC
request. The GC-related callbacks will occur between the
RuntimeSuspendFinished and RuntimeResumeStarted events.

 COR_PRF_SUSPEND_FOR_CODE_PITCHING: the runtime is suspending so
that code pitching may occur. This only occurs when the EJit is active with
code pitching enabled. Code pitching callbacks will occur between the
RuntimeSuspendFinished and RuntimeResumeStarted events.

 COR_PRF_SUSPEND_FOR_APPDOMAIN_SHUTDOWN: the runtime is
suspending so that an AppDomain can be shut down. While the runtime is
suspended, the runtime will determine which threads are in the AppDomain
that is being shut down, set them to abort when they resume, and then
resumes the runtime. There are no AppDomain-specific callbacks during this
suspension.

 COR_PRF_SUSPEND_FOR_SHUTDOWN: the runtime is shutting down, and it
must suspend all threads to complete the operation.

 COR_PRF_SUSPEND_OTHER: the runtime is suspending for a reason other
than those listed above.

HRESULT RuntimeSuspendStarted(COR_PRF_SUSPEND_REASON suspendReason)

Parameter Description

[in] suspendReason The reason that the runtime is suspending

Page 29

Profiling

6.10.2 RuntimeSuspendFinished
The runtime calls SyncForSuspendFinished to notify the code profiler that the
runtime has suspended all threads needed for a runtime suspension. Note that not
all runtime threads are required to be suspended, as described in the comment for
SyncForSuspendStarted.

NOTE: It is guaranteed that this event will occur on the same ThreadID as
RuntimeSuspendStarted occurred on.

HRESULT RuntimeSuspendFinished()

6.10.3 RuntimeSuspendAborted
The runtime calls RuntimeSuspendAborted to notify the code profiler that the
runtime is aborting the runtime suspension that was occurring. This may occur if two
threads simultaneously attempt to suspend the runtime.

NOTE: It is guaranteed that this event will occur on the same ThreadID as the
RuntimeSuspendStarted occurred on, and that only one of RuntimeSuspendFinished
and RuntimeSuspendAborted may occur on a single thread following a
RuntimeSuspendStarted event.

HRESULT RuntimeSuspendAborted()

6.10.4 RuntimeResumeStarted
The runtime calls RuntimeResumeStarted to notify the code profiler that the runtime
is about to resume all of the runtime threads.

NOTE: It is guaranteed that this event will occur on the same ThreadID as the
RuntimeSuspendStarted occurred on.

HRESULT RuntimeResumeStarted()

6.10.5 RuntimeResumeFinished
The runtime calls RuntimeResumeFinished to notify the code profiler that the
runtime has finished resuming all of it's threads and is now back in normal operation.

NOTE: It is guaranteed that this event will occur on the same ThreadID as the
RuntimeSuspendStarted occurred on.

HRESULT RuntimeResumeFinished()

6.10.6 RuntimeThreadSuspended
The runtime calls ThreadSuspended to notify the code profiler that a particular
thread has been suspended. All threads within managed code must be suspended.
If a thread is in unmanaged code, it will be allowed to continue, but will suspend

Page 30

Profiling

upon re-entering the runtime and will fire this event. Thus, this notification could
occur after a suspension has completed, but before the runtime resumes.

HRESULT RuntimeThreadSuspended(ThreadID threadId)

Parameter Description

[in] threadId The ID of the thread that was suspended.

6.10.7 RuntimeThreadResumed
The runtime calls ThreadResumed to notify the code profiler that a particular thread
has been resumed after being suspended due to a runtime suspension.

HRESULT RuntimeThreadResumed(ThreadID threadId)

Parameter Description

[in] threadId The ID of the thread that was resumed.

6.11 Garbage Collection

6.11.1 ObjectAllocated
Notify that memory in the GC heap has just been allocated for an object. (This
notification does not fire for allocations from the stack, nor from unmanaged
memory)

Allocating objects in the heap is likely to be a very frequent operation in an
Application. Therefore, this particular notification would fire very often, stealing CPU
cycles from the running Application. You must set the
COR_PRF_MONITOR_OBJECT_ALLOCATED bit in the notifications mask for these
events to fire.

NOTE: not yet implemented.

HRESULT ObjectAllocated(ObjectID objectID, ClassID classId)

Parameter Description

[in] objected ID of the newly-allocated object

[in] classId ID for the class of which this object is an instance

6.11.2 ObjectsAllocatedByClass
Notify counts of all the objects allocated for each class since the previous garbage
collection. Called whilst all threads in the target process are still halted.

This notification provides summary information suitable for building a chart of object
creation rates, by class. If that’s all you want, it provides a much cheaper way of

Page 31

Profiling

obtaining that info than counting each allocation (with the ObjectAllocated
notification). The arrays omit any classes which have created no objects since the
last gc (rather than supply a value of zero in the cObjects[] array)

HRESULT ObjectsAllocatedByClass(ULONG cClassCount, ClassID classIds[],

 ULONG cObjects[])

Parameter Description

[in] cClassCount number of entries in the parallel arrays classIds[] and
cObjects[]

[in] classIds[] array of IDs for the classes of object allocated

[in] cObjects[] count of object allocated for each class in classIds[]

Example: suppose that since the previous garbage collection, runtime has allocated
at total of 35 objects, spread across 4 different classes. Then the notification would
have cClassCount = 4, and the parallel arrays classIds[0..3] and cObjects[0..3]
might contain the values shown in the table below:

classIds[] cObjects[]

0 0x5231 8840 4
1 0x4800 2150 23
2 0x4799 3147 1
3 0x6123 4196 7

6.11.3 MovedReferences
Garbage collection reclaims the memory occupied by ‘dead’ objects and compacts
that freed space. As a result, live objects are moved within the heap. The effect is
that ObjectIDs handed out by previous notifications change their value (the internal
state of the object itself does not change (other than it’s references to other
objects), just its location in memory, and therefore its ObjectID). The
MovedReferences notification lets a profiler update its internal tables that are
tracking info by ObjectID.

The number of Objects in the heap can number thousands or millions. With such
large numbers, it’s impractical to notify their movement by providing a before-and-
after ID for each object. However, the garbage collector tends to move contiguous
runs of live objects as a ‘bunch’ – so they end up at new locations in the heap, but
they still contiguous. This notification reports the before and after ObjectID of these
contiguous runs of objects. (see example below)

In other words, if an ObjectID value lies within the range

oldObjectIDRangeStart[i] <= ObjectID < oldObjectIDRangeStart[i] +
cObjectIDRangeLength[i]

for 0 <= i < cMovedObjectIDRanges, then the ObjectID value has changed to

ObjectID - oldObjectIDRangeStart[i] + newObjectIDRangeStart[i]

All of these callbacks are made while the runtime is suspended, so none of the
ObjectID values can change until the runtime resumes and another GC occurs.

Page 32

Profiling

MovedReferences may be invoked multiple times during a GC if the list of moved
references exceeds the size of the profiling services’ internal buffer.

HRESULT MovedReferences(

 ULONG cMovedObjectRefs,

 ObjectID oldObjectRefs[],

 ObjectID newObjectRefs[],

 ULONG cObjectRefSize)

Parameter Description

[in] cMovedObjectIDRanges a count of the number of ObjectID ranges that were
moved.

[in] oldObjectIDRangeStart an array of elements, each of which is the start value
of a range of ObjectID values before being moved.

[in] newObjectIDRangeStart an array of elements, each of which is the start value
of a range of ObjectID values after being moved.

[in] cObjectIDRangeLength is an array of elements, each of which states the size
of the moved ObjectID value range.

Example: The diagram below shows 10 objects, before garbage collection. They lie
at start addresses (equivalent to ObjectIDs) of 08, 09, 10, 12, 13, 15, 16, 17, 18
and 19. ObjectIDs 09, 13 and 19 are dead (shown shaded); their space will be
reclaimed during garbage collection.

The “After” picture shows how the space occupied by dead objects has been
reclaimed to hold live objects. The live objects have been moved in the heap to the
new locations shown. As a result, their ObjectIDs all change. The simplistic way to
describe these changes is with a table of before-and-after ObjectIDs, like this:

oldObjectIDRangeStart [] newObjectIDRangeStart []

0 08 07
1 09
2 10 08
3 12 10
3 13
4 15 11
5 16 12
6 17 13
7 18 14
8 19

This works, but clearly, we can compact the information by specifying starts and
sizes of contiguous runs, like this:

Page 33

08Before 09 10 12 15 16 17 18 19

07After 08 10 11 12 13 14

13

Profiling

oldObjectIDRangeStart [] newObjectIDRangeStart [] cObjectIDRangeLength []

0 08 07 1
1 10 08 2
2 15 11 4

This corresponds to exactly how MovedReferences reports the information

6.11.4 ObjectReferences
The runtime calls ObjectReferences to provide information about objects in memory
referenced by a given object. This function is called for each object remaining in the
GC heap after a collection has completed. If the profiler returns an error HRESULT
from this callback, the profiling services will discontinue invoking this callback until
the next GC. This callback can be used in conjunction with the RootReferences
callback to create a complete object reference graph for the runtime.

HRESULT ObjectReferences(ObjectID objectId, ClassID classId, ULONG

cObjectRefs, ObjectID objectRefIds[]);

Parameter Description

[in] objectId ID of the object being reported

[in] classId ID of the class of which the object is an instance

[in] cObjectRefs number of entries in objectIds[]

[in] objectRefIds array of ObjectIDs contained within objectId

[return] If the code profiler returns E_FAIL, the runtime will halt
enumerating the heap. However, the garbage collector continues
to traverse the heap.

If the code profiler returns S_OK, the heap dump will proceed
normally.

Remarks

The runtime will ensure that each object reference is reported only once by
ObjectReferences.

6.11.5 RootReferences
The runtime calls RootReferences with information about root references after a
garbage collection has occurred. Static object references and references to objects
on a stack are co-mingled in the arrays. This callback may occur multiple times for a
particular GC if the profiling services’ internal buffer fills up and there are remaining
root references.

HRESULT RootReferences(ULONG cRoots, ObjectID objectIds[]);

Page 34

Profiling

Parameter Description

[in] cRoots number of roots listed

[in] objectIds array of ObjectIDs

Remarks

The application is halted following a COR_PRF_EVENT_GC_FINISHED event until the
runtime is done passing information about the heap to the code profiler.

The method ICorProfilerInfo::GetClassFromObject can be used to obtain the ClassID
of the class of which the object is an instance. The method
ICorProfilerInfo::GetTokenFromClass can be used to obtain metadata information
about the class.

6.12 Exceptions
Notifications of exceptions are the most difficult of all notifications to describe and to
understand. This is because of the inherent complexity in exception processing. The
set of exception notifications described below was designed to provide all the
information required for a sophisticated profiler – so that, at every instant, it can
keep track of which pass (first or second), which frame, which filter and which finally
block is being executed, for every thread in the profilee process.

A simpler profiler, that tracked cpu-time-by-function might choose to ignore
exception notifications entirely – actual cpu time might be attributed to the ‘wrong’
function by doing so, but results might well still be useful.

Notes:

if a user-code filter throws an exception, all bets are off (runtime may decide to
simply swallow that exception -- still TBD)

managed code does not allow a filter to fixup the exception and request continuation
from the original throw location. But SEH does -- so later parts of exception
processing can be totally missed because of such a "continue execution" user filter in
an unmanaged chain. The only way for the profiler to resolve where it is in the
shadow stack is to monitor unmanaged exception processing too.

we provide no ThreadIDs, but you can call GetCurrentthreadID to discover the
identity of the reporting thread

A rethrow in a handler will kick off a fresh exception handling process -- in which
case, the ExceptionCatcherLeave notification is not sent.

6.12.1 ExceptionThrown
The runtime calls ExceptionThrown to notify the code profiler that an exception has
been thrown. This function is only called if the runtime exception handler is called to
process an exception.

HRESULT ExceptionThrown(ObjectID thrownObjectId)

Page 35

Profiling

Parameter Description

[in] thrownObjectId The ID of the Exception object thrown.

6.12.2 ExceptionSearchFunctionEnter
The runtime calls ExceptionSearchFunctionEnter to notify the profiler that the search
phase of exception handling has entered a function.

HRESULT ExceptionSearchFunctionEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function that we’re searching for a handler in.

6.12.3 ExceptionSearchFunctionLeave
The runtime calls ExceptionSearchFunctionLeave to notify the profiler that the
search phase of exception handling has left a function.

HRESULT ExceptionSearchFunctionLeave()

6.12.4 ExceptionSearchFilterEnter
The runtime will call ExceptionSearchFilterEnter just before excecuting a user filter.
The functionID is that of the function containing the filter.

HRESULT ExceptionSearchFilterEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function containing the filter that we are entering.

6.12.5 ExceptionSearchFilterLeave
The runtime will call ExceptionSearchFilterLeave immediately after executing a user
filter.

HRESULT ExceptionSearchFilterLeave()

6.12.6 ExceptionSearchCatcherFound
The runtime will call ExceptionSearchCatcherFound when the search phase of
exception handling has located a handler for the exception that was thrown.

HRESULT ExceptionSearchCatcherFound(FunctionID functionId)

Page 36

Profiling

Parameter Description

[in] functionId The ID of the function that will handle the exception.

6.12.7 ExceptionOSHandlerEnter
The runtime calls ExceptionOSHandlerEnter when the runtime's [Win32 SEH]
exception handler is entered AND there is at least one JIT'ed function guarded by
that instance of the handler. This function will not be called if there is no managed
code guarded by the instance of the handler, nor if there is only internal runtime
code guarded by the instance of the handler. This notification is provided to allow
profilers to detect unmanaged-to-managed transitions in stack searches and
unwinds. The functionID is that of the first function encountered on the search or
unwind.

The profiler cannot block here, since the stack may not be in a GC-friendly state and
so preemptive GC cannot be enabled. If the profiler blocks here and a GC is
attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

NOTE: This callback is currently innacurate - this will be addressed at a later date.

HRESULT ExceptionOSHandlerEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the first function encountered on the search or unwind.

6.12.8 ExceptionOSHandlerLeave
This function is similar to ExceptionOSHandlerEnter, except that it is called just
before the runtime's exception handler returns. The functionID is that of the last
function encountered on the search or unwind.

NOTE: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

NOTE: This callback is currently inaccurate - this will be addressed at a later date.

HRESULT ExceptionOSHandlerLeave(FunctionID functionId)

Parameter Description

[in] functionId The ID of the last function encountered on the search or unwind.

Page 37

Profiling

6.12.9 ExceptionUnwindFunctionEnter
The runtime calls ExceptionUnwindFunctionEnter to notify the profiler that the
unwind phase of exception handling has entered a function.

NOTE: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFunctionEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function that is being unwound from the stack.

6.12.10 ExceptionUnwindFunctionLeave
The runtime calls ExceptionUnwindFunctionLeave to notify the profiler that the
unwind phase of exception handling has left a function. The function instance and
it's stack data has now been removed from the stack.

NOTE: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFunctionLeave()

6.12.11 ExceptionUnwindFinallyEnter
The runtime calls ExceptionUnwindFinallyEnter to notify the profiler that the unwind
phase of exception is entering a finally clause contained in the specified function.

NOTE: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFinallyEnter(FunctionID functionId)

Parameter Description

[in] functionId The ID of the function whose finally clause is being executed.

6.12.12 ExceptionUnwindFinallyLeave
The runtime calls ExceptionUnwindFinallyLeave to notify the profiler that the unwind
phase of exception is leaving a finally clause.

Page 38

Profiling

NOTE: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionUnwindFinallyLeave()

6.12.13 ExceptionCatcherEnter
The runtime calls this function just before passing control to the appropriate catch
block. Note that this is called only if the catch point is in JIT'ed code. An exception
that is caught in unmanaged code, or in the internal code of the runtime will not
generate this notification. The ObjectID is passed again since a GC could have
moved the object since the ExceptionThrown notification.

NOTE: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionCatcherEnter(FunctionID functionId, ObjectID objectId)

Parameter Description

[in] functionId The ID of the function containing the catch clause.

[in] objectId The ID of the thrown Exception object.

6.12.14 ExceptionCatcherLeave
The runtime calls ExceptionCatcherLeave when the runtime leaves the catcher's
code.

NOTE: The profiler cannot block here, since the stack may not be in a GC-friendly
state and so preemptive GC cannot be enabled. If the profiler blocks here and a GC
is attempted, the runtime will block until this callback returns. Also, the profiler may
NOT call into managed code or in any way cause a managed memory allocation.

HRESULT ExceptionCatcherLeave()

The runtime code profiler interfaces do not support remote profiling due to the
following reasons:

 It is necessary to minimize execution time using these interfaces so that profiling
results will not be unduly affected. This is especially true where execution
performance is being monitored. However, it is not a limitation when the
interfaces are used to monitor memory usage or to obtain runtime information on
stack frames, objects, etc.

 The code profiler needs to register one or more callback interfaces with the
runtime on the local machine on which the application being profiled runs. This
limits the ability to create a remote code profiler.

Page 39

Profiling

7 ICorProfilerInfo
The runtime provides the ICorProfilerInfo interface. It allows a profiler to ask for info
about classes, function, code, stack frames, etc within the running process. It
includes a small number of methods that allow the profiler to change this info; for
example, to provide new IL for a function and request that be re-JIT compiled. You
can think of the ICorProfilerInfo interface as the “help desk” for profilers.

The runtime provides the ICorProfiler interface to each profiler on its very first call –
ICorProfilerCallback::Initialize

The runtime uses the free threaded model to implement the ICorProfilerInfo
interface. Events are dispatched from within the runtime or on a thread that is
making the code profiler method call. Interface methods implemented by the runtime
can be called from any thread (that has been CoInitialized) at any time.

The methods in ICorProfilerInfo return S_OK on success, or E_FAIL on failure.

7.1ForceGC
The code profiler calls ForceGC to force a garbage collection to occur.

NOTE: currently unimplemented.

Syntax

HRESULT ForceGC();

7.2GetAppDomainInfo
The code profiler calls GetAppDomainInfo to obtain information about a given
application domain.

Syntax

HRESULT GetAppDomainInfo(AppDomainID appDomainId, SIZE_T cchName,

SIZE_T *pcchName, WCHAR szName[], ProcessID *pProcessId);

Parameter Description

[in] appDomainId AppDomainID of the given application domain.

[in] cchName The allocated size of string buffer for the application domain
name.

[out] pcchName The length of the string returned in the string buffer

[out] szName The string buffer for the application domain name.

7.3GetAssemblyInfo
The code profiler calls GetAssemblyInfo to obtain information about a given
assembly.

Page 40

Profiling

Syntax

HRESULT GetAssemblyInfo(AssemblyID assemblyId, SIZE_T cchName, SIZE_T

*pcchName, WCHAR szName[], AppDomainID *pAppDomainId, ModuleID

*pModuleId);

Parameter Description

[in] assemblyId AssemblyID of the given assembly.

[in] cchName The allocated size of string buffer for the assembly name.

[out] pcchName The length of the string returned in the string buffer

[out] szName The string buffer for the assembly name.

[out] pAppDomainId Pointer to the AppDomainID of the application domain that
contains the assembly.

[out] pModuleId Pointer to the ModuleID of the module that contains the
assembly’s manifest.

7.4GetClassFromObject
The code profiler calls GetClassFromObject to obtain the ClassID of an object given
its ObjectID.

Syntax

HRESULT GetClassFromObject(ObjectID objectId, ClassID *pClassId);

Parameter Description

[in] objectId The ObjectID of the object the code profiler is interested in.

[out] pClassId Pointer to the ClassID of the class of the object.

7.5GetClassFromToken
The code profiler calls GetClassFromToken to obtain the ClassID of a class given its
metadata.

Syntax

HRESULT GetClassFromToken(ModuleID moduleId, mdTypeDef typeDef, ClassID

*pClassId);

Parameter Description

[in] moduleId The ModuleID of the module the class is defined in.

Page 41

Profiling

[in] typeDef The metadata typedef token for the class.

[out] pClassId Pointer to the ClassID of the class the code profiler is interested
in.

7.6GetClassIDInfo
Returns the parent module that a class is defined in, along with the metadata token
for the class. One can call GetModuleInfo to get the metadata interface for the
ModuleID returned. The token can then be used to access the metadata for this
class.

Syntax

HRESULT GetClassIDInfo(ClassID classId, ModuleID *pModuleId, mdTypeDef

*pTypeDefToken)

Parameter Description

[in] classId The ClassID of the class the code profiler is interested in.

[out] pModuleId Pointer to the ModuleID of the module in which the class is
defined.

[out] pTypeDefToken Pointer to the metadata typedef token for the class.

7.7GetCodeInfo
The code profiler calls GetCodeInfo to obtain information about a JIT-compiled
function. An error will be returned if GetCodeInfo is called with a FunctionID for a
function that has not been JIT-compiled.

Syntax

HRESULT GetCodeInfo(FunctionID functionId, LPCBYTE *pStart, ULONG

*pcSize)

Parameter Description

[in] functionId The FunctionID of the function the code profiler is interested in.

[out] pStart The starting address of the JIT-compiled code.

[out] pcSize The size of the JIT-compiled code in bytes.

Remarks

This method must be called after the code profiler has received notification that the
function has been JIT-compiled.

Page 42

Profiling

7.8GetEventMask
The code profiler calls GetEventMask to obtain the current event categories for which
it is to receive event notification from the runtime.

Syntax

HRESULT GetEventMask (DWORD *pdwEvents);

Parameter Description

[out] pdwEvents Pointer to the bit mask of flags from COR_PRF_MONITOR
indicating the events for which the code profiler is to receive
notification.

Remarks

Code profilers can receive notification for any combination of the event categories
defined in the COR_PRF_MONITOR enumeration.

7.9GetFunctionFromIP
The code profiler calls GetFunctionFromIP to map an instruction pointer in managed
code to a FunctionID.

Syntax

HRESULT GetFunctionFromIP (ULONG64 ip, FunctionID *pFunctionId);

Parameter Description

[in] ip The instruction pointer that the code profiler is interested in

[out] pFunctionId Pointer to the FunctionID of the function that corresponds to the
instruction pointer.

Remarks

The code profiler can call GetCodeInfo to obtain information about the size and
starting address of the function. GetFunctionFromIP returns E_FAIL if it is unable to
map the instruction pointer. The runtime may choose to unload a function to recover
memory. In such instances, the instruction pointer mapping becomes invalid. The
runtime generates a COR_PRF_EVENT_FUNCTION_UNLOAD_STARTED event. In
response to this event, the code profiler should call GetILOffsetFromIP to map saved
instruction pointers that fall within the function to IL offsets from the beginning of
the function.

The method returns E_FAIL if the function is not managed code.

Page 43

Profiling

7.10 GetFunctionFromToken
The code profiler calls GetFunctionFromToken to obtain the FunctionID of a function
given its metadata.

Syntax

HRESULT GetFunctionFromToken(ModuleID moduleId, mdToken token,

FunctionID *pFunctionId);

Parameter Description

[in] moduleId The ModuleID of the module the function is defined in.

[in] token The metadata token for the function.

[out] pFunctionId Pointer to the FunctionID of the function the code profiler is
interested in.

7.11 GetFunctionInfo
The code profiler calls GetFunctionInfo to obtain metadata information about a
method in a class or a function at a module level given the function’s FunctionID.

Syntax

HRESULT GetFunctionInfo(FunctionID functionId, ClassID *pClassId,

ModuleID *pModuleId, mdToken *pToken)

Parameter Description

[in] functionId The FunctionID of the function the code profiler is interested
in.

[out] pClassId Pointer to the ClassID of the class in which the function is
defined.

[out] pModuleId Pointer to the ModuleID of the module in which the function is
defined.

[out] pToken Pointer to the metadata token for the function.

7.12 GetHandleFromThread
The code profiler calls GetHandleFromThread to map a ThreadID to a Win32 thread
handle.

Syntax

HRESULT GetHandleFromThread(ThreadID threadId, HANDLE *phThread);

Parameter Description

[in] threadId The ThreadID of the thread the code profiler is interested in.

Page 44

Profiling

[out] phThread Pointer to the Win32 thread handle.

7.13 GetILFunctionBodyAllocator
IL method bodies must be located as RVA’s to the loaded module, which means that
they come after the module within 4 GB. In order to make it easier for a tool to
swap out the body of a method, this allocator will ensure memory allocated after that
point.

Syntax

HRESULT GetILFunctionBodyAllocator(ModuleID moduleId, IMethodAlloc

**ppMalloc);

Parameter Description

[in] moduleId ModuleID of the given module.

[in] ppMalloc Pointer to pointer to memory allocator for method.

7.14 GetILFunctionBody
The code profiler calls GetILFunctionBody to obtain a pointer to the body of a method
starting at its header. A method is scoped by the module it lives in. Because this
function is designed to give a tool access to IL before it has been loaded by the
runtime, it uses the metadata token of the method to find the instance desired. Note
that this function has no effect on already compiled code.

Syntax

HRESULT GetILFunctionBody(ModuleID moduleId, mdMethodDef method,

LPCBYTE **ppMethodHeader, ULONG64 *pcbMethodSize);

Parameter Description

[in] moduleId ModuleID of the given module.

[in] method Metadata token for method.

[out] ppMethodHeader Pointer to the method header (IMAGE_COR_ILMETHOD)

[out] pcbMethodSize Pointer to the size of the method.

7.15 GetModuleInfo
The code profiler calls GetModuleInfo to obtain information about a given module.

Syntax

Page 45

Profiling

HRESULT GetModuleInfo(ModuleID moduleId, LPCBYTE **ppBaseLoadAddress,

SIZE_T cchName, SIZE_T *pcchName, WCHAR szName[], mdModule

*pModuleToken, AssemblyID *pAssemblyId);

Parameter Description

[in] moduleId ModuleID of the given module.

[out] ppBaseLoadAddress Pointer to the base address of the module.

[in] cchName The allocated size of string buffer for module name.

[out] pcchName The length of the string returned in the string buffer

[out] szName The string buffer for the module name.

[out] pModuleToken Pointer to metadata token for the module.

[out] pAssemblyId Pointer to the assembly ID of the assembly that contains
the module. If GetModuleInfo is called before the module
is attached to the its parent assembly, the returned
value for pAssemblyId will be the constant
PROFILER_PARENT_UNKNOWN.

7.16 GetModuleMetaData
The code profiler calls GetModuleMetaData to obtain a metadata interface instance
which maps to the given module. One may ask for the metadata to be opened in
read+write mode, but this will result in slower metadata execution of the program,
because changes made to the metadata cannot be optimized as they were from the
compiler.

Syntax

HRESULT GetModuleMetaData(ModuleID moduleId, DWORD dwOpenFlags, REFIID

riid, IUnknown **ppOut);

Parameter Description

[in] moduleId ModuleID of the given module.

[in] dwOpenFlags Mode flags for opening metadata.

[in] riid The REFIID of the metadata interface.

[out] ppOut Pointer to the pointer to the returned metadata interface that
maps to the given module.

7.17 GetObjectSize
The code profiler calls GetObjectSize to obtain the instance size of an object.

Page 46

Profiling

Syntax

HRESULT GetObjectSize(ObjectID objectId, ULONG32 *pcSize);

Parameter Description

[in] objectId The ObjectID of the object the code profiler is interested in.

[out] pcSize Pointer to the size of the object in memory in bytes.

7.18 GetStaticClassSize
The code profiler calls GetClassInfo to obtain the size of static data in a class.

Note: This method is not yet implemented.

Syntax

HRESULT GetStaticClassSize(ClassID classId, ULONG64 *pcStaticSize);

Parameter Description

[in] classId The ClassID of the class the code profiler is interested in.

[out] pcStaticSize Pointer to the size of the static data in the class.

7.19 GetThreadInfo
The code profiler calls GetThreadInfo to obtain the Win32 thread ID for the specified
thread.

Syntax

HRESULT GetThreadInfo(ThreadID threadId, DWORD *pdwWin32ThreadId);

Parameter Description

[in] threaded The ThreadID of the thread the code profiler is interested
in.

[out]
pdwWin32ThreadId

Pointer to the Win32 thread ID.

7.20 GetCurrentThreadID
The code profiler calls GetCurrentThreadID to get the managed thread ID for the
current thread.

Syntax

HRESULT GetThreadInfo(ThreadID *pThreadId);

Parameter Description

[out] pThreadId Pointer to the ThreadID to set.

Page 47

Profiling

7.21 SetEnterLeaveFunctionHooks
The code profiler calls SetFunctionHooks to specify its own callback replacements for
ICorProfilerCallback::FunctionEntry, ICorProfilerCallback::FunctionExit and
ICorProfilerCallback::FunctionTailcall

Syntax

HRESULT SetEnterLeaveFunctionHooks(

 FunctionEnter *pFuncEnter,

 FunctionLeave *pFuncLeave,

 FunctionTailcall *pFuncTailcall)

Parameter Description

[in] pFuncEnter Pointer to code profiler supplied function to be used as callback
on entry to functions.

[in] pFuncLeave Pointer to code profiler supplied function to be used as callback
on exit from functions.

[in]
pFuncTailcall

Pointer to code profiler supplied function to be used as callback
on tailcall exit from functions.

7.22 SetEventMask
The code profiler calls SetEventMask to sets the event categories (see
COR_PRF_MONITOR) for which it is set to receive notification from the runtime.

All events but those contained in COR_PRF_MONITOR_IMMUTABLE may be set at
any time.

Syntax

HRESULT SetEventMask(DWORD dwEvents);

Parameter Description

[in]
dwEvents

A bit mask of flags from COR_PRF_MONITOR indicating which events
the code profiler wants to receive notification for.

7.23 SetFunctionIDMapper
The code profiler calls SetFunctionIDMapper to specify the function to be called to
map FunctionIDs to alternative value to be passed to the function entry and function
exit hooks. See the description of ICorProfilerInfo::SetEnterLeaveFunctionHooks.

Syntax

HRESULT SetFunctionIDMapper(FunctionIDMapper *pFunction)

Page 48

Profiling

Parameter Description

[in]
pFunction

Pointer to the function to be called to map a FunctionID to an
alternative value to be passed to the function entry and function exit
hooks.

7.24 SetFunctionReJIT
The code profiler calls SetFunctionReJIT to mark a function as requiring JIT
recompilation. The function will be JIT recompiled at its next invocation. The normal
profiler events will give the profiler an opportunity to replace the IL prior to the JIT.
By this means, a tool can effectively replace a function at runtime. Not that active
instances of the function are not affected by the replacement.

Syntax

HRESULT SetFunctionReJIT(FunctionID functionId)

Parameter Description

[in] functionId FunctionID of the function to be JIT recompiled.

7.25 SetILFunctionBody
The code profiler calls SetILFunctionBody to set the method body of a function in a
module. This will replace the RVA of the method in the metadata to point to this new
method body, and adjust any internal data structures as desired. This function can
only be called on those methods that have never been compiled by a JIT-compiler.
Use the GetILFunctionBodyAllocator method to allocate space for the new method to
ensure the buffer is compatible.

Syntax

HRESULT SetILFunctionBody(ModuleID moduleId, mdMethodDef method,

LPCBYTE pbNewILMethodHeader, ULONG cbNewMethod);

Parameter Description

[in] moduleId ModuleID of the given module.

[in] method Metadata token for method.

[in] pbNewILMethodHeader Pointer to the new IL method header.

[in] cbNewMethod Pointer to the size of the new IL method header.

7.26 SetILInstrumentedCodeMap
The code profiler calls SetILInstrumentedCodeMap to tell the runtime that the IL map
for a function has changed.

In COR_IL_MAP, each oldOffset refers to the IL offset within the original unmodified
IL code. newOffset refers to the corresponding IL offset within the new, instrumented
code.

Page 49

Profiling

If the offset of the original IL is exactly equal to an oldOffset, then it’s new offset
within the new function body is given by newOffset. If the original offset is not equal
to an oldOffset, then the new offset is equal to the value of the expression

rgILMapEntries[i].newOffset – rgILMapEntries[i].oldOffset + originalOffset

where 0 <= I < cILMapEntries and

rgILMapEntries[I].oldOffset < originalOffset,

and there does not exist a j such that

rgILMapEntries[I].oldOffset < rgILMapEntries[j].oldOffset < originalOffset

Syntax

HRESULT SetILInstrumentedCodeMap(FunctionID functionId, BOOL fStartJit,
SIZE_T cILMapEntries, COR_IL_MAP rgILMapEntries[]);

Parameter Description

[in] functionId FunctionID of the function for which the code map is being set.

[in] fStartJit A Boolean that should be true to indicate that the invocation is
in advance of JIT compilation of the function. It should be false
if this method is being called to only change the function’s IL
map.

[in] cILMapEntries Number of entries in the rgILMapEntries array.

[in] rgILMapEntries An array of entries that specify how the old IL offsets map to
the new IL offsets.

7.27 SetILMapFlag
The code profiler calls SetILMapFlag to request the runtime to maintain information
about IL mapping. This information is used to map an instruction pointer to an
internal point within a function.

Note: This method is not yet implemented.

Syntax

HRESULT SetILMapFlag();

Remarks

A sampling code profiler should enable this flag. Non-sampling code profilers don’t
need to enable this flag since they often only need to map the instruction pointers
corresponding to function entry points and function exit points. The runtime can do
this mapping without an IL mapping table.

7.28 GetInprocInspectionInterface

Page 50

Profiling

7.29 GetInprocInspectionThisThread

7.30 GetThreadcontext

7.31 GetTokenAndMetadataFromFunction

Page 51

Profiling

8 Memory Allocation Interface (IMethodMalloc :

IUnknown)
This is the interface to a very simple allocator that only allows you to allocate
memory. You may not free it. This interface should be used in conjunction with
SetILMethodBody.

8.1Alloc
A profiler calls Alloc to allocate memory in conjunction with SetILMethodBody.

Syntax

HRESULT Alloc(ULONG cb);

Paramete
r

Description

[in] cb Size of the memory to be allocated.

Page 52

Profiling

9 Profiling Enumerations

9.1COR_PRF_MONITOR
The notification methods mentioned in the following table are all defined on the
ICorProfilerCallback interface.

Event Category Value Description

COR_PRF_MONITOR_NONE 0x0 Do not send notifications for any event
categories.

COR_PRF_MONITOR_FUNCTIO
N_UNLOADS

0x1 Send event notification when a function is
unloaded.

COR_PRF_MONITOR_CLASS_L
OADS

0x2 Send event notification when a class is
loaded or when the class is unloaded.

COR_PRF_MONITOR_MODULE
_LOADS

0x4 Send event notification when a runtime
module is loaded or when the module is
unloaded.

COR_PROF_MONITOR_ASSEM
BLY_LOADS

0x8 Send event notification when a runtime
module is loaded or when the module is
unloaded.

COR_PRF_MONITOR_APPDOM
AIN_LOADS

0x10 Send event notification when an application
domain is created or when an application
domain is shutdown.

COR_PRF_MONITOR_ CALLS 0x20 Send event notification when a function is
about to be called and upon completion of
the function call.

COR_PRF_MONITOR_JIT_COM
PILATION

0x40 Send event notification when a function is
about to be JIT-compiled and after JIT
compilation is completed.

COR_PRF_MONITOR_EXCEPTI
ONS

0x80 Send event notification when an exception
occurs.

COR_PRF_MONITOR_GC 0x100 Send event notification when a garbage
collection is about to occur.

COR_PRF_MONITOR_OBJECT_
ALLOCATED

0x200 Send event notification when an object is
allocated on the heap.

COR_PRF_MONITOR_THREADS 0x400 Send event notification when a thread is
about to be created or destroyed.

COR_PRF_MONITOR_CONTEXT
_CROSSINGS

0x800 Send event notification when a context
crossing occurs.

COR_PRF_MONITOR_SECURIT
Y_CHECKS

0x100
0

Send event notification when a security
check occurs.

COR_PRF_MONITOR_CODE_TR
ANSITIONS

0x200
0

Send event notification when a code
transition occurs from managed to
unmanaged code or vice versa.

Page 53

Profiling

COR_PRF_MONITOR_SYNCHR
ONIZATIONS

0x400
0

Send event notification when a
synchronization event occurs.

COR_PRF_MONITOR_ALLOW_R
EJIT

0x800
0

Allow JIT recompilation of methods.

COR_PRF_MONITOR_ENTERLE
AVE

0x100
00

Call the function entry hook when a function
is entered. Call the function exit hook when
a function is exited.

COR_PRF_MONITOR_ALL 0xFFF
F

All of the above.

9.2COR_PRF_ID
Enumeration Value Description

COR_PRF_CHAIN_ID 1 Stack chain ID

COR_PRF_CLASS_ID 2 Class ID

COR_PRF_CONTEXT_ID 3 Context ID

COR_PRF_FIELD_ID 4 Class field ID

COR_PRF_FRAME_ID 5 Stack frame ID

COR_PRF_FUNCTION_ID 6 Function ID

COR_PRF_MODULE_ID 7 Module ID

COR_PRF_MONITOR_ID 8 Monitor ID

COR_PRF_OBJECT_ID 9 Object ID of class instance

COR_PRF_THREAD_ID 10 Thread ID

Page 54

Profiling

10Profiling Type Definitions

10.1 COR_IL_MAP
The COR_IL_MAP type is used to describe how an IL offset in an old function body
maps to the IL offset in the new function body that replaces the old function body.
See the ICorProfilerInfo::SetILInstrumentedCodeMap for a description of how this
type is used.

IDL Declaration

typedef struct _COR_IL_MAP
{

SIZE_T oldOffset;
SIZE_T newOffset;

} COR_IL_MAP;

Members

Member Description

oldOffset IL offset in the old function body.

newOffset IL offset in the new function body.

10.2 COR_PRF_JIT_MAP
The COR_PRF_JIT_MAP notifies a profiler about the result of a search for a cached
function.

IDL Declaration

typedef enum
{

COR_PRF_CACHCED_FUNCTION_FOUND,
COR_PRF_CACHCED_FUNCTION_NOT_FOUND

} COR_PRF_JIT_CACHE;

Members

Member Description

COR_PRF_CACHED_FUNCTION_FOUND The search for the cached
function was successful.

COR_PRF_CACHED_FUNCTION_NOT_FOUND The search for the cached
function was unsuccessful.

Page 55

Profiling

10.3 FunctionIDMapper
The FunctionIDMapper type definition is used by the
ICorProfilerInfo::SetFunctionIDMapper method to specify a function that will be
called to map FunctionIDs to alternative values that will be passed to the function
entry and function exit callbacks supplied to the
ICorProfilerInfo::SetEnterLeaveFunctionHooks method.

IDL Declaration

typedef void __stdcall FunctionIDMapper(FunctionID functionId, BOOL
*pbHookFunction);

Parameter Description

functionId FunctionID of the function for which the mapping is
requested.

pbHookFunction Pointer to a function that is called to provide the alternative
value to be passed to the function entry and function exit
callbacks.

10.4 FunctionEnter
The FunctionEnter type definition describes the signature of the function entry
callback supplied to the ICorProfilerInfo::SetEnterLeaveFunctionHooks method.

IDL Declaration

typedef void __stdcall FunctionEnter(FunctionID functionId);

Paramete
r

Description

functionId FunctionID of the function that was entered.

10.5 FunctionExit
The FunctionExit type definition describes the signature of the function exit callback
supplied to the ICorProfilerInfo::SetEnterLeaveFunctionHooks method.

IDL Declaration

typedef void __stdcall FunctionExit(FunctionID functionId);

Paramete
r

Description

functionId FunctionID of the function that was exited.

Page 56

Profiling

10.6 FunctionTailcall
The FunctionTailcall type definition describes the signature of the function tail call
callback supplied to the ICorProfilerInfo::SetEnterLeaveFunctionHooks method.

IDL Declaration

typedef void __stdcall FunctionTailcall(FunctionID functionId);

Paramete
r

Description

functionId FunctionID of the function that was exited with a tail call.

NOTE: We need to explain here why we are using __declspec(naked) and how to use
it.

Page 57

Profiling

11Profiler Picker
The Profiler Picker tool (see figure below) in the SDK can be used to select a specific
profiler for profiling an application.

Figure. Profile Picker

Profiler Picker allows a user to specify command-line options for the selected profiler.
Profiler Picker also allows a user to specify the application to be profiled, specify the
command-line arguments to the application, and specify the working directory for
launching the application. Profile Picker sets the environment variable
COR_ENABLE_PROFILING to enable profiling and sets the environment variable
COR_PROFILER to the selected profiler. The runtime maintains a list of registered
profilers under the registry key HKLM\software\microsoft\COMplus\Profilers.
Each profiler adds a sub-key with its pretty name. Each sub-key has a “HelpString”
value that describes the profiler and a "ProfilerID" value which is the CLSID needed
to instantiate the profiler.

Page 58

Profiling

12Security Issues in Profiling
The runtime Profiling Services are available in-process to a code profiler. The
Profiling Services allow a code profiler to instrument code dynamically. In dynamic
code instrumentation, the code profiler calls Profiling Services methods to replace
methods in the profiled process with methods supplied by the code profiler. These
modifications violate the enforcement of security imposed on the code in various
ways that cannot be controlled easily by the runtime. The runtime does not provide a
complex set of security checks. Instead, the profiler must have sufficient operating
system privileges to profile a process.

This section describes a few scenarios in the context of runtime security and dynamic
code instrumentation.

Dynamically Swapping Methods. In this scenario, a user runs an application
under the control of a code profiler. The code being profiled is verified when it is
loaded. After the application has been executing for sometime, the user decides to
investigate why the code is running slow. The user uses the code profiler to
dynamically instrument selected parts of the application. The code profiler selects
some methods and requests the runtime to forget that the methods were compiled
by the JIT compiler. The code profiler then supplies replacements for the methods.
The replacement methods are not verified when they are compiled by the JIT
compiler. The new code has the potential to violate runtime security.

Verification of On-disk Instrumented Code. In this scenario, a code profiler
chooses to instrument code by modifying a PE on disk before it is loaded. The new
checksum for the containing assembly will not match the checksum stored in the
assembly’s manifest. The code profiler needs to inform the runtime that the PE has
been modified and request the loader to omit certain checks. The method to do this
is TBD.

Page 59

Profiling

13Design Considerations
The runtime code profiler interfaces are designed for speed to reduce the overhead
of making calls on the methods supported by the interfaces. To ensure speed, the
code profiler interfaces return arrays instead of enumerators.

The runtime code profiler interfaces provide low-level access to runtime information.
Interfaces that return static information about the application are provided only
where necessary. The code profiler must rely on other interfaces such as metadata
APIs to obtain such information.

Note that the profiling APIs are used, not by end-user applications, but by software
tools. We have therefore traded speed against robust checking – argument
validation is quite minimal, so misuse of the APIs can easily result in crashing the
profilee’s process

Page 60

Profiling

14Unmanaged Code
There is minimal support in the runtime profiling interfaces for profiling unmanaged
code. The following functionality is provided:

 Enumeration of stack chains. This allows a code profiler to determine the
boundary between managed code and unmanaged code.

 Determine if a stack chain corresponds to managed code.

These methods are available thru the “In-Proc” subset of the NGWS debugging APIs.
These are defined in the file “CorDebug.IDL”

Page 61

	1 Profiling – Introduction
	2 Goals for the Profiling APIs
	3 Non-goals for the Profiling APIs
	4 Profiling APIs – Overview
	5 Profiling APIs – Recurring Concepts
	5.1 IDs
	5.2 Return Values
	5.3 Notification Thread
	5.4 Nesting of Notifications

	6 ICorProfilerCallback – Details
	6.1 Runtime
	6.1.1 Initialize
	6.1.2 Shutdown

	6.2 AppDomain
	6.2.1 AppDomainCreationStarted
	6.2.2 AppDomainCreationFinished
	6.2.3 AppDomainShutdownStarted
	6.2.4 AppDomainShutdownFinished

	6.3 Assembly
	6.3.1 AssemblyLoadStarted
	6.3.2 AssemblyLoadFinished
	6.3.3 AssemblyUnloadStarted
	6.3.4 AssemblyUnloadFinished

	6.4 Module
	6.4.1 ModuleLoadStarted
	6.4.2 ModuleLoadFinished
	6.4.3 ModuleUnloadStarted
	6.4.4 ModuleUnloadFinished
	6.4.5 NotifyModuleAttachedToAssembly

	6.5 Class
	6.5.1 ClassLoadStarted
	6.5.2 ClassLoadFinished
	6.5.3 ClassUnloadStarted
	6.5.4 ClassUnloadFinished

	6.6 Function
	6.6.1 JITCompilationStarted
	6.6.2 JITCompilationFinished
	6.6.3 FunctionUnloadStarted
	6.6.4 JITCachedFunctionSearchStarted
	6.6.5 JITCachedFunctionSearchFinished
	6.6.6 JITFunctionPitched
	6.6.7 JITInlining

	6.7 Thread
	6.7.1 ThreadCreated
	6.7.2 ThreadDestroyed
	6.7.3 ThreadAcquiringMonitor
	6.7.4 ThreadBlockedMonitor
	6.7.5 ThreadAcquiredMonitor
	6.7.6 ThreadReleasedMonitor
	6.7.7 ThreadAssignedToOSThread

	6.8 Remoting
	6.8.1 RemotingClientInvocationStarted
	6.8.2 RemotingClientSendingMessage
	6.8.3 RemotingClientReceivingReply
	6.8.4 RemotingClientInvocationFinished
	6.8.5 RemotingServerReceivingMessage
	6.8.6 RemotingServerInvocationStarted
	6.8.7 RemotingServerInvocationReturned
	6.8.8 RemotingServerSendingReply

	6.9 Transitions
	6.9.1 UnmanagedToManagedTransition
	6.9.2 ManagedToUnmanagedTransition
	6.9.3 COMClassicWrapperCreated
	6.9.4 COMClassicWrapperDestroyed

	6.10 Runtime Suspension
	6.10.1 RuntimeSuspendStarted
	6.10.2 RuntimeSuspendFinished
	6.10.3 RuntimeSuspendAborted
	6.10.4 RuntimeResumeStarted
	6.10.5 RuntimeResumeFinished
	6.10.6 RuntimeThreadSuspended
	6.10.7 RuntimeThreadResumed

	6.11 Garbage Collection
	6.11.1 ObjectAllocated
	6.11.2 ObjectsAllocatedByClass
	6.11.3 MovedReferences
	6.11.4 ObjectReferences
	6.11.5 RootReferences

	6.12 Exceptions
	6.12.1 ExceptionThrown
	6.12.2 ExceptionSearchFunctionEnter
	6.12.3 ExceptionSearchFunctionLeave
	6.12.4 ExceptionSearchFilterEnter
	6.12.5 ExceptionSearchFilterLeave
	6.12.6 ExceptionSearchCatcherFound
	6.12.7 ExceptionOSHandlerEnter
	6.12.8 ExceptionOSHandlerLeave
	6.12.9 ExceptionUnwindFunctionEnter
	6.12.10 ExceptionUnwindFunctionLeave
	6.12.11 ExceptionUnwindFinallyEnter
	6.12.12 ExceptionUnwindFinallyLeave
	6.12.13 ExceptionCatcherEnter
	6.12.14 ExceptionCatcherLeave

	7 ICorProfilerInfo
	7.1 ForceGC
	7.2 GetAppDomainInfo
	7.3 GetAssemblyInfo
	7.4 GetClassFromObject
	7.5 GetClassFromToken
	7.6 GetClassIDInfo
	7.7 GetCodeInfo
	7.8 GetEventMask
	7.9 GetFunctionFromIP
	7.10 GetFunctionFromToken
	7.11 GetFunctionInfo
	7.12 GetHandleFromThread
	7.13 GetILFunctionBodyAllocator
	7.14 GetILFunctionBody
	7.15 GetModuleInfo
	7.16 GetModuleMetaData
	7.17 GetObjectSize
	7.18 GetStaticClassSize
	7.19 GetThreadInfo
	7.20 GetCurrentThreadID
	7.21 SetEnterLeaveFunctionHooks
	7.22 SetEventMask
	7.23 SetFunctionIDMapper
	7.24 SetFunctionReJIT
	7.25 SetILFunctionBody
	7.26 SetILInstrumentedCodeMap
	7.27 SetILMapFlag
	7.28 GetInprocInspectionInterface
	7.29 GetInprocInspectionThisThread
	7.30 GetThreadcontext
	7.31 GetTokenAndMetadataFromFunction

	8 Memory Allocation Interface (IMethodMalloc : IUnknown)
	8.1 Alloc

	9 Profiling Enumerations
	9.1 COR_PRF_MONITOR
	9.2 COR_PRF_ID

	10 Profiling Type Definitions
	10.1 COR_IL_MAP
	10.2 COR_PRF_JIT_MAP
	10.3 FunctionIDMapper
	10.4 FunctionEnter
	10.5 FunctionExit
	10.6 FunctionTailcall

	11 Profiler Picker
	12 Security Issues in Profiling
	13 Design Considerations
	14 Unmanaged Code

