
Execution Engine Architecture

NGWS

Execution Engine Architecture

Version 1.9 Final

Copyright  1999 Microsoft Corporation. All rights reserved.

Last updated: 8 June 2000

This is preliminary documentation and subject to change

Page 1

Execution Engine Architecture

Table of Contents

1 Audience and Related Specifications..4

2 Execution Engine Overview...5

2.1 IL and OptIL..6

2.2 JIT Compilation..6

2.3 Class Loading..7

2.4 Verification..7

2.5 Security Checks...8

2.6 Profiling and Debugging..8

2.7 Interoperation with Unmanaged Code...8

2.8 This Specification...8

3 Virtual Execution System..10

4 Supported Data Types..12

4.1 Natural Size: I, R4Result, R8Result, RPrecise, U, O and &....................13

4.1.1 Unmanaged Pointers as Type U...13

4.1.2 Managed Pointer Types: O and &...14

4.1.3 Portability: Storing Pointers in Memory...14

4.1.4 Natural Size Floating-Point: R, R4Result, R8Result, and RPrecise......14

4.2 Handling of Short Integer Data Types..15

4.3 Handling of Floating Point Datatypes...15

4.4 IL Instructions and Numeric Types..17

4.5 IL Instructions and Pointer Types..18

4.6 Aggregate Data..19

4.6.1 Homes for Values..19

4.6.2 Operations on Value Type Instances...20

4.6.2.1 Initializing Instances of Value Types......................................20

4.6.2.2 Loading and Storing Instances of Value Types.........................21

4.6.2.3 Passing and Returning Value Types..21

4.6.2.4 Calling Methods..21

4.6.2.5 Boxing and Unboxing...22

4.6.2.6 Castclass and IsInst on Value Types......................................22

4.6.3 Opaque Classes...22

5 Executable Image Information..23

6 Machine State...24

Page 2

Execution Engine Architecture

6.1 The Global State...24

6.2 The Memory Store..25

6.2.1 Alignment...25

6.2.2 Byte Ordering...26

6.3 Method State...26

6.3.1 The Evaluation Stack..27

6.3.2 Local Variables and Arguments..28

6.3.3 Variable Argument Lists..29

6.3.4 Local Memory Pool...29

7 Control Flow...30

8 Method Calls...31

8.1 Call Site Descriptors..31

8.2 Calling Instructions...31

8.3 Computed Destinations...32

8.4 Virtual Calling Convention..33

8.5 Parameter Passing..33

8.5.1 By-Value Parameters...34

8.5.2 By-Ref Parameters...34

8.5.3 Typed Reference Parameters...34

8.5.4 A Note on Interactions...35

9 Exception Handling..37

9.1 Exceptions Thrown by the EE Itself...37

9.2 Overview of Exception Handling..38

9.3 IL Support for Exceptions..39

9.4 Lexical Nesting of Protected Blocks...39

9.5 Control Flow Restrictions on Protected Blocks.....................................40

10 Atomicity of Memory Accesses...42

11 OptIL: An Instruction Set Within IL..43

Page 3

Execution Engine Architecture

1 Audience and Related Specifications
This specification is intended for people interested in generating or analyzing
programs that will be executed by the NGWS runtime. This includes people who
write compilers that target the NGWS runtime (either with native code or IL),
development tools or environments, or program analysis tools.

For more information about the EE, IL, and metadata, see the following
specifications:

 The Virtual Object System (VOS) specification.

 The IL Instruction Set specification.

 The Assembler Programmers Reference specification.

 The Metadata Interfaces specification.

 The File Format specification.

Page 4

Execution Engine Architecture

2 Execution Engine Overview
NGWS provides an Execution Engine (EE) that manages the execution of source code
after being compiled into Intermediate Language (IL), OptIL, or native machine
code. All code based on NGWS IL or OptIL executes as managed code; that is code
that runs under a "contract of cooperation" with NGWS. NGWS provides services
such as memory management, cross language integration, exception handling, code
access security, and automatic lifetime control of objects. In return, managed code
must supply enough information in metadata to enable NGWS to locate and unwind
stack frames. For a high level description of the features that NGWS provides to
managed code, see the "NGWS Overview" specification.

A key feature of NGWS runtime is its ability to provide software isolation of programs
running within a single address space. It does this by enforcing typesafe access to
all areas of memory when running typesafe managed code. Some compilers
generate IL that is not only typesafe but whose typesafety can be proven by simply
examining the IL. This process, verification, allows servers to quickly examine user
programs written in IL and only run those that it can demonstrate will not make
unsafe memory references. This independent verification is critical to truly scalable
servers that execute user-defined programs (scripts).

The EE provides the following services:

 Code management

 Software memory isolation

 Verification of the typesafety of IL

 Conversion of IL to native code

 Loading and execution of managed code (IL or native)

 Accessing metadata (enhanced type information)

 Managing memory for managed objects

 Insertion and execution of security checks

 Handling exceptions, including cross-language exceptions

 Interoperation between NGWS objects and COM objects

 Automation of object layout for late binding

 Supporting developer services (profiling, debugging, etc.)

The EE supplies the common infrastructure that allows tools and programming
languages to benefit from cross-language integration. Any technical improvements to
the EE will benefit all languages and tools that target NGWS.

One of the most important functions of the EE is on-the-fly conversion of IL (or
OptIL) to native code. Source code compilers generate IL (or OptIL), and JIT
compilers convert that IL to native code for specific machine architectures. As long
as a simple set of rules is followed by the IL generator, the same IL code will run on
any architecture that supports NGWS. Because the conversion from IL to native
code occurs on the target machine, the generated native code can take advantage of
hardware-specific optimizations. Other significant EE functions include class loading,
verification, and support for security checks.

Page 5

Execution Engine Architecture

2.1 IL and OptIL
IL is a stack-based set of instructions designed to be easily generated from source
code by compilers and other tools. Several kinds of instructions are provided,
including instructions for arithmetic and logical operations, control flow, direct
memory access, exception handling, and method invocation. There is also a set of IL
instructions for implementing object-oriented programming constructs such as virtual
method calls, field access, array access, and object allocation and initialization.

The IL instruction set can be directly interpreted by simply tracking the data types on
the stack and emulating the IL instructions. It can also be converted efficiently into
native code. The design of IL allows this process to produce optimized native code
at reasonable cost. The design of IL allows programs that are not typesafe to be
expressed, since this is essential for support of some common programming
languages. At the same time, by following a simple set of rules, it is possible to
generate IL programs that are not only typesafe but can easily be proven to be so
(see the Verification section for more information about type safety and verification).

OptIL is a subset of IL that can be generated by optimizing compiler front ends.
OptIL contains embedded annotations, which are IL instructions that supply control
flow and register allocation information. Since OptIL is a subset of IL, any component
that can execute or analyze IL can also analyze or execute OptIL (ignoring the
embedded annotations if necessary). The OptJIT compiler (to be shipped in a future
release), however, uses the embedded information to rapidly produce optimized
native code. The correctness of this native code depends on the annotations, so they
are subject to verification. OptIL is useful in situations where limited time and
memory resources are available during the conversion to native code (ie at JIT time),
yet the native code produced must meet high performance standards.

2.2 JIT Compilation
The EE provides three JIT compilers for converting IL to native code: EconoJIT, JIT,
and OptJIT. Each JIT compiler has been designed to meet specific goals with respect
to performance and resource usage. The performance characteristics are
summarized in Figure 1. Because of the low overhead of the EconoJIT compiler, as
well as the ease with which it can be ported to new architectures, NGWS does not
include an interpreter for IL. (EconoJIT is so named because it performs the same
task as the full JIT compiler, but using less computer resources. As a trade-off, the
quality of the generated code is not so high).

JIT
Compiler

Input
Language

JIT Compiler
Overhead

Compilation
Speed

Quality of
Output

EconoJIT IL (incl. OptIL) Very Small Very Fast Low

JIT IL (incl. OptIL) Medium to Large Moderate High

OptJIT
(not in
V1)

OptIL only Small Fast High

Figure 1: Performance Characteristics of NGWS JIT Compilers

Page 6

Execution Engine Architecture

In some cases, tools vendors or researchers might want to design their own JIT
compilers for use with NGWS. Using the standard interface between the EE and a JIT
compiler, a third-party JIT compiler can be "plugged in" to the EE and interact
appropriately. This interface (to be published in a future release) will consist of two
parts: one used when IL is compiled to native code (the JIT/EE interface) and the
other when the compiled code is executed (the code manager). The code manager
performs the stack walks required for memory management, exception handling, and
security checks. It also performs other functions, such as converting NGWS
exceptions into the form expected by the source language processor's exception
handlers. Vendors who design custom JIT compilers can use the Runtime's code
manager or they can design a custom code manager to describe the layout of the
method state for code they have compiled.

2.3 Class Loading
The EE’s class loader loads the implementation of a class, expressed in IL, OptIL or
native code, into memory, checks that it is consistent with assumption made about it
by other previously loaded classes, and prepares it for execution. To accomplish this
task, the class loader ensures that certain information is known, including the
amount and the shape of the space that instances of the type require. In addition,
the class loader determines whether references made by the loaded type are
available at runtime and whether references to the loaded type are consistent.

The class loader checks for certain consistency requirements that are vital to the
NGWS security enforcement mechanism. These checks constitute a minimal,
mandatory, verification process that precedes the IL verification, which is more
rigorous (and optional). In addition, the class loader supports security enforcement
by providing some of the credentials required for validating code identity. For more
details, see the NGWS Virtual Object System specification.

NGWS runtime allows only one class loader, its own. NGWS does not support user-
written class loaders.

2.4 Verification
Typesafe programs reference only memory that has been allocated for their use, and
they access objects only through their public interfaces. These two restrictions allow
objects to safely share a single address space, and they guarantee that security
checks provided by the objects’ interfaces are not circumvented. Code access
security, the NGWS runtime’s security mechanism, can effectively protect code from
unauthorized access only if there is a way to verify that the code is typesafe.

To meet this need, the NGWS runtime uses the information in type signatures to
help determine whether IL code is typesafe. It checks to see that metadata is well-
formed, and it performs control flow analyses to ensure that certain structural and
behavioral conditions are met. The runtime declares that a program is successfully
verified only if it is typesafe.

Used in conjunction with the strong typing of metadata and IL, such checking can
ensure the typesafety of programs written in IL. NGWS requires code to be so
checked before it is run, unless a specific (administratively controlled) security check
determines that the code can be fully trusted.

Page 7

http://comrtime/Specs/VOS/vos.doc

Execution Engine Architecture

2.5 Security Checks
The EE is involved in many aspects of NGWS’’s security mechanism. In addition to
the verification process required by code access security, the EE provides support
that enables both declarative and imperative security checks to occur.

Declarative security checks take place automatically whenever a method is called.
The permissions that are required in order to access the method are stored in the
component’s metadata. At run time, calls to methods that are marked as requiring
specific permissions are intercepted to determine whether callers have the required
permissions. A stack walk is sometimes necessary to determine whether each caller
in the call chain also has the required permissions.

Imperative security checks occur when security functions, such as checking a code
access permission, or asserting the right to use a specified permission, are invoked
from within the code being protected. The EE supports this type of security check by
providing trusted methods that enable code identity to be determined and allow
permissions to be located and stored in the stack. In addition, the EE gives the
security engine access to administrative information about security requirements.

2.6 Profiling and Debugging
The EE provides the ability to both debug (observe and modify the behavior) and
profile (measure resource utilization) of running programs. It does this by providing
three underlying services, described in detail in the Debugging Specifications and the
Profiling Specification. Both profiling and debugging depend on information produced
by the source language compiler and updated by the JIT compiler.

The EE provides an API for debugging that handles registration for and notification of
events in the running program. This allows a debugger to control execution of a
program, including setting and handling breakpoints, intercepting exceptions,
modifying control flow, and examining or modifying program state (both code and
data).

The EE also provides an API for use by tools that do program profiling. The API
supports profiling of managed native code (e.g. the output of a JITter) both with and
without inserting specific profiling probes into the code.

2.7 Interoperation with Unmanaged Code
The EE also provides for two-way transitions between managed and unmanaged
code. This includes interoperation with existing COM clients and services (known as
“COM interop”) as well as previously compiled native DLLs (known as “PInvoke”).
Where necessary because of data format or other differences, the EE supplies
marshaling procedures that copy and/or reformat information across the boundary.

2.8 This Specification
The remainder of this specification provides information about aspects of the
architecture of the NGWS Execution Engine that are relevant to the development of
tools that generate or manipulate IL. The following topics are discussed:

 Virtual Execution System

 Supported data types

Page 8

Execution Engine Architecture

 Executable image information

 Machine state definitions

 Method calling information

 Exception handling

 OptIL

Page 9

Execution Engine Architecture

3 Virtual Execution System
By providing services such as class loading, verification, JIT compilation, and code
management, the Execution Engine creates an environment for code execution called
the Virtual Execution System. Figure 2 shows the major elements of the EE
highlighted in gray, and it indicates with arrows the various paths that can be taken
through this execution environment.

In most cases, source code is compiled into IL, the IL is loaded, compiled to native
code on-the-fly using one of the JIT compilers, and executed. Note that for trusted
code, verification can be omitted.

The EE's metadata engine enables the source code compiler to place metadata in the
PE file along with the generated IL or OptIL. (“PE” stands for Portable Executable,
the format used for executable (EXE) and dynamically linked library (DLL) files).
During loading and execution, this metadata provides information needed for
registration, debugging, memory management, and security. Also indicated in the
diagram is the fact that classes from the NGWS Base Class Library can be loaded by
the class loader along with IL, OptIL, or native code.

Another execution path that can be chosen involves pre-compilation to native code
using a backend compiler. This option might be chosen if compiling code at run-time
(that’s to say, JIT compiling) is unacceptable due to performance requirements. As
indicated in the diagram, precompiled native code bypasses verification and JIT
compilation. Because precompiled native code is not verified, it must be considered
fully trusted code in order to execute.

Page 10

Execution Engine Architecture

Figure 2: Overview of EE Architecture

Page 11

Execution Engine Architecture

4 Supported Data Types
The Execution Engine directly supports the data types shown in Table 1. That is,
these data types can be manipulated using the IL instruction set.

Data Type Description

I1 8-bit 2's complement signed value

U1 8-bit unsigned binary value

I2 16-bit 2's complement signed value

U2 16-bit unsigned binary value

I4 32-bit 2’s complement signed value

U4 32-bit unsigned binary value

I8 64-bit 2’s complement signed value

U8 64-bit unsigned binary value

R4 32-bit IEEE 754 floating point value

R8 64-bit IEEE 754 floating point value

I natural size 2's complement signed value

U natural size unsigned binary value, also unmanaged pointer

R4Result Natural size for result of a 32-bit floating point computation

R8Result Natural size for result of a 64-bit floating point computation

RPrecise Maximum-precision floating point value

O natural size object reference to managed memory

& natural size managed pointer (may point into managed memory)

Table 1: Data Types Directly Supported by the EE

The EE model uses an evaluation stack. Instructions that copy values from memory
to the evaluation stack we call “loads”; instructions that copy values from the stack
back to memory we call “stores”. The full set of data types in the table above can be
represented in memory. However, the EE supports only a subset of these types in
its operations upon values stored on its evaluation stack – I4, I8, I. In addition the
EE supports an internal data type, F, to represent floating point values on the
internal evaluation stack. The F type can be thought of as starting at the size of
values loaded from memory and then expanded when combined with higher-
precision values. Shorter values (I1, I2, U1, U2) are widened when loaded
(memory-to-stack) and narrowed when stored (stack-to-memory). This reflects a
computer model that assumes memory cells are 1, 2, 4, or 8 bytes wide but
registers and stack locations are either 4 or 8 bytes wide. The support for short
values consists of:

 Load and store instructions to/from memory: ldelem, ldind, stind, stelem

 Arithmetic with overflow detection: add.ovf, mul.ovf, sub.ovf

 Data conversion: conv, conv.ovf

 Loading constants: ldc

Page 12

Execution Engine Architecture

 Array creation: newarr

The signed integer (I1, I2, I4, I8, and I) and unsigned integer (U1, U2, U4, U8, and
U) types differ only in how the bits of the integer are interpreted. For those
operations where an unsigned integer is treated differently from a signed integer
(e.g. comparisons or arithmetic with overflow) there are separate instructions for
treating an integer as unsigned (e.g. cgt.un and add.ovf.u).

This instruction set design simplifies JIT compilers and interpreters of IL by allowing
them to internally track a smaller number of data types. See the Evaluation Stack
section.

As described below, IL instructions do not specify their operand types. Instead, the
EE keeps track of operand types and the JIT generates the appropriate native code.
For example, the single add instruction will add two integers or two floats from the
stack.

4.1 Natural Size: I, R4Result, R8Result,

RPrecise, U, O and &
The natural-size, or generic, types (I, R4Result, R8Result, RPrecise, U, O, and &) are
a mechanism in the EE for deferring the choice of a value’s size. These data types
exist as IL types. But when compiled to native code, the JIT maps each to the
natural size for that specific processor. (For example, data type I would map to I4
on a Pentium processor, but to I8 on an IA64 processor). So, the choice of size is
deferred until JIT compilation, when the EE has been initialized and the architecture
is known. This implies that field and stack frame offsets are also not known at
compile time. For languages like Visual Basic, where field offsets are not computed
early anyway, this is not a hardship. In languages like C or C++, a conservative
assumption that they occupy 8 bytes is sometimes acceptable (for example, when
laying out compile-time storage). The EE’s generic types were designed to
circumvent parts of this problem.

4.1.1 Unmanaged Pointers as Type U
For languages like C, when compiling all the way to native code, where the size of a
pointer is known at compile time and there are no managed objects, the fixed-size
unsigned integer types (U4 or U8) can serve as pointers. However choosing pointer
size at compile time has its disadvantages. If pointers were chosen to be 32 bit
quantities at compile time, the code would be restricted to 4gig of address space,
even if it were run on a 64 bit machine. Moreover, a 64 bit EE would need to take
special care so those pointers passed back to 32-bit code could always fit in 32 bits.
If pointers were chosen at compile time to be 64 bits, the code could be run on a 32
bit machine, but pointers in every data structure would be twice as large as
necessary on that EE.

It is desirable, especially when building library routines that are platform-agnostic, to
defer the choice of pointer size from compile time to EE initialization time. In that
way, the same IL code can handle large address spaces for those applications that
need them, while also being able to reap the size benefit of 32 bit pointers for those
applications that do not need a large address space.

For these reasons, the U type should be used to represent unmanaged pointers.

Page 13

Execution Engine Architecture

4.1.2 Managed Pointer Types: O and &
The O datatype represents an object reference that is managed by NGWS. As such,
the number of specified operations is severely limited. In particular, references can
only be used on operations that indicate that they operate on reference types (e.g.
ceq and ldind.ref), or on operations whose metadata indicates that references are
allowed (e.g. call, ldsfld, and stfld).

The & datatype (managed pointer) is similar to the O type, but points to the interior
of an object. That is, a managed pointer is allowed to point to a field within an
object or an element within an array, rather than to point to the ‘start’ of object or
array.

Object references (O) and managed pointers (&) must be reported to the NGWS
memory manager so that it can update their values as the items they point to are
moved during garbage collection.

In summary, object references, or O types, refer to the ‘outside’ of an object, or to
an object as-a-whole. But managed pointers, or & types, refer to the interior of an
object.

In order to allow managed pointers to be used more flexibly, they are also permitted
to point to areas that aren’t under the control of the NGWS garbage collector, such
as the evaluation stack, static variables, and unmanaged memory. This allows them
to be used in many of the same ways that unmanaged pointers (U) are used. As a
result, however, managed pointers are allowed to appear only as parameters or local
variables; this guarantees that a managed pointer to a value on the evaluation stack
doesn’t outlast the life of location to which it points.

4.1.3 Portability: Storing Pointers in

Memory
Several instructions, including calli, cpblk, initblk, ldind.*, and stind.*, expect an
address on the top of the stack. If this address is derived from a pointer stored in
memory, there is an important portability consideration.

1. Code that stores pointers in a natural sized integer or pointer location (types I,
O, U, or &) is always fully portable.

2. Code that stores pointers in an 8 byte integer (type I8 or U8) can be portable.
But this requires that a conv.ovf.u instruction be used to convert the pointer
from its memory format before its use as a pointer. This may cause a runtime
exception if run on a 32-bit machine.

3. Code that uses any smaller integer type to store a pointer in memory (I1, U1,
I2, U2, I4, U4) is never portable, even though the use of a U4 or I4 will work
correctly on a 32-bit machine.

4.1.4 Natural Size Floating-Point: R,

R4Result, R8Result, and RPrecise
To support a wide range of hardware architectures, the EE follows the
recommendations of the ANSI C9x committee by providing not only the two IEEE
storage formats (32-bit and 64-bit) but three additional types that are not portable

Page 14

Execution Engine Architecture

across architectures. The type R4Result is a type large enough to hold the results
of calculations that use R4 (i.e. IEEE 32-bit) arguments. Similarly, the type
R8Result is a type large enough to hold the results of calculations that use R8 (i.e.
IEEE 64-bit) arguments. Finally, the type RPrecise can hold a floating-point value
of the maximum precision supported conveniently on the target architecture, but
containing at least 64 bits (for example, in current-generation Pentium processors,
this would be 80 bits). In terms of precision, the following are always true:

R4 <= R4Result <= RPrecise

R8 <= R8Result <= RPrecise

R4 < R8 <= RPrecise

R4Result <= R8Result <= RPrecise

4.2 Handling of Short Integer Data Types
The Execution Engine defines an evaluation stack that contains either 4-byte or 8-
byte integers, but a memory model that encompasses in addition 1-byte and 2-byte
integers. To be more precise, the following rules are part of the Execution Engine
model:

 Loading from 1-byte or 2-byte locations (arguments, locals, fields, statics,
pointers) expands to 4-byte values. For locations with a known type (e.g. local
variables) the type being accessed determines whether the load sign-extends
(signed locations) or zero-extends (unsigned locations). For pointer
dereference (ldind.*), the instruction itself identifies the type of the location
(e.g. ldind.u1 indicates an unsigned location, while ldind.i1 indicates a signed
location).

 Storing into a 1-byte or 2-byte location truncates to fit and will not generate an
overflow error. Specific instructions (conv.ovf.*) can be used to test for
overflow before storing.

 Calling a method in essence assigns values from the evaluation stack to the
arguments for the method, hence it truncates just as any other store would.

 Returning from a method in essence assigns a value to an invisible return
variable, so it also truncates as a store would. Since the value of this return
variable is then placed on the evaluation stack, it is then sign-extended or zero-
extended as would any other load. Notice that this truncation followed by
extending is not identical to simply leaving the computed value unchanged.

It is the responsibility of any translator from IL to native machine instructions to
make sure that these rules are faithfully modeled through the native conventions of
the target machine. The Execution Engine does specify, for example, whether
truncation of short integer arguments occurs at the call site or in the target method.

4.3 Handling of Floating Point Datatypes
The Execution Engine assumes floating-point calculations are handled as described in
the IEEE 754 standard, “IEEE Standard for Binary Floating-point Arithmetic”. This
standard describes encoding of floating point numbers, definitions of the basic
operations and conversion, rounding control, and exception handling.

The standard defines three special values, NaN, (not a number), +infinity, and –
infinity. These values are returned on overflow conditions. A general principle is

Page 15

Execution Engine Architecture

that operations that have a value in the limit return an appropriate infinity while
those that have no limiting value return NaN, but see the standard for details. The
following examples show the most commonly encountered cases:

X rem 0 = NaN

0 * +infinity = 0 * -infinity = NaN

(X / 0) = +infinity, if X>0

 NaN, if X=0

 -infinity, if X < 0

NaN op X = X op NaN = NaN for all operations

 (+infinity) + (+infinity) = (+infinity)

X / (+infinity) = 0

X mod (-infinity) = -X

(+infinity) - (+infinity) = NaN

For purposes of comparison, infinite values act like a number of the correct sign but
with a very large magnitude when compared with finite values. NaN is ‘unordered’
for comparisons (see clt, clt.un).

While the IEEE 754 spec also allows for exceptions to be thrown under unusual
conditions (overflow, invalid operand, …), the EE does not generate these
exceptions. Instead, the EE uses the NaN return values and provides the instruction
ckfinite to allow users to generate an exception if a result is NaN, +infinity, or –
infinity.

The rounding mode defined in IEEE 754 is set by the EE to round to the nearest
number, and neither the IL nor the base class library provide a mechanism for
modifying this setting. The EE does not specify what happens if fully trusted code
modifies the rounding mode.

For conversion to integers, the default operation supplied by the IL is “truncate
towards zero”. There are base class libraries supplied to allow floating-point
numbers to be converted to integers using any of the other three traditional
operations (round to nearest integer, floor (truncate towards –infinity), ceiling
(truncate towards +infinity)).

Storage locations for floating point numbers (statics, array elements, and fields of
classes) are of fixed size. The supported storage sizes are R4, R8, and RPrecise.
Everywhere else (on the evaluation stack, as arguments, as return types, and as
local variables) floating point numbers are represented using the internal F type.
This type can be thought of as starting at the size of value loaded from storage and
then expanding as needed. This design allows the EE to choose a platform-specific
high-performance representation for floating point numbers until they are placed in
storage locations. For example, it may be able to leave floating point variables in
hardware registers that provide more precision than a user has requested. At the
same time, IL generators can force operations to respect language-specific rules for
representations through the use of conversion instructions.

When a value of type F is put in a storage location it is automatically coerced to the
required size, which may involve a loss of precision or the creation of an out-of-
range marker (a NaN). To detect values that cannot be converted to a particular
storage type, use a conversion instruction (conv.r4, conv.r8, conv.r4result,
conv.r8result, or conv.rprecise) and then check for a non-finite value using

Page 16

Execution Engine Architecture

ckfinite. To detect underflow when converting to a particular storage type, a
comparison to zero is required before and after the conversion.

4.4 IL Instructions and Numeric Types
Most IL instructions that deal with numbers take their operands from the evaluation
stack (see the Evaluation Stack section), and these inputs have an associated type
that is known to the JIT compiler. As a result, a single operation like add can have
inputs of any numeric data type, although not all instructions can deal with all
combinations of operand types. Binary operations other than addition and
subtraction require that both operands must be of the same type. Addition and
subtraction allow an integer to be added to or subtracted from a managed pointer
(types & and O).

Instructions fall into the following categories:

Numeric: These instructions deal with both integers and floating point numbers,
and consider integers to be signed. Simple arithmetic, conditional branch, and
comparison instructions fit in this category.

Integer: These instructions deal only with integers. Bit operations and unsigned
integer division/remainder fit in this category.

Floating point: These instructions deal only with floating point numbers.

Specific: These instructions deal with integer and/or floating point numbers, but
have variants that deal specially with different sizes and unsigned integers.
Integer operations with overflow detection, data conversion instructions, and
operations that transfer data between the evaluation stack and other parts of
memory (see the Method State section) fit into this category.

Unsigned/unordered: There are special comparison and branch instructions
that treat integers as unsigned and consider unordered floating point numbers
specially (as in “branch if greater than or unordered”):

Load constant: The load constant (ldc.*) instructions can be used to load
constants of type I4, I8, R4 or R8. Natural size constants (type I) must be
created by conversion from I4 (conversion from I8 would not be portable) using
conv.i or conv.u. Similarly, constants of type R4Result, R8Result, or RPrecise
must be created by conversion from one of the fixed-size floating point types (R4
or R8).

 shows the IL instructions that deal with numeric values, along with the category to
which they belong. Instructions that end in “.*” indicate all variants of the
instruction (based on size of data and whether the data is treated as signed or
unsigned).

add Numeric div Numeric

add.ovf.* Specific div.un Integer

and Integer ldc.* Load constant

beq[.s] Numeric ldelem.* Specific

bge[.s] Numeric ldind.* Specific

bge.un[.s] Unsigned/unordered mul Numeric

Page 17

Execution Engine Architecture

bgt[.s] Numeric mul.ovf.* Specific

bgt.un[.s] Unsigned/unordered neg Integer

ble[.s] Numeric newarr.* Specific

ble.un[.s] Unsigned/unordered not Integer

blt[.s] Numeric or Integer

blt.un[.s] Unsigned/unordered rem Numeric

bne.un[.s] Unsigned/unordered rem.un Integer

ceq Numeric shl Integer

cgt Numeric shr Integer

cgt.un Unsigned/unordered shr.un Specific

ckfinite Floating point stelem.* Specific

clt Numeric stind.* Specific

clt.un Unsigned/unordered sub Numeric

conv.* Specific sub.ovf.* Specific

conv.ovf.* Specific xor Integer

Table 2: IL Instructions by Numeric Category

4.5 IL Instructions and Pointer Types
The Execution Engine has the ability to track pointers to objects and to collect
objects that are not longer reachable (memory management by “garbage
collection”). This process moves objects in order to reduce the working set and thus
must modify all pointers to those objects as they move. For this to work correctly,
pointers to objects must only be used in certain ways. The O (object reference) and
& (managed pointer) datatypes are the formalization of these restrictions.

The use of object references is tightly restricted in the IL. They are used almost
exclusively with the “virtual object system” instructions, which are specifically
designed to deal with objects. In addition, a few of the base instructions of the IL
can handle object references. In particular, object references can be:

1. Loaded onto the evaluation stack to be passed as arguments to methods (ldloc,
ldarg), and stored from the stack to their home locations (stloc, starg)

2. Duplicated or popped off the evaluation stack (dup, pop)

3. Tested for equality with one another, but not other data types (beq, beq.s, bne,
bne.s, ceq)

4. Loaded-from / stored-into unmanaged memory, in type unsafe code only
(ldind.ref, stind.ref)

5. Create a null reference (ldnull)

6. Returned as a value (ret)

Managed pointers have several additional base operations.

Page 18

Execution Engine Architecture

1. Addition and subtraction of integers, in units of bytes, returning a managed
pointer (add, add.ovf.u, sub, sub.ovf.u)

2. Subtraction of two managed pointers to elements of the same array, returning
the number of bytes between them (sub, sub.ovf.u)

3. Unsigned comparison and conditional branches based on two managed pointers
(bge.un, bge.un.s, bgt.un, bgt.un.s, ble.un, ble.un.s, blt.un, blt.un.s,
cgt.un, clt.un)

Since the memory manager runs asynchronously with respect to programs and
updates managed pointers, both the distance between distinct objects and their
relative position can change. To allow for the possibility that data layout might be
changed asynchronously, the ordering and distance between fields within an object
must be assumed to change. Thus, arithmetic operations upon managed pointers
are intended only for use on pointers to elements of the same array. Other uses of
arithmetic on managed pointers is unspecified.

4.6 Aggregate Data
The EE supports aggregate data, that is, data items that have sub-components
(arrays, structures, or object instances) but are passed by copying the value. The
sub-components can include references to managed memory. Aggregate data is
represented using a value type, which can be instantiated in two different ways:

 Boxed: as an Object, carrying full type information at runtime, and typically
allocated on the heap by the NGWS memory manager.

 Unboxed: as a “value type instance” which does not carry type information at
runtime and which is never allocated directly on the heap. It can be part of a
larger structure on the heap – a field of a class, a field of a boxed value type, or
an element of an array. Or it can be in the local variables or incoming arguments
array (see the Method State section). Or it can be allocated as a static variable
or static member of a class or a static member of another value type.

Because value type instances, specified as method arguments, are copied on method
call, they do not have “identity” in the sense that Objects (boxed instances of
classes) have; see the VOS specification.

Support for value types at the IL level is driven by these requirements:

1. Memory management must remain efficient.

2. Value type instances have no space overhead (hence, no runtime type
information is stored in the instance itself).

3. Value type instances are first-class (i.e., they can be passed as arguments,
returned as values, stored in variables, and stored in data structures).

4.6.1 Homes for Values
The home of a data value is where it is stored for possible reuse. The EE directly
supports the following home locations:

1. An incoming argument

2. A local variable of a method

3. An instance field of an object or value type

Page 19

Execution Engine Architecture

4. A static field of a class, interface, or module

5. An array element

For each home location, there is a means to compute (at runtime) the address of the
home location and a means to determine (at JIT compile time) the type of a home
location. These are summarized in Table 3.

Type of
Home

Runtime Address Computation JITtime Type
Determination

Argument ldarga for by-value arguments or
ldarg for by-reference arguments

Method signature

Local Variable ldloca for by-value locals or ldloc
for by-reference locals

Locals signature in method
header

Field ldflda Type of field in the class,
interface, or module

Static ldslfda Type of field in the class,
interface, or module

Array Element ldelema for single-dimensional
zero-based arrays or call the
instance method Address

Element type of array

Table 3: Address and Type of Home Locations

In addition to homes, built-in values can exist in two additional ways (i.e. without
homes):

1. as constant values (typically embedded in the IL instruction stream using ldc.*
instructions)

2. as an intermediate value on the evaluation stack, when returned by a method or
IL instruction.

4.6.2 Operations on Value Type Instances
Value type instances can be created, passed as arguments, returned as values, and
stored into and extracted from locals, fields, and elements of arrays (i.e., copied).
Like classes, value types can have both static and non-static members (methods and
fields). But, because they carry no type information at runtime, value type instances
are not substitutable for items of type Object; in this respect, they act like the
primitive types int, long, and so forth. There are two new operations, box and
unbox, that convert between value type instances and Objects.

4.6.2.1 Initializing Instances of Value Types
There are three options for initializing the home of a value type instance. You can
zero it by loading the address of the home (see Table 3) and using the initobj
instruction (for local variables this can also be accomplished by setting the zero
initialize bit in the method’s header). You can call a user-defined constructor by
loading the address of the home (see Table 3) and then calling the constructor
directly. Or you can copy an existing instance into the home, as described in
4.6.2.2.

Page 20

Execution Engine Architecture

4.6.2.2 Loading and Storing Instances of Value

Types
There are two ways to load a value type onto the evaluation stack:

 Directly load the value from a home that has the appropriate type, using an
ldarg, ldloc, ldfld, or ldsfld instruction

 Compute the address of the value type, then use an ldobj instruction

Similarly, there are two ways to store a value type from the evaluation stack:

 Directly store the value into a home of the appropriate type, using a starg,
stloc, stfld, or stsfld instruction

 Compute the address of the value type, then use a stobj instruction

4.6.2.3 Passing and Returning Value Types
Value types are treated just as any other value would be treated:

 To pass a value type by value, simply load it onto the stack as you would any
other argument: use ldloc, ldarg, etc., or call a method which returns a value
type. To access a value type parameter that has been passed by value use the
ldarga instruction to compute its address or the ldarg instruction to load the
value onto the evaluation stack.

 To pass a value type by reference, load the address of the value type as you
normally would (see Table 3). To access a value type parameter that has been
passed by reference use the ldarg instruction to compute the address of the
argument and then the ldobj instruction to load it onto the evaluation stack.

 To return a value type, just load the value onto an otherwise empty evaluation
stack and then issue a ret instruction.

4.6.2.4 Calling Methods
Static methods on value types are handled no differently from static methods on an
ordinary class: use a call instruction with a metadata token specifying the value type
as the class of the method. Non-static methods (i.e. instance and virtual methods)
are supported on value types, but they must be given special treatment. A non-
static method on a class (rather than a value type) expects a this pointer which is an
instance of that class. This makes sense for classes, since they have identity and the
this pointer represents that identity. Value types, however, have identity only when
boxed. To address this issue, the this pointer on a non-static method of a value
type is a by-ref parameter of the value type rather than an ordinary by-value
parameter.

A non-static method on a value type my be called in the following ways:

 Given an unboxed instance of a value type, the call instruction can be used to
invoke the function, passing as the first parameter (the this pointer) the address
of the instance. The metadata token used with the call instruction must specify
the value type itself as the class of the method.

 Given a boxed instance of a value type, the call instruction can be used to invoke
the function, passing the boxed instance as the first parameter (the this pointer).

Page 21

Execution Engine Architecture

The metadata token used must specify System.Object as the class of the
method.

To call a non-static method of an interface that is implemented by a value type or a
virtual method inherited from System.Object you must box the value type and use
a callvirt instruction. For a method on an interface, the metadata token must
specify the interface as the type of the method, and for an inherited method it must
specify System.Object as the class of the method.

4.6.2.5 Boxing and Unboxing
Box and unbox are conceptually equivalent to (and may be seen in higher-level
languages as) casting between a value type instance and System.Object. Because
they change data representations, however, boxing and unboxing are like the
widening and narrowing of various sizes of integers (the conv and conv.ovf
instructions) rather than the casting of reference types (the isinst and castclass
instructions). The box instruction is a widening (always typesafe) operation that
converts a value type instance to System.Object by making a copy of the instance
and embedding it in a newly allocated object. Unbox is a narrowing (runtime
exception may be generated) operation that converts a System.Object (whose
runtime type must be a value type) to a value type instance. This is done by
computing the address of the embedded value type instance without making a copy
of the instance.

4.6.2.6 Castclass and IsInst on Value Types
Casting to and from value type instances isn’t possible (the equivalent operations are
box and unbox). When boxed, however, it is possible to use the isinst instruction
to see whether a value of type Object is the boxed representation of a particular
class.

4.6.3 Opaque Classes
Some languages provide multi-byte data structures whose contents are manipulated
directly by address arithmetic and indirection operations. To support this feature,
NGWS allows value types to be created with a specified size but no information about
their data members. Instances of these “opaque classes” are handled in precisely
the same way as instances of any other class, but the ldfld, stfld, ldflda, ldsfld,
and stsfld instructions cannot be used to access their contents.

Page 22

Execution Engine Architecture

5 Executable Image Information
The File Format Specification provides details of the NGWS PE file format, and the
Metadata Specification describes an API that can be used to access the metadata in a
PE file. The EE relies on the following information about each method defined in a PE
file:

 The instructions composing the method body, including all exception handlers.

 The signature of the method, which specifies the return type and the number,
order, parameter passing convention, and primitive data type of each of the
arguments. It also specifies the native calling convention (this does not affect
the IL virtual calling convention, just the native code).

 The exception handling array. This array holds information delineating the
ranges over which exceptions are filtered and caught. See the Exception
Handling section.

 The size of evaluation stack that the method will require. (This is one of the
factors checked by the Verifier)

 The size of the locals array that the method will require.

 A “zero init flag” that indicates whether the local variables and memory pool
should be initialized by the EE (see also localloc).

 Type of each local variable in the form of a signature of the local variable array
(called the “locals signature”).

In addition, the file format is capable of indicating the degree of portability of the file.
There are two kinds of restrictions that can be described:

 Restriction to a specific (32-bit or 64-bit) natural size for integers.

 Restriction to a specific “endian-ness” (i.e. whether bytes are stored left-to-right
or right-to-left within a machine word).

By stating what restrictions are placed on executing the code, the EE class loader can
prevent non-portable code from running on an architecture that it cannot support.

Page 23

./COR%20Metadata%20Interfaces.doc
./File%20Format%20Spec.doc

Execution Engine Architecture

6 Machine State
One of the design goals of the Execution Engine is to hide the details of a method
call frame from the IL code generator. This allows the EE (and not the IL code
generator) to choose the most efficient calling convention and stack layout. To
achieve this abstraction, the call frame is integrated into the EE. The machine state
definitions below reflect these design choices, where machine state consists primarily
of global state and method state.

6.1 The Global State
The Execution Engine manages multiple concurrent threads of control (not
necessarily the same as the threads provided by a host operating system), multiple
managed heaps, and a shared memory address space. A thread of control can be
thought of, somewhat simplistically, as a singly linked list of method states, where a
new state is created and linked back to the current state by a method call instruction
– the traditional model of a stack-based calling sequence. Notice that this model of
the thread of control doesn’t correctly explain the operation of tail., jmp, jmpi, or
throw instructions.

Figure 3 illustrates the machine state model , which includes threads of control,
method states, and multiple heaps in a shared address space. Method state, shown
separately in Figure 4, is an abstraction of the stack frame. Arguments and local
variables are part of the method state, but they can contain Object References that
refer to data stored in any of the managed heaps.

Page 24

Execution Engine Architecture

Figure 3. Machine State Model

6.2 The Memory Store
By “memory store” we mean the regular process memory that the Execution Engine
operates within. Conceptually, this store is simply an array of bytes. The index into
this array is the address of a data object. The Execution Engine accesses data
objects in the memory store via the ldind.* and stind.* instructions.

6.2.1 Alignment
Alignment of datatypes larger than 1 byte is dependent on the target CPU. It is
strongly recommended that primitive datatypes be aligned to the size of that
datatype. That is I2 and U2 start on even address; I4, U4, and R4 start on an
address divisible by 4; and I8, U8, and R8 start on an address divisible by 8. The
natural size types (I, U, and &) are always generated by the EE aligned to their
natural size (4 bytes or 8 bytes, depending on architecture). When generated
externally, these should also be aligned to their natural size, but portable code may
choose to enforce the stronger restriction of 8 byte alignment which is guaranteed to
be architecture independent.

Page 25

Execution Engine Architecture

There is a special prefix instruction, unaligned., that can immediately precede a
ldind, stind, in itblk, or cpblk instruction. It indicates that the data may not be
fully aligned and requires that the JIT generate code that will not cause unaligned
memory faults.

6.2.2 Byte Ordering
For datatypes larger than 1 byte, the byte ordering is dependent on the target CPU.
Code that depends on byte ordering may not run on all platforms. The PE file format
(see the Executable Image Information section) allows the file to be marked to
indicate that it depends on a particular type ordering.

Figure 4. Method State

6.3 Method State
Method state describes the environment within which a method executes. (In
conventional compiler terminology, it corresponds to a superset of the information
captured in the “invocation stack frame”). NGWS method state consists of the
following items:

 An instruction pointer (IP). This points to the next IL instruction to be executed
by the EE in the present method.

 An evaluation stack. The stack is empty upon method entry. Its contents are
entirely local to the method and are preserved across call instructions (that’s to
say, if this method calls another, once that other method returns, our evaluation
stack contents are “still there”). The evaluation stack is not addressable. At all
times it is possible to deduce which one of a reduced set of types is stored in any
stack location (see the Evaluation Stack section).

 A local variable array (starting at index 0). Values of local variables are
preserved across calls (in the same sense as for the evaluation stack). A local
variable can hold any data type. However, a particular slot must be used in a
type consistent way (where the type system is the one described in the
Evaluation Stack section). Local variables are initialized to 0 before entry if the
initialize flag for the method is set (see the Opaque Classes section). The
address of an individual local variable can be taken using the ldloca instruction.

 An argument array. The values of the current method’s incoming arguments
(starting at index 0). These can be read and written by logical index. The
address of an argument can be taken using the ldarga instruction. The address

Page 26

Execution Engine Architecture

of an argument is also implicitly taken by the arglist instruction for use in
conjunction with typesafe iteration through variable-length argument lists.

 A methodInfo handle. This contains read-only information about the method. In
particular it holds the signature of the method, the types of its local variables,
and data about its exception handlers.

 A local memory pool. The EE includes instructions for dynamic allocation of
objects from the local memory pool (localloc). Memory allocated in the local
memory pool is addressable. The memory allocated in the local memory pool is
reclaimed upon method context termination.

 A return state handle. This handle is used to restore the method state on return
from the current method. Typically, this would be the state of the method’s
caller; however, both the return state and the return instruction pointer can be
adjusted through the code manager (see the Code Manager Specification). (This
item corresponds approximately to what in conventional compiler terminology
would be the dynamic link)

 A security descriptor. This descriptor is not directly accessible to managed code
but is used by the NGWS security system to record security overrides (assert,
permit-only, and deny). From verified code the only way to access this
information is through the code manager (see the Code Manager Specification).

Note that we describe the four areas of the method state – incoming arguments
array, local variables array, local memory pool and evaluation stack – as if logically
distinct areas. This is important, since this is a specification of the EE architecture.
However, in practice, the EE may actually map these areas into one contiguous array
of memory, held as a conventional stack frame on the underlying, target
architecture.

6.3.1 The Evaluation Stack
Associated with each method state is an evaluation stack. Most EE instructions
retrieve their arguments from the evaluation stack and place their return values on
the stack. Arguments to other methods and their return values are also placed on
the evaluation stack. When a procedure call is made the arguments to the called
methods become the incoming arguments array (see Section 6.3.2) to the method.
This may require a memory copy, or simply a sharing of these two areas by the two
methods.

The evaluation stack is made up of slots that can hold any data type, including an
unboxed instance of a value type. The type state of the stack (the stack depth and
types of each element on the stack) at any given point in a program must be
identical for all possible control flow paths. For example, a program that loops an
unknown number of times and pushes a new element on the stack at each iteration
would be prohibited.

While the EE, in general, supports the full set of types described in Table 1, the EE
treats the evaluation stack in a special way. While some JIT compilers may track
the types on the stack in more detail, the EE only requires that values be one of:

 I8, an 8-byte signed integer

 I4, a 4-byte signed integer

 I, a signed integer of either 4 or 8 bytes, whichever is more convenient for the
target architecture

Page 27

Execution Engine Architecture

 F, a floating point value (R4, R8, R4Result, R8Result or RPrecise)

 &, a managed pointer

 O, an object reference

 *, a “transient pointer,” which can be used only within the body of a single
method, that points to a value known to be in unmanaged memory (see the IL
Instruction Set specification for more details. * types are generated internally
within the EE; they are not created by the user).

The other types are synthesized through a combination of techniques:

 Shorter integer types in other memory locations are zero-extended or sign-
extended when loaded onto the evaluation stack; these values are truncated
when stored back to their home location.

 Special instructions perform numeric conversions, with or without overflow
detection, between different sizes and between signed and unsigned integers.

 Special instructions treat an integer on the stack as though it were unsigned.

 Instructions that create pointers which are guaranteed not to point into the
memory manager’s heaps (e.g. ldloca, ldarga, and ldsflda) produce transient
pointers (type *) which can be used wherever a managed pointer (type &) or
unmanaged pointer (type U) is expected.

 When a method is called, an unmanaged pointer (type U or *) is permitted to
match a parameter that requires a managed pointer (type &). The reverse,
however, is not permitted since it would allow a managed pointer to be “lost” by
the memory manager.

 A managed pointer (type &) can be explicitly converted to an unmanaged pointer
(type U), although this is not verifiable and may produce a runtime exception.

6.3.2 Local Variables and Arguments
Part of each method state is an array that holds local variables and an array that
holds arguments. Like the evaluation stack, each element of these arrays can hold
any single data type or an instance of a value type. Both arrays start at 0 (that is,
the first argument or local variable is numbered 0). The address of a local variable
can be computed using the ldloca instruction, and the address of an argument using
the ldarga instruction.

Associated with each method is metadata that specifies:

 whether the local variables and memory pool memory must be initialized when
the method is entered

 the type of each argument and the length of the argument array (but see below
for variable argument lists)

 the type of each local variable and the length of the local variable array.

The EE inserts padding as appropriate for the target architecture. That is, on some
64-bit architectures all local variables may be 64-bit aligned, while on others they
may be 8-, 16-, or 32-bit aligned. The IL generator must make no assumptions
about the offsets of local variables within the array. In fact, the EE is free to reorder
the elements in the local variable array, and different JITters may choose to order
them in different ways.

Page 28

Execution Engine Architecture

6.3.3 Variable Argument Lists
The Execution Engine works in conjunction with the NGWS Class library to implement
methods that accept argument lists of unknown length and type (“varargs
methods”). Access to these arguments is through a typesafe iterator in the Class
Library, called System.ArgIterator.

The IL includes one instruction provided specifically to support the argument iterator,
arglist. This instruction can be used only within a method that is declared to take a
variable number of arguments. It returns a value that is needed by the constructor
for a System.ArgIterator object. Basically, the value created by arglist provides
access both to the address of the argument list that was passed to the method and a
runtime data structure that specifies the number and type of the arguments that
were provided. This is sufficient for the class library to implement the user visible
iteration mechanism.

From the EE point of view, varargs methods have an array of arguments like other
methods. But only the initial portion of the array has a fixed set of types and only
these can be accessed directly using the ldarg, starg, and ldarga instructions. The
argument iterator allows access to both this initial segment and the remaining
entries in the array.

6.3.4 Local Memory Pool
Part of each method state is a local memory pool. Memory can be explicitly allocated
from the local memory pool using the localloc instruction. All memory in the local
memory pool is reclaimed on method exit, and that is the only way local memory
pool memory is reclaimed (there is no instruction provided to free local memory that
was allocated during this method invocation). The local memory pool is used to
allocate objects whose type or size is not known at compile time and which the
programmer does not wish to allocate in the managed heap.

Because the local memory pool cannot be shrunk during the lifetime of the method,
a language implementation cannot use the local memory pool for general-purpose
memory allocation .

Page 29

Execution Engine Architecture

7 Control Flow
The IL instruction set provides a rich set of instructions to alter the normal flow of
control from one IL instruction to the next.

 Conditional and Unconditional Branch instructions for use within a method,
provided the transfer doesn’t cross a protected region boundary (see the
Exception Handling section).

 Method call instructions to compute new arguments, transfer them and control
to a known or computed destination method (see the Method Calls section).

 Tail call prefix to indicate that a method should relinquish its stack frame before
executing a method call (see the Method Calls section).

 Return from a method, returning a value if necessary.

 Method jump instructions to transfer the current method’s arguments to a
known or computed destination method (see the Method Calls section).

 Exception-related instructions (see the Exception Handling section). These
include instructions to initiate an exception, transfer control out of a protected
region, and end a filter, catch clause, or finally clause.

While the EE supports arbitrary control transfers within a method, there are several
restrictions that must be observed, and which are tested by the verifier:

1. Control transfer is never permitted to enter a catch handler or finally clause (see
the Exception Handling section) except through the exception handling
mechanism.

2. Control transfer out of a protected region (see the Exception Handling section) is
only permitted through an exception instruction (leave, end.filter, end.catch,
or end.finally).

3. The evaluation stack must be empty after the return value is popped by a ret
instruction.

4. All slots on the stack must have the same data type at every point within the
method body, regardless of the control flow that allows execution to arrive there.

5. In order for the JIT compilers to efficiently track the data types stored on the
stack, the stack must normally be empty at the instruction following an
unconditional control transfer instruction (br, br.s, ret, jmp, jmpi, throw,
end.filter, end.catch, or end.finally). The stack is allowed to be non-empty at
this point only if at some earlier location within the method there has been a
forward branch to that location.

6. Control is not permitted to simply “fall through” the end of a method. All paths
must terminate with one of these instructions: ret, throw, jmp, jmpi, or (tail.
followed by call, calli, or callvirt).

Page 30

Execution Engine Architecture

8 Method Calls
An important design goal of the EE is to abstract the layout of native method frames,
including calling convention. That is, instructions emitted by the IL code generator
contain sufficient information for different implementations of the EE to use different
native calling convention. All method calls initialize the method state areas (see the
Method State section) as follows:

 The incoming arguments array is set by the caller to the desired values.

 The local variables array always has null for Object types and for fields within
value types that hold objects. In addition, if the “zero init flag” is set in the
method header, then it is initialized to 0 for all integer types and 0.0 for all
floating point types. Value Types are not initialized by the EE, but verified code
will supply a call to an initializer as part of the method’s entry point code.

 If the “zero init flag” is set in the method header the local memory pool is
initialized to all zeros.

 The evaluation stack is empty.

8.1 Call Site Descriptors
To support this flexibility, call sites need additional information that enables an
interpreter or JIT compiler to synthesize any native calling convention. All IL calling
instructions (call, calli, and callvirt) include as part of the instruction a description
of the call site. This description can take one of two forms. The simpler form, used
with the calli instruction, is a “call site description” (represented as a metadata
token for a stand-alone call signature, see the Metadata Specification) that provides:

 The number of arguments being passed.

 The data type of each argument.

 The order in which they have been placed on the call stack.

 The native calling convention to be used

The more complicated form, used for the call and callvirt instructions, is a “method
reference” (a metadata methodref token, see the Metadata Specification) that
augments the call site description with an identifier for the target of the call
instruction.

8.2 Calling Instructions
The IL has three call instructions that are used to transfer new argument values to a
destination method. Under normal circumstances, the called method will terminate
and return control to the calling method.

 call is designed to be used when the destination address is fixed at the time the
IL is linked. In this case, a method reference is placed directly in the instruction.
This is comparable to a direct call to a static function in C. It can be used to call
static or instance methods or the (statically known) superclass method within an
instance method body.

Page 31

./COR%20Metadata%20Interfaces.doc
./COR%20Metadata%20Interfaces.doc

Execution Engine Architecture

 calli is designed for use when the destination address is calculated at run time.
A method pointer is passed on the stack and the instruction contains only the call
site description.

 callvirt, part of the IL VOS instruction set, uses the class of an object (known
only at runtime) to determine the method to be called. The instruction includes a
method reference, but the particular method isn’t computed until the call actually
occurs. This allows an instance of a subclass to be supplied and the method
appropriate for that subclass to be invoked. The callvirt instruction is used both
for instance methods and methods on interfaces. For further details, see the
VOS specification and the IL Instruction Set specification.

In addition, each of these instructions can be immediately preceded by a tail.
instruction prefix. This specifies that the calling method terminates with this method
call (and returns whatever value is returned by the called method). The tail. prefix
instructs the JIT compiler to discard the caller’s method state prior to making the call
(if the call is from untrusted code to trusted code the frame cannot be fully discarded
for security reasons). When the called method executes a ret instruction, control
returns not to the calling method but rather to wherever that method would itself
have returned (typically, return to caller’s caller). Notice that the tail. instruction
shortens the lifetime of the caller’s frame so it is unsafe to pass managed pointers
(type &) as arguments.

Finally, there are two instructions that indicate an optimization of the tail. case:

 jmp is followed by a methodref or methoddef token and indicates that the
current method’s state should be discarded, its arguments should be transferred
intact to the destination method, and control should be transferred to the
destination. The signature of the calling method must exactly match the
signature of the destination method.

 jmpi takes a computed destination address on the stack, pops it off the stack,
discards the current method state, transfers the current arguments to the
destination method, and transfers control to the destination method. The
signature of the calling method must exactly match the signature of the
destination method.

8.3 Computed Destinations
The destination of a method call can be either encoded directly in the IL instruction
stream (the call and jmp instructions) or computed (the callvirt, calli, and jmpi
instructions). The destination address for a callvirt instruction is automatically
computed by the Execution Engine based on the method token and the value of the
first argument (the this pointer). The method token must refer to a virtual method
on a class that is a direct ancestor of the class of the first argument. The EE
computes the correct destination by, effectively, locating the nearest ancestor of the
first argument’s class that supplies an implementation of the desired method (the
implementation can be assumed to be more efficient than the linear search implied
here).

For the calli and jmpi instructions the IL code is responsible for computing a
destination address and pushing it on the stack. This is typically done through the
use of a ldftn or ldvirtfn instruction at some earlier time. The ldftn instruction
includes a metadata token in the IL stream that specifies a method, and the
instruction pushes the address of that method. The ldvirtfn instruction takes a
metadata token for a virtual method in the IL stream and an object on the stack. It

Page 32

Execution Engine Architecture

performs the same computation described above for the callvirt instruction but
pushes the resulting destination on the stack rather than calling the method.

The calli instruction includes a call site description that includes information about
the native calling convention that should be used to invoke the method. The EE does
not check that this correctly matches the calling convention for the method that is
being called; any mismatch will result in unpredictable behavior. The jmpi
instruction requires that the destination method have the same calling convention
and the method that contains the jmpi instruction; any mistmatch will result in
unpredictable behavior.

8.4 Virtual Calling Convention
The IL provides a “virtual calling convention” that is converted by the JIT into a
native calling convention. The JIT determines the optimal native calling convention
for the target architecture. This allows the native calling convention to differ from
machine to machine, including details of register usage, local variable homes,
copying conventions for large call-by-value objects (as well as deciding, based on the
target machine, what is considered “large”). This also allows the JIT to reorder the
values placed on the IL virtual stack to match the location and order of arguments
passed in the native calling convention.

The EE uses a single uniform calling convention for all method calls. It is the
responsibility of the JITters to convert this into the appropriate native calling
convention. The virtual calling convention is:

1. If the method being called is an instance method (class or interface) or a virtual
method, first push the this pointer. For methods on Objects (including boxed
value types), the this pointer is of type O (object reference). For methods on
value types, the this pointer is provided as a by-ref parameter; that is, the value
is a pointer (managed, &, or unmanaged, * or I) to the instance.

2. Push the remaining arguments in left-to-right order (that is, push the lexically,
leftmost argument first). The Parameter Passing section describes how each of
the three parameter passing conventions (by-value, by-reference, and typed
reference) should be implemented.

3. Execute the appropriate call instruction (call, calli, or callvirt any of which may
be preceded by tail.).

8.5 Parameter Passing
The EE supports three kinds of parameter passing, all indicated in metadata as part
of the signature of the method. Each parameter to a method has its own passing
convention (e.g., the first parameter may be passed by-value while all others are
passed by-ref). Parameter may be passed as follows:

 By-value parameters, where the value of an object is passed from the caller to
the callee.

 By-ref parameters, where the address of the data is passed from the caller to
the callee, and the type of the parameter is therefore a managed or unmanaged
pointer.

 Typed reference parameters, where a runtime representation of the data type
is passed along with the address of the data, and the type of the parameter is
therefore one specially supplied for this purpose.

Page 33

Execution Engine Architecture

It is the responsibility of the IL generator to follow these conventions. The verifier
checks that the types of parameters match the types of values passed, but is
otherwise unaware of the details of the calling convention.

8.5.1 By-Value Parameters
For primitive types (integers, floats, etc.) the caller copies the value onto the stack
before the call. For Objects the object reference (type O) is pushed on the stack.
For managed pointers (type &) or unmanaged pointers (type U), the address is
passed from the caller to the callee. For value types, the protocol described in the
Operations on Value Type Instances section is used.

8.5.2 By-Ref Parameters
By-Ref Parameters are the equivalent of C++ reference parameters or PASCAL var
parameters: instead of passing as an argument the value of a variable, field, or array
element, its address is passed instead; and any assignment to the corresponding
parameter actually modifies the corresponding caller’s variable, field, or array
element. Much of this work is done by the higher-level language, which hides from
the user the need to compute addresses to pass a value and the use of indirection to
reference or update values.

Passing a value by reference requires that the value have a home (see the Homes for
Values section) and it is the address of this home that is passed. Constants, and
intermediate values on the evaluation stack, cannot be passed as by-ref parameters
because they have no home.

The EE provides instructions to support by-ref parameters:

 calculate addresses of home locations (see Table 3)

 load and store primitive data types through these address pointers (ldind.*,
stind.*, ldfld, etc.)

 copy value types (ldobj and cpobj).

Some addresses (e.g., local variables and arguments) have lifetimes tied to that
method invocation. These cannot be referenced outside their lifetimes, and so they
should not be stored in locations that last beyond their lifetime. The IL does not
(and cannot) enforce this restriction, so the IL generator must enforce this restriction
or the resulting IL will not work correctly. For code to be verifiable (see the
Verification section) by-ref parameters may only be passed to other methods or
referenced via the appropriate stind or ldind instructions.

8.5.3 Typed Reference Parameters
By-ref parameters and value types are sufficient to support statically typed
languages (C++, Pascal, etc.). They also support dynamically typed languages that
pay a performance penalty to box value types before passing them to polymorphic
methods (Lisp, Scheme, SmallTalk, etc.). Unfortunately, they are not sufficient to
support languages like Visual Basic that require by-reference passing of unboxed
data to methods that are not statically restricted as to the type of data they accept.
These languages require a way of passing both the address of the home of the data
and the static type of the home. This is exactly the information that would be

Page 34

Execution Engine Architecture

provided if the data were boxed, but without the heap allocation required of a box
operation.

Typed reference parameters address this requirement. A typed reference parameter
is very similar to a standard by-ref parameter but the static data type is passed as
well as the address of the data. Like by-ref parameters, the argument corresponding
to a typed reference parameter must have a home. If it were not for the fact that
the verifier and the memory manager must be aware of the data type and the
corresponding address, a by-ref parameter could be implemented as a standard
value type with two fields: the address of the data and the type of the data. Like a
regular by-ref parameter, a typed reference parameter can refer to a home that is on
the stack, and that home will have a lifetime limited by the call stack. Thus, the IL
generator must apply appropriate checks on the lifetime of by-ref parameters; and
the verifier imposes the same restrictions on the use of typed reference parameters
as it does on by-ref parameters (see the By-Ref Parameters section).

A typed reference is passed by either creating a new typed reference (using the
mkrefany instruction) or by copying an existing typed reference. Given a typed
reference argument, the address to which it refers can be extracted using the
refanyval instruction; the type to which it refers can be extracted using the
refanytype instruction.

8.5.4 A Note on Interactions
A given parameter can be passed using any one of the parameter passing
conventions: by-value, by-ref, or typed reference. No combination of these is
allowed for a single parameter, although a method may have different parameters
with different calling mechanisms.

There are a pair of non-obvious facts about the parameter passing convention:

1. A parameter that has been passed in as typed reference cannot be passed on as
by-ref or by-value without a runtime type check and (in the case of by-value) a
copy.

2. A by-ref parameter can be passed on as a typed reference by attaching the static
type.

Table 4 illustrates the parameter passing convention used for each data type.

Type of data Pass By How data is sent

Built-in value
type (int, float,
etc.)

Value Copied to called method, type statically known at both
sides

Referenc
e

Address sent to called method, type statically known at
both sides

Typed
reference

Address sent along with type information to called
method

User-defined
value type

Value Called method receives a copy; type statically known at
both sides

Referenc
e

Address sent to called method, type statically known at
both sides

Typed
reference

Address sent along with type information to called
method

Page 35

Execution Engine Architecture

Object Value Reference to data sent to called method, type statically
known and class available from reference

Referenc
e

Address of reference sent to called method, type
statically known and class available from reference

Typed
reference

Address of reference sent to called method along with
static type information, class (i.e. dynamic type)
available from reference

Table 4: Parameter Passing Conventions

Page 36

Execution Engine Architecture

9 Exception Handling
The EE supports an exception handling model based on the idea of exception objects
and protected blocks of code. When an exception occurs, an object is created to
represent the exception. All exceptions objects are boxed instances of some
subclass of System.Exception. Users can create their own exception classes by
subclassing System.Exception.

There are four kinds of handlers for protected blocks. A single protected block can
have exactly one handler associated with it:

1. A finally handler which must be executed whenever the block exits, regardless
of whether that occurs by normal control flow or by an unhandled exception.

2. A fault handler which must be executed if an exception occurs, but not on
completion of normal control flow.

3. A type-filtered handler that handles any exception of a specified class or any of
its sub-classes.

4. A user-filtered handler that runs a user-specified set of IL instructions to
determine whether the exception should be ignored (i.e. execution should
resume), handled by the associated handler, or passed on to the next protected
block.

Protected regions, the type of the associated handler, and the location of the
associated handler and (if needed) user-supplied filter code are described through an
Exception Handler Table associated with each method. The exact format of the
Exception Handler Table is specified in detail in the File Format Specifiation. Details
of the exception handling mechanism are specified in the Exception Specification.

9.1 Exceptions Thrown by the EE Itself
EE instructions can throw the following exceptions as part of executing individual
instructions. The documentation on a particular instruction will list all the exceptions
the instruction can throw (except for the general purpose ExecutionEngineException
described below that can be generated by all instructions).

Base Instructions

ArithmeticException

DivideByZeroException

ExecutionEngineException

InvalidAddressException

OverflowException

SecurityException

StackOverflowException

Object Model Instructions

TypeLoadException

IndexOutOfRangeException

Page 37

./File%20Format%20Spec.doc

Execution Engine Architecture

InvalidAddressException

InvalidCastException

MissingFieldException

MissingMethodException

NullReferenceException

OutOfMemoryException

SecurityException

StackOverflowException

The ExecutionEngineException is special. It can be thrown by any instruction and
indicates an unexpected inconsistency in the EE. Code that has been passed through
the code verifier should never throw this exception (it is a defect in either the verifier
or the EE if it does). However, unverified code can cause this error if the code is
corrupt or inconsistent in some way.

Note that, because of the verifier, there are no exceptions for things like
‘MetaDataTokenNotFound.’ The verifier can detect this inconsistency before the
instruction is ever executed (the code is then considered unverified). If the code
has not been verified, this type of inconsistency would raise the generic
ExecutionEngineException.

Exceptions can also be thrown by the NGWS runtime, as well as by user code, using
the throw instruction. The handing of an exception is identical, regardless of the
source.

9.2 Overview of Exception Handling
See the Exception Handling specification for details.

Each method in an executable has associated with it a (possibly empty) array of
exception handling information. Each entry in the array describes a protected block,
its filter, and its handler (which may be a catch handler, a finally handler, or a
fault handler). When an exception occurs, the EE searches the array for the first
protected block that

 Protects a region including the current instruction pointer and

 Is a catch handler block and

 Whose filter wishes to handle the exception

If a match is not found in the current method, the calling method is searched, and so
on. If no match is found the EE will dump a stack trace and abort the program. If a
match is found, the EE walks the stack back to the point just located, but this time
calling the finally and fault handlers. It then starts the corresponding exception
handler. Stack frames are discarded either as this second walk occurs or after the
handler completes, depending on information in the exception handler array entry
associated with the handling block.

Some things to notice are:

Page 38

Execution Engine Architecture

 The ordering of the exception clauses in the Exception Handler Table is
important. If handlers are nested, the most deeply nested try blocks must come
before the try blocks that enclose them.

 Exception handlers can access the local variables and the local memory pool of
the routine that catches the exception, but any intermediate results on the
evaluation stack at the time the exception was thrown are lost.

 An exception object describing the exception is automatically created by the
execution engine and pushed onto the evaluation stack as the first item upon
entry of a filter or catch clause.

 Execution cannot be resumed at the location of the exception. This restriction
may be relaxed in the future.

9.3 IL Support for Exceptions
The IL has special instructions to:

 Throw and rethrow a user-defined exception.

 Leave a protected block and execute the appropriate finally clauses within a
method, without throwing an exception. This is also used to exit a catch clause.
Notice that leaving a protected block does not cause the fault clauses to be
called.

 End a user-supplied filter clause (endfilter) and return a value indicating
whether to handle the exception.

 End a finally clause (endfinally) and continue unwinding the stack.

9.4 Lexical Nesting of Protected Blocks
This section summarizes restrictions that are described in detail in the Exception
Handling Specification.

The following restrictions below refer to the lexical nesting of try blocks and their
associated handlers:

1. A try block may have associated with it any one of the following:

 a catch block (with an implied filter based on the type of the exception)

 a filter block and a catch block

 a finally block

 a fault block

2. A single try block, filter block, catch block, fault block, or finally block must
constitute a contiguous block of IL instructions.

3. The exception table fully specifies the range of the try, catch, fault and finally
blocks, but only specifies the entry point for the filter block. The filter block
lexically ends with the (required and unique) endfilter instruction for that block.

4. Multiple try blocks that specify precisely the same range of instructions are
considered to be a single try block with multiple associated handler blocks. The
associated handler blocks must be either catch blocks or filter and catch blocks,

Page 39

Execution Engine Architecture

in any combination. There cannot be any finally or fault blocks associate with
these try blocks. (To model a source-level construct that has, for example, a try
with two associated catch handlers and a finally, you must have three entries:
two try/catch entries specifying the same region of instructions, and an
enclosing try/finally that covers both the other try block and their handlers.)

5. The addresses included in catch blocks, filter blocks, fault blocks, and finally
blocks must not overlap one another, nor can any handler block be shared
between multiple try blocks.

6. The region of IL instructions associated with a try block cannot include its own
filter, fault, finally, or catch block (i.e. it is just the protected code, not the
handlers that are associated with it).

7. A block of any kind (except the try block associated with a fault block) that
encloses a try block must include all of the code associated with the inner try as
well as the handlers associated with the inner try.

8. A try block that has an associated fault block may overlap another try block that
has a fault block (but the fault blocks themselves may not overlap one another).

9. A try block cannot appear within a filter block.

9.5 Control Flow Restrictions on Protected

Blocks
The following restrictions are about the control flow into, out of, and between try
blocks and their associated handlers.

1. Correct IL code must not enter a filter, catch, fault or finally block except
through the NGWS exception handling mechanism.

2. There are only two ways to enter a try block from outside its lexical body:

a) Branching to or falling into the try block’s first instruction. The branch
can be made using a conditional branch, an unconditional branch, or a leave
instruction.

b) Using a leave instruction within the catch block associated with the
try. In this case correct IL code can branch to any address within the try block,
not just its first instruction.

3. Upon entry to a try block the evaluation stack must be empty.

4. The only ways correct IL code can leave a try, filter, catch or finally block are
as follows:

a) throw from any of them.

b) leave from the body of a try or catch (in this case the destination of the
leave must have an empty evaluation stack and the leave instruction has the
side-effect of emptying the evaluation stack).

c) endfilter may appear only as the lexically last instruction of a filter block, and
it must always be present (even if it is immediately preceded by a throw or
other unconditional control flow). If reached, the evaluation stack must contain
an I4 when the endfilter is executed, and the value is used to determine how
exception handling should proceed.

Page 40

Execution Engine Architecture

d) endfinally from anywhere within a finally, with the side-effect of emptying
the evaluation stack.

e) rethrow from within a catch block, with the side-effect of emptying the
evaluation stack.

f) fall through the end of a try block (falling through the end of any other kind of
block is not permitted).

5. When the try block is exited with a leave instruction, the evaluation stack must
be empty for correct IL.

6. When a catch or filter clause is exited with a leave instruction, the evaluation
stack must be empty for correct IL. This involves popping off the exception object
from the evaluation stack which was automatically pushed onto the stack.

7. Correct IL code must not exit any block using a ret instruction.

Page 41

Execution Engine Architecture

10Atomicity of Memory Accesses
The EE makes several assumptions about atomicity of memory references, and these
translate directly into rules required of either programmers or translators from high-
level languages into IL.

 Read and write access to word-length memory locations (types I and U) that are
properly aligned is atomic. Correct translation from IL to native code requires
generation of native code sequences that supply this atomicity guarantee. Note
that there is no guarantee about atomic update (read-modify-write) of memory.

 Read and write access to 4-byte data (I4 and U4) that is aligned on a 4-byte
boundary is atomic, even on a 64-bit machine. Again, there is no guarantee
about atomic read-modify-write.

 One- and Two-byte data that does not cross a word boundary will be read
atomically, but writing will write the entire word back to memory.

 No other memory references are performed atomically.

When the EE controls the layout of managed data, it pads the data so that if an
object starts at a word boundary all of the fields that require 4 or fewer bytes will be
aligned so that reads will be atomic. The managed heap always aligns data that it
allocates to maintain this rule, so heap references (type O) to data that does not
have explicit layout will occur atomically where possible. Similarly, static variables of
managed classes are allocated so that they, too, are aligned when possible. The EE
aligns stack frames to word boundaries, but does not attempt to align to an 8-byte
boundary on 32-bit machines even if the frame contains 8-byte values.

Page 42

Execution Engine Architecture

11OptIL: An Instruction Set Within IL
A fundamental issue associated with generating intermediate IL is how much of the
work is done by the IL generator and how much of the work is done by the Execution
Engine (via a JIT compiler). The IL instruction set was designed to be easy for
compilers to generate so that IL can be generated quickly in rapid application
development (RAD) environments, where compile speed and ease of debugging are
at a premium.

On the other hand, in situations where load time is important, it is useful to do as
much work as possible in the code generator, before the executable is loaded. In
particular it is useful to do expensive optimizations like common sub-expression
elimination, constant folding, loop restructuring, and even register allocation in the
code generator (as would be done in a traditional compiler). The instruction set
should be able to represent such optimized code as well.

Finally, in some environments it is important that the JITter be small and run in a
nearly constant amount of memory, even for large methods. The instruction set
should allow a compiler to compute information and pass it on to the JITter that will
reduce the memory required by the JITter (e.g., register allocation and branch
targets).

In the NGWS runtime environment, an optimizing compiler can best express many
optimizations by generating OptIL. OptIL is optimized code represented using the
same IL instruction set; however, OptIL differs from non-OptIL code in the following
ways

 Many transformations will have been done (e.g., loop restructuring, constant
folding, CSE).

 The code will obey certain conventions (e.g., method calls are not nested).

 There will be additional annotations (e.g., exactly when each variable is used for
the last time).

The exact restrictions an executable must satisfy to be of this form are described in
the “Opt-IL Specification”. The "IL Instruction Set" specification contains a detailed
description of each of the IL instructions.

Note that an OptIL program is still a valid IL program (it can be run by the normal
EE), but because it has been optimized by the code generator it can be compiled to
native code very quickly and using little memory.

Page 43

	1 Audience and Related Specifications
	2 Execution Engine Overview
	2.1 IL and OptIL
	2.2 JIT Compilation
	2.3 Class Loading
	2.4 Verification
	2.5 Security Checks
	2.6 Profiling and Debugging
	2.7 Interoperation with Unmanaged Code
	2.8 This Specification

	3 Virtual Execution System
	4 Supported Data Types
	4.1 Natural Size: I, R4Result, R8Result, RPrecise, U, O and &
	4.1.1 Unmanaged Pointers as Type U
	4.1.2 Managed Pointer Types: O and &
	4.1.3 Portability: Storing Pointers in Memory
	4.1.4 Natural Size Floating-Point: R, R4Result, R8Result, and RPrecise

	4.2 Handling of Short Integer Data Types
	4.3 Handling of Floating Point Datatypes
	4.4 IL Instructions and Numeric Types
	4.5 IL Instructions and Pointer Types
	4.6 Aggregate Data
	4.6.1 Homes for Values
	4.6.2 Operations on Value Type Instances
	4.6.2.1 Initializing Instances of Value Types
	4.6.2.2 Loading and Storing Instances of Value Types
	4.6.2.3 Passing and Returning Value Types
	4.6.2.4 Calling Methods
	4.6.2.5 Boxing and Unboxing
	4.6.2.6 Castclass and IsInst on Value Types

	4.6.3 Opaque Classes

	5 Executable Image Information
	6 Machine State
	6.1 The Global State
	6.2 The Memory Store
	6.2.1 Alignment
	6.2.2 Byte Ordering

	6.3 Method State
	6.3.1 The Evaluation Stack
	6.3.2 Local Variables and Arguments
	6.3.3 Variable Argument Lists
	6.3.4 Local Memory Pool

	7 Control Flow
	8 Method Calls
	8.1 Call Site Descriptors
	8.2 Calling Instructions
	8.3 Computed Destinations
	8.4 Virtual Calling Convention
	8.5 Parameter Passing
	8.5.1 By-Value Parameters
	8.5.2 By-Ref Parameters
	8.5.3 Typed Reference Parameters
	8.5.4 A Note on Interactions

	9 Exception Handling
	9.1 Exceptions Thrown by the EE Itself
	9.2 Overview of Exception Handling
	9.3 IL Support for Exceptions
	9.4 Lexical Nesting of Protected Blocks
	9.5 Control Flow Restrictions on Protected Blocks

	10 Atomicity of Memory Accesses
	11 OptIL: An Instruction Set Within IL

