
Developing Applications using the NGWS SDK: An
Introduction

Tutorial

Abstract

This tutorial shows developers how to create NGWS applications and components using the PDC

Tech Preview of the NGWS SDK and Visual Studio 7.0. The development tools in this next major

release of Visual Studio will utilize the NGWS framework to allow developers to quickly build and

deploy robust applications that take advantage of the new NGWS runtime environment. Using Visual

Studio 7.0 tools with the NGWS SDK provides:
 A fully managed, protected, and feature rich application execution environment

 Application integration with Active Server Pages (ASP)

 Improved isolation of application components

 Simplified application deployment

This paper begins by demonstrating writing the classic “Hello World” program in two familiar languages

–an update to C++ called “Managed Extensions for C++ (MC++)” and Visual Basic – as well as a new

language named C# – designed specifically for the NGWS environment.

This simple program is then greatly expanded to show a small, componentized client/server application

where both the client and server are written using each of the three languages. A fourth client program

demonstrates calling these components from the new Windows-based WinForms forms library. The

final client program calls these components from ASP+, the next generation of Active Server Pages for

Web-based development. The steps necessary to construct, compile, and run each program are

covered in detail. An appendix contains additional information on several useful developer utilities.

© 2000 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.

This tutorial is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by any
means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

Microsoft, Visual Studio, Windows, the Windows logo, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

0200

INTRODUCTION..1

COMMON CONCEPTS...3

HELLO WORLD..6

WRITING SIMPLE NGWS COMPONENTS..................................10

CLIENTS FOR THE SIMPLE COMPONENTS.............................16

SUMMARY...32

Appendix A: Exploring Namespaces..33

CONTENTS

This document was written to accompany the PDC Tech Preview of the NGWS

SDK, and assumes you already have both the SDK and the associated PDC Tech

Preview of Visual Studio 7.0. If you are working with later versions of either the SDK

or Visual Studio, you will need to obtain an updated version of this document since

many details of the underlying technology – particularly the names of the underlying

objects and their members – are likely to have changed.

We will walk you through the process of developing several small programs that use

the next generation of Visual Studio language tools to take advantage of the new

NGWS framework and runtime. You will start with the simplest of programs –

command-line versions of the traditional “Hello World” executable – in each of the

three Visual Studio 7.0 languages:
 Managed Extensions for C++ (MC++)

 Visual Basic

 C#

These simple programs will introduce you to working with the new NGWS runtime

as well as the process of developing for a managed environment where many

common programming tasks – for instance, memory garbage collection (GC) and a

rich class library – are already provided.

You will then be lead through the development of a small, componentized

client/server application. This application shows a server DLL component – written

in each of the three languages – being called from five different clients: Command-

line applications for each of the same three languages, a Windows-enhanced client

using the new WinForms library, and a Web server page utilizing a WebForm server

control that demonstrates the new integration between Active Server Pages

(ASP+), the NGWS framework and runtime, and the new language tools.

Prerequisites
To benefit most from this tutorial and accompanying samples, the reader should

already be familiar with developing component-base applications using COM+ or

Web-based applications using IIS and ASP or a similar framework. Throughout this

document we will be introducing new terms related to the NGWS technology.

Finally, since the code samples are presented in C++ and Visual Basic (as well as

the new language, C#), developers should already be familiar with at least one of

these languages.

Tools required
In general, the NGWS SDK includes everything necessary to compile and test the

samples that accompany this document. In particular, the SDK comes with

command-line compilers for each of the languages, the runtime and associated

files, and detailed documentation.

If you intend to run the ASP+ sample, you must install the NGWS SDK after

installing IIS to recognize and properly handle .aspx files (this may require

reinstalling the SDK).

Developing Applications using the NGWS SDK: An Introduction 1

INTRODUCTION

All of the files needed to use the accompanying samples and start developing are

installed with the SDK. The three language compilers are found in a directory under

c:\Windows\ComPlus and the documentation (in the form of compiled HTML,

or .chm files) is located in the Docs subdirectory of the SDK. The NGWS runtime

files are located in the Windows System subdirectory. For the PDC Tech Preview of

the NGWS SDK, the important files and corresponding versions are:

 mscorlib.dll – 2000.14.????

 bc.exe – 7.00.????

 cl.exe – 13.0.????

 csc.exe – 2000.14.????

Since source and project files for all three languages are plain text, any text editor –

even Notepad – is adequate for examining and modifying the accompanying sample

files. However, if you want to make substantial changes to the samples – for

instance, creating a new application based on the sample – you will likely want to

install the PDC Tech Preview of Visual Studio 7.0.

The NGWS SDK includes a variety of samples, several of which are useful to

developers: These are described in Appendix A: “Exploring Namespaces”, in this

document. To install and build these SDK samples, please refer to the instructions

in StartSamples.htm in the \Samples subdirectory of the SDK.

The sample programs that accompany this tutorial - and other samples - are

located in the self-extracting “samples.exe” file.

Finally, to compile and run the samples that accompany both the SDK and this

tutorial, you must an environment variable correctly configured:

 path – Must include the subdirectories where the compilers are located.

Most aspects of programming with NGWS are the same for all compatible

languages: each supported language compiler produces self-describing, managed

intermediate language (IL) code. All managed IL code runs against the NGWS

runtime, which provides cross-language integration, automatic memory

management, cross-language exception handling, enhanced security, and a

simplified model for component interaction.

NGWS also provides a common base class library organized into a single

hierarchical tree of namespaces. At the root is the System namespace, which

contains objects, including pre-defined types such as classes and interfaces, that

can be used from any supported language. System objects – contained in

mscorlib.dll– are used by all applications. The base class library also includes

namespaces for both abstract base classes and derived class implementations for

many other useful classes, including those for file IO, messaging, networking, and

security. You can use these classes "as is" or derive your own classes from them.

Runtime-based class libraries are organized into hierarchical namespaces, and

namespaces are stored in portable executable (PE) files – typically DLLs and EXEs.

You can have several namespaces – including nested namespaces – in one PE file,

and you can split a namespace across multiple PE files. One or more PE files are

Developing Applications using the NGWS SDK: An Introduction 2

COMMON CONCEPTS

combined together to create an assembly, which is a physical unit that can be

deployed, versioned, and reused. The runtime uses assemblies to located and bind

to the referenced types.

The most commonly used objects are relatively easy to locate: Objects in the

System.* namespace are documented in the cpref.chm and the new window/form

objects are documented in wfc.chm, both located (by default) in the \Docs

subdirectory of the SDK. There are several other tools for working with the included

namespaces, as well as any custom namespaces (see Appendix A: Exploring

Namespaces)

Since all supported languages compile to the same IL and use the same runtime

and associated base class library, programs in each of the supported languages

appear similar. In fact, the runtime specifies a set of language features called the

Common Language Specification (CLS), which includes the basic language

features that languages must support for interoperability. For our “Hello World”

sample programs, we only need to write to the Console to show that our program is

executing properly. Therefore, we will be using WriteLine method of the Console

class of the System namespace. When we start working with a componentized

application in a later section we will see how to create a traditional Windows

graphical application.

What Can Vary
The most significant difference between programming with the supported languages

is, not surprisingly, their language syntax. Both C++ and Visual Basic have an

established history and significant base of existing code, which were taken into

account when they were updated for NGWS. C#, on the other hand, starts with a

cleaner slate. Several advanced topics – such as the build process and defining

namespaces – will be introduced with the corresponding sample code in the

following sections, but here are some of the more obvious differences between the

languages.

Case Sensitivity: C++ and C# are both case-sensitive, but VB is not. For a

program to be CLS compliant, however, public members cannot differ only in their

case. This restriction allows VB (and potentially other CLS-compliant languages) to

both produce and use components created in other, case-sensitive, languages.

Referencing a Library: To use classes, which are located in namespaces, it is first

necessary to obtain a reference to the assembly containing the desired namespace.

All NGWS programs use – at a minimum – the System namespace, which is found

in mscorlib.dll (typically located in the Windows System directory):

C++ #using <mscorlib.dll>
C# (implicitly loaded)
VB (implicitly loaded)

Note that MC++ uses a preprocessor directive (this may change before final

release) and the file name of the DLL. C# and VB currently references the System

assembly implicitly (this may also change), but for other assemblies it is necessary

Developing Applications using the NGWS SDK: An Introduction 3

to use the /import compile switch. Referenced libraries are generally located in

the application directory or a subdirectory of the application. Libraries that are

designed for use by many applications – for instance, tools provided by 3rd parties –

are located in the assembly cache (currently %system%\assembly) and must follow

specific guidelines. Application configuration files can provide additional options. For

ASP+ applications, however, components should be located in “\Bin” subdirectory

under the starting point for the application’s virtual directory.

Importing a Namespace: Classes can be either referenced fully (e.g.

System.IO.FileStream, similar to a fully qualified path name) or their namespace

can be imported into the program, after which it is not necessary to fully qualify the

contained class names. For convenient access to System objects, that namespace

must be imported:

C++ using namespace System;
C# using System;
VB Imports System

Note that both MC++ and C# use a using statement, while VB uses Imports.

Referencing Object Members: Both VB and C# support the period as a scope

resolution operator, which allows (for example) the syntax Console.WriteLine

when referencing the WriteLine method of the Console object. C++ uses a

double colon ”::” as a resolution operator:

C++ Console::WriteLine(“xxxxx”);
C# Console.WriteLine(“xxxxx”);
VB Console.WriteLine “xxxxx”

Declaring Objects: In Managed C++ and C# (though not in VB), variables must be

declared before they can be used. Objects are instantiated using the new keyword.

The following are sample declaration / creation statements – declaring and creating

an object of type Comp, in namespace Lib, with the name myComp – in each of the

three languages:

C++ Lib::Comp* myComp = new Lib::Comp();
C# Lib.Comp myComp = new Lib.Comp();
VB Dim myComp As New Lib.Comp

Program Entry Point: Every executable program has to have an external entry

point, where the application begins its execution. The syntax hasn’t changed for

Managed C++, but in C# and VB everything happens in a class:

C++ void main() {
}

C# class MainApp {
 public static void Main() {
 }
}

VB Public Module modmain
 Sub Main()
 End Sub
End Module

Behind the scenes, however, the Managed C++ compiler encapsulate the entry

Developing Applications using the NGWS SDK: An Introduction 4

point in a class.

Defining a Namespace & Class: Each of the three languages supports the

creation of custom namespaces as well as classes within those namespaces. All

three languages handle this in code, though with slightly different syntax. For

instance, note the “managed” class declaration for C++ and the fact that trailing

semicolons are not needed for namespace and class declarations in C#:

C++ namespace CompVC {
 __gc class StringComponent {
 public:
 StringComponent() {
 }
 };
};

C# namespace CompCS {
 public class StringComponent {
 public StringComponent() {
 }
 }
}

VB Namespace CompVB
Public Class StringComponent

Public Sub New()
End Sub

End Class
End Namespace

We will now, per tradition, build a very simple command line application: an

executable that outputs the string “Hello World”. We will build three versions of this

application, one in each of the Visual Studio 7.0 languages: Managed C++

(produced using Visual C++ 7.0), Visual Basic, and C#.

Installing the sample files that accompany this document places each of the three

“Hello World” programs in a separate subdirectory - \vc, \cs, and \vb – below the

\Samples\IntroDev\HelloWorld subdirectory. Each application uses a single source

code file and a batch command-line build file. The Visual Basic version also uses a

project file, though this requirement may change before final release of the product.

“Hello World” in Managed C++
Here is how “Hello World” looks in Managed C++:

Listing 1 “Hello World” in Managed C++(HelloVC.cpp)

Developing Applications using the NGWS SDK: An Introduction 5

HELLO WORLD

#using <mscorlib.dll>

// Allow easy reference System namespace classes
using namespace System;

// Global function "main" is application's entry point
void main() {
 // Write text to the console
 Console::WriteLine(S"Hello World using Managed C++!");
}

Even though the entire program is only a few lines of code, there are several things

worth noticing, beginning with:

#using <mscorlib.dll>

In Managed C++, #using is similar to the #import directive (which is used to

incorporate information from a type library). Note that these are different than the

#include directive, which is for incorporating source code rather than pre-built

libraries. Also, to import the namespace into the program (to make it convenient to

reference System objects without having to fully qualify their path), an additional

statement is required:

using System;

Classes can be either referenced fully (e.g. System.IO.FileStream, similar to a fully

qualified path name) or their namespace can be imported into the program, after

which it is not necessary to fully qualify the contained class names. For convenient

access to System objects, that namespace must be imported:

void main() {…}

Though, in our example, the entry point main takes no command line arguments,

this can obviously be enhanced for non-trivial programs. Our entry point also

doesn’t return anything, though it’s possible to modify the function to return a single

32-bit numeric value to be used as an exit code. The next line is:

Console::WriteLine(S"Hello World using Managed C++!");

The real meat of the program, this line outputs a string using the runtime Console

type. The Console type can be used for both input and output of any string or

numeric value using Read, ReadLine, Write, and WriteLine methods. As

mentioned above in the section “What Can Vary”, the double-colon in

Console::WriteLine is required in C++ to indicate scope: It separates both a

namespace from a class name as well as a class name from a static method.

Finally, by specifying L in front of the string, we tell the compiler to make this a

Unicode string. Note that we can omit the L and it will still compile, but this creates

an ANSI string that will get converted at runtime into its Unicode equivalent

(required by the runtime String class), which reduces performance. In general, the

recommendation is to always use Unicode strings.

The file build.bat contains the single line necessary to build this program:

cl.exe /com+ HelloVC.cpp /link /entry:main

The first item of note is the /com+ switch, which tells the compiler to create

Developing Applications using the NGWS SDK: An Introduction 6

managed code, as required by the NGWS runtime. Also important is the

/entry:main switch to indicate the entry point: This isn’t required for traditional

C++ programs which go through a more complicated initialization. Running this

build file generates the following output:

C:\…\HelloWorld\vc>cl.exe /com+ HelloVC.cpp /link /entry:main
Microsoft (R) 32-bit C/C++ Optimizing Compiler…
Copyright (C) Microsoft Corp 1984-2000. All rights reserved.

HelloVC.cpp
Microsoft (R) Incremental Linker Version…
Copyright (C) Microsoft Corp 1992-2000. All rights reserved.

/out:HelloVC.exe
/entry:main
HelloVC.obj

Finally, running the resulting executable yields:
C:\…\HelloWorld\vc>hellovc
Hello World using Managed C++!

“Hello World” in C#
Here is how “Hello World” looks in C#:

Listing 2 “Hello World” in C# (HelloCS.cs)

// Allow easy reference System namespace classes
using System;

// This "class" exists only to house entry-point
class MainApp {
 // Static method "Main" is application's entry point
 public static void Main() {
 // Write text to the console
 Console.WriteLine("Hello World using C#!");
 }
}

This code is a little longer than the equivalent for managed C++. The syntax for

accessing the core library is new, where we specify the namespace rather than the

name of the file in which it is found:

using System;

The most striking difference is the class specification:

class MainApp {…}

In C#, all code must be contained in methods of a class. So, to house our entry

point code, we must first create a class (the name doesn’t matter here). Next, we

specify the entry point itself:

void Main () {…}

The compiler requires this to be called Main. The entry point must also be marked

with both public and static. Also, as with the managed C++ example, our entry

point takes no arguments and doesn’t return anything (though different signatures

Developing Applications using the NGWS SDK: An Introduction 7

for more sophisticated programs are certainly possible). The next line is:

Console.WriteLine("Hello World using C#!");

Again, this line outputs a string using the runtime Console type. In C# however,

we’re able to use period to indicate scope and we don’t have to place an L before

the string (in C#, all strings are Unicode).

The file build.bat contains the single line necessary to build this program:

csc helloCS.cs

In this admittedly simple case, we don’t have to specify anything other than the file

to compile. In particular, C# doesn’t use the additional link step required by C++:

C:\…\HelloWorld\cs>build
C:\…\HelloWorld\cs>csc hellocs.cs
Microsoft (R) C# Compiler Version …[URT version…]
Copyright (C) Microsoft Corp 2000. All rights reserved.

The default output of the C# compiler is an executable of the same name, and

running this program generates the following output:
C:\…\HelloWorld\cs>hellocs
Hello World using C#!

“Hello World” in Visual Basic
Finally, here is how “Hello World” looks in Visual Basic:

Listing 3 “Hello World” in VB (HelloVB.vb)

' Allow easy reference System namespace classes
Imports System

' Module houses the application’s entry point
Public Module modmain
 ' "Main" is application's entry point
 Sub Main()
 ' Write text to the console
 Console.WriteLine ("Hello World using Visual Basic!")
 End Sub
End Module

This code is almost the same as for C#. The syntax for accessing the core library is

new, where – like with C# – we specify the namespace rather than the filename:

Imports System

Other than that, there’s not much else to say. The output line is almost the same as

for the other languages, especially now that VB requires parentheses around the

method parameter. Of course, VB does not require using semi-colons to terminate

statements:

Console.WriteLine "Hello World using Visual Basic!"

The command line for compiling the sample Hello World VB program is:

vbc HelloVB.vb /out:HelloVB.exe /t:exe

where /o specifies the output file and /t indicates the target type. Executing the

sample batch file containing this command-line yields:

Developing Applications using the NGWS SDK: An Introduction 8

C:\…\HelloWorld\vb>build

C:\…\HelloWorld\vb>vbc HelloVB.vb /out:HelloVB.exe /t:exe
Microsoft (R) Visual Basic Compiler Version …[URT version …]
Copyright (C) Microsoft Corp 2000. All rights reserved.

And executing the resulting executable produces:

C:\…\HelloWorld\vb>hellovb
Hello World using Visual Basic!

We will now create a component – in each of our three languages – that can, in

turn, be used by each of those languages (shown in a later section of this

document). This simple component essentially provides a wrapper for an array of

strings and includes a GetString method (taking an integer and returning a string)

as well as a read-only Count property containing the number of elements, which is

used for iterating over all the members. The GetString method also illustrates the

use of structured exception handling. Though limited, this string component

illustrates the basics of creating reusable classes.

A Component in Managed C++
Here is how our simple string component looks in managed C++:

Listing 4 Component in Managed C++(CompVC.cpp)

Developing Applications using the NGWS SDK: An Introduction 9

WRITING SIMPLE NGWS
COMPONENTS

#using <mscorlib.dll>
using namespace System;

namespace CompVC {
__gc public class StringComponent {

 private:
String* StringsSet[];

 public:

StringComponent() {
StringsSet = new String*[4];
StringsSet[0] = new String(S"VC String 0");
StringsSet[1] = new String(S"VC String 1");
StringsSet[2] = new String(S"VC String 2");
StringsSet[3] = new String(S"VC String 3");

}

String* GetString(int index) {
if ((index < 0) || (index >= StringsSet->Length)) {

throw new IndexOutOfRangeException();
}
return StringsSet[index];

}

__property int get_Count() { return StringsSet->Length; }
};

};

As mentioned above, we use the namespace statement to create a new

namespace to encapsulate the classes we will be creating:

namespace CompVC {…};

Note that this namespace may be nested and may be split between multiple files: A

single source code file may also contain multiple non-nested namespaces. Since

our namespace can contain managed and unmanaged classes (unlike VB and C#,

which only have managed classes), we need to specify that our

StringComponent class is managed:

__gc public class StringComponent {…};

This statement means that instances of StringComponent will now be created by

the runtime and managed in the Garbage Collected heap. We could also have used

the /com+ compiler switch to make all of the classes in the program managed.

The class constructor – which executes each time a new instance of the class is

created – has the same name as the class and doesn’t have a return type.

public:
 StringComponent() {…}

Also, since this is now a managed class, we need to explicitly tell the compiler that

the array of Strings is a managed object. Hence the __gc modifier when allocating

the string:

Developing Applications using the NGWS SDK: An Introduction 10

StringsSet = new String*[4];

Here’s the GetString method, which takes an integer and returns a string:

String* GetString(int index) {…
 return StringsSet[index];
}

Note the throw statement in the GetString method, which highlights the runtime-

based exception handling:

throw new IndexOutOfRangeException();

This statement creates – and throws – a new object of type

IndexOutOfRangeException, which is caught by the caller. This mechanism

replaces the hResult-based error handling system used in previous versions of

COM. Note that, using NGWS exception handling, all exceptions – including those

we define for our own use – must be derived from System::Exception.

Finally, we create a read-only property Count:

__property int get_Count { return StringsSet->Count; }

Building our new C++ component is a little more complicated:

cl /com+ /c CompVC.cpp
link -noentry -dll /out:..\Bin\CompVC.dll CompVC

As with the simple “Hello World” C++ example, we need the /com+ switch to tell the

compiler to create NGWS managed code. We’ve also broken the link process out

into a separate command: Both statements include the /assembly switch.

Assemblies are the physical units that can be deployed, versioned, and reused.

Each assembly establishes a set of types – runtime-based classes and other

resources – that are meant to work together as well as an assembly manifest, which

indicates what components are part of the assembly, what types are exported from

the assembly, and any dependencies. The runtime uses assemblies to locate and

bind to the types you reference.

For convenience, the sample components for this document are maintained in a “..

\Bin” subdirectory relative to the source code: To compile the component to that

location, we simply specify the qualified filename using the /out parameter. We

could also place the compiled components in the assembly cache if they were going

to be used with other programs. And even though we specified an output file with

a .dll file extension, we need the additional -dll switch to create a DLL rather than

an executable.

A Component in C#
Here is how our simple string component looks in C#:

Listing 5 Component in C# (CompCS.cs)

Developing Applications using the NGWS SDK: An Introduction 11

using System;

namespace CompCS {
 public class StringComponent {
 private string[] StringsSet;

 public StringComponent() {
 StringsSet = new string[] {
 "C# String 0",
 "C# String 1",
 "C# String 2",
 "C# String 3"
 };
 }

 public string GetString(int index) {
 if ((index < 0) || (index >= Count)) {
 throw new IndexOutOfRangeException();
 }
 return StringsSet[index];
 }

 public int Count {
 get { return StringsSet.Count; }
 }
 }
}

As mentioned above, we use the namespace statement to create a new

namespace to encapsulate the classes we will be creating:

namespace CompCS {…}

This namespace may be nested and may be split between multiple files: A single

source code file may also contain multiple non-nested namespaces. A containing

namespace is required, since all C# code must be contained in a class.

public class StringComponent {…}

This statement means that instances of StringComponent will now be created by

the runtime and managed in the Garbage Collected heap. The class constructor –

which executes each time a new instance of the class is created – has the same

name as the class and doesn’t have a return type.

public StringComponent() {…}

Since C# uses only managed types, we don’t have to do anything special – as we

had to do with managed C++ - when declaring variables.

Here’s the GetString method, which takes an integer and returns a string:

public string GetString(int index) {
 …
 return StringsSet[index];
}

Note the throw statement in the GetString method:

Developing Applications using the NGWS SDK: An Introduction 12

throw new IndexOutOfRangeException();

This statement creates – and throws – a runtime-based exception handling object of

type IndexOutOfRangeException.

Another way of returning strings would be to use an indexer instead of the

GetString method:

public string this[int index] {
 if ((index < 0) || (index >= Count)) {
 throw new IndexOutOfRangeException();
 }
 return StringsSet[index];
}

An indexer would allow the client to use a much more natural syntax of:

StringSetVar[index]

VB, however, doesn’t support indexers so, in the interest of keeping the component

code the space for each of the three languages, we have chosen to use a distinct

GetString method.

Finally, we create the read-only property Count:

public int Count {
 get { return StringsSet.Count; }
}

The compile process for a C# component is only a little more complicated than for a

stand-alone program:

csc /out:..\Bin\CompCS.dll /target:library CompCS.cs

As with the C++ component, we use the /out switch to put the compiled

component in the “..\Bin” relative subdirectory for convenience. Likewise, we need

the /target:library switch to actually create a DLL rather than an executable

with a .dll file extension.

A Component in VB
Here is the full source code listing for our sample string component in VB:

Listing 6 Component in VB (CompVB.vb)

Developing Applications using the NGWS SDK: An Introduction 13

Imports System

Option Explicit

Namespace CompVB

Public Class StringComponent

Private StringSet(4) As String

Public Sub New()
MyBase.New
StringSet(0) = "VB String 0"
StringSet(1) = "VB String 1"
StringSet(2) = "VB String 2"
StringSet(3) = "VB String 3"

End Sub

 Public Function GetString(ByVal index as Integer) 
As String

If ((index < 0) or (index >= Count)) then
throw new IndexOutOfRangeException

End If
GetString = StringSet(index)

End Function

ReadOnly Property Count() As Long
Get

Count = StringSet.Length
End Get

End Property

End Class

End Namespace

Like with C++ and C#, both the namespace and the class name are specified in

code (previous versions of VB used filenames to indicate class names).

In VB, class constructors are given the name New rather than the name of the class,

as is done for the other languages. Since constructors don’t return a value, using

VB it is implemented as a Sub rather than a Function:

Public Sub New()
 …
End Sub

Also note the statement:

MyBase.New

This statement, which is required, calls the constructor on the base class. In C++

and C#, the call to the base class constructor is generated automatically by the

compiler.

Here’s the GetString method (in VB, subroutines which return values are called

Developing Applications using the NGWS SDK: An Introduction 14

functions), which takes an integer and returns a string:

Public Function GetString(ByVal index as Integer) As String
If ((index < 0) or (index >= Count)) then

throw new IndexOutOfRangeException
End If
GetString = StringSet(index)

End Function

Note the throw statement in the GetString method, which highlights the new

runtime-based exception handling:

throw new IndexOutOfRangeException

This statement creates – and throws – a new object of type

IndexOutOfRangeException. Previous versions of the VB runtime implemented

an Err object.

Finally, we create the read-only property Count:

ReadOnly Property Count() As Long
Get

Count = StringSet.Length
End Get

End Property

The command-line build is quite simple, the only change being to output the

component to the relative “..\Bin” subdirectory for convenience:

vbc CompVB.vb /out:..\Bin\CompVB.dll /t:library

We will now use the components – written in each of our three NGWS runtime

compatible languages – that we created in the previous section. We need not define

additional namespaces within the clients: instead, we will be importing and using

classes defined by the component namespaces. We will also use the new

WinForms library to create a true Windows application, rather than the console

applications shown so far. Finally, we will show client code for an ASP+ page that

places the output in an HTML HTTP response.

A Client in Managed C++
Here is how our client looks in Managed C++:

Listing 7 Client in Managed C++(ClientVC.cpp)

Developing Applications using the NGWS SDK: An Introduction 15

CLIENTS FOR THE
SIMPLE COMPONENTS

#using <mscorlib.dll>
using namespace System;

#using "..\Bin\CompCS.dll"
#using "..\Bin\CompVC.dll"
#using "..\Bin\CompVB.dll"

// method "Main" is application's entry point
void main() {

 // Iterate over component's strings and dump to console
 CompCS::StringComponent* myCSStringComp = 

 new CompCS::StringComponent();
 Console::WriteLine 

 (S"Strings from C# StringComponent");
 for (int index = 0; index < myCSStringComp->Count; 

 index++) {
 Console::WriteLine(myCSStringComp-> 

 GetString(index));
 }

 // Iterate over component's strings and dump to console
 CompVC::StringComponent* myVCStringComp = 

 new CompVC::StringComponent();
 Console::WriteLine 

 (S"\nStrings from VC StringComponent");
 for (int index = 0; index < myVCStringComp->Count; 

 index++) {
 Console::WriteLine(myVCStringComp-> 

 GetString(index));
 }

 // Iterate over component's strings and dump to console
 CompVB::StringComponent* myVBStringComp = 

 new CompVB::StringComponent();
 Console::WriteLine(S"\nStrings from VB StringComponent");
 for (int index = 0; index < myVBStringComp->Count; 

 index++) {
 Console::WriteLine(myVBStringComp-> 

 GetString(index));
 }
}

The first thing to note is the importing of the three components, all of which are now

located in the “..\Bin” relative subdirectory:

#using "..\Bin\CompCS.dll"
#using "..\Bin\CompVC.dll"
#using "..\Bin\CompVB.dll"

The client code that calls the three string components is identical except for

specifying which library to use. The first statement in each of the three sections

declares a new local variable of a type StringComponent (defined in the

component), initializes it, and calls its constructor:

Developing Applications using the NGWS SDK: An Introduction 16

CompCS::StringComponent* myCSStringComp = 
new CompCS::StringComponent();

After writing out a string to the Console to say we’re entering this part of the

program, the client then iterates over the members – up to the value of the Count

property – of appropriate string component:

for (int index = 0; index < myCSStringComp->Count; 
 index++) {
 Console::WriteLine(myCSStringComp-> 

 GetString(index));
}

That’s all that’s required, and everything’s repeated for the other two language

components. If we had used the indexer approach rather than the separate

GetString method, the calling code would have been a more natural:

myCSStringComp[index]

Building our new C++ client is straightforward:

cl.exe /com+ ClientVC.cpp /link /entry:main 
 /out:..\bin\ClientVC.exe

As with the previous C++ examples, we need the /com+ switch to tell the compiler

to create NGWS runtime managed code. Running the resulting program yields:

C:\…\CompTest\Bin>clientvc
Strings from C# StringComponent
C# String 0
C# String 1
C# String 2
C# String 3

Strings from VC StringComponent
VC String 0
VC String 1
VC String 2
VC String 3

Strings from VB StringComponent
VB String 0
VB String 1
VB String 2
VB String 3

A Client in C#
Here is how our client looks in C#:

Listing 8 Client in C# (ClientCS.cs)

Developing Applications using the NGWS SDK: An Introduction 17

using System;

using CompVC;
using CompCS;
using CompVB;

// This "class" exists to house the application's entry-point
class MainApp {
 // Static method "Main" is application's entry point
 public static void Main() {

 // Iterate over component's strings dump to console
 CompCS.StringComponent myCSStringComp = new 
 CompCS.StringComponent();
 Console.WriteLine("Strings from C# StringComponent");
 for (int index = 0; index < myCSStringComp.Count; 
 index++) {
 Console.WriteLine(myCSStringComp.GetString(index));
 }

 // Iterate over component's strings dump to console
 CompVC.StringComponent myVCStringComp = new 
 CompVC.StringComponent();
 Console.WriteLine("\nStrings from VC StringComponent");
 for (int index = 0; index < myVCStringComp.Count; 
 index++) {
 Console.WriteLine(myVCStringComp.GetString(index));
 }

 // Iterate over component's strings dump to console
 CompVB.StringComponent myVBStringComp = new 
 CompVB.StringComponent();
 Console.WriteLine("\nStrings from VB StringComponent");
 for (int index = 0; index < myVBStringComp.Count; 
 index++) {
 Console.WriteLine(myVBStringComp.GetString(index));
 }
 }
}

Unlike the Managed C++ example, we don’t have to import the libraries at this point:

Instead, we can specify them in the compile process. The advantage of specifying

a library with the using statement is that, by incorporating the namespace into the

program, we can then reference types in the library without fully qualifying the type

name. Since our particular example has the same type name (StringComponent)

in each of the components, we still have use the fully qualified name to remove any

ambiguity when referring to the method (GetString) and property (Count), which

are common to each component. C# also provides a mechanism called aliasing to

address this problem: If you changed the using statements to:

Developing Applications using the NGWS SDK: An Introduction 18

using VCStringComp = CompVC.StringComponent;
using CSStringComp = CompCS.StringComponent;
using VBStringComp = CompVB.StringComponent;

then you would not have to fully qualify the names.

The client code is virtually identical to the C++ example except for the scope

resolution operators. Again, the code that calls the three string components is also

the same except for specifying which library to use. As with the managed C++

example, the first statement in each of the three sections declares a new local

variable of a type StringComponent, initializes it, and calls its constructor::

CompCS.StringComponent myCSStringComp = new 
 CompCS.StringComponent();

After writing out a string to the console to say we’re entering this part of the

program, the client then iterates over the members – up to the value of the Count

property – of appropriate string component:

for (int index = 0; index < myVCStringComp.Count; 
 index++) {
 Console.WriteLine(myVCStringComp.GetString(index));
}

That’s all that’s required, and everything’s repeated for the other two language

components.

Building our new C# client is straightforward. Now that we’re using components in

our own relative ”..\Bin” subdirectory, we need to explicitly include them using the

/i compilation switch:

csc /i:..\Bin\CompCS.dll;..\Bin\CompVB.dll; 
 ..\Bin\CompVC.dll /out:..\Bin\ClientCS.exe 
 ClientCS.cs

Also, since we’re building a client program rather than a component that might be

called from other programs, it is not necessary to use the /cls+ switch.

Other than that, the process is the same as with the previous C# examples.

Running the resulting program yields:

Developing Applications using the NGWS SDK: An Introduction 19

C:\Com20Dev\CompTest\Bin>clientcs
Strings from C# StringComponent
C# String 0
C# String 1
C# String 2
C# String 3

Strings from VC StringComponent
VC String 0
VC String 1
VC String 2
VC String 3

Strings from VB StringComponent
VB String 0
VB String 1
VB String 2
VB String 3

A Client in VB
here’s the full source code listing for our client in VB:

Listing 9 Client in Managed VB (Component1.cls)

Developing Applications using the NGWS SDK: An Introduction 20

Imports System
Imports System.Collections

Imports CompCS
Imports CompVB
Imports CompVC

Option Explicit

Public Module modmain

'The main entry point for the application
Sub Main()

 Dim Count As Integer

 ' Display result strings from C# Component
 Dim MyCompCS As New CompCS.StringComponent
 Console.WriteLine("Strings from C# StringComponent")
 For Count = 0 To MyCompCS.Count - 1

 Console.WriteLine(MyCompCS.GetString(Count))
 Next
 Console.WriteLine

 ' Display result strings from Visual C++ Component
 Dim MyCompVC As New CompVC.StringComponent
 Console.WriteLine("Strings from VC StringComponent")
 For Count = 0 To MyCompVC.Count - 1

 Console.WriteLine(MyCompVC.GetString(Count))
 Next
 Console.WriteLine

 ' Display result strings from Visual Basic Component
 Dim MyCompVB As New CompVB.StringComponent
 Console.WriteLine("Strings from VB StringComponent")
 For Count = 0 To CInt(MyCompVB.Count) - 1

 Console.WriteLine(MyCompVB.GetString(Count))
 Next

End Sub

End Module

Like the C# example’s using statement, we specify the libraries with the Imports

statement that then incorporate the namespace into the program so we can

reference types in the library without fully qualifying their type names. Since our

particular example has the same type name (StringComponent) in each of the

components, we still have to use the fully qualified name to remove any ambiguity.

The client code is virtually identical to the C++ and C# examples except for the

minor things such as the scope resolution operators and absence of a line

termination character. Again, the code that calls the three string components is also

Developing Applications using the NGWS SDK: An Introduction 21

the same except for specifying which library to use. As with the MC++ and C#

examples, the first statement in each of the three sections declares a new local

variable of a type StringComponent, initializes it, and calls its constructor:

Dim MyCompCS As New CompCS.StringComponent

After writing out a string to the console to say we’re entering this part of the

program, the client then iterates over the members – up to the value of the Count

property – of appropriate string component:

For Count = 0 To MyCompVC.Count - 1
 Console.WriteLine(MyCompVC.GetString(Count))
Next

That’s all that’s required, and everything’s repeated for the other two language

components.

The command-line build is quite simple, the only change being to output the

component to the relative “..\Bin” subdirectory:

vbc ClientVB.vb /reference:..\Bin\CompCS.dll /reference:..
\Bin\CompVB.dll /reference:..\Bin\CompVC.dll /out:..
\bin\ClientVB.exe /t:exe

A Windows Client using WinForms
All of the examples so far have been command-line programs that wrote to the

system console. Now that you have seen the entire development process, let’s

rewrite our client application to use the new Windows-based WinForms library,

which is also available to all NGWS runtime compatible languages. In our example,

we’ll use Visual Basic and here’s the full source code listing:

Listing 10 WinForms Client in VB (Client.cls)

Developing Applications using the NGWS SDK: An Introduction 22

Imports System
Imports System.Collections
Imports System.WinForms

Imports CompCS
Imports CompVB
Imports CompVC

Option Explicit

Public Module modmain
Public Const vbCrLf = CChar(13) & CChar(10)
Public Class Client

Inherits Form

'Required by the WinForms Designer
Private components As System.ComponentModel.Container
Private Button2 As System.WinForms.Button
Private Button1 As System.WinForms.Button
Private Label1 As System.WinForms.Label

Sub New()
MyBase.New
InitForm ' Required by WinForms Designer.

End Sub

'Client form overrides dispose to clean up component list.
Overrides Public Sub Dispose()

MyBase.Dispose
components.Dispose

End Sub

'The main entry point for the application
Shared Sub Main()

 Application.Run(New Client)
End Sub

'NOTE: This procedure required by the WinForms Designer
'It can be modified using the WinForms Designer.
'Do not modify it using the code editor.
Private Sub InitForm()

 Me.components = New System.ComponentModel.Container
 Me.Button1 = New Button
 Me.Button2 = New Button
 Me.Label1 = New Label

 Button1.SetLocation(200, 248)
 Button1.TabIndex = 1
 Button1.Text = "&Close"
 Button1.SetSize(75, 23)
 Button1.AddOnClick(New EventHandler 

(AddressOf Me.Button1_Click))

Developing Applications using the NGWS SDK: An Introduction 23

 Button2.SetLocation(120, 248)
 Button2.TabIndex = 2
 Button2.Text = "&Execute"
 Button2.SetSize(75, 23)
 Button2.AddOnClick(New EventHandler 

(AddressOf Me.Button2_Click))

 Label1.SetLocation(8, 8)
 Label1.TabIndex = 0
 Label1.TabStop = False
 Label1.Text = ""
 Label1.SetSize(272, 232)

 Me.Text = "Client"

 Me.Controls.Add(Button2)
 Me.Controls.Add(Button1)
 Me.Controls.Add(Label1)

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs)

 Me.Close ' End Application
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs)

 ' Local Variables
 Dim myCompCS As New CompCS.StringComponent
 Dim myCompVB As New CompVB.StringComponent
 Dim myCompVC As New CompVC.StringComponent

 Dim StringCount As Integer

 ' Clear Label
 Label1.Text = ""

 ' Display results from C# Component
 For StringCount = 0 To CInt(myCompCS.Count) - 1

Label1.Text = Label1.Text & 
MyCompCS.GetString(StringCount) & vbCrLf

 Next
 Label1.Text = Label1.Text '& vbCrLf

 ' Display results from Visual Basic Component
 For StringCount = 0 to CInt(MyCompVB.Count) - 1

 Label1.Text = Label1.Text & 
myCompVB.GetString(StringCount) & vbCrLf

 Next
 Label1.Text = Label1.Text '& vbCrLf

Developing Applications using the NGWS SDK: An Introduction 24

 ' Display results from Visual C++ Component
 For StringCount = 0 To CInt(myCompVC.Count) - 1

 Label1.Text = Label1.Text & 
myCompVC.GetString(StringCount) & vbCrLf

 Next

End Sub

End Class

End Module

In the PDC Tech Preview of the NGWS SDK, the WinForms library is located in the

System.WinForms namespace, in particular:

Imports System.WinForms

By importing the namespaces, we can then refer to an included type – like Button

– without having to fully qualify the type name – like Microsoft.WFC.UI.Button.

This next interesting line of code illustrates inheritance, one of the most powerful

features of the NGWS runtime:

Inherits Form

With this one statement, we specify that our Client class inherits all of the

functionality in the Form class in the WinForms library. Language independence is

an important aspect of the NGWS runtime’s inheritance model: not only can we

inherit from the runtime, we can inherit from classes written in any NGWS runtime

compatible language.

Next we declare the object types that we’ll be using on our form, such as:

Private Button1 As System.WinForms.Button

Now we’re finally read to execute some code. Here’s the constructor for the Client

form, which creates an instance of the base class and then calls the InitForm

method:

Sub New()
MyBase.New
InitForm ' Required by WinForms Designer.

End Sub

And here’s the entry point for the program itself, which starts everything off by

creating a new instance of the Client form:

Shared Sub Main()
 Application.Run(New Client)

End Sub

The InitForm method sets up the form and all of its controls. For Button1, for

example, we create a new button from the Button type:

Me.Button1 = New Button

We then move it, set it’s caption (or Text property), and then resize it:

Developing Applications using the NGWS SDK: An Introduction 25

Button1.SetLocation(200, 248)
Button1.TabIndex = 1
Button1.Text = "&Close"
Button1.SetSize(75, 23)

Then comes the tricky part: hooking up Click, just one of the Button type’s many

events, to our own subroutine:

Button1.AddOnClick(New EventHandler 
(AddressOf Me.Button1_Click))

Finally, we add the button to the form’s Controls collection:

 Me.Controls.Add Button1

The following code highlights the event subroutine that executes when the user

clicks on Button1:

Private Sub Button1_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs)

 Me.Close ' End Application
End Sub

Actually, the only thing that happens here is that the form’s Close method is

called, thus ending the application. In this particular subroutine we are ignoring the

arguments.

The real meat of the program, which uses the same code we saw in the VB client

example, is located in the Button2_Click event. Instead of writing to the Console,

however, the WinForms sample adds to the Text property of the label on the form:

Label1.Text = Label1.Text & 
 myCompVC.GetString(StringCount) & vbCrLf

Running the application creates the following dialog. When the “Execute” button is

clicked, the strings are written to the label on the surface of the form:

Figure WinForms Client in VB

A Client using ASP+
One of the most important features of NGWS is the ability to execute the same code

in IIS’s Active Server Pages (ASP+) as was used in our stand-alone client

applications. Of course, there are a few differences: The ASP+ page generally

produces HTML in response to an HTTP request, and the page itself is compiled

Developing Applications using the NGWS SDK: An Introduction 26

dynamically, unlike what was done for the previous examples. Each ASP+ page is

individually parsed and the syntax is checked. Finally, a NGWS runtime class is

produced, which is compiled and then invoked. ASP+ caches the compiled object,

so subsequent requests don’t go through the parse/compile step and thus execute

much faster.

Most existing ASP pages use JScript or VBScript: We have chosen to show the

page using C#, which would be a natural evolution for JScript code (VBScript code

would upgrade quite naturally to VB):

Listing 11 Client in ASP+ (ClientASP+.aspx)

Developing Applications using the NGWS SDK: An Introduction 27

<%@ Page Language="C#" Description="ASP+ Component Test" %>
<%@ Import Namespace="CompCS"%>
<%@ Import Namespace="CompVC"%>
<%@ Import Namespace="CompVB"%>

<html>
<script language="C#" runat=server>
void Page_Load(Object sender, EventArgs EvArgs) {

String Out = "";
Int32 Count = 0;

// Iterate over component's strings and concatenate
Out = Out + "Strings from C# StringComponent
";
CompCS.StringComponent myCSStringComp = new 
 CompCS.StringComponent();
for (int index = 0; index < myCSStringComp.Count; index++) {
 Out = Out + myCSStringComp.GetString(index) + "
";
}
Out = Out + "
";

// Iterate over component's strings and concatenate
Out = Out + "Strings from VC StringComponent
";
CompVC.StringComponent myVCStringComp = new 
 CompVC.StringComponent();
for (int index = 0; index < myVCStringComp.Count; index++) {
 Out = Out + myVCStringComp.GetString(index) + "
";
}
Out = Out + "
";

// Iterate over component's strings and concatenate
Out = Out + "Strings from VB StringComponent
";
CompVB.StringComponent myVBStringComp = new 
 CompVB.StringComponent();
for (int index = 0; index < myVBStringComp.Count; index++) {
 Out = Out + myVBStringComp.GetString(index) + "
";
}

Message.InnerHtml = Out;
}
</script>
<body>

</body>
</html>

This is essentially the same code as for the stand-alone client examples, except

that we are building a string (named out) that we are then assigning to a property

of an HTML server control. We could also have used the familiar Response.Write

to write the string directly into the HTML output stream.

The page specifies C# as a language:

<%@ Page Language="C#" Description="ASP+ Component Test"

but we could just as easily have used VB or even JScript.

Developing Applications using the NGWS SDK: An Introduction 28

Importing libraries in ASP+ is also a little different:

<%@ Import Namespace="CompVB"%>
<%@ Import Namespace="CompCS"%>
<%@ Import Namespace="CompVC"%>

In these examples, delimited by “<%…%>” to indicate script code, we are specifying

both the namespace and the physical assembly. As mentioned above, the

assemblies must be located “\Bin” subdirectory of the application’s starting point.

Another subtlety of this page is this line:

<script language="C#" runat="server">

This tells the server to execute the code on the server rather than sending the code

text back to the client as part of the HTML stream.

ASP+ WebForms provides special recognition of six methods named:

 Page_Init

 Page_Load

 Page_DataBind

 Page_PreRender

 Page_Dispose

 Page_Error

These methods are automatically connected to event handlers for the standard

page events. The most commonly used event is Load, which contains most of the

code for our sample program:

void Page_Load(Object sender, EventArgs EvArgs) {…}

The rest of the code is pretty straightforward: We’re just concatenating together a

longer string out that we then add to the HTML with this statement:

StringOut.innerHTML = Out

Testing this page requires a few steps. First, it’s necessary for the test machine to

have the following installed:

 Internet Information Services (IIS)

 NGWS runtime

 ClientASP+.aspx

 CompVC.dll, CompCS.dll, and CompVB.dll compiled components

Installing the PDC Tech Preview of the NGWS SDK on a machine that already has

IIS installed will enable that machine to run ASP+ (if you install IIS after installing

the SDK, you should reinstall the SDK). Next, you must configure a virtual directory

(using Internet Services Manager) that points to the directory where ClientASP.aspx

is located. To create a virtual directory using the Internet Information Services

snap-in:

 Select the Web site or FTP site to which you want to add a directory.

 Click the Action button, and then point to New, and select Virtual Directory.

 Use the New Virtual Directory Wizard to complete this task.

Developing Applications using the NGWS SDK: An Introduction 29

If you are using NTFS, you can also create a virtual directory by right-clicking a

directory in Windows Explorer, clicking Sharing, and then selecting the Web Sharing

property sheet. For more information, see the topic “Creating Virtual Directories” in

the IIS documentation, which is located at http://localhost/iisHelp/ on the machine

on which IIS is installed.

Third, the compiled component dlls should be located in “\Bin” subdirectory under

the starting point for the application virtual directory.

Assuming everything is configured correctly, executing the file with, for instance, the

following URL:

http://localhost/Com20Dev/ClientASP+.aspx

should result in an instance of Internet Explorer with a display similar to this:

Figure ASP+ Client in C#

This tutorial introduced several sample programs that described the process of

developing NGWS applications. You learned how several different languages – in

our examples managed C++, C#, and Visual Basic – could be used to both create

and call components written in any NGWS runtime compatible language. You also

learned how to use the new WinForms library to create true Windows applications.

Finally, you saw how the same languages can be used inside ASP+ to provide

substantially more power and flexibility than was previously available to Web

developers using embedded scripting languages.

Developers creating server applications should also review the “ASP+ and Web

Server Overview” topic area (under “Preliminary Developer Documentation” and

then “Technologies” in that same help file). Advanced developers will also benefit

from reading the overview material under the “NGWS runtime Overview” topic,

which includes information on the Execution Engine (EE) and Virtual Object System

Developing Applications using the NGWS SDK: An Introduction 30

SUMMARY

http://localhost/iisHelp/

(VOS).

For the latest information on NGWS, visit the Technology Preview Web site at

http://dapdweb.microsoft.com/ngws/sdk, which includes a pointer to all the NGWS

newsgroups on Microsoft news server. Feedback – including reporting bugs – on

the SDK can be submitted through

http://dapdweb.microsoft.com/ngws/sdk/feedback.

ClassView
One of the samples that accompany the SDK itself (located in a self-extracting

executable in, by default, the c:\Program Files\Com20SDK\Samples subdirectory) is

a full-featured class viewer based on XML. To use this tool, you need to first extract

the samples, and then run Default.aspx in the \ClsView subdirectory:

Figure ClassView Sample in NGWS SDK

FindType
Another sample that accompanies the SDK itself (again, located in a self-extracting

executable in, also by default, the c:\Program Files\Com20SDK\Samples

subdirectory) is command-line type locater that supports substring searches. To use

this tool, you need to first extract the samples, build this sample using this

command-line in the \FindType subdirectory:

NMAKE -F MAKEFILE

and then run FindType.exe. For example:

Developing Applications using the NGWS SDK: An Introduction 31

APPENDIX A:
EXPLORING
NAMESPACES

http://dapdweb.microsoft.com/ngws/sdk/feedback
http://dapdweb.microsoft.com/ngws/sdk

C:\Program Files\Com20SDK\Samples\FindType>findtype String
class System.String
class System.StringBuilder
…
class System.IO.StringReader
class System.IO.StringWriter

Intermediate Language Disassembler (ILDASM)
You can also explore the namespaces in files– either those that come with the

runtime or those created by yourself or others - using the command-line IL

disassembler tool to create a Windows output, for example:

C:\WINNT\ComPlus\v2000.14.1807>ildasm System.Net.dll

produces the following display:

Figure IL Disassembler in NGWS SDK

Each of the namespace nodes represents a separate namespace, which can be

expanded to explore the class objects and their methods and properties.

Developing Applications using the NGWS SDK: An Introduction 32

	Contents
	Introduction
	Common Concepts
	Hello World
	Writing Simple NGWS Components
	Clients for the Simple Components
	Summary
	Appendix A: Exploring Namespaces
	Tutorial
	Abstract
	Prerequisites
	Tools required
	What Can Vary
	“Hello World” in Managed C++
	“Hello World” in C#
	“Hello World” in Visual Basic
	A Component in Managed C++
	A Component in C#
	A Component in VB
	A Client in Managed C++
	A Client in C#
	A Client in VB
	A Windows Client using WinForms
	A Client using ASP+
	ClassView
	FindType
	Intermediate Language Disassembler (ILDASM)

