
Packaging and Deploying NGWS Applications

Tutorial

Abstract

This tutorial shows developers how to package and deploy NGWS applications and components using

the PDC Tech Preview of the NGWS Software Development Kit (SDK) and Visual Studio 7.0. The

development tools in this next major release of Visual Studio will utilize NGWS to allow developers to

quickly build and deploy robust applications that take advantage of the new runtime environment to

provide a fully managed, protected, and feature rich application execution environment. NGWS also

provides:

 Improved isolation of application components

 Simplified application deployment

 Robust versioning

This tutorial walks you through packaging and deploying the classic “Hello World” program as well as a

small, componentized application. These programs were written in C♯ - the new language designed for

NGWS. The steps necessary to construct, compile, and run C♯ programs were detailed in a separate

tutorial, Developing with NGWS: An Introduction. After reading this tutorial and working with the

samples, you should be able to plan how to package and deploy traditional stand-alone executable

NGWS applications. An appendix to this tutorial contains additional information on several useful

deployment related utilities.

Note: This tutorial does not directly cover packaging and deploying Web server (ASP+) or browser-

based applications. For information on Web server applications, please refer to the Deploying ASP+

Applications topic of the ASP+ and Web Server Overview section in the main NGWS Help (.chm) file

© 2000 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.

This tutorial is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by any
means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

Microsoft, Visual Studio, Windows, the Windows logo, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

0200

INTRODUCTION..1

COMMON CONCEPTS...3

(1) HELLO WORLD...5

(2) A SIMPLE COMPONENTIZED APPLICATION........................7

(3) PATH FOR PRIVATE COMPONENTS.....................................9

(4) A SHARED COMPONENT...10

(5) COMPONENT VERSIONING...13

SUMMARY...16

Appendix A: Packaging and Deployment TOols......................17

CONTENTS

This tutorial assumes you already have the PDC Tech Preview versions of both the

NGWS SDK and the corresponding Visual Studio 7.0. If you are working with later

versions of either the SDK or Visual Studio, you will need to obtain an updated

version of this document since some details of the underlying technology –

particularly the names of the underlying objects and their members – are likely to

have changed.

We will walk you through the process of packaging and deploying two small

programs that take advantage of the new NGWS environment. You will start with

the simplest program: a command-line version of the traditional “Hello World”

executable and then work with a small, componentized application that

demonstrates several increasingly more complex deployment scenarios. These

programs were written in C♯, though they could also have been written using

Managed Extensions to C++ or Visual Basic

Prerequisites
Before reading this document and working with the accompanying samples,

developers should first read the “NGWS Overview” (located in the complus2.chm

file included with the SDK) to get a clear understanding of the NGWS architecture.

Developers creating server applications should also review the “Developing with

NGWS: An Introduction” tutorial.

To benefit most from this tutorial and accompanying samples, the reader should

already be familiar with developing applications using COM+. Throughout this

document we will be introducing new terms related to the NGWS technology: For

additional material on these terms, you may wish to refer to the “NGWS Glossary”

at the end of the complus2.chm file.

Finally, since the code samples are presented in C#, developers will find it helpful to

be familiar with at least one of the major Microsoft programming languages.

Tools required
In general, the NGWS SDK includes everything necessary to package programs for

deployment. All of the files needed to package the samples discussed in this

tutorial are installed with the SDK (by default, into the C:\Program Files\NGWSSDK

directory). The runtime files are located in a subdirectory below the

\Windows\ComPlus subdirectory. For the PDC Tech Preview of the NGWS SDK,

the important files and corresponding versions are:

 mscorlib.dll – 1999.13.????

 csc.exe – 7.0.????

Since source and project files C# are plain text, any text editor – even Notepad – is

adequate for examining and modifying the accompanying sample files.

The PDC Tech Preview NGWS SDK includes a variety of tools, several of which are

particularly useful to developers working with packaging and deployment: These are

described in Appendix B: Packaging And Deployment Tools, in this document.

Packaging and Deploying NGWS Applications 1

INTRODUCTION

The sample programs that accompany this tutorial are located in the self-extracting

“samples.exe” file.

Finally, to use the SDK tools you must have your path environment variable

correctly configured to include (again, by default) the “C:\Program

Files\NGWSSDK\Bin” subdirectory where they are stored.

A NGWS program can be deployed several ways depending on how complex the

program is, the security / protection requirements, and how it is to be distributed.

What doesn’t matter is which NGWS runtime compatible language was used to

develop the program: All programs written for use with NGWS are compiled to the

same self-describing, managed intermediate language (IL) code and run against the

same NGWS runtime.

Building Blocks
In addition to the runtime, NGWS also provides a common base class library

organized into a hierarchical tree of namespaces. At the root is the System

namespace, which contains objects for many other useful classes - including those

for file IO, messaging, networking, and security – that can be used from any NGWS

language.

NGWS class libraries that you and others create are also organized into hierarchical

namespaces and are stored in portable executable (PE) files – typically DLLs and

EXEs. You can have several namespaces – including nested namespaces – in one

PE file, and you can split a namespace across multiple PE files. One or more PE

files (and possibly non-PE files, such as resources) are combined together to create

an assembly, which is a physical unit that can be deployed, versioned, and reused.

In NGWS, each class type is fully described through the type’s metadata. Each

assembly contains a manifest that includes the name of each type exported from

the assembly along with information about which file contains its metadata. The

manifest also includes information about the identity of the assembly (name, files

make up the assembly, and version information) and full information about any of

the assembly’s dependencies on other assemblies. The NGWS runtime uses

assembly manifests to locate and bind to the referenced types.

Deployment
In the simplest case, a stand-alone NGWS executable can simply be executed –

locally – from any machine on which the NGWS runtime is already installed.

Nothing else is required: No Registry entries are made, nothing can break any other

application or cause it to stop running, and simply deleting the file – if copied locally

– is enough to clean up the application and leave “zero footprint” on the machine.

Applications run from slow-access devices – like UNC paths, CDs, or floppies

(essentially anything other than a local disk) – behave only slightly differently:

assemblies will be installed in the download cache and are later automatically

scavenged.

Componentized applications are only slightly more complicated, depending on

Packaging and Deploying NGWS Applications 2

COMMON CONCEPTS

whether the components are private to the application, shared with other related

applications, or shared with other potentially unknown applications. If all the

components are private, then the componentized application can be treated in the

same manner as the standalone application. Similarly, if several related applications

use the same assembly, then it can be located in a common subdirectory. However,

if the application uses assemblies that are shared with other – undetermined -

applications, then these assemblies must be installed into the system assembly

cache and must have certain properties – for instance a unique name and version

information – that enables the NGWS runtime to ensure that the application binds to

the appropriate component versions. An important feature of NGWS applications is

the ability to maintain application configuration in plain-text files: This allows

administrator to tailor an application’s behavior on a particular machine without

having to involve developers. The examples in the following sections will walk you

through the common scenarios. While we will not be looking at ASP+ deployment in

this tutorial, most of the same concepts apply.

Distribution
Of course, most client applications will be further packaged into a common

distribution format – such as a .CAB file or .MSI file – and many will be installed

using application distribution mechanisms such as Windows 2000 IntelliMirror or

Microsoft’s Systems Management Server (SMS) which both use the Microsoft

Installer technology. For more on the Microsoft Installer, please refer to the

corresponding section in the Win32 SDK.

First, we’ll take a look at the simplest NGWS program, the traditional “Hello World”

program written in C# and discussed in detail in the tutorial Developing with NGWS:

An Introduction. Here’s the C♯ source code (which can be found with the code

accompanying this tutorial in the 1_HelloWorld subdirectory):

This sample stand-alone executable prints a single line to the System.Console, a

type contained in the NGWS base class library. It does not reference any other

libraries and does not itself produce a library. To provide convenient access to types

in the System library requires the using statement:

using System;

Also, we define a class to enclose the application code:

class MainApp {…}

Finally, we define a method Main to provide the entry point to our code:

void Main () {…}

Compiling this small program (the file build.bat contains the single line necessary)

using:

csc hello.cs

generates the stand-alone Hello.exe. Running the intermediate language

disassembler (ILDasm.exe) against this executable yields a window similar to the

following:

Packaging and Deploying NGWS Applications 3

(1) HELLO WORLD

Figure ILDASM of Hello.exe

Even this simple program illustrates several important concepts behind

programming for the NGWS environment. First, the program is clearly self-

describing: the information necessary to understand the program is contained in the

manifest. Double-clicking on the manifest line gives additional information:

Figure ILDASM of Hello.exe Manifest

Here we can see information about the assembly including the version (not yet set)

and which external libraries – and even which types within those libraries, in this

case Object and Console – are used by the program.

ILDasm also shows the classes or types created within the program (in this case,

the only class is MyClass) as well as the methods Main and a default constructor

(indicated by .ctor). Our simple program doesn’t have any other members.

Information about the assembly can be saved to a file by using the Dump option on

File menu.

Packaging and Deploying NGWS Applications 4

Deployment
Deployment to machines with the NGWS runtime already installed couldn’t be

simpler. Our simple program can be run directly from a file server (more advanced

programs might involve security issues), in which case no files are placed on the

workstation, no entries are made into the system registry, and – in effect – there is

no impact at all on the workstation. This also means that there is nothing to clean up

(since there is nothing to uninstall). A related benefit is that running this program

cannot “break” another program and neither can any other program cause this one

to stuff functioning.

As you would expect, Hello.exe can also be copied to a local volume. In this

situation, simply deleting the file is sufficient to “uninstall” the program and, again,

nothing would remain on the workstation.

Of course, the “Hello World” discussed above is completely trivial and hardly

representative of even the simplest real-world program. So, let’s look at a version of

the componentized program that was also described in detail in the Developing with

NGWS: An Introduction tutorial. Our version, which can be found in the 2_Simple

subdirectory, uses Client.exe to call only types contained in a single component

(Stringer.dll). The code for the Stringer component (located in Stringer.cs) includes

several important statements, the first of which specifies where in the global

namespace the contained types can be found:

namespace org {…}

And again we must create a class:

public class Stringer {…}

Our class then has a single field (StringsSet), a constructor (Stringer, the same

name as the class itself), a defined method (GetString), and a property (Count) with

a corresponding property accessor (get_Count) automatically created by the

compiler:

private string[] StringsSet;
public Stringer() {…}
public string GetString(int index) {…}
public int Count {

get { return StringsSet.Length; }
}

Putting all of this together, then, a client program would fully qualify a reference to

the GetString method (for instance) as org.Stringer.GetString.

Not surprisingly, an ILDASM display of the compiled component shows all of the

members:

Packaging and Deploying NGWS Applications 5

(2) A SIMPLE
COMPONENTIZED
APPLICATION

Figure ILDASM of Component Stringer.dll

Our client – the code is in Client.cs – includes a second using statement to allow
easy access to the types in Stringer.dll by specifying the namespace:

using org;

Building the files in this project is straightforward. First we build the Stringer.dll

component, then we build Client.exe and import the component using the name of

the file containing the manifest rather than the namespace name (in this case,

“org”):

csc /target:library Stringer.cs
csc /reference:Stringer.dll Client.cs

Just like Hello.exe, our new Client.exe contains manifest information about itself

and the System library and types it uses. However, it now contains information

about the Stringer component (we are using private assemblies where version

information isn’t checked) as well as the referenced contained types (in this case

org.Stringer):

Figure ILDASM of Component Stringer.dll

Note that, in this particular example, the .DLL comprises the entire assembly: This

is not always true however. For instance, in some development scenarios it may be

Packaging and Deploying NGWS Applications 6

necessary to combine .DLLs authored in several different languages into a single

assembly. It may also proved advantageous to combine several .DLLs together into

a single assembly to take advantage of special scoping rules that allows access to

methods between components but internal to the assembly itself. In these

situations, developers can use the Assembly Linker (AL) utility described in

Appendix B to custom tailor their assemblies.

Deployment
As before, Client.exe can be run directly off a file server from any workstation with

the NGWS runtime installed. Client.exe and Stringer.dll can also be copied to a

local volume and deleting the two files would be sufficient to “uninstall” the program.

The Client example just discussed above has one important weakness: both

Client.exe and Stringer.dll must reside in the same directory. In the real world,

however, it may be advantageous to use a directory structure to manage

components. NGWS provides a configuration mechanism that allows administrators

to specify a directory from which to load private components.

Building on the previous Client example, the 3_SimplePath subdirectory contains a

version of the program that works with a private directory. All of the source code is

the same, but for illustration purposes the build process has been modified to have

the Stringer dll build in the Stringer subdirectory:

csc /target:library /out:Stringer\Stringer.dll 
Stringer\Stringer.cs

csc /reference:Stringer\Stringer.dll Client.cs

While the /reference: compile option works to locate a component in a

subdirectory when compiling the program, a separate XML-based application

configuration file is required at runtime to support components located in other

directories. For client executables like the ones we are covering in this tutorial, the

configuration file resides in the same directory as the executable and has the name

of the exe but with a file extension of .cfg. The sample file Client.cfg file specifies a

PrivatePath tag:

Listing 1 Configuration file for Client.exe (Client.cfg)

<?xml version ="1.0"?>
<Configuration>
 <AppDomain
 PrivatePath="Stringer"
 />
</Configuration>

When this configuration file is placed in the same directory as the executable, at

runtime the NGWS environment uses the PrivatePath to determine where to look for

components in addition to the app directory.

Deployment
As with the previous example, this revised Client.exe can be run directly off a file

Packaging and Deploying NGWS Applications 7

(3) PATH FOR PRIVATE
COMPONENTS

server from any workstation with the NGWS runtime installed. Client.exe and

Stringer.dll (and the application .cfg file) can also be copied to a local volume –

using the same relative directory structure – and deleting the files (and directory)

would be sufficient to “uninstall” the program.

While they are not used in this particular example, it is important to know that – in

additional to application configuration files – NGWS also supports separate machine

and user configuration files for many common configuration settings.

While the Client programs discussed above show the basics for constructing a

complex program, they only illustrate the use of components that are private to the

Client executable. On the other hand, many applications make use of components

that are shared by many applications: These components – which are typically

provided with by 3rd party developers – are installed in a common place on the

system. By default, the system looks for each program’s components in that place,

known as the global assembly cache (GAC). In classic COM+ applications, this

mechanism is heavily dependent on the Windows System registry where

information about each component – including its version and physical file location –

is stored. Unfortunately, while this method allows multiple applications to share a

single component, it has also allows situations where installing a component with

one application can overwrite the existing installed component, possibly causing

other applications to break. This is often difficult to detect since the offending

application appears to work fine and by the time the broken application is run, it

might not be possible to recover the common files to a stable configuration.

Shared Names
The solution to the problems described above is to more strongly associate a

distinct build (indicated by a combination of a version number and a special value

called the originator) of a component assembly with the client application. The

system can then take care to isolate these component assemblies so that different

versions might be running at the same time for different client applications,

something that wasn’t possible in the past. This system of protection is sometimes

called “side-by-side” execution (in contrast to “backwards compatible”), since

applications can run along-side other versions of the same applications without

affecting their respective execution environments.

The code to demonstrate adding these additional build attributes – and creating a

protected shareable component – can be found in the 4_Shared subdirectory.

Building on the code in 3_SimplePath, this step adds a second, shareable

component that reverses an array of strings.

First let’s build this new component assembly without specifying any options to

make it shareable. If we simply compile the new Reverser.dll component: using, for

instance NoShare.bat (located in the \4_Shared\Reverser subdirectory) :

csc /target:library /out:Reverser.dll Reverser.cs

we can then examine the metadata using ILDasm, which shows that the assembly

is lacking an originator and does not have an established version number:

Packaging and Deploying NGWS Applications 8

(4) A SHARED
COMPONENT

.module 'Reverser.dll'

.assembly 'Reverser' as "Reverser"
{ …
 .hash algorithm 0x00008004
 .ver 0:0:0:0
}

To mark an assembly as shareable, we have to compile it using a private key

(public keys are used for verification). So, before compiling, we first have to

generate a public/private key pair: We use the Shared Name (sn.exe) utility to

generate a new key pair and place them in a file (found in the \4_Shared

subdirectory):

sn –k orgKey.snk

Now that we have a private key, we are ready to compile the component, specifying

the key file and the version number to be assigned:

csc /target:library /out:Reverser\Reverser.dll 
Reverser\Reverser.cs /a.keyfile:orgKey.snk /a.version:1.0.0.0

If we run ILDasm again on Reverser.dll, we can verify that the assembly is now

shareable as indicated by the presence of an .originator property and a non-

default version (.ver property) of 1.0.0.0:

.module 'Reverser.dll'

.assembly 'Reverser' as "Reverser"
{ …
 .originator = (00 … FC 4A DC 9B 9C)
 .hash algorithm 0x00008004
 .ver 1:0:0:0
}

For more information on the SN, see the section on that utility in Appendix B:

Packaging and Deployment Tools in this document.

Deployment
Deployment with shared components is more complicated than in the previous

examples. While components can easily be shared by related applications simply by

putting them in a common component directory, shared components that are used

by many applications on the system are often stored in the system assembly cache.

As with the previous examples, this revised Client.exe can be run directly off a file

server from any workstation with the NGWS runtime installed and Client.exe and

Stringer.dll can also be copied to a local volume.

To install the shareable component into the system assembly cache, however,

requires an additional step on the machine that will be running the corresponding

Client.exe program:

al /install:Reverser\Reverser.dll

After installing the Reverser assembly, we can then examine the system assembly

cache by navigating to the \Winnt\Assembly subdirectory and using the cache shell

extension (see the Shell Cache Viewer section in the Appendix for more

information):

Packaging and Deploying NGWS Applications 9

Figure System Assembly Cache

When it comes time to clean up the application, we need to do a little more work

than with the previous examples. In addition to deleting the files, it’s a good practice

to remove the shared component file from the system cache (the system cache,

unlike the download cache, is not automatically scavenged). In the PDC Tech

Preview of the NGWS SDK, the easiest way to do this is to use the cache shell

extension, select the appropriate component(s), and delete them.

Developers and administrators who wish to automate the process, however, will

want to use the command-line interface to the system cache manager:

rundll32 fusion.dll, RemoveAssemblyFromCache Reverser

See “Appendix B: Packaging and Deployment Tools” for more information on this

approach.

The final packaging and deployment step we will look at involves updating both the

client and shared component to a new version. We will then deliberately update the

shared component to break compatibility and demonstrate how NGWS allows us to

configure the client application to continue to use the original version of the shared

component. The key to making applications run safely is to understand how

assembly compatibility versioning works.

Versioning
Each assembly has a specific compatibility version number as part of its identity.

As such, two assemblies that differ by compatibility version are completely different

assemblies as far as the NGWS runtime class loader is concerned.

This compatibility version number is physically represented as a 4-part number with

the following format:

<major version>.<minor version>.<revision>.<build number>

Each portion of this number has a specific meaning to the NGWS runtime as it

decides which version of an assembly to load. Logically, the compatibility version

number has three parts, with the following meanings:

Packaging and Deploying NGWS Applications 10

(5) COMPONENT
VERSIONING

Incompatible: A change has been made to the assembly that is known to be

incompatible with previous versions. Example: Major new release of the product.

Maybe Compatible: A change has been made to the assembly that is thought to be

compatible and carries less risk than an incompatible change. However, backwards

compatibility is not guaranteed. Example: Service Pack or release of a new daily

build.

QFE: An engineering fix that customers must upgrade to. Example: an emergency

security fix.

These three logical parts map to the physical 4-part version number as follows:

For example, an assembly with compatibility version number 2.0.0.0 is considered

incompatibly with an assembly whose compatibility number is 1.0.0.0. Also,

compatibility number 2.0.2.11 is considered a QFE to compatibility number 2.0.2.1.

Shared Names
The solution to the problems described above is to more strongly associate a

distinct build (indicated by a combination of a version number and a special value

called the originator) of a component assembly with the client application. The

system can then take care to isolate these component assemblies so that different

versions might be running at the same time for different client applications,

something that wasn’t possible in the past.

The code to demonstrate adding these attributes – and creating a shareable

component – can be found in the 4_Versioned subdirectory. Building on the code in

4_Shared, this step creates two separate versions of the shareable component and

uses additional application configuration options to demonstrate how an application

can made to run. A method in version 2.0.1.0 of Reverser.dll was deliberately made

incompatible with the same method in 2.0.0.0 so that a Client that successfully

called that method using version 2.0.0.0 would fail with the later revision.

To illustrate how versioning keys can change from one version of an assembly to

the next, we generate a new key pair using the Shared Name (sn.exe) utility and

place them in a file:

sn –k orgVerKey.snk

Now that we have a new private key, we are ready to compile both version 2.0

components, specifying the key file and the version number to be assigned:

Packaging and Deploying NGWS Applications 11

csc /target:library /out:Reverser_v2.0.0.0\Reverser.dll 
Reverser_v2.0.0.0\Reverser.cs /a.keyfile:orgVerKey.snk 
/a.version:2.0.0.0

csc /target:library /out:Reverser_v2.0.1.0\Reverser.dll 
Reverser_v2.0.1.0\Reverser.cs /a.keyfile:orgVerKey.snk 
/a.version:2.0.1.0

If we run ILDasm again on the two updated Reverser.dlls, we can verify that the

assemblies are shareable as indicated by the presence of a different (since we used

a different key pair).originator property and updated version (2.0.0.0 or 2.0.1.0,

depending on which one we look at):

.module 'Reverser.dll'

.assembly 'Reverser' as "Reverser"
{
 .originator = (00 … 5D 85 7D 05 B3)
 .hash algorithm 0x00008004
 .ver 2:0:0:0
}

Deployment
To illustrate how applications can be configured to use shared components that are

either the latest or are known to be compatible, we must install both 2.0 versions of

Reverser.dll into the system assembly cache:

al /install:Reverser_v2.0.0.0\Reverser.dll
al /install:Reverser_v2.0.1.0\Reverser.dll

After installing these Reverser assemblies, we can then examine the system

assembly cache by navigating to the \Winnt\Assembly subdirectory and using the

cache viewer shell extension (see the Shell Cache Viewer section in the Appendix

for more information):

Figure System Assembly Cache with 2.0 Versions

We are now ready to compiled the VerClient executable, for which we specify the

version 2.0.0.0 of the Reverser component:

Packaging and Deploying NGWS Applications 12

csc /reference:Stringer\Stringer.dll; 
Reverser_v2.0.0.0\Reverser.dll VerClient.cs

As mentioned in the section above in the section Path for Private Components,

locating assemblies at runtime can be controlled using an application configuration

file. In particular, the <BindingMode> and <BindingPolicy> tags can be used to

redirect the reference to a different version of a shared assembly (private

assemblies are not version checked).

The first runtime configuration option is the <BindingMode>, which can be

configured to be “safe” or “normal”. In safe mode, the only version (meaning major

and minor version as well as revision, but not QFE builds) of the shared assembly

that can be used is the one that was also used at compile time.

<AppBindingMode Mode="safe"/>

Changing “safe” to “normal” and rerunning the VerClient program will cause the

program to fail since the runtime is now loading version 2.0.1.0 of the Reverser

component, which includes an incompatible interface.

The second runtime option is specified using <BindingPolicy>, which essentially

means to override the version in the original reference with this version. Binding

policies provide for several distinct configuration options. First, an application may

be configured to use a specific newer version of a shared component than was

used for compilation. The following option says that, regardless of which version

(meaning, combination of major and minor version numbers) was used to compile

the application (indicated by the “*”), the version that should be used at runtime is

2.0.0.0:

Version="*" VersionNew="2.0.0.0"

This allows an administrator to reconfigure an application without having to have it

recompiled. An application may also be configured to automatically pick up the

latest revision (meaning, the third field in the version number):

UseLatestBuildRevision="yes"/>

Note: UseLatestBuildRevision affects only a particular assembly, unlike

AppBindingMode which affects all assemblies referenced in the application.

The sample VerClient.cfg file in the 5_Shared subdirectory contains all of these

options:

Listing 2 Configuration file for VerClient.exe (VerClient.cfg)

Packaging and Deploying NGWS Applications 13

<?xml version ="1.0"?>
<Configuration>
 <AppDomain
 PrivatePath="Stringer"
 />
 <BindingMode>
 <AppBindingMode Mode="safe"/>
 <!-- normal | safe -->
 </BindingMode>
 <BindingPolicy>
 <BindingRedir Name="Reverser"
 Originator="e5f1adbec8ac3800"
 Version="*" VersionNew="2.0.0.0"
 UseLatestBuildRevision="yes"/>
 <!-- no | yes -->
 </BindingPolicy>
</Configuration>

Since a method of a type in version 2.0.1.0 of Reverser.dll was deliberately made

incompatible with the same method in 2.0.0.0, a 2.0.0.0-compatible client that

attempts to call this later revision will fail. By changing from:

<AppBindingMode Mode="normal"/>

to:

<AppBindingMode Mode="safe"/>

it is possible for you (or, more typically, an administrator) to “repair” an application

so that it will continue to run successfully if it happens to be broken by a subsequent

install of another application that used a different version of the same shared

component.

Finally, when it comes time to clean up the application we should remove the

shared component files from the system cache:

rundll32 fusion.dll, RemoveAssemblyFromCache Reverser
rundll32 fusion.dll, RemoveAssemblyFromCache Reverser

This tutorial leads you through the process of packaging and deploying NGWS

applications. You learned how to work with standalone, componentized, and

versioned application types. You also learned how administrator could configure, or

“repair” – an application by using a configuration file rather than having to obtain a

newly compiled version of the application.

For the latest information on NGWS, visit the Technology Preview Web site at

http://dapdweb.microsoft.com/ngws/sdk, which includes a pointer to all the NGWS

newsgroups on Microsoft news server. Feedback – including reporting bugs – on

the SDK can be submitted through

http://dapdweb.microsoft.com/ngws/sdk/feedback.

ASP+
This tutorial focused on packaging and deploying traditional client applications. For

information deploying ASP+ applications to Web server, please refer to the

Deploying ASP+ Applications topic of the ASP+ and Web Server Overview section

Packaging and Deploying NGWS Applications 14

SUMMARYAPPENDIX A:
FOR ADDITIONAL
INFORMATION

http://dapdweb.microsoft.com/ngws/sdk/feedback
http://dapdweb.microsoft.com/ngws/sdk

in the main NGWS Help (.chm) file.

Assemblies
For additional information on how NGWS locates assemblies when they are

referenced at runtime, refer to the topic How the NGWS Runtime Locates

Assemblies in the main NGWS Help (.chm) file. This topic covers the Assembly

Resolver, shared and private assemblies, application and administrator version

policies, codebase locations, and QFE updates.

The NGWS SDK includes several useful tools for examining assemblies and

working with the system assembly cache. The CPTools.chm file contains additional

documentation on these tools.

Assembly Linker (AL)
The Assembly Linker is used to both create assembly manifests and to install

assemblies into the global assembly cache. Compilers and development

environments may already provide either or both of these capabilities, so it is often

not necessary to use this tool directly. The Assembly Linker will be most useful to

developers needing to create a single assembly from multiple components files,

such as might be produced with mixed-language development.

Shell Cache Manager (FUSION.DLL)
The NGWS utility library managing the system cache also provides a command-line

interface. Since the extension is a .dll, it must be accessed using the rundll32.exe

utility.

rundll32 fusion.dll, RemoveAssemblyFromCache Reverser
rundll32 fusion.dll, AddAssemblyToCacheA -m Reverser.dll –p

Note: the exported functions are case sensitive and must be typed exactly as

shown. To obtain a complete list of command-line functions, you can list the exports

from fusion.dll using the dumpbin.exe utility that comes with Visual C++:

C:>dumpbin /exports \WINNT\ComPlus\v2000.14.xxxx\fusion.dll

Where xxxx is the build version of NGWS you are using.

Shell Cache Viewer (SHFUSION.DLL)
To view the global assembly cache using the shell cache viewer, the shfusion.dll

must be registered on the local system. In the PDC Tech Preview, this file is

installed in the c:\Winnt\Assembly subdirectory but is not automatically registered by

Setup. To register the viewer, it is necessary to run the following command line:

Regsvr32 c:\winnt\assembly\shfusion.dll

Note: If you decide to delete files from the global assembly cache using other

methods, do not delete shfusion.dll.

Intermediate Language Disassembler (ILDASM)
You can also explore the namespaces in files– either those that come with the

Packaging and Deploying NGWS Applications 15

APPENDIX B:
PACKAGING AND
DEPLOYMENT TOOLS

runtime or those created by yourself or others - using the command-line IL

disassembler tool to create a Windows output, for example:

C:\WINNT\ComPlus\v2000.14.xxxx>ildasm system.net.dll

which produces the following display:

Figure IL Disassembler in NGWS SDK

Each of the namespace nodes represents a separate namespace, which can be

expanded to explore the class objects and their methods and properties.

ILDasm also features a number of command-line options, which are particularly

useful when redirecting output to the console or to a text file for subsequent

analysis. One handy tip for developers is to put a shortcut to ILDasm.exe in their

SendTo folder.

Shared Name (SN)
The Shared Name (SN) command-line utility can be used for several purposes

when working with shared components. First, SN can be used to generate a new

public/private key pair and write that pair to an output file:

-k <outfile>

SN can also be used to extract public key from key pair from a file and export it to a

separate output file:

-p <infile> <outfile>

Two other options (-t and –T) can be used to extract key tokens from files. Rather

than storing complete, for efficiency only the last 8 bytes (or 64 bits) are stored in

key tokens. Finally, SN can also be used to verify an assembly for shared name

signature self consistency:

-v[f] <assembly>

SN can thus be used to verify that a particular assembly was signed using a

particular key file. Using the files in the above section A Shared Component, we first

need to extract the public key out of orgKey.snk:

sn -p orKey.snk pub.snk

Then we can verify that that both components were signed by the same key pair by

obtaining the same key token values for both of the following SN commands:

Packaging and Deploying NGWS Applications 16

sn -t pub.snk
sn -T reverser.dll

Packaging and Deploying NGWS Applications 17

	Contents
	Introduction
	Common Concepts
	(1) Hello World
	(2) A Simple Componentized application
	(3) Path for Private Components
	(4) A Shared Component
	(5) Component Versioning
	Summary
	Appendix A: For Additional Information
	Appendix B: Packaging and Deployment TOols
	Tutorial
	Abstract
	Prerequisites
	Tools required
	Building Blocks
	Deployment
	Distribution
	Deployment
	Deployment
	Deployment
	Shared Names
	Deployment
	Versioning
	Shared Names
	Deployment
	ASP+
	Assemblies
	Assembly Linker (AL)
	Shell Cache Manager (FUSION.DLL)
	Shell Cache Viewer (SHFUSION.DLL)
	Intermediate Language Disassembler (ILDASM)
	Shared Name (SN)

