
JavaStar Tutorial

SunTest, Inc.

901 San Antonio Road
Palo Alto, CA 94303 CA USA

A Sun Microsystems, Inc. Business

JavaStar Tutorial—November 1998

 1997 Sun Microsystems, Inc. All rights reserved.
901 San Antonio Road, Palo Alto, California 94043-9452 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Solaris, Java, JavaBeans, JavaPureCheck, the Java Compatible logo, and 100% Pure Java
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. All other product
names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents
1. Introduction to JavaStar. 1

The Continuum of GUI Test Tools . 1

The JavaStar Model . 2

Using the Test Composer . 2

Running JSTs and Viewing Results . 3

Analyzing Applications for Test . 3

Looking at the Example Application. 3

What this Tutorial Covers . 5

Using the Tutorial Directories and Files 7

2. Getting Started with JavaStar . 11

Setting up JavaStar. 12

Making a Copy of the Test Database 12
Launching JavaStar . 12
Main Menu . 13
Creating a Project File . 14

Recording a Script . 15

Start Creating the Script . 15
Opening the Test Database . 20
Recording Text Input . 24
Checking the Search Operation . 24
Ending Record Mode. 29

Running the Test . 29

Viewing the Results . 32

Summary. 35

Exercise: Testing the Names Window . 35

Instructions . 35
i

Solution . 35

3. Moving to the JavaStar Model . 37

About the Model . 37

Deficiencies of the Previous Approach . 38

Making Tests More Robust . 38

Writing Tests Using Declaration Files 39
Making Tests Modular . 39
Passing Data as Arguments . 39

Summary. 40

4. Generating Declarations . 41

About this Lesson . 41

Setting Up for this Lesson. 42

Debugging Test Run Errors Caused by GUI Changes. 42

Designing a Suite to Use Generated Declarations 47

Generating Declarations . 47

Modifying Declarations to Use Abstracted Names 49

Editing MainWin Declarations. 49
Editing SearchWin Declarations . 51
Editing NamesWin Declarations . 52

Recording New Scripts that Use Declaration Files 52

Summary. 54

5. Using a Modular Approach . 55

Setting Up for This Lesson . 55

Improving Your Tests with a Modular Approach 57

Looking at the Name Database Example 57
Using the Test Composer . 58

Composing Tests . 59

Entering a Record . 60
Verifying Search Results . 64
The Acceptance Test . 65

Recording Individual Scripts . 66

Running Tests . 71

Viewing Results from a JST. 73
ii JavaStar Tutorial— November 1998

Summary. 75

Exercise: Making the Names Test Modular 75

Instructions . 75
Solution . 76

6. Adding Parameters for Flexibility . 79

Setting Up for this Lesson. 80

Deciding Where to Use Parameters in Scripts 80

Editing the Scripts . 82

Editing OpenFile . 82
Editing EnterFieldData . 84
Editing DefineSearch . 86
Editing GetSearchResults . 86
Editing VerifyRecord . 87

Deciding Where to Define Parameters in the JST. 87

Editing JSTs to Use Parameters . 91

Editing the OpenFile Node. 91
Editing the AddRecord .jst Node. 92
Editing EnterFieldData Node. 94
Editing VerifySearch.jst . 95
Editing the DefineSearch Node . 95
Editing the GetSearchResults Node. 96
Editing the VerifyRecord Node . 96

Running a Test With Arguments . 96

Viewing the Results . 97

Other Possibilities for Adding Parameters 98

Using Property Files as a Source for Arguments 99

Reading a Single Property . 99
Reading Multiple Properties . 101

Summary. 106

Exercise: Adding Parameters to the VerifyNames tests 106

Instructions . 106
Solution . 106

7. JavaStar from the Command Line . 109

About this Lesson . 109
iii

Setting Up for this Lesson. 109

Using Command Line Flags . 110

Running the Acceptance Test . 111

Filtering the Acceptance Test Log . 112

Summary. 112

8. Using the JavaStar API. 115

About the JavaStar API . 116

Anatomy of a Test Script . 117

An Example Application. 118

Verifying Menu Components . 119

Using the API to Obtain a Component 119
Using an Internal Verification . 120

Opening Files . 121

Examining the Recorded Open . 121
Building VerifyTestFile . 124
Edit openAction . 125
Build the JST . 126
Run the Test . 127

Summary. 127

9. Using Non-Component Locators . 129

About this Lesson . 129

Using an Existing Locator . 130

How a Locator Works . 132

Recording a Script with an NCL . 132
Running a Test with an NCL . 133

Summary. 133

10. Testing JFC Components . 135

Setting Up to Test the JFC . 135

Testing a Simple JFC Component. 136

Testing Menus and Toolbars . 137

Check a Menu Bar Label . 137
Check a Menu Item’s Mnemonic . 138
Check a Toolbar . 138
iv JavaStar Tutorial— November 1998

Testing a Complex Component . 139

Summary. 140

11. Writing Non-Component Locators . 141

Understanding the Need for an NCL . 141

Using JSNCLData . 142
Using the JSNonComponentLocator 143

Anatomy of a JSNonComponentLocator 143

Finding the JSNCLData while Recording 143
Retrieving a Named Non-Component 147

Exercise . 147

Setting up the Exercise . 148
Write the NCL . 148
Test the NCL. 148
Solution . 150

Summary. 153
v

vi JavaStar Tutorial— November 1998

Introduction to JavaStar 1
This chapter introduces you to JavaStar and this tutorial, describing:

• The Continuum of GUI Test Tools
• The JavaStar Model
• Looking at the Example Application
• What this Tutorial Covers
• Using the Tutorial Directories and Files (including how to skip around

between chapters)

Even if you plan to skip around in the tutorial, be sure to start here to get basic
information that applies to all chapters.

The Continuum of GUI Test Tools
To place JavaStar in the continuum of developing test tools, it makes sense to
look at how GUI test tools have developed over the years and what features
they offer.

The first GUI test tools were coordinate-based, using bit-mapped images.
These tools recorded keystrokes and mouse movements based on the screen
coordinates affected, and then played them back to simulate user interaction.
One of the problems with this approach was that any change to the GUI meant
that tests had to be re-recorded; it was nearly impossible to edit them.

Later test tools improved GUI testing by simulating an object-oriented
approach. The tool defined “widgets” in the program under test, and would
send events to these widgets to simulate user interaction. Here, a change to the
GUI meant editing all tests, but at least it was easier to edit them.

When the concept of window declarations of GUI maps was developed, test
developers had a way to abstract component information. By abstracting the
component information, developers could deal with GUI changes that would
otherwise break existing tests. Tweaking the map for an application would
update all tests by reference. This worked well except for internationalization,
where most products required a map for every locale.
1

JavaStar continues the evolution by providing an object-oriented tool that
offers an easy way to generate declarations for the program under test.
JavaStar uses Java to ensure a true object-orientation, not a simulation. JavaStar
accesses the Java AWT components used to create the GUI of the test program
and works directly with these components in the tests it creates. Because these
tests are created in Java, they are object-oriented.

The JavaStar Model
JavaStar uses two types of files—scripts and JavaStar Test (JST) files. A script is
a Java program (constructed by JavaStar or by hand) that tests a select portion
of your test program’s user interface. A JST defines a test consisting of multiple
scripts and other JST files.

To understand this better, it might help to think of a script as one of those
interlocking building blocks you might have played with as a child. On its
own, an individual block might not have been too exciting, but you could
combine it with other blocks to create a complex structure. Each block was re-
usable, too. A block you used to create an airplane could also help you build a
house.

A script is similar in that, on its own, it might test only one feature of your
application. But, combined with other scripts, you can create a JST that
exercises your entire application. Better yet, you can create multiple JSTs that
each use these scripts in different ways, providing you with a strong test suite.

For creating scripts and JSTs, JavaStar provides you with:

• The capture tool for creating effective scripts—one that record keystrokes,
mouse movements, and comparisons

• An API you can use to extend these scripts even further, or use to write
scripts entirely by hand

• The composer you use to graphically assemble scripts into JavaStar Tests

Using the Test Composer
The Test Composer is a lot like a work area. Here, you define which scripts you
want to use, the order in which you want them to execute, and the conditions
under which you want them to run. For example, at some point in your test,
you might want one script to run if the previous script ended successfully, and
another script—perhaps a recovery script—to run if the previous script ends
with an exception. In addition, you might want the recovery script to restart
the application before it executes your steps, just to make sure you return to a
clean state. You can define all of this in a matter of seconds using the Test
Composer’s point-and-click interface.

You are not limited to using scripts within JavaStar Tests (JSTs)—you can also
reference other JST files. For example, if you wanted to define an acceptance
JST for your application, you might want to include a number of already-
2 JavaStar Tutorial—November 1998

defined JSTs (maybe one that exercises each application window) as part of the
test. You just reference a JST file as you would a script, and JavaStar includes it
in the test.

JSTs and their nodes (the individual scripts and JSTs that make up the
composed test) also accept parameters. This means that you can create highly
flexible scripts and tests that you can use for a number of purposes, just by
changing the parameters.

Running JSTs and Viewing Results
When you run a JST, JavaStar opens a window to show you a graphical display
of the test-nodes in the JST and flashes each node as it executes. You can easily
track where the test is in execution, and, should the test suspend playback,
you’ll know where to look for the problem.

When you view results of a test run, JavaStar displays these results as an
outline tree that follows the structure of the JST itself. You can look at the
results on a node-by-node basis, or read summary information for the entire
test. For large tests, this makes the results easier to view and understand.

Analyzing Applications for Test
Before you start developing tests in JavaStar, you may already have in mind
some tests you want to create. To take advantage of the test tool’s power, you
can start by breaking the tests down by function, creating discrete building
blocks that you might later combine for a test. These building blocks determine
individual scripts.

You can also begin your test definition by examining all the components of
your GUI and determining how to test each component. If you look at ways to
make each test flexible and re-usable, you can quickly determine which scripts
you need to write.

You’ll probably end up using both of these methods to define your test
suite—this tutorial uses a little of each as an example.

Looking at the Example Application
This tutorial uses the Name Database, one of the example Java applications
included with JavaStar. If you look in the javastar\examples directory,
you’ll see there are three versions of this application. Most of the tutorial uses
namedb1, though later lessons contrast this version with others.
3

The Name Database is a straightforward, no-frills, name-and-address database
application. It provides functions you can use to:

• Enter name and address records into a database
• Open, save, and close name databases
• Change and delete records
• View all the names in the database as a list and select a record to view
• Search any or all fields in the database for a text string, then view the

records that match

While the Name Database provides the simplicity this tutorial needs for an
example, it isn’t the kind of full-featured application that you might make
available to customers. While your applications are likely to be larger and
more complex than namedb, you’ll use the same approaches to testing them as
you’ll learn here for namedb.

Looking at the GUI for the Name Database, you can see that the application
has three windows (Figure 1-1 shows these):

• Name Database main window
• Names dialog
• Search dialog
4 JavaStar Tutorial—November 1998

Figure 1-1 Name Database windows

The tutorial uses these three windows to demonstrate the principles and
techniques of JavaStar testing. The goal is to give you ideas on how you can
plan testing for a Java GUI, and to show you how much power JavaStar gives
you by providing you ways to quickly build complex tests.

What this Tutorial Covers
The JavaStar tutorial is divided into two sections: Part 1, Java Star Basics; and
Part 2, Advanced JavaStar.
5

Part 1: JavaStar Basics

The first part of the tutorial is for all JavaStar users. Even if you are familiar
with other GUI test tools, stepping through the basic tutorial will help you get
comfortable with the JavaStar controls, as well as the JavaStar test model.

“Getting Started with JavaStar” guides you through recording your first
JavaStar script, playing the test back, and viewing the results. From this,
you’ll learn what you need to do to run JavaStar, and you’ll get comfortable
with the recording controls, including verification operations.

“Moving to the JavaStar Model“ introduces the JavaStar test model and
describes how it improves tests to make them much more versatile and
powerful.

“Generating Declarations” shows you how to generate declarations from
your application under test, and then reference these declarations in your
scripts.By doing this, you can work around many problems that arise when
developers change the program interface during your test phase.

“Using a Modular Approach” examines the test created in the previous
chapter and analyzes why a modular approach would be effective. This
chapter shows you how to compose a JavaStar Test (JST) file from multiple
scripts, how to analyze the results from a modular test, and shows you how
to navigate through the multi-level results.

“Adding Parameters for Flexibility” takes the scripts you created in the
Modular Approach chapter and shows you how to turn the inputs into
parameters. You’ll learn how to edit the JST file to pass parameters to
scripts, increasing re-use potential for your code.

“JavaStar from the Command Line” shows you how to run JavaStar tests
from the command line, making it easier for you to build test suites that
you launch using a test harness.

Part 2: Advanced JavaStar

This section of the tutorial is designed for those JavaStar users who know how
to program in Java. Part 2 shows you how to use advanced JavaStar features
and develop highly customized test solutions with the JavaStar API.

“Using the JavaStar API” addresses how to further customize JavaStar
scripts with your own code and how to access the power of the JavaStar
API. This chapter illustrates the anatomy of JavaStar script so you can
determine what to edit and what you need to leave intact.

“Using Non-Component Locators” shows you how to test an application or
applet created using a non Java-AWT toolkit. It covers how to use existing
locators.
6 JavaStar Tutorial—November 1998

“Testing JFC Components” specifically addresses the use of non-component
locators for testing Swing, or JFC, components.

“Writing Non-Component Locators” is a detailed guide on developing non-
component locators for use with JavaStar.

Using the Tutorial Directories and Files
While this tutorial follows a specific example from beginning to end, with each
chapter building on the previous one, you can do the exercises out of order.
The tutorial directory contains a subdirectory for each chapter. These
contain any files you need to begin with and the solutions to exercises. You’ll
get instructions on when to copy files to your work directory to continue the
lessons.

Figure 1-2 JavaStar tutorial directory tree

The instructions in each chapter assume that you using the tutorial
subdirectory as your work directory. This is where you’ll store the scripts you
create, as well as the test results. If you decide to use a different directory, keep
the same relative file locations. Otherwise, not all the scripts will run.
7

8 JavaStar Tutorial—November 1998

Part 1 — JavaStar Basics

Getting Started with JavaStar 2
This chapter gives you a quick way to get up and running with JavaStar and
familiarize yourself with many of the controls.

You’ll create a test for the Name Database that tests:

• Loading a database
• Adding a record
• Searching for the record and verifying the results

This is not an exhaustive test of the Name Database capabilities. However, it
introduces you to the basics of recording and playing back scripts with
JavaStar. In later chapters, you’ll look at how to improve the approach to take
advantage of more advanced JavaStar features. The lessons that follow take
this first test and transform it, step-by-step, into a test optimized to use the
JavaStar model.

After completing this lesson, you should be able to:

• Set up your environment to run JavaStar
• Launch JavaStar
• Record a script that captures key and mouse strokes, and that compares

results
• Play back a script using Run Test
• Examine results in the Results Viewer, and use the Viewer options to filter

the results for the information most important to you

Topics:

• Setting up JavaStar
• Recording a Script
• Running the Test
• Viewing the Results
• Summary
• Exercise: Testing the Names Window
11

Setting up JavaStar
Preparation for this lesson involves:

• Making a Copy of the Test Database
• Launching JavaStar
• Creating a Project File

Note – This tutorial does not provide installation instructions for JavaStar.
For step-by-step installation details, see the chapter “Preparing to Use
JavaStar” in the JavaStar User’s Guide.

Making a Copy of the Test Database

In this tutorial, you’ll be using a database (.db) file that stores names and
addresses. Each test run will change the contents of the database. Because each
test will require that the database be in its original state, you’ll need to
preserve a “clean” (unedited) copy at all times. Before each test run, you can
copy the original database over the edited version.

1. Copy the sesame.db file from the JavaStar\examples\namedb1
directory to the JavaStar\tutorial directory.

2. In the JavaStar\tutorial directory, copy sesame.db to test.db .
Now you have two databases in the tutorial directory—the sesame.db
master database, which you’ll keep clean and unedited, and the test.db
test that you’ll replace each time you run a test.

If you prefer to always copy the sesame.db file from the
JavaStar\examples\namedb1 directory, you just need to be sure that no
other users have access to that directory. If they do, they might inadvertently
load and use this database, corrupting the integrity of your tests.

Launching JavaStar

Before you launch JavaStar, make sure you are in your working directory.

Note – Your JavaStar work directory defaults to the directory where you
launch JavaStar. You can reset this default within JavaStar, however, this
doesn’t effect the default directory that appears when you open a file dialog
window. This becomes an issue when you are opening file dialogs from
within your application. But because JavaStar stores the file you open as a
path relative to your working directory, this is only an issue if you change
your working directory in a later test run.
12 JavaStar Tutorial—November 1998

Launching JavaStar from a UNIX Environment

1. If you are not already in the JavaStar tutorial directory, change to that
directory.

2. From the command line, type:

JavaPath javastar

For example, if you already have java defined in your system path, you
type:

java javastar

Note – If you get an error message stating that namedb cannot be accessed,
click OK to dismiss the window. You’ll define the proper path to namedb in
the upcoming section Creating a Project File.

Launching JavaStar from Windows 95 or Windows NT

♦ Double click on the JavaStar icon on your desktop, or choose JavaStar
from the Windows Program Manager.

Main Menu

If your launch is successful, you should see the JavaStar opening screen, with
the main menu displayed to the left:

Figure 2-1 JavaStar main screen
13

If you get the message Can’t find class javastar , check your
CLASSPATH setting to make sure the path to JavaStar is correct.

Creating a Project File

For the next several lessons, you’ll be working with the same working
directory and the same test application. To set your test environment defaults,
you’ll create a project file that stores information about the application under
test, your Java settings, and other information.

You can find the Project Settings panel on the main screen, to the right of the
main menu.

To create a project file for the tutorial:

1. Set the application settings for the project.

a. In the main screen, click on the Project Settings App tab.
The panel for application settings moves to the forefront. By default, the
application option should already be selected.

b. Set the Class field using the Browse... button.
Click the Browse button to bring up the file dialog. Navigate to the
\javastar\examples\namedb1 directory and double-click on the file
namedb.class .

The CLASSPATH field is automatically filled in with the path to the
application you selected.

2. Set the project test settings.

a. In the main screen, click on the Project Settings Test tab.
The panel for test settings moves to the forefront.

The default settings for the work directory and the results directory
(where JavaStar writes .log and other result files) appear in italics
beneath their respective text fields.

b. If your default work directory, results directory, and JST path settings
do not point to the tutorial subdirectory, change them accordingly.
You can use the Browse... button to navigate to the directory you want,
or type the path in directly. For example, if you are running JavaStar in a
Windows environment and used the default installation, type:

C:\SunTest\JavaStar\tutorial

for each path.

3. From the buttons along the bottom of the screen, choose Save As....
The window closes and your changes are written to the JavaStar properties
file.

4. Enter namedb.prj as the file name and save.
14 JavaStar Tutorial—November 1998

Recording a Script
Now you’re going to record a script that tests several functions of the Name
Database. Testing multiple functions in a single recorded test script isn’t
necessarily the recommended way to build tests—Chapter 2, “Using a Modular
Approach” discusses this in more detail—but for now it provides a tour of the
JavaStar features. It also gives you a deeper appreciation of why you’ll later
want to compose tests of many small scripts instead.

Because this process contains a lot of steps—click here, type this, click
that—this part of the tutorial is broken down into sections. These sections are
all part of one script, though, so you can’t selectively carry out sections and
have the script run properly. If you’re the type of person who learns best by
reading these instructions through before, instead of carrying them out, you’ll
find this organization a bit more readable.

Start Creating the Script

1. Start the application you want to test:

a. In the JavaStar main menu, click Create Test Script.
This opens the Create Test Script dialog. This dialog includes the same
fields in the Project Settings App panel; this is so you can override
settings for a session, or, if you have not defined a project file, define
settings to use while the Record/Playback window is open.
15

Figure 2-2 Create Test Script dialog

If you created a Project File as described in “Creating a Project File,” the
Class and Classpath fields should already be filled in.

b. Click the Advanced tab
This brings the advanced options to the forefront. See Figure 2-3 for an
example. Here you can override more project file settings, including the
directory settings you defined in the Project Settings Test panel. For now,
you’re just going to override the logfile name.
16 JavaStar Tutorial—November 1998

Figure 2-3 Advanced tab for Create Test Script

c. Change the Log file field value to tutorial.log .

d. Click Start to launch the application under test.
The Record/Playback window and the Name Database application open.
17

Figure 2-4 Record/Playback window

If namedb does not start
If you get the message:

There is some problem accessing the class classname. Either:

1. It is not in the CLASSPATH.
2. It is being accessed in the wrong way.
(e.g. String is invalid, java.lang.String is correct.)
18 JavaStar Tutorial—November 1998

Here are some things to try:

• Make sure your application path is reflected accurately in the Classpath
field (check your Project File, too). If you typed the path in directly, you
might try using the Browse button to navigate to the directory, so you can
be sure you have the latest path.

• Check that you spelled the application name correctly in the Class field of
the Application/Applet tab. Do not include the .class extension. Make
sure this class is the “main” class of your application. Use Browse to
navigate to the directory and make sure the .class file is still there.

Verify that you are using a fully-qualified class name. If your class is within a
package, be sure to type packageName.className.

2. Move the Name Database window to one side.
Position it as best you can (given your monitor size) so you can see both the
Record/Playback Window and the Name Database window. This makes it
easier to record your interaction with the application under test while
keeping the JavaStar controls accessible.

3. Begin record mode:

a. Click Record.
This brings up the Record Test Script dialog.

b. In the Create Script field, type TestNameDB.
This lesson does not use non-component locators or map files, so leave
the fields relating to these topics blank. The advanced JavaStar tutorial
for “Generating and Using Declarations” addresses Record with map
files, and 'Locators for Non-Components” describes Non component
locators.

This window also provides you with an option to toggle the Record with
delays checkbox. If you turn this feature on, JavaStar will record the time
of any delays between events and add this to the script. You can later
scale the delays using settings in Playback Options. For this script,
delays aren’t important, so you can leave this box unchecked.

Note – If you were recording a script that interacted with a Canvas
component, recording with delays would be a good idea. With a Canvas,
the speed of user interaction has an affect on the result, especially when
combined with the speed of the system on which you run the test. Taking
advantage of the delay feature gives you more control—you can later scale
that delay to compensate for system speed.

c. Click OK.
You’re now in record mode. Anything you do in a Name Database
window will be recorded to your script.
19

Opening the Test Database

The first step of the test will be to load the database into the Name Database
application. Whether or not this first step succeeds is critical to the integrity of
the test—if it does not succeed, your later results are compromised. To ensure
this doesn’t happen, you’ll insert a synchronization comparison.

JavaStar provides two types of comparisons: verifications and
synchronizations. The difference between the two is not in what you can
compare (that’s identical) but in how JavaStar responds to the results during
playback.

With a verification, JavaStar performs the comparison, evaluating the results as
you specified. If the verification fails, JavaStar checks the component again,
repeating until a specified timeout interval has elapsed. If the verification
hasn’t succeeded by the time the timeout expires, JavaStar logs this as a
verification failure and continues on with the test.

A synchronization works the same way with one exception—if the comparison
fails at the timeout, JavaStar throws an exception and the script ends
abnormally. Terminating the current script after a failed synchronization and
indicating that the termination was abnormal is important, because a
synchronization error requires recovery. (In the next chapter, you’ll learn how
to compose a test that automatically handles this kind of recovery.)

While you follow the steps in this section, the Record/Playback window
should be open and visible on your desktop. This window contains the
controls for recording (to the left) and dynamically displays the log file for this
session in the text panel to the right.

1. Make the Name Database window active.
Click on the border of the Name Database window.

2. In the Name Database window, open the test database.

a. In the Name Database window, click Open.
This brings up the file dialog window.

b. Open test.db .
If the file dialog doesn’t automatically open to the tutorial directory,
navigate to that directory. Select test.db from the list of files. Click
Open. The file dialog closes.

If you are following this tutorial on a UNIX system, you may be
prompted with OK instead of Open within the file dialog window.

Note – JavaStar doesn’t record specific mouse-clicks or movements because,
if it did, the tests wouldn’t be platform independent—what worked for a
UNIX file browser might not work for a Windows 95 file browser. By
passing only a relative file call to the dialog, JavaStar keeps your test
platform-independent, even if the file dialog itself is not.
20 JavaStar Tutorial—November 1998

3. Now, to setup a comparison to check that the right file is open, click
Synchronize in the Record/Playback window.
When you click Synchronize, JavaStar automatically pauses record mode.
The right portion of the window also changes to show prompts for the
operation you selected.

4. Set up the synchronize operation as follows:

c. Click on the component you want to verify in the application under
test—in this case, click on the Name Database - test.db label at the top
of the Name Database window.
Note that the text panel of the Synchronization window displays the
selection code. In addition, JavaStar flashes the component so you know
which one you chose.
21

Figure 2-5 Select for Synchronization

Selection code for the object you selected appears in the synchronization
select panel. Immediately below, JavaStar lists the default method of
synchronization, and gives you the option to choose the default or
customize the method of comparison.

The bottom panel displays the log file for this session.

d. Click Use default.
The panel changes to prompt you for a purpose for the comparison. The
object to compare and the method of comparison are displayed here, as
well.
22 JavaStar Tutorial—November 1998

Figure 2-6 Synchronization prompt for purpose

e. At the prompt to enter purpose below, type Continue only if
correct file loaded .
While you don’t have to type a purpose for the comparison, it can be
helpful to do so. JavaStar includes the purpose in the test results, making
it easier for you to evaluate results. Because this string also appears in
the script code, it can help you understand the script if you decide to
edit it in the future.

f. Click the Insert synchronization into test.
JavaStar returns you to the first synchronization panel.

g. In the left button bar, click Continue.
The right portion of the window changes to display recording data, and
record mode resumes.
23

Recording Text Input

1. In the Name Database main window, clear the display.
Click Clear. This only clears the display—it doesn’t remove the record that
displayed when you opened the database.

2. Enter record for Count von Count .

a. Click in the Name text field and type Count von Count

b. Using the TAB key to advance through the fields, enter the following
information into the remaining fields:

3. Click Add to update the database with this information.

4. Save the database.
Click the Save button.

5. Click Clear to clear the display.
This returns the application to a “neutral state” before proceeding to the
next step, where you’ll select this record from the names list and verify that
it displays accurately.

Checking the Search Operation

Now you’re ready to verify whether the search function will locate the record
you just added. As mentioned earlier, the verify option works similarly to
synchronize—the dialog is almost identical. The difference is how JavaStar
processes the two types of comparisons. Synchronizations that fail throw an
exception, but do not affect the pass/fail count for comparisons. In contrast,
verifications that fail do not throw exceptions (meaning that your test is not
interrupted) but JavaStar notes them as comparison failures in the test log.
Each type of comparison is useful in different situations.

For comparing the search results, a verification makes sense. If the search fails,
it doesn’t necessarily affect the integrity of the tests that follow. Noting the
failure in the log is sufficient.
24 JavaStar Tutorial—November 1998

This part of the test uses two types of verification:

• A verification of the search results list
• A verification of each field of the record

When you verify the search results list, you’ll be looking for the number of
items returned by the search. For this exercise, you’ll obtain that value using
the VerifyAny feature to compare the return values for any of the component’s
methods and variables. You’ll compare the return value of the list component’s
getItemCount() .

To verify each field of the record that the search operation returns, you’ll use
the “using text” option. This is the same option you used when synchronizing
to the database filename.

1. To bring up the Search window, click Search in the Name Database main
window.

Figure 2-7 Search window

2. From the select criteria choice list, choose address2.
This operation will now only search the address2 field.

3. In the contains strings field, type Transylvania .

4. Click Search.
25

5. Verify the number of items returned by the search:

a. In the Record/Playback window, click the Verify button.
The right portion of the window changes to show the first verification
panel: select an object to verify. This panel is very similar to the
Synchronization panel you worked with earlier.

b. In the Name Database search window, click on the search results list
as your object to verify.
The selection code for the list appears in the verification panel. The
default method for this component (a List) is “enabled.”

Note – At this point, instead of selecting a object—or to override an object
you already selected—you could toggle on the All visible windows option.
This option would instruct JavaStar to verify all objects in all visible
windows for your application under test. For this example, though, you
need specific information on a single component, so leave this option
unchecked.

c. In the Verification panel, click the Customize button.
The panel changes to show the object to verify and to prompt for a
verification method.

Figure 2-8 How to Verify panel

d. Select Using Simple Methods and Data Members.

e. Click the button Select Simple Methods and Data Members.
The panel changes to show you a list of all available simple data
members and methods, sorted by name.
26 JavaStar Tutorial—November 1998

f. Scroll through the method list to locate int getItemCount() , and
select it.
To select the method, click anywhere on the line other than on the
returns button. A black bar highlights the line to let you know it is
selected. You can select multiple lines when you verify using simple
methods and data members, and JavaStar will compare them all. For this
exercise, though, you’ll only compare getItemCount() .

If you want to preview the return value to make sure this is the correct
method, click the returns button next to the name. This shows you the
current return value based on your interaction with the application—in
this example, the return value should be new Integer(1) .

Figure 2-9 Select methods to use for verification

g. Click the Enter a purpose button.
The panel changes to show you the object you selected for comparison
and the comparison method. It also prompts you for a string to identify
the purpose for the comparison.

h. Enter Verify number of items found in the purpose field.

i. Click Insert verification into test.

6. In the Record/Playback window, click Continue to resume recording.
Note that the log shows this line of code added to the script:

JS.frame("Search").member("java.awt.List").verifyAnyMethod
(this,false,true,"getItemCount",new Integer(1),
"Verify number of items found");

This code uses the verifyAnyMethod() method from the JavaStar API
library.

7. Select the search result and click View result.
The record is displayed in the Name Database main window.
27

8. Set up a series of comparisons to ensure that the contents of each field for
this record is correct.
Here you’ll do verify operations instead of a synchronize, because even if
one field fails the test during playback, you want the test to continue on and
test the others.

a. Go back into verify mode.
Click Verify.

b. Click inside the Name text field to select it.
The field flashes to confirm your selection, and the code displays in the
verification window. The verification panel shows “using text” as the
default method of comparison, meaning that if you use the default,
JavaStar will compare the text inside the field (not the field label).

c. Click Use default.
The panel changes to prompt you for a purpose.

d. In the purpose field, type Verify text entry .

e. Click Insert verification into test.
This adds the verification code to your script:

JS.frame("Name
Database").member("namedb").member(“java.awt.TextField”
, 0).verify(this,"Count von Count", "Verify text
entry");

JavaStar returns you to the first Verification panel so you can specify
more verify operations.

f. Set up verifications for the remaining text entry fields by clicking
inside each field, clicking Use default, then clicking Insert verification
into test.
The type of comparison and the Why string remain the same as long as
you keep the Verification window, so you don’t have to reset these for
each field.

g. Click Continue to resume recording.

9. Close the Search window of the Name Database.

What if you need to create a test before the application performs the correct
computations?

You might need to create a test that exercises a feature of the product that, at
the time you create the test, returns an incorrect value. If you insert a
comparison (whether a verification or synchronization) you will be setting the
test to compare to an incorrect value—meaning that as long as the tested
28 JavaStar Tutorial—November 1998

feature returns the wrong value, the test will pass. What can you do to create a
test that checks for values that are not yet correct at the time you record the
script?

In this case, you can manually edit the script and replace the string JavaStar
uses for comparison with the correct text. Because this is a text comparison,
this is relatively easy to do. You’ll learn how to edit scripts in the chapter
“Adding Parameters for Flexibility.”

Ending Record Mode

1. In the Name Database main window, click Clear.
This returns the application to a neutral state. It’s a good idea to end your
scripts in a state you can anticipate, especially if you plan on running one
script after another, as in the case of a composed test.

2. In the Record/Playback window, click Stop.
JavaStar saves the script as a .java file and compiles the code into a
.class file. It writes these files to your work directory.

3. Quit the Record/Playback window.
JavaStar will prompt you for confirmation that you want to quit. Once you
respond affirmatively, JavaStar closes both the Record/Playback window
and the application under test.

Running the Test
You can playback tests using the Run Test option of the main menu or using
the Playback button in the Record/Playback window. However, if you had
played your script back immediately after recording it, the results would be
added to the same log file that contains your recording log. Mixing these
results means less readability and a larger log, so, in general, playing back
immediately after recording is reserved for when you want to debug your
script.

When you use Run Test, JavaStar creates a new log file and launches the test
application again, in a fresh state.

1. Copy the original sesame.db to test.db , replacing the existing file.
This ensures that you start with a clean database. You can do this without
exiting JavaStar. For example, on a UNIX system, you can copy the file in a
shell. In Windows, you can copy the file in Windows Explorer.

Note – You’ll need to copy sesame.db over test.db repeatedly during the
course of this tutorial, as you run and re-run tests. You might want to create
a batch file or shell script that refreshes the database for you, to save some
typing in subsequent exercises.
29

2. From the JavaStar main menu, click Run Test.
The Run Test window opens.

3. In the Test name field, type TestNameDB.
In this example, the script does not take any arguments so you can leave the
Test args field blank.

4. Click the View tab to see view options.
These three check boxes are where you determine whether you want to see
the JavaStar windows along with the application window (necessary if you
want to use JavaStar controls), just the application window, or neither one.

Keep Show application and playback window checked so you can watch the
progress through the script. If you run a script later on and don’t care to use
any controls, you can choose the Don’t show playback window option. The
last option, Don’t show application and playback window is more useful
when you run tests from the command line. When you’re running the
JavaStar GUI, you’ll need to use the Status Monitor to find out when your
script finishes running.

5. Click the Advanced tab to see more options.
The advanced options include any additional classpath you need to use for
this test run, Java arguments you want to insert, the log file name, the
working and results directory, and the JST path. You can leave these with
their default values for this test run.

6. Click Start.
Because you did not specify a log file name, JavaStar automatically opens a
log file using the format testname.log (which, in this case, translates to
TestNameDB.log).

JavaStar opens the Record/Playback window and launches the test
application. In contrast with how the Record/Playback window looked
while you were recording, it now shows two text panels—one for the
JavaStar script that is executing, and the other for the log file. As the script
runs, the code scrolls through the upper panel. The current line number
shows in the Location information, and this line is also highlighted in the
text panel. See Figure 2-10.
30 JavaStar Tutorial—November 1998

Figure 2-10 Record/Playback window during playback

At the end of the test, the Record/Playback window stays open, and you can
see summary information in the log file panel. See Figure 2-11.
31

Figure 2-11 Record/Playback window with test run summary

7. When the script finishes, quit the Record/Playback window.

Viewing the Results
The last thing to do is to examine the results of the test run. This section shows
you how to view and filter the results of a single script.

1. From the JavaStar main menu, click View Test Results.
The Results Viewer opens. If you just ran the TestNameDB script, the
Results Viewer should have this script already loaded.
32 JavaStar Tutorial—November 1998

Figure 2-12 Results Viewer

The Summary for TestNameDB should show 1 normal condition and 7
verifications that passed. The normal condition tells you that the script itself
ended normally—the synchronized comparison did not throw an exception.
If this was a test composed of multiple scripts, you might see several
normal conditions and some exception conditions in the summary, because
JavaStar tracks the end state of each script.

A verification error can occur in a number of circumstances—such as when
JavaStar can’t find an auxilary file it needs for the test—and you should
check the log file for a specific message. JS.check pass/fail conditions reflect
the results of custom code that you can insert (using the JavaStar API check
method of the JS class) to track your own conditions. You did not add any
custom code to the test you just ran, so all the values are 0.
33

Note – The chapter “Using the JavaStar API” discusses the JavaStar API and
shows how you can incorporate API methods into your scripts.

2. Examine the log file entries in the Details panel.
Here you can see the comparisons this test executed. The Results Viewer
displays these in brief form, because the Shortened lines option is selected,
by default. The + sign next to each event means that you can see more
information by clicking on the line to expand it. Experiment with
expanding and contracting this information, or turning off Shortened lines
and reloading the file to see complete information for each event.

3. To see process information, toggle the Process Information checkbox on,
then click ReLoad.
You can find the Process Information checkbox at the bottom of the Details
panel.

By default, the Results Viewer filters out:

• Event details
• Timestamps
• Process information

Event information is the logging of each event in the script—this
information takes up a lot of space and isn’t always useful. Timestamp
information shows you when each event executed. Process information
shows when the test started, what the name of the test is, what playback
options were in effect for this test run, what directories you used, and the
environment under which you ran the test.

Whenever you change checkbox settings, you need to reload the log file for
the new filter settings to take effect.

4. When you’re done examining the results, click Close.

What These Results Didn’t Illustrate

This example of the Results Viewer doesn’t show the full value of the tool,
mainly because it does not demonstrate results for nested JST (JavaStar Test, or
composed test) files, and there were no failures in this test.

In later chapters, you’ll see how JavaStar shows results for JSTs within an
expandable/collapsible tree, and the summary information will be more
helpful. Comparison failures are harder to demonstrate, because you’d have to
edit the script to force it to fail in order to move through failures using the Next
Failure button. Refer to the chapter “Viewing and Analyzing Results“in the
JavaStar User’s Guide for details on viewing failures and updating comparisons.
34 JavaStar Tutorial—November 1998

Summary
This chapter covered the basic features of JavaStar. After doing the exercise
that follows (creating a script to test the Search window) you should feel fairly
comfortable recording and playing back scripts, as well as viewing their
results.

The next chapter describes the JavaStar test model, and why it makes sense to
design tests using the principles of this model.

Exercise: Testing the Names Window
Now that you’ve created a script that tests the Search window, you’re ready to
do the same with the Names window.

Instructions

Write, run, and view the results for a script that:

1. Loads the test database

2. Displays the names of records in the Names list

3. Selects and displays the Count von Count record in the main window

4. Verifies that the text for each field is correct.

Solution

To see a solution for this exercise:

1. Copy TestNames.java and TestNames.class from the
\JavaStar\tutorial\getStarted directory into your work directory.

2. Use Run Test to playback the test and View Results to examine the log.
35

36 JavaStar Tutorial—November 1998

Moving to the JavaStar Model 3
This chapter introduces you to the JavaStar test model and describes how this
model effects the way you create your scripts.

Topics:

• About the Model
• Deficiencies of the Previous Approach
• Making Tests More Robust

About the Model
Now that you’re familiar with the basic features of JavaStar, you can focus on
learning the test model that helps you get more power out of JavaStar. The
“Getting Started with JavaStar” chapter didn’t focus on design, just mechanics.
After following the lesson, you ended up with a long test (TestNameDB)
which, while exercising certain features of the Name Database, isn’t
particularly useful for building additional tests.

To introduce you to the JavaStar test model, this tutorial will step you through
the re-design process for TestNameDB. This way, you can see the impact the
design has on a test that was originally not very flexible. The chapters that
follow contain lessons that demonstrate:

• Using declaration files to make GUI maintenance easier

• Making scripts modular so they can be used in multiple tests

• Passing data as arguments instead of hard-coding it

While three chapters of lessons may seem like a lot, once you’re familiar with
the model, you’ll find you can develop the initial tests quickly. Tests that build
on top of your initial tests will be much faster to create, as well, because you’ll
re-use existing modules.
37

Deficiencies of the Previous Approach
After recording TestNameDB, you’re probably all too familiar with how
tedious it can be to record a long script from start to finish. This may be
especially true if you encountered a problem and had to do the script over. It’s
a painstaking process that yields an awkward test.

Some of the deficiencies of TestNameDB are:

• There is no abstraction from the interface of the application under test. If
one or more components of the application under test change, you have to
update every reference to the modified components.

• The script combines several tests into a single script (loading a database,
adding a new record, and verifying the record using the search window).
This:

• Makes the script difficult to record without making an error.

• Limits re-use potential, because you can only re-use this script if you
want to test these three functions in this same order. Otherwise, the
script isn’t useful beyond one test run per application release.

• Outputs results that are long and hard to navigate. JavaStar provides a
feature that jumps ahead to each failure, but if you’re looking for
something other than failure, wading through these results is tough
work.

• The script uses hard-coded data, not allowing you to test the same features
with different data—unless you want to maintain copies of the script that
use different data.

Fortunately, each of these deficiencies can be overcome with a change of
approach.

Making Tests More Robust
You can make your tests easier to create and maintain by:

• Writing Tests Using Declaration Files

• Making Tests Modular

• Passing Data as Arguments
38 JavaStar Tutorial—November 1998

Writing Tests Using Declaration Files

Using JavaStar, you can generate declaration files for your application’s GUI in
a matter of minutes. These files contain the declarations for each GUI
component. Once you’ve created the files, you can record scripts that reference
the declaration files.

What this does is provide you with a level of abstraction. You can change the
names of the declarations (possibly make them more meaningful for test
purposes) and incorporate the new names into the tests you record. If the user
interface changes—for example, if a component changes type, name, or
position—you can update the declarations file to reflect the change, and your
tests will automatically reference the new information.

When you use declaration files, your tests require less direct maintenance,
resulting in a significant time savings.

Making Tests Modular

Writing tests as small modules that exercise a specific feature—perhaps a single
component—is a lot like creating building blocks. Alone, the scripts don’t do
much, but when combined with other scripts, you can create many
combinations.

In the case of TestNameDB, there are many options for breaking the test down
into smaller scripts. As it stands, the test performs the tasks of loading a
database, adding a record, and verifying the record through a search
mechanism. Each of these tasks is made up of smaller actions, such as entering
data or clearing the display. These tasks and actions, when separated into
different scripts, create a strong base of re-usable test material.

To take advantage of smaller scripts, JavaStar provides a Test Composer. Using
this feature, you can link scripts together, defining the order and test
conditions for execution. You can also define certain scripts as restart nodes for
error recovery. The files you create in the Test Composer, called JavaStar Test
(JST) files can be nested to build more sophisticated test suites.

Passing Data as Arguments

Because you can perform the same test with different data and get different
results, it makes sense to keep your tests as independent of the data as
possible, and make it easy to change the values you feed them. With JavaStar,
you can do this easily by replacing data in the scripts with references to
arguments, then passing the data to a script using the parameter feature of the
Test Composer. The source of the parameter can be a parameter passed into the
JST, a constant defined in the JST, or a value read from a property file.

Using arguments is an important part of making re-usable test modules.
39

Summary
This chapter introduced you to the basics of the JavaStar model. The lessons
that follow demonstrate how to put this model into action with the test you’ve
already created. While the tutorial provides you with files for each chapter so
that you can skip around, it is probably easiest to understand the model by
following the evolution through all three chapters.
40 JavaStar Tutorial—November 1998

Generating Declarations 4
This chapter shows you how to generate declarations from your test
application and use these in your test to create a more robust test suite.

Topics:

• About this Lesson
• Setting Up for this Lesson
• Debugging Test Run Errors Caused by GUI Changes
• Designing a Suite to Use Generated Declarations
• Generating Declarations
• Modifying Declarations to Use Abstracted Names
• Recording New Scripts that Use Declaration Files
• Summary

About this Lesson
For automated tests to really save you time, they need to be easy to maintain as
your program under test changes. If you have to tinker with each script—or re-
record it—because one component changes, you’re likely to wonder if you’re
really saving time. This chapter shows you how to generate declarations—a
feature JavaStar provides to make it possible to update a whole collection of
tests by simply editing one file they all reference.

Generating declaration files is best done as the first step in creating your
scripts. JavaStar includes a feature for automatically incorporating declaration
files while recording, but for it to work, you must generate the declaration files
before recording the scripts.

As an introduction, this lesson shows you the impact simple GUI changes can
have on your application under test, then guides you through the process of
modifying your test to be more dynamic. Upon completing this chapter, you
should know how to:

• Identify test-run problems caused by changes to the application under test.
• Generate declarations for an application under test.
• Modify declarations to create abstracted component names.
• Record a script that uses declaration files.
41

Setting Up for this Lesson
For this lesson, you’re going to start with a different version of the Name
Database application. If you look in the examples subdirectory of the javastar
directory, you’ll see that there are three name database directories: namedb1,
namedb2, and namedb3.

Up to this point, you’ve worked with namedb1. This version corresponds to an
initial development version. The namedb2 version represents a development
update to namedb1, with GUI modifications. The tutorial doesn’t address
namedb3.

1. Copy the original sesame.db over test.db .

2. If you did not do the exercises in the chapter “Getting Started with
JavaStar”, or if you no longer have these tests in the your directory, copy
the contents of \tutorial\gettingStarted to \tutorial .

3. Launch JavaStar.
The JavaStar main screen opens, loading the last project file you used. If this
is not namedb.prj, the file you created in the chapter
“ Getting Started with JavaStar,” open namedb.prj before continuing.

4. Create a project file for the namedb2 application.
You can do this by modifying the namedb.prj file:

a. Click the App tab to bring the panel forward.

b. Delete the contents of the Classpath field.
This prevents JavaStar from appending a classpath to the existing one
when you select a new application.

c. Click the Browse button for the Class field.

d. In the file dialog, navigate to the \javastar\examples\namedb2
directory and double-click the namedb.class file.

e. From the buttons that appear along the bottom of the screen, choose
Save As....

f. Save the file as namedb2.prj.

Debugging Test Run Errors Caused by GUI Changes
Declarations address problems that arise when the components in the test
program’s GUI change during development.

1. From the JavaStar main menu, click Run test.

2. For Test name, type TestNameDB.
42 JavaStar Tutorial—November 1998

3. Start the test.
Watch the Name Database main window as the test executes. It fills in each
field with the test data until it gets to the Phone field—then it skips to the
Email field and enters the phone information there (see Figure 4-1 on page
43).

Figure 4-1 Name Database main window during playback

Once the test fills in the Other field, it attempts to Tab to the next field. Here
is where it pauses, then (according to whatever timeout value you have
selected) the script ends. The Record/Playback window shows the
exception thrown by the script.
43

Figure 4-2 Record/Playback window with exception information

4. Investigate the problem.
The Record/Playback window provides the following information on the
failure:

suntest.javastar.lib.GUINotFoundException: JS.frame("Name
Database").member("namedb") - only 5 members of type
java.awt.TextField

at TestNameDB.play(TestNameDB.java:50)

TestNameDB playback completed abnormally.

From here you can see that JavaStar found only five TextField components,
not the six TextFields that the script expected. This tells you where the
script failed, but not why it passed up the Phone field. Your next step is to
find out the type of the Phone field.
44 JavaStar Tutorial—November 1998

5. Inspect the GUI.
You can examine any component of your GUI without leaving
Record/Playback mode and without having to examine the script. At this
point, while your test has stopped, the Record/Playback window is still
open. To examine the GUI:

a. Click Interact.
This allows you to work directly with the application without recording
or playing back a script.

b. Click the Inspect button.
This button appears in the lower left button panel. It is enabled only
after you select Interact. Clicking Inspect opens the “Select an object to
inspect” panel in the right side of the window.

c. Click in the Phone field of the Name Database.
You may need to drag the test program to one side to see both windows
at once. When you click in the text field, the field should flash to confirm
your selection. The code for the selection also appears in the Select an
object to inspect panel.
45

Figure 4-3 Select for Inspection window with Name field selected

This code shows:

(TelephoneTF) -
JS.frame("Name Database").member("TelephoneTF");

This code reveals the problem: The TestNameDB script is trying to enter
the phone data into a text field, but the application has been modified to
change the Phone TextField to a component of type TelephoneTF. Unable
to enter a string into a TelephoneTF, the script skips to the next TextField
(Email) and enters the text field there. By the time it attempts to enter
data for the Other field, no more text fields remain.

To fix this problem, it seems you have to examine every reference to the text
fields in this window and edit the component references to accommodate
the type change. If you had multiple tests, that could be a lot of work.
However, if you had generated component declarations for the application,
you’d only need to change one file to update all scripts to use the correct
types.
46 JavaStar Tutorial—November 1998

6. Click Stop to end inspect mode.

7. Quit the Record/Playback window.

Designing a Suite to Use Generated Declarations
This case illustrates one problem that declarations can handle: making quick
updates to accommodate changes to a component type. However, this isn’t the
only case where declarations are useful. For example, in the case of
buttons—where JavaStar references the button using the actual label—you
would have a problem if you renamed the button. Your tests would fail and
you’d be left with the task of updating all scripts to use the new button label.

Here’s how generated declarations provide a solution:

1. At one time, you generate a declarations file for each window of your
application. This step is as simple as pointing and clicking—JavaStar does
all the work. You can store all the declarations files for a test program in a
package for convenience.

2. You edit the declarations file to use abstracted names for the components.
Instead of referring to a field by a number, you can reference it by name.

3. You reference the declaration files at the time you record scripts, so that
JavaStar automatically imports the declarations into the test it creates and
records component references using the new abstracted names.

4. When a component changes in the application, you open the file where the
component declaration is stored, edit it to reflect the change, and then save
and compile. All scripts that reference that component now automatically
reference the new information.

Generating Declarations
1. From the JavaStar main menu, select Create Test Script.

2. Enter namedb as the Class name.

3. Click Start.

4. Once the Record/Playback window is open, click the Declarations button.
This opens Generate Declarations instruction dialog, giving you
information on how to select components. You can leave this dialog open or
dismiss it by clicking OK.

5. Select the main window of the Name Database as your component.
Move your cursor over the main window and press Ctrl-Alt-F10.

A new Generate Declarations window opens, prompting you for a package
name and a class name.
47

6. Type NameData in the Package field.
You’re not required to enter a package name. If you don’t define a name,
JavaStar stores the class containing the declarations in the working
directory. If you do define a package, JavaStar stores the declaration classes
within a directory named for your package, stored a subdirectory of your
working directory.

7. Type MainWin in the Class field and click OK.
The log file in the Record/Playback window (see Figure 4-4) shows the
components JavaStar writes out to the class you specified. Generating
declarations for a window is that simple.

Figure 4-4 Record/Playback window while generating declarations
48 JavaStar Tutorial—November 1998

8. Generate declarations for the Names and Search windows.
To do this:

a. Click the Names button to open the window.
Put your cursor over any part of the Names window and press Ctrl-Alt-
F10.

b. In the Generate Declarations window, keep the package name the
same and type NamesWin for the class name. Click OK.

c. Repeat this process for the Search window, saving the declarations to
SearchWin .

9. Stop the generate declarations process.
In the Record/Playback window, click Stop.

10. Quit the Record/Playback window.

Modifying Declarations to Use Abstracted Names
The code for the Name Database application does not define names for the text
fields. In lieu of names, JavaStar refers to them by their order—for example,
textField1 , textField2 , and textField3 .

Ideally, the code would name the components. However, if the code you’re
testing uses default names for text fields, you can add your own by providing
abstracted names in the declarations file. You do not have to do this in order to
gain benefits from using declarations, but this provides an extra bonus. Using
names makes scripts easier to modify, and logs easier to decipher. Updating the
declarations to reflect GUI modifications is also more straightforward.

Note – When you change names in a declarations file, be sure to search to
find any additional references to the original name, and update these, too.

Whether you use abstracted names or not, you always need to save and
compile declarations after generating them. JavaStar creates on the .java files
when you generate declarations, not the .class files.

Editing MainWin Declarations

1. From the JavaStar main menu, select Edit Test Script.

2. Load the MainWin.java declarations file.
You’ll find this in the NameData subdirectory of tutorial .

3. Locate the declaration for the first text field.
Scroll down through the file until you find the line:
49

/* TextField */
public static JSComponent textField (){
return Namedb().member("java.awt.TextField", 0);
}

Note – The code to change and the replacement code is set in bold type for
these examples. It won’t appear in bold in the Script Editor window.

4. Replace the default textField name with a field-specific identifier.
Change textField() to nameTextField() . Your code should read:

/* TextField */
public static JSComponent nameTextField (){
return Namedb().member("java.awt.TextField", 0);
}

5. Edit the declarations for the other four text fields.

a. For the second text field, replace textField2 with
address1TextField .
Replace:

/* TextField */
public static JSComponent textField2 (){
return Namedb().member("java.awt.TextField", 1);
}

With:

/* TextField */
public static JSComponent address1TextField (){
return Namedb().member("java.awt.TextField", 1);
}

Note – When replacing “textField ”, don’t forget to include the number
that follows it.

b. For the third text field, replace textField3 with
address2TextField .
Replace:

/* TextField */
public static JSComponent textField3 (){
return Namedb().member("java.awt.TextField", 2);
}

With:

/* TextField */
public static JSComponent address2TextField (){
return Namedb().member("java.awt.TextField", 2);
}

c. For the fourth text field, replace textField4 with emailTextField .
Remember that the Telephone field is no longer a TextField object, so
we’re not editing that declaration.

Replace:
50 JavaStar Tutorial—November 1998

/* TextField */
public static JSComponent textField4 (){
return Namedb().member("java.awt.TextField", 3);
}

With:

/* TextField */
public static JSComponent emailTextField (){
return Namedb().member("java.awt.TextField", 3);
}

d. For the fifth text field, replace textField5 with otherTextField .
Replace:

/* TextField */
public static JSComponent textField5 (){
return Namedb().member("java.awt.TextField", 4);
}

With:

/* TextField */
public static JSComponent otherTextField (){
return Namedb().member("java.awt.TextField", 4);
}

6. Save and compile.
A dialog is displayed when the compile succeeds.

Editing SearchWin Declarations

1. Load SearchWin.java into the Script Editor.

2. Scroll down to locate the declaration for the textField component.
This is the contains strings field:

/* TextField */
public static JSComponent textField (){
return SearchPop().member("java.awt.TextField");
}

3. Change the component name to a field-specific identifier.
Change textField() to containsStrTextField() .

/* TextField */
public static JSComponent containsStrTextField (){
return SearchPop().member("java.awt.TextField");
}

4. Save and compile.
51

Editing NamesWin Declarations

The Names window doesn’t contain any text field components, so you don’t
need to edit the contents of NamesWin. You do, however, need to compile the
.java file.

1. Load the NamesWin.java declarations file into the Script Editor.

2. Save and compile the script.

3. Close the Script Editor.

Recording New Scripts that Use Declaration Files
For this part of the lesson you’ll create a small script that exercises several
components. Because you’ll be re-designing TestNameDB in the next lesson,
this test serves as an example and is not one you’ll keep in the revised test
suite. All the tests you create from this point in the tutorial will use the declaration
files.

Note – If you want to use declaration files with existing tests, you can
modify the code manually to incorporate them. For instructions, see the
chapter, “Generating and Using Declarations” in the JavaStar User’s Manual.

1. From the main menu, choose Create Test Script.

2. Start the namedb application.

3. Click Record.

4. In the Create script field, enter SimpleAdd .

5. To the right of the Record with map files field, click the Map list… button.
The Select Map Classes dialog is displayed. Map is another name for
declaration files.

6. Using the file panel in the left portion of the window, navigate to and
expand the \tutorial\NameData directory.

7. Select each of the declaration files and add it to the list.

a. Click on MainWin.class .
The class name appears in the upper right panel as the current item.

b. Click the Add to list button.
MainWin.class is added to the list in the right panel and to the field at
the bottom of the window.

c. Repeat Step a and Step b for NamesWin.class and
SearchWin.class .

8. In the Select Map dialog, click OK.
52 JavaStar Tutorial—November 1998

9. In the Record test script dialog, click OK.

10. In the Name Database window, open the test.db file.
Click Open, locate and select test.db , and click Open again.

11. In the same window, click Clear.

12. Enter a new record into the name database.
Type data into each field of the record and click Add.

13. In the Record/Playback window, click Stop.

14. Examine the play() method of the script (shown in the log panel to the
right of the Record/Playback window) to see the declarations.
Though the mouse coordinates may differ in your code, the beginning lines
of play() should look similar to this:

public void play(String[] args) throws Throwable {

NameData.MainWin.Open().buttonPress();

NameData.MainWin.frame().dialog("Open").relativefile(".",
"test.db");

NameData.MainWin.Clear().buttonPress();

NameData.MainWin.nameTextField().mousePressed(27,11,16);

NameData.MainWin.nameTextField().mouseDragged(25,10,0);

NameData.MainWin.nameTextField().mouseReleased(25,10,16);

NameData.MainWin.nameTextField().typeString("Alix", 0, 0);

NameData.MainWin.nameTextField().keyPressed(9,'\t',0); /* Tab
*/

The same test recorded without using the declaration files would look like
this:

public void play(String[] args) throws Throwable {
JS.frame("Name Database").button("Open").buttonPress();

JS.frame("Name Database").dialog("Open").relativefile(".",
"test.db");

JS.frame("Name Database").button("Clear").buttonPress();

JS.frame("Name
Database").member("namedb").member("java.awt.TextField",
0).mousePressed(21,5,16);

JS.frame("Name
53

Database").member("namedb").member("java.awt.TextField",
0).mouseReleased(21,6,16);

JS.frame("Name
Database").member("namedb").member("java.awt.TextField",
0).typeString("Alix", 0, 0);

JS.frame("Name
Database").member("namedb").member("java.awt.TextField",
0).keyPressed(9,'\t',0); /* Tab */

15. Quit the Record/Playback window and confirm that you want to end all
processes.
Click Quit, then click OK in the confirmation dialog.

Summary
How you use declarations is up to you—you can use them just to provide
control over components that change during the course of development, or you
can also add a level of abstraction that makes tests more readable. Whatever
you decide to do, using declarations as a regular part of every test suite makes
it easier to change and maintain tests as the application under test evolves.

The next chapter shows you how to re-record the test conditions in
TestNameDB as re-usable modules.
54 JavaStar Tutorial—November 1998

Using a Modular Approach 5
This chapter introduces the JavaStar test model by guiding you through the
analysis and definition of a modular test.

This lesson analyzes the work from the previous lesson to see how the test can
continue to be improved to follow the JavaStar model. In the process, you’ll be
introduced to the Test Composer, a key JavaStar feature supporting modular
test development.

This chapter assumes you have basic familiarity with the JavaStar recording
controls.

After completing this lesson, you should be able to:

• Analyze a test to see how it would best benefit from a modular approach
• Define a JavaStar Test (JST) using the Test Composer
• Record small scripts that work together in larger tests
• Navigate through the results of a JST in the Results Viewer

Topics:

• Setting Up for This Lesson
• Improving Your Tests with a Modular Approach
• Composing Tests
• Recording Individual Scripts
• Running Tests
• Viewing Results from a JST
• Summary
• Exercise: Making the Names Test Modular

Setting Up for This Lesson
If you are continuing from the previous lesson, all you need to do to prepare
for this lesson is to:

1. Copy the original sesame.db over test.db .
This returns the database to a clean state, without the records added by
recent test runs.
55

2. In the JavaStar main screen, click on the Mapping tab of Project Settings.
The mapping options panel moves to the forefront..

3. Enter the declaration filenames into the Declaration classes field.
If you are working in a Windows environment, use a semi-colon as a
delimeter between filenames. For a UNIX environment, use a colon.

On Windows 95, for this example, you enter:

NameData.MainWin;NameData.NamesWin;NameData.SearchWin

4. In the Declaration classpath field, type the path to the declaration files.
For example, if you are running under Windows and you used the default
setup for the JavaStar installation, you would enter a path of:

c:\suntest\javastar\tutorial

Note – Because NameData is a package, do not point directly to the
NameData directory—if you do, JavaStar will try to find a NameData
package within the NameData directory, and will return compile errors for
your scripts.

5. Click the Save button to save changes.
JavaStar will now provide your list of declaration files into the Record with
map files field by default, so you don’t have to enter it every time you
record a new script.

If you have not done the previous lessons:

1. If you have not already done so, follow the instructions for Setting up
JavaStar as described in the chapter “Generating Declarations.”

2. If you did not do the lesson in chapter Generating Declarations, then:

a. Create a directory within the tutorial directory called NameData.

b. Copy the contents of the \javastar\tutorial\NameDataDecls into
\javastar\tutorial\NameData .

3. Copy the contents of the \javastar\tutorial\declarations
directory to \javastar\tutorial .
56 JavaStar Tutorial—November 1998

Improving Your Tests with a Modular Approach
The script in “Getting Started with JavaStar” tested a variety of functions in the
Name Database:

• Loading a database
• Adding a new record
• Verifying the new record using the Search window

These are valid tests, but, as mentioned in the chapter “Moving to the JavaStar
Model,” putting so many tests into a single script makes the test difficult to
record and even more difficult to re-use. This lesson begins by examining
TestNameDB closely and seeing where it can be broken down into modules,
represented by individual scripts.

Looking at the Name Database Example

If you look at the last test closely, you’ll see that it:

• Loaded a file

• Opened the file dialog, loaded the file
• Verified the database name loaded

• Added records

• Cleared the display
• Entered field data
• Clicked the Add button

• Cleared the display

• Verified the name in the Search window

• Opened the Search window
• Selected search criteria
• Entered search data
• Clicked search
• Selected search result
• Verified the number of records returned
• Viewed the result in the main window
• Verified the contents of the record as displayed
• Closed the search window

• Cleared the display

Loading files, adding records, and verifying entries are likely to be operations
that you do repeatedly in the test suite. By breaking these operations out into
different scripts, you create more manageable files that you can then re-
assemble in different configurations, based on how you want to test the
application.
57

In addition, by breaking the tests down further to the second level of bullets,
you can develop a number of test modules. You’ll have more pieces to work
with, but also much more flexibility in how you can combine them to form
new tests.

For this lesson, you’ll start re-defining the tests for Name Database, starting
with a high-level definition in the Test Composer.

Using the Test Composer

The JavaStar Test Composer provides you with a graphical, point-and-click
way to define and assemble scripts into JavaStar Test (JST) files.

JavaStar refers to each module in a JST file as a test node. Nodes are either
scripts or other JST files that execute under the conditions you define.

Nodes are connected by arrows that define their relationship to each other in
the overall test graph. Connections appear as either green normal arrows or
red exception arrows. These connection types—normal and
exception—indicate the conditions under which the test pointed to will run.

For example, if you have a node called PopulateDB that adds a series of
records to your database, and if those records are needed for the rest of the
tests to continue properly, you probably want to define a normal and an
exception condition.

By drawing a green arrow from PopulateDB to ChangeRecord (the first script
of the rest of the test) you specify that JavaStar will execute ChangeRecord only
if PopulateDB ends normally. If you then draw a red exception arrow from
PopulateDB to another test node call LoadPopulatedDB—one that loads a
database that already has these records included—you specify that if
PopulateDB ends with an exception, the test should run LoadPopulatedDB.

You can then draw a normal, green arrow from LoadPopulatedDB to
ChangeRecord, and your test has built-in recovery.
58 JavaStar Tutorial—November 1998

Figure 5-1 A sample JST

When you do not define an exception node—for example, if you defined
PopulateDB to have only a normal connection to ChangeRecord—JavaStar will
terminate playback when the exception is thrown. If you set up a long series of
tests to run overnight, and you did not catch a recoverable condition, you’ve
then lost valuable test time.

Defining test conditions is just one of the ways the Test Composer helps you
create powerful tests. Using this tool, you can also define any node as a restart
node. Restart nodes specify that the application will restart before executing the
node. This is particularly helpful for recovery nodes.

The Test Composer also provides many controls for passing parameters to
individual nodes and to the JST file itself. This dramatically increases the
flexibility of your tests, making it easier to create one test that works in a
variety of situations, all defined by parameters you specify in the JST file or at
the time you run the test. This feature is explored in detail in the next chapter.

Composing Tests
One of the handy features of the Test Composer is that you can compose tests
before you write the scripts that make up the test. Defining the JST files first
can help you determine which scripts you need to write, whether they will be
re-usable, and, later on, when you can re-use a test by adding parameters.

For this part of the lesson, you’re going to use the Test Composer to compose
three JavaStar Tests:

• Entering a Record
• Verifying Search Results
• The Acceptance Test
59

The first two tests represent the major areas covered by the script you wrote in
the previous chapter. The last JST, the Acceptance test, combines the two
previous tests with an OpenFile script. This creates a test that functions just
like the long script, but is composed of modules you can re-use in other
configurations.

You create the Acceptance test last because, while you can define a JST before
you’ve written the scripts that it references, you can’t reference another JST
that hasn’t yet been written.

Entering a Record

This first JST handles record entry. As you noted when you reviewed the
example earlier, this record entry portion of the script did three things:

• Cleared the display
• Entered field data
• Clicked the Add button

Now you’ll create a JST with a node for each of these operations.

1. Open the Test Composer.
Click Compose Test in the JavaStar main menu. See Figure 5-2 for a screen
shot of this window.
60 JavaStar Tutorial—November 1998

Figure 5-2 JavaStar Test Composer

The blank panel in the middle/right area of the Test Composer window is the
work area where you graphically define your test. The buttons along the left
control the file and the nodes you create, while the fields above the work area
are where you define general information about your test, and where you
navigate to other JSTs.
61

2. Add your first test node.
You can do this in two ways:

• By clicking on the Add test button
• By clicking with a right mouse button anywhere in the work area, and

choosing Add test from the menu that pops up.

The only difference between these options is that using the Add test button
places the new node in the upper left corner of the work area, while the
right mouse button puts the node exactly where you positioned the mouse.
If you use the Add test button, you can always click and drag the node later
to position it where you want.

3. In response to the Test Name dialog, enter ClearDisplay as the name of
your node.
Because you are defining tests you haven’t yet written, enter the name of
the script you plan to write. When you run the test, JavaStar looks for a
.class file by this name, so be precise. In this case, type ClearDisplay
and click OK.

Note – If you wanted to reference another JST file instead of a .class file,
you would need to use the .jst extension.

4. Create two more test nodes: one named EnterFieldData and the other
named Add.

5. Position the nodes so that ClearDisplay is toward the top of the work
area, with EnterFieldData below ClearDisplay and Add below
EnterFieldData .
You can click and drag a node to re-position it.

6. Draw a normal connection from ClearDisplay to EnterFieldData .
To create a normal connection:

a. Click on the ClearDisplay node to select it.

b. From the buttons to the left, choose Start Normal.
ClearDisplay flashes to let you know an operation is in progress.

c. Click on EnterFieldData to select it as the end point.
JavaStar draws a green line from ClearDisplay to EnterFieldData .

7. Draw a normal connecting line from EnterFieldData to Add.

8. Duplicate the ClearDisplay node.
Click on ClearDisplay to select it, then click the Duplicate button in the
left button panel.

9. Click and drag the ClearDisplay node to a position below the Add
node.

10. Draw a normal connection from Add to the second ClearDisplay node.
62 JavaStar Tutorial—November 1998

11. For Comments, type Adds 1 record to the database .
Your work area should look like this:

Figure 5-3 AddRecord.jst

The first node you created, ClearDisplay , appears in blue to indicate that it
is the root or starting node. This is the node that the test will execute first. You
can change a root starting node by selecting another node and clicking the Set
Root button.

12. In the JST name field (located toward the top of the window), enter
AddRecord.jst.

13. Click the Save button.

14. Click Reset to clear the display and begin a new JST.
63

Verifying Search Results

This JST verifies that the name matches the record you added. In the
TestNameDB script you created in the previous chapter, you:

• Opened the Search window
• Selected the field to search on
• Defined the search string
• Performed the search
• Verified the results
• Closed the window

Because it’s rare that you would perform a search and not select a record to
view, this JST assumes you’re combining these into one script, but leaving the
rest of the steps as separate scripts.

1. Create five nodes: OpenSearch , DefineSearch , GetSearchResults ,
VerifyRecord , and CloseSearch.

2. Position the nodes so that one is above the other, in the order listed.

3. Using the Start Normal button, draw connecting arrows from each node to
the one below it.

4. In the Comments field, type Searches for a record and verifies
that the result is correct .
Your work area should look like this:

Figure 5-4 VerifySearch.jst
64 JavaStar Tutorial—November 1998

5. Enter VerifySearch.jst in the JST name field.

6. Click Save.

7. Click Reset.

The Acceptance Test

The script you wrote in the last chapter will be the model for this acceptance
that draws all the test modules (the ones you have yet to write) together. This
means the acceptance test needs to:

• Open a database file
• Add records
• Save the database
• Verify search operation
• Clear the display

The steps for adding records and verifying the name are now already defined
by other JSTs and only need to be referenced. For loading a file, you need to
create a node for another script you’ll write. ClearDisplay is a script you’ve
already referenced (but not yet written) in AddRecords.jst , so you’ll use the
same name again.

To define the acceptance test:

1. Click Add Test.

2. Enter OpenFile as the test name and click OK.

3. Add another test and specify AddRecord.jst as the test name.
Click Add test. For Test name, click the browse button, locate
AddRecord.jst , and click Open. Then click OK.

JavaStar creates a rectangle with rounded corners to show that this node
launches another JST, rather than running a .class file.

4. Add a node named SaveDB.
This node has squared corners, indicating it points to a script.

5. Create another node, this one pointing to VerifySearch.jst .
You can type the names in instead of browsing, but if you forget the .jst
extension or misspell the name, JavaStar won’t find the file you want.

6. Add a node named ClearDisplay .

7. Add a node named CloseDB .

8. Organize the nodes in the order you plan to run them.
See the list at the opening of this section.

9. Create normal connections from each node to the next.
65

10. For Comments, type Simple acceptance test for Name Database .
Your work area should look like:

Figure 5-5 Acceptance.jst

11. In the JST name field, enter Acceptance.jst .

12. Click Save.

13. Close the Test Composer.

Recording Individual Scripts
By setting up the JSTs, you’ve specified all the scripts you need to write.
Currently, you need to create:

• OpenFile
• ClearDisplay (used three times)
• EnterFieldData
• Add
• SaveDB
• OpenSearch
• DefineSearchString
• GetSearchResults
• VerifyRecord
• CloseSearch
• CloseDB
66 JavaStar Tutorial—November 1998

This may sound like a lot of scripts, but each is well-contained and quick to
create.

Going into Create Test Script mode

1. Select Create Test Script from the main menu.

2. Enter namedb as the Class name and click Start.
JavaStar opens the Record/Playback window and the Name Database
application. You may need to move the windows around to make sure you
can see both the Record/Playback window and the Name Database window
while you work.

Recording OpenFile

1. Start recording a script named OpenFile .
Click Record and enter OpenFile as the test name. Note that the Record
with map files field is already filled in for you. Click OK.

2. In the Name Database main window, click Open.
The file dialog opens.

3. Navigate to the tutorial directory, select test.db and click Open.

4. In the Record/Playback window, click Synchronize to enter
Synchronization mode.

5. In the Name Database main window, select the component by clicking on
the Name Database - test.db text at the top of the window.
The selection code appears in the Synchronization panel, and the default
method changes to Using text.

6. In the Synchronization window, click Use default.

7. Enter a purpose in the Why field.
For Why, type Proceed only if correct file loaded .

8. Click the Insert synchronization into test button.
This inserts the synchronization code into the script.

9. Click Continue.

10. Click Stop.
This completes the OpenFile script.
67

Recording ClearDisplay

This simple script is used several times by JSTs, giving it immediate re-use
potential.

1. Start record mode and name the test ClearDisplay .

2. In the Name Database main window, click Clear.

3. Stop recording.

Recording EnterFieldData

1. Start record mode and name the test EnterFieldData .

2. Click in the Name text field and type Count von Count .

3. Pressing Tab to advance to each field (except between Phone and Email,
where you need to click inside the Email field to continue), complete the
rest of the fields as shown:

Figure 5-6 Values for data entry fields

4. Stop record mode.

Recording Add

1. Enter record mode using the test name Add.

2. In the Name Database main window, click Add.

3. Stop record mode.

Recording SaveDB

1. Enter record mode using the test name SaveDB.

2. In the Name Database main window, click Save.

3. Stop record mode.
68 JavaStar Tutorial—November 1998

Recording OpenSearch

1. Enter record mode using the test name OpenSearch .

2. In the Name Database main window, click Search.

3. Stop record mode.

Recording DefineSearch

1. Start record mode using DefineSearch as the test name.

2. In the Search window, click on the select criteria choice list and choose
address2.

3. Enter the search string into the contain strings text field.
Type Transylvania .

4. Stop record mode.

Recording GetSearchResults

1. Start record mode using GetSearchResults as the test name.

2. In the Search dialog of the Name Database, click the Search button to
perform the search.

3. Verify the item count:

a. Go into Verification mode.
Click Verify.

b. Click in the search results list to select that component.

c. Click Customize.

d. Select Using simple methods and fields.

e. Click the Select simple methods and data members button.

f. Scroll through the method list and select int getItemCount() .

g. Click Enter a purpose.

h. Enter the purpose of the verification and click Insert verification into
test.

i. Click Continue.

4. In the results list of the Search window, select the Count von Count
record.

5. Click View Result.

6. Stop record mode.
69

Recording VerifyRecord

1. Enter record mode using the test name VerifyRecord .

2. Immediately enter Verification mode.
Click Verify.

3. In the Name Database main window, select the first field to verify.
Click in the Name text field to select that component.

4. Click Use default to accept using text as the method.

5. Enter a purpose.
In the Why field, type Verify data entry .

6. Click the Insert verification into test button.

7. For the remaining record fields (including the Telephone field):

a. Click in the next field to select the component.

b. Click Use default.

c. Click Insert verification into test.

8. Click Continue.

9. Stop record mode.

Recording CloseSearch

1. Enter record mode using the test name CloseSearch .

2. In the Search window, click Close.

3. Stop record mode.

Recording CloseDB

1. Enter record mode using the test name CloseDB .

2. In the Name Database main window, click Close.

3. Stop record mode.

Quit Playback/Record

♦ Click the Quit button in the Playback/Record window and confirm your
choice.
70 JavaStar Tutorial—November 1998

Running Tests
Running a JST is a little different than running a script. When you run a script,
the Record/Playback window shows you the script as it executes, highlighting
each line. Because a script has only one file, it’s more obvious where you are
while the test runs. But for JSTs, JavaStar is opening and closing various tests.
To help you track where the test is executing, JavaStar opens a JST Runner
window.

The JST Runner shows the graph of your JST just as you created it in the Test
Composer. As each node executes, the JST Runner flashes that node. When
JavaStar encounters a node that is a JST itself, it begins tracking that JST in the
JST Runner. When the nested JST finishes executing, the JST Runner displays
the upper-level JST and continues where it left off.

The Record/Playback window still shows the code of each script as it executes.
The only difference is that now the JST Runner shows you which script is being
executed in the Record/Playback window.

Running a JST

1. Copy the original sesame.db to test.db , replacing the existing file.

2. In the JavaStar main menu, click Run test.

3. For the test name, type Acceptance.jst .

4. Click Start.
JavaStar launches the test application, opens the Record/Playback window,
and also opens the JST Runner window to show the progress through the
JST as it runs. You may need to move the windows around at the beginning
so you can see the JST Runner.
71

Figure 5-7 JST Runner showing a graphic display of the currently executing test

5. When the test finishes, quit the Record/Playback window.
This closes the application and JST Runner windows as well.
72 JavaStar Tutorial—November 1998

Debugging a Test

If run test stops before the JST finishes, note which node is flashing in the JST
Runner window. Check the log file display in Record/Playback window to see
what the error is. If it can’t find the file, you might have misspelled the node
name either when you created the node or the recorded the script.

To debug the problem:

1. Stop playback in the Record/Playback window.

2. Close the JST Runner.

3. Click Playback and enter the name of the node (JST or script) where the
test stopped.

4. Examine the test while it executes and try to determine the problem.
If you can’t find anything wrong with the test, check the previous node. It’s
possible that the previous node didn’t leave the application in the proper
state for this node to execute properly. For example, if one of the scripts
didn’t clear the display before adding a record, the data it enters would
then be mixed with that already in the first record of the database.

Viewing Results from a JST
One of the many benefits of using JSTs is that the results you get are as
modular as the test itself, and thus easier to read. JavaStar presents the results
in the form of an expandable and collapsible tree, with summary information
available at each node.

To view the results of the test you just ran:

1. From the JavaStar main menu, click View Test Results.
The Results Viewer opens. By default, this should show the log file for the
test you just ran. If you’ve run another test since running Acceptance.jst,
then to load the acceptance results:

a. Click the Open button in the left panel.

b. Locate the Acceptance.jst.log file and click Open.

The log file appears in the Test Results panel as a hierarchical tree, with the
first level of tests expanded.
73

Figure 5-8 Results Viewer showing Acceptance.jst results

2. Expand the log file results by clicking on the + symbols to the left of
AddRecord.jst and VerifySearch.jst .
This expands Acceptance.jst to show the nodes. The symbol in front of
a node indicates its type: rectangle with square edges is a script, while a
rounded rectangle is another JST file.

If any nodes failed—i.e., they ended with an exception—a notice of the
failure appears below the node in red. Green symbols signify normal ends.

The Summary box here shows that Acceptance.jst had 13 nodes that
ended normally and 0 that ended with exceptions. Seven verifications
passed and none failed. The remaining values should be zero. Had you
expanded your tests to use the JS.check features of the JavaStar API, these
results would be summarized here, as well.
74 JavaStar Tutorial—November 1998

If you select different nodes in the JST, you’ll see that the summary
information changes to show the summary for that test and any tests below
it. The log panel always displays information for the currently selected
node, as well.

3. Close the Results viewer.
Click Close.

Summary
This chapter introduced you to the processes of creating tests that work with
the JavaStar modular model. You should now be comfortable analyzing your
application to define modular tests, creating simple JSTs, running JSTs, and
understanding the results from nested JSTs in the Results Viewer.

The next chapter takes the scripts and JSTs you created in this chapter and
moves one step further by adding parameters, further increasing re-use
potential.

Exercise: Making the Names Test Modular
Now that you know how to redesign a long script into several modules, try
this out with the TestNames test from the last chapter’s exercise. If you didn’t
do that exercise, you can find the solution (TestNames.java and
TestNames.java) in the \tutorial\gettingStarted directory.

Instructions

For this exercise:

1. Compose a multi-node JST to test the names window.

2. Record the scripts that correspond to each node.

3. Integrate the JST for Names into a copy of the acceptance test. Name this
copy Acceptance2.jst , so that you don’t confuse it with the original
version.

4. Run the test to make sure it works.
75

Solution

There’s more than one way to tackle this exercise. One solution breaks the
search test down into four modules:

• OpenNames—open the Names window
• SelectName —select a name from the list
• VerifyRecord —the same script you recorded earlier in this chapter, with

no modifications
• CloseNames —close the Names window

You might have chosen fewer, and that’s okay. Using four modules comes in
handy later on, when you can parameterize individual nodes.

If you did use four nodes, your search JST in the Test Composer should look
somewhat like this:

Figure 5-9 VerifyNames.jst
76 JavaStar Tutorial—November 1998

Incorporating the VerifyNames JST into the acceptance test requires only a few
steps. You only need to:

1. Open Acceptance.jst in the Test Composer.

2. Add a node for VerifyNames.jst (or whatever you named your Names
test).

3. Draw a normal, green arrow from ClearDisplay to VerifyNames.jst .

4. Save the results as Acceptance2.jst .
The Acceptance2.jst work area should have looked similar to this:

Figure 5-10 Acceptance2.jst—one solution

When you run this test, the summary for the overall Acceptance2.jst run
should show 12 verifications instead of the original six.

You can find VerifyNames.jst and the scripts that support it in the
\tutorial\modular directory. Look at the files:

VerifyNames.jst
OpenNames.class and OpenNames.java
SelectName.class and SelectName.java
VerifyRecord.class and VerifyRecord.java
CloseNames.class and CloseNames.java
Acceptance2.jst
77

78 JavaStar Tutorial—November 1998

Adding Parameters for Flexibility 6
This chapter shows you how to use JavaStar to pass arguments within modular
tests to increase flexibility and re-use.

Breaking tests down into modules is the first step in making your tests
reusable. The second step is replacing hard-coded information—for example,
field data and component labels—with parameters. When you do this, you can
create fewer modules that can be combined to make more varied tests.

This lesson guides you through the process of modifying the tests you created
in the last chapter to use parameters. After following this lesson, you should
know how to:

• Analyze tests to determine where to use parameters
• Edit scripts to add parameters
• Edit JSTs to pass parameters to scripts
• Use test arguments when running a test
• View parameter values in the Results Viewer

Topics:

• Deciding Where to Use Parameters in Scripts
• Setting Up for this Lesson
• Editing the Scripts
• Deciding Where to Define Parameters in the JST
• Editing JSTs to Use Parameters
• Running a Test With Arguments
• Viewing the Results
• Other Possibilities for Adding Parameters
• Using Property Files as a Source for Arguments
• Summary
• Exercise: Adding Parameters to the VerifyNames tests
79

Setting Up for this Lesson
If you are continuing from the previous lesson, all you need to do to prepare
for this lesson is to:

♦ Copy the original sesame.db over test.db , to return the database to a
clean state.

If, however, you have not done the previous lessons:

1. If you have not already done so, follow the instructions for Setting up
JavaStar as described in the chapters “Getting Started with JavaStar” and
“Using a Modular Approach”

Note – Both chapters contain information about setting up a project file.
“Getting Started” describes how to do the initial setup for a project file.
“Using a Modular Approach” describes how to modify the mapping
information in the project file to use declarations. You need to follow both
sets of instructions to continue with this lesson.

2. If you did not do the lesson in chapter Generating Declarations, then:

a. Create a directory within the tutorial directory called NameData.

b. Copy the contents of the \javastar\tutorial\NameDataDecls into
\javastar\tutorial\NameData .

3. Copy the contents of the \javastar\tutorial\modular directory to
\javastar\tutorial .

Deciding Where to Use Parameters in Scripts
When you begin planning how to “parameterize” a test, start analyzing the test
at the script level. On a script-by-script basis, examine where you might want
to replace data with parameters. Good candidates for parameters are any place
where a script:

• Responds to a prompt
• Selects an item from a menu or list
• Supplies data (such as a string or a date)
• Chooses from a series of options

These aren’t the only places where you might want to replace hard-coded data
with parameters, but they get you off to a good start.

Looking at the acceptance test you created in the last chapter, there are several
places where parameters would increase versatility. Perhaps the most obvious
candidates are scripts that require a filename, and scripts that work with field
data for a name database record.
80 JavaStar Tutorial—November 1998

OpenFile is the only script that uses the database filename: it’s hard-coded to
load and verify test.db . You can change this filename to a parameter and
then define the filename when you run the test. This makes this script easier to
use in other composed tests, and also gives you ways to adapt
Acceptance.jst for multiple, varied test runs.

As far as record data is concerned, Acceptance.jst is now hard-coded to
create, select, and verify the “Count von Count ” record. This is a somewhat
limited test case. You can build other tests with the scripts that make up the
acceptance test, but you are still restricted to the “Count von Count ” data. If,
instead, you modify the scripts to take the field values as parameters, your
scripts will function independent of the data. Re-use potential then increases
enormously.

Examining the scripts of the acceptance test, you can see that four scripts use
data from the same record:

• EnterFieldData—inputs values for the six fields of a record: Name,
Address1, Address2, Phone, Email, and Other.

• DefineSearch—uses the value of the Address2 field as a search argument.
• GetSearchResults—selects the record from the search results list, selecting

the Name value used in EnterFieldData.
• VerifyRecord—performs field-by-field verification on a record, comparing

the results to the values entered in EnterFieldData.

These four scripts use the same six parameters:

• Name
• Address1
• Address2
• Phone
• Email
• Other

With the addition of the filename for the test database, you’ll be editing your
tests to use a total of seven parameters.

To change these scripts to use parameters, you’ll edit the .java files to replace
the hard-coded data with argument references. At runtime, a script takes any
parameters passed to it and places the parameters within the args[] array.
This means that for every script, the first parameter becomes args[0] , the
second args[1] , the third args[2] , and so on. So, when you edit
EnterFieldData, you’ll replace the current field values with args[0] through
args[5] . Within OpenFile, you’ll replace the test.db string with args[0] ,
as well.
81

Editing the Scripts
This lesson describes how to add parameters, using the script editor included
with JavaStar. The JavaStar Script Editor includes a button for saving and
compiling the modified code, making it convenient for this exercise. You can
use any editor you like to edit the scripts—just make sure you compile the
code when you are done.

This section covers:

• Editing OpenFile
• Editing EnterFieldData
• Editing DefineSearch
• Editing GetSearchResults
• Editing VerifyRecord

Editing OpenFile

1. In the JavaStar main menu, click Edit Test Script.

2. Open OpenFile.java for edit.
Next to the Script name field, click the Browse button. Locate and select
OpenFile.java . Double-click the filename or click Open.
82 JavaStar Tutorial—November 1998

Figure 6-1 JavaStar Script Editor

3. Scroll down to the play method.
The play method opens with the line:

public void play(String[] args) throws Throwable {

4. Replace the test.db reference with args[0] .
The current line reads:

NameData.MainWin.frame().dialog("Open").relativefile(".
", "test.db");

Change "test.db" to args[0] . Leave the "." parameter before the
filename so that JavaStar knows to look for the database file in the current
directory. Remove the quotation marks. The new line should read:

NameData.MainWin.frame().dialog("Open").relativefile(".
", args[0]);
83

5. Edit the synchronize operation to handle a variable filename.
Right now, this script checks the Name Database header in the window to
see that it reads Name Database - test.db . This is done with this line:

NameData.MainWin.frame().member("java.awt.Label", "Name
Database - test.db").waitFor("Name Database - test.db" ,
"Proceed only if correct file loaded");

You accommodate the variable filename in this comparison by changing
"Name Database - test.db" to "Name Database - " + args[0] .
Be sure to change it in both places on this line—in the member() and
waitFor() method calls—and include the plus-sign.

NameData.MainWin.frame().member("java.awt.Label", "Name
Database - " + args[0]).waitFor("Name Database - " +
args[0] , "Proceed only if correct file loaded");

6. Click Save & Compile.
JavaStar should return a message that it compiled the script successfully. If
not, check for errors—make sure you didn’t accidentally delete a
parenthesis or comma, or leave out the plus-sign.

Editing EnterFieldData

1. In the Script Editor, open EnterFieldData.java for edit.

2. Scroll down to the play method.
The play method opens with the line:

public void play(String[] args) throws Throwable {

3. Edit the first data entry line.
Find the line:

NameData.MainWin.nameTextField().typeString("Count Von
Count", 0, 0);

On this line, change "Count von Count", 0, 0 to args[0] so that it
reads:

NameData.MainWin.nameTextField().typeString(args[0]);

Note that in addition to replacing the text string with the argument, you’re
deleting the position values (0,0) that follow. The JavaStar API provides
two versions of the of the typeString() method—one requiring the string
to replace, selection start, and selection end parameters, and the other
requiring only the string to replace. Here you’re replacing the default
version recorded in the script with a simpler method call. That just replaces
the entire contents of the text field.

4. Edit the remaining data entry lines:

a. Change the reference to "123 Numbers Lane", 0 ,0 to args[1] .
Find:
84 JavaStar Tutorial—November 1998

NameData.MainWin.address1TextField().typeString("123
Numbers Lane", 0, 0);

Replace with:

NameData.MainWin.address1TextField().typeString(args[1]);

b. Change the reference to "Transylvania", 0 ,0 to args[2] .
Find:

NameData.MainWin.address2TextField().typeString("Transylv
ania", 0 ,0);

Replace with:

NameData.MainWin.address1TextField().typeString(args[2]);

c. Change the reference to "01-2-34567”, 0 ,0 to args[3] .
Find:

NameData.MainWin.telephoneTF().typeString("01-2-34567", 0,
0);

Replace with:

NameData.MainWin.telephoneTF().typeString(args[3]);

d. Change the reference to "count@count.com", 0 ,0 to args[4] .
Find:

NameData.MainWin.emailTextField().typeString("count@count.
com", 0, 0);

Replace with:

NameData.MainWin.emailTextField().typeString(args[4]);

e. Change the reference to "Bean Counter", 0 ,0 to args[5] .
Find:

NameData.MainWin.otherTextField().typeString("Bean
counter", 0, 0);

Replace with:

NameData.MainWin.otherTextField().typeString(args[5]);

5. Click Save & Compile.
85

Editing DefineSearch

1. In the Script Editor, open DefineSearch.java for edit.

2. In the Play method, edit the line that specifies the search string.
Find the line:

NameData.SearchWin.containsStrTextField().
typeString("Transylvania", 0, 0);

(This code appears as a single line in the Script Editor.)

Replace the line with:

NameData.SearchWin.containsStrTextField().typeString(args
[0]);

Note – Argument references always start at 0 within a script. The argument
value refers to the arguments position in the array of arguments passed to
the script at runtime. It does not refer to an absolute position for all
arguments passed into the JST.

3. Save and compile.

Editing GetSearchResults

1. In the Script Editor, open GetSearchResults.java for edit.

2. In the Play method, edit the line that selects the Count von Count
record by name.
Find the line:

NameData.SearchWin.list().select(0,"Count Von Count");

Replace “Count von Count” with args[0] so the line reads:

NameData.SearchWin.list().select(0,args[0]);

3. Edit the code to remove the selection position.
Currently the code passes a position and a string to the select method.
The JavaStar API provides another version of this method that selects an
item using only the string. If you now plan to pass the string name to the
script, you don’t know what the position of that string will be within the list
when this is executed as part of a test, so you need to perform the selection
based solely on the string value.

To make this modification, delete 0, so the line reads:

JS.frame("Search").member("java.awt.List").select(args[
0]);

4. Save and compile.
86 JavaStar Tutorial—November 1998

Editing VerifyRecord

1. In the Script Editor, open VerifyRecord.java for edit.

2. In the Play method, edit the line that selects the Count von Count
record by name.

a. Find the line:

NameData.MainWin.nameTextField().verify(this,"Count von
Count", "Verify expected field text");

b. On this line, change "Count von Count" to args[0] so that it
reads:

NameData.MainWin.nameTextField().verify(this, args[0],
"Verify expected field text");

3. Edit the remaining verification lines.

4. Save and compile.

Deciding Where to Define Parameters in the JST
Once you have scripts edited to use parameters, you’re ready to compose new
JSTs or modify existing tests to pass parameters and define constant values.
This section shows you how to modify the acceptance test to incorporate
parameters to support the newly edited scripts.

Note – You don’t have to create a JST to use parameters. If you have a script
that runs start-to-finish without needing any other script, and you want to
use parameters, you can go ahead and replace portions of the code with
argument references. Then, when you run the script, you just need to
specify each of the parameters in the Test arguments field of the Run test
window. This works for small, contained test cases—for anything more
complex or varied, composed tests are where you’ll access the power.

Just as you examined the scripts to see where you want to add parameters,
now you’ll examine the acceptance test to see how you want to supply those
parameters to the scripts.

Replace… With…

"123 Numbers Lane" args[1]

"Transylvania" args[2]

"01-2-34567” args[3]

"count@count.com" args[4]

"Bean Counter" args[5]
87

An outline of Acceptance.jst (something similar to the outline you seen in
the Results Viewer when you expand all nodes) shows the nodes as:

Figure 6-2 An outline view of Acceptance.jst

The scripts that you edited to take parameters are underlined in this
illustration. At the very least, you need to set up these nodes to pass
parameters. But you can do more than that.

JavaStar supports three ways of supplying parameters to a node:

• Constants—when you pass a constant, you define the value of the
parameter in the node itself. This isn’t the same as defining it in the
script—the node passes the value to the script at runtime.

• Parent parameters—when you define an argument as a parent parameter,
JavaStar knows to get the data from arguments passed to the test at runtime
or, in the case of a multi-level JST, to inherit these arguments from the
“parent” of this node.

• Property file—when you define a property file as the source of the
argument, JavaStar looks for a Java property file with the name you define.
This is useful when you want to reference arguments that change
88 JavaStar Tutorial—November 1998

depending on the platform where you’re running the test. You can provide
a different property file (same name, different contents) for each platform
you test under, and the test will run on each without modifications.

For the acceptance test to work properly, EnterFieldData , DefineSearch ,
GetSearchResults and VerifyRecord require identical data (though
DefineSearch and GetSearchResults use only portions of the record).
Because of this, it makes sense to set these parameters not at the level of
particular test nodes, but at the level of the first common parent.

You can do this using parent parameters, by setting up an inheritance scheme
so that the nodes for these scripts inherit the parameters from their parent
node, and the parent nodes then inherit the parameters from their parent
(Acceptance.jst). You then supply the parameter values at runtime.

OpenFile requires the filename for the test database. You can pass this as a
constant or inherit it from the parent. For this example, you’ll use a parent
parameter.

Figure 6-3 shows the outline again, this time with all the nodes that pass
parameters marked in bold. Based on this plan, all parent nodes will pass
parameters down to child nodes. EnterFieldData will inherit parameters from
AddRecord.jst , and AddRecord.jst will inherit these same parameters
from the test arguments passed to Acceptance.jst .
89

Figure 6-3 Acceptance.jst with parameter nodes underlined.

How you define the parameter structure for Acceptance.jst doesn’t affect
how you use these scripts with another JST. You might want to create a JST that
populates a Name Database with records, and that might mean calling
AddRecord.jst repeatedly. In that case, you’d probably define each
AddRecord node to pass the parameter values as constants, rather than define
all of them as test arguments.

Note – Another way to populate a database using AddRecord would be to
edit a script yourself to read data in from a property file, then use a
combination of setProperty() and getProperty() to set field values.
You’ll learn more about adding custom code to scripts in the chapter “Using
the JavaStar API.”
90 JavaStar Tutorial—November 1998

Editing JSTs to Use Parameters
Now you’ll go into Compose Test to set the JSTs to accept and pass parameters.
You’ll be working with seven parameters that you’ll pass to the acceptance test
at runtime:

$0 Name
$1 Address 1
$2 Address 2
$3 Phone
$4 Email
$5 Other (for the Other field in the name database record)
$6 Test database filename

A Note About Argument Identifiers

The argument numbers you specify in the Edit Node dialog for a particular
node represent the positions of the arguments that node will inherit from its
parent node. These numbers do not reflect the position numbers used by the
individual scripts. Each script takes whatever arguments you pass to it and
numbers them sequentially within its own args[] array, starting at zero.

Because this exercise uses parameters that are passed from one node to the
other in the same order, it’s hard to see what this would mean, except in the
case of OpenFile. The OpenFile script uses the last parameter passed to
Acceptance.jst at runtime—args[6] . When you specify the argument
number in the Test Composer, you refer to argument #6. But the OpenFile
script references args[0] in the actual code, because it takes whatever
parameters you pass it (whether it’s args[0] , args[3] , or args[6]) and
renumbers them starting at args[0] .

This keeps your script independent of the JST’s implementation. You don’t
have to change a script depending on how you want to get nodes from the
parent. All the Edit Node dialog needs is information on which arguments you
want it to get from the parent, and it will do the rest.

Editing the OpenFile Node

To edit the OpenFile node pass parameters to the script:

1. In the JavaStar main menu, select Compose test.

2. Load Acceptance.jst .
Click the Browse button. Locate Acceptance.jst in the Tutorial
directory, then click Open.

3. Select the OpenFile node and click the Edit button.
The Edit Node dialog opens.
91

4. In the Edit Node dialog window, select Parent parameter from the pull-
down menu.
The Value field changes to Argument #.

5. In the Argument # field, type 6.
For this node, you’ll use the seventh parameter passed to the acceptance
test, after the first six field values. The seventh parameter occupies position
6 in the args array, since the first parameter is numbered 0.

6. Click the Add (after) button.
This adds the parameter to the list. This is the only parameter you need for
this script.

7. Enter a comment to describe the parameter.
In the Comments field, type $6 = Database filename .

Figure 6-4 Edit Node dialog for OpenFile

8. Click Apply and click Close.

You have now set up this node of the test so that it takes the seventh argument
passed to Acceptance.jst and passes it to its own script. The script, in turn,
refers to the single passed parameter as args[0] .

Editing the AddRecord .jst Node

Now you need to edit the AddRecord node to prepare it to pass the correct
parameters to EnterFieldData.

1. Select the AddRecord.jst node and click the Edit button.
The Edit Node dialog opens.
92 JavaStar Tutorial—November 1998

2. In the Edit Node dialog window, select Parent parameter from the pull-
down menu.
The Value field changes to Argument #.

3. In the Argument # field, type 0.

4. Click the Add (after) button.
This adds the parameter to the list.

5. Add arguments 1 through 5.
Type the next number, then click Add (after). Continue until you have six
parameters, numbered 0 through 5.

If you make a mistake, you can correct it by double-clicking on the
parameter from the Parameters list and using the Update and Delete
buttons.

6. In the Comments field, list each argument and the field it maps to.
This is an important step—if you don’t note the purpose of each argument
here and later forget, you’ll need to read the script code to decipher it.

Type:

$0 Name
$1 Address 1
$2 Address 2
$3 Phone
$4 Email
$5 Other
93

You’re going to need to use these same comments in other nodes. You can
save yourself some typing by selecting this text and copying it to the
clipboard for later use.

The Edit Node dialog should look like this:

Figure 6-5 Edit Node for EnterFieldData , after parameters added

7. Click Apply.

8. In the Edit Node dialog, click Close.

9. Click Save to record changes to Acceptance.jst .
JavaStar informs you that Acceptance.jst exists and asks you for
confirmation to overwrite the file.

10. Click OK.

Editing EnterFieldData Node

1. With the Acceptance.jst open, open AddRecord.jst .
Click on the AddRecord.jst node to select it. Click Open.

2. Select the EnterFieldData node and click the Edit button.
The Edit Node dialog opens.

3. Add arguments 0 through 5, one for each of the text fields.

4. Add a comment describing what each of these parameters maps to.
If you copied the comments from EnterFieldData to the clipboard, you can
paste the text in.

5. Click Apply to record your edits.
94 JavaStar Tutorial—November 1998

6. Close the Edit Node dialog.
Click Close.

7. In the Test Composer, click Save.

Editing VerifySearch.jst

Because you have the Acceptance.jst open already, it is easiest to define
parameters for VerifySearch.jst next.

1. In AddRecord.jst , click the Back button to navigate back to
Acceptance.jst .
The Back button is located in the Test Composer, above the Comments field.

1. Select the VerifySearch node and edit.

2. Add six parent parameters (0-5).

3. Paste or re-type the comments you used for the EnterFieldData node.

4. Click Apply.

5. In the Edit Node window, click Close.

6. In the Test Composer, click Save.

Editing the DefineSearch Node

Now you need to edit the nodes within VerifySearch.jst . You can start
with DefineSearch.

1. Navigate to VerifySearch.jst .
With the VerifyName node still selected, click the Open button. This loads
VerifySearch.jst .

2. Edit the DefineSearch node.
Click on DefineSearch node. Click the Edit button.

3. For Argument #, type 2.
This test uses the value for the Address2 field, which is the third parameter
(args[2]) you pass to VerifySearch.jst .

4. Click Add (After).

5. In the Comment field, type Value to search for .

6. Apply the changes and close the window.
95

Editing the GetSearchResults Node

1. Still in VerifySearch.jst , click on GetSearchResults node.

2. Edit the GetSearchResults .
Click on GetSearchResults node. Click the Edit button.

3. For Argument #, type 0.
This test uses the record name, the first parameter passed to
VerifySearch.jst .

4. Click Add (After).

5. In the Comment field, type Name to select .

6. Apply the changes and close the window.

Editing the VerifyRecord Node

1. Click on VerifyRecord node.

2. Click Edit.

3. Add arguments 0-5.

4. Add comments to describe the six arguments.

5. Apply the changes and close the window.

6. Save the JST.

7. Close the Test Composer.

The acceptance test is now set to take six parameters at the command line and
pass these down to the three scripts you edited.

Running a Test With Arguments
Running tests with arguments is virtually the same as running a test without
arguments. The only difference is that if your test inherits parent parameters
from the top level of the JST, you need to supply these parameters in the Test
arguments field of Run Test.

1. Refresh the test database.
Delete test.db . Copy sesame.db to test.db .

2. From the JavaStar main menu, select Run test.

3. For Test name, enter Acceptance.jst
96 JavaStar Tutorial—November 1998

4. In the test arguments field, enter the name of the argument strings you
want to pass.
Specify five strings (values Name, Address 1, Address 2, Phone, Email,
Other—in that order) in this field. Put strings in quotes and separate with a
space.

For example:

"Elmo" "45 Sesame St." "Anytown USA" "555-2857"
"tickleme@elmo.com" "none" "test.db"

Do not include line breaks in the parameter list.

Note – The quotation markes around each argument string aren’t really
needed if the argument string contains no spaces or special characters. In
this case, quotation marks are needed for the second and third strings
because they contain spaces, but all other arguments could be typed
without the quotation marks. Special characters include \n , \r , \t .

5. Click Start.

6. When the test finishes, quit the Record/Playback window.

Viewing the Results
The log file for parameterized tests includes the values of the parameters you
passed at runtime. To view the parameter information for this test run:

1. From the JavaStar main menu, select Show results.

2. Load the log file from the test you just ran.
If you used the default log name, it will be called Acceptance.jst.log .

3. Expand the JST to see all the nodes.
Click on the plus signs to open nodes.

4. Select a node where you passed parameters.
Note that when you select a node, the Results Viewer shows you what
parameters were passed.
97

Figure 6-6 Results for Acceptance.jst , showing the argument mapping for a
node.

Other Possibilities for Adding Parameters
Parameters aren’t only useful for data entry and comparisons—you can also
use them to determine the component in a window you want to take action on.

For example, in the acceptance test are three nodes—ClearDisplay, Add, and
Close—that click a button in a window. In their current states, these scripts are
re-usable (in fact, the test uses ClearDisplay three times) but only if you want
to click that particular button in that specific window.
98 JavaStar Tutorial—November 1998

To make a more versatile script to replace these three, you can write a script
that clicks a button in a window. The label of the button to click and the name
of the frame where the button should be can be passed as parameters. This
reduces three scripts to one (easier to maintain) and make the single script
highly re-usable.

Using Property Files as a Source for Arguments
This lesson focused on using parent parameters for test arguments, but another
possibility is using a Java property file. A property file is simply a text file
containing a list of variables and their assigned values. You can create a single
property file that holds as many test arguments as you want, then reference
them using the Property Name option in the Edit Node window.

This exercise shows you how to modify your existing test to read the field
arguments for the database from a property file. The remaining lessons in this
tutorial use the version of the test you just finished, so be aware that you’ll
need to switch back to the previous version when you’re done. You can copy
the files from the tutorial/modular directory or create your own backup.

• Reading a Single Property
• Reading Multiple Properties

Reading a Single Property

If you want to read a single property or single set of properties (where a set is
one value per property for a series of property names) you can do this easily
by setting up your script to accept arguments and editing the JST node for that
script to accept properties as parameters.

In the case of the acceptance test example, you might want to modify your test
so that the script that enters a record (EnterFieldData) gets the data from a
property file, instead of by inheriting parent parameters. That way, you
wouldn’t need to enter the field values each time you run the test—you would
only need to change the property file when you wanted to use different data.

Part of the work of modifying the acceptance test is already done, because
earlier in this chapter you edited EnterFieldData to accept arguments. You had
also edited the EnterFieldData node of AddRecord.jst to read parent
parameters. Now, you only need to create a property file and modify that node
in the JST to read properties instead of parent parameters.

Creating a Property File

A property file is a text file that uses the format:

<property name> = <value>
99

For this example, you’ll create a property file, that uses the format:

name = <name value for first record>
address1 = <address1 value for first record>
address2 = <address2 value for first record>
telephone = <telephone value for first record>
email = <email value for first record>
other = <other value for first record>

1. Create a text file that contains the text:

name=Elmo
address1=45 Sesame St.
address2=Anytown USA
telephone=555-2857
email=tickleme@elmo.com
other=none

2. Save the file (in the tutorial directory) as FieldData.prop.

Editing a Node to Read Properties

1. In the Test Composer, load AddRecord.jst .

2. Select the EnterFieldData node and click the Edit button.
Because you edited the EnterFieldData node earlier in this chapter, it will
contain a list of parent parameters, $0 through $6, one for each field of a
record.

3. Click on the first parameter ($0) in the list.

4. In the pulldown menu to the right of the Arg # field, change Parent
parameter to Property name.
Note that the Arg # field changes to the Property name field.

5. In the Property name field, change 0 to name and click the Update button.

6. Repeat this process for the remaining parameters.
Change each parameter from Parent parameter to Property name. Edit the
arguemnts using the data:

For Arg #… Set property name to…

1 address1

2 address2

3 telephone

4 email

5 other
100 JavaStar Tutorial—November 1998

7. Update the contents of the Comments field.
Select and delete the existing text. Replace it with:

Read properties from FieldData.prop

8. Click Apply and click Close.

9. In the Test Composer, click Save.

Your next step would be to edit the remaining parameterized nodes to read
from the property file, but for the purposes of simplicity, this exercise focuses
soley on the EnterFieldData node.

Specifying the Property File at Run Test Time

The Run Test dialog contains a field named Property File. When you run the
acceptance test, be sure to enter FieldData.prop as the property file name.
From the command line, use the -prop option.

You still need to pass the same test arguments described in the section,
“Running a Test With Arguments.” This is because. for the sake of brevity, this
exercise modifies only EnterFieldData to use properties. DefineSearch,
GetSearchResults, and VerifyRecord still use parent parameters. If this were a
real test case, rather than an example, you would modify these three tests to
use properties. Once you had done this, you would only need to pass the name
of the test database for OpenFile.

Reading Multiple Properties

If, instead of reading a single property, you want to read a series of property
values (for the same property name) you can do this by writing Java code that
uses the JS.getProperty() method to retrieve values from the file.

In the case of the acceptance test, this would be useful if you wanted to
populate the test database with multiple records, instead of using the property
file to get data for just one record.

You can modify the tutorial example by:

• Creating a Property File with Sets of Data
• Moving the Code that Inserts Data into a New Script
• Editing EnterFieldData to Read Properties from the File
• Clearing Parameter Settings from the JST Node
• Specifying the Property File at Run Test Time

Creating a Property File with Sets of Data

Create a property file (or, if you already have a file named FieldData.prop ,
edit the existing file) to use the format:
101

total = <total number of records>
name_<#> = <name value for first record>
address1_<#> = <address1 value for first record>
address2_<#> = <address2 value for first record>
telephone_<#> = <telephone value for first record>
email_<#> = <email value for first record>
other_<#> = <other value for first record>

where you increment <#> for each set of records.

1. Create a text file that contains the text:

total = 7
name_0=Elmo
address1_0=45 Sesame St.
address2_0=Anytown USA
telephone_0=555-2857
email_0=tickleme@elmo.com
other_0=none

...
name_6=Susan
address1_6=101 Learning Lane
address2_6=Anytown USA
telephone_6=555-0277
email_6=susan@sesameSt.com
other_6=Educator

Where you replace “...” with five addition records (following the numbering
format) containing your own data.

2. Save the file (in the tutorial directory) as FieldData.prop.

Moving the Code that Inserts Data into a New Script

Before you change EnterFieldData.java to read properties directly from the
property file, you need to save the original contents of EnterFieldData—where
you actually insert the data into the record—to another file. For this example,
you’ll use Insert as the filename.

When you later edit EnterFieldData, you’ll provide new code that calls Insert,
passing the values for a single record set as parameters.

To create the Insert script:

1. From the JavaStar main menu, choose Edit Test Script.

2. Open the file EnterFieldData.java .

3. Change the script name from EnterFieldData to Insert .
This is similar to doing a “save as” operation in other applications.

a. Click on the Find/Replace button.
The Find/Replace dialog is displayed.
102 JavaStar Tutorial—November 1998

b. In the Find field, type EnterFieldData .

c. In the Replace field, type Insert .

d. Click Replace All.
JavaStar replaces all occurrences of EnterFieldData with Insert .

e. In the Script name field (located at the top of the window) change the
name to Insert.java and click the Save & Compile button.
This saves the modified file as Insert.java , but leaves the original
EnterFieldData.java file intact.

4. Add code that calls the play() method of Add

Add a = new Add();
a.play(new String[1]);

Delete Add Node from AddRecord.jst

Now that Insert handles the add operation for each record, you need to delete
the Add node from AddRecord.jst and reconnect the remaining nodes.

1. In the Test Composer, open AddRecord.jst .

2. Select the Add node and click the Delete button.

3. Select the EnterFieldData node and click the Start Normal button.

4. Click on the ClearDisplay node to complete the connection.

5. Save the JST file.

Editing EnterFieldData to Read Properties from the File

Now you need to edit EnterFieldData so that, instead of being passed property
values, it reads the properties directly from the property file.

1. In the JavaStar Script Editor, open EnterFieldData.java again.

2. Replace the body of the play() method with code that reads properties
from the property file and calls Insert() , passing the properties as
arguments.
Here’s one example of how you might edit the play() method.

public void play(String[] args) throws Throwable {

Insert o = new Insert();
int total = 0;

total = Integer.parseInt(JS.getProperty("total"));
// read total # of records
103

 for(int i = 0; i < total; i++) {
String name = JS.getProperty("name_" + i);
String address1 = JS.getProperty("address1_" + i);
String address2 = JS.getProperty("address2_" + i);
String telephone = JS.getProperty("telephone_" + i);
String email = JS.getProperty("email_" + i);
String other = JS.getProperty("other_" + i);

if (name == null || address1 == null || address2 == null||
telephone == null|| email == null|| other == null)
throw new NoSuchFieldException("Invalid Key Value");

// construct args
String[] record = new String[6];
record[0] = name;
record[1] = address1;
record[2] = address2;
record[3] = telephone;
record[4] = email;
record[5] = other;

// call play method of insert with args
o.play(record);

 }

}

This example code:

a. Reads the number of “records” (sets of properties corresponding to a
record) in the property file.

b. Creates a loop that repeats for the number of records to be read and:

i. Reads each property for the current record being processed.

ii. Checks to see if any of these return null, and if so, throws an error.

iii. Creates an array containing the properties for a single record.

iv. Calls Insert() and passes the array of properties as a parameter.
From here, the Insert() method handles inserting the data into a namedb
record and adding the record to the database.

3. Click Save & Compile.

4. Close the Script Editor.

Clearing Parameter Settings from the JST Node

1. From the JavaStar main menu, select Compose Test.
The Test Composer is displayed.

2. Open Acceptance.jst .
104 JavaStar Tutorial—November 1998

3. Click on the AddRecord.jst node, then click the Edit button.
The Edit Node dialog opens.

4. Click on the first parameter in the list.

5. Still in the Edit Node dialog, click the Delete button.
This deletes $0 from the parameter list.

6. Delete the remaining parameters $1 through $6 .

7. Delete the contents of the Comments field.

Editing the Test to Read the Properties Directly

Because your script is now reading parameters directly from the property file,
you don’t need to pass the data as parameters using the JST. To edit the
EnterFieldData node

1. In the Test Composer, open AddRecord.jst .

2. Edit the EnterFieldData node to remove all parameter settings.
You can do this either by deleting the node and recreating it (with the same
connections to the other AddRecord nodes) or, to edit using the Edit node
window:

a. Select the EnterFieldData node and click the Edit button.

b. In the Edit Node window, select a parameter from the list, then click
the Delete button.

c. Repeat Step b for each remaining parameter.

d. Delete the contents of the Comments field.

3. Click Apply.

4. In the Edit Node window, click Close.

Specifying the Property File at Run Test Time

As with the case of reading a single set of properties, you need to define a
property file name at run test time. In the EnterFieldData code,
JS.getProperty() reads the property you specify from whatever property
file you specify when you run the test.

If you’re running the test using the Run Test dialog, type FieldData.prop
into the Property File field. If you are running the test from the command line,
use the -prop option.

Note that you still need to pass the same test arguments described in the
section, “Running a Test With Arguments.” This is because. for the sake of
brevity, this exercise modifies only EnterFieldData to use properties.
105

DefineSearch, GetSearchResults, and VerifyRecord still use parent parameters.
If this were a real test case, rather than an example, you would modify these
three tests to use properties. Once you had done this, you would only need to
pass the name of the test database for OpenFile.

As the test executes, you can see that EnterFieldData types seven records into
the database entry fields, and executes a button click on Add after it finishes
entering each record.

Summary
Now that you know how to make your tests more versatile with parameters,
completing your introduction to the JavaStar model. The next chapter shows
you how to use JavaStar from the command line—a useful feature if you plan
to run your tests automatically using shell scripts or batch files.

Exercise: Adding Parameters to the VerifyNames tests
This test builds on the optional exercise from the last chapter.

Instructions

This time:

1. Edit the scripts you wrote for VerifyNames.jst (or whatever you called
your Names test) and add parameters.

2. Modify VerifyNames.jst to support parameter passing.

3. Incorporate VerifyNames.jst into Acceptance.jst , naming the
modified JST Acceptance2.jst .

If you did not do the exercise for the last chapter, copy the following files from
\tutorial\modular :

VerifyNames.jst
OpenNames.class and OpenNames.java
SelectName.class and SelectName.java
VerifyRecord.class and VerifyRecord.java
CloseNames.class and CloseNames.java
Acceptance2.jst

Solution

This solution uses a modified version of Acceptance.jst from this lesson
and saves that as Acceptance2.jst . If you did the exercise this way, you
didn’t have to add all the parameter information for AddRecord and
VerifySearch to the previous version of Acceptance2.jst .
106 JavaStar Tutorial—November 1998

Only one script needed parameters to work within the current model, and
that’s SelectName . This solution changes the SelectName node within
VerifyNames.jst to inherit args[0] (the name field of the record) from
Acceptance2.jst . You can see the solution shows the SelectName script
referencing args[0] in place of “Count von Count” . If you did this, you
also should have removed the position reference in the select() call to make
the script more versatile.

VerifyRecord is the same script already modified earlier in this chapter, so
you only needed to change VerifyRecord node within VerfiyNames.jst to
inherit args[0] through args[5] .

Changing the VerifyNames node in Acceptance2.jst to also inherit
args[0] through args[5] completes the solution. You can view these files in
the \tutorial\parameters directory.
107

108 JavaStar Tutorial—November 1998

JavaStar from the Command Line 7
This chapter introduced you to the JavaStar command line options and shows
you how you can use them to control your environment, run tests, filter logs,
and more.

Topics:

• About this Lesson
• Setting Up for this Lesson
• Using Command Line Flags
• Filtering the Acceptance Test Log
• Running the Acceptance Test
• Summary

About this Lesson
Part of the benefit from creating automated scripts is that you don’t have to be
present to run them. So far, you’ve selected all JavaStar options and started
execution from inside the JavaStar GUI. This requires your interaction, and
probably isn’t how you’d want to work on a daily basis. Now you’ll take a look
at how to run JavaStar from the command line, using the wealth of command
line options. From there, you can create a shell script or batch file to run tests
in sequence (or repeatedly, with parameter changes) and analyze the results
later.

Setting Up for this Lesson
1. Copy the original sesame.db database over test.db .

2. If you did not do the lessons in the previous chapter, or if you no longer
have those files in your tutorial directory, copy the contents of the
parameters directory into the tutorial directory.

3. Launch JavaStar.
109

Using Command Line Flags
Each of the playback features provided by the JavaStar GUI can be set through
command line flags. The best way to see how this works is to map a test run to
a command line sequence.

In the GUI, you can define a test run that:

• Runs the Acceptance.jst test
• Sends six string arguments to the test
• Shows both the program under test and the JavaStar Record/Playback

window while running.
• Uses a log file named accept1.log instead of the default

You can do this in the Run Test window by:

• Specifying the test name and the six arguments in the fields under General
• Selecting Show Application and playback window under View (this is the

default setting)
• Enter accept1.log in the Log filename field under Advanced.

At the command line, you would specify the same test run by typing:

java javastar -play -gui -jst Acceptance.jst -log accept.log
-testargs "Name" "Address 1" "Address 2" "Phone" "Email"
"Other" "test.db"

This command line sequence sets each of these options. The order is only
loosely defined; the -testargs flag must always fall at the end, but the other
options can be defined in any order. The commands set the options as follows:

Command Description

java javastar Starts JavaStar.

-play Sets the mode to playback

-gui Sets JavaStar to display the JavaStar GUI
and the application under test during the
test run.

-jst Acceptance.jst Specifies that you are running a JST and
the name is Acceptance.jst .

-log accept.log Sets the logfile to accept.log . If you
didn’t set this, the log filename would
default to Acceptance.jst .log.

-testargs "Name"
"Address 1" "Address
2" "Phone" "Email"
"Other" "test.db"

Passes the specified arguments to the test.
110 JavaStar Tutorial—November 1998

JavaStar provides controls that correspond to playback options, as well. These
options are useful for controlling the environment in which the test runs. For
example, the delay (-scale) and time out (-timeout) options are helpful
when you run a test on a platform that has a slower response time than the
system used to record the test. If your test involves interaction with a canvas,
delay times can be critical to getting a proper response. But even if you
recorded with delays on, your test might be too fast on a very slow system.

By scaling the delay factor up—increasing delay times—and by increasing the
timeout value, you allow the system extra time to respond to the test events.
This provides you with the flexibility you need to test in a wide range of
environments.

Running the Acceptance Test
1. If you have the JavaStar GUI running, exit JavaStar.

This isn’t required—you can run the JavaStar GUI at the same time you run
tests from the command line—but, for the purposes of example, it simplifies
what you see on screen.

Note – At this point, you should be using the NameDB application in the
namedb2 directory. Be sure namedb2, not namedb1, is in your CLASSPATH.
You can check your CLASSPATH setting by typing

java javastar -sysinfo

2. In a UNIX shell or at an MSDOS prompt, enter the command to run the
acceptance test.
Type:

java javastar -play -gui -jst Acceptance.jst
-log accept.log -testargs "Susan" "45 Sesame St."
"Anytown USA" "555-2857" "susan@susan.com" "none"
"test.db"

There are no line breaks in a command line call to JavaStar.

This command:

Action Command Line Flag

Runs JavaStar java javastar

Goes into Play mode -play

Displays the JavaStar GUI -gui
111

Filtering the Acceptance Test Log
If you’re going to run tests automatically, it makes sense to generate reports
automatically, too. Of course, JavaStar already does this by creating a log file,
but this file contains all the information JavaStar records about the
test—probably more information than you want. Using the log control options
at the command line, you can manipulate this file during the test run or
afterwards.

For this example, you’ll filter the log for the test you just ran in the previous
exercise.

1. Filter the log to show only summary and time information.
At the command line, type:

java javastar -logfilter ST accept.log filtered.log

The S option of -logfilter specifies summary information, while the T
option includes time stamps.

2. Compare the sizes of the two log files.
The filtered log is only a fraction of the size of accept.log .

3. Compare the contents of the logs in a text editor.
The original accept.log contains a lot of information—details of the test
environments, each event executed, test arguments, and so on—that you
might not need for an initial report. The filtered log contains only the
summary for each test and the time it executed.

Summary
Running JavaStar from the command line is relatively simple. It’s important to
become familiar with the different options so that you can take advantage of
them in automated test runs. For more details on how to ways JavaStar from
the command line, see Using Command Line Options in the JavaStar User’s
Guide. If you want a complete list of the options availabe, either refer to the
JavaStar Command Reference appendix to the JavaStar User’s Guide, or -help
option of JavaStar at the command line.

Runs the acceptance JST -jst Acceptance.jst

Records output to
accept.log

-log accept.log

Sends test arguments for the
Susan record

-testargs "Susan" "45 Sesame St."
"Anytown USA" "555-2857"
"susan@susan.com" "none" "test.db"

Action Command Line Flag
112 JavaStar Tutorial—November 1998

Part 2 — Advanced JavaStar

Using the JavaStar API 8
This chapter presents JavaStar tools and guidelines for using the added
facilities found in the JavaStar Application Program Interface, or API. You use
the API by adding your own Java code to existing JavaStar scripts or writing
scripts from scratch.

While JavaStar provides you with fully-functional tests without requiring you
to use the API, your tests will be stronger if you know what is available and
use the methods to enhance your testing.

The JavaStar API includes classes and methods that assist test development.
You can modify your scripts to use API features that aren’t available when you
record GUI interaction. You can also access custom components directly and
call any public methods you need for verifying the state of your GUI or
performing actions. Because Java is a powerful language, your tests can use
more of the object-oriented features it provides when you add your own code.

In addition, some people prefer to write their tests from scratch. That way, they
can add their own methods to the script class as they go along. If you’re one of
these people, you’ll find JavaStar provides you with many tools to help you
create flexible scripts. Before writing a script, however, you’ll need to
familiarize yourself with the script format that JavaStar expects.

After reading this chapter, you should know:

• some of the tools available for you in the JavaStar API
• the format of JavaStar scripts
• how to start customizing existing scripts
• what you need to do to create a script from scratch

In addition, you should know how to do these common functions using the
API:

• verify that a menu component is enabled
• use any method of a component for verification
• share information among scripts
• keep scripts platform-independent when opening files
• replace label text errors found by GUINotFoundExceptions with internal

checks that do not cause an exception
115

This chapter does not attempt to teach you Java—it assumes that if you want to
add custom code, you’re already familiar with the syntax of that code—but it
does guide you through an exercise of adding Java statements to a script.

Topics:

• About the JavaStar API
• Anatomy of a Test Script
• An Example Application
• Verifying Menu Components
• Opening Files
• Summary

About the JavaStar API
The JavaStar API contains interface classes, class static functions for playback,
exception classes, and error classes. JavaStar uses this API to create scripts. All
JavaStar scripts are implemented from the Script class of the API.

When you edit a JavaStar script or write your own from scratch, you can use
this API to create powerful, consistent tests that work with JavaStar’s log
features.

The API class you’ll probably use the most is the JS. This class contains a
collection of static functions for use in playback. These functions allow you to
perform a number of necessary functions, including:

• assertions—checking values as a test comparison (JS.check())
• inserting delays into the test (JS.delay())
• locating frames and dialogs, using exact titles or regular expressions

(JS.frame , JS.frameRX() , JS.dialog() , JS.dialogRX())
• getting and setting property values (JS.getProperty() ,

JS.setProperty())
• getting and setting the typing rate (JS.getTypingRate() ,

JS.setTypingRate())
• finding named components and menu components by name

(JS.lookup() , JS.mlookup())
• recording notes to the log file (JS.note())
• inserting a break point in your test (JS.pause())
• waiting for a condition you define to be reached (JS.waitFor() ,

combined with the Waiting interface)
• wrapping a component in a JSComponent (JS.wrap())

Two other important classes are:

• JSComponent
• JSMenuComponent
116 JavaStar Tutorial—November 1998

You use JSComponent to send events to GUI components or to locate related
components. You use JSMenuComponent to contain menu components so that
you can test the contents.

You implement the Waiting interface when you use the JS.waitFor()
method to define the condition you want to reach before continuing, similar to
a custom synchronization.

Along with these classes, the API provides a number of exception and error
classes that you can use to handle problems. For information on these classes,
and for more details about those already described, see the JavaStar API
Reference.

Anatomy of a Test Script
Each test script implements the Script class to define the application it needs
to run, start-up information, argument details, and the actual test itself. When
you create or edit a Script, you must be sure to maintain the Script structure, or
your test may not compile or run. A Script is a Java program; it must compile
and run in Java. In addition, you must ensure that the methods JavaStar
requires are in place.

/* Generated by JavaStar Java GUI Testing Tool

 */

import suntest.javastar.lib.*;

import java.awt.*;

// You may add import statements here

public class EmptyScript extends Script {

private static String[] Args =
{"file:/D:\\JavaStar\\examples\\SwingSet\\Application\\SwingSetA
pplet.html"};

 public String[] getAppArgs(){ return Args; }

public String getAppClass(){ return
"suntest.javastar.applet.JSAppletViewer"; }

public void run() throws Throwable {

 suntest.javastar.applet.JSAppletViewer.main(Args);

 }

public void play(String[] args) throws Throwable {

//YOU ADDRESS THE API HERE

 }

}

When you edit a script or create one manually:
117

• If you change the name of the script, be sure to change the class name as
well as the file name.

• Always include the four class methods (getAppArgs() , getAppClass() ,
run() , and play()).

• You can add import statements, but don’t delete the lines that import the
suntest.javastar or java.awt packages.

• Be sure that getAppClass() returns a string that matches the name of
your application’s main class. This is an issue only if you’re creating the
script manually.

• You can safely edit the play() method or add other methods.

In general, you only need to add import statements and edit or add to the
play() method. If you generate an empty script through the Record/Playback
window, all other required fields and methods will be in place.

An Example Application
There is an application called “TCTester” that you can use for this lesson. This
application creates a test file to be used to test a temperature scale converter. To
set up this application, create a project first.

Throughout this lesson you will be working in the tutorial directory. This
directory is found in your <JavaStar home> directory. Please adjust the path for
your installation. For example, in Windows, this may be:

C:\JavaStar\tutorial

1. Change your working directory to
<JavaStar home>/tutorial/API/TCTester/

2. Create a project for this tutorial where:

• application with its associated files is in:

<JavaStar home>/tutorial/API/TCTester/Application/
TCTestCaseBuilder.class

• the tests, test paths, and JST is:

<JavaStar home>/tutorial/API/TCTester/ Tests

• the test results are in:

<JavaStar home>/tutorial/API/TCTester/TestResults

• the declarations are in:

<JavaStar home>/tutorial/API/TCTester/Tests/

TCTesterDeclarations/Main.class

If you need help creating a project, please see “Setting Up Project Files”.
118 JavaStar Tutorial—November 1998

Verifying Menu Components
After you have completed the project settings, create a script to test that the
menu components are properly enabled. To do this, create a template for the
script, then fill in the proper code using some of the API commands.

Let’s see what happens when you try to select a menu component from the
“Record/Playback” window.

1. Click on Create a Test Script, and on Start to begin the application.
If your project settings are correct, the application, TCTestCaseBuilder ,
should be in place.

2. Click on Interact.

3. From the application, pull down the File Menu. The New, Open, and Exit
menu items are enabled.

4. Click Inspect to view the JavaStar code for these components.
The “Inspect” window does not show these components. It remains on the
main application.

5. Click Quit to close the Record/Playback window.

Java 1.1.x AWT MenuComponents are specific to a platform. If JavaStar tried to
address these components directly through the GUI itself, the resulting scripts
would be platform dependent. Robust scripts should run on all platforms.

Because of this, there needs to be another means to address the Menu
Components . There is: using the JavaStar API. You can use methods in the
JSMenuComponent class provided with JavaStar to get the actual MenuItem ,
then use the MenuItem’s methods to do the verification.

This is a common use for the API: obtaining the component itself, then
checking information about the component that is not available to you from
the verification function within the “Record/Playback” window.

Using the API to Obtain a Component

Although our example uses a menu component, parallel commands exist for a
regular component. The menu class is JSMenuComponent ; a regular
component is JSComponent .

You can use the declarations generated for this application. To learn more
about generating declarations, see “Generating Declarations”.

Here is an example of locating a menu component:

JSMenuComponent newMenuComponent;
newMenuComponent = TCTesterDeclarations.Main.New();
119

This is not the AWT MenuItem , though. Use the getValidUnique() method
of JSMenuComponent (or JSComponent) to extract the actual component from
the JavaStar wrapper. As getValidUnique() returns a generic Component ,
you must downcast the component to the proper class.

MenuItem newMenuItem = (MenuItem) newMenuComponent.getUnique();

Once you have the MenuItem , you can use its methods to verify. However,
you’ll need a means to report the results of that verification to the test.

Using an Internal Verification

You can make output assertions from within a script using the JS static
method, JS.check() . JS.check() takes two parameters: a boolean that is
the condition you want to check, and a String that represents the purpose of
the check.

The initial condition should be presented such that if it is true, the check will
pass. For example, you assert that if the New menu item is enabled, this check
should pass. You do this in code by writing:

JS.check(newMenuItem.isEnabled(), "New should be enabled");

Now that you’ve got the idea of what is needed, let’s review the mechanics of
getting this code into the script.

Step 1: Creating the Base Script

You could code the entire script by hand, but it would be subject to errors of
omission for the items JavaStar provides that you shouldn’t have to think too
much about. It’s easier to use the record features of JavaStar to generate a base
script.

If you were really verifying the state of the application at start-up, you’d
probably do the verifications of all buttons and text fields directly from the
Record/Playback window, then edit the script to add the menu verifications.
Feel free to do that if you have the time. Our directions are just for how to do
the menu verification.

1. Click on Create a Test Script, and Start the application.

2. Record the script. Name it VerifyFileNotOpen .

3. Immediately Stop the recording.

4. Quit the “Record/Playback” window.

This created a script with an empty play() method, except for obtaining a
component. Now you need to edit that script to put in the code to verify the
menu item.
120 JavaStar Tutorial—November 1998

Step 2: Edit and Test the Script

Use the Script Editor within JavaStar to enter the required code. See “Editing
Tests” in the JavaStar User’s Guide for more information on using this editor.

1. Click Edit Test Script, then browse to locate this script:

tutorial/API/TCTester/Tests/VerifyFileNotOpen.java

2. Locate the play() method.

3. Add the code to verify that the New menu item is enabled:

MenuItem newMenuItem;
JSMenuComponent newMenuComponent;
newMenuComponent = TCTesterDeclarations.Main.New();
newMenuItem = (MenuItem) newMenuComponent.getValidUnique();
JS.check(newMenuItem.isEnabled(), "New should be enabled");

4. If you want, delete the unnecessary declaration for the button.

5. Click Save and compile.

6. Run the script (you can do this from the editor by clicking Run Script).
It should run successfully with one passed check.

7. Click Quit to close the Record/Playback window and Close to close the
editor.

Now that you’ve got a start on using the API, try a lesson that is a bit more
complicated.

Opening Files
If you have been working on the other lessons in this tutorial, you’ve spent a
lot of time on OpenFile . This lesson has a different application, but still has a
file to open, so you’re going to spend more time; however, you can build on
what you’ve learned and use methods in the API to make your file handling
even more rigorous.

You are going to work with these methods in this part of the lesson:

• JSComponent.relativefile() and JSComponent.choosefile() ,
which simulate file dialogs

• JS.note() , which adds messages to the test results file
• JS.getProperty() and JS.setProperty() , which share data between

scripts

Examining the Recorded Open

Start by recording a script that opens a file.
121

1. From the main JavaStar window, click Create a Test Script, and click Start
to run the application.

2. Click Record. Name the script openAction .

3. From the application, pull down the File menu, and select Open.

4. Open the file:

tutorial/API/TCTester/newfilew

5. Verify that the label on the left reads “newfilew .”

6. Stop the recording, and Quit the “Record/Playback” window.

This is pretty much the same as you did before. You edited that script to
replace the hard-coded file name with an argument. That is better, but you can
do better still. Here are some of the problems that remain with a file-opening
script, even if you make the file name a variable:

• The script may fail, due to either a test set-up failure (no such file exists) or
an application failure, and it will not be evident which is the problem.

• The script remains platform-dependent if a relative path is hard-coded.
• It is very easy to break a script dependent on the relative position of the test

file to the working directory.
• The script may fail with an obscure GUINotFoundException , which may

disguise a very different problem.

Next, you will examine each of these in detail and see solutions available to
lessen the problems with scripts that address files.

Separating Test Set-up Verification

Two things are being tested in the openAction script:

• that the test is in the proper initial state
• that the application works

For better reuse, use two scripts.

The first, VerifyTestFile :

• ensures the arguments have been entered
• checks that the test file exists where specified
• notes initial state characteristics about the file for use in other scripts, such

as its size

The second, openAction :

• actually runs the application and sees if it can successfully open the file
122 JavaStar Tutorial—November 1998

If VerifyTestFile fails, it means that test file wasn’t set up properly. If
openAction fails, the application has a problem opening the file. This makes
error assignment and debugging much clearer than leaving it all in one script.
VerifyTestFile becomes very reusable for any application using that file.

Removing Platform and Path Dependence

Examine your openAction script by viewing it in the script editor.

1. Click Edit Test Script. Browse to find:

tutorial/API/TCTester/Tests/openAction.java

2. Scroll to the play() method. Notice the call to the file dialog simulation:

JS.frame("Temperature Converter Test Input")
.dialog("java.awt.FileDialog", "Open")
.relativefile("..\\", "newfilew");

3. Click Close.

In a previous exercise, “Adding Parameters for Flexibility”, you replaced the
file name “newfilew” with an argument that is passed to the test at run time.
While this improves the script and makes it more flexible, please note that the
directory, the first argument to the JSComponent.relativefile() method,
remains hard-coded. This string is dependent on two things, each of which
makes this script fragile and less portable:

• The file is relative to the current working directory. This script can only
be run in the exact same relative position to the test file.

• The path is platform-dependent. Notice in our example above, you see
two backslashes (“\ ”). This script depends on a Windows environment
to run.

To correct this, make the directory, as well as the file, an argument. It would be
preferable to specify the path as absolute, rather than relative. You’ll do this in
a few moments.

Removing False Exceptions

Should the openAction script fail to open a test file that is known to exist, it
is most likely a problem in the application code. The proper behavior is to note
that error against the application.

However, as the code uses a variable label to show that the file has been open,
the verify on this label will fail with a GUINotFoundException .

The ideal correction to this is to change the application code itself to use a
setName() for this component. Then, if JavaStar is instructed to use
component names, the text of the label will not become the actual name of the
component.
123

However, the TCTester application does not use setName() . We can
compensate by catching the GUINotFoundException within the script, and
posting an error to the log by using JS.check() .

try {
JS.frame("Temperature Converter Test Input")

.member("java.awt.Label", filename)

.verify(this,filename, "label should reflect file name");
} catch (GUINotFoundException oops) {

JS.check(false, "File label not correct");
}

Now let’s actually create the VerifyTestFile and openAction scripts.

Building VerifyTestFile

Create a template script and edit it to code the required instructions.

1. Click Create a Test Script. Start the Application.

2. Record. Name the script VerifyTestFile .

3. Immediately click Stop to stop recording.

4. Click Quit to close the “Record/Playback” window.

5. Edit the script. Browse to open:

tutorial/API/TCTester/Tests/VerifyTestFile.java

6. Import the IO classes you will need.
Add:

import java.io.*;

to the import statements.

7. Assign the two arguments to variables with better names. Validate to
ensure the arguments are not empty or null. Put this code at the
beginning of the play() method.

String fileDir, fileName;
try {

// find the arguments
fileDir=args[0];
fileName=args[1];
// make sure they are not empty
if (fileDir.length() == 0 || fileName.length() == 0) {

JS.note("Empty argument found");
JS.note("Directory: " + fileDir);
JS.note("File Name: " + fileName);
throw new IOException();

}
} catch (Exception oops) {
124 JavaStar Tutorial—November 1998

JS.note ("Unable to resolve file name arguments");
throw oops;

}

JS.note() is the API method that allows you to post a string to the test result
file. Here you use it to add a better explanation for what caused the exception.

8. Enter the code to ensure the file exists. The code below has the required
calls to the API.

// verify the file is ok
TestCaseFile tf = new TestCaseFile(fileDir,fileName);
if (!tf.fileExists()) {

JS.note ("Could not find " +fileDir + fileName);
throw new IOException();

}

9. Gather other information about the file for use in later scripts.
It is better to get that data now, rather than try to access the file while the
application has it open, as you may accidentally cause a problem trying to
open it twice. Here is the code to gather the information through the file
API.

// get the absolute path
String absFileDir = tf.getParent();
String fileSize = String.valueOf(tf.getSize());

10. Place the file information in a property file that can be accessed by other
scripts.
JavaStar maintains an internal property file that all scripts can access within
any one execution of a test. To place items in this file, assign them a key
name, and use JS.setProperty(String keyname, String value) to update
the file. Here is the code that sets the values in the property file and notes to
the log what those values are.

JS.setProperty("FILEDIR", absFileDir);
JS.setProperty("FILENAME", fileName);
JS.setProperty("FILESIZE", fileSize);
JS.note("Properties set: ");
JS.note ("FILEDIR: " + absFileDir);
JS.note ("FILENAME: " + fileName);
JS.note ("FILESIZE: " + fileSize);

11. Save and compile the script. Don’t close the editor yet.

Edit openAction

1. From the Script Editor, browse to find the script:

tutorial/API/TCTester/Tests/openAction.java

2. Locate the play() method. All your updates will go within the brackets
of this method.
125

public void play(String[] args) throws Throwable {

//YOU ADDRESS THE API HERE

}

3. Get the file directory and file name properties, and assign them to
variables. Place this code at the beginning of the play() method.

// Code to get the properties we need
String filedir, filename;
filedir=JS.getProperty("FILEDIR");
filename=JS.getProperty("FILENAME");

4. Locate the call to relativefile() and correct it.
There is a parallel method, choosefile() that uses an absolute path.
Change to this method, and use the values from the properties for the input
parameters.

// change from relativefile to choosefile,
// from literals to properties
TCTesterDeclarations.Main.tCTestCaseBuilder()

.dialog("java.awt.FileDialog", "Open")

.choosefile(filedir, filename);

5. Locate the verification of the label, and change it to use the variable
filename.

JS.frame("Temperature Converter Test Input")
.member("java.awt.Label", filename)
.verify(this,filename, "label should reflect file name");

6. Enclose that verification in a try/catch loop that catches an exception and
posts an error to the log instead.

try {
JS.frame("Temperature Converter Test Input")

.member("java.awt.Label", filename)

.verify(this,filename, "label should reflect file name");
} catch (GUINotFoundException oops) {

JS.check(false, "File label not correct");
}

7. Save and compile the script. Close the Script Editor.

Now that you have built the scripts, you can build a test that contains them.

Build the JST

By creating a test that contains the pair, you have the effect of a single script
similar to the OpenFile you created for the Name application. This test can be
used within other tests, and the properties it sets can be addressed by the other
scripts.

If you are not familiar with using the test composer, please see “Composing
Tests” in the JavaStar User’s Guide.
126 JavaStar Tutorial—November 1998

1. Click Compose Test. Enter OpenTCFile as the jst name.

2. Add the scripts VerifyTestFile and openAction .

3. Map the first two jst arguments, 0 and 1, to the first two arguments of
VerifyTestFile . Use the Edit button.

4. Create a normal flow between VerifyTestFile and openAction .

5. Save the test.

6. Close the Test Composer.

Now you are ready to test your test.

Run the Test

1. Run Test. Browse to find:

tutorial/API/TCTester/Tests/OpenTCFile.jst

2. Enter the arguments /tutorial/API/TCTester for the directory, and
fileOfThree for the file name. Adjust the directory path as needed to be
correct for your platform.

3. Start the test. It should run to completion.
Examine the test results to see the notes you have made.

4. Try the test several other times using different arguments, such as the
absolute path for the directory, an invalid directory, an invalid file name,
etc.

At this point, you have learned to build a robust file-handling test.

Summary
You should now be well on your way to designing effective tests and finding
the best ways to automate them. The next step is for you to take what you’ve
learned and apply it to your application and your planned test scenarios. For
help with how to perform specific tasks or to learn what various JavaStar
options do, see the JavaStar User’s Guide. For more details on the JavaStar API,
read the JavaStar API Reference.
127

128 JavaStar Tutorial—November 1998

Using Non-Component Locators 9
This chapter describes develop and use locators to access non-Java AWT
components as part of your JavaStar tests. You may need a locator if GUI
objects that you need to access as widgets are not visible to JavaStar.

The next two chapters deal with specific locators for the JFC, and with writing
locators.

Topics:

• About this Lesson
• Using an Existing Locator
• How a Locator Works
• Summary

About this Lesson
When you test an application that was created using a toolkit that does not
extend Java AWT, you need a locator object to translate GUI location data for
JavaStar. In the case of the Marimba Bongo, Netscape IFC, and the KL Group’s
JClass toolkits, JavaStar provides locators. For other toolkits, you need to write
your own.

This lesson introduces the concept of locators and describes how to write your
own. Because locators vary in implementation (the actual content of the
methods used) depending on the toolkit, this lesson does not guide you
through the detailed process of creating a specific locator. Instead, it provides
the information you need to evaluate your toolkit and use the JavaStar API to
create a locator appropriate to the toolkit.

After completing this lesson, you should be able to:

• Determine when you need a locator
• Use your own locator or a pre-existing one to record tests
• Use the JavaStar non-component classes to create a locator that conforms to

the structure JavaStar expects
• Evaluate your toolkit to see what methods it provides to assist you in

developing your locator
129

Using an Existing Locator
This section describes the steps to follow to use a locator while recording a test,
but doesn’t give you an exercise to run. This is because in order to run a locator
and see it work, you need to have an application that uses non-components
(the JavaStar term for widgets that JavaStar can’t “see”).

If you would like to do an exercise using a non-component locator, please take
the next t utorial lesson, Testing JFC Components.

To use a locator when running a test, make sure the locator directory is in your
Additional classpath setting.

This procedure assumes you have your application running and have the
Record/Playback window open.

1. In the Record/Playback window, click Record.
The Record test script window is displayed.

2. In the Test name field, provide the name of your script.

3. In the Non component locators field, either type in the locators you want
or click Locator List to browse for them.
If you type the locators in, be sure to give the package name (if any) and
put a delimeter between each locator. On Windows systems, use a semi-
colon as a delimeter; on UNIX systems, use a colon.

If you use the Select Non-Component Locators dialog window to find the
locators, you need to navigate to the correct directory using the Select an
Item panel to the left. If you are using a JavaStar-supplied locator, or if you
are storing your locators in the same directory as the JavaStar locators,

a. Click on the JavaStar folder icon along the top of the Select an Item
panel.

b. Click on the plus sign to expand the folder, then scroll down to find
the contrib folder.

c. Expand the contrib folder and double-click on the locators sub-
directory to make it the only folder displayed.

d. Expand the locators folder.

e. Click on a locator you want to reference, then click the Add to List
button in the Edit List panel to the right.

f. Continue for any other locators you need to add.
See Figure 9-1 for an example of how the window should look.

g. Click OK.
130 JavaStar Tutorial—November 1998

Figure 9-1 Select Non-Component Locators dialog window.

4. If you need to specify files for Record with map files, or to toggle on
Record with delays, do so now.

Figure 9-2 Record test script dialog with locator information provided

5. Click OK.
131

How a Locator Works
Non-Component Locators (NCLs) are objects of the nonComponentLocator
class. This class contains two methods—findObject() and
getNamedObjectData() —that you implement with code specific to the
toolkit you are using.

This section describes:

• Recording a Script with an NCL
• Running a Test with an NCL

Recording a Script with an NCL

Figure 9-3 Recording with a non-component locator

As you record a script, JavaStar monitors your interaction with the application
under test. If you defined your test to use an NCL as you record, the test is
recorded using the procedure:

1. Test operator performs an event on a non-component.

2. JavaStar monitors the event, noting the parent Component (the parent
deriving from the JavaAWT library) and the AWTevent .

3. JavaStar sends the Component and AWTevent to the NCL

4. The NCL runs the data through its own acceptance criteria, and if it passes,
it calls findObject(Component, AWTevent) .

5. findObject() identifies the non-component as an object of the toolkit,
retrieves the location of the object, then determines how best to refer to this
object using a String.

6. The NCL returns the reference as part of a JSNCLData object.
132 JavaStar Tutorial—November 1998

7. JavaStar takes the non-component reference supplied by the NCL and
inserts this code into the test currently recording.

Running a Test with an NCL

Figure 9-4 Running a test with a non-component locator

1. JavaStar receives an instruction from the test that references a non-
component using a String.

2. JavaStar calls the getNamedObjectData() method for the NCL. It passes
the Component and the String referencing the non-component, as provided
by the test code.

3. getNamedObjectData() performs the reverse operation as
findObject() —it uses the String passed in as an argument to determine
the location (coordinates) of the object.

4. getNamedObjectData() sends the location information back to JavaStar
inside an NCLData object.

5. JavaStar executes the event at the location specified.

Summary
Now that the basic concepts of an NCL are understood, you can take the next
more detailed lessons on using and building NCLs.
133

134 JavaStar Tutorial—November 1998

Testing JFC Components 10
The Java Foundation Classes (JFC) are not officially part of the Java language
until the release of Java 1.2. However, many people are developing projects
using components based on those classes. The JFC is now available under the
name Swing. JavaStar can be used to test applications and applets that contain
Swing, or JFC, components.

This chapter allows you to record tests on an application that uses many of the
JFC components. You use the provided Non-Component Locators.

After reading this chapter, you should know how to:

• verify a simple JFC component
• set up project to use the JFC
• use provided NCL’s and text maps to address complex components
• obtain a JFC component and use the JavaStar API for specialized tests

Topics:

• Setting Up to Test the JFC
• Testing a Simple JFC Component
• Testing Menus and Toolbars
• Testing a Complex Component
• Summary

Setting Up to Test the JFC
Before you can do this tutorial, you must install Swing 1.0.2 or higher. This is
needed to run any application using Swing components. You can locate this
product at the Java web site. Be sure to update your classpath to include
<swing>/swingall.jar .

We have copied the SwingSet application to this directory:
tutorial/API/TCTester/Application .

You can set up a project to run the SwingSet applet.

1. Set the App to the applet file URL:

tutorial/API/TCTester/Application/SwingSetApplet.html
135

2. Establish the test working directory, JST path, and test path, as:

tutorial/API/TCTester/Tests

3. Set the test results directory to:

tutorial/API/TCTester/TestResults

4. Move to the Mapping pane. You will need to use a text map and a non-
component locator to test this application. You will find both in the
directory where you installed JavaStar. Edit the list for the NCL to
include:

<javastar>/contrib/jfc/newNCL.class

5. Ensure the text map list includes:

<javastar>/contrib/jfc/JfcTM.class

6. Save the project by clicking on Save As... and saving it in:

tutorial/API/TCTester/SwingSet.jpr

Now that javastar can find the application, its needed Swing classes, and the
necessary NCL’s and text maps, you are ready to record a test.

Testing a Simple JFC Component
Actually, you don’t need the NCL to test simple JFC components that don’t
contain other components. JavaStar can locate these components. To
demonstrate this, test a slider to see if it is set at the correct value.

1. Click Create Test Script. Use the application that you set up in the project.
Click Start.
It takes a while for the SwingSet applet to load.

2. Record the script. Name it testSlider .

3. Return to the SwingSet applet. Select the tabbed pane “Slider”.
Notice that the NCL is used to locate a tabbed pane. Here is the JavaStar
code:

JS.lookup("Main SwingSet Panel").member
("com.sun.java.swing.JTabbedPane").getNonComponent

("jfc.newNCL","14:Slider").multiClick(17,15,16,1);

4. Verify the value shown on a slider. Click Verify on the Record/Playback
window. When asked to select an object, select any slider.
You should see the JSlider object in the verify panel. The code is
something like this (it varies depending on which slider you chose).

JS.lookup("Main SwingSet Panel").member
("com.sun.java.swing.JTabbedPane").member

("SliderPanel").member("com.sun.java.swing.JSlider", 6)
136 JavaStar Tutorial—November 1998

5. JavaStar will suggest using the attributes in the gold file as the default.
Click Customize to use a method of a JSlider to check just the value.
If you used the gold file, JavaStar would compare all significant attributes
of the slider.

6. Click on the Using simple methods and data members radio button. Click
on Select simple methods and data members to see a list of the members.

7. Scroll through the list and select the method getValue() , and click
Enter a purpose.

8. Click Insert the verification into test. The code in the script should be
similar to this:

JS.lookup("Main SwingSet Panel").member
("com.sun.java.swing.JTabbedPane").member

("SliderPanel").member
("com.sun.java.swing.JSlider",6).

verifyAnyMethod(this,false,true,"getValue",new Integer(60),
"ensure the proper value");

9. Click Continue, then stop the recording.

10. Playback the recording.

As you can see, testing a simple JFC component is not very different from
testing an AWT component. You can do everything you could with an AWT
component. As you’ll see in the next section on Menu components, you can do
more with some items.

Testing Menus and Toolbars
Verifying the contents of an AWT menu required the use of the JavaStar API.
However, you can verify JFC menus and toolbars while recording. This section
allows you to try that verification.

1. If you are still in the Record/Playback window with SwingSet running,
you can just record a different script here. If you are not in that window,
Click Create test script and start the applet.

2. Record a script. Name it testMenu .

3. Select the Menus & ToolBars tabbed pane from the Swingset applet.

Check a Menu Bar Label

1. Verify that the Colors menu item has the correct label. Click Verify, and
select the Color menu.

2. JavaStar will suggest using the Gold File as a default. Since we just want
to check the label, click Customize.
137

3. Select Using simple methods and data items, and click Select simple
methods and data items.

4. Choose the method getLabel() , and click Enter a purpose.

5. Enter a purpose if you’d like, and click Insert verification into test.

6. Click Continue.

Check a Menu Item’s Mnemonic

Continue to record the test. Verify that the proper mnemonic was used for a
menu item.

1. Pull down the File menu on the tabbed pane. Use the sample menu on the
pane, not the real one for the SwingSet applet.
Leave the menu pulled down, and return to the Record/Playback window.

2. Click Verify. Return to the applet, and select the Save menu item.

3. Return to the Record/Playback window. Click Customize.

4. Select Using simple methods and data items, and select the
getMnemonic() method.

5. Click Enter a purpose, and Insert verification into test.

Check a Toolbar

The ability to use abstract buttons with images, rather than text, in them makes
the creation of a button icon easy when using JFC components. You can verify
these buttons. Verify to see if a button is enabled. This continues the test we are
building, and selects a button on a toolbar within the Menus and Toolbar
tabbed pane.

1. Click Verify.

2. Select a toolbar button on the tabbed pane. We chose the Paste button at
the end of the bar.
Notice the code that was generated. The button was labeled with the word
“paste ” rather than a sequential number. The text map we used chooses
the tool tip for a label of some components.

JS.lookup("Main SwingSet Panel").
member("com.sun.java.swing.JButton", "paste")

3. Return to the playback window, and click Customize.

4. Click Using enabled.

5. Click Enter a purpose, and Insert verification into test.
138 JavaStar Tutorial—November 1998

6. Click Continue, and stop the recording.

7. Playback the recording.

Now try a more complex component that will use the non-component locator,
and use the JavaStar API to test it.

Testing a Complex Component
To try a more complex component, take a look at the sample tree that is in
SwingSet. Verify that the main root of the tree has more than one child. To do
this, start a recording, locate the tree, then use the edit facility of the
Record/Playback window to get the component.

1. Record a new script. Name it testTree .

2. Select the tabbed pane “TreeView” on the SwingSet applet.

3. Return to the Record/Playback window. Click Edit. The script editor will
appear in the window.

4. Select Insert reference from the bottom of the panel.
A dialog appears. This dialog lets you create a variable name, then select
the component you’d like to reference.

5. Name the variable by typing its name in the Name text field. Call it
theRoot .

6. Select the component by returning to the applet and selecting the top of
the tree, “Music.”
You see the component appear in the reference window.

7. In the Reference window, click Apply, and Close.
This inserts the code to get the component in the top of the play() method
of the script.

This is the code that is generated:

com.sun.java.swing.tree.DefaultMutableTreeNode theRoot =
(com.sun.java.swing.tree.DefaultMutableTreeNode)

(JS.lookup("Main SwingSetPanel")
.member("com.sun.java.swing.JTree")

.getNonComponent("jfc.newNCL","0:Music")
.getReference());

8. Add the code to do the check. Place it beneath the reference.

JS.check(theRoot.getChildCount() > 1,
“root must have more than one child”);

9. Compile the code. When the compile succeeds, Save the script.

10. Click Continue to close the editor.
139

11. Stop the recording.

12. Playback the script.

You can continue, if you’d like, testing any of the JFC components found in the
SwingSet.

Summary
JFC Components can be tested using JavaStar and Swing. Most of the
components can be addressed and used as any other components. Some
require the use of Non-Component Locators and text maps that are distributed
with JavaStar.
140 JavaStar Tutorial—November 1998

Writing Non-Component Locators 11
There are some components that JavaStar cannot identify without the use of a
non-component locator (NCL). These include:

• third-party components, such as those provided by the KLGroup
• components that are not officially part of Java in this release, such as the

JFC
• components developed by your organization

JavaStar provides non-component locators for the JFC and many of the third
party components. However, you may need to write one yourself if you are
using components that are not in the AWT.

This lesson explains in detail how NCLs work and walks you through the
creation of an NCL.

Topics:

• Understanding the Need for an NCL
• Anatomy of a JSNonComponentLocator
• Exercise
• Summary

Understanding the Need for an NCL
Items that are directly contained by an AWT component do not require NCL’s
to be found. JavaStar can locate them. However, if those items themselves
contain other sub-components, JavaStar needs more knowledge to determine
what actual object is needed by the tester.

For example, let’s consider a JTree , one of the Swing (soon to be JFC)
components. As you saw in the last lesson, JavaStar could find the JTree
without an NCL. However, it could not find a row, or node, of the tree.
Without the NCL, testing could only be done on the tree as a whole.

Figure 11-1 is a screen shot of the tree we are going to work with for most of
this lesson. It is from the SwingSet example distributed with Swing.
141

Figure 11-1 A JTree

Using JSNCLData

JSNCLData is the class that describes a non-component. Table 11-1 shows the
definition of the class and the values for a single component, the Mozart line
seen above.

The Name is the unique identifier for that component within the JTree . It is
created by the NCL. The name serves two purposes. First, it provides a means
to locate the component itself. In this case the number 4 is the index into the
JTree that will locate that row. Second, the name is a means to confirm that the

Table 11-1 Data members of JSNCLData

Variable Declaration Value for “Mozart”

Name public final String Name “4:Music##Classical##Mozart”

P public final Point P P.x: 40
P.y: 72

Ref public final Object Ref An instance of the
DefaultMutableTreeNode
class.
142 JavaStar Tutorial—November 1998

component is the same as the one found at the original. The string
“4:Music##Classical##Mozart” can be parsed. The string following the colon
can be reconstructed into a path. This path must match the one found at index
4, or JavaStar will know that the component which was originally addressed
no longer exists at that index.

The Point is the position of that sub-component within the containing
component recognized by JavaStar. The containing component is the JTree .
The upper-left location of the rectangle bounding the Mozart row is
represented at that point. With this information, JavaStar can interpret any
click on that component as relative to that point.

The Reference is the component itself or a means of locating the component.
In the case of the JTree , it is the DefaultMutableTreeNode corresponding
to the Mozart row. JavaStar can then inspect the available methods and data
members of this component, and make them available for use in verification
and synchronization.

Now that we’ve analyzed the JSNCLData , let’s take a look at how one NCL,
the Tree.java NCL, creates that data.

Using the JSNonComponentLocator

The purpose of a Non-Component Locator when recording is to interpret a
click on a containing component, and provide its JSNCLData .

The purpose of a Non-Component Locator when playing back is to locate a
component given its unique name, and return its current JSNCLData . If an
entire tree is moved to a new location, JavaStar can still locate the proper
component within that tree, as its bounds are relative to the tree. If the row is
no longer at the 4th index position, however, JavaStar will not be able to find
the component.

Anatomy of a JSNonComponentLocator

You can find the API for this class in the JavaStar API Reference.

There are two methods that must be provided:

1. JSNCLData findObject(Component c, AWTEvent e)

2. JSNCLData getNamedObjectData(Component c, String name)

Finding the JSNCLData while Recording

The findObject() method must determine what object is at a given mouse
position. To do this it must:
143

1. Ensure that the component and event are appropriate for this NCL.
JavaStar will pass the pair to each NCL on the list of locators until a value is
returned or it has iterated the entire list. So the NCL for a JTree , for
example, must be sure that the component passed is an instance of a JTree ,
and the event is a mouse event. Otherwise, it should return null. Here is the
code in Tree.java that ensures this is a JTree and a mouse event:

if(e instanceof MouseEvent){
int x = ((MouseEvent)e).getX();
int y = ((MouseEvent)e).getY();
if(c instanceof JTree){

JTree t = (JTree)c;
return findObject(t,x,y);
}

}
return null;

Note the cast of the component to the JTree when it is certain that the
component is a JTree .

2. Locate the nearest component at this position.
The NCL must determine the component that is appropriate for that event,
and at the position within the containing component. How it does that
depends on the methods available in the component. For a JTree , the NCL
uses the getClosestPath() method to locate the full path, then gets the
row index for that path. Here is the code:

public static JSNCLData findObject(JTree t, int x, int y){

TreePath p = t.getClosestPathForLocation(x,y);
if(p!=null){

int r = t.getRowForPath(p);
return getTreeDat(t,r);

}
return null;

}

3. Create a unique name for the contained component.
There are two parts to the name: its location within the containing
component, and a confirming string that can be used to ensure the same
component is at that location. Think of the location as a street address of a
home. Think of the confirming string as the names of the people in the
home. To find people, you need to both locate their address and ensure they
still live there. When a script is played back, that location must exist and
that same component must be in that location.

For the JTree , finding the location is easy. Mozart is the fourth row, and
the NCL uses the integer 4 as the index. The confirmation is not quite as
easy. Simply using the string “Mozart” may not ensure it is the correct
component, as there may be many “Mozart” entries in the tree. To be
unique, the string must contain the path to Mozart. The Tree.java uses
the various methods available to get the row path, parse it to individual
144 JavaStar Tutorial—November 1998

objects, and concatenate a path, separated by the ## delimiter, of the
“toString() ” titles of each object. The resulting name, then, is
4:”Music##Classical##Mozart”.

4. Locate the position of the contained component within the container.
There needs to be a consistent way to state the boundaries of that
component relative to its container. Figure 11-2 shows a logical rectangle
around the row. The upper boundary of that rectangle is at point (40,72)
within the JTree . A click at (44,84) lies within that row.
145

Figure 11-2 A Row contained within a Tree

The Point of the Non-Component is a fixed position from which JavaStar
can consistently calculate the relative position of the multi-click. In the case
of the Mozart example, the point is at the x, y coordinates of 40,72.

If JavaStar calls findObject() with a mouse click at 44,84, the NCL finds
the row at 40,72. JavaStar sees that point in the returned JSNCLData , and
translates the mouse click to be relative to that row. The mouse click
coordinates viewed in the script, then, are 4 (44 minus 40), 12 (84 minus 72).

The row bounds of 40,72 were obtained by using the getRowBounds()
method of JTree .

5. Get the actual component.
The last part of the JSNCLData is the component itself. The NCL provides
the component at the appropriate level. For a JTree , that was determined
to be the TreeNode at that level. If this click was not on a tree node, no
object, and no JSNCLData , would be returned.

The other “half” of the NCL is to be able to generate the JSNCLData based on
the unique name, rather than a coordinate.
146 JavaStar Tutorial—November 1998

Retrieving a Named Non-Component

When a script is played back, JavaStar needs to find the actual component
clicked upon to evaluate whether a verification continues to pass against that
component. JavaStar has the unique name found at the time of recording, and
the event logged against the component. It needs to verify that the appropriate
non-component exists, and invoke the necessary methods against that
component to evaluate a verification.

The NCL must provide a method, getNamedObject(), to get the JSNCLData
for a component based on its name. The NCL is provided the containing
component, and the unique name created at the time of recording the script.

In our example, getNamedObject() is passed the JTree, and the string
“4:Music##Classical##Mozart”.

These are the things that must occur:

1. Ensure that the component is appropriate for this NCL.
In this case, the component must be a JTree .

2. Parse the string to the location, and the confirmation.
The location is 4, in our example, and the confirmation is the string version
of the row path.

3. Confirm the location exists.
In this case there must be a fourth row in the JTree . If there isn’t, the
method returns null.

4. Confirm the proper component is at that location.
The NCL regenerates the path string in the exact same manner as it did
when recording, and ensures it is the same as the one given to the method.
If it is, we have the component. If not, null is returned.

5. Create the NCL Data for that component.
This is done exactly as it was for findObject() . See steps 3-5 of “Finding
the JSNCLData while Recording”, above.

Once JavaStar has the component, it can run required methods on it to verify
that the tests pass.

Exercise
If you would like to try to build an NCL as an exercise, try one for a JList .

Before you code, you need to consider how you will name the item, locate its
bounds, and obtain the component. Since we don’t expect you to be a JList
expert, here’s some help.
147

The name of the component will be its index in the list, a colon, and a text
string. We have provided a method findName() that returns that additional
string given a JList and an index to it. You can use the Parser utility just as
it was used in the JTree locator. To find the index, use the
locationToIndex() method of JList . You can find the JList API in this
HTML file:

<Javastar>/examples/SwingSet/Application/doc/api/
com.sun.java.swing.JList.html

Once you have the index, you can get the bounds by using the JList method
indexToLocation() .

Finding the actual object to return is a bit complicated with a JList , especially
this example as it uses embedded images. We have provided a method
getObject() for you to use. It returns the object given a JList and an index.

Given that information, and a template with the provided methods and
comments, follow along with the previous example and construct a JList
NCL.

Here is the setup information.

Setting up the Exercise

The tutorial directory for this example is:

<Javastar>/tutorial/WriteNCL/

The template for the JList Locator is:

<Javastar>/tutorial/WriteNCL/NCLs/template/TheListLoc.java

Copy this to the NCL directory:

<Javastar>/tutorial/WriteNCL/NCLs/

Write the NCL

1. Use any editor to complete the NCL. You may use the JavaStar editor.
Follow the steps in “Anatomy of a JSNonComponentLocator”, seen eariler
in this lesson. Use the solution at “Solution”, shown later in this lesson, as a
guide.

2. Compile the NCL.

Test the NCL

You must have Swing 1.0.2 or higher installed and in your classpath. The
product can be downloaded from the Java web site at:

http://java.sun.com
148 JavaStar Tutorial—November 1998

1. Start JavaStar.

2. Build a project.

a. Name it WriteNCL.jpr and click Save As. Save it in the
<Javastar>/tutorial/WriteNCL directory.

b. Click on the App tab. Select the Applet radio button. Browse to locate
this HTML file and Click Open.

<JavaStar>/examples/SwingSet/Application/SwingSetApplet.html

c. Click on the Mapping tab.
Select the NCLs WNCL and TheListLoc from this directory:

<JavaStar>/tutorial/writeNCL/NCLs

Select the text map TheTextMap from this directory:

<JavaStar>/tutorial/writeNCL/NCLs

Click on the Test tab.

Set the Tests, Test Path and JST Path directory to:

<JavaStar>/tutorial/writeNCL/Tests

Set the test results directory to:

<JavaStar>/tutorial/writeNCL/TestResults

d. Click the Save button to save your work.

3. Click Create a Test Script.
You’ll see the “Record/Playback” window. Wait a bit for the applet to load.

4. Click Record

5. Name the script tryList , and click OK.

6. From the SwingSet applet, click on the tabbed pane, ListBox.
You’ll see a list of food items appear.

7. Click on the Burgers item in the list.

8. Click on the Fries item in the list.

9. Return to the “Record/Playback” window. Click Edit.
You will see the script. Check to ensure that the non-component locator was
in place for these items. You should see:

getNonComponent("TheListLoc","0: Burger")

10. Click Continue to close the editor.

11. Click Stop to compile the script.

12. Click Playback to play the script back. It should find all components.
149

Solution
import suntest.javastar.lib.*;

import com.sun.java.swing.*;

import java.awt.*;

import java.awt.event.MouseEvent;

/*

 *

 * Non Component Locator for JList in JFC Swing

*/

public class TheListLoc implements JSNonComponentLocator {

 public JSNCLData findObject(Component c, AWTEvent e){

// ensure that this is a list and a mouse event

if(!(c instanceof JList) || !(e instanceof MouseEvent)){

return null;

}

// get the point from the mouse event

Point mousePoint = ((MouseEvent)e).getPoint();

// cast the component to a JList

JList theList = (JList)c;

// obtain the index based on the location

 int theIndex = theList.locationToIndex(mousePoint);

// make sure the index exists

 if(theIndex != -1){

// use a common method to tranlate an index entry in a list to
NCLData

 return getListData(theList,theIndex);

 }

 return null;

 }

public JSNCLData getNamedObjectData(Component c, String wname){

// make sure this is a list

 if (!(c instanceof JList)){

return null;

}

// cast it to a JList

 JList theList = (JList)c;
150 JavaStar Tutorial—November 1998

// create a parser for this string

 Parser P = new Parser(wname);

// make sure the string is valid

 if (!P.Valid){

throw new BadRegularExpressionError(wname + “ is not a valid
format”);

 }

// get the index and the confirming name from the parser

 int theIndex = P.Index;

 String theConfirmingName = P.Value;

// get the model for the list

 ListModel theListModel = theList.getModel();

// confirm that the index is within the list

 int numberInList = theListModel.getSize();

 if(theIndex<=-1){

return null;

 }

 if(theIndex>=numberInList){

return null;

 }

 if(theConfirmingName == null){

return getListData(theList, theIndex);

}

//assert that the index is within the model, and that there is a
confirming name to check for

 String name =
Parser.cleanToString(theListModel.getElementAt(theIndex));

 if(theConfirmingName.equals(findName(theList, theIndex))){

// use the common method to translate a list and an index to that
list to NCLData

return getListData(theList,theIndex);

} else {

return null;

}

 }

 public static JSNCLData getListData(JList aList, int anIndex){

// get the model for the list
151

 ListModel aListModel = aList.getModel();

// make sure the index is within the model size

 if(anIndex >=aListModel.getSize()) return null;

// get the location of the index point

 Point theNCPoint = aList.indexToLocation(anIndex);

// get the element for the object

Object theNCObject = getObject(aList,anIndex);

// get a clean string (no special characters) for this object

 String theObjectName = findName(aList, anIndex);

// prepend the index and create the name

 String theNCName = anIndex + “:” + theObjectName;

 return new JSNCLData(theNCName, theNCPoint, theNCObject);

 }

static Object getObject(JList aList,int anIndex) {

ListModel aListModel = aList.getModel();

Object theNCObject = aListModel.getElementAt(anIndex);

if (theNCObject instanceof Integer) {

ListCellRenderer renderer = aList.getCellRenderer();

if (renderer != null) {

Component comp = renderer.getListCellRendererComponent

(aList, theNCObject,

 anIndex, aList.isSelectedIndex(anIndex),

 aList.hasFocus());

if (comp != null) {

theNCObject = comp;

}

}

}

return theNCObject;

}

static String findName(JList L, int idx) {

 ListModel M = L.getModel();

 Object o = M.getElementAt(idx);

 String name = null;

 if (o instanceof ImageIcon) {

 name = ((ImageIcon)o).getDescription();

 } else if (o instanceof Integer) {

 ListCellRenderer renderer = L.getCellRenderer();
152 JavaStar Tutorial—November 1998

 if (renderer != null) {

Component comp = renderer.getListCellRendererComponent(L, o,
idx, L.isSelectedIndex(idx), L.hasFocus());

if (comp != null) {

 o = comp;

 if (comp.getName() != null && comp.getName().length() > 0) {

 name = comp.getName();

 } else {

 if (comp instanceof JLabel)

 name = ((JLabel)comp).getText();

 else if (comp instanceof Label)

 name = ((Label)comp).getText();

 }

}

 }

 }

 return (name != null ? name : Parser.cleanToString(o));

 }

}

Summary
Building a non-component locator requires in-depth knowledge of the
component you are trying to test and its contained components. Some Java
skills are required as well. However, they are not necessarily difficult once you
have determined the means of naming, determining bounds, and locating the
component.
153

154 JavaStar Tutorial—November 1998

Index
A
Argument identifiers, ordering 91
Arguments

editing a test to use 82

in JavaStar model 39

running a test with 96

C
Command line options

relationship to GUI 110
Command line options, using

tutorial 109
Composing tests

tutorial 59
Creating a script

tutorial 15

D
Debugging a test 73
Declaration files

designing tests to use 47

generating, tutorial 47

modifying, tutorial 49

using, tutorial 52

Declaration files, in JavaStar test model 39

E
Editing scripts

for parameters, tutorial 82

G
GUI changes, debugging 42
GUI test tools
bit-mapped 1

history 1

JavaStar 2

object-oriented 1

using GUI maps 1

J
JavaStar API

tutorial introduction 116

JavaStar test model 2

JavaStar Test, definition 2
JSNCLData

variables
Name 142

P 142

Ref 142

JST, definition 2
JSTs

editing to use parameters, tutorial 91

running, tutorial 71

L
Locators

how they work 132

using, tutorial 130

M
Model, JavaStar 2
Model, JavaStar Test

Test model, JavaStar 37

Modular approach 57
155

156
Modular tests
in JavaStar test model 39

introduction 2

tutorial 55

P
Parameters

deciding where to use 80

in JavaStar test model 39

where to define in a JST 87

Property files, tutorial 99

R
Recording scripts

tutorial 15
Results Viewer

tutorial 32
Running a JST

tutorial 71
Running tests

general, tutorial 29

S
Script

anatomy 117
script

definition 2

Synchronize, tutorial 20

T
Test arguments

deciding where to use 80

in the JavaStar model 39

types 88

where to define in a JST 87
Test Composer

introduction 58

tutorial 59

Test model 2
Test script

anatomy 117

Tutorial, introduction 1

V
Verification

tutorial 24
Viewing Results

tutorial 32
JavaStar Tutorial—November 1998

	JavaStar Tutorial
	Contents
	1. Introduction to JavaStar 1
	2. Getting Started with JavaStar 11
	3. Moving to the JavaStar Model 37
	4. Generating Declarations 41
	5. Using a Modular Approach 55
	6. Adding Parameters for Flexibility 79
	7. JavaStar from the Command Line 109
	8. Using the JavaStar API 115
	9. Using Non-Component Locators 129
	10. Testing JFC Components 135
	11. Writing Non-Component Locators 141
	Introduction to JavaStar

	The Continuum of GUI Test Tools
	The JavaStar Model
	Using the Test Composer
	Running JSTs and Viewing Results
	Analyzing Applications for Test
	Looking at the Example Application
	Figure�1�1 Name Database windows

	What this Tutorial Covers
	Part 1: JavaStar Basics
	Part 2: Advanced JavaStar

	Using the Tutorial Directories and Files
	Figure�1�2 JavaStar tutorial directory tree
	Part 1�—� JavaStar Basics
	Getting Started with JavaStar

	2

	Setting up JavaStar
	Making a Copy of the Test Database
	1. Copy the sesame.db file from the JavaStar\examp...
	2. In the JavaStar\tutorial directory, copy sesame...

	Launching JavaStar
	Launching JavaStar from a UNIX Environment
	1. If you are not already in the JavaStar tutorial...
	2. From the command line, type:

	Launching JavaStar from Windows 95 or Windows NT

	Main Menu
	Figure�2�1 JavaStar main screen

	Creating a Project File
	1. Set the application settings for the project.
	a. In the main screen, click on the Project Settin...
	b. Set the Class field using the Browse... button....

	2. Set the project test settings.
	a. In the main screen, click on the Project Settin...
	b. If your default work directory, results directo...

	3. From the buttons along the bottom of the screen...
	4. Enter namedb.prj as the file name and save.

	Recording a Script
	Start Creating the Script
	1. Start the application you want to test:
	a. In the JavaStar main menu, click Create Test Sc...
	Figure�2�2 Create Test Script dialog

	b. Click the Advanced tab
	Figure�2�3 Advanced tab for Create Test Script

	c. Change the Log file field value to tutorial.log...
	d. Click Start to launch the application under tes...
	Figure�2�4 Record/Playback window

	If namedb does not start
	2. Move the Name Database window to one side.
	3. Begin record mode:
	a. Click Record.
	b. In the Create Script field, type TestNameDB.
	c. Click OK.

	Opening the Test Database
	1. Make the Name Database window active.
	2. In the Name Database window, open the test data...
	a. In the Name Database window, click Open.
	b. Open test.db.

	3. Now, to setup a comparison to check that the ri...
	4. Set up the synchronize operation as follows:
	c. Click on the component you want to verify in th...
	Figure�2�5 Select for Synchronization

	d. Click Use default.
	Figure�2�6 Synchronization prompt for purpose

	e. At the prompt to enter purpose below, type Cont...
	f. Click the Insert synchronization into test.
	g. In the left button bar, click Continue.

	Recording Text Input
	1. In the Name Database main window, clear the dis...
	2. Enter record for Count von Count.
	a. Click in the Name text field and type Count von...
	b. Using the TAB key to advance through the fields...

	3. Click Add to update the database with this info...
	4. Save the database.
	5. Click Clear to clear the display.

	Checking the Search Operation
	1. To bring up the Search window, click Search in ...
	Figure�2�7 Search window

	2. From the select criteria choice list, choose ad...
	3. In the contains strings field, type Transylvani...
	4. Click Search.
	5. Verify the number of items returned by the sear...
	a. In the Record/Playback window, click the Verify...
	b. In the Name Database search window, click on th...
	c. In the Verification panel, click the Customize ...
	Figure�2�8 How to Verify panel

	d. Select Using Simple Methods and Data Members.
	e. Click the button Select Simple Methods and Data...
	f. Scroll through the method list to locate int ge...
	Figure�2�9 Select methods to use for verification

	g. Click the Enter a purpose button.
	h. Enter Verify number of items found in the purpo...
	i. Click Insert verification into test.

	6. In the Record/Playback window, click Continue t...
	7. Select the search result and click View result....
	8. Set up a series of comparisons to ensure that t...
	a. Go back into verify mode.
	b. Click inside the Name text field to select it.
	c. Click Use default.
	d. In the purpose field, type Verify text entry.
	e. Click Insert verification into test.
	f. Set up verifications for the remaining text ent...
	g. Click Continue to resume recording.

	9. Close the Search window of the Name Database.
	What if you need to create a test before the appli...

	Ending Record Mode
	1. In the Name Database main window, click Clear.
	2. In the Record/Playback window, click Stop.
	3. Quit the Record/Playback window.

	Running the Test
	1. Copy the original sesame.db to test.db, replaci...
	2. From the JavaStar main menu, click Run Test.
	3. In the Test name field, type TestNameDB.
	4. Click the View tab to see view options.
	5. Click the Advanced tab to see more options.
	6. Click Start.
	Figure�2�10 Record/Playback window during playback...
	Figure�2�11 Record/Playback window with test run s...

	7. When the script finishes, quit the Record/Playb...

	Viewing the Results
	1. From the JavaStar main menu, click View Test Re...
	Figure�2�12 Results Viewer

	2. Examine the log file entries in the Details pan...
	3. To see process information, toggle the Process ...
	4. When you’re done examining the results, click C...
	What These Results Didn’t Illustrate

	Summary
	Exercise: Testing the Names Window
	Instructions
	1. Loads the test database
	2. Displays the names of records in the Names list...
	3. Selects and displays the Count von Count record...
	4. Verifies that the text for each field is correc...

	Solution
	1. Copy TestNames.java and TestNames.class from th...
	2. Use Run Test to playback the test and View Resu...
	Moving to the JavaStar Model

	About the Model
	Deficiencies of the Previous Approach
	Making Tests More Robust
	Writing Tests Using Declaration Files
	Making Tests Modular
	Passing Data as Arguments

	Summary
	Generating Declarations
	4

	About this Lesson
	Setting Up for this Lesson
	1. Copy the original sesame.db over test.db.
	2. If you did not do the exercises in the chapter ...
	3. Launch JavaStar.
	4. Create a project file for the namedb2 applicati...
	a. Click the App tab to bring the panel forward.
	b. Delete the contents of the Classpath field.
	c. Click the Browse button for the Class field.
	d. In the file dialog, navigate to the \javastar\e...
	e. From the buttons that appear along the bottom o...
	f. Save the file as namedb2.prj.

	Debugging Test Run Errors Caused by GUI Changes
	1. From the JavaStar main menu, click Run test.
	2. For Test name, type TestNameDB.
	3. Start the test.
	Figure�4�1 Name Database main window during playba...
	Figure�4�2 Record/Playback window with exception i...

	4. Investigate the problem.
	5. Inspect the GUI.
	a. Click Interact.
	b. Click the Inspect button.
	c. Click in the Phone field of the Name Database.
	Figure�4�3 Select for Inspection window with Name ...

	6. Click Stop to end inspect mode.
	7. Quit the Record/Playback window.

	Designing a Suite to Use Generated Declarations
	1. At one time, you generate a declarations file f...
	2. You edit the declarations file to use abstracte...
	3. You reference the declaration files at the time...
	4. When a component changes in the application, yo...

	Generating Declarations
	1. From the JavaStar main menu, select Create Test...
	2. Enter namedb as the Class name.
	3. Click Start.
	4. Once the Record/Playback window is open, click ...
	5. Select the main window of the Name Database as ...
	6. Type NameData in the Package field.
	7. Type MainWin in the Class field and click OK.
	Figure�4�4 Record/Playback window while generating...

	8. Generate declarations for the Names and Search ...
	a. Click the Names button to open the window.
	b. In the Generate Declarations window, keep the p...
	c. Repeat this process for the Search window, savi...

	9. Stop the generate declarations process.
	10. Quit the Record/Playback window.

	Modifying Declarations to Use Abstracted Names
	Editing MainWin Declarations
	1. From the JavaStar main menu, select Edit Test S...
	2. Load the MainWin.java declarations file.
	3. Locate the declaration for the first text field...
	4. Replace the default textField name with a field...
	5. Edit the declarations for the other four text f...
	a. For the second text field, replace textField2 w...
	b. For the third text field, replace textField3 wi...
	c. For the fourth text field, replace textField4 w...
	d. For the fifth text field, replace textField5 wi...

	6. Save and compile.

	Editing SearchWin Declarations
	1. Load SearchWin.java into the Script Editor.
	2. Scroll down to locate the declaration for the t...
	3. Change the component name to a field-specific i...
	4. Save and compile.

	Editing NamesWin Declarations
	1. Load the NamesWin.java declarations file into t...
	2. Save and compile the script.
	3. Close the Script Editor.

	Recording New Scripts that Use Declaration Files
	1. From the main menu, choose Create Test Script.
	2. Start the namedb application.
	3. Click Record.
	4. In the Create script field, enter SimpleAdd.
	5. To the right of the Record with map files field...
	6. Using the file panel in the left portion of the...
	7. Select each of the declaration files and add it...
	a. Click on MainWin.class.
	b. Click the Add to list button.
	c. Repeat Step a and Step b for NamesWin.class and...

	8. In the Select Map dialog, click OK.
	9. In the Record test script dialog, click OK.
	10. In the Name Database window, open the test.db ...
	11. In the same window, click Clear.
	12. Enter a new record into the name database.
	13. In the Record/Playback window, click Stop.
	14. Examine the play() method of the script (shown...
	15. Quit the Record/Playback window and confirm th...

	Summary
	Using a Modular Approach
	5

	Setting Up for This Lesson
	1. Copy the original sesame.db over test.db.
	2. In the JavaStar main screen, click on the Mappi...
	3. Enter the declaration filenames into the Declar...
	4. In the Declaration classpath field, type the pa...
	5. Click the Save button to save changes.
	1. If you have not already done so, follow the ins...
	2. If you did not do the lesson in chapter Generat...
	a. Create a directory within the tutorial director...
	b. Copy the contents of the \javastar\tutorial\Nam...

	3. Copy the contents of the \javastar\tutorial\dec...

	Improving Your Tests with a Modular Approach
	Looking at the Name Database Example
	Using the Test Composer
	Figure�5�1 A sample JST

	Composing Tests
	Entering a Record
	1. Open the Test Composer.
	Figure�5�2 JavaStar Test Composer

	2. Add your first test node.
	3. In response to the Test Name dialog, enter Clea...
	4. Create two more test nodes: one named EnterFiel...
	5. Position the nodes so that ClearDisplay is towa...
	6. Draw a normal connection from ClearDisplay to E...
	a. Click on the ClearDisplay node to select it.
	b. From the buttons to the left, choose Start Norm...
	c. Click on EnterFieldData to select it as the end...

	7. Draw a normal connecting line from EnterFieldDa...
	8. Duplicate the ClearDisplay node.
	9. Click and drag the ClearDisplay node to a posit...
	10. Draw a normal connection from Add to the secon...
	11. For Comments, type Adds 1 record to the databa...
	Figure�5�3 AddRecord.jst

	12. In the JST name field (located toward the top ...
	13. Click the Save button.
	14. Click Reset to clear the display and begin a n...

	Verifying Search Results
	1. Create five nodes: OpenSearch, DefineSearch, Ge...
	2. Position the nodes so that one is above the oth...
	3. Using the Start Normal button, draw connecting ...
	4. In the Comments field, type Searches for a reco...
	Figure�5�4 VerifySearch.jst

	5. Enter VerifySearch.jst in the JST name field.
	6. Click Save.
	7. Click Reset.

	The Acceptance Test
	1. Click Add Test.
	2. Enter OpenFile as the test name and click OK.
	3. Add another test and specify AddRecord.jst as t...
	4. Add a node named SaveDB.
	5. Create another node, this one pointing to Verif...
	6. Add a node named ClearDisplay.
	7. Add a node named CloseDB.
	8. Organize the nodes in the order you plan to run...
	9. Create normal connections from each node to the...
	10. For Comments, type Simple acceptance test for ...
	Figure�5�5 Acceptance.jst

	11. In the JST name field, enter Acceptance.jst.
	12. Click Save.
	13. Close the Test Composer.

	Recording Individual Scripts
	Going into Create Test Script mode
	1. Select Create Test Script from the main menu.
	2. Enter namedb as the Class name and click Start....

	Recording OpenFile
	1. Start recording a script named OpenFile.
	2. In the Name Database main window, click Open.
	3. Navigate to the tutorial directory, select test...
	4. In the Record/Playback window, click Synchroniz...
	5. In the Name Database main window, select the co...
	6. In the Synchronization window, click Use defaul...
	7. Enter a purpose in the Why field.
	8. Click the Insert synchronization into test butt...
	9. Click Continue.
	10. Click Stop.

	Recording ClearDisplay
	1. Start record mode and name the test ClearDispla...
	2. In the Name Database main window, click Clear.
	3. Stop recording.

	Recording EnterFieldData
	1. Start record mode and name the test EnterFieldD...
	2. Click in the Name text field and type Count von...
	3. Pressing Tab to advance to each field (except b...
	Figure�5�6 Values for data entry fields

	4. Stop record mode.

	Recording Add
	1. Enter record mode using the test name Add.
	2. In the Name Database main window, click Add.
	3. Stop record mode.

	Recording SaveDB
	1. Enter record mode using the test name SaveDB.
	2. In the Name Database main window, click Save.
	3. Stop record mode.

	Recording OpenSearch
	1. Enter record mode using the test name OpenSearc...
	2. In the Name Database main window, click Search....
	3. Stop record mode.

	Recording DefineSearch
	1. Start record mode using DefineSearch as the tes...
	2. In the Search window, click on the select crite...
	3. Enter the search string into the contain string...
	4. Stop record mode.

	Recording GetSearchResults
	1. Start record mode using GetSearchResults as the...
	2. In the Search dialog of the Name Database, clic...
	3. Verify the item count:
	a. Go into Verification mode.
	b. Click in the search results list to select that...
	c. Click Customize.
	d. Select Using simple methods and fields.
	e. Click the Select simple methods and data member...
	f. Scroll through the method list and select int g...
	g. Click Enter a purpose.
	h. Enter the purpose of the verification and click...
	i. Click Continue.

	4. In the results list of the Search window, selec...
	5. Click View Result.
	6. Stop record mode.

	Recording VerifyRecord
	1. Enter record mode using the test name VerifyRec...
	2. Immediately enter Verification mode.
	3. In the Name Database main window, select the fi...
	4. Click Use default to accept using text as the m...
	5. Enter a purpose.
	6. Click the Insert verification into test button....
	7. For the remaining record fields (including the ...
	a. Click in the next field to select the component...
	b. Click Use default.
	c. Click Insert verification into test.

	8. Click Continue.
	9. Stop record mode.

	Recording CloseSearch
	1. Enter record mode using the test name CloseSear...
	2. In the Search window, click Close.
	3. Stop record mode.

	Recording CloseDB
	1. Enter record mode using the test name CloseDB.
	2. In the Name Database main window, click Close.
	3. Stop record mode.

	Quit Playback/Record

	Running Tests
	Running a JST
	1. Copy the original sesame.db to test.db, replaci...
	2. In the JavaStar main menu, click Run test.
	3. For the test name, type Acceptance.jst.
	4. Click Start.
	Figure�5�7 JST Runner showing a graphic display of...

	5. When the test finishes, quit the Record/Playbac...

	Debugging a Test
	1. Stop playback in the Record/Playback window.
	2. Close the JST Runner.
	3. Click Playback and enter the name of the node (...
	4. Examine the test while it executes and try to d...

	Viewing Results from a JST
	1. From the JavaStar main menu, click View Test Re...
	a. Click the Open button in the left panel.
	b. Locate the Acceptance.jst.log file and click Op...
	Figure�5�8 Results Viewer showing Acceptance.jst r...

	2. Expand the log file results by clicking on the ...
	3. Close the Results viewer.

	Summary
	Exercise: Making the Names Test Modular
	Instructions
	1. Compose a multi-node JST to test the names wind...
	2. Record the scripts that correspond to each node...
	3. Integrate the JST for Names into a copy of the ...
	4. Run the test to make sure it works.

	Solution
	Figure�5�9 VerifyNames.jst
	1. Open Acceptance.jst in the Test Composer.
	2. Add a node for VerifyNames.jst (or whatever you...
	3. Draw a normal, green arrow from ClearDisplay to...
	4. Save the results as Acceptance2.jst.
	Figure�5�10 Acceptance2.jst—one solution

	Adding Parameters for Flexibility
	6

	Setting Up for this Lesson
	1. If you have not already done so, follow the ins...
	2. If you did not do the lesson in chapter Generat...
	a. Create a directory within the tutorial director...
	b. Copy the contents of the \javastar\tutorial\Nam...

	3. Copy the contents of the \javastar\tutorial\mod...

	Deciding Where to Use Parameters in Scripts
	Editing the Scripts
	Editing OpenFile
	1. In the JavaStar main menu, click Edit Test Scri...
	2. Open OpenFile.java for edit.
	Figure�6�1 JavaStar Script Editor

	3. Scroll down to the play method.
	4. Replace the test.db reference with args[0].
	5. Edit the synchronize operation to handle a vari...
	6. Click Save & Compile.

	Editing EnterFieldData
	1. In the Script Editor, open EnterFieldData.java ...
	2. Scroll down to the play method.
	3. Edit the first data entry line.
	4. Edit the remaining data entry lines:
	a. Change the reference to "123 Numbers Lane", 0 ,...
	b. Change the reference to "Transylvania", 0 ,0 to...
	c. Change the reference to "01-2-34567”, 0 ,0 to a...
	d. Change the reference to "count@count.com", 0 ,0...
	e. Change the reference to "Bean Counter", 0 ,0 to...

	5. Click Save & Compile.

	Editing DefineSearch
	1. In the Script Editor, open DefineSearch.java fo...
	2. In the Play method, edit the line that specifie...
	3. Save and compile.

	Editing GetSearchResults
	1. In the Script Editor, open GetSearchResults.jav...
	2. In the Play method, edit the line that selects ...
	3. Edit the code to remove the selection position....
	4. Save and compile.

	Editing VerifyRecord
	1. In the Script Editor, open VerifyRecord.java fo...
	2. In the Play method, edit the line that selects ...
	a. Find the line:
	b. On this line, change "Count von Count" to args[...

	3. Edit the remaining verification lines.
	4. Save and compile.

	Deciding Where to Define Parameters in the JST
	Figure�6�2 An outline view of Acceptance.jst
	Figure�6�3 Acceptance.jst with parameter nodes und...

	Editing JSTs to Use Parameters
	A Note About Argument Identifiers
	Editing the OpenFile Node
	1. In the JavaStar main menu, select Compose test....
	2. Load Acceptance.jst.
	3. Select the OpenFile node and click the Edit but...
	4. In the Edit Node dialog window, select Parent p...
	5. In the Argument # field, type 6.
	6. Click the Add (after) button.
	7. Enter a comment to describe the parameter.
	Figure�6�4 Edit Node dialog for OpenFile

	8. Click Apply and click Close.

	Editing the AddRecord .jst Node
	1. Select the AddRecord.jst node and click the Edi...
	2. In the Edit Node dialog window, select Parent p...
	3. In the Argument # field, type 0.
	4. Click the Add (after) button.
	5. Add arguments 1 through 5.
	6. In the Comments field, list each argument and t...
	Figure�6�5 Edit Node for EnterFieldData, after par...

	7. Click Apply.
	8. In the Edit Node dialog, click Close.
	9. Click Save to record changes to Acceptance.jst....
	10. Click OK.

	Editing EnterFieldData Node
	1. With the Acceptance.jst open, open AddRecord.js...
	2. Select the EnterFieldData node and click the Ed...
	3. Add arguments 0 through 5, one for each of the ...
	4. Add a comment describing what each of these par...
	5. Click Apply to record your edits.
	6. Close the Edit Node dialog.
	7. In the Test Composer, click Save.

	Editing VerifySearch.jst
	1. In AddRecord.jst, click the Back button to navi...
	1. Select the VerifySearch node and edit.
	2. Add six parent parameters (0-5).
	3. Paste or re-type the comments you used for the ...
	4. Click Apply.
	5. In the Edit Node window, click Close.
	6. In the Test Composer, click Save.

	Editing the DefineSearch Node
	1. Navigate to VerifySearch.jst.
	2. Edit the DefineSearch node.
	3. For Argument #, type 2.
	4. Click Add (After).
	5. In the Comment field, type Value to search for....
	6. Apply the changes and close the window.

	Editing the GetSearchResults Node
	1. Still in VerifySearch.jst, click on GetSearchRe...
	2. Edit the GetSearchResults.
	3. For Argument #, type 0.
	4. Click Add (After).
	5. In the Comment field, type Name to select.
	6. Apply the changes and close the window.

	Editing the VerifyRecord Node
	1. Click on VerifyRecord node.
	2. Click Edit.
	3. Add arguments 0-5.
	4. Add comments to describe the six arguments.
	5. Apply the changes and close the window.
	6. Save the JST.
	7. Close the Test Composer.

	Running a Test With Arguments
	1. Refresh the test database.
	2. From the JavaStar main menu, select Run test.
	3. For Test name, enter Acceptance.jst
	4. In the test arguments field, enter the name of ...
	5. Click Start.
	6. When the test finishes, quit the Record/Playbac...

	Viewing the Results
	1. From the JavaStar main menu, select Show result...
	2. Load the log file from the test you just ran.
	3. Expand the JST to see all the nodes.
	4. Select a node where you passed parameters.
	Figure�6�6 Results for Acceptance.jst, showing the...

	Other Possibilities for Adding Parameters
	Using Property Files as a Source for Arguments
	Reading a Single Property
	Creating a Property File
	1. Create a text file that contains the text:
	2. Save the file (in the tutorial directory) as Fi...

	Editing a Node to Read Properties
	1. In the Test Composer, load AddRecord.jst.
	2. Select the EnterFieldData node and click the Ed...
	3. Click on the first parameter ($0) in the list.
	4. In the pulldown menu to the right of the Arg # ...
	5. In the Property name field, change 0 to name an...
	6. Repeat this process for the remaining parameter...
	7. Update the contents of the Comments field.
	8. Click Apply and click Close.
	9. In the Test Composer, click Save.

	Specifying the Property File at Run Test Time

	Reading Multiple Properties
	Creating a Property File with Sets of Data
	1. Create a text file that contains the text:
	2. Save the file (in the tutorial directory) as Fi...

	Moving the Code that Inserts Data into a New Scrip...
	1. From the JavaStar main menu, choose Edit Test S...
	2. Open the file EnterFieldData.java.
	3. Change the script name from EnterFieldData to I...
	a. Click on the Find/Replace button.
	b. In the Find field, type EnterFieldData.
	c. In the Replace field, type Insert.
	d. Click Replace All.
	e. In the Script name field (located at the top of...

	4. Add code that calls the play() method of Add

	Delete Add Node from AddRecord.jst
	1. In the Test Composer, open AddRecord.jst.
	2. Select the Add node and click the Delete button...
	3. Select the EnterFieldData node and click the St...
	4. Click on the ClearDisplay node to complete the ...
	5. Save the JST file.

	Editing EnterFieldData to Read Properties from the...
	1. In the JavaStar Script Editor, open EnterFieldD...
	2. Replace the body of the play() method with code...
	a. Reads the number of “records” (sets of properti...
	b. Creates a loop that repeats for the number of r...
	i. Reads each property for the current record bein...
	ii. Checks to see if any of these return null, and...
	iii. Creates an array containing the properties fo...
	iv. Calls Insert() and passes the array of propert...

	3. Click Save & Compile.
	4. Close the Script Editor.

	Clearing Parameter Settings from the JST Node
	1. From the JavaStar main menu, select Compose Tes...
	2. Open Acceptance.jst.
	3. Click on the AddRecord.jst node, then click the...
	4. Click on the first parameter in the list.
	5. Still in the Edit Node dialog, click the Delete...
	6. Delete the remaining parameters $1 through $6.
	7. Delete the contents of the Comments field.

	Editing the Test to Read the Properties Directly
	1. In the Test Composer, open AddRecord.jst.
	2. Edit the EnterFieldData node to remove all para...
	a. Select the EnterFieldData node and click the Ed...
	b. In the Edit Node window, select a parameter fro...
	c. Repeat Step b for each remaining parameter.
	d. Delete the contents of the Comments field.

	3. Click Apply.
	4. In the Edit Node window, click Close.

	Specifying the Property File at Run Test Time

	Summary
	Exercise: Adding Parameters to the VerifyNames tes...
	Instructions
	1. Edit the scripts you wrote for VerifyNames.jst ...
	2. Modify VerifyNames.jst to support parameter pas...
	3. Incorporate VerifyNames.jst into Acceptance.jst...

	Solution
	JavaStar from the Command Line
	7

	About this Lesson
	Setting Up for this Lesson
	1. Copy the original sesame.db database over test....
	2. If you did not do the lessons in the previous c...
	3. Launch JavaStar.

	Using Command Line Flags
	Running the Acceptance Test
	1. If you have the JavaStar GUI running, exit Java...
	2. In a UNIX shell or at an MSDOS prompt, enter th...

	Filtering the Acceptance Test Log
	1. Filter the log to show only summary and time in...
	2. Compare the sizes of the two log files.
	3. Compare the contents of the logs in a text edit...

	Summary
	Part 2�—� Advanced JavaStar
	Using the JavaStar API

	8
	About the JavaStar API
	Anatomy of a Test Script
	An Example Application
	1. Change your working directory to <JavaStar home...
	2. Create a project for this tutorial where:

	Verifying Menu Components
	1. Click on Create a Test Script, and on Start to ...
	2. Click on Interact.
	3. From the application, pull down the File Menu. ...
	4. Click Inspect to view the JavaStar code for the...
	5. Click Quit to close the Record/Playback window....
	Using the API to Obtain a Component
	Using an Internal Verification
	Step 1: Creating the Base Script
	1. Click on Create a Test Script, and Start the ap...
	2. Record the script. Name it VerifyFileNotOpen.
	3. Immediately Stop the recording.
	4. Quit the “Record/Playback” window.

	Step 2: Edit and Test the Script
	1. Click Edit Test Script, then browse to locate t...
	2. Locate the play() method.
	3. Add the code to verify that the New menu item i...
	4. If you want, delete the unnecessary declaration...
	5. Click Save and compile.
	6. Run the script (you can do this from the editor...
	7. Click Quit to close the Record/Playback window ...

	Opening Files
	Examining the Recorded Open
	1. From the main JavaStar window, click Create a T...
	2. Click Record. Name the script openAction.
	3. From the application, pull down the File menu, ...
	4. Open the file:
	5. Verify that the label on the left reads “newfil...
	6. Stop the recording, and Quit the “Record/Playba...
	Separating Test Set-up Verification
	Removing Platform and Path Dependence
	1. Click Edit Test Script. Browse to find:
	2. Scroll to the play() method. Notice the call to...
	3. Click Close.

	Removing False Exceptions

	Building VerifyTestFile
	1. Click Create a Test Script. Start the Applicati...
	2. Record. Name the script VerifyTestFile.
	3. Immediately click Stop to stop recording.
	4. Click Quit to close the “Record/Playback” windo...
	5. Edit the script. Browse to open:
	6. Import the IO classes you will need.
	7. Assign the two arguments to variables with bett...
	8. Enter the code to ensure the file exists. The c...
	9. Gather other information about the file for use...
	10. Place the file information in a property file ...
	11. Save and compile the script. Don’t close the e...

	Edit openAction
	1. From the Script Editor, browse to find the scri...
	2. Locate the play() method. All your updates will...
	3. Get the file directory and file name properties...
	4. Locate the call to relativefile() and correct i...
	5. Locate the verification of the label, and chang...
	6. Enclose that verification in a try/catch loop t...
	7. Save and compile the script. Close the Script E...

	Build the JST
	1. Click Compose Test. Enter OpenTCFile as the jst...
	2. Add the scripts VerifyTestFile and openAction.
	3. Map the first two jst arguments, 0 and 1, to th...
	4. Create a normal flow between VerifyTestFile and...
	5. Save the test.
	6. Close the Test Composer.

	Run the Test
	1. Run Test. Browse to find:
	2. Enter the arguments /tutorial/API/TCTester for ...
	3. Start the test. It should run to completion.
	4. Try the test several other times using differen...

	Summary
	Using Non-Component Locators

	About this Lesson
	Using an Existing Locator
	1. In the Record/Playback window, click Record.
	2. In the Test name field, provide the name of you...
	3. In the Non component locators field, either typ...
	a. Click on the JavaStar folder icon along the top...
	b. Click on the plus sign to expand the folder, th...
	c. Expand the contrib folder and double-click on t...
	d. Expand the locators folder.
	e. Click on a locator you want to reference, then ...
	f. Continue for any other locators you need to add...
	g. Click OK.
	Figure�9�1 Select Non-Component Locators dialog wi...

	4. If you need to specify files for Record with ma...
	Figure�9�2 Record test script dialog with locator ...

	5. Click OK.

	How a Locator Works
	Recording a Script with an NCL
	Figure�9�3 Recording with a non-component locator
	1. Test operator performs an event on a non-compon...
	2. JavaStar monitors the event, noting the parent ...
	3. JavaStar sends the Component and AWTevent to th...
	4. The NCL runs the data through its own acceptanc...
	5. findObject() identifies the non-component as an...
	6. The NCL returns the reference as part of a JSNC...
	7. JavaStar takes the non-component reference supp...

	Running a Test with an NCL
	Figure�9�4 Running a test with a non-component loc...
	1. JavaStar receives an instruction from the test ...
	2. JavaStar calls the getNamedObjectData() method ...
	3. getNamedObjectData() performs the reverse opera...
	4. getNamedObjectData() sends the location informa...
	5. JavaStar executes the event at the location spe...

	Summary
	Testing JFC Components
	Setting Up to Test the JFC
	1. Set the App to the applet file URL:
	2. Establish the test working directory, JST path,...
	3. Set the test results directory to:
	4. Move to the Mapping pane. You will need to use ...
	5. Ensure the text map list includes:
	6. Save the project by clicking on Save As... and ...

	Testing a Simple JFC Component
	1. Click Create Test Script. Use the application t...
	2. Record the script. Name it testSlider.
	3. Return to the SwingSet applet. Select the tabbe...
	4. Verify the value shown on a slider. Click Verif...
	5. JavaStar will suggest using the attributes in t...
	6. Click on the Using simple methods and data memb...
	7. Scroll through the list and select the method g...
	8. Click Insert the verification into test. The co...
	9. Click Continue, then stop the recording.
	10. Playback the recording.

	Testing Menus and Toolbars
	1. If you are still in the Record/Playback window ...
	2. Record a script. Name it testMenu.
	3. Select the Menus & ToolBars tabbed pane from th...
	Check a Menu Bar Label
	1. Verify that the Colors menu item has the correc...
	2. JavaStar will suggest using the Gold File as a ...
	3. Select Using simple methods and data items, and...
	4. Choose the method getLabel(), and click Enter a...
	5. Enter a purpose if you’d like, and click Insert...
	6. Click Continue.

	Check a Menu Item’s Mnemonic
	1. Pull down the File menu on the tabbed pane. Use...
	2. Click Verify. Return to the applet, and select ...
	3. Return to the Record/Playback window. Click Cus...
	4. Select Using simple methods and data items, and...
	5. Click Enter a purpose, and Insert verification ...

	Check a Toolbar
	1. Click Verify.
	2. Select a toolbar button on the tabbed pane. We ...
	3. Return to the playback window, and click Custom...
	4. Click Using enabled.
	5. Click Enter a purpose, and Insert verification ...
	6. Click Continue, and stop the recording.
	7. Playback the recording.

	Testing a Complex Component
	1. Record a new script. Name it testTree.
	2. Select the tabbed pane “TreeView” on the SwingS...
	3. Return to the Record/Playback window. Click Edi...
	4. Select Insert reference from the bottom of the ...
	5. Name the variable by typing its name in the Nam...
	6. Select the component by returning to the applet...
	7. In the Reference window, click Apply, and Close...
	8. Add the code to do the check. Place it beneath ...
	9. Compile the code. When the compile succeeds, Sa...
	10. Click Continue to close the editor.
	11. Stop the recording.
	12. Playback the script.

	Summary
	Writing Non-Component Locators

	Understanding the Need for an NCL
	Figure�11�1 A JTree
	Using JSNCLData
	Table�11�1 Data members of JSNCLData

	Using the JSNonComponentLocator

	Anatomy of a JSNonComponentLocator
	1. JSNCLData findObject(Component c, AWTEvent e)
	2. JSNCLData getNamedObjectData(Component c, Strin...
	Finding the JSNCLData while Recording
	1. Ensure that the component and event are appropr...
	2. Locate the nearest component at this position.
	3. Create a unique name for the contained componen...
	4. Locate the position of the contained component ...
	Figure�11�2 A Row contained within a Tree

	5. Get the actual component.

	Retrieving a Named Non-Component
	1. Ensure that the component is appropriate for th...
	2. Parse the string to the location, and the confi...
	3. Confirm the location exists.
	4. Confirm the proper component is at that locatio...
	5. Create the NCL Data for that component.

	Exercise
	Setting up the Exercise
	Write the NCL
	1. Use any editor to complete the NCL. You may use...
	2. Compile the NCL.

	Test the NCL
	1. Start JavaStar.
	2. Build a project.
	a. Name it WriteNCL.jpr and click Save As. Save it...
	b. Click on the App tab. Select the Applet radio b...
	c. Click on the Mapping tab.
	d. Click the Save button to save your work.

	3. Click Create a Test Script.
	4. Click Record
	5. Name the script tryList, and click OK.
	6. From the SwingSet applet, click on the tabbed p...
	7. Click on the Burgers item in the list.
	8. Click on the Fries item in the list.
	9. Return to the “Record/Playback” window. Click E...
	10. Click Continue to close the editor.
	11. Click Stop to compile the script.
	12. Click Playback to play the script back. It sho...

	Solution

	Summary
	Index

	A
	C
	D
	E
	G
	J
	L
	M
	P
	R
	S
	T
	V

