
JavaStar User’s Guide
SunTest, Inc.

901 San Antonio Road
Palo Alto, CA 94303 CA USA

A Sun Microsystems, Inc. Business

JavaStar User Guide—November 1998

 1998 Sun Microsystems, Inc. All rights reserved.
901 San Antonio Road, Palo Alto, California 94043-9452 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Solaris, Java, JavaBeans, JavaPureCheck, the Java Compatible logo, and 100% Pure Java
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. All other product
names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents
1. About JavaStar. 1

Benefits of Using Java to Test Java . 1

Recording Scripts . 2

Composing Tests from Scripts . 2

Composing Tests in JavaStar . 3

An example of a composed test . 3

Playing Back Scripts and Tests . 4

Providing Access to Java’s Full Power . 5

Additional Features . 5

2. Preparing to Use JavaStar . 7

Installing JavaStar . 7

On a UNIX System. 7

Under Windows 95 or Windows NT 8

Starting JavaStar. 8

On a UNIX System. 8
i

Under Windows 95 or Windows NT 8

JavaStar Main Menu . 9

Creating a Project File . 10

Starting Your Application or Applet . 10

3. Creating Project Files . 19

Understanding the Project Settings Window 19

Defining Project Information . 20

Providing Application or Applet Information 21

Setting Test Options. 23

Selecting Record Options . 24

Recording Format Options . 25

Specifying Java Options . 26

Defining Locators, Declaration Classes, and Text Map Classes
27

Advanced Test Options . 31

Saving, Applying, and Loading Project Files 32

4. Recording Scripts . 33

Starting Record Mode . 33

General Recording Tips . 36

Comparing Values and Images within a Script 36

Choosing Between Verify and Synchronize 37

How JavaStar Compares Component Attributes. 37

Selecting Components. 39

Selecting Data Members and Methods 40
ii JavaStar User Guide— Copyright 1997 Sun MicroSystems, Inc.

Gold Files and Directories . 40

Inserting Timers . 46

Editing Your Script While Recording . 47

Entering Edit Mode . 47

Inserting a Reference into a Script . 48

Changing Options While Recording . 50

Pausing, Stopping, and Quitting . 51

5. Interacting and Inspecting . 53

Interacting without Recording . 53

Inspecting Components . 54

6. Generating and Using Declarations . 57

Generating Component Declarations . 58

Editing Declarations Files to Use Abstract Names 59

Using Declarations Files in Record Mode. 60

Modifying Existing Scripts to Use Abstracted Names 62

 . 63

7. Composing Tests . 65

Opening the Test Composer . 66

Setting the JST Path . 67

Loading an Existing JST File. 67

Saving Tests . 69

Starting a New JST . 69

Composing a JST . 69

Creating a Node . 71
iii

Running the Test . 71

Duplicating a Node . 72

Deleting a Node . 72

Setting a Node to Restart . 72

Choosing a Root Node . 73

Starting Normal and Exception Conditions 73

Deleting a Connection . 74

Moving Nodes . 74

Adding Comments . 74

Editing a Node to Accept Arguments 74

Editing Existing Parameters for a Node 77

Navigating Through Nested JSTs. 78

Closing the Test Composer . 78

8. Editing Tests. 79

Loading a Script to Edit. 80

Browsing Class Components . 81

Browsing Gold Files. 81

Going to a Specific Line Number . 83

Finding and Replacing Text . 83

Undoing Edits . 84

Saving and Compiling. 84

Saving without Compiling . 84

Running the Script . 84

Closing the Script Editor . 84
iv JavaStar User Guide— Copyright 1997 Sun MicroSystems, Inc.

9. Running Tests . 85

Playing Back a Test Using Run Test . 86

Playing Back a Script from the Record/Playback Window . . . 91

Playback Tasks Available in the Record/Playback Window . . 92

Single-stepping through a Script or Test. 92

Setting Options During Playback . 93

Inspecting Components During Playback 94

Pausing, Stopping, and Quitting Playback. 94

10. Monitoring Test Status. 95

Viewing Details on a Process . 95

Killing a Job in the Status Monitor. 96

11. Viewing and Analyzing Results . 97

Anatomy of the Results Viewer . 97

Task Buttons . 99

View Options . 99

Test Results . 100

Summary. 100

Details . 101

Viewing Results . 102

Viewing Comparison Failures and Updating Gold Files 102

Extracting Results . 105

Archiving Results. 107

Printing Results . 108

Quitting the Show Results Window . 108
v

12. Customizing Options . 109

GUI Options . 109

System Info . 111

13. Using Command Line Options. 113

Running Tests . 113

Environment and Playback Controls. 115

Exit Codes . 117

Managing Log Files . 117

14. Using JavaStar with HotJava. 121

Installing the HotJava Browser . 121

Setting Up a Project for HotJava . 121

HotJava Application . 121

HotJava Java Environment . 122

Recording a Test . 122

15. Using JavaStar with Java Plug-in . 123

Issues to Consider When Testing with the Java Plug-in 123

Installing Applications to Use the Java Plug-in 123

Converting Your HTML to Use the Java Plug-in 124

Testing with the Java Plug-in . 124

16. Locators for Non-Components . 127

Recording Tests with Non-Components 127

Locators as Non-Component Support Modules 128

Implementing a Locator . 129

Referencing Locators in JavaStar . 129
vi JavaStar User Guide— Copyright 1997 Sun MicroSystems, Inc.

Typing the Locator into the Field. 129

Using the Locator List . 130

Using the API with Non-Components . 131

17. Text Map Classes . 133

What Text Maps Are . 133

How to Write a Text Map Class . 134

18. Troubleshooting . 135

A. JavaStar Command Reference . 137

JavaStar directories . 137

JavaStar Command Line Arguments. 138
vii

viii JavaStar User Guide— Copyright 1997 Sun MicroSystems, Inc.

About JavaStar 1
JavaStar™ is a professional testing tool designed for Java users who want to
test their applications thoroughly and effectively. JavaStar tests your program
Graphical User Interfaces (GUIs) using the power of Java, accessing the
attributes of GUI components and verifying their accuracy.

The JavaStar application has many functions and options, all supporting the
primary features that allow you to:

• Record user interaction (mouse events, keystrokes) to Java scripts, and
define comparisons of GUI components during the process.

• Compose scripts into more complex tests using sophisticated controls.
• Playback scripts and tests in realtime, step-by-step, or with modified time

delays
• Enhance existing JavaStar scripts or create your own with the aid of the

JavaStar test libraries

This chapter describes:

• Benefits of Using Java to Test Java
• Recording Scripts
• Composing Tests from Scripts
• Playing Back Scripts and Tests
• Providing Access to Java’s Full Power
• Additional Features

Benefits of Using Java to Test Java
JavaStar provides many benefits simply because the application, as well as all
the JavaStar libraries and the code it generates, are all Java. This means that:

• JavaStar and its tests are portable across machines—you can run the
program and your tests in any environment that supports Java, without
needing to modify your scripts.

• The JavaStar record and playback processes “live” in the same address
space as your test application or applet. This gives JavaStar full access to
the attribute information of the program’s GUI components.
1

1

Recording Scripts
• As a Java program, JavaStar can get access to the attributes of your
application or applet’s GUI components, allowing you to test your program
in more depth.

• You can expand and enhance JavaStar scripts using Java. You don’t need to
learn another proprietary language to begin working productively.

Recording Scripts
JavaStar’s Record function is simple and straightforward. You specify the
application or applet you want to test, define the name of the script, and then
start using your test program in the way you want to test it. JavaStar records
all events (and, if you choose, the exact delays between events) to a script. The
script is a .java file that JavaStar compiles into a .class file that you can later
run.

Because you’re testing a GUI, the state of your program’s components, as well
as their look on screen, are all important to validation. JavaStar addresses this
by providing two comparison-based features: Verify and Synchronize. These
gather master comparison data and insert comparison checks into your code
during recording, then use this information to evaluate matches during
playback.

Verify can compare the contents, attributes, and enabled state of any GUI
component. It can also compare the image of the component if Java allows
images for that particular item. If, during playback, a verification fails, the
JavaStar notes the verification in the log file and continues on with the script.

Synchronize does a similar comparison, but if the results don’t match, the test
script ends with an exception. This gives you a way to detect inappropriate
state changes that threaten the integrity of the rest of the test.

Composing Tests from Scripts
In the JavaStar model, you create small, re-usable scripts that address specific
functionality and join these together to compose complex tests.

While it might, at times, seem easier to record a complete test in one script,
start to finish, this approach limits your ability to expand and maintain the
script. The script can’t be reused for other purposes, and the length and
complexity makes it difficult to keep up to date.

With the modular script approach, the scripts you write are focused and
compact. For example, you might write one script that tests a specific dialog
window and nothing else. You can use this script in any test where you bring
up that same dialog window. If the window changes, you only have to change
this one script. And if you decide you want to improve the testing within the
script, your changes immediately update all tests that call this script.
2 JavaStar User Guide—November 1998

1

Composing Tests from Scripts
Of course, this concept isn’t new; it’s the foundation of object-oriented
programming. What’s different is that JavaStar is built around this model, and
includes features that make the implementation as efficient as possible.

Composing Tests in JavaStar

In JavaStar, you combine scripts into tests using the Compose Test feature. In
Compose view, every script is a node in a test tree that you design. The tree is
displayed graphically, making it easy to move nodes around and define their
attributes. You define the relationships between nodes—whether their
dependency is based on a normal condition or an exception—to define the test
flow based on results. This provides you with a way to recover from (but still
capture) failures that might otherwise halt automated testing and waste time.

You can also define whether a node is a restart node (restarting the test
application or applet) and you can pass parameters to any node with a script
that accepts them.

An example of a composed test

As an example, Figure 1-1 shows a simple test composed using five scripts.
These tests execute against a small name database applet that requires data to
reveal some of the GUI components. Each script in the test represent an
discrete tasks—one that might well be needed by other tests for this applet.

Figure 1-1 Scripts joined together to form a single test
About JavaStar 3

1

Playing Back Scripts and Tests
In this composition:

1. The LoadCleanDatabase node (the root node) starts the test applet. This
happens without any direction from the user.

2. LoadCleanDatabase prepares the test environment by loading an empty
database in to the applet, then checks to see if the database loads correctly.

3. If the database loaded correctly, the script ends normally and continues on
to PopulateDatabase.

4. If, however, LoadCleanDatabase throws an exception, the
LoadPopulatedDatabase script executes instead, restarting the
application and loading a populated database, thus recovering the situation.

5. If PopulateDatabase can’t finish normally, it also calls
LoadPopulatedDatabase as a recovery mechanism.

6. When PopulateDatabase or LoadPopulatedDatabase complete
normally, the VerifyNames script executes next.

In this small test sample, you can see how the reusable features of scripts and
the controls available when composing tests can come in handy. With carefully
planned tests, you can write test suites that execute for longer periods of time
and provide you with more information. You can build new tests out of similar
components. And, if you enhance a script (or write your own from scratch)
using Java, you can pass parameters to that script as part of your test. This
moves your testing beyond simple record-and-playback scenarios.

Playing Back Scripts and Tests
You can play back JavaStar scripts and tests using varying levels of
automation. For developing scripts, you can load and playback scripts while
preparing to record other scripts. When you have a composed test, or a script
that can function without the aid of any other script, you can run this from the
command line, or using the Run Test feature.

When you play back scripts, you can reset the delay and timeout values to
tailor them to a specific need.

Delay values are used in scripts where you either recorded delays as part of the
test (this is an option) or where you inserted a call to the delay method of the
JavaStar library. At playback time, you can give a new value that JavaStar
multiplies by the existing delays to provide a new timing scenario.

Timeout values are used in verify comparisons. After failure, a verify
comparisons (unlike a synchronization) repeats until it reaches the timeout
value. At playback, that might be a variable you want to change.
4 JavaStar User Guide—November 1998

1

Providing Access to Java’s Full Power
Because you might be running a test suite using a test harness, both the
command line playback mode and Run Test give you control on whether the
JavaStar GUIs and your test program display during execution.

Providing Access to Java’s Full Power
If you know Java, you can take JavaStar scripts to a higher level and add even
more power to your test effort. To support Java-savvy users, JavaStar provides
ways to:

• Tailor your scripts to more demanding scenarios by adding advanced
scripting and comparison capabilities from the JavaStar Application
Programming Interface (API).

• Quickly generate Java classes containing the GUI component declarations
for your application or applet. You can then write new tests or modify
existing tests to use the component map and leverage the power of an
abstracted GUI interface. When the interface changes, you change the map,
and your tests continue to run properly.

• Use Java tests written without JavaStar, or JavaStar-generated tests that you
have modified to add custom Java code.

• Pass parameters to more sophisticated tests to create modules that are even
more usable (for example, a file call where the filename is a parameter
specific to a composed test).

• Edit and compile scripts on-the-fly, without needing to run another
application.

Additional Features
In addition to features that create and execute tests, JavaStar also gives you
ways to:

• Use filters on test log files to see only the result data relevant to you.
• Run multiple processes—recording, playback, and so on—simultaneously.
• Monitor job status and terminate jobs when test programs hang.
About JavaStar 5

1

Additional Features
6 JavaStar User Guide—November 1998

Preparing to Use JavaStar 2
This chapter covers the basics you need to know to set up your JavaStar
environment and begin using the product.

Here you’ll find:

• Instructions for Installing JavaStar
• Instructions on Starting JavaStar
• An introduction to the JavaStar Main Menu options, including pointers to

where these options are explained in the User Guide
• Guidelines for Creating a Project File
• Instructions on Starting Your Application or Applet within JavaStar

Installing JavaStar

On a UNIX System

1. Download the UNIX version of JavaStar into a directory on your local
system.

2. Uncompress javastar.tar.Z by typing:

uncompress javastar-117.tar.Z

3. Type the following command to unpack the javastar-117.tar file.

tar -xpf javastar-117.tar

This installs JavaStar into a directory called javastar .

4. Set the CLASSPATH variable to include the JavaStar path as the first
item.
These examples illustrate setting the classpath in a Solaris environment:

setenv CLASSPATH /JavaStarPath/javastar/javastar.zip

where JavaStarPath is the parent of your javastar directory.

If you already have the CLASSPATH variable defined, add JavaStar to the
beginning of the path.
7

2

Starting JavaStar
setenv CLASSPATH
/JavaStarPath/javastar/javastar.zip:$CLASSPATH

Under Windows 95 or Windows NT

1. Download JavaStar.exe to a local drive.

2. Double-click on JavaStar.exe to begin InstallShield.
The installation program now guides you through the setup process. The
installation automatically sets the CLASSPATH variable for you.

Starting JavaStar

On a UNIX System

To start JavaStar from other environments, such as UNIX, you first need to set
the CLASSPATH variable to include the JavaStar application path as the first
item. To do this:

1. Type:

set CLASSPATH=JavaStarPath/javastar.zip

Where JavaStarPath is the path to the directory where you installed
JavaStar.

2. Type:

JDKpath/bin/java javastar

Where JDKpath is the path to the JDK directory.

Under Windows 95 or Windows NT

To start the JavaStar application in Windows 95 or Windows NT:

♦ Double-click on the JavaStar icon.

Depending on the choices you made during installation, you’ll find the
JavaStar icon on the desktop or in the Suntest program group.
8 JavaStar User Guide—November 1998

2

JavaStar Main Menu
JavaStar Main Menu
Once you launch JavaStar, the main menu appears, along with the Project
Settings screen:

Figure 2-1 JavaStar main menu

Create Test Script is where you start your application. This leads you to the
Record/Playback window where you can record scripts, generate declarations,
play back scripts (primarily for debugging), and inspect the application
components without recording your actions. These functions are described in
different chapters—see the chapters “Recording Scripts,” “Interacting and
Inspecting,” “Generating and Using Declarations,” and to some extent in
“Running Tests.”

Compose Test is where you combine scripts to form complex tests: adding
pass/fail dependencies, passing parameters, setting scripts to restart the
application, and more. You can find instructions on how to compose tests in
the chapter “Composing Tests.”

Run Test is where you run tests that log results. In this window, you can
specify arguments to send to the test, and override your default directory
settings. This option, as well as other ways of running tests, is covered in the
chapter “Running Tests.”

Edit Test Script is where you edit and compile scripts and declaration files.
Read about editing features in the “Customizing Options” chapter.

Monitor Test Status is where you track the status of multiple JavaStar
processes. You can terminate execution of a process from here. The chapter
“Monitoring Test Status” describes how this works.
Preparing to Use JavaStar 9

2

Creating a Project File
View Test Results opens the full-featured Results Viewer. Here you can view
the results of any test run, getting summary or detailed information, filtering
for the results you want. You can also archive, extract, or print results from
here. See the chapter “Viewing and Analyzing Results” for details on how to
use the Results Viewer.

Set Options is where you can view system information and set options that
control the look of the user interface. For more information, see the chapter
“Customizing Options.”

Quit exits the JavaStar application.

The Project Files panel is where you define the application or applet you want
to test and the JavaStar options you want to use while testing that program.
See the section “Creating a Project File.”

Creating a Project File
JavaStar uses project files to store information about directory locations,
classpaths, the program to test, and various record and playback options.

A project file is usually specific to an application or applet, and to a platform.
The tests you create with JavaStar are platform-independent; by using project
files to define platform-specific information (such as the location of your Java
Virtual Machine) you can set your test environment in one place, rather than
having to define it for each test run.

If you previously used the javastar.prop file to store your options, JavaStar
will prompt you to convert your file when you run this version.

For instructions on defining or modifying a project file, see the chapter
“Creating Project Files.”

Starting Your Application or Applet
Before you can create test scripts or generate declarations for your program,
you need to start up the application or applet you plan to test. If you included
this information in the currently loaded project file, you don’t need to provide
it again. You can always override your project file settings for a session if you
choose.

The settings you enter into the Create Test Script dialog window stay in effect
while the Record/Playback window is open and the application or applet is
running. These settings are not saved to the project file; use the Project Settings
screen to save changes to the file.

1. From the main menu, click Create script.
This brings up the Create Test Script dialog window.
10 JavaStar User Guide—November 1998

2

Starting Your Application or Applet
Figure 2-2 Create Test Script dialog—showing Application fields

This window has two tabs: Application/Applet and Advanced. Use the
Application/Applet tab to specify the information specific to your test
program. Use the Advanced tab to specify the path to the program (if it is
not already defined in your CLASSPATH setting) and to change directory
settings from your defaults.

2. Specify the type of program you are running: Application or Applet.
The fields shown on this tab change depending on your choice. When you
click on the Applet checkbox, the screen changes to show new fields. See
Figure 2-3.
Preparing to Use JavaStar 11

2

Starting Your Application or Applet
Figure 2-3 Create Test Script Dialog—showing Applet fields

3. Fill in the fields as appropriate to your test program.
For an application, you need to define:
12 JavaStar User Guide—November 1998

2

Starting Your Application or Applet
For an applet, you need to define:

Table 2-1 Application information fields

Field Description

Class The class name of the Java application you want to
test. Either enter the name (without the .class
extension) into the text field, or use the Browse button
to locate the application by navigating through the
directory structure. Make sure you use a fully-
qualified class name—for example, if your class is part
of a package, specify the package here, too.
For example, if your application is in a package named
beta and the name of the main class is
dialer.class , you would type beta.dialer into
this field.

Args Any arguments you want to pass to the application
under test.

Table 2-2 Applet information fields

Field Description

URL type Choose between file url, http url, and Local.
• Choose file url on Windows systems to specify a local

directory and filename for the .html page that runs
your applet.

• Choose http url when you need to run an applet
remotely across the web.

• Choose Local when you need to specify a local
directory path and filename for the .html page that
runs your applet. The local option works best in
UNIX environments; use file url for Windows
environments.

HTML file The location of the web page containing the Java
applet you want to test. Either enter the location (using
a prefix) into the text field, or use the Browse button to
locate the file by navigating through the directory
structure.
Preparing to Use JavaStar 13

2

Starting Your Application or Applet
4. Check the Advanced settings to make sure they are correct for the script
you want to create.
You can skip this step if you are already sure you test program is in the
CLASSPATH and that your directory defaults (as specified in Environment
options) are appropriate for the script you want to create.

To check these settings, click the Advanced tab. The screen changes to show
advanced options.

Figure 2-4 Advanced tab on the Create Test Script dialog
14 JavaStar User Guide—November 1998

2

Starting Your Application or Applet
You can optionally define or change any of these fields:

5. Click Start.
JavaStar launches your program and opens the JavaStar Record/Playback
window (shown in Figure 2-5.) From here, you can playback a script, record
a new script, interact with the application without recording, and generate
declarations for your GUI.

If JavaStar puts up an error message instead of launching the program you
want to test, see If Your Application Does Not Start for ways to resolve the
problem.

Field Description

Additional classpath Any additional directories, .zip , or .jar you want
to add onto the existing CLASSPATH variable
definition. This must include the path to any
applications or applets you want to test, tests scripts
you want to execute, and any map files you want to
use.
When specifying a CLASSPATH, use a semi-colon for a
separator if you are running under Windows, and use
a colon for a separator on UNIX platforms.

Java arguments Any default flags for either JVM or the Java compiler
that your program under test require.

Log file The filename JavaStar creates for writing out results.
By default, JavaStar uses the filename Default.log .

Work directory The directory where JavaStar stores the scripts, result
logs, and comparison directories your scripts generate.

Results directory The directory where JavaStar creates the gold file
comparisons and results directory.

JST path The directories you want JavaStar to search when
finding the scripts and JSTs necessary to run a JST.
When listing multiple directories, use a semi-colon for
a separator if you are running under Windows, and
use a colon for a separator on UNIX platforms.
Preparing to Use JavaStar 15

2

Starting Your Application or Applet
Figure 2-5 Record/Playback window.

If Your Application Does Not Start
Here are some possible error messages you might get, and how to resolve
them:

There is some problem accessing the class classname. Either:

1. It is not in the CLASSPATH.

2. It is being accessed in the wrong way.

(e.g. String is invalid, java.lang.String is correct.)
16 JavaStar User Guide—November 1998

2

Starting Your Application or Applet
Possible solutions:

• Make sure your application path is included in the additional classpath
field. Check the entry for this field in the Advanced tab. If you typed the
path in directly, you might try using the Browse button to navigate to the
directory, so you can be sure you have the latest path.

• Check that you spelled the application name correctly in the Class field of
the Application/Applet tab. Do not include the .class extension. Make
sure this class is the “main” class of your application. Use Browse to
navigate to the directory and make sure the .class file is still there.

• Verify that you are using a fully-qualified class name. If your class is within
a package, be sure to type packageName.className.
Preparing to Use JavaStar 17

2

Starting Your Application or Applet
18 JavaStar User Guide—November 1998

Creating Project Files 3
JavaStar uses project files to store information specific to a project or to a
platform. In a project file, you store information such as the name of the
program under test, directory settings, CLASSPATH additions, and
record/playback options. Defining a project is the first step in setting up
JavaStar for a given project.

This chapter covers:

• Understanding the Project Settings Window
• Defining Project Information
• Saving, Applying, and Loading Project Files

Understanding the Project Settings Window
In a project file, you specify:

• Information required to run the application or applet under test
• CLASSPATH information
• Which directories to use to find tests and to generate output
• Option settings that control recording and playback
• Java settings (virtual machine and compiler information)
• Mapping information for locators, declaration files, and text maps
• A description of the project file

When you open JavaStar, the last project file you worked with is automatically
loaded (see Figure 3-1). If you have not yet saved a project file, JavaStar loads a
default file named default.jpr (where .jpr indicates a JavaStar PRoject
file).

Project files are especially important when testing a project across different
platforms. The Java Virtual Machine (JVM) settings and file paths will vary
across platforms; by setting up a project file for each platform, you only need
to define these paths once.
19

3

Defining Project Information
Figure 3-1 Main menu and Project Settings panel

Project Settings contains a series of tabbed panels. Clicking on a tab along the
top of the window brings the associated panel to the forefront.

Defining Project Information
When you open JavaStar, the Project tab of Project Settings is displayed to the
forefront by default (see Figure 3-2). This panel shows you the name of the
project file and has an editable text area—Description—where you can describe
the purpose of the file.

Note – The project file name is shown as a display-only field. To change the
filename, you need to use the Save As... button. See the section “Saving,
Applying, and Loading Project Files.”
20 JavaStar User Guide—November 1998

3

Defining Project Information
Figure 3-2 Project panel

By clicking on the tabs along the top of the Project Settings screen, you can
bring other panels to the forefront. This section describes:

• Providing Application or Applet Information
• Setting Test Options
• Selecting Record Options
• Recording Format Options
• Specifying Java Options
• Defining Locators, Declaration Classes, and Text Map Classes
• Advanced Test Options

Providing Application or Applet Information

The App panel (Figure 3-3) is where you provide information about the
program you want to test. For applications, you need to provide the name of
the class file, any arguments the application requires, and the addendum to the
CLASSPATH variable that JavaStar will use to locate the application. For
applets, you need to provide the name of the HTML file that runs the applet.

To record or run a test, you do not have to provide this information in the
project file. However, you can save yourself a lot of retyping if you enter the
information here. If you will always be using the same application or applet in
conjunction with this project file, or even if you will be using a particular
program most of the time, go ahead and fill in the information here. When you
later choose Create Test Script from the main menu, you’ll have an
opportunity to override these settings for that record/playback session.
Creating Project Files 21

3

Defining Project Information
Figure 3-3 App panel

To fill in application or applet information:

1. Select the type of program you plan to test.
Click either the Application or Applet radio button.

2. If you are testing an application:

a. In the Class field, type the name of the class to test.
You can also use the Browse button to locate the class by navigating
though the file dialog. If you type the name, you don’t have to provide
the .class extension.

When you select the class name using the Browse button, JavaStar
automatically enters the path to that class in the Classpath field.

b. In the Args field, type any arguments you need to pass to the
application.
Enter these exactly as you would at the command line. If your
application does not require arguments, leave this field blank.

3. If you are testing an applet, enter the name of the html file for the applet.
You can type the name directly into the Html file field, or use the Browse...
button to locate the file using the file dialog.
22 JavaStar User Guide—November 1998

3

Defining Project Information
Setting Test Options

The environment preferences affect the overall test environment. In the Test
panel (see Figure 3-4) you define the directories you want JavaStar to use when
generating tests and test results. You also define additional CLASSPATH
settings, time out values, and delay values.

Figure 3-4 Test panel

Note – You can provide additional test options in the Adv. Test (Advanced
Test) tab.

If you routinely store your tests in a directory other than the one where you
start up JavaStar, type your test directory path in the Work directory field.

Field options:

Work directory The default directory where JavaStar stores your JSTs,
scripts, and gold directories for those scripts.

Results directory The default directory where JavaStar stores the log files
any failure data (from failed comparisons), as generated
by your script.

JST path The directories you want JavaStar to search when finding
the JSTs necessary to run a JST.
Creating Project Files 23

3

Defining Project Information
Selecting Record Options

In the Record panel of the Project Settings window, you can set recording
format options and select optional events you want JavaStar to record.

Test classpath The path to the directory containing the tests you want to
run.

Time out The timeout value JavaStar uses when verifying
comparisons and other JSComponent operations. When
an operation fails, repeats its attempts until the timeout
value is reached. By default, it is 30 seconds, but you can
change it here.

Delay factor This value affects calls to JS.delay . If you recorded your
script with delays, your script has JS.delay calls. When
running a test script, JavaStar multiplies the delay factor
by the JS.delay value defined in the script, and from
there calculates the actual delay value.

For example, if the value of JS.delay is 100
(milliseconds) and the value in the Delay field is 0, then
the actual delay would be 0, but if the value in the Delay
field is 2, then the actual delay would be 200
milliseconds.

For more information about JS.delay , refer to the
wrap(Component) description in the JavaStar API
Reference.
24 JavaStar User Guide—November 1998

3

Defining Project Information
Figure 3-5 Record panel

Recording Format Options

The recording format options define how JavaStar generates code that uses
components.

Option Events to Include

Your settings under Optional Events to Include determine whether JavaStar
records certain types of events. By default, JavaStar records none of these
events on this list. This is useful in cases where your application does not
process particular events—for example, the MOUSE_MOVE, MOUSE_ENTER, and
MOUSE_EXIT events that are generated every time you move the mouse. If
your application does process these events, then you should check the check
boxes to activate this feature.

Use component names Turn this on if you’re using setName() .

Use regular expressions in
title

Automatically records references to frame titles as
regular expressions.
If your test program has windows that change
titles, turning this option on can increase the
chances that JavaStar will find the window even
with a name change. However, if you have several
windows titles starting with the same letter, this
might cause a conflict during the test run.
Creating Project Files 25

3

Defining Project Information
Specifying Java Options

The Java panel (see Figure 3-6) in the Project Settings screen is where you
define information on the Java virtual machine and the compiler you want
JavaStar to use when running and compiling tests. Based on the location of the
JDK, JavaStar provides default paths for the JVM and the compiler. If you plan
to use these locations, you don’t need to fill in the fields. You only need to
provide a path if you want to override the default.

Figure 3-6 Java panel

The event... Means the user…

FOCUS_LOST is not focusing events on this object.

FOCUS_GAINED is focusing events on this object.

WINDOW_ICONIFIED minimized the application window to an icon.

WINDOW_DEICONIFIED restored the application to normal screen view.

MOUSE_ENTERED moved the mouse into the target object.

MOUSE_EXITED moved the mouse out of the target object.

MOUSE_MOVED is moving the mouse with no buttons pressed.

KEY_RELEASED finished pressing a key.
26 JavaStar User Guide—November 1998

3

Defining Project Information
Java options:

Defining Locators, Declaration Classes, and Text Map Classes

Use the Mapping panel (see Figure 1-7) to define the names and paths to:

• Non-Component Locators
• Declaration Classes
• Text Map Classes

If you use the Edit List... buttons to select files for these fields, JavaStar will
automatically update the Classpath field with the paths to each file you
choose. The section, “Using the Selection Dialog” explains how to select files
using Edit List.

Java virtual machine The path to the JVM you use. Immediately below
this text field, JavaStar displays (in italic) the default
path that it will use if you do not specify a JVM.

Virtual machine args Any Java arguments you want to pass to the JVM. If
you want to increase JVM memory, for example, you
would use the -mx command here.

VM classpath flag The flag your JVM uses to preface a CLASSPATH
setting. By default, this is -classpath .

Java compiler The complete path to the compiler you want
JavaStar to use. Immediately below this text field,
JavaStar displays (in italic) the default path that it
will use if you do not specify a Java compiler.

Compiler args Any arguments you want to pass to the compiler
when JavaStar compiles a test.

Compiler Classpath flag The flag your Java compiler uses to preface a
CLASSPATH setting passed at the command line. By
default, this is -classpath .
Creating Project Files 27

3

Defining Project Information
Figure 3-7 Mapping panel

Non-Component Locators

When you test an application created using a toolkit that does not extend
java.awt.Component , you need to provide JavaStar with a locator. This
locator may be one you have written yourself or one provided with JavaStar. A
locator is specific to a toolkit—for example, different locators are provided for
Bongo, JFC, and IFC toolkits.

If you think your application or applet might need a locator, but you are
unfamiliar with the locators available or don’t know how to write one, see the
chapter “Locators for Non-Components” for basic information. For an example
of a locator and how you would use it, see the chapter, “Using Non-
Component Locators” in the JavaStar Tutorial.

If you already have one or more locators to use with your program, you can
use the Non component locators field (editing it with the Edit list... button) to
specify the locators and have JavaStar add the location to the class path. For
information on how to use the dialog that is displayed when you click Edit
list..., see “Using the Selection Dialog.”

Declaration Classes

If you plan to use declaration files to abstract GUI components, you need to
provide the names of the declaration files and add them to the CLASSPATH
environment variable. You can do this in this panel, using the Edit list... button
28 JavaStar User Guide—November 1998

3

Defining Project Information
to the right of the Declaration classes field. After you add declaration classes
to the list, JavaStar fills in the Declaration classpath field with the directory
paths that correspond to the files you selected.

For information on how to use the dialog that is displayed when you click Edit
list..., see “Using the Selection Dialog.”

For step-by-step instructions on how to create declaration files, see the chapter,
“Generating and Using Declarations” in this User’s Guide. For a discussion of
how to use declaration files within the JavaStar test model, as well as an
example, see the chapter “Generating Declarations” in the JavaStar Tutorial.

Text Map Classes

Text map classes are utilities you write that map components to text names. If
your application or applet uses bit-mapped images for components or if it uses
lightweight components of a custom design, you may want to create a text map
so that your tests can extract a meaningful name for the component. In cases
such as these, a text map can make tests and results easier to interpret.

For information on how to develop a text map, see the chapter, “Text Map
Classes.”

Using the Selection Dialog

To select files for either the Non component locators, Declaration classes, or
Text map classes field:

1. Click the Edit list button to the right of the text entry field.
A Select dialog opens. See Figure 3-8.
Creating Project Files 29

3

Defining Project Information
Figure 3-8 Select Dialog (this one is for Non component locators)

2. In the Select an item panel, navigate to the directory containing the file
you want to load, and select the file.
For example, if you are selecting a locator, navigate to the
javastar\contrib\locators directory and select the locator you want.

The file name appears in the Edit list panel, in the Current Item field.

3. Add the file to the list by clicking Add to list.
The file is displayed in the Path list panel and in the list box of Edit list.

4. Repeat Step 2 and Step 3 for any additional files you need to add to the
list.
If you have multiple files listed, you can move then up or down on the list,
or delete them, using the buttons at the bottom of the Edit list panel.

5. Click OK.
JavaStar automatically enters the name of the class you selected into the text
field for this file type, and the path to that class into Classpath field.

You can add additional locators using the Edit list... button.
30 JavaStar User Guide—November 1998

3

Defining Project Information
Advanced Test Options

The Adv. Test panel (Figure 3-9) provides advanced options for controlling
tests. Here you can control:

• The amount of time JavaStar waits before it determines that the program
under test has hung

• Log output (information types and total size)
• Whether JavaStar reloads classes before running a test
• Prefixes to ignore

Figure 3-9 Adv. Test Panel

Advanced test options:

Hang time out The number of seconds you want JavaStar to wait before
determining that an unresponsive application is hung.

Limit log The log file size at which JavaStar begins filtering.
Creating Project Files 31

3

Saving, Applying, and Loading Project Files
Saving, Applying, and Loading Project Files
Use the buttons along the bottom of the Project Settings window to load, save,
and apply Project Settings, as well as to clear fields in preparation for a new
file.

Log filters Select log file options from this list to specify which
information you want to exclude from your log files.
Unlike filtering you can do after a log file is generated
(using command line options or the Results Viewer Extract
option) setting Log limit filters means that the options you
choose are never recorded to the log.

Reload Classes Check this box if you want JavaStar to reload classes
before executing a test. If you edit your tests while you
have the Record/Playback window open, JavaStar will
only reload the tests (and, thus, playback your changes) if
you have this option turned on.

Prefixes
(package/class) to
ignore for source
highlighter.

Packages or classes you want to define as libraries, so they
won’t be shown during playback. Instead, the call to the
library will be highlighted.

Use... To...

New Clear the Project File settings and begin a new, unnamed
file

Open Load an existing project file

Save Save the currently loaded project file using the same name

Save As... Save the current project file under a different name

Apply Apply the current Project Settings, so that these settings
will take effect during this session
32 JavaStar User Guide—November 1998

 Recording Scripts 4
You record test scripts (.java files that JavaStar compiles) in the
Record/Playback window. To get to this window, choose Create Script from
the main menu, then enter the information to start your application or applet.

You can get step-by-step instructions for starting your program under test in
the chapter “Preparing to Use JavaStar.” See the section entitled Starting Your
Application or Applet.

This chapter describes:

• Starting Record Mode
• General Recording Tips
• Comparing Values and Images within a Script
• Inserting Timers
• Editing Your Script While Recording
• Changing Options While Recording
• Pausing, Stopping, and Quitting

Starting Record Mode
To enter Record mode:

1. If the Record/Playback window is not open, follow the steps in the
Starting Your Application or Applet (the “Preparing to Use JavaStar”
chapter).

2. If your application is up but the first dialog in the application is modal,
use Ctrl-Alt-F7 to continue.
If Ctrl-Alt-F7 doesn’t work on your system, try Ctrl-Shift-F7 or Ctrl-Meta-F7.
The meta keys (when included on a keyboard) are marked with diamond
symbols and located on either side of the spacebar.
33

4

Starting Record Mode
3. In the Record/Playback window, click Record.
Because JavaStar brings the application or applet to the forefront, you may
need to click on the edge of the Record/Playback window to activate that
window, or drag your program window to one side.

The Record Test dialog window opens.

Figure 4-1 Record Test Script window

4. Define the name you want to use for the script.
Type the filename directly into the Create script field, or browse to locate a
test you want to overwrite. JavaStar creates a .java and .class file for the
name you provide.

5. If your program under test includes non-components, specify the locator
you want to reference.
For a description of non-components, locators, and to learn how and when
to use them, see the chapter “Locators for Non-Components.” You need to
read this chapter if you are testing an application or applet that uses a
toolkit that does not derive from Java AWT.

Note – JavaStar provides locators for the Bongo and IFC toolkits.

6. If you want to record with declarations, enter the name of the declaration
files you want to reference in Record with map files.
This feature is useful if you’ve already recorded declarations for your
program under test and have edited those declaration files to use abstracted
names. By specifying the declaration files you want to use, you set JavaStar
to record using these files, instead of using default component names.

To specify the declarations files you want to use, click Map list... to select
from a list. If you can’t locate declarations you know you recorded, check to
see if you have compiled the declarations into .class files.

Note – You can learn more about declaration files in the chapter
“Generating and Using Declarations.”
34 JavaStar User Guide—November 1998

4

Starting Record Mode
7. If you want to record using delays between events, toggle the Record with
delays checkbox on.
When you record with delays, JavaStar notes the length of any delay
between recorded events and includes that delay in the test. Usually
recording with delays is not necessary, but if your application has a Canvas
component, or if it uses a non-AWT toolkit without a Locator, you need to
toggle this option on. If delays aren’t important to your test, leave this
option off.

8. Click OK.
The Record/Playback window opens (see Figure 4-2). The action buttons
appear along the left side of the window.

Figure 4-2 Record/Playback window during record mode

9. Test your application or applet by interacting with the program directly.
JavaStar records your actions and dynamically displays the Java code it
generates in the log panel.

10. Click Stop to end recording.
Recording Scripts 35

4

General Recording Tips
General Recording Tips
Recording keystrokes and mouse events is a straightforward procedure in
JavaStar; once you’ve defined your test script name, you interact with the
program you are testing exactly the way you want to test it. However, even
given this simplicity, there are some important things you should know before
you begin:

• Make sure your record options match your needs. The Record/Playback
window uses options that you can set using the Set options button on the
main menu, or by clicking the Options button that appears when you’re in
record mode. Record options specify which actions JavaStar records and
which ones the application ignores. This can be useful if you want to reduce
the size of your script and your log file. You can also set options for using
regular expressions to find windows and dialogs, and to use component
names internal to the program under test. For more details, see Changing
Options While Recording or the chapter “Customizing Options.”

• Don’t click Stop until you are sure you don’t plan any more additions to
the script. Once you’ve stopped recording using the Stop button, you can’t
restart it again for that script—you can only edit the script manually. Use
Pause if you want to suspend recording temporarily while you do
something else. (Though, if you are not using delays while recording,
leaving a test unattended for a period of time doesn’t have any effect on the
script.)

• Don’t quit or exit your application while recording. The JavaStar record
activity “lives” in the same address space as your program process. While
this means JavaStar can access more information about your application or
applet, it also means that quitting your application kills the recording
process. Rather than shutting down the test application, use the restart
nodes (in Compose Test) to end and restart a program. You can write a
separate test that tests the program exit conditions.

Comparing Values and Images within a Script
JavaStar provides two types of comparison features: Verify and Synchronize.
Both allow you to specify all or a portion of the window for comparison to
recorded states. You can compare the attributes of a component or an image of
what the component looks like. The difference between Verify and Synchronize
is what happens during playback.

When you play back a test, a Verify operation performs the comparison as you
specify. If the comparison fails, Verify attempts the comparison again,
repeating attempts until it reaches the time-out value (which you can set in
Playback Options). If the comparison fails at time-out, Verify notes the failure
and the script continues to execute. The script itself does not fail and can end
normally, though the log contains a failure that you can examine when you
view the results.
36 JavaStar User Guide—November 1998

4

Comparing Values and Images within a Script
A synchronize operation is the same as a verification,with one exception. When
the timeout expires without a match, throws an SyncException and ends
script execution, rather than logging a failure and continuing.

Choosing Between Verify and Synchronize

Use Verify when you are verifying attributes of a component (or an image) that
are not critical to the continued operation of the script. For example, if you are
checking the contents of a text field where the results won’t impact the ability
of the script to continue, Verify is a good choice.

Use Synchronize when your script needs to wait for a particular state change
in the application before it can progress, or when the results of a comparison
are critical to the script being able to finish. For example, if you expect the
application to enable a button that you want to validate, and if you require that
button for further testing, it makes sense to choose Synchronize over Verify.

Note – The JavaStar API provides a third way for you to do
comparisons—the JS.check() function. This method does a boolean
check of an attribute or value you specify. You use JS.check() by editing
your script to include the call; JavaStar does not insert these checks
automatically while recording. For information on JS.check() , see
check(boolean, String) in the “Component and Control Classes” chapter of
the JavaStar API Reference.

How JavaStar Compares Component Attributes

When you select a component for comparison, JavaStar compares the attributes
of the component and the attributes of its superclass. JavaStar doesn’t compare
every attribute, just the most relevant ones. For example, when you compare
the attributes of a button, JavaStar compares the label, but not the foreground
and background color.

Table 4-1 lists the attributes that are compared for each component type.

Table 4-1 Comparison of Attributes

If you compare a... Then the following attributes are compared...

Button Label
Action command

Canvas Graphics (optional)

Checkbox Label
State

CheckboxMenuItem State
Recording Scripts 37

4

Comparing Values and Images within a Script
Choice All items
Selected index
Selected item

Component Is it enabled?
Is it being shown?
Is it visible?
What kind of cursor?
Popup menus

Container All components have to match. For BorderLayout, the
components are compared according to their orientation,
i.e., only east, west, north, south, and center are
compared. The rest of the components are ignored. For
layout other than BorderLayout, components are
compared according to their position in the component
array returned by the getComponents() method.

Dialog Title
Is it modal?
Is it resizable?

FileDialog Mode (load or save)
Directory
File

Frame Title
MenuBar
Is it resizable?

Label Alignment of text
Text

List Does it allow multiple selections?
All items
Number of visible lines
Selected items

Menu All MenuItems
Is it a tear-off Menu?

MenuBar All Menus
HelpMenu

Table 4-1 Comparison of Attributes

If you compare a... Then the following attributes are compared...
38 JavaStar User Guide—November 1998

4

Comparing Values and Images within a Script
Selecting Components

When setting up a comparison, use the mouse and keystrokes described in
Table 4-2. When you select a component, the component flashes to show you
what you selected, and the selection code appears in the Select for Verification
or Select for Synchronization dialog.

Once you select a component, you can use the arrow keys to further navigate.
The up arrow selects the parent of the component and the down arrow selects
its first child. The right and left arrows move to the components that precede
and follow this component, respectively.

MenuItem Is it enabled?
Label
Action command
Short cut

Panel Graphics (optional)

PopupMenu No additional attributes

Scrollbar Unit increment
Block increment
Minimum value
Maximum value
Orientation
Current value
Visible amount

ScrollPane Scrollbar display policy
Size of the view port
Current scroll position

TextArea Number of columns
Number of rows
Visibility of scrollbars

TextComponent Text
Is it editable?

TextField Is echo char set?
Number of columns
Echo char

Window Warning string

Table 4-1 Comparison of Attributes

If you compare a... Then the following attributes are compared...
Recording Scripts 39

4

Comparing Values and Images within a Script
Note – You can’t select a menu or menubar for verification or
synchronization. You can only verify these components through the
containing frame.

Selecting Data Members and Methods

The Verify and Synchronize functions let you compare return values for one or
more of a component’s data members and simple methods. To do this, you
select the option to compare using simple methods and data members. The
procedure described in the section Verifying or Synchronizing Components
explains the steps in detail. What’s important to know now is how JavaStar
defines the terms.

A simple method is any method that does not take any parameters and that
returns a basic Java type—for example, int, long, float, and boolean, as well as
String, java.awt.Point , java.awt.Color , java.awt.Rectangle , and
java.awt.Dimension .

Note that if you query for the return value of a method while you’re in the
Verify or Synchronize screens, JavaStar executes the method. If the method you
choose alters the state of the component, this could create a false comparison,
so use caution.

Gold Files and Directories

A gold file is where JavaStar records the attributes of a component for
comparison purposes. You generate gold files when you use Verify or
Synchronize to compare using gold file attributes. Because the component you
select might be a frame, gold files also contain the attributes for child
components, as well. When you compare failure results later on, JavaStar
reconstructs the components using these attributes. If an attribute includes an
image (such as an image on a Canvas) that image is also saved to the gold file.

JavaStar stores gold files in a directory named scriptname.gold , located in the
work directory. All comparison images are named sequentially, using the
format C1, C2, C3, and so on. When you later run a test, any gold file
comparison failures are stored in the failure directory you define. Failure files
use the name format of f. followed by the gold file name. So, if the C2

Table 4-2 Selecting GUI Components for Comparison

If you want to select... Then...

A frame or dialog window Click a component of the frame and press
F1.

Any other kind of component Click it.
40 JavaStar User Guide—November 1998

4

Comparing Values and Images within a Script
comparison fails, you’ll find the C2.f file in your failure directory, showing the
component attributes during the test run. The gold files are not changed until
you specifically specify that you want them replaced or deleted.

Other chapters that discuss gold files:
• Browsing Gold Files the chapter “Editing Tests” describes how to use the

Script Editor to view gold files referenced by a specific script.
• Viewing Comparison Failures and Updating Gold Files in the chapter

“Viewing and Analyzing Results,” explains gold file management.

Caution – While you can open a gold file within a text editor, do not edit these
files by hand. This could challenge the integrity of your test. Instead, use the
Gold File Manager described in “Viewing and Analyzing Results.”

Verifying or Synchronizing Components

The procedure and the screens for verifying and synchronizing are identical,
except for their titles. Because the steps to use these features are identical as
well, this procedure shows screen shots just one of the two options (Verify).

Remember that even though the comparison procedures are the same,
verifications and synchronizations do not cause the same types of failures
when the comparisons don’t match. A verification logs the failure and
continues, while a synchronization ends script execution with an exception.
This is the only difference between the two comparison types.

This procedure assumes you are already in record mode and have progressed
your test to the point at which you’re ready to do your comparison.

1. Click Verify or Synchronize.
This pauses recording and changes the right side of the Record/Playback
window to show the Verify or Synchronize screen.
Recording Scripts 41

4

Comparing Values and Images within a Script
Figure 4-3 Verify—first screen

2. Choose whether you want to compare a single component or all visible
windows of your program under test.
Select an Object is the default option. If you choose All visible windows,
Verify ignores any components you select next.

3. If you chose Select an Object, move the mouse to your program under test
and click the component you want to verify.
You can select any GUI component in your application or applet. Table 4-2
describes how to select the different types of GUI components.

Once you click on a component, the selection code appears in the text
portion of the verify screen.
42 JavaStar User Guide—November 1998

4

Comparing Values and Images within a Script
4. Decide whether you want to use the default comparison JavaStar suggests
or if you want to customize the comparison.
Once you select All visible windows or click on a component, JavaStar
updates the screen to present you with the most likely comparison you
might want to do. For example, if you chose a button, JavaStar suggests a
comparison using enabled—which means to compare and see if this button is
enabled. Refer to Figure 4-4 to see this example.

To accept the default, click Use default, then skip ahead to step 8.

To change the default, click Customize.

Figure 4-4 Verify—first screen with a component selected

5. Choose the method of comparison you want to use.
The screen now shows your options for comparison (see Figure 4-5.)

Figure 4-5 How to Verify screen
Recording Scripts 43

4

Comparing Values and Images within a Script
Choose your comparison type based on these descriptions:

6. If you chose to compare using a method other than simple methods and
data members, skip to the next step. Otherwise, click the Select simple
methods and data members button.
For simple methods and data members, the screen changes to present you
with a list of the data members and methods (including inherited ones)
available for this component. See Figure 4-6 for an example. The list is
presented alphabetically by field/method name.

At any point, you can examine the current return value for a method by
clicking the returns button, or get the value of a data member by clicking
the = button. This does not select the item for comparison—it just tells you
what the item returns.

Note – Use caution when clicking returns, as this executes the method. If
the method alters the state of the component, this could create a false
comparison.

To select one or more items for comparison:

Table 4-3 Comparison Options

Verify… Means…

Using enabled Verify that the component selected (such as a button or
a panel) is enabled.

Using text Compare the text of the selected component. The
definition of component text depends on the type of
component. For a text entry field, this is the text inside
the field. For a Button, it’s the Button Label. For a
Frame, it’s the title, and for a Label, it’s the text of the
label.

Using simple methods
and data members

Compare the return value for this component’s data
members or methods. You’ll be able to select which
data members and methods you want to compare
when you advance to the next screen.

Using attributes
in gold file

Compare the component text and attributes to the
information stored in a gold file. The gold file is
generated when you set up the comparison.

Include image in
compare

When comparing the contents and attributes of the
selected component, also perform an image
comparison. This option is only enabled when the
component you are comparing is a canvas or a panel
containing images. You can only select this option once
you’ve turned on Using attributes in gold file.
44 JavaStar User Guide—November 1998

4

Comparing Values and Images within a Script
a. Scroll to the item you want to compare.

b. To highlight the line, click anywhere on the line other than on the
returns button.

Figure 4-6 Verify—data member/method selection

7. Click Enter a Purpose.
The screen changes to show you the component you have selected (What),
the type of comparison you chose (How), and leaves a blank for you to
provide a purpose (Why).

Figure 4-7 Verify—enter a purpose

8. Type a purpose for the comparison in the Why field.
The string you enter shows up in the log file, and can be helpful when
evaluating failures.
Recording Scripts 45

4

Inserting Timers
9. Click Insert verification into text to record the comparison.
JavaStar records the attribute values or gold file to compare and adds the
comparison code to the script. You can see the comparison code in the
Record/Playback window. After you click Finish, the Select for
Verification/Select for Synchronization dialog stays open, so you can define
more comparisons.

10. When you are done defining comparisons, click the Continue button in
the left panel of the window.
This closes the Verify/Synchronize screen and returns you to record mode.

Inserting Timers
You can insert timers into your test that start and stop as you specify. When
you run the test, the time values for each timer is written into the results log
file.

• Timers can span multiple scripts. In this case, you define the start point in
one script, define the stop point in another, and use these scripts together in
a JST.

• Any timers for which you have not specified a stop point are not valid
timers and will not show up in the results log.

• Timers display results in seconds. A time less than one second appears as
-1 in the log file.

To add a timer to your test:

1. While in record mode, click the Timers button when you reach a point in
your test where you want to begin a timer.
This pauses recording and opens the timer screen in the right side of the
Record/Playback window.

Figure 4-8 Timer screen

2. Type a descriptive name for the timer in the Timer name field.
46 JavaStar User Guide—November 1998

4

Editing Your Script While Recording
3. To set the start point, click Start.
JavaStar inserts a line of code into your script to start the timer.

4. Click Continue to resume recording.

5. If you want to stop the timer in this script, click the Timers button when
you reach a point in your test where you want to insert the timer stop
point.
Record mode pauses and the timers screen opens again.

6. Double-click on the name of the timer you want to terminate and click
Stop.
Make sure that the timer name shows up in the Timer Name field—it won’t
if you single-click. Alternatively, you can type the name of the timer. Once
you click Stop, JavaStar inserts the timer stop command into your script,
and the timer is removed from the list of Existing Timers.

7. Click Continue to resume record mode.

Editing Your Script While Recording
While recording a script, you can pause to edit the script, inserting Java code or
changing statements as necessary. Using the insert references option, you can
select a component in your program under test and have JavaStar insert the
reference automatically, speeding up your code additions and improving
accuracy. When you’re done, you can compile and save your changes, then
continue on recording events as before.

The Script Editor that JavaStar opens in the Record/Playback window is not
the same as the window you get when you click Edit Test Script in the JavaStar
main menu. The Record/Playback editor includes a subset of the main Script
Editor features. It also includes the Insert Reference feature, one specific to
editing in record mode.

This section describes how to enter the script editor from record mode and
how to use the Insert Reference feature. For information about the common
features of both editors—Class Browser, Find/Replace, and Go to Line—see the
chapter “Editing Tests.”

Entering Edit Mode

1. In the Record/Playback window, click the Edit button.
JavaStar automatically pauses recording and opens a script editor inside the
right panel of the window. See Figure 4-9. You can now edit the code,
adding or changing lines, as you want.
Recording Scripts 47

4

Editing Your Script While Recording
Figure 4-9 Script editor in the Record/Playback window

2. When you complete your changes, click Save.
You don’t need to compile your script because JavaStar will compile and
check the code itself when you stop recording.

3. Click the Continue button in the left panel to resume recording.
Now you can continue recording events as before, with your code changes
incorporated into the script.

Inserting a Reference into a Script

With Insert Reference, you select a component and provide a variable name,
and JavaStar then inserts a properly casted declaration, assigned to the variable
name you specified. This is useful when you want to write your own
verification code for more complex methods, such as methods that require
parameters, or that return non-basic Java values.
48 JavaStar User Guide—November 1998

4

Editing Your Script While Recording
To insert a declaration into a script you are recording:

1. Click the Insert reference button.
The Insert Reference dialog is displayed. See Figure 4-10.

Figure 4-10 Insert Reference dialog

2. In your program under test, click on the component you want to use.
The declaration for the component appears in the lower text box of the
Select for Declaration dialog.

3. In the Name field, enter the name you want to use in your code to
identify this component.
Figure 4-11 shows a Select for Declarations dialog with a component
selected and a name provided.

Figure 4-11 Insert Reference dialog with fields filled in

4. Click Apply to insert the object reference into your script.
You can now, in subsequent code, refer to the component solely by the
name you defined.
Recording Scripts 49

4

Changing Options While Recording
Changing Options While Recording
The Record/Playback window provides a shortcut to changing the record
options during a recording session. This is useful if you’ve started recording
and realize that the script is recording events you don’t want to see in the
log—or not recording events critical to your test.

This procedure assumes you are already in record mode.

1. In the left panel of the Record/Playback window, click the Options button.
The recording options are displayed in the right portion of the window. See
Figure 4-12.

Figure 4-12 Recording options in the Record/Playback window
50 JavaStar User Guide—November 1998

4

Pausing, Stopping, and Quitting
2. Change the options according to your preferences.
For a detailed explanation of each recording option, see the Recording
Format Options section of the chapter “Creating Project Files.”

3. Click the Apply button in the options panel.

4. Click the Continue button to resume recording.

Pausing, Stopping, and Quitting
The Record/Playback window has Pause, Stop, and Quit buttons. They
operate somewhat similarly—suspending or terminating a process—but they
are not interchangeable:

• Pause suspends recording or playback so that you can take a break without
affecting the process, or access options only available when the process is
paused.

• Stop terminates the current playback, record, or generate declarations
process. JavaStar ends the script and compiles it. Thus, once recording is
terminated, you cannot start from the point where you left off—you need to
manually edit the script to add to the test.

• Quit terminates any current playback, record, or declarations process and
closes both the program under test and the Record/Playback window.
Recording Scripts 51

4

Pausing, Stopping, and Quitting
52 JavaStar User Guide—November 1998

Interacting and Inspecting 5
To work with your application or applet without recording your actions, you
can use the Interact feature of the Playback/Record window.

Interact is useful in several cases. Sometimes you need to interact with an
application before beginning a recording session, particularly if you need to
bring the program into a specific state. For example, you might need to load
test data or clear fields of previous entries—tasks that you can take care of
automatically within a composed test. For now, you can go into Interact mode,
bring your test program into the proper state, then transition to Record mode
and capture your interaction from that point on.

Interact is also helpful when you want to inspect a component of your test
program to determine its state. Once in Interact mode, you’ll see an Inspect
button in the lower portion of the left button panel. By clicking this button, you
can bring up a dialog window that lets you select a component, then query any
simple data member or method of that component for its return value.

Note – If you click the Interact button while recording, JavaStar stops
recording and enters Interact mode. Selecting Interact while in playback
mode terminates playback immediately.

Interacting without Recording
Interact is available only when no script is recording or playing back.

1. Click Interact.
The Record/Playback window changes so that only the Stop and Quit
buttons, as well as the new Inspect button, are active. You can now use your
application or applet without JavaStar recording your actions to a script.

2. Click Stop on the Record/Playback window to end interaction.
Interaction with the program under test is now disabled, and the
Record/Playback window returns to its stopped state.
53

5

Inspecting Components
Inspecting Components
To inspect the return values for any variable or method of a component:

1. If the Current State shown in the Record/Playback window is not Stopped,
click the Stop button.

1. Click Interact.
An Inspect button appears in the lower portion of the button panel.

2. Click Inspect.
This brings up the Select for Inspection screen in the right portion of the
window.

3. Click on the component within your application or applet that you want
to inspect.
You can navigate through components within a frame using the arrow keys.
The up arrow moves you from a child component to its parent, while the
left and right arrows move between sibling components.

The text area of the Select an object to inspect panel shows the declaration
for component you selected (see Figure 5-1).
54 JavaStar User Guide—November 1998

5

Inspecting Components
Figure 5-1 Select for Inspection—first screen

4. Click Show simple methods and data members.
The screen changes to show a list of the simple methods and data members
(including inherited members) for the component. The list is sorted
alphabetically by method and member name.

5. Navigate to the field or method you want to inspect and click the returns
button for that item.
The return value is displayed to the right of the button. See Figure 5-2.

Note – You need to rely on your judgement when querying a method for its
return value. When you click returns, JavaStar executes the method you
selected. If the method has a side effect, this may cause a problem.
Interacting and Inspecting 55

5

Inspecting Components
Figure 5-2 Select for Inspection—second screen

6. To select another component, click Previous or Reset.
You can now repeat Step 3 through Step 5.

7. To close the Select for Inspection window, click Close or Finish.
This keeps you in Interact mode but closes the window. You can click Stop
to leave Interact mode.
56 JavaStar User Guide—November 1998

Generating and Using Declarations 6
One of the problems with testing a GUI is that during program development
the labels or positions of components often change, causing any tests on those
components to fail. Another problem is that the default names can be so
cryptic that reading source code and log files is unnecessarily slow.

JavaStar addresses these problems by providing an easy way for you to
generate component declarations for each window in your GUI. These are
written out as .java files, one file per window. Once you’ve generated these
files (called JavaStar declaration files) you can then edit them to replace
developer or default component names with more meaningful names. Then
you compile these into classes and record scripts that reference these
declarations files.

Now, when a component name changes you only have to edit its references in
the JavaStar declaration file and recompile. All tests that reference the
component will continue to run. Without declaration files, you need to update
every script that references the changed component.

This chapter describes:

• Generating Component Declarations
• Editing Declarations Files to Use Abstract Names
• Using Declarations Files in Record ModeStep
• Modifying Existing Scripts to Use Abstracted Names

Note – One situation declarations can’t account for is when a developer
changes the program interface such that the component now requires a
different event type (which is typically the case when the component type
changes). This problem is best addressed by using modular scripts that
build into tests, where you only need to change the script that tests that
component.
57

6

Generating Component Declarations
Generating Component Declarations
1. Use Create Script to start the test program and launch the

Record/Playback window.
Refer to the section Starting Your Application or Applet in the chapter
“Preparing to Use JavaStar” for instructions.

2. In the Record/Playback window, click the Declarations button.
An instruction dialog opens. Note that the Record/Playback window
displays “Generate Component Declarations” in the status area, and the test
program now accepts interaction.

Figure 6-1 Generate declarations instruction dialog

3. Move your pointer over a component (usually a frame), then press Ctrl-
Alt-F10, or Ctrl-Shift-F10, to generate declarations.
A Generate Declarations dialog (see Figure 6-2) prompts you for the name
of the package and class where JavaStar will write the declarations.

After moving your pointer over a window, you can use Ctrl-Alt-F10, Ctrl-Shift-F10, or Ctrl-Meta-F10 to generate
declarations. If you are using a UNIX platform and Ctrl-Alt-F10 does not work, try Ctrl-Shift-F10. You can also
use Ctrl-Meta-F10. The Meta key on UNIX keyboards is next to the spacebar, marked with a diamond symbol.

Figure 6-2 Generate Declarations
58 JavaStar User Guide—November 1998

6

Editing Declarations Files to Use Abstract Names
4. If you want JavaStar to create a package for your classes, type the name
into the Package field.
If you supply a package name, JavaStar creates a directory with this name
within the current work directory. If you’re generating declarations for all
the windows of your test program, storing them in a package can make it
easier to maintain and reference the declarations for an entire test suite.

If you do not supply a package name, JavaStar saves all component
declaration classes from this process into the work directory. JavaStar
creates one .java file for each window you select.

Note – If you do use a package name, you’ll need to add the directory to
your additional classpath, in recording and later in playback.

5. Type the class name you want to use for this declarations file into the
Class field.
JavaStar creates a .java file with the class name you enter. However, if the
declarations file is loaded for the current session, the newly generated
declarations files won’t take effect immediately.

6. Click OK.

7. To generate component declarations for other frames or dialogs in your
application, bring them up and repeat steps Step 3—Step 6.
You can step through all frames of your test program and create component
declaration classes for each one. Because the declarations for each frame are
saved to a separate class, you can quickly detect changes and update
portions of the component declarations at a later time.

8. Click Stop.

Editing Declarations Files to Use Abstract Names
One manual useful task involving declarations is the step of initially editing
your declarations files to use abstracted names.

To do this:

1. From the JavaStar main menu, select Edit Test Script.

2. Load the your first JavaStar declaration file into the JavaStar Script Editor.

3. Find the first declaration you want to abstract and edit this to use a name.
Lines with the static keyword contain the names.

For example, if your file contains the code:
Generating and Using Declarations 59

6

Using Declarations Files in Record Mode
/* TextField */
public static JSComponent textField1(){
return Namedb().member("java.awt.TextField", 0);
}

and you want to change textfield1 to a more meaningful name, replace
it with the name you want to use.

Note – Be careful not to edit the declaration so it is unrecognizable to
JavaStar. The signature of all methods in the declarations file has to be:

public static JSComponent name()

4. Use the Find/Replace button to search the declarations for any additional
instances of the declaration you changed, and update these too.

5. Repeat Step 3 through Step 4 for the remaining component declarations.

6. Click Save & Compile to create a .class file.

Note – Whether you edit a JavaStar declaration file or not, you need to save
and compile declarations after generating them.

Using Declarations Files in Record Mode
If you specify your declarations files before you begin recording a test, JavaStar
generates test code using your abstracted names.

1. In the Record/Playback window, click Record.
This opens the Record Test dialog.

2. In the Record with Map Files field, enter the list of declarations files or
click the Map list button and locate them through navigation.
The names of map files (JavaStar declaration files) must be fully-qualified
class names. For example, if you stored your declarations in a package
called NamedbMaps, and your first declaration file is named main , type
NamedbMaps.main . You need to list each JavaStar declaration file you want
to reference. On Windows platforms, use a semi-colon as a separator; on
UNIX platforms, use a colon.

Note – The declarations files you want to us must already be added to the
additional classpath.

If you choose to use the Map list feature, you’ll see that Javastar opens a
multi-pane window.

a. Use the Select an Item pane (upper left) to navigate to your package to
open it.
See Figure 6-3 for a screen shot of the Select Map classes window.
60 JavaStar User Guide—November 1998

6

Using Declarations Files in Record Mode
Figure 6-3 Select Map classes dialog window

b. Select a JavaStar declaration file to add.
This appears in the Edit list pane (upper right) in the Current items field.

c. Click Add to list to move it to the list below.
The file is also added to the Path list pane at the bottom. See Figure 6-4.
Generating and Using Declarations 61

6

Modifying Existing Scripts to Use Abstracted Names
Figure 6-4 Select Map classes with list

d. Continue until you’ve added all declarations files.

e. Click OK.
JavaStar pastes the path list into the Record with Map Files field.

3. In the Record Test Script dialog, click OK to begin recording.

Modifying Existing Scripts to Use Abstracted Names
You are not restricted to incorporating declaration files by recording new
scripts; you can also edit existing files to reference the declarations. Most often
this is not the fastest way to make the change, but in the case of tests that
include significant amounts of custom code, you might want to make the
changes manually.

When you edit a script to use declarations, you need to:

1. Open the .java file for your script in the Script Editor.

2. Add a line of code to import the declarations.
Put this toward the top of the script, with other import statements.

import NameData.*;
62 JavaStar User Guide—November 1998

6

3. If you’re using abstracted names, modify the component names within
the script to use the new, assigned names.

4. Click Save & Compile.
Generating and Using Declarations 63

6

64 JavaStar User Guide—November 1998

Composing Tests 7
Composing tests from scripts is where you start to access the real power of
JavaStar. The Compose Test feature is a graphical interface that allows you to
link scripts together to form a single test or group of tests. Each script becomes
a node in the test tree you develop. These composed tests, called JSTs (JavaStar
Tests) can be used to build more complex tests or groups of tests based on
reusable test code modules.

Within a JST, you can:

• Handle recovery from test errors by setting a node to execute only if an
exception occurs (for example, if a synchronize operation fails)

• Define that the application restart before executing a particular test node
• Specify constants to pass to scripts as arguments
• Define parameters to pass to nodes or scripts

While scripts are .java files that JavaStar compiles into .class files, JSTs are
JavaStar-specific files that use a .jst extension. All .jst files are editable in
the Compose Test window, and they can be incorporated as nodes in other JSTs
to create even more powerful test suites. JST files do not contain java code; this
is a JavaStar-specific format.

This section covers these Test Composer tasks:

• Opening the Test Composer
• Setting the JST Path
• Loading an Existing JST File
• Saving Tests
• Starting a New JST
• Composing a JST
• Navigating Through Nested JSTs
• Closing the Test Composer
65

7

Opening the Test Composer
Opening the Test Composer
To open the Test Composer:

♦ Click the Compose Test button in the main menu panel.
The Test Composer window opens (see Figure 7-1).

Figure 7-1 Test Composer
66 JavaStar User Guide—November 1998

7

Setting the JST Path
Setting the JST Path
The JST Path field is where you enter the directory paths you want JavaStar to
search when looking for JST files. You can define multiple paths: for Windows,
separate each path with a semi-colon; on UNIX platforms, use a colon. You can
set the JST path in Project Settings, or you can enter it in the Test Composer.

To set the JST Path:

♦ Type the paths into the JST Path field.

If you want to use the same JST Path each time you run JavaStar, edit the JST
Path value as described in the section Setting Test Options in the chapter
“Creating Project Files.”

Loading an Existing JST File
1. Type the name of the JST in the JST name field or click Browse to locate

the file by navigating through the file structure.
You do not need to type the .jst extension.

2. Click Load.
JavaStar loads the test into the window. Figure 7-2 shows the Compose Test
window with a JST loaded.
Composing Tests 67

7

Loading an Existing JST File
Figure 7-2 A JST loaded into the Compose Test window
68 JavaStar User Guide—November 1998

7

Saving Tests
Saving Tests
You must have at least one node in your test before you can save the .jst file.
To save a file:

1. Type the name of the JST in the JST name field.
You do not need to add the .jst extension.

2. Click Save.
JavaStar saves the file to your current work directory.

Starting a New JST
If you just opened the Test Composer, you don’t need to click Reset to start
composing a new test. However, if you’ve been working with one or more JST
files since you opened the Composer and want to start a new one, you can
click Reset to clear the canvas and all field settings, including the JST name.

Composing a JST
When you compose a JST, you create nodes that correspond to test scripts or
other JST files. Then you specify the dependencies between these nodes by
setting normal and exception conditions. You can set any node to restart the
application or applet under test before the JST executes the node. You can
change the root (starting node) from the default. You can also specify
parameters to send to a node, assuming the script it represents accepts
parameters.

The basic rules about JSTs are:

• You can only have one starting point for the JST, and that is the root node.
You can change which node functions as the root node, but you must have
one. If you create a node not reachable from the main node, JavaStar will
discard the node when you save the JST.

• You can include nodes for scripts you haven’t yet written, but all JSTs you
include within other JSTs must exist at the time you save them. JavaStar
issues an error message if it cannot find a specified JST.

Most of the Test Composer functions are represented by buttons on the left side
of the window (see Figure 7-3).
Composing Tests 69

7

Composing a JST
Figure 7-3 Compose test main buttons

You can also access these functions by putting your mouse cursor in the large
open test area, holding down the right-mouse button, and selecting functions
from the pop-up menu that appears. If you right click over an existing node or
a connecting line, the menu displays only the options that apply to the node or
connecting line.

This section describes:

• Creating a Node
• Running the Test
• Duplicating a Node
• Deleting a Node
• Setting a Node to Restart
• Choosing a Root Node
• Starting Normal and Exception Conditions
• Deleting a Connection
• Moving Nodes
• Adding Comments
• Editing a Node to Accept Arguments
• Editing Existing Parameters for a Node
70 JavaStar User Guide—November 1998

7

Composing a JST
Creating a Node

1. Click the Add Test button or right-click in a blank area of the composer
canvas.
The Test Name box appears, prompting you for the test you want this node
to represent.

Figure 7-4 Test Name dialog

2. Type the name of the script or JST you want to use, or click Browse to
locate the file through the file dialog box.
JavaStar shows script nodes as rectangles with squared corners and JST
nodes as rectangles with rounded corners. If the name you enter ends with
.jst , JavaStar inserts a JST node into your test. If you enter a name without
a .jst extension, JavaStar inserts a script node.

A script does not have to exist for you to define it as a node. You can define
nodes that represent scripts you plan to record or write at a later date. A
JST, however, must exist for you to reference it as a test name.

3. Click OK.
The node appears as a box with the script or JST title inside. If this is the
first node you created for this test, it appears in blue to indicate that it is the
root node.

Running the Test

The Run Test button is a short-cut to the Run Test command on the main
menu. When you click this button, the Run Test dialog window appears, with
your JST name already filled into the Test Name field.

You can now run the test as usual. Because you’re running a JST, the JST
Runner window appears with the Record/Playback window and your
program under test. The JST Runner shows how JavaStar is progressing
through the nodes (including nested JSTs) by flashing the currently executing
node. If the test ends prematurely, you can see which node contains the
problem, and edit it in the Test Composer or Script Editor, depending on the
nature of the problem.
Composing Tests 71

7

Composing a JST
For information on how to use the Run Test window, see the chapter “Running
Tests.”

Duplicating a Node

Duplicating nodes is often useful, especially when you are creating a test that
calls one script multiple times, changing only the parameters it sends with
each call. All you have to do is duplicate and then edit the node.

1. Click on the node you want to duplicate.
The node darkens to confirm your selection.

2. Click Duplicate.
The node is duplicated, without links.

Deleting a Node

1. Click on the node you want to delete.
The node darkens to confirm your selection.

2. Click Delete.
The node is removed, along with any connection lines extending to or from
the node.

Note – You cannot delete a root node. If you want to delete a node currently
set to root, first define another node as the root node (see Choosing a Root
Node) then delete the original node.

Setting a Node to Restart

Restart nodes specify that when the JavaStar reaches this node during
playback, the application under test will be restarted before executing the
script (or JST) referred to by the node.

While you may have many reasons to restart a node during normal test
functioning, the most common use is to handle exception conditions. By
restarting the application, you return the test program to a predictable state,
from which you can resume testing. Populating JSTs with exception conditions
that link to restart nodes makes it easier to create long tests that run
unattended—perhaps overnight—with reasonable assurance that the tests will
complete, even with failures.

To set a node to restart:

1. Click on the node you want to turn into a restart node.
The node darkens to confirm your selection.

2. Click Toggle Restarter.
A red box appears around the node to signify that it is now a restart node.
72 JavaStar User Guide—November 1998

7

Composing a JST
To remove the restart condition from a node, you repeat the same procedure:

1. Click on the node you want to return to a non-restart status.
The node darkens to confirm your selection.

2. Click Toggle Restarter.
The red box around the node is removed, indicating that it is no longer a
restart node.

Choosing a Root Node

A root node is the starting node for the test. You must have a root node for
your test, and you can only define one node as the root. By default, the first
node you create for a test is a root node. If you want to change the root node:

1. Click on the node you want to turn into the root node.
The node darkens to confirm your selection.

2. Click Set root.
A blue box appears around the node, indicating it is the root node.

Starting Normal and Exception Conditions

You link nodes together using normal and exception connecting lines,
represented by green (normal) and red (exception) arrows.

A normal connecting line between two nodes means that the second node will
only be executed if the first node ends normally. A normal condition means
that the previous test did not throw an exception. This does not mean that all
comparisons passed, because while a synchronization failure throws a specific
exception, verification failures do not throw exceptions (though details are
included in the test run log file).

An exception connecting line means the second node will only be executed if
the first node ends with an exception. An exception condition means the script
was terminated prematurely when an operation threw an exception. Exception
connectors are particularly useful for introducing error recover into your
tests—in combination with Setting a Node to Restart, your tests become quite
powerful.

You can only have one normal and one exception condition starting at each
node. There is no limit, however, on the number of lines of one type that
connect to a single node.
Composing Tests 73

7

Composing a JST
To create a condition line:

1. Click the node from which you want the condition to originate.
When the test executes, JavaStar will evaluate the exit state of this node
before proceeding to the next.

2. Click either the Start normal or Start except button.
Note that your selected node starts to flash. That’s to confirm which node
you chose and to let you know you have an operation in progress.

3. Click on the node you want to execute next.
An arrow appears extending from your start node to your end node.

Deleting a Connection

1. Click on a connector line to select it.
The line flashes to confirm your selection.

2. Click the Delete button.
JavaStar deletes the line.

Moving Nodes

♦ To move a node, move the pointer over the node you want to move, hold
the mouse button down, and drag the node to another location.

Adding Comments

Use the comments field to explain the purpose of this JST and any important
information other test developers might need to know when maintaining this
test.

Editing a Node to Accept Arguments

In the Compose Test window, you can select any node and specify arguments
you want to pass to it at execution time. JavaStar supports three types of
arguments (also called parameters):

• Parent Parameters—an argument to inherit from this JST’s parent node. If
this JST has no parent, then these parameters must be passed as test
arguments when you run the test.

• Constants—values you specify while editing the node itself.
• Property Names—arguments that will be read from a properties file.

This section describes the basics of how to specify parameters for a node
within a JST. For a detailed description of how to use parameters to make your
tests more flexible or how to edit scripts to support parameters, see the
JavaStar Tutorial.
74 JavaStar User Guide—November 1998

7

Composing a JST
To edit a node:

1. Click on an existing node.
The node darkens to confirm your selection.

2. Click on the Edit... button.
The Edit node dialog appears with the test name filled in.

Figure 7-5 Edit Node dialog

3. Select the type of parameter you want to pass to this node.
The pull-down menu to the right of the Value or Argument# field (set to
Constant by default) provides three options. The label for the field to the
left of the parameter type pull-down changes based on your choice—by
default, the field label is Value.

Table 7-1 Parameter passing options

Parameter Type Description

Parent parameter Get this parameter from the parent node. If this node is
part of a JST that does not have a parent, the
parameter must be passed as a test argument at the
time you run the test. Selecting this option changes the
field name to the left to Argument#.

Constant Pass the value as a constant. You specify the value for
the constant in this window—note that the field to the
left is labeled Value when you select this option.

Property name Obtain this value from a Java property file. The field
label to the left changes to Property Name when you
select this type.
Composing Tests 75

7

Composing a JST
4. Specify the value, argument #, or property name.
The field to the left of the pop-up menu prompts you for the type of
information you need to provide for the selected parameter type.

If you want to provide a constant, enter the value. For example, if you’re
providing a numeric value that your script references, type the number
directly into the Value field.

For parent parameters, refer to the parameter you want to use by argument
number. Remember that argument numbers start at 0, not 1. For example, if
three parameters are passed to the parent node, and you want to use the
second parameter in this script, enter 1 as the argument number.

Note – For property files, you need to specify the name of the property file
in JavaStar Playback Options. You can only have one property file defined
at one time.

See Figure 7-6 for an example of an edited node.

Figure 7-6 A commented node that defines five parent parameters.

5. Click Add (after) to make this parameter the next in the list.
The parameter appears in the list box below.

6. Continue adding parameters by repeating steps 3 and 4.

7. Add text to the Comments field to describe the parameters you are
passing.
The comment field applies to the node itself, not a specific parameter.
Adding a description here is particularly useful when you’re passing parent
parameters or using property names—you can save time you might spend
later trying to decipher what you were trying to pass.
76 JavaStar User Guide—November 1998

7

Composing a JST
8. Click Apply to put the changes into effect.

9. Click Close to close the window.
Note that now when you select this node, the parameters display in the
Parameter Values text box, located at the bottom of the Test Composer
window.

Editing Existing Parameters for a Node

With the edit node window open, you can delete a parameter, change the
value, insert a parameter into the list.

To Delete a Parameter

1. Select the parameter from the Parameters list.

2. Click the Delete button.

3. Click Apply to save the changes.

4. Close the window.

To Change the Value of a Constant

1. Select the constant from the list.

2. Edit the value in the Value field.

3. Click the Update button.

4. Click Apply to save the changes.

5. Close the window.

To Insert a Parameter Between Two Others

1. Click on the parameter you want to proceed the new one.

2. Enter the new parameter into the Value field.

3. Click the Add (after) button.

4. Click Apply to save the changes.

5. Close the window.
Composing Tests 77

7

Navigating Through Nested JSTs
Navigating Through Nested JSTs
If your JST contains a node that is also a JST (these are indicated visually by
slightly rounded corners) you can use a single step to navigate to the contents
of that JST. To do this:

1. Click on the JST node in the Test Composer.
The node darkens to confirm your selection.

2. Click the Open button.
The display changes to show the JST file for the node you selected.

To move up the tree:

♦ Click the Back button or click on the History pop-up menu next to this
button to choose the level you want to return to.
The Back button is located in the area above the JST comments field. Back
always takes you back to the previous level. If you “drilled down” through
several levels of JSTs, you can use the History pop-up menu to choose the
level you want to return to.

Closing the Test Composer
To close the Test Composer window, click the Close button. JavaStar prompts
you if you have not saved your latest changes.
78 JavaStar User Guide—November 1998

Editing Tests 8
The Edit Script feature of the main menu allows you to edit scripts. Within this
editor, you can view and use classes and methods of the JavaStar API library,
and you can add your own custom code. You can also compile the code in the
script editor. This is important because your code changes only take effect once
it is compiled.

The changes you make to a script cannot be used by Record/Playback
windows that were open at the time you made your edits. To use the script
changes, you need to close the Record/Playback window and either choose
Run Script or Create Script.

The JavaStar script editor is not intended to be a full-featured development
environment. It is supplied for convenience, providing you with a quick way
to make script edits, browse classes for available methods, and compile Java
code. You can use any text editor or integrated development environment to
make your changes. If you use a text editor, be sure to compile the scripts
before running them.

This section describes:

• Loading a Script to Edit
• Browsing Class Components
• Browsing Gold Files
• Going to a Specific Line Number
• Finding and Replacing Text
• Undoing Edits
• Saving and Compiling
• Saving without Compiling
• Running the Script
• Closing the Script Editor
79

8

Loading a Script to Edit
Loading a Script to Edit
1. From the main menu, click Edit Test Script.

The Script Editor window opens.

Figure 8-1 Script Editor

2. Type the name of the .java file into the Test name field or browse to
locate the file by navigating through the file structure.
Be sure to include the .java extension when typing the test name.

3. Click Load File to load the file into the editor.
The code displays in the text edit window. You’re now ready to edit.
80 JavaStar User Guide—November 1998

8

Browsing Class Components
Browsing Class Components
You can use the class browser to view the members of any Java class in the
CLASSPATH, including the JavaStar libraries.

1. In the Script Editor window, click Class Browser.
The Class Browser window opens.

2. In the Class field, type in the full name of the class you want to browse
and press Return.

To load a JavaStar library:

1. In the Script Editor window, click Class Browser.
The Class Browser window opens.

2. Pull down the Library menu and select a library to review.
The library members are displayed in the text window.

Figure 8-2 Class Browser

Browsing Gold Files
You can view the gold files for the current script from the Script Editor. To
view the files:

1. Within the Script Editor, open the script that references a gold file.

2. Click the Gold file Browser button in the left button panel.
The Gold file viewer dialog opens.
Editing Tests 81

8

Browsing Gold Files
Figure 8-3 Gold file viewer

3. Select the gold file you want to view.
Gold files are numbered sequentially starting with C1. If no filenames
appear in this list, there are no gold files for this script.

4. Click View Gold File to see the gold file as an image.
JavaStar displays a window with the image.

Figure 8-4 Gold file viewer and gold file

5. Click Close when you are finished.

Note – If you want to update the contents of the gold file with new results
from a test run, use the View Failure button in the Results Viewer to access
the Gold File Manager. You can update the gold file from there.
82 JavaStar User Guide—November 1998

8

Going to a Specific Line Number
Going to a Specific Line Number
1. Click the Go to line… button

The Go to line number dialog appears.

Figure 8-5 Go to Line Number dialog

2. Type the number you want to go to.

3. Click OK.
The editor advances to the corresponding line in the script.

Finding and Replacing Text
1. From the Script Editor window, click the Find/Replace... button.

The Find/Replace dialog opens.

Figure 8-6 Find/Replace dialog

2. Type the text you want to find in the Find text field.

3. To replace the text, type the replacement into the Replace with field.

4. If you want to find matches regardless of whether they match the case in
your replace string, check Case insensitive .

5. By default, the search runs forward to the end of the file. Check Search
backwards if you want the reverse.
Editing Tests 83

8

Undoing Edits
6. Click the button that matches the operation you want to perform—Find,
Replace, or Replace all.
Use Replace all judiciously. If you choose this button and then discover
you’ve made a mistake, you can’t undo the operation. Instead, you must
use the Undo since save option. You can work around this by saving just
before doing a Replace operation, thereby ensuring that if you do need to
undo the operation immediately, you won’t be losing any other work.

7. Click Close when you’re done searching for text.

Undoing Edits
To undo any edits you’ve made since you last saved:

♦ Click Undo since save.
The text window changes to reflect the last saved state.

Saving and Compiling
1. Click Save & Compile.

Your code is compiled and checked, and either a success or a failure dialog
opens to give you status.

2. Click OK.

Saving without Compiling
♦ Click Save.

Your file is saved to disk, but the code is not compiled.

Running the Script
♦ Click Run script…

The Run Test dialog opens. For instructions on how to use this dialog, see
See Playing Back a Test Using Run Test in the chapter “Running Tests.”

Closing the Script Editor
To close the window:

♦ Click Close.
84 JavaStar User Guide—November 1998

Running Tests 9
You play back scripts and tests either by running JavaStar from the command
line and supplying arguments that define playback, or by navigating to the
Record/Playback window from the JavaStar main menu. To get to this window
from the main menu, you select either Run Test or Create Script.

The Create Script window is for developing new scripts. Sometimes this
involves playing back the script under test, or loading and playing a
previously recorded script to bring the application or applet to a necessary
state. When you’re writing and debugging a test, it makes sense to do this in
one place. But, in general, it’s not a good place to do formal test runs. The log
file contains everything that has happened since the Record/Playback window
was launched (recordings, multiple playbacks, declaration generations) and so
it’s not suitable for analyzing formal test results.

Run Test is a clean, start-to-finish test run that logs results separate from any
other process. This feature assumes that you are running a JavaStar test (a
.jst file) or a script that can run, from beginning to end, without any advance
setup or manual interaction. You can choose whether you want to see the
JavaStar windows and your application while you run, or selectively hide
them.

When you run JavaStar from the command line, you are, in essence, doing a
Run Test operation, so all of the same requirements and options apply. For
details on how to do this, see the chapter “Using Command Line Options.”

Note – You may need to include JS.delay() in your first script, to
compensate for the start up time of the application or applet under test. To
read more about this method, see wrap(Component) in the “Component
and Control Classes” chapter of the JavaStar API Reference.

This section covers:

• Playing Back a Test Using Run Test
• Playing Back a Script from the Record/Playback Window
• Playback Tasks Available in the Record/Playback Window
85

9

Playing Back a Test Using Run Test
Playing Back a Test Using Run Test
1. From the JavaStar main menu, click Run test.

This brings up the Run Test dialog window (see Figure 9-1 on page 86). This
window has three tabbed sections:

• General—where you enter the name of the script or JST you want to
run, along with any arguments your test requires. By default the General
tab appears in the forefront.

• View—where you determine which windows are displayed during the
test run.

• Advanced—where you supply settings for your working, results, failure
directories, define additional CLASSPATH settings, etc.

Figure 9-1 Run Test dialog

2. Supply a test name and, if required, test arguments.
This is the minimum of information you must supply. When typing test
arguments, be sure to put double-quotation marks around any single
argument that contains whitespace or a special character. For example:

“Alix North” 32 writer “San Francisco”

Note – Using the Browse button, you can navigate through the directory
structure and select a script (.class file, not .java) or a JST (.jst) to run.
JavaStar inserts the name of the file you select into the Test Name field.
86 JavaStar User Guide—November 1998

9

Playing Back a Test Using Run Test
3. To change the view option, click the View tab and make a selection.
Figure 9-2 on page 87 shows the Run Test window with the contents of the
View tab to the forefont. If you want to change the current setting, select
another options (usually Show Application and playback window by
default).

If you choose Don’t show playback window, none of the JavaStar windows
are displayed while playback is in process—you only see your application
or applet under test. You do not have any JavaStar Record/Playback
controls available to interrupt the test run. As soon as the test finishes,
JavaStar closes the program under test. You need to click View Test Results
in the main menu to see what happened. If, for some reason, your test
throws an exception that isn’t handled by your test, your program may
seem to hang. You can terminate the playback process using the Status
Monitor, then view results to see what problem the log file reports.

If you choose Don’t show application or playback window, neither the
JavaStar windows nor your program under test is displayed during the test
run. This is perhaps the trickiest selection, because it’s harder to find out
when your test is done. You can always use the Monitor Status option of the
main menu to track progress. When the test is complete, you can view
results using the results viewer.

Figure 9-2 View options of the Run Test window
Running Tests 87

9

Playing Back a Test Using Run Test
4. To check your CLASSPATH setting, define a log filename, and verify that
your directory settings are correct, click the Advanced tab to bring its
contents forward.
Figure 9-3 on page 89 shows the Advanced tab options. The first
option—Additional classpath—is perhaps the most important. This is where
you specify the path to the application or applet you want to run. If this is
not set correctly, JavaStar cannot start the application.

Note – If you are using Windows and launched JavaStar by double-clicking
on the icon, the Work directory, Results directory, and Jst Path are set to
..\javastar\work (where ... represents the directory where you
installed JavaStar). This is true even if you already set options to use
different directories. You can change these fields to reflect the directories
you want to use, and the next time you create a script, you’ll see your
updated settings.

Table 9-1 Run Test Advanced options

Option Description

Additional classpath Any additional directories you want to add onto the
existing CLASSPATH variable definition, including the
path to the application or applet you are testing.

Java args Any Java flags required by the test program. See
JavaStar Command Reference for a list of valid flags.

Log filename The log containing the results of this test run. If you
don’t provide a log name, JavaStar will name the file
<testname>.log by default.

Work directory The directory where JavaStar reads and writes scripts
by default.

Results directory The directory JavaStar uses to store the fail directory,
gold directories, and log file.

JST Path The paths JavaStar searchs when looking for JSTs and
the scripts they reference.
88 JavaStar User Guide—November 1998

9

Playing Back a Test Using Run Test
Figure 9-3 Advanced options of the Run Test window

5. Click Start.
JavaStar opens the application or applet under test, along with the JavaStar
Record/Playback window. The test begins executing immediately. If you
are running a JST, Javastar also opens the JST Runner (see Figure 9-4 on
page 90). This window shows the JST in graphical form. While the test
executes, JavaStar flashes each node as it executes so you can follow the
progress.
Running Tests 89

9

Playing Back a Test Using Run Test
Figure 9-4 JST Runner

Note – If the JST runner encounters a node that references a script not in the
CLASSPATH, testing stops and the log indicates that the class for the node
could not be found.

6. When test execution ends, click Quit to close all playback windows.
If you’ve chosen an option that displays the JavaStar GUIs, you can review
the log in the Record/Playback window before quitting. You can also quit
and choose View Test Results from the JavaStar main menu, then view your
results through a reporting interface.
90 JavaStar User Guide—November 1998

9

Playing Back a Script from the Record/Playback Window
Playing Back a Script from the Record/Playback Window
1. From the Record/Playback window, click Playback.

This brings up the Playback Test dialog window.

Figure 9-5 Playback Test dialog

2. Type the name of the test to run, any arguments your test requires, and
the path to use for finding JST components.
The test name can be the name of a script or a test (JST) file.

3. Set the run test controls.

Table 9-2 Controls for playing back tests

Option Description

Start in pause
mode

Starts playback but suspends it before the first event. You
can then click Continue to resume playback, or click Single
Step to move through the test event-by-event.

Delay factor This is the value that JavaStar multiplies by any internal
delays recorded into your test. See Setting Test Options in
the chapter “Creating Project Files” for more explanation.

Time out Maximum time allowed to continue to attempt comparison
verifications. When this time value is reached, a comparison
fails.

Time out for
hang detection

Maximum time JavaStar will wait without a response from
the application under test. When this value is exceeded,
JavaStar assumes the program hanged and aborts the test.
Running Tests 91

9

Playback Tasks Available in the Record/Playback Window
4. Click OK.
JavaStar loads the test. If you did not select Start in pause mode, the test
begins to execute immediately.

Playback Tasks Available in the Record/Playback Window
When you playback tests with the Record/Playback window open, you have
several control options available. Run Test launches the Record/Playback
window, so you don’t need to playback your tests through the Create Script
option to get these features.

Tasks available:

• Single-stepping through a Script or Test

• Setting Options During Playback

• Inspecting Components During Playback

• Pausing, Stopping, and Quitting Playback

Single-stepping through a Script or Test

The Single Step feature allows you to step through your test script line by line.
Each time you click Single Step, playback advances to the start of the next call
to a static method of the class JS. Usually, this means that each click of the
Single Step button executes another event (although the next call could be of
another static method type).

Single stepping can be helpful when you want to debug a script or see exactly
what is happening with the test program just before a failure.

Note – If you single step to a point in your test where you invoke a modal
dialog window, you will not be able to single step past this point. Use
CTRL-ALT-F8, Ctrl-Shift-F8, or Ctrl-Meta-F8 to force the application to
continue past the modeal window. To complete script playback, use CTRL-
ALT-F9, Ctrl-Shift-F9, or Ctrl-Meta-F9. Some Sun platforms do not provide
an ALT key, so if that doesn’t work, try one of the other combinations. Note
that the modal dialog doesn’t present a problem when you playback a script
without single-stepping.

1. Click the Single Step button in the Record/Playback window.
This pauses the playback operation.

2. Click Single Step for each step of the script you want to perform.
The script advances one event each time you click the button.

3. To resume regular playback, click Continue.
The script continues executing without requiring user intervention.
92 JavaStar User Guide—November 1998

9

Playback Tasks Available in the Record/Playback Window
Setting Options During Playback

The Record/Playback window provides a shortcut to changing the playback
options during a test execution. This is useful if you’ve started playback and
realize that the script is using the wrong delay factor or time-out value.

1. In the left panel of the Record/Playback window, click the Options button.
The playback options are displayed in the right portion of the window. See
Figure 9-6 on page 93.

Figure 9-6 Playback options in the Record/Playback window

2. Change the options according to your preferences.
For a detailed explanation of each playback option, see the Setting Test
Options section of the chapter “Creating Project Files.”

3. Click the Apply button in the options panel.

4. Click the Continue button to resume recording.
Running Tests 93

9

Playback Tasks Available in the Record/Playback Window
Inspecting Components During Playback

While playback is paused, you can inspect the return values for the methods
and data members of any component of your test program. To do this, click the
Inspect button to open the inspection panel to the right. This is the same
inspection panel you can access while interacting with your application from
Record/Playback. For a detailed explanation of how to use this dialog, refer to
the chapter “Interacting and Inspecting.”

Pausing, Stopping, and Quitting Playback

The Record/Playback window provides options for pausing, stopping, and
quitting playback.

Pause suspends playback.

Stop ends test playback and requires you to reload the test script to run it
again.

Quit terminates any script playback or record, closes the Record/Playback
window, and exits the test program.
94 JavaStar User Guide—November 1998

Monitoring Test Status 10
With JavaStar, you can have multiple tasks running at any one time—for
example, you can be recording a script, running a test, and displaying the
results of another test all at once. The Monitor Test Status feature of the main
menu provides you with a way to monitor all currently running jobs and, in a
case where your test program hangs, terminate a process.

The Status Monitor:

• Shows each activity (or job) currently running in JavaStar
• Gives the path and name of the associated log file
• Shows the time and date the activity started
• Provides a kill button to use to terminate the task

This section describes:

• Viewing Details on a Process
• Killing a Job in the Status Monitor

Viewing Details on a Process
1. In the main menu, click Monitor status.

The Status Viewer window opens.

2. Find the activity you want to view detail on, and click this line.
95

10

Killing a Job in the Status Monitor
Figure 10-1 Status Monitor

The details panel displays information on the state of the activity, test name,
log file name, and the start date and time.

3. Click Close to dismiss the monitor.

Killing a Job in the Status Monitor
1. In the main menu, click Monitor status.

The Status Viewer window opens.

2. To select the job you want to terminate, click on the job name in the
Activities panel.

3. Click the Kill button to the left of the Details panel.
The process terminates and the item disappears from the Status Monitor.

Note – If you kill a recording process, JavaStar saves and compiles the script
before terminating the process.

4. Click Close to dismiss the Status Monitor.
96 JavaStar User Guide—November 1998

Viewing and Analyzing Results 11
The JavaStar Results Viewer gives you a quick way to view the summary of a
test or script run or to examine the results in more depth, filtering the files to
show only the information you want to see. You can iterate through the results
of a JST, examining the results node-by-node. You can jump immediately to
any gold files to compare failures, view the differences, and even update the
gold file as necessary.

You get to the Results Viewer by choosing View Test Results from the JavaStar
main menu.

This section describes:

• Anatomy of the Results Viewer
• Viewing Results
• Viewing Comparison Failures and Updating Gold Files
• Extracting Results
• Archiving Results
• Printing Results
• Quitting the Show Results Window

Anatomy of the Results Viewer
The Results Viewer is a large window with several panels (see Figure 11-1).

Before you use the Viewer for the first time, take some time to familiarize
yourself with each of the buttons and panels. This section describes each of the
components.
97

11

Anatomy of the Results Viewer
Figure 11-1 Results Viewer
98 JavaStar User Guide—November 1998

11

Anatomy of the Results Viewer
Task Buttons

The Viewer task buttons are the five buttons in the far left panel, excluding the
View Options selections. These represent the main functions provided by the
Results Viewer.

View Options

These options, located in the middle of the far left panel, control the nodes you
see in the Test Results panel. Only one option can be set at a time.

Note – If you are viewing results from a single-script test run, you probably
don’t need to use View Options, as your test consists of a single node.

Table 11-1 Task Buttons

Button Use this to…

Open... Open a .log file or the log from archived results, for
viewing.

Extract Results... Extract the results you want from the log and write them to
an HTML or text file.

Archive Results... Archive all results from a test run, including gold files and
failure files, into a .zip file.

Print... Print the current results screen.

Close... Close the Results Viewer

Table 11-2 View Options

Option Sets test results to display…

All All of the nodes in the JST. This setting is the default.

Failures Only the nodes that contain failures.

Exceptions Only the nodes that ended by throwing exceptions.

Restarts Only the nodes set to restart the application or applet.
By its nature, the root node is always considered a
restart node.
Viewing and Analyzing Results 99

11

Anatomy of the Results Viewer
Test Results

This is the panel showing each node of your JST in tree format. If you ran a
single script, you’ll see only one node.

Any node with a plus sign (+) proceeding it can be expanded to reveal child
nodes. You can expand a node just by clicking on the plus sign—the plus
converts to a minus (-) and all the child nodes appear below the JST. You can
also collapse an expanded node by clicking on the minus sign.

If a node contained a failure, the text failures: followed by the number of
failures appears below the node. This gives you an idea of which results you
might want to explore in more detail.

Summary

This panel offers a summary of results for the node you have currently
selected. If you select the a JST node (such as the first node), the Summary
panel includes data from the child nodes.

The Summary panel reports on:

• The number of JST nodes that ended normally. A node that contains
verification or JS.check failures, but which does not throw an exception,
is considered normal.

• The number of JST nodes that ended by throwing an exception.
• A count of the verifications that passed.
• A count of all verification failures.
• A count of any verification errors that occurred. Verification errors are not

failures, because they indicate that the verification couldn’t be
performed—such as: can’t find gold file for comparison.

• The number of JS.check method calls that passed. (JS.check is a method
in the JavaStar API that you can use to manually insert your own
comparison code into a script.)

• The number of JS.check method calls that failed.
• The duration of the test run.
100 JavaStar User Guide—November 1998

11

Anatomy of the Results Viewer
Details

The Details panel, located to the middle and lower right of the window,
provides:

• A panel showing the log results pertaining to the currently selected node.
This display reflects the options you set in View Options and with the
buttons below this panel.

• Three buttons for navigating to failures—these are only enabled when the
node you selected contains a failure. (See Table 11-3).

• A series of check boxes that you can toggle on and off, affecting the types of
information displayed and the format (See Table 11-4).

• ReLoad button—this is the button you need to click each time you change
the settings for type or format. Reload opens the log file again, filtering for
the information you want.

Table 11-3 Failure navigation buttons

Button Action…

Previous Failure Moves back to the previous failure.

Next Failure Jumps to the first failure or to a failure subsequent to the
current one.

View Failure Opens up the Gold File Manager, as well as the gold file and
the comparing image that failured. The Gold File manager is
covered in detail in Viewing Comparison Failures and
Updating Gold Files.

Table 11-4 Type and format check boxes

Check box When toggled on…

Times Includes timestamps.

Events Includes each event call made within the script

StdOut Includes any messages sent to StdOut.

StdErr Includes any messages sent to StdErr.

Process Info Includes the system information from the test machine,
playback options in effect, the start and end time of the test,
and any

Shortened lines Sets each line to use a terse format. Each line that has been
shortened is prefaced by a plus sign in a circle. You can click
on this to expand the line for more details about the event.
Viewing and Analyzing Results 101

11

Viewing Results
Viewing Results
1. From the main menu, click View Test Results.

The JavaStar Results Viewer opens. By default, the name of the log file most
recently generated appears in the Log file field.

2. Click Open....
A file navigation window opens up.

3. Navigate to the log file or archive file you want to use and select it.
The filename you choose must end with a .log or .zip extension.

4. Click Open.
JavaStar loads the log file and selects the first JST node in the tree. Because
the first node is selected, the Summary panel shows totals for the entire test
run, not just a single node.

5. Expand nodes and log information to get the information you want.
JavaStar displays your JST file in tree format, with all nodes collapsed. Plus
signs next to the node name indicates that the node is a JST with child
nodes. To expand the node, click the plus.

When you click on a child node (one that represents a single script), both
the Summary and Detail panels update to reflect totals and log file details
specific only to this node.

6. Adjust the View Options and Detail panel check boxes to reflect the
information you want to see.
See Table 11-2 for an explanation of each view option, and Table 11-4 for
descriptions of Detail panel check boxes.

7. If you made any adjustments to the Detail panel check boxes, click
ReLoad.

Viewing Comparison Failures and Updating Gold Files
Within the Results Viewer, you can view gold file comparison failures. You can
examine the results to see if a failure is appropriate or if the new gold file
should replace the comparison file. This procedure takes you though the
process of locating a failure, viewing it, and updating the gold file with the
new information.

1. Within the Results Viewer, load the log file that contains the failure.
As an example, Figure 11-2 shows a portion of the Results Viewer for a
simple test containing a failure. Note the Fail:1 remark below the node
name, and the failure information in the log file view.

2. Select the node containing the failure or failures.
102 JavaStar User Guide—November 1998

11

Viewing Comparison Failures and Updating Gold Files
3. In the Detail panel, click the Next Failure button to jump to the first
failure.
JavaStar scrolls to the failure and displays the text in red. If shortened lines
is turned on, you can expand the failure for more detail by clicking on the
line.

Figure 11-2 Results Viewer showing a tests that contains a failure

4. Click View Failure to bring up the Gold File Manager.
The Gold File Manager window opens, along with a window showing the
gold file (labeled Gold) and one showing the actual test results (labeled
New).
Viewing and Analyzing Results 103

11

Viewing Comparison Failures and Updating Gold Files
Figure 11-3 Gold File Manager with Gold and New windows

The Gold File Manager gives you three options:

Note – Including a purpose in verification and synchronization checks
makes it easier to evaluate failures when you later examine the log file.

5. Compare the gold file to the new file to determine how to handle the
failure.
Select the option that makes the most sense. For example, if the gold file is
out of date and the new file contains the correct information, click Update
Gold to replace the gold file.

6. Click Done to close the Gold File Manager.

Table 11-5 Options for the Gold File Manager

Option Description

Update Gold Replaces the gold file with the new attributes. This
assumes that the new result is the correct one.

Delete New Deletes the new results. Once you’ve noted the failure
and reported on the failure, you probably don’t need
to keep it.

Rename New Renames the new attribute file (as you specify) and
stores the file in the gold directory for this script.
104 JavaStar User Guide—November 1998

11

Extracting Results
Extracting Results
Using the Extract Results feature, you can save results to a text file or an HTML
file. Because log files contain a great deal of information, this feature allows
you to choose which information you want to include in your extract. Once
you’ve extracted the information, you can use it to prepare reports or
incorporate into with other extracted data.

To extract results for a log file:

1. In the Results Viewer, open the log file you want to work with.
Don’t worry about which options you have selected for log file viewing;
these won’t affect the extraction.

2. Click the Extract button.
You can find this button in the left button panel. Clicking this button opens
the Extract Results dialog.

Figure 11-4 Extract Results dialog

3. Scroll through the list and select the log features you want to extract.
You select a feature by clicking on the name. Note that certain features are
selected by default—these are highlighted already—and you need to click
on them only if you want to de-select them.
Viewing and Analyzing Results 105

11

Extracting Results
The log file options are:

4. Specify the path and filename you want to use.
By default, the path is already filled in with the work directory, but you can
change this.

5. Select HTML or Text file.
HTML file outputs the same information in HTML format.

6. Click OK.
JavaStar confirms that it extracted the file information.

Table 11-6 Log file extract options

Option Description

Arguments Any arguments passed to the test. These are included for
each node that accepts arguments.

Control Change of control lines—in a JST, these are lines noting that
a node was entered or exited. When JavaStar leaves a node,
it notes whether the condition was normal or an exception.

Other General information.

Event Each event the test executed.

Header Start time, test name, playback settings, system information
(details of the system environment where the test was run)
and start arguments.

Result Detailed results of verifications, synchronizations, checks,
JS.note comments, and JS.log print lines.

Summary Comparison and checking results for each node, including
exit conditions.

Time Time stamp information for each test.

Error JavaStar internal errors and problems, such as missing
scripts.

System.out Whatever the test program outputs to System.out .

System.err Whatever the test program outputs to System.err .
106 JavaStar User Guide—November 1998

11

Archiving Results
Archiving Results
You can archive your results—log files, gold files, and failure files—to a .zip
file. This is useful when you want to save the complete result environment for
later comparison. If you later want to examine the gold file and failure files,
you can restore them. If you did not archive the files and you continued to run
this test, you would lose the original information as they would be overwritten
by new results.

Archive works similarly to Extract. To archive results:

1. Open the Results Viewer.

2. Click the Archive button.
You can find this button in the left button panel. Click this button opens the
Test Archive dialog.

Figure 11-5 Test Archive dialog

3. Enter the path for the directory containing the results you want to
archive.
This is the directory you specified as the results directory when you
originally ran the test.

4. Type in the log file name or browse to locate the file.

5. Select which reporting options you want to include in the archive.
See the descriptions of these options in Table 11-6. By default, all options are
selected. Click on an option to de-select it.

6. Enter the directory where you want to store the archive.
If the directory does not already exist, JavaStar creates it when it generates
the archive.
Viewing and Analyzing Results 107

11

Printing Results
7. In the Archive name field, type in the filename.
Don’t provide an extension—JavaStar adds the .zip extension for you.

8. Click the Archive button.
JavaStar confirms successful completion.

Note – To later restore an archive, use a tool that restores a file compressed
using the .zip format. You can then use the Results Viewer to view the log
files and examine the restored gold files.

Printing Results
The Print feature sends an image of the Results Viewer window, as currently
displayed, to the printer. Clicking Print brings up the file dialog for your
printer, as you have defined it on your system.

If you want to prepare a report for printing, use the Extract option to write the
information you want to a text file. You can then format that however you
want and print it as a report.

Quitting the Show Results Window
♦ Click Close to exit the Show Results window.
108 JavaStar User Guide—November 1998

Customizing Options 12
The Set Options feature of the main menu opens a multi-tabbed window
where you can set GUI Options for JavaStar (options that affect how the
application is displayed) and view System Info.

JavaStar writes option settings out to the user.home directory, to a file named
.javastar.prop . In UNIX environments, user.home defaults to your home
directory. In Windows 95 and Windows NT, user.home defaults to the
directory where you have Java installed. You can check your user.home
setting in the System Info panel.

GUI Options
This tab is where you set the options that control the look of the JavaStar
application, such as font size and foreground/background colors. To set GUI
options:

1. From the main menu, click Set Options.
The Options window opens.

2. Click on the GUI tab.
The GUI tabbed panel moves to the forefront.

3. Adjust the settings as you want.

4. Click OK.
Your new settings are saved and the Options window closes.
109

12

GUI Options
Figure 12-1 Set Options: GUI Tab
110 JavaStar User Guide—November 1998

12

System Info
System Info
The System Info tab is where you can view information about your Java and
JavaStar setup. This panel displays the:

• JavaStar version
• Java home setting (user.home)
• User home directory
• Java version
• Java vendor
• OS name
• OS architecture
• CLASSPATH setting

None of these values are editable in this window—they all reflect system
settings that are read as you launch JavaStar.

Note – The System Info panel shows the CLASSPATH as it was set when
JavaStar was launched. The project file extends this CLASSPATH setting with
the path to the application or applet, test directories, and other extensions.
The extensions do not display in this window; refer to Project Settings for
more CLASSPATH information.

Table 12-1 GUI Options

Option Description

Size Sets the size of text in JavaStar windows.
Choose small, medium, or large from the pop-
up menu.

Foreground color Changes the color of foreground items in the
GUI, using either colors selected from the pop-
up menu, or (Red, Green, Blue) values for a
custom color. Choosing default from the menu
resets this to the default values.

Background color Changes the color of foreground items in the
GUI. This works the same as Foreground color.

Prefixes (package/class) to
ignore for source highlighter.

Specifies packages or classes as a library, so
they won’t be shown during
playback—instead the call to the library will
be highlighted.
Customizing Options 111

12

System Info
Figure 12-2 Set Options: System Info tab
112 JavaStar User Guide—November 1998

Using Command Line Options 13
Each of the playback features provided by the JavaStar GUI can be set through
command line flags, as well. This means that you can run tests, start recording,
and process log files all from the command line. With test runs, it also means
that you can run tests automatically by stringing command line calls together
in a script or batch file.

Topics:

• Running Tests
• Environment and Playback Controls
• Exit Codes
• Managing Log Files

Running Tests
To run a test from the command line, you must, at minimum, provide the test
name and any arguments required by the test. Beyond that, you can specify
any of the options available in the Run Test dialog. Table 13-1 shows the
correspondence between the GUI and the command line flags.
113

13

Running Tests
The order for command line options is only loosely defined. For example, Java
arguments must immediately follow the javastar call, and the -testargs
flag must always fall at the end, but the other options can be defined in any
order.

Table 13-1 Corresponding Run Test fields to command line flags

Run Test option Corresponding Command Line Flag

Test name -jst JstName
-script classname

Test arguments -testargs (args)*
This must be the last flag in your command line
string.

Java arguments -J arguments
Preface each argument with -J . Do not include a
space between -J and the argument. For
example:
-J-prof

-J-mx64m

Log filename -log filename

Work directory -workdir dir

Results directory -resdir dir

Jst path -jstpath searchpath

Show Application and
playback window

-gui

(preface with -play)

Don’t show playback window This is the default setting, if -gui or -
invisible are not specified.

Don’t show Application and
playback window

-invisible

(preface with -play)

(none) -1proc

Run with with just one process. You can only use
this option on tests that do not contain restart
nodes or crash recovery nodes. You also need to
include the correct library in the
CLASSPATH—for example, if you are using JDK
1.1.4, be sure to add javastar/lib/114.zip
to the CLASSPATH.
114 JavaStar User Guide—November 1998

13

Environment and Playback Controls
Environment and Playback Controls
In addition to these flags, JavaStar provides controls that correspond to the
Playback Options and Environment Options available in the GUI (under Set
Options), as well as some additional controls. You can use these to further
define your test environment. For example, if you’re running a test on a slow
system, you might need to scale delays so that the test doesn’t run too fast for
the architecture to keep up.

Table 13-2 Command line flags that correspond to environment options

Option Setting Corresponding Command Line Flag

Work directory -workdir dir

Results directory -resdir dir

Jst path -jstpath searchpath

Additional Classpath -jcpf flag
Flag to use for the JVM in place of '-classpath '

-kcpf flag
 Flag to use for the compiler in place of
'-classpath '

Java virtual machine -jvm filepath

Specifies the Java Virtual Machine to use for
subprocesses.

Java compiler -jc filepath

Specifies the Java compiler to use when
compiling.

Properties file -props propertyfile

Loads user test properties from file for the
playing test.
Using Command Line Options 115

13

Environment and Playback Controls
Table 13-3 Command line flags that correspond to playback options

Option Setting Corresponding Command Line Flag

Delay factor -scale n
Scales the delay by a factor of n.

Time out -timeout n
Sets compares to timeout after n seconds.

Log limit count (bytes) -llcount size
Limits log count—provide size in characters.

Log limit filters (exclude
these)

-llfilter flags
Suppresses the log file content represented by the
flags. See Table 13-8 for a list of log filtering flags.

Time out for hang detection -hangtime n
Sets the interval of time (in seconds) a playback
script can continue without receiving a response
from the application under test. When a script
reaches hangtime , it terminates in an
AsynchTimeoutError .

Table 13-4 Additional controls

Option Setting Corresponding Command Line Flag

-J<flag> Flag or argument to pass to JVM subprocess (e.g.
-J-mx64m)

-K<flag> Flag or argument to pass to compiler subprocess
(e.g. -K-g)

-jdk version Tell JavaStar which JDK your JVM is equivalent
to. Must be one of 1.1.1, 1.1.2, 1.1.3, or 1.1.4.
116 JavaStar User Guide—November 1998

13

Exit Codes
Exit Codes
JavaStar provides exit codes for playback operations, shown in Table 13-5. If
the test program calls System.exit() before the script exists, the exit code
can have any value.

Managing Log Files
If you already know what log file information you want from your test runs,
you can set your tests to suppress any other information, or you can add a
command line call to do post-processing on a log file and extract the data you
need.

For log file filtering at run test time, use the options:

Table 13-5 Exit codes for playback

Exit Code Description

0 Success

1 Verify failed

2 Check failed

3 Verify and check failed

4 Exception thrown

5 Exception thrown, verify failed

6 Exception thrown, check failed

7 Exception thrown, verify and check failed

Table 13-6 Log filtering options at run test time

Log filter option Description

-log filename Uses the filename you specify for the log file

-llcount size Limits the log to the size you specify, in
characters.

-llfilter flags Suppresses the log file content represented by the
flags. See Table 13-8 for a list of log file filters.
Using Command Line Options 117

13

Managing Log Files
For log file filtering after the file has already been generated, use:

The -llfilter and -logfilter commands use log filtering flags—these are
the flags that appear as the first character in every line of the long file.

Table 13-7 Log filtering options for existing logs

Log filter option Description

-logfilter filters logfile
[outfile]

Applies filters to the log file and prints
this out either to outfile (optional) or
System.out (default). See Table 13-8 for
a list of log file filters.

-loghtml filters logfile
[outfile]

Similar to -logfilter , this applies
filters to the logfile and writes the
filtered log out in HTML format. The
filter may include the characters E, T, 1,
2, or just - to indicate no extras.
Additional log types are limited to
Event, Time, Stdout(1) and Stderr(2).

-logsum (logfile)+ [-out
outfile]

Summarizes the log file (or files) and
prints it to outfile or to System.out .
This must be the last flag in the
command line.

-archive archivefile [logfile]+ Adds the log files into the archive. Log
files already in the archive are
overwritten. This must be the last flag in
the command line.

Table 13-8 Log filtering flags

Log filter flag Description

A Arguments (arguments passed to each
test)

C Control (flow of control within the test)

D Other

E Event (each event executed)

H Header (system information)

M Machine

R Result
118 JavaStar User Guide—November 1998

13

Managing Log Files
For a single reference on all command line flags, see JavaStar Command
Reference in the JavaStar API Reference.

S Summary (comparison and checking
results)

T Time (timestamps)

X Error

1 System.out

2 System.err

Table 13-8 Log filtering flags

Log filter flag Description
Using Command Line Options 119

13

Managing Log Files
120 JavaStar User Guide—November 1998

Using JavaStar with HotJava 14
This chapter describes how to test applets within the HotJava Browser. It
covers:

• Installing the HotJava Browser
• Setting Up a Project for HotJava
• Recording a Test

Installing the HotJava Browser
You must install the HotJava Browser on your system. You can find the
product at the Java web site:

http://java.soft.com

When this guide refers to <HotJava Installation>, please substitute the full path
to the directory in which you installed HotJava, for example “d:\HotJava ” or
“/usr/local/HotJava ”.

Setting Up a Project for HotJava
Once your browser is installed, you can create a project that invokes the
browser as an application through JavaStar. You then start your applet from
the “Record/Playback” window.

Here are the settings required for HotJava:

HotJava Application

The class that runs HotJava is sunw.hotjava.Main . It requires access to all
HotJava classes in the <HotJava Installation>/lib .

On the App pane:

1. Set the application class to sunw.hotjava.Main

2. Set the application classpath to include <HotJava Installation>/lib
and these archives found in that directory:
121

14

Recording a Test
• classes.zip
• ssl.jar
• x509v1.jar

HotJava Java Environment

Change the Java Environment of the project to include these arguments to the
Java Virtual Machine:

• -ms4m
• -mx40m
• -Dhotjava.home=<HotJava Installation>

Recording a Test
When you create a test script, JavaStar starts the browser. It takes some time for
the browser to load. As the first part of your recording, open the applet that
you wish to test. Then you can access all the applet components. As HotJava is
itself a Java application, you can also verify the contents of the status area and
other parts of the browser.
122 JavaStar User Guide—November 1998

Using JavaStar with Java Plug-in 15
This chapter describes how to use the Java Plug-in to test applets under
Netscape Navigator or Microsoft Internet Explorer. It covers:

• Issues to Consider When Testing with the Java Plug-in
• Installing Applications to Use the Java Plug-in
• Converting Your HTML to Use the Java Plug-in
• Testing with the Java Plug-in

Issues to Consider When Testing with the Java Plug-in
When using JavaStar with the Java Plug-in, keep in mind:

• You must convert your HTML code to use the Java Plug-in

• To use the Results Viewer to analyze results, you need to run JavaStar
separately from the browser.

• You can only capture actions controlled by the Applet, not the browser. For
example, clicking the Back button might take you to the previous page
when you are recording, but that action won’t be recorded in the test script.

Installing Applications to Use the Java Plug-in
The order in which you install your browser, the Java Plug-in, and JavaStar are
important.

1. Install Netscape Navigator or Internet Explorer.

2. Install the Java Plug-in.
Please go to http://java.sun.com/products/index.html, download Java
Plug-in, and install it on your system.

3. Install the JavaStar for Java Plug-in.
To do this:

a. Download the file Java Plug-in file.
For Solaris, download JavaStar-JPI-117.tar.z .

For Windows 95/NT, download JavaStar-JPI-117.zip .
123

15

Converting Your HTML to Use the Java Plug-in
b. Uncompress the file in the directory where you want the Java Plug-in
directory to reside.
If you are using Solaris, uncompress the file using the commands:

uncompress JavaStar-JPI-117 .tar.Z
tar -xpf JavaStar-JPI-117 .tar

For Windows 95/NT, use an unzip program to uncompress JavaStar-
JPI-117.zip .

4. Install JavaStar.

5. Replace the Java Plug-in file rt.jar with the file of the same name
provided with JavaStar.

a. Locate the rt.jar file in the Java Plug-in directory and change the
name to create a backup. For example, rename rt.jar to
rt.jar.orig .
If you are running Solaris, you should find rt.jar in the directory:

$HOME/.netscape/java/lib

In Windows 95/NT, default location for the Java Plug-in directory is

c:\Program Files\Java Plug-in 1.1\lib.

b. Copy the rt.jar file from the JavaStar directory to the Java Plug-in
directory.
Under Solaris, copy Solaris/117/rt.jar to
$HOME/.netscape/java/lib.

If you are using Windows 95/NT, copy rt.jar from
Windows\117\rt.jar to c:\Program Files\Java Plug-in
1.1\lib .

Converting Your HTML to Use the Java Plug-in
Before you can use the Java Plug-in, you need to modify the HTML for your
applet. You can use the Java Plug-in HTML Converter to make these
modifications. Refer to the Java Plug-in documentation for details.

Testing with the Java Plug-in
1. Start the JavaStar file server.

java javastar -fserve

Note: this should be started in the directory containing the tests, and with
the classpath set to javastar/javastar.zip.
124 JavaStar User Guide—November 1998

15

Testing with the Java Plug-in
2. Open javastar_jpi.html page in Netscape Navigator or Internet
Explorer.
You can find javastar_jpi.html in the JavaStar directory.

The JavaStar Record/Playback window opens. This window is identical to
the Record/Playback window you see when running JavaStar outside of
Navigator, except that there is no Quit button. To exit JavaStar, you need to
exit Navigator.

3. In the browser, load the applet you want to test.

4. Record or playback a test.

Note – If you are running over a network and your test requires that you
open a file, this may cause a security violation.

5. When you are done testing, quit the browser.
Using JavaStar with Java Plug-in 125

15

Testing with the Java Plug-in
126 JavaStar User Guide—November 1998

Locators for Non-Components 16
JavaStar directly supports all Java AWT-based components. An AWT-based
component is an object that extends java.awt.Component . Some toolkits,
while written completely in Java, do not use the AWT event model and do not
extend java.awt.Component . JavaStar considers these objects to be non-
components.

This chapter explains the difference between components and non-
components, what you need to provide to JavaStar to test non-component
objects, and what tools are available to help you. Specifically, this chapter
covers:

• Recording Tests with Non-Components
• Locators as Non-Component Support Modules
• Implementing a Locator for a toolkit
• Referencing Locators in JavaStar
• Using the API with Non-Components

Recording Tests with Non-Components
Without non-component locators, recordings on non-components can break
relatively easily. For example, clicking on a button in the Widgets.gui example
(created using the Marimba Bongo toolkit) without using any non-component
support produces the following JavaStar code:

JS.frame("Example Widgets").member("PlayerPanel").
multiClick(71,66,16,1);

This statement clicks on a screen location in the Bongo frame. This works, as
long as the Bongo layout manager doesn’t move any objects around. If the
layout does change, the button will not be at recorded screen location (71,66)
and the script will end in an exception.
127

16

Locators as Non-Component Support Modules
When you record the same action using the non-component support module,
the same JavaStar recording produces code that clicks on a specific object, not a
screen location:

JS.frame("Example Widgets").member("marimba.gui.PlayerPanel").
getNonComponent("bongo","PopupWidget.Presentation%0.
FolderWidget%0.PageWidget%1.GroupBoxWidget%3.GroupWidget%0.
CommandButtonWidget%0").multiClick(5,10,16,1);

This code uses the benefits of object technology, and is much more robust. Now
minor screen adjustments do not break existing test suites.

Locators as Non-Component Support Modules
The non-component support module mentioned in the previous description is
called a locator. A locator is an object that contains information that JavaStar
uses when referencing a non-component object. Locators have two
methods—one for recording and one for playback. When you are recording,
JavaStar sends a screen location to the locator. The locator looks through all
objects, locates the object in that location, then returns a string to insert into the
script. During playback, JavaStar sends locator strings back to the locator, and
the locator returns the screen location.

JavaStar currently provides locators for several popular non-AWT toolkits:

• Marimba™ Bongo™
• Netscape Internet Foundation Classes (IFC)
• JFC Swing
• KL Group

You can find the class files and the source code for the Bongo, IFC, and KL
Group locators in the ../javastar/contrib/locators directory. For KL
Group, newKLG is the most recent version.

You can find the JFC Swing locator ‘ in the ../javastar/contribe/jfc
directory (newNCL is the latest locator).

JavaStar provides a simple and a full version of each locator. The simple
version allows identification only by index. The full version allows internal
names and support for object captions, as well as indexes.

If these are the only non-AWT toolkits your applications or applets use, you do
not need to create a locator—you just need to know how to use the existing
ones. For other non-AWT toolkits, however, you do need to implement your
own locators. This requires knowledge of Java, but JavaStar provides tools and
examples so that you don’t have to create this from scratch.
128 JavaStar User Guide—November 1998

16

Implementing a Locator
Implementing a Locator
Writing a locator consists of implementing the JSNonComponentLocator
class of the JavaStar API. This class contains two methods: findObject() and
getNamed() . For information on this class, see JSNonComponentLocator in
the JavaStar API Reference. You can also use the source code for the provided
locators as examples.

You can find more on implementing locators in the tutorial lesson, Writing
Non-Component Locators.

Note – To make new locators easy to find, keep them inside the existing
locator package.

Referencing Locators in JavaStar
If your application or applet requires a locator, you can include the names of
the locators in your project file. For instructions, see the section “Defining
Locators, Declaration Classes, and Text Map Classes” in the chapter “Creating
Project Files.”

You can also define locators in the Record Test Script dialog that is displayed
when you begin recording a script. You can type the package.class name in or
choose the locator you want from a list.

Typing the Locator into the Field

1. In the Record/Playback window, click Record.
The Record Test Script dialog opens. See Figure 16-1.

2. Type the name of the locator class you want to use into the Non
component locators field.
If you have more than one locator, use the Locator list. function to build a
list.

Figure 16-1 Record Test Script dialog with a locator provided
Locators for Non-Components 129

16

Referencing Locators in JavaStar
Using the Locator List

1. Click the Locator list button in Record Test.
A Select Non-Component Locators dialog opens. See Figure 16-2.

Figure 16-2 Locator List

2. In the Select an item panel, navigate to the \contrib\locators
directory and open the directory.

3. Select the name of the locator class you want to use.
The locator appears in the Edit list panel, under Current Item.

4. Add the locator to the list by clicking Add to list.
The locator now appears in the Path list panel and in the list box of Edit list.
If you have multiple locators listed, you can move then up or down on the
list, or delete them, using the buttons at the bottom of the Edit list panel.

5. Click OK.
130 JavaStar User Guide—November 1998

16

Using the API with Non-Components
Using the API with Non-Components
The JSNonComponent class of the JavaStar API provides many of the same
methods as the JSComponent class, but is specifically designed for use with
non-components. JSNonComponent does not provide all of the functionality of
JSComponent, but it does provide equivalents for most of the simple methods
of JSComponent.

For example, using JSNonComponent you can perform mouse actions on a
non-component (mouseClicked() , mouseMoved() , mouseReleased() ,
etc.). You can also use a simple version of verifyAnyField() and
verifyAnyMethod() as well as other convenience functions. For more
details, see the “Non-Component Classes” chapter in the JavaStar API Reference.

Note – JavaStar supports “verify with simple method/data member” for
non-component. However, ”Verify with gold file” is not supported. You can
only compare simple methods and data members.
Locators for Non-Components 131

16

Using the API with Non-Components
132 JavaStar User Guide—November 1998

Text Map Classes 17
Text map classes tell JavaStar how to map components to text names. In
general, text maps are user-defined. You can use a text map for applications
and applets where JavaStar cannot use setName() to extract a meaningful text
name to use in the test code.

Note – You are not required to write a text map class for components that
do not have names. JavaStar will function fine without them; the test code
and results might just be a little cryptic.

What Text Maps Are
In JavaStar, a text map class provides the information JavaStar needs to extract
a text name for a component that otherwise does not provide one. Components
that do not provide text names are:

• Bit-mapped image components (for example, components that extend
Canvas or Panel)

• Lightweight components of your own design

• Any components that do not use the setName() method to associate a name

The code JavaStar generates for these components can appear cryptic. For
example, you might see

member(“MyClassName”, 3)

where the class name refers to the component, and the number that follows
indicates the position within the containing object. When you edit a test, or
when you try to interpret test results, this might not be helpful.

With a text map, however, you tell JavaStar how to associate the component
with a text name, so that instead you would see:

member(“MyClassName”, “Exit”)

where Exit is the text name you provided.
133

17

How to Write a Text Map Class
How to Write a Text Map Class
A text map class implements the JavaStar API JSTextMapping interface,
providing code for the computeText() method. The only requirements of this
method are that it accepts a Component as a parameter, and that it returns a
String containing the text name (or null).

How you determine the text name depends on your program. This example
shows how a text map for Swing (part of the Java Foundation Classes) looks:

package jfc;

import suntest.javastar.lib.JSTextMapping;
import java.awt.Component;

public class JfcTm implements JSTextMapping {

public String computeText(Component c){
if(c instanceof com.sun.java.swing.AbstractButton){
 return ((com.sun.java.swing.AbstractButton)c).getText();
}
return null;

}
}

134 JavaStar User Guide—November 1998

Troubleshooting 18
For up-to-date troubleshooting information, see the JavaStar Frequently-Asked
Questions document on the SunTest web site --
http://www.sun.com/suntest/JavaStar/FAQ.html.
135

18
136 JavaStar User Guide—November 1998

JavaStar Command Reference A
This appendix provides basic reference information on:

• JavaStar directories

• JavaStar Command Line Arguments

JavaStar directories
JavaStar references several directories while running:

The work directory and results directory both default to the directory where
you launch JavaStar. The JST path is set to the work directory by default.

You can permanently override these defaults by setting your Setting Test
Options. JavaStar also allows you to override these directory settings for
specific processes.

Directory Description

Work directory This is where JavaStar stores (by default):
• The scriptname.java and scriptname.class files

for scripts you create
• A scriptname.gold subdirectory, where JavaStar

keeps any gold files (master comparison files) you
generate

The ST directory, a SunTest proprietary directory

Results directory This is where JavaStar creates:
• The log file for script results
• A fail subdirectory, where JavaStar keeps the

failed comparison files from the most recent
playback

JST Path This is a series of directory paths you define to tell
JavaStar where to look for JST components.
137

A

Note – JavaStar requires the ST directory to perform its functions, but after
you exit JavaStar or finish any JavaStar tasks you run from the command
line, you can delete this directory.

JavaStar Command Line Arguments

Table 18-1 JavaStar command line switches

Command Line Flags Description

-usage Displays a list of available command
line options for JavaStar

-help Same as -usage .

-sysinfo Shows system properties

-version Displays the version number of JavaStar

-logfilter flags logfile
[outfile]

Applies flags as filters to the log file and
prints this out either to outfile (optional)
or System.out (default). See Table 18-2
for a list of log file filters.

-logsum (logfile)+ [-out
outfile]

Summarizes the log file (or files) and
prints it to outfile or to System.out .
This must be the last flag.

-loghtml filter infile
[outfile]

Like logfilter, except extracts to HTML
and filter is limited to "ET12"

-archive archivefile [logfile]+ Adds the log files into the archive. Log
files already in the archive are
overwritten. This must be the last flag.

-jst name.jst The JST file name to use for editing or
playback.

-script classname Name of the script to use for recording
or playback. This must be a fully-
qualified class name.

-props propertyfile Loads user test properties from
propertyfile and uses these during
playback.

-llfilter flags Suppresses the log file content
represented by the flags.

-llcount size Limits log count—provide size in bytes.
138 JavaStar User Guide—November 1998

A

-workdir dir Uses dir as the output directory for
recorded scripts, generated declaration
classes, and as the default directory to
search for scripts, declaration classes
and JSTs.

-resdir dir Uses dir as the root directory for all fail
files.

-jstpath searchpath Defines searchpath as the path JavaStar
uses to locate components of JSTs. This
uses the same syntax as CLASSPATH.

-log filename Writes the log to filename.

-scale n Scales the delay by a factor of n.

-timeout n Sets compares to timeout after n
seconds.

-hangtime n Sets the interval of time (in seconds) a
playback script can continue without
receiving a response from the
application under test. When a script
reaches hangtime , it terminates in an
AsynchTimeoutError .

-jvm filepath Sets the Java Virtual Machine to use for
subprocesses.

-jc filepath Sets the Java compiler to use when
compiling scripts.

-jcpf flag Flag to use for the JVM in place of
-classpath .

-kcpf flag Flag to use for the compiler in place of
-classpath .

-J flag Flag or argument to pass to JVM
subprocess (e.g. -J-mx64m)

-K flag Flag or argument to pass to compiler
subprocess (e.g. -K-g)

-jdk version Tells JavaStar which JDK your JVM is
equivalent to. Must be one of 1.1.1, 1.1.2,
1.1.3, or 1.1.4.

Table 18-1 JavaStar command line switches

Command Line Flags Description
JavaStar Command Reference 139

A

-applet [html]+ Record all the applets in all the HTMLs
at once. If you use this option, it must be
the last flag.

-app classname [args]* A record option. Use this classname as
the program under test and send these
arguments to that program. If you use
this option, it must be the last flag.

-fserve Starts up JavaStar file server to work
with JavaStar for Java Plug-in.

-play Sets JavaStar to playback mode.

-1proc Run the playback in the current process
rather than a subprocess. (Requires -
play)
You can only use this option on tests
that do not contain restart nodes or
crash recovery nodes. You also need to
include the correct library in the
CLASSPATH—for example, if you are
using JDK 1.1.4, be sure to add
javastar/lib/114.zip to the
CLASSPATH.

-gui Shows the JavaStar Record/Playback
GUI during playback.

-invisible Hides the JavaStar Record/Playback
GUI during playback.

-testargs [args]* Sends the args as arguments to the test
in playback. If you use this option, it
must be the last flag.

Table 18-2 Log filtering flags

Log filter flag Description

A Arguments (arguments passed to each
test)

C Control (flow of control within the test)

D Other

E Event (each event executed)

Table 18-1 JavaStar command line switches

Command Line Flags Description
140 JavaStar User Guide—November 1998

A

H Header (system information)

M Machine

R Result

S Summary (comparison and checking
results)

T Time (timestamps)

X Error

1 System.out

2 System.err

Table 18-2 Log filtering flags

Log filter flag Description
JavaStar Command Reference 141

A

142 JavaStar User Guide—November 1998

Index
A
Archiving results, 107

B
Benefits of using JavaStar, 1

C
Class Browser, 81
Command line options

-1proc, 140
-app, 140
-applet, 140
-gui, 140
-hangtime, 139
-invisible, 140
-J, 139
-jc, 139
-jcpf, 139
-jdk, 139
-jstpath, 139
-jvm, 139
-K, 139
-kcpf, 139
-log, 139
-play, 140
-scale, 139
-testargs, 140
-timeout, 139
Command line options, using

to control environment options, 115
to control playback options, 116
to filter existing logs, 118
to filter log at test runtime, 117
to manage files, 117
to match Run Test options, 114
to run tests, 113

Comparing
component attributes, 37
data members and methods, 40
selecting components, 39
setting up comparisons in record

mode, 36
verify vs. synchronize, 37

Composing tests
adding comments to the JST, 74
basic information, 69
choosing a root node, 73
closing the Composer, 78
constants, 74
creating a node, 71
creating connector lines, 73
definition, 65
deleting a connection, 74
deleting a node, 72
duplicating a node, 72
editing a node to use arguments, 74
143

144
editing nodes with existing
arguments, 77

loading an existing file, 67
moving nodes, 74
navigating through JSTs, 78
opening the composer, 66
parent parameters, 74
property names, 74
running the JST, 71
saving tests, 69
setting a node to restart, 72
setting the JST path, 67
specifying conditions, 73
starting a new JST, 69

Constants, 74
Creating, 19

D
Declaration files

definition, 57
editing to use abstract names, 59
generating, 58
using in record mode, 60

Directories
overview of, 137
results, 137
ST, 137
work, 137

E
Editing nodes

changing the value of a constant, 77
defining arguments, 74
deleting a parameter, 77
inserting an argument, 77

Editing scripts
browsing class components, 81
browsing gold files, 81
closing the Script Editor, 84
find/replace feature, 83
from record mode, 47
go to line number, 83
inserting references, 48

loading a script, 80
running a script from the Script

Editor, 84
saving and compiling, 84
saving without compiling, 84
Script Editor feature, 79
undoing edits, 84
when changes take effect, 79

Exception condition
definition, 73

Exit codes, 117
Extracting results, 105

options, 106

G
Gold files

browsing files for a script, 81
definition, 40
using the gold file manager, 102

GUI options, 109

I
Inserting references, 48
Inserting Timers, 46
Inspecting components, 54
Installing JavaStar

on a UNIX system, 7
on Windows 95/ Windows NT, 8

Interacting
procedure, 53

Interacting with the application under test
definition, 53

J
Java Plug-in, 121, 123
JST Path, 137
JSTs

adding comments, 74
creating and editing, 65
definition, 65
JST Runner, 89
path, 137
JavaStar User Guide—November 1998

L
Launching JavaStar, 8
Locators

basic concepts of implementing, 129
definition, 128
referencing in JavaStar, 129

M
Main menu, 9

Compose Test button, 9
Create Test Script button, 9
Edit Test Script button, 9
Monitor Test Status button, 9
Quit button, 10
Run Test button, 9
Set Options button, 10
View Test Results button, 10

Monitoring test status
definition, 95
killing a job, 96
viewing process details, 95

N
Nodes

creating, 71
definition, 69
deleting, 72
duplicating, 72
editing, 74
editing existing parameters, 77
moving, 74
setting as root, 73
setting to restart, 72

Non-Components
definition, 127
locators, 128
recording tests using, 127
using the API with, 131

Normal condition
definition, 73

O
oject, 19
Overview of features, 1

P
Parent parameters, 74
Playback options

setting during playback mode, 93
Playing back a test

from the command line, 113
Playing back tests

from the command line, 113
inspecting components during

playback, 94
JST runner, 89
setting options during playback, 93
using pause, stop, and quit, 94
using Run Test, 86
using single step, 92
using the Record/Playback

Window, 91
Printing results from viewer, 108
Project file, 19
Property names (as arguments), 74

R
Record options

setting in record mode, 50
Recording scripts

changing options, 50
comparing values and images, 36
editing a script while recording, 47
starting record mode, 33
tips, 36
using declarations, 60
using locators, 129
using pause, stop, and quit, 51
using Synchronize, 41
using timers, 46
using Verify, 41

Results directory, 137
Results Viewer
145

146
anatomy of window, 97
archiving results, 107
detail panel, 101
extracting results, 105
failure navigation buttons, 101
printing, 108
quitting, 108
task buttons, 99
test results panel, 100
type and format toggles, 101
updating gold files, 102
view options, 99
viewing results(procedure), 102
viiewing comparison failures, 102

Running tests
Create Script vs. Run Test, 85
from the command line, 113
from the Record/Playback

window, 91
from the Test Composer, 71
inspecting components, 94
JST runner, 89
setting options during playback, 93
using pause, stop, and quit, 94
using Run Test, 86
using single step, 92

S
Setting options

GUI preferences, 109
viewing system info, 111

Simple methods
definition, 40

ST directory, 137
Starting an application or applet, 10
Starting JavaStar

on a UNIX system, 8
on Windows 95/NT, 8

Synchronize
procedure, 41
vs. verify, 37

System Info, 111

T
Text map classes, 133

V
Verify

procedure, 41
vs. synchronize, 37

Viewing Results
anatomy of window, 97
archiving results, 107
detail panel, 101
extracting results, 105
failure navigation buttons, 101
printing, 108
procedure, 102
quitting, 108
task buttons, 99
test results panel, 100
type and format toggles, 101
updating gold files, 102
view options, 99
viewing comparison failures, 102

W
Work directory, 137
JavaStar User Guide—November 1998

	About JavaStar
	Benefits of Using Java to Test Java
	Recording Scripts
	Composing Tests from Scripts
	Composing Tests in JavaStar
	An example of a composed test

	Playing Back Scripts and Tests
	Providing Access to Java’s Full Power
	Additional Features

	Preparing to Use JavaStar
	Installing JavaStar
	On a UNIX System
	Under Windows 95 or Windows NT

	Starting JavaStar
	On a UNIX System
	Under Windows 95 or Windows NT

	JavaStar Main Menu
	Creating a Project File
	Starting Your Application or Applet

	Creating Project Files
	Understanding the Project Settings Window
	Defining Project Information
	Providing Application or Applet Information
	Setting Test Options
	Selecting Record Options
	Recording Format Options
	Option Events to Include

	Specifying Java Options
	Defining Locators, Declaration Classes, and Text M...
	Non-Component Locators
	Declaration Classes
	Text Map Classes
	Using the Selection Dialog

	Advanced Test Options

	Saving, Applying, and Loading Project Files

	Recording Scripts
	Starting Record Mode
	General Recording Tips
	Comparing Values and Images within a Script
	Choosing Between Verify and Synchronize
	How JavaStar Compares Component Attributes
	Selecting Components
	Selecting Data Members and Methods
	Gold Files and Directories
	Verifying or Synchronizing Components

	Inserting Timers
	Editing Your Script While Recording
	Entering Edit Mode
	Inserting a Reference into a Script

	Changing Options While Recording
	Pausing, Stopping, and Quitting

	Interacting and Inspecting
	Interacting without Recording
	Inspecting Components

	Generating and Using Declarations
	Generating Component Declarations
	Editing Declarations Files to Use Abstract Names
	Using Declarations Files in Record Mode
	Modifying Existing Scripts to Use Abstracted Names...

	Composing Tests
	Opening the Test Composer
	Setting the JST Path
	Loading an Existing JST File
	Saving Tests
	Starting a New JST
	Composing a JST
	Creating a Node
	Running the Test
	Duplicating a Node
	Deleting a Node
	Setting a Node to Restart
	Choosing a Root Node
	Starting Normal and Exception Conditions
	Deleting a Connection
	Moving Nodes
	Adding Comments
	Editing a Node to Accept Arguments
	Editing Existing Parameters for a Node
	To Delete a Parameter
	To Change the Value of a Constant
	To Insert a Parameter Between Two Others

	Navigating Through Nested JSTs
	Closing the Test Composer

	Editing Tests
	Loading a Script to Edit
	Browsing Class Components
	Browsing Gold Files
	Going to a Specific Line Number
	Finding and Replacing Text
	Undoing Edits
	Saving and Compiling
	Saving without Compiling
	Running the Script
	Closing the Script Editor

	Running Tests
	Playing Back a Test Using Run Test
	Playing Back a Script from the Record/Playback Win...
	Playback Tasks Available in the Record/Playback Wi...
	Single-stepping through a Script or Test
	Setting Options During Playback
	Inspecting Components During Playback
	Pausing, Stopping, and Quitting Playback

	Monitoring Test Status
	Viewing Details on a Process
	Killing a Job in the Status Monitor

	Viewing and Analyzing Results
	Anatomy of the Results Viewer
	Task Buttons
	View Options
	Test Results
	Summary
	Details

	Viewing Results
	Viewing Comparison Failures and Updating Gold File...
	Extracting Results
	Archiving Results
	Printing Results
	Quitting the Show Results Window

	Customizing Options
	GUI Options
	System Info

	Using Command Line Options
	Running Tests
	Environment and Playback Controls
	Exit Codes
	Managing Log Files

	Using JavaStar with HotJava
	Installing the HotJava Browser
	Setting Up a Project for HotJava
	HotJava Application
	HotJava Java Environment

	Recording a Test

	Using JavaStar with Java Plug-in
	Issues to Consider When Testing with the Java Plug...
	Installing Applications to Use the Java Plug-in
	Converting Your HTML to Use the Java Plug-in
	Testing with the Java Plug-in

	Locators for Non-Components
	Recording Tests with Non-Components
	Locators as Non-Component Support Modules
	Implementing a Locator
	Referencing Locators in JavaStar
	Typing the Locator into the Field
	Using the Locator List

	Using the API with Non-Components

	Text Map Classes
	What Text Maps Are
	How to Write a Text Map Class

	Troubleshooting
	JavaStar Command Reference
	JavaStar directories
	JavaStar Command Line Arguments

