
Contents (v2.09)

Introduction

JRTalk extension functions

The math library

Statistical functions

Floating point functions

Short integer functions

Long integer and mixed format functions

Serial port communication

Introduction

The Dynamic Link Library, JRTalk.dll, located in the Windows\System directory regulates the
communication between Serf or XL-Plot and a program that you may have created in Visual Basic or in C.
It also gives access to a part of the Serf/XL-Plot math library. When calling one of the functions in the list
below, the dll verifies if a copy of Serf or XL-Plot is already running. If not it launches the program before
executing the function. The dll supposes that the executable is in the default directory: 'C:\serf' or 'C:
\xlplot'. If the executable is in an other directory you need either to add a PATH command in the C:
\autoexec.bat file or run the S_SetProgramDirectory("some other directory") function when starting up
your program.

Most of the functions return a 32 bit integer (int in C, long in VBasic) usually containing the ID of the
document (spreadsheet or drawing sheet). If a negative value is returned, an error condition has been
encountered. Calling S_Error(negative integer) will give details of the error in question.

Visual Basic alias C name
@S_ClearClipboard$qqsv int S_ClearClipboard()
@S_ColsToRows$qqss int S_ColsToRows(short)
@S_CreatePlot$qqsv int S_CreatePlot()
@S_Error$qqsl                                    int S_Error(long)
@S_GetCellFloat$qqsrfss int S_GetCellFloat(float&,short,short)
@S_GetCellText$qqspcss int S_GetCellText(char*,short,short)
@S_InsertColumn$qqspfsspc int S_InsertColumn(float*,short,short,char*)
@S_MenuItem$qqss int S_MenuItem(short)
@S_NewDrawSheet$qqsv int S_NewDrawSheet()
@S_NewSpreadSheet$qqsv int S_NewSpreadSheet()
@S_SelectCell$qqsss int S_SelectCell(short,short)
@S_SelectColumns$qqsss int S_SelectColumns(short,short)
@S_SelectRange$qqsssss int S_SelectRange(short,short,short,short)
@S_SelectRows$qqsss int S_SelectRows(short,short)
@S_SetAsEColumn$qqss int S_SetAsEColumn(short)
@S_SetAsXColumn$qqss int S_SetAsXColumn(short)
@S_SetAsYColumn$qqss int S_SetAsYColumn(short)
@S_SetDocument$qqsi           int S_SetDocument(int)
@S_SetProgramDirectory$qqspc int S_SetProgramDirectory(char*)
@S_SortColumns$qqsssss int S_SortColumns(short,short,short,short)
@S_TextAtCell$qqspcss int S_TextAtCell(char*,short,short)
@S_XY2Sheet$qqspft1spct4 int S_XY2Sheet(float*,float*,short,char*,char*)
@S_XYPlot$qqspft1spct4 int S_XYPlot(float*,float*,short,char*,char*)
@S_Y2Sheet$qqspfspc int S_Y2Sheet(float*,short,char*)

In a Visual Basic program, each dll function has to be declared before it can be used. This can be done
by using the ordinal number (see the JRTalk.def file in the program directry) of the function as an alias as
in:
Declare Function S_ColsToRows Lib "JRTalk" Alias "#1" (ByVal clos As Integer) As Long ,
or by using the visual basic alias in the list above:
Declare Function S_ColsToRows Lib "JRTalk" Alias "@S_ColsToRows$qqss" (ByVal clos As Integer) As
Long. The latter method is recommended, since the ordinal numbers in future versions of JRTalk.dll will
almost certainly be different. The list at the end of the doc file may be used to paste the list of VB function
declarations in a program. In C, the functions are called by their C names. To import the functions, create
a header file with entries containing the _stdcall macro, e.g.: long _stdcall S_ColsToRows(short clos);.
For compilation with Borland C++, a library file, 'JRTalk.lib', is available in the program's directory.

C: int S_SetProgramDirectory(char* text)
VB: S_SetProgramDirectory(ByVal text As String) As Long

Sets the directory containing serf.exe or XL-Plot.exe. On success, it returns 0, on error it returns a
negative value.
Example:
ret = S_SetProgramDirectory("C:\Programs\serf")

C: int S_Error(short err)
VB: S_Error(ByVal err As Integer) As Long

This function shows a messagebox containing an error message if the argument 'err' is negative. It
returns the value 0 (zero).

C: int S_NewDrawSheet()
VB: S_NewDrawSheet() As Long

Creates a new (empty) drawing sheet and returns a positive document ID or a negative error number.

C: int S_NewSpreadSheet()
VB: S_NewSpreadSheet() As Long

Creates a new (empty) spreadsheet and returns a positive document ID or a negative error number.

C: int S_XYPlot(float *x,float *y,short len,char* xs,char* ys)
VB: S_XYPlot (x As Single, y As Single, ByVal ilen As Integer, ByVal xs As String, ByVal ys As String) As
Long

This function takes two floating point arrays, x and y, of length len and two null terminated ASCII strings of
text. It creates a XYplot on the current drawing sheet with the xstring (xs) and ystring (ys) as axis units. If
no drawing sheet is available or if the current drawing sheet already contains 6 plots, it will create a new
one. On success, it returns the ID of the drawing sheet, on error it returns a negative value.
Example:
id = S_XYPlot(x(0), y(0), 50, "s", "nM")
S_Error (id)

C: int S_XY2Sheet(float *x,float *y,short len,char* xs,char* ys)
VB: S_XY2Sheet (x As Single, y As Single, ByVal ilen As Integer, ByVal xs As String, ByVal ys As String)
As Long

This function takes two floating point arrays, x and y, of length ilen and two null terminated ASCII strings
of text. It creates a new spreadsheet with two columns (1 and 2) of data. The top most cells of the first
and second columns will contain the xstring (xs) and ystring (ys) respectively. On success, it returns the
ID of the spreadsheet, on error it returns a negative value.

C: int S_Y2Sheet(float *y,short len,char *ystring)
VB: S_Y2Sheet (y As Single, ByVal ilen As Integer, ByVal text As String) As Long

This function takes a floating point array, y, of length ilen and a null terminated ASCII string of text. It adds
a new column of data to the current spreadsheet. The top most cell of the column will contain the ystring.
On success, it returns the ID of the spreadsheet, on error it returns a negative value.
Example:
id = S_Y2Sheet(y(0), 100, "mV")

C: int S_InsertColumn(float *y,short len,short col,char *string)

VB: S_InsertColumn (y As Single, ByVal ilen As Integer, ByVal col As Integer, ByVal text As String) As
Long

This function takes a floating point array, y, of length ilen and a null terminated ASCII string of text. It
inserts a new column of data at column col of the current spreadsheet. The original column and those
following it will be shifted to the right. The top most cell of the column will contain the ystring. On success,
it returns the ID of the spreadsheet, on error it returns a negative value.

C: int S_CreatePlot()
VB: S_CreatePlot() As Long

This function creates a new plot using the currently selected spreadsheet columns. If no drawing sheet is
available or if the current drawing sheet contains already 6 plots, a new drawing sheet will be created. On
success, it returns the ID of the drawing sheet, on error it returns a negative value.

Prior to using the S_CreatePlot() instruction, at least 1 column of numerical data in the current
spreadsheet needs to be selected using one of the following functions:

C: int S_SelectColumns(short col1,short col2)
VB: S_SelectColumns (ByVal col1 As Integer, ByVal col2 As Integer) As Long

The columns col1 through col2 will be selected. If only one column is selected (col1=col2) before issuing
the S_CreatePlot() instruction, the column is considered to contain y data and the x-axis will run from 1
through N, where N is the number of entries in the column. If multiple columns are selected, the first will
furnish the x coordinates, while the following columns are treated as y coordinates.

C: int S_SetAsXColumn (short col)
int S_SetAsYColumn (short col)
int S_SetAsEColumn (short col)

VB: S_SetAsXColumn (ByVal col As Integer) As Long
S_SetAsYColumn (ByVal col As Integer) As Long
S_SetAsEColumn (ByVal col As Integer) As Long

These three functions set column, col, as the column containing X data, Y data and Errors respectively.
On success, they return the ID of the spreadsheet, on error they return a negative value. The data in the
"Errors" column will be plotted as error bars in the new histogram resulting from a subsequent call to the
S_CreatePlot() function.
Example:
ss_id = S_SetAsXColumn (5)
ss_id = S_SetAsYColumn (2)
ds_id = S_CreatePlot()

Functions to select spreadsheet cells, to change and to retrieve their contents are:

C: int S_SelectRows(short row1,short row2)
VB: S_SelectRows (ByVal row1 As Integer, ByVal row2 As Integer) As Long

This function selects rows 'row1' through 'row2'. On success, it returns the ID of the spreadsheet, on error
it returns a negative value.

C: int S_SelectCell(short col,short row)
VB: S_SelectCell (ByVal col As Integer, ByVal row As Integer) As Long

This function selects the spreadsheet cell at column 'col' and row 'row'. On success, it returns the ID of
the spreadsheet, on error it returns a negative value.

C: int S_SelectRange(short col1,short row1,short col2,short row2)
VB: S_SelectRange (ByVal col1 As Integer, ByVal row1 As Integer, ByVal col2 As Integer, ByVal row2 As
Integer) As Long

This function selects the range of cells from [col1,row1] through [col2,row2]. On success, it returns the ID
of the spreadsheet, on error it returns a negative value.

C: int S_TextAtCell(char* text,short col,short row)
VB: S_TextAtCell (ByVal text As String, ByVal col As Integer, ByVal row As Integer) As Long

Sets the contents of the spreadsheet cell at column 'col' and row 'row'. On success, it returns the ID of the
spreadsheet, on error it returns a negative value. To enter a floating-point number in a spreadsheet cell
proceed as in the following
Example:
ret = S_TextAtCell("17.45",2,3)

C: int S_GetCellText(char* text,short col,short row)
VB: S_GetCellText (ByVal text As String, ByVal col As Integer, ByVal row As Integer) As Long

Retrieves the contents of the spreadsheet cell at column 'col' and row 'row' as a character string. The
string 'text' needs to have a length of at least 256 bytes. In VB it has to have been dimensioned as a
fixed-length string. On success, the function returns the ID of the spreadsheet, on error it returns a
negative value.
Example:
Dim result As String *256
ret = S_GetCellText(result,3,4)
upon return the string 'result' may contain a formula, e.g. "=sqrt(4)", plain text or a number, e.g. "3.41"

C: int S_GetCellFloat(float& x,short col,short row)
VB: S_GetCellFloat (x As Single, ByVal col As Integer, ByVal row As Integer) As Long

Retrieves the floating point number located at cell [col,row] and stores it in the variable x that is passed by
reference. If the spreadsheet cell is empty or does not contain a number or a formula, x will be 0 (zero).
Hence, if the spreadsheet cell contains "=sqrt(4)", x will be 2. On success, the function returns the ID of
the spreadsheet, on error it returns a negative value.
Example:
Dim result As Single
ret = S_GetCellFloat(result,3,4)

C: int S_SortColumns(short c1,short c2,short ckey,short ascend)
VB: S_SortColumns(ByVal c1 As Integer, ByVal c2 As Integer, ByVal ckey As Integer, ByVal ascend As
Integer) As Long

This function sorts the numerical values contained in the spreadsheet column ckey in acending order if
ascend is 1 and in decending order if ascend is 0. The entries in the columns c1 through c2 will be
displaced amongst rows along with the entries in column ckey. On success, the function returns the ID of
the spreadsheet, on error it returns a negative value.

C: int S_ColsToRows(short doclose)
VB: S_ColsToRows (ByVal doclose As Integer) As Long

Copies the spreadsheet cells contained in the currently selected range of cells while interchanging
columns and rows. It subsequently pastes the data in a new spreadsheet. If doclose is 1, the original
(donor) spreadsheet will be closed without saving. If doclose is 0, the donor spreadsheet will remain
open.
Example:

ret = S_SelectRange (1, 1, 16, 10)
ret = S_ColsToRows(0)

C: int S_SetDocument(int id)
VB: S_SetDocument (ByVal id As Long) As Long

Sets the document (spreadsheet or drawing sheet) as the currently active one. The program keeps track
of the active spreadsheet and the active drawing sheet seperately, so it it not necessary to reactivate the
current drawing sheet after a manipulation on a spreadsheet for example. It takes the document's ID as
an argument. On success, the function returns the ID of the document, on error it returns a negative
value.

C: int S_ClearClipboard()
VB: S_ClearClipboard() As Long

Clears the clipboard. Returns 0.

C: int S_MenuItem(short command)
VB: S_MenuItem (ByVal command As Integer) As Long

This function simulates the selection of an menu item from the document's menu bar. It takes a menu
item identifier as argument. The following commands may be used:

name identifier action
CM_TXTCOPY 1211 Copies the selected range of spreadsheet cells to the clipboard
CM_TXTPASTE 1212 Pastes the clipboard onto the currently active spreadsheet
CM_TXTINSERT 1213 Inserts empty columns, rows or range of cells onto the currently

active spreadsheet.
CM_TXTCLEAR 1215 Clears the currently selected range of spreadsheet cells.
CM_TXTDELETE 1216 Deletes the currently selected range of spreadsheet cells.
CM_TXTVCOPY 1289 Copies the current histogram to the clipboard.
CM_SETASX 1227 Sets the currently selected spreadsheet column as the X column.
CM_SETASY 1228 Sets the currently selected spreadsheet column as the Y column.
CM_SETASERROR 1229 Sets the currently selected spreadsheet column as the error
column.
CM_REMLINKS 1268 Removes the links between spreadsheet and drawing
sheet.
CM_INVMAT 1306 Carries out inversion of an augmented matrix.
CM_FILLITEM1 1276 Fill down Copy menu item.
CM_FILLITEM2 1277 Fill down Increment menu item.
CM_FILLITEM3 1278 Fill down Decrement menu item.
CM_FILLITEM4 1279 Fill down Interpolation menu item.
CM_FILLITEM10 1285 Fill down Value menu item.
CM_FILLITEM5 1280 Fill right    Copy menu item.
CM_FILLITEM6 1281 Fill right    Increment menu item.
CM_FILLITEM7 1282 Fill right    Decrement menu item.
CM_FILLITEM8 1283 Fill right    Interpolation menu item.
CM_FILLITEM11 1284 Fill right    Value menu item.
CM_VECPASTE 1233 Pastes the clipboard onto the currently active drawing sheet

The following codes (may) require user intervention (dialogue box)

CM_LINEPLOT 1261 menu item: Modify/Data>Line Plot
CM_BARPLOT 1260 menu item: Modify/Data>Bar    Plot
CM_CREAPOLYG 1336 menu item: Modify/Data>Create polygon
CM_GETSTATS 1315 menu item: Modify/Data>Get Column Stats

CM_RESIZE 1300 menu item: Modify/Data>Resize column/line length
CM_FIT 1110 menu item: Modify/Data>Do Fit
CM_SETFITFUNC 1109 menu item: Modify/Data>Set Fit Function
CM_SETCOLW 1220 menu item: Modify/Data>Set Column Widths
CM_SETLINH 1221 menu item: Modify/Data>Set Line Heights
CM_FOURIER 1318 menu item: Modify/Data>Fourier transform
CM_TXTCONVOLVE 1325 menu item: Modify/Data>(de-)Convolution
CM_TXTCOPY 1211 menu item: Edit>Copy
CM_TXTVCOPY 1289 menu item: Edit>Copy values
CM_COPYLC 1364 menu item: Edit>Copy    L <--> C
CM_TXTPASTE 1212 menu item: Edit>Paste
CM_TXTINSERT 1213 menu item: Edit>Insert
CM_TXTPANDI 1214 menu item: Edit>Insert/Paste
CM_TXTCLEAR 1215 menu item: Edit>Clear
CM_TXTDELETE 1216 menu item: Edit>Delete
CM_REPLACE 1290 menu item: Edit>Replace

Next page

The math library

Visual Basic alias C name

@S_Binom$qqsii float S_Binom(int,int)
@S_Correl$qqspft1i float S_Correl(float*,float*,int)
@S_Cov$qqspft1 float S_Cov(float*,float*,int)
@S_Erfc$qqsf float S_Erfc(float)
@S_Extrapol$qqspfif4bool    float S_Extrapol(float*,int,float,bool)
@S_FDens$qqsfii float S_FDens(float,int,int)
@S_FT$qqspft1is short S_FT(float*,float*,int,short)
@S_Gamma$qqsf float S_Gamma(float)
@S_InvertMatrix$qqspdii short S_InvertMatrix(double*,int,int)
@S_Mean$qqspfi float S_Mean(float*,int)
@S_PChi$qqsfi float S_PChi(float,int)
@S_PFTest$qqsfii    float S_PFTest(float,int,int)
@S_PTTest$qqsfii    float S_PTTest(float,int,int)
@S_PolyInterpol$qqspfiif    float S_PolyInterpol(float*,int,int,float)
@S_PolyRegres$qqspfiit1 short S_PolyRegres(float*,int,int,float*)
@S_QProb$qqsffff    float S_QProb(float,float,float,float)
@S_Random$qqsf float S_Random(float)
@S_Reshuffle$qqspfipi short S_Reshuffle(float*,int,int*)
@S_SortFloat$qqspfipi short S_SortFloat(float*,int,int*)
@S_TDens$qqsfi short S_TDens(float,int)
@S_Zero$qqsf    short S_Zero(float)
@S_copyf$qqspft1i short S_copyf(float*,float*,int)
@S_copyfs$qqspspfi short S_copyfs(short*,float*,int)
@S_copyi$qqspit1i short S_copyi(int*,int*,int)
@S_copys$qqspst1i short S_copys(short*,short*,int)
@S_copysf$qqspfpsi short S_copysf(float*,short*,int)
@S_integrate$qqspfi short S_integrate(float*,int)
@S_swapff$qqspft1i short S_swapff(float*,float*,int)
@S_swapss$qqspst1i short S_swapss(short*,short*,int)
@S_vadds$qqspffi    short S_vadds(float*,float,int)
@S_vaddv$qqspft1i short S_vaddv(float*,float*,int)
@S_vadfs$qqspfpsi short S_vadfs(float*,short*,int)
@S_vadsf$qqspspfi short S_vadsf(short*,float*,int)
@S_vadss$qqspssi    short S_vadss(short*,short,int)
@S_vadsv$qqspst1i short S_vadsv(short*,short*,int)
@S_vdivv$qqspft1i short S_vdivv(float*,float*,int)
@S_vinv$qqspfi short S_vinv(float*,int)
@S_vinvs$qqspsi short S_vinvs(short*,int)
@S_vmax$qqspfi int S_vmax(float*,int)
@S_vmaxs$qqspsi int S_vmaxs(short*,int)
@S_vmin$qqspfi int S_vmin(float*,int)
@S_vmins$qqspsi int S_vmins(short*,int)
@S_vmuls$qqspffi    short S_vmuls(float*,float,int)
@S_vmulv$qqspft1i short S_vmulv(float*,float*,int)
@S_vsets$qqspffi    short S_vsets(float*,float,int)
@S_vsetsi$qqspiii short S_vsetsi(int*,int,int)
@S_vsetss$qqspssi short S_vsetss(short*,short,int)
@S_vsqr$qqspfi short S_vsqr(float*,int)
@S_vsubv$qqspft1i short S_vsubv(float*,float*,int)

Next page

Statistical functions

C: float S_Binom(int n,int k)
VB: S_Binom(ByVal n As Long, ByVal k As Long) As Single
Returns the coefficient of the k'th term of an n-binomial.

C: float S_Gamma(float x)
VB: S_Gamma(ByVal x As Single) As Single
Returns gamma(x). Gamma has the properties: gamma(n+1)=n! and x*gamma(x) = gamma(x+1).

C: float S_TDens(float x,int d)
VB: S_TDens(ByVal x As Single, ByVal d As Long) As Single
Returns the double sided probability-density of the t-function for t=x at d degrees of freedom.

C: float S_PTTest(float t,int d,int s)
VB: S_PTTes(ByVal t As Single, ByVal d As Long, ByVal s As Long) As Single
Returns the probability of a t-value at d degrees of freedom, single sided (s=1) or double sided (s=2). For
s=2, it is the integral of TDens(t,df).

C: float S_FDens(float x,int d1,int d2)
VB: S_FDens(ByVal x As Single, ByVal d1 As Long, ByVal d2 As Long) As Single
Returns the probability density of Fisher's F-function for x at d1 (data sets) and d2 (total N-1) degrees of
freedom.

C: float S_PFTest(float x,int d1,int d2)
VB: S_PFTes(ByVal x As Single, ByVal d1 As Long, ByVal d2 As Long) As Single
Returns the probability of a F-value (x) at d1 and d2 degrees of freedom. It is the integral of
FDens(x,df1,df2).

C: float S_QProb(float q,float rr,float cc,float df)
VB: S_QProb(ByVal q As Single, ByVal rr As Single, ByVal cc As Single, ByVal df As Single) As Single
Returns the probability for a q-value at df1 and df2 degrees of freedom (multiple comparison test).

C: float S_PChi(float chisqr,int df)
VB: S_PChi(ByVal chisqr As Single, ByVal df As Long) As Single
Returns the probability of a chi-2 at df degrees of freedom.

C: float S_Erfc(float y)
VB: S_Erfc(ByVal y As Single) As Single
Returns the complementary error function (1-erf(y)), where erf(y) is error function of y. erf(y) is twice the
integral of the Gaussian distribution with 0 mean and variance of ½.

C: float S_Random(float max)
VB: S_Random(ByVal max As Single) As Single
Returns a random value between 0 and max.

C: float Cov(float *x,float *y,int npts)
VB: S_Cov(x As Single, y As Single, ByVal npts As Long) As Single
Returns the covariance of the data in the floating point arrays x and y of lenght npts.

C: float S_Correl(float *x,float *y,int npts)
VB: S_Correl(x As Single, y As Single, ByVal npts As Long) As Single
Returns the correlation coefficient of the data in the floating point arrays x and y of length npts.

Next page

Floating point functions

C: short S_copyf(float *x, float *y, int len)
VB: S_copyf(x As Single, y As Single, ByVal len As Long) As Integer
Copies the contents of the floating point array, y, of lenght len to array x. The function returns 0.

C: short S_swapff(float *x, float *y, int len)
VB: S_swapff(x As Single, y As Single, ByVal len As Long) As Integer
Swaps the contents of the floating point arrays x and y. Each array has a length of at least len. The
function returns 0.

C: short S_vsets(float *x, float fac, int n)
VB: S_vsets(x As Single, ByVal fac As Single, ByVal n As Long) As Integer
Sets the first n elements of the floating point array, x, to the scalar value fac. The function returns 0.

C: short S_vadds(float *x, float fac, int n)
VB: S_vadds(x As Single, ByVal fac As Single, ByVal n As Long) As Integer
Adds the scalar value fac to the first n elements of the floating point array x. The function returns 0.

C: short S_vaddv(float *x, float *y, int n)
VB: S_vaddv(x As Single, y As Single, ByVal n As Long) As Integer
Replaces the first n elements of x by the sum of the elements of the two floating point arrays, x and y.
Hence, x(i)=x(i)+y(i) for i=0 through n-1. The function returns 0.

C: short S_vsubv(float *x, float *y, int n)
VB: S_vsubv(x As Single, ByVal y As Single, ByVal n As Long) As Integer
Replaces the first n elements of x by the difference of the elements of the two floating point arrays, x and
y. Hence, x(i)=x(i)-y(i) for i=0 through n-1. The function returns 0.

C: short S_vmuls(float *x, float fac, int n)
VB: S_vmuls(x As Single, ByVal fac As Single, ByVal n As Long) As Integer
Multiplies the first n elements of the floating point array, x, by the scalar fac. The function returns 0.

C: short S_vmulv(float *x, float *y, int n)
VB: S_vmulv(x As Single, y As Single, ByVal n As Long) As Integer
Replaces the first n elements of x by the product of the elements of the two floating point arrays, x and y.
Hence, x(i)=x(i)*y(i) for i=0 through n-1. The function returns 0.

C: short S_vdivv(float *x, float *y, int n)
VB: S_vdivv(x As Single, y As Single, ByVal n As Long) As Integer
Replaces the first n elements of x by the quotient of the elements of the two floating point arrays, x and y.
Hence, x(i)=x(i)/y(i) for i=0 through n-1. The function returns 0.

C: short S_vsqr(float *x, int n)
VB: S_vsqr(x As Single, ByVal n As Long) As Integer
Takes the square root of each element of the floating point array of length n. The function returns 0.

C: short S_vinv(float *x, int n)
VB: S_vinv(x As Single, ByVal n As Long) As Integer
Replaces the first n elements of x by their square roots. Hence, x(i)=sqrt(x(i)) for i=0 through n-1. The
function returns 0.

C: short S_integrate(float *x, int n)
VB: S_integrate(x As Single, ByVal n As Long) As Integer
Carries out numerical integration of the first n elements of the array x. The function returns 0.

C: int S_vmin(float *x, int len)
VB: S_vmin(x As Single, ByVal n As Long) As Integer
Returns the index of the element of the floating point array, x, of length len that containins the minimum
value. To obtain the minimum value itself write: min = x(S_vmin(x,len)).

C: int S_vmax(float *x, int len)
VB: S_vmax(x As Single, ByVal n As Long) As Integer
Returns the index of the element of the floating point array, x, of length len that containins the maximum
value. To obtain the maximum value itself write: max = x(S_vmax(x,len)).

C: float S_Mean(float *x,int len)
VB: S_Mean(x As Single, ByVal npts As Long) As Single
Returns the mean value of the floating point array, x, of length len.

C: short S_Zero(float x)
VB: S_Zero(ByVal x As Single) As Integer
Returns 1 if x is between -1e-15 and +1e-15. Returns 0 otherwise.

C: short S_SortFloat(float *x,int len,int *indx)
VB: S_SortFloat(x As Single, ByVal len As Long, indx As Long) As Integer
Sorts the elements of the floating point array, x, in ascending order. A list of indices is maintained in the
integer array indx for subsequent use with the S_Reshuffle() function. If the pointer to indx equals NULL,
the index array is ignored. The function returns 0.

C: short S_Reshuffle(float *y,int len,int *indx)
VB: S_Reshuffle(y As Single, ByVal len As Long, indx As Long) As Integer
Sorts the contents of the floating point array, y, in an order that is determined by the indx array. If
thecontents of the indx array have been obtained by a previous call to S_SortFloat(), then the elementsof
y are moved as the elements of x in the call to S_SortFloat(x,len,indx). The function returns 0.
Example:
Dim x(4) As Single, y(4) As Single, indx(4) As Long
x(0)=0 x(1)=3    x(2)=2    x(3)=1
y(0)=8    y(1)=5    y(2)=6    y(3)=7
ret= S_SortFloat(x(0),4,indx(0))
ret= S_Reshuffle(y(0),4,indx(0))
result: x: 0 1 2 3    y: 8    7    6    5

C: short S_FT(float* real,float* imag,int np,short inverse)
VB: S_FT(real As Single, imag As Single, ByVal    np As Long, ByVal inverse As Integer) As Integer
Takes the Fourier transform of the floating point arrays real and imag of length np. If inverse=0 the
forward transformation is carried out, if it is 1, the inverse transform is carried out. If np equals a power of
2, then the FFT algorithm is used. The contents of the arrays real and imag are replaced by the transform.

C: short S_InvertMatrix(double* mat,int nmat,int dim)
VB: S_InvertMatrix(mat As Double, ByVal nmat As Long, ByVal mdim As Long) As Integer
Inverts the augmented matrix, mat. mat is a nmat*nmat square matrix, augmented with a column of
dimension nmat. The matrix, mat, is passed as a linear double precision array. In this linear array ndim
elements are reserved for each row. ndim should be at least nmat+1.
Example:
invert the 3*3 matrix augmented with the vector [5,6,5]:

2      3      -1      5
1      1        1      6

    0    -2        3      5
Dim M(12) as Double
M(0)=2          M(1)=3        M(2)=-1        M(4)=5      M(6)=1 M(10)=3      M(11)=5
ret= S_InvertMatrix(M(0),3,4)

C: float    S_Extrapol(float *x,int num,float where,short log)
VB: S_Extrapol(x As Single, ByVal num As Long, ByVal where As Single, ByVal log As Integer) As Single
This function carries out linear (log=0) or logarithmic (log=1) regression using the data in the floating point
array of length num in order to estimate the ordinate at abscis 'where'. It returns the estimate.

C: short    S_PolyRegres(float *x,int num,int degree,float *result)
VB: S_PolyRegres(x As Single, ByVal num As Long, ByVal degree As Long, result As Single) As Integer
This function calculates the coefficients of a polynomial of degree 'degree' that fits best the data in the
floating point array x of length num. The coefficients are stored in the array 'result' that should have a
length of at least degree+1. The function returns 0.

C: float    S_PolyInterpol(float *x,int num,int degree,float where)
VB: S_PolyInterpol(x As Single, ByVal num As Long, ByVal degree As Long, where As Single) As Single
This function returns the estimate of the ordinate at abscis 'where' by passing a polynomial of degree
'degree' through the data in the floating point array x of length num.

Next page

short data functions

C: short S_copys(short *x, short *y, int n)
VB: S_copys(x As Integer, y As Integer, ByVal n As Long) As Integer
Copies the contents of the 16 bit integer array, y, to the 16 bit integer array, x, of length n. The function
returns 0.

C: short S_vsetss(short *x, short fac, int n)
VB: S_vsetss(x As Integer, ByVal fac As Integer, ByVal n As Long) As Integer
Sets the contents of the 16 bit integer array, x, of length n to the scalar 'fac'. The function returns 0.

C: short S_vinvs(short *x, int n)
VB: S_vinvs(x As Integer, ByVal n As Long) As Integer
Inverts the contents of the 16 bit integer array x of length n. The function returns 0.

C: short S_vadss(short *x, short fac, int n)
VB: S_vadss(x As Integer, ByVal fac As Integer, ByVal n As Long) As Integer
Adds the scalar 'fac' to each element of the 16 bit integer array, x, of length n. The function returns 0.

C: short S_vadsv(short *x, short *y, int n)
VB: S_vadsv(x As Integer, y As Integer, ByVal n As Long) As Integer
Adds, element by element, the contents of the 16 bit integer arrays, x and y of lengths n. The result is
stored in x. The function returns 0.

C: short S_swapss(short *x, short *y, int n)
VB: S_swapss(x As Integer, y As Integer, ByVal n As Long) As Integer
Interchanges the contents of the 16 bit integer arrays x and y of lengths n. The function returns 0.

C: int S_vmins(short *x, int n)
VB: S_vmins(x As Integer, ByVal n As Long) As Integer
The function returns the index of element containing the minimum value of the 16 bit integer array x of
length n. To obtain the minimum value itself write: ret=x(S_vmins(x,n)).

C: int S_vmaxs(short *x, int n)
VB: S_vmaxs(x As Integer, ByVal n As Long) As Integer
The function returns the index of element containing the maximum value of the 16 bit integer array x of
length n. To obtain the maximum value itself write: ret=x(S_vmaxs(x,n)).

Next page

integer data functions

C: short S_copyi(int *x, int *y, int n)
VB: S_copyi(x As Long, y As Long, ByVal n As Long) As Integer
Copies the contents of the 32 bit integer array y of length n to the 32 bit integer array x. The function
returns 0.

C: short S_vsetsi(int *x, int fac, int n)
VB: S_vsetsi(x As Long, ByVal fac As Long, ByVal n As Long) As Integer
Sets the contents of the 32 bit integer array x of length n to the scalar 'fac'. The function returns 0.

mixed format functions

C: short S_copysf(float *x, short *y, int n)
VB: S_copysf(x As Single, y As Integer, ByVal n As Long) As Integer
Copies the contents of the 16 bit integer array of length n to the floating point array x. The function returns
0.

C: short S_copyfs(short *x, float *y, int n)
VB: S_copyfs(x As Integer, y As Single, ByVal n As Long) As Integer
Copies the contents of the floating point array y of length n to the 16 bit integer array x. The function
returns 0.

C: short S_vadfs(float *x, short *y, int n)
VB: S_vadfs(x As Single, y As Integer, ByVal n As Long) As Integer
Adds the contents of the 16 bit integer array y of length n to the floating point array x. The function returns
0.

C: short S_vadsf(short *x, float *y, int n)
VB: S_vadsf(x As Integer, y As Single, ByVal n As Long) As Integer
Adds the contents of the floating point array y of length n to the 16 bit integer array x. The function returns
0.

Next page

Serial port communication (RS232)

The following routines implement simple serial communication without handshaking. The routines all
return 0 unless an error occurs (a negativenumber).

Visual Basic alias C name

@S_SendCOM$qqsspc                            int S_SendCOM(short,char*)
@S_SetCOM$qqsssss                            int S_SetCOM(short,short,short,short)
@S_SetEndStr$qqspc                        int S_SetEndStr(char*)
@S_WaitForReplyCOM$qqsspc          int S_WaitForReplyCOM(short,char*)
@S_WriteCOM$qqsspcs                        int S_WriteCOM(short,char*,short)

C: int S_SetCOM(short baudrate,short parity,short stopbits,short bytesize)
VB: S_SetCOM(baudrate As Integer, parity As Integer, stopbits As Integer, bytesize As Integer) As Long

Sets the serial communication parameters to baudrate,parity,stopbits and bytesize. The parameter
stopbits may take the values 0,1 and 2 for one, one and a half and two stopbits respectively.

C: int S_SetEndStr(char* endstr)
VB: S_SetEndStr(ByVal endstr As String) As Long

Sets the string of characters that signals the end of    the transmitted sequence (often a line feed
character, Hex(10) or Hex(13), is used).

C: S_SendCOM(short com,char* Buffer)
VB: S_SendCOM(ByVal com As Integer, ByVal buffer As String) As Long

Sends a the contents of a "0" terminated string, Buffer, to com port number "com" and waits for a reply
that should contain at least the end-of-message character string as defined in S_SetEndStr. Buffer should
be large enough to contain the outgoing and incoming messages. The reply will replace the contents of
Buffer. If no reply arrives within 2 seconds, error -94 will be returned. The short integer parameter "com"
can take the values 1 through 4 (for COM1 through COM4). The routine returns a negative value upon
error.
example:
Dim command As String * 64
command = Chr$(10)
ret = S_EndStr(command)
command = "Oh sole mio " + Chr$(10)
ret = S_SetCOM(9600, 0, 2, 8) ' baudrate 9600, no parity, 2 stopbits, bytesize 8
ret = S_SendCOM(2, command)' send something useless to COM2 and wait for reply

C: int S_WriteCOM(short com, char* buffer, short wait)
VB: S_WriteCOM (ByVal com As Integer, ByVal command As String, ByVal wait As Integer) As Long

This function opens the com port "com" and writes the null terminated string. If "wait" equals 1, the port
remains open and is supposed to be closed by a subsequent call to S_WaitForReplyCOM. If "wait" equals
0, the port will be closed and any reply will be ignored. The short integer parameter "com" can take the
values 1 through 4 (for COM1 through COM4). The routine returns a negative value upon error. This
function may be used either to write something to a serial port without expecting a reply or to write first
something to the serial port, handle some other tasks and then check for a reply. The latter is useful to
control slow devices, so the program has not to idle while waiting for a reply.

C: int S_WaitForReplyCOM (short com, char* buffer)
VB: S_WaitForReplyCOM(ByVal com As Integer, ByVal buffer As String) As Long

This function is used in conjunction with the S_WriteCOM function. After the serial port "com" has been
opened by    S_WriteCOM it waits for a reply. The char string "buffer" should be large enough to hold the
reply, which should be terminated by the "endstr" as defined by a call to    S_SetEndStr. The short integer
parameter "com" can take the values 1 through 4 (for COM1 through COM4). The routine returns a
negative value upon error.
example:
Dim command As String * 64
command = Chr$(13)
ret = S_EndStr(command)
command = "something" + Chr$(13)
ret = S_SetCOM(9600, 0, 2, 8) ' baudrate 9600, no parity, 2 stopbits, bytesize 8
ret = S_WriteCOM(2,command,1) ' send something to COM2
ret = some_other_function() ' do something else
ret = S_WaitForReplyCOM (2, command) ' wait for reply

