
1. Scope of Testing

A strategy for testing integrates software test case design techniques into a well-planned series of steps that result
in the successful construction of software. As importantly, a software testing strategy provides a road map for the
software developer, the quality assurance organization, and the customer -- a road map that describes the steps to be
conducted as part of testing, when these steps are planned and then undertaken, and how much effort, time, and
resources will be required. Therefore, any testing strategy must incorporate test planning, test case design, test

execution and the resultant data collection and evaluation.

- R. Pressman.

2. Test Plan

The overall test plan build is incremental in nature and the group has identified 6 distinct phases of module
testing. Since the nature of the DCG is rather sequential, the various modules will be tested as shown in table 2.1.

Phase Modules Involved Tests Planned

1 UCP User Command Parser Tests

2 UCP, LWP Line/Word Parser Tests

3 UCP, LWP, SWM Skip-Word Module Tests

4 UCP, LWP, SWM, SB Structure Builder Tests

5 UCP, LWP, SWM, SB, OF Output Formatter Tests

6 DCG Black Box Tests

Table 2.1

2.2 Schedule

The start of each module testing begins at the completion of each module, during the writing of the DCG. Upon
completion of the module testing the Black Box testing begins. The testing is completed only at the end of the project.

2.3 Overhead Software

The groups unfamiliarity with test benches, stubs, and drivers for the ada compiler leads us to use only the ada
compiler's strong type checking and the extensive use of print statements to trace the progress of the component
functionality.

2.4 Environment and Resources

The environment for testing is the Unix based Sun Sparc workstations with the ada compiler. Resources
include the past documents Generated by the group in the Engineering process of the DCG.

3. Test Procedure: Build n

3.1 Order of Integration

The overall test plan integration is incremental in nature and the group has identified 6 distinct phases of
module integration. Since the nature of the DCG is rather sequential, the various modules will be integrated as
shown in table 3.1.

Phase Modules Involved Tests Planned

1 UCP User Command Parser Tests

2 UCP, LWP Line/Word Parser Tests

3 UCP, LWP, SWM Skip-Word Module Tests

4 UCP, LWP, SWM, SB Structure Builder Tests

5 UCP, LWP, SWM, SB, OF Output Formatter Tests

6 DCG Black Box Tests

Table 3.1

3.1.1 Purpose

The purpose of the integration strategy is to insure each phase of the software development is working
correctly before the next step is undertaken. This is an attempt to reduce the complexity of errors found and thus
reducing the overall length of time it takes to produce the completed software package.

3.1.2 Modules to be Tested

The modules to test are the User Command Parser, the Line/Word Parser, the Skip Word module, the
Structure Builder module, and the Output Formatter Module.

These modules would all be included in the test plan if it were to be completed; however, this document is just
being expanded for a few modules to demonstrate the use of the test plan.

3.2 Unit Tests For Modules in Build

Test Class Test Description

User Command Parser Tests Echo Command Line

Parameter Count

Echo Usage Message

Check Existing Output Filename

Open Text File

Open Skip Word File

Echo Skip Words

Line/Word Parser Echo Line

Echo Word

Hyphenation Recognition

Punctuation Recognition

Line Count

Word Count

Skip Word Module Tests Identification of Skip Words

Echo Return Value

Structure Builder Tests Incremental Structure Printout

Maximum Size

Output Formatter Tests Title Page

Output Contents

Page Layout

Black Box Tests Compare to Hand Generated Concordances

"Test1.txt"

"Test2.txt"

"Test*.txt"

Table 3.2

3.2.1 Description of Tests for Module m

Phase 1:
Test Class Test Description

User Command Parser Tests Echo Command Line

Parameter Count

Echo Usage Message

Check Existing Output Filename

Open Text File

Open Skip Word File

Echo Skip Words

Table 3.2.1.1

The tests listed in table 3.2.1.1 are the tests to be run on this module. The echo command line is used to test the
ArgV function to insure the commands can be taken from the command line to be used for opening files. The echo
parameter count is used to check the number of arguments taken from the command these numbers are used to output
usage messages when the command line is incorrectly used. Echo usage message is tested by putting in an incorrect

number of arguments on the command line to see if the correct usage message is output or that no message is
output when the number of arguments are correct. Check for existing Output file name this is used to see if the
output file name received already exists in the director the program resides in to prevent over writing an existing file.
Open text file can be tested with the open skip word file since both files are text type. Echo skip words is the next
step in testing if a file can be opened in that if the skip words from the skip word file are echoed to the screen then

the file must be open.

Phase 2:
Test Class Test Description

Line/Word Parser Echo Line

Echo Word

Hyphenation Recognition

Punctuation Recognition

Line Count

Word Count

Table 3.2.1.2

This module was not expanded on since the test document is for demonstration purposes.

Phase 3:
Test Class Test Description

Skip Word Module Tests Identification of Skip Words

Echo Return Value

Table 3.2.1.3

This module has only two simple tests. First, to see if words passed to the module that are on the list return a
True (skip it) or words not on the list return a False (don't skip it). The next step is to see if the correct return value
is received by the calling function this can be done by printing the word and value immediately upon returning to
the calling function.

Phase 4:
Test Class Test Description

Structure Builder Tests Incremental Structure Printout

Maximum Size

Table 3.2.1.4

This module was not expanded on since the test document is for demonstration purposes.

Phase 5:
Test Class Test Description

Output Formatter Tests Title Page

Output Contents

Page Layout

Table 3.2.1.5

This module was not expanded on since the test document is for demonstration purposes.

Phase 6:
Test Class Test Description

Black Box Tests Compare to Hand Generated Concordances

"Test1.txt"

"Test2.txt"

"Test*.txt"

Table 3.2.1.6

The Black Box testing begins upon the completion of the earlier integration steps. By taking known text files
and passing them to the DCG then comparing them to the expected hand generated concordance is the final step in
testing. Any errors found at this point should be minor; however, if errors are found and corrected the integration
phase in which the module corrected was integrated should be the location unit testing is resumed at (i.e. if a
problem was found in the skip module testing would resume in phase 3 and continue through each additional phase.

3.2.2 Overhead Software Description

The groups unfamiliarity with test benches, stubs, and drivers for the ada compiler leads us to use only the ada
compiler's strong type checking and the extensive use of print statements to trace the progress of the component
functionality.

3.2.3 Expected Results

Incorporated into section 3.4.

3.3 Test Environment

The environment for testing is the Unix based Sun Sparc workstations with the ada compiler.

3.3.1 Special Tools or Techniques

Use of the ada compiler's strong type checking and extensive use of print statements to trace the progress of the
component functionality are the only techniques used in the module testing.

3.3.2 Overhead Software Description

The groups unfamiliarity with test benches, stubs, and drivers for the ada compiler leads us to use only the ada
compiler's strong type checking and the extensive use of print statements to trace the progress of the component
functionality.

3.4 Test Case Data

Phase 1:
Test Class Test Description

User Command Parser Tests Echo Command Line

Parameter Count

Echo Usage Message

Check Existing Output Filename

Open Text File

Open Skip Word File

Echo Skip Words

Table 3.4.1

The tests for the user command parser are listed in table 4.1. For the echo command line test the DCG is initiated
with an input file name and an output file name which are echoed to the screen. For the parameter count test
various numbers of arguments are placed on the command line and the number of parameters are echoed to the screen.
For the echo usage message test various numbers of parameters are entered on the command line and fewer then 3
produces a not enough parameters message along with the usage, 3 produces an echo of the input and output file names,
and more than 3 produces a too many parameters message along with the usage message. To check for the
existence of an output file put a filename in the output file parameter location that currently exists in the current directory
and a file already exists message should be raised; if a new file name is used no message should be echoed to the screen.
The open skip file and echo skip words tests can be incorporated together since a good test if a file has been
opened is to print out it's contents to the screen. The skip file is input and when the dcg is invoked then the words
pulled from the skip list file are printed to the screen.

Sample input and output echo command line test:

dcg Infile.txt Outfile.txt The input file is Infile.txt
The output file is Outfile.txt

Sample input and output for the parameter count:

dcg Infile.txt Outfile.txt The parameter count is 3
dcg Infile.txt The parameter count is 2
dcg Infile.txt Skipfile.txt Outfile.txt The parameter count is 4

Sample input and output for the usage message:

dcg Infile.txt Outfile.txt The input file is Infile.txt
The output file is Outfile.txt

dcg Infile.txt Not enough parameters.
usage: dcg <InputFileName> <OutputFileName>

dcg Infile.txt Skipfile.txt Outfile.txt Too many parameters.
usage: dcg <InputFileName> <OutputFileName>

dcg Not enough parameters.
usage: dcg <InputFileName> <OutputFileName>

Sample input and output for checking for existence of Output file:

dcg Infile.txt Outfile.txt Output file name is valid.

dcg Infile.txt Infile.txt The output file already exists.

Sample input skip word list:

a an the else of but is are not to that from it
its itself in out very most it's also

Echoed output to screen from skip word list:

a
an

 the
 else

of
but
is
are

 not
to
that
from
it
its
itself
in
out
very
most
it's
also

Test Class Test Description Test O.K.

User Command Parser Tests Echo Command Line

Parameter Count

Echo Usage Message

Check Existing Output Filename

Open Text File

Open Skip Word File

Echo Skip Words

Table 4.1

Phase 2:
Test Class Test Description

Line/Word Parser Echo Line

Echo Word

Hyphenation Recognition

Punctuation Recognition

Line Count

Word Count

Table 3.4.2

This module was not expanded on since the test document is for demonstration purposes.

Test Class Test Description Test O.K.

Line/Word Parser Echo Line

Echo Word

Hyphenation Recognition

Punctuation Recognition

Line Count

Word Count

Table 4.2

Phase 3:
Test Class Test Description

Skip Word Module Tests Identification of Skip Words

Echo Return Value

Table 3.4.3

For tests on the skip word module every word contained in the skip word list should be passed to the module and
the value returned for each should be true. Then for any words not contained in the list the value of false should be
returned.

Sample input words from the standard skip list file:

a an the else of but is are not to that from it
its itself in out very most it's also

Return value to be printed out :

True - the word was skipped

Return value for other words to be printed out:

False - the word was not skipped

Test Class Test Description Test O.K.

Skip Word Module Tests Identification of Skip Words

Echo Return Value

Table 4.3

Phase 4:
Test Class Test Description

Structure Builder Tests Incremental Structure Printout

Maximum Size

Table 3.4.4

This module was not expanded on since the test document is for demonstration purposes.

Test Class Test Description Test O.K.

Structure Builder Tests Incremental Structure Printout

Maximum Size

Table 3.4

Phase 5:
Test Class Test Description

Output Formatter Tests Title Page

Output Contents

Page Layout

Table 3.4.5

This module was not expanded on since the test document is for demonstration purposes.

Test Class Test Description Test O.K.

Output Formatter Tests Title Page

Output Contents

Page Layout

Table 4.5

Phase 6:
Test Class Test Description

Black Box Tests Compare to Hand Generated Concordances

"Test1.txt"

"Test2.txt"

"Test*.txt"

Table 3.4.6

Tests include input files with known concordance structures to test the functionality of the modules in files named
Test*.txt and the known outputs are in Test*.out files. The DCG should be tested for an input file with standard text, a
text file with only words from the standard skip word list, a file with multiple pages of just a single word, and a multiple
page document where each page is the same to determine if the line page functions work correctly.

Sample input text file:

A strategy for testing integrates software test case design techniques into a well-planned series of steps that
result in the successful construction of software. As importantly, a software testing strategy provides a road map for
the software developer, the quality assurance organization, and the customer -- a road map that describes the steps
to be conducted as part of testing, when these steps are planned and then undertaken, and how much effort, time, and
resources will be required. Therefore, any testing strategy must incorporate test planning, test case design, test

execution and the resultant data collection and evaluation.

Expected output file:

any
line: 6 page:4

assurance
line: 3 page: 1

case
line: 1 page: 1
line: 6 page: 1

collected
line: 7 page: 1

conducted
line: 4 page: 1

constructed
line: 2 page: 1

customer
line: 4 page:1
...

undertaken
line: 5 page: 1

Sample input text file:

a an the else of but is are not to that from it
its itself in out very most it's also

Expected output file:

All the words in the input file were contained in the skip word list.

Sample input text file:

hello hello hello hello hello
hello hello hello hello hello
hello hello hello hello hello
hello hello hello hello hello

...
hello hello hello hello hello

Expected output file:

hello
line: 1 page: 1
line: 2 page: 1
line: 3 page: 1
line: 4 page: 1
line: 5 page: 1

...
line: 59 page: 3

Test Class Test Description Test O.K.

Black Box Tests Compare to Hand Generated Concordances

"Test1.txt"

"Test2.txt"

"Test*.txt"

Table 4.6

3.5 Expected Results for Build n

 Incorporated into section 3.4.

4. Actual Test Results

Incorporated into section 3.4.

5. References

Document Concordance Generator - Design Specification
by: Eric Brickner and Chris Blanchard

Software Engineering - A Practitioner's Approach
by: Roger S. Pressman

Software Test Plan - Outline and Requirements
by: Professor Carter

6. Appendices

None.

