
Ada LRM Reader

Richard Conn

SDD

80

7. Notes

Acronyms

Acronym Meaning

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DAF Direct Access File

I/O Input/Output

OID Object Interaction Diagram

SDD Software Design Document

SDP Software Development Plan

SRS Software Requirements Specification

STD State Transition Diagram

SUM Software User’s Manual

Ada LRM Reader

Richard Conn

SDD

79

6. Requirements traceability

The following Requirements Traceability Matrix provides a mapping between the SRS and this SDD:

SRS Section SDD Sections

3.1 3.2.8

3.2 3.2.6

3.2.1 3.2.6 3.2.9 3.2.10

3.2.2 3.2.6 3.2.11

3.2.3 3.2.6 3.2.9 3.2.10

3.2.4 3.2.6 3.2.9 3.2.10

3.2.5 3.2.6

3.3 3.2.1 3.2.2 3.2.8 3.2.11

3.4 3.2.2 3.2.7 3.2.8 3.2.11

3.5 3.2.4 3.2.8

3.5.1 3.2.4

3.5.2 Implementation not required

3.6 3.2.2 3.2.3 3.2.5 3.2.7

3.7 3.2.6

3.8 3.2.8

3.9 Implementation not required

Ada LRM Reader

Richard Conn

SDD

78

5.3. *.daf Files

The *.daf files correspond to the *.doc files, but the information the *.daf files contains is in a DAF record struc�

ture to facilitate random access and reduced overhead in the screen display functions. Each record in the *.daf

files is of type LINE, defined as:

type LINE_TYPE is (NORMAL, SECTION, UNUSED);

type LINE is record

 Str : STRING (1 .. SYSDEP.Screen_String_Length);

 Str_Last : NATURAL := 0; -- index of last char in Str

 Kind : LINE_TYPE := NORMAL;

end record;

LINE records in the *.daf files have only two values in their Kind fields: (1) SECTION, which indicates that this

line starts a new section, or citation, of the Ada LRM, and (2) NORMAL, which indicates that this line is simply a

part of the current section, or citation.

Since the *.doc files contained an excessive number of blank lines, the Make_DAF Procedure looks for dupli�

cation in sequence of blank lines and removes groups larger than 3, leaving the *.daf files with much fewer

blank records.

5.4. lrm.log File

The lrm.log file is composed of ASCII text lines, ranging in length from 0 to 80 characters. It contains groups of

text: (1) the text of one or more entire citations and (2) the text of one or more single screens from one or more

citations. Prologues are placed into the lrm.log file before each citation or screen. The prologue for an entire

citation looks like this:

--

-- Citation: 4.1

The prologue for a single screen of a citation looks like this:

--

-- Citation: 4.1

-- Screen Number: 2

The entries in the lrm.log file are derived from the citations in the *.daf files in response to the user issuing

PRINT and PS commands.

Ada LRM Reader

Richard Conn

SDD

77

5. CSCI data files

5.1. Data file to CSC/CSU cross reference

The following table shows the classes of data files used in the Ada LRM Reader and the CSCs associated with

them. Note that DAF stands for Direct Access File.

Data File Associated CSCs Relationship

*.doc Input_File Package Input_File reads the *.doc files

*.daf DAF_Handler Package DAF_Handler creates and reads the *.daf files

lrm.log Print_Log_Handler Package Print_Log_Handler creates the lrm.log file

5.2. *.doc Files

The *.doc files are ASCII text files. The lines of these files vary in length from 0 to 102 characters (determined

by examination). If they are in the UNIX file format, each line is terminated by a line feed character. If they are in

the MSDOS file format, each line is terminated by a carriage return/line feed pair. If they are in the VAX/VMS file

format, each line is not terminated.

The *.doc files comprise the source text to the Ada LRM and to the HELP and ABOUT citations. The following

table lists these files by name. Note that under UNIX, all file names must be lower-case.

Chapters Appendices Special HELP and ABOUT

chap01.doc chapaa.doc cahpco.doc chaphe.doc

chap02.doc chapab.doc chapfo.doc chapxx.doc

chap03.doc chapac.doc chapin.doc

chap04.doc chapad.doc chappo.doc

chap05.doc chapae.doc

chap06.doc chapaf.doc

chap07.doc

chap08.doc

chap09.doc

chap10.doc

chap11.doc

chap12.doc

chap13.doc

chap14.doc

As delivered from the Ada Software Repository, these *.doc files contain page numbers and an excessive

number of blank lines. The *.doc files have been modified to remove the page numbers.

Ada LRM Reader

Richard Conn

SDD

76

Objects of the types CITATION_STATISTICS and SEARCH_STATUS are returned by various subprograms in

this package.

4.6. Print_Log_Handler Exported Types, Data, and Exceptions

The following Ada code fragments show the detail of the type, data, and exceptions exported by the package

Primitive_Citation_Handler.

PRINT_LOG_CREATION_ERROR : exception;

4.7. Other CSCs

The other CSCs in the Ada LRM Reader do not export types, data, or exceptions. These CSCs are:

1. Command_Dispatcher

2. Citation_Handler

3. LRM_Reader

4. Make_Cit

5. Make_DAF

Ada LRM Reader

Richard Conn

SDD

75

4.4. Screen_Display_Controller Exported Types, Data, and Exceptions

The following Ada code fragments show the detail of the type, data, and exceptions exported by the package

Screen_Display_Controller.

type ERROR_MESSAGE_ID is (INVALID_COMMAND,

 CANNOT_ADVANCE, CANNOT_BACK,

 STACK_EMPTY, STACK_FULL,

 PRINT_LOG,

 TOO_MANY_SCREENS,

 SEARCH_STRING,

 DAF_NOT_FOUND,

 INTERNAL_DAF_NDFO_ERROR,

 INTERNAL_DAF_RE_ERROR,

 INTERNAL_DAF_SO_ERROR,

 INTERNAL_DAF_UE_ERROR,

 UNEXPECTED_ERROR);

type SCREEN_BUFFER is array (NATURAL’(1)..SYSDEP.Text_Line_Count) of

 DAF_Handler.LINE;

type SCREEN_BUFFER_POINTER is access SCREEN_BUFFER;

The body of package Screen_Display_Controller contains an array indexed by ERROR_MESSAGE_ID that

contains the text of the error messages. All error messages issued by the Ada LRM Reader CSCI are spelled

out in the body of this package, so this is the one location to which all error messages may be tracked.

4.5. Primitive_Citation_Handler Exported Types, Data, and Exceptions

The following Ada code fragments show the detail of the type, data, and exceptions exported by the package

Primitive_Citation_Handler.

subtype SEARCH_STRING is STRING (1 .. SYSDEP.Screen_String_Length);

-- Statistics on the current citation

type CITATION_STATISTICS is record

 ID : Citation_Definition.CITATION_ID;

 Current_Screen_Number : NATURAL;

 Total_Number_of_Screens : NATURAL;

 Stack_Level : NATURAL;

 Search_Str : SEARCH_STRING;

 Search_Last : NATURAL; -- index of last char in Search_Str

 Search_May_Be_Continued : BOOLEAN;

end record;

-- Status of a search request

type SEARCH_STATUS is record

 Is_Found : BOOLEAN; -- TRUE if string was found

 Found_on_Screen : NATURAL; -- if found, screen string was found on

 Found_on_Line : NATURAL; -- if found, line string was found on

end record;

SCREEN_COUNT_OVERFLOW : exception;

 -- raised if number of screens exceeds SYSDEP.Max_Number_of_Screens

Ada LRM Reader

Richard Conn

SDD

74

 PS => (" ", 1, 1),

 NEXT => (" ", 1, 1),

 PREVIOUS => (" ", 1, 1),

 PAUSE => (" ", 1, 1),

 PUSH => (" ", 1, 1),

 POP => (" ", 1, 1),

 SEARCH_FIRST => (" ", 1, 1),

 SEARCH_NEXT => (" ", 1, 1),

 REFRESH => (" ", 1, 1),

 QUIT => (" ", 1, 1)

);

end Citation_Definition;

Adaptation Information

The CITATION_ID called CONTENTS is always the successor to the last of the "sequential" citations. That is,

the user may advance sequentially from the first citation to the citation before CONTENTS, but an attempt to

advance beyond the citation before CONTENTS is not allowed. If this tool is adapted to work with different data

files, following this convention will reduce the changes required.

4.3. DAF_Handler Exported Types, Data, and Exceptions

The following Ada code fragments show the detail of the type, data, and exceptions exported by the package

DAF_Handler.

type LINE_TYPE is (NORMAL, SECTION, UNUSED);

type LINE is record

 Str : STRING (1 .. SYSDEP.Screen_String_Length);

 Str_Last : NATURAL := 0; -- index of last char in Str

 Kind : LINE_TYPE := NORMAL;

end record;

subtype LINE_NUMBER is NATURAL range 1 .. NATURAL’LAST;

subtype DAF_ID is NATURAL range 0 .. SYSDEP.Citation_Stack_Depth;

DAF_CREATION_ERROR : exception;

FILE_NOT_FOUND : exception;

NO_DAF_OPEN : exception;

READ_ERROR : exception;

WRITE_ERROR : exception;

STACK_OVERFLOW : exception;

UNEXPECTED_ERROR : exception;

See the full specification of the package DAF_Handler in Section 4 of this SDD to see further details on how

these types and exceptions are used.

Ada LRM Reader

Richard Conn

SDD

73

 C1P6 => ("01", 522, 582),

 C2 => ("02", 24, 38),

 C2P1 => ("02", 39, 130),

 C2P2 => ("02", 131, 209),

 C2P3 => ("02", 210, 241),

 C2P4 => ("02", 242, 258),

 C2P4P1 => ("02", 259, 301),

 C2P4P2 => ("02", 302, 349),

 C2P5 => ("02", 350, 367),

 C2P6 => ("02", 368, 419),

 C2P7 => ("02", 420, 448),

 C2P8 => ("02", 449, 529),

 C2P9 => ("02", 530, 569),

 C2P10 => ("02", 570, 621),

 -- detail omitted

 C14 => ("14", 1, 16),

 C14P1 => ("14", 17, 131),

 C14P2 => ("14", 132, 169),

 C14P2P1 => ("14", 170, 322),

 C14P2P2 => ("14", 323, 374),

 C14P2P3 => ("14", 375, 441),

 C14P2P4 => ("14", 442, 530),

 C14P2P5 => ("14", 531, 611),

 C14P3 => ("14", 612, 715),

 C14P3P1 => ("14", 716, 757),

 C14P3P2 => ("14", 758, 824),

 C14P3P3 => ("14", 825, 892),

 C14P3P4 => ("14", 893, 1162),

 C14P3P5 => ("14", 1163, 1293),

 C14P3P6 => ("14", 1294, 1391),

 C14P3P7 => ("14", 1392, 1514),

 C14P3P8 => ("14", 1515, 1686),

 C14P3P9 => ("14", 1687, 1802),

 C14P3P10 => ("14", 1803, 2063),

 C14P4 => ("14", 2064, 2140),

 C14P5 => ("14", 2141, 2160),

 C14P6 => ("14", 2161, 2200),

 C14P7 => ("14", 2201, 2264),

 CA => ("aa", 24, 506),

 CB => ("ab", 23, 175),

 CC => ("ac", 24, 320),

 CD => ("ad", 24, 432),

 CE => ("ae", 4, 777),

 CF => ("af", 21, 61),

 CONTENTS => ("co", 1, 284),

 FOREWARD => ("fo", 1, 81),

 INDEX => ("in", 1, 5833),

 POSTSCRIPT => ("po", 1, 90),

 HELP => ("he", 1, 38),

 ABOUT => ("xx", 1, 12),

 ERROR => (" ", 1, 1),

 N => (" ", 1, 1),

 P => (" ", 1, 1),

 USER_INPUT => (" ", 1, 1),

 PRINT => (" ", 1, 1),

Ada LRM Reader

Richard Conn

SDD

72

 C14P2P3,

 C14P2P4,

 C14P2P5,

 C14P3,

 C14P3P1,

 C14P3P2,

 C14P3P3,

 C14P3P4,

 C14P3P5,

 C14P3P6,

 C14P3P7,

 C14P3P8,

 C14P3P9,

 C14P3P10,

 C14P4,

 C14P5,

 C14P6,

 C14P7,

 CA,

 CB,

 CC,

 CD,

 CE,

 CF,

 CONTENTS,

 FOREWARD,

 INDEX,

 POSTSCRIPT,

 HELP,

 ABOUT,

 ERROR,

 -- Commands for immediate execution

 N, P,

 USER_INPUT, PRINT, PS,

 NEXT, PREVIOUS, PAUSE, PUSH, POP,

 SEARCH_FIRST, SEARCH_NEXT, REFRESH,

 QUIT

);

 type CITATION_LOCATION is record

 Chapter : STRING(1..2);

 Start : DAF_Handler.LINE_NUMBER;

 Stop : DAF_Handler.LINE_NUMBER;

 end record;

 type CITATION_LOCATION_VECTOR is array (CITATION_ID) of CITATION_LOCATION;

 CLV : constant CITATION_LOCATION_VECTOR := (

 C1 => ("01", 23, 46),

 C1P1 => ("01", 47, 55),

 C1P1P1 => ("01", 56, 120),

 C1P1P2 => ("01", 121, 144),

 C1P2 => ("01", 145, 177),

 C1P3 => ("01", 178, 253),

 C1P4 => ("01", 254, 430),

 C1P5 => ("01", 431, 521),

Ada LRM Reader

Richard Conn

SDD

71

 Total_Number_of_Citations : constant := 230; -- citations in all files

 -- based on a count of the citations in all files;

 -- you should not have to change this

 Max_Number_of_Screens : constant := 6000/(Text_Line_Count) + 1;

 -- based on number of lines in largest file (chapin.doc);

 -- you should not have to change this

 subtype COPYRIGHT_STRING is STRING (1..60);

 type COPYRIGHT_NOTICE is array (NATURAL range <>) of COPYRIGHT_STRING;

 Full_Copyright_Notice : constant COPYRIGHT_NOTICE := (-- detail omitted

);

 Intro_Copyright_Notice : constant COPYRIGHT_NOTICE := (-- detail omitted

);

end SYSDEP;

4.2. Citation_Definition Package Specification

The following is an abbreviated version of the specification of package Citation_Definition (generated by the

Make_Cit Procedure as the file CIT.ADA). The details of package Citation_Definition may vary somewhat in

later versions of the Make_Cit CSC, but the basic structure of the Citation_Definition Package CSC can be

clearly studied from the following listing:

with DAF_Handler;

package Citation_Definition is

 type CITATION_ID is (

 C1,

 C1P1,

 C1P1P1,

 C1P1P2,

 C1P2,

 C1P3,

 C1P4,

 C1P5,

 C1P6,

 C2,

 C2P1,

 C2P2,

 C2P3,

 C2P4,

 C2P4P1,

 C2P4P2,

 C2P5,

 C2P6,

 C2P7,

 C2P8,

 C2P9,

 C2P10,

 -- detail omitted

 C14,

 C14P1,

 C14P2,

 C14P2P1,

 C14P2P2,

Ada LRM Reader

Richard Conn

SDD

70

4. CSCI data

4.1. SYSDEP Package

The SYSDEP (System Dependencies) Package is as follows:

package SYSDEP is

-- System Dependencies Package

 LRM_Files_Directory : constant STRING :=

 "/ada2_home/local/reader/ada_lrm/"; -- GE

 -- "/usr/local/swengrg/reader/ada_lrm/"; -- UC

 -- "c:\reader\ada_lrm\"; -- PC

 -- name of the directory containing the LRM DAF files "chapxx.daf";

 -- be sure to follow this directory name with a separator so the

 -- file name may be appended to it

 Program_Name : constant STRING :=

 "Ada LRM Reader 2.0";

 -- this will appear on the prompt line

 Print_File_Name : constant STRING :=

 "lrm.log";

 -- this will be created in the user’s local directory

 Citation_Stack_Depth : constant := 20; -- citations

 -- maximum number of citations which may be PUSHed;

 -- you should not have to change this

 -- These values are set for a VT100 terminal and should not have to be

 -- changed

 Screen_Width : constant := 75; -- chars

 -- maximum number of characters that can be displayed on a line

 -- without wrap; this is set to allow right and left margins and

 -- markers you should not have to change this

 Text_Line_Count : constant := 22; -- lines

 Command_Line_Number : constant := 23; -- line number

 Error_Message_Line_Number : constant := 24; -- line number

 Screen_String_Length : constant := 78; -- characters

 Search_Pointer_Column : constant := 79; -- column number

 -- Line count, line numbers, and column numbers for VT100 display

 -- you should not have to change this

 -- These values are picked up from an examination of the text files

 -- of the Ada LRM; they represent a slight increase over the values

 -- actually determined from the examination in order to allow for

 -- a minor growth.

 Max_String_Length : constant := 110; -- chars

 -- for command line and file line input;

 -- you should not have to change this

 Max_Number_of_Citations : constant := 40; -- citations per file

 -- based on number of citations in each file;

 -- you should not have to change this

Ada LRM Reader

Richard Conn

SDD

69

3.2.11.3. Close_Print_Log Procedure

The algorithm for this subprogram is:

Start

close Print_Log file if open

Screen_Display_Controller.Print_Log_File_Closed_Message

3.2.12. Non-Developmental CSCs

The non-developmental CSCs are reused from the CS Parts and the standard Ada environment. They are not

listed in detail here since information on them may be readily obtained from the sources identified in the refer�

ences.

The CSCs from the CS Parts are:

1. CLI Package

2. Console Package

3. Input_File Package

4. Output_File Package

The CSCs from the standard Ada environment are:

1. System Package

2. Direct_IO Package

3. Unchecked_Conversion Function

Ada LRM Reader

Richard Conn

SDD

68

Screen_Display_Controller

Output_File

Internal Global Code, Types, and Objects

This package contains no internal global code, types, or objects.

3.2.11.1. Print_Current_Citation Procedure

The algorithm for this subprogram is:

Start

open the Print_Log file

if not already opened

print a banner to

the Print_Log file

Primitive_Citation_Handler.Suspend

copy the entire citation to

the Print_Log file

Primitive_Citation_Handler.Resume

3.2.11.2. Print_Current_Screen Procedure

The algorithm for this subprogram is:

Start

open the Print_Log file

if not already opened

print a banner to

the Print_Log file

Primitive_Citation_Handler.Suspend

copy the current screen to

the Print_Log file

Primitive_Citation_Handler.Resume

Ada LRM Reader

Richard Conn

SDD

67

Print_Citation

Print_Current_Screen

Close_Print_Log

Print_Log_Handler

PRINT_LOG_CREATION_ERROR

In this OID symbol, the long ovals represent exceptions and the small rectangles represent subprograms.

CSC Specification

-- ***

-- ON-LINE Ada LANGUAGE REFERENCE MANUAL

-- by Richard Conn

package Print_Log_Handler is

-- Abstract state machine for manipulating the Print Log File

 PRINT_LOG_CREATION_ERROR : exception;

 procedure Print_Citation;

 -- Print current citation to log file

 procedure Print_Current_Screen;

 -- Print current screen to log file

 procedure Close_Print_Log;

 -- Close log file and display message to user

end Print_Log_Handler;

Required Program Units

No program units are withed by the specification. The following program units are withed by the body:

SYSDEP

Citation_Definition

DAF_Handler

Primitive_Citation_Handler

Ada LRM Reader

Richard Conn

SDD

66

3.2.10.16. Access_Screen Function

The algorithm for this subprogram is:

Start

convert SBuffer’ADDRESS to SCREEN_BUFFER_POINTER

return SCREEN_BUFFER_POINTER

3.2.11. Print_Log_Handler Package

The Print_Log_Handler Package implements a passive object which creates and places entries in the Print

Log File.

Mapping to Requirements

This CSC meets requirements in the following sections of the SRS: 3.2.2 (the capability to print citations), 3.3

(Print Log File), and 3.4 (Print Log File).

Design

The Print_Log_Handler Package presents the following sets of methods, types, data, and exceptions in its

interface:

Ada LRM Reader

Richard Conn

SDD

65

3.2.10.14. Suspend Procedure

The algorithm for this subprogram is:

Start

Is File_ID valid and

is File_ID open?

close Cur_Cit.File_ID

Yes

set internal Suspend_Flag to TRUE

No

3.2.10.15. Resume Procedure

The algorithm for this subprogram is:

Start

Is Suspend_Flag TRUE?

open Cur_Cit.File_ID

call Load_Screen_Buffer

set internal Suspend_Flag to FALSE

Yes

No

Done

Ada LRM Reader

Richard Conn

SDD

64

3.2.10.12. Current_Citation Function

The algorithm for this subprogram is:

Start

return CITATION_STATISTICS of Cur_Cit:

 ID

 Current_Screen

 Number_Screens

 Citation_Index (stack depth)

 Search_Str and Search_Last

and

 Search_May_Be_Resumed flag

3.2.10.13. Close_All_Open_Citations Procedure

The algorithm for this subprogram is:

Start

close each File_ID on the

Citation_Stack

Ada LRM Reader

Richard Conn

SDD

63

3.2.10.11. Search_Next Function

The algorithm for this subprogram is:

Start

Is String argument

empty?

Set Search_Str to String argument

No

Yes

search from next line of Cur_Cit if Search_May_Be_Resumed,

else search from 1st line of current screen

String Found?

set Cur_Cit.Search_May_Be_Resumed

to TRUE

set Cur_Cit.Resume _on_Line

return result of search

Yes

No

Ada LRM Reader

Richard Conn

SDD

62

3.2.10.10. Search_First Function

The algorithm for this subprogram is:

Start

Is String argument

empty?

Set Search_Str to String argument

No

Yes

search from 1st line of

Cur_Cit

String Found?

set Cur_Cit.Search_May_Be_Resumed

to TRUE

set Cur_Cit.Resume _on_Line

return result of search

Yes

No

Ada LRM Reader

Richard Conn

SDD

61

3.2.10.9. Previous_Citation Function

The algorithm for this subprogram is:

Start

OK to back up to

Previous Citation?

Open_New_Citation(PRED)

call Load_Screen_Buffer

return TRUE

return FALSE

No Yes

Ada LRM Reader

Richard Conn

SDD

60

3.2.10.7. Previous_Screen Function

The algorithm for this subprogram is:

Start

Is Cur_Cit.Current_Screen > 1?

No

Decrement Cur_Cit.Current_Screen

call Load_Screen_Buffer

return TRUE

Yes

OK to back up to

Previous Citation?

return FALSE

No

Yes

Open_New_Citation (PRED)

Cur_Cit.Current_Screen =

Cur_Cit.Number_Screens

3.2.10.8. Next_Citation Function

The algorithm for this subprogram is:

Start

OK to advance to

Next Citation?

Open_New_Citation(SUCC)

call Load_Screen_Buffer

return TRUE

return FALSE

No Yes

Ada LRM Reader

Richard Conn

SDD

59

3.2.10.6. Next_Screen Function

The algorithm for this subprogram is:

Start

Is Cur_Cit.Current_Screen

< Cur_Cit.Number_Screens?

return Next_Citation

No

Increment Cur_Cit.Current_Screen

call Load_Screen_Buffer

return TRUE

Yes

Ada LRM Reader

Richard Conn

SDD

58

3.2.10.5. Load_Screen_Buffer Procedure

The algorithm for this subprogram is:

Start

determine Start and Stop record

numbers of Cur_Cit.Current_Screen

position to Start record and read

into SBuffer(1)

sequentially read rest of records

into SBuffer

mark any remaining lines in

SBuffer as UNUSED

set Cur_Cit.Search_May_Be_Resumed

flag to FALSE

Ada LRM Reader

Richard Conn

SDD

57

3.2.10.3. Push Function

The algorithm for this subprogram is:

Start

Is Stack full?

return FALSE

Yes

copy Cur_Cit onto

Citation_Stack

No

set Cur_Cit.File_ID = 0

for future checks on

Is_Open

increment

Citation_Index

return TRUE

3.2.10.4. Pop Function

The algorithm for this subprogram is:

Start

Is Stack Empty?

return FALSE

Yes

close Cur_Cit.File_ID if

it is open

No

decrement Citation_Index

restore Cur_Cit from

Citation_Stack

return TRUE

Ada LRM Reader

Richard Conn

SDD

56

3.2.10.2. Open_New_Citation Procedure

The algorithm for this subprogram is:

Start

Was Cur_Cit in use

and was it open?

Close Cur_Cit

Yes

No

Set Cur_Cit.ID

Open file and set Cur_Cit.File_ID

build array of screen display bounds for Cur_Cit

turn off Cur_Cit flag for

Search_May_Be_Resumed

copy Cur_Cit onto

Citation_Stack

Ada LRM Reader

Richard Conn

SDD

55

3.2.10.1. DAF_Name Function

The algorithm for this subprogram is:

Start

Is CLV.Chapter = " "?

return ""

Yes

return SYSDEP.LRM_Files_Directory &

"chap" & CLV.Chapter & ".daf"

No

Ada LRM Reader

Richard Conn

SDD

54

DAF_Handler

Internal Global Code, Types, and Objects

The following are global within the body:

-- Used to track the first and last line of each screen displayed

type SCREEN_BOUNDARIES is record

 First_Line : NATURAL := 0;

 Last_Line : NATURAL := 0;

end record;

-- First and last lines for a maximum number of screens

type CITATION_SCREEN_LIST is array (1..SYSDEP.Max_Number_of_Screens) of

 SCREEN_BOUNDARIES;

-- Information pertaining to each citation

type CITATION_STATE_INFORMATION is record

 ID : Citation_Definition.CITATION_ID;

 Current_Screen : NATURAL := 0;

 Number_Screens : NATURAL := 0;

 Screen_List : CITATION_SCREEN_LIST;

 Search_May_Be_Resumed : BOOLEAN := FALSE;

 Resume_on_Line : NATURAL;

 File_ID : DAF_Handler.DAF_ID := 0;

end record;

-- Stack of information on all citations selected

type CITATION_VECTOR is array (1..SYSDEP.Citation_Stack_Depth) of

 CITATION_STATE_INFORMATION;

-- The actual stack of citations

Citation_Stack : CITATION_VECTOR;

Citation_Index : NATURAL := 1;

-- The current citation we are working on

Cur_Cit : CITATION_STATE_INFORMATION;

-- The actual lines on the current screen

SBuffer : Screen_Display_Controller.SCREEN_BUFFER;

SBuffer_Last : NATURAL;

-- Flag used by suspend/resume routines

Suspend_Flag : BOOLEAN := FALSE;

-- Variables used by search routines

Search_Str : SEARCH_STRING;

Search_Last : NATURAL := 0;

Ada LRM Reader

Richard Conn

SDD

53

 -- Advance to the next screen, returning TRUE if done;

 -- if at last screen of current citation, advance to the first screen

 -- of the next citation

 -- Screen Buffer is loaded appropriately

 function Previous_Screen return BOOLEAN;

 -- Back up to the previous screen, returning TRUE if done;

 -- if at first screen of current citation, back up to last screen

 -- of previous citation

 -- Screen Buffer is loaded appropriately

 function Next_Citation return BOOLEAN;

 -- Advance to the first screen of the next citation, returning TRUE

 -- if done Screen Buffer is loaded appropriately

 function Previous_Citation return BOOLEAN;

 -- Back up to the first screen of the previous citation, returning TRUE

 -- if done

 -- Screen Buffer is loaded appropriately

 function Search_First (Item : in STRING) return SEARCH_STATUS;

 -- Search for the Item from the beginning of the citation;

 -- if Item is an empty string, resume search for last item requested

 function Search_Next (Item : in STRING) return SEARCH_STATUS;

 -- Resume search for Item from the next line in the citation;

 -- if Item is an empty string, resume search for last item requested

 function Current_Citation return CITATION_STATISTICS;

 -- Return the statistics on the current citation

 procedure Close_All_Open_Citations;

 -- Close all open citation files

 procedure Suspend;

 -- Suspend operation for Print_Log

 procedure Resume;

 -- Resume operation for Print_Log

 function Access_Screen

 return Screen_Display_Controller.SCREEN_BUFFER_POINTER;

 -- Return the address of the screen for printing or displaying

end Primitive_Citation_Handler;

Required Program Units

The specification requires the following program units:

SYSDEP

Citation_Definition

Screen_Display_Controller

The body requires the following program units:

Ada LRM Reader

Richard Conn

SDD

52

CSC Specification

-- ***

-- ON-LINE Ada LANGUAGE REFERENCE MANUAL

-- by Richard Conn

with SYSDEP;

with Citation_Definition;

with Screen_Display_Controller;

package Primitive_Citation_Handler is

 subtype SEARCH_STRING is STRING (1..SYSDEP.Screen_String_Length);

 -- Statistics on current citation

 type CITATION_STATISTICS is record

 ID : Citation_Definition.CITATION_ID;

 Current_Screen_Number : NATURAL;

 Total_Number_of_Screens : NATURAL;

 Stack_Level : NATURAL;

 Search_Str : SEARCH_STRING;

 Search_Last : NATURAL; -- index of last char in Search_Str

 Search_May_Be_Continued : BOOLEAN;

 end record;

 -- Status of a search request

 type SEARCH_STATUS is record

 Is_Found : BOOLEAN; -- TRUE if string was found

 Found_on_Screen : NATURAL; -- if found, screen string was found on

 Found_on_Line : NATURAL; -- if found, line string was found on

 end record;

 -- Exceptions:

 SCREEN_COUNT_OVERFLOW : exception;

 -- raised if number of screens exceeds SYSDEP.Max_Number_of_Screens

 -- raised by Open_New_Citation

 function DAF_File_Name (ITEM : in Citation_Definition.CITATION_ID)

 return STRING;

 -- Return the name of the *.daf file associated with a given CITATION_ID

 procedure Open_New_Citation (ID : in Citation_Definition.CITATION_ID);

 -- Open a new citation for processing, closing the old one if

 -- necessary; set the current screen to the first screen;

 -- build an array of information on the screens

 function Push return BOOLEAN;

 -- Push the stack, returning TRUE if OK

 function Pop return BOOLEAN;

 -- Pop the stack, returning TRUE if OK

 -- Screen Buffer is loaded appropriately

 procedure Load_Screen_Buffer;

 -- Load the screen buffer with the current screen

 function Next_Screen return BOOLEAN;

Ada LRM Reader

Richard Conn

SDD

51

DAF_File_Name

Open_New_Citation

Primitive_Citation_Handler

Next_Screen

Previous_Screen

Next_Citation

Previous_Citation

Push

Pop

Load_Screen_Buffer

SEARCH_STRING

CITATION_STATISTICS

SEARCH_STATUS

SCREEN_COUNT_OVERFLOW

Search_First

Search_Next

Current_Citation

Suspend

Access_Screen

Resume Close_All_Open_Citations

In this OID symbol, the small ovals represent data types, the large oval represents an exception, and the rect�

angles represent subprograms.

Ada LRM Reader

Richard Conn

SDD

50

3.2.10. Primitive_Citation_Handler Package

Citation manipulation is so complex an issue that a design decision was made to provide a set of primitive,

independently testable set of subprograms for low-level manipulation of citations. The Primitive_Cita�

tion_Handler Package provides these subprograms. The Citation_Handler Package would then use these rou�

tines to provide the capabilities invoked through the Command_Dispatcher.

Mapping to Requirements

The Primitive_Citation_Handler Package implements the display, movement, and searching capabilities in

Sections 3.2.1, 3.2.3, and 3.2.4 of the SRS.

Design

The Primitive_Citation_Handler Package presents the following sets of methods, types, data, and exceptions

in its interface:

Ada LRM Reader

Richard Conn

SDD

49

3.2.9.10. Search_for_Next_Occurrence Procedure

The algorithm for this subprogram is:

Start

Result := Primitive_Citation_Handler.Search_Next

Redisplay_Current_Citation

Result.Is_Found?

Screen_Display_Controller.Mark_Line

Screen_Display_Controller.Show_Error

(SEARCH_STRING)

YesNo

3.2.9.11. Close_All_Open_Citations Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Close_All_Open_Citations

Ada LRM Reader

Richard Conn

SDD

48

3.2.9.9. Search_for_First_Occurrence Procedure

The algorithm for this subprogram is:

Start

Result := Primitive_Citation_Handler.Search_First

Redisplay_Current_Citation

Result.Is_Found?

Screen_Display_Controller.Mark_Line

Screen_Display_Controller.Show_Error

(SEARCH_STRING)

YesNo

Ada LRM Reader

Richard Conn

SDD

47

3.2.9.8. Pop Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Pop

Screen_Display_Controller.

Show_Error (STACK_FULL)

OK?

YesNo

Primitive_Citation_Handler.

Load_Screen_Buffer

Redisplay_Current_Screen

Ada LRM Reader

Richard Conn

SDD

46

3.2.9.7. Push Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Push

Screen_Display_Controller.

Show_Error (STACK_FULL)

OK?

YesNo

Primitive_Citation_Handler.

Open_New_Citation

Primitive_Citation_Handler.

Load_Screen_Buffer

Redisplay_Current_Screen

Ada LRM Reader

Richard Conn

SDD

45

3.2.9.5. Next_Citation Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Next_Citation

Redisplay_Current_Screen

Screen_Display_Controller.

Show_Error (CANNOT_ADVANCE)

OK?

YesNo

3.2.9.6. Previous_Citation Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Previous_Citation

Redisplay_Current_Screen

Screen_Display_Controller.

Show_Error (CANNOT_BACK)

OK?

YesNo

Ada LRM Reader

Richard Conn

SDD

44

3.2.9.3. Next_Screen Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Next_Screen

Redisplay_Current_Screen

Screen_Display_Controller.

Show_Error (CANNOT_ADVANCE)

OK?

YesNo

3.2.9.4. Previous_Screen Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Previous_Screen

Redisplay_Current_Screen

Screen_Display_Controller.

Show_Error (CANNOT_BACK)

OK?

YesNo

Ada LRM Reader

Richard Conn

SDD

43

Required Program Units

The specification requires the following program units:

Citation_Definition

The body requires the following program units:

Primitive_Citation_Handler

Screen_Display_Controller

Internal Global Code, Types, and Objects

There are no items of global code, types, or objects within the body of the Citation_Handler Package.

3.2.9.1. View_Citation Procedure

The algorithm for this subprogram is:

Start

Primitive_Citation_Handler.Open_New_Citation

Primitive_Citation_Handler.Load_Screen_Buffer

Redisplay_Current_Screen

3.2.9.2. Redisplay_Current_Screen Procedure

The algorithm for this subprogram is:

Start

Screen_Display_Controller.Show_Text

Ada LRM Reader

Richard Conn

SDD

42

CSC Specification

-- ***

-- ON-LINE Ada LANGUAGE REFERENCE MANUAL

-- by Richard Conn

with Citation_Definition;

package Citation_Handler is

-- Abstract state machine for selecting and working with a given citation

 procedure View_Citation

 (New_Citation : in Citation_Definition.CITATION_ID);

 -- Start viewing a new citation, displaying the first screen

 procedure Redisplay_Current_Screen;

 -- Refresh current screen in current citation

 procedure Next_Screen;

 -- Advance to next screen in current citation and display

 procedure Previous_Screen;

 -- Back up to previous screen in current citation and display

 procedure Next_Citation;

 -- Close current citation and view first screen of next citation

 procedure Previous_Citation;

 -- Close current citation and view first screen of previous citation

 procedure Push (New_Citation : in Citation_Definition.CITATION_ID);

 -- Save position in current citation and

 -- start viewing a new citation, displaying the first screen

 procedure Pop;

 -- Return to current position in last citation before last PUSH

 procedure Search_for_First_Occurrence (Item : in STRING);

 -- Search for first occurrence of string in current citation

 procedure Search_for_Next_Occurrence (Item : in STRING);

 -- Search for next occurrence of string in current citation

 procedure Close_All_Open_Citations;

 -- Close all open citations

end Citation_Handler;

Ada LRM Reader

Richard Conn

SDD

41

3.2.9. Citation_Handler Package

The Citation_Handler Package provides a series of methods for citation manipulation. It is used by the Com�

mand_Dispatcher to perform many of the major commands.

Mapping to Requirements

The Citation_Handler implements the display, movement, and searching capabilities in Sections 3.2.1, 3.2.3,

and 3.2.4 of the SRS.

Design

The Citation_Handler Package presents the following sets of methods, types, data, and exceptions in its inter�

face:

View_Citation

Redisplay_Current_Screen

Citation_Handler

Next_Screen

Previous_Screen

Next_Citation

Previous_Citation

Push

Pop

Search_for_First_Occurrence

Search_for_Next_Occurrence

Close_All_Open_Citations

In this OID symbol, the rectangles represent subprograms.

Ada LRM Reader

Richard Conn

SDD

40

3.2.8.5. Print_Log_File_Close_Message Procedure

The algorithm for this subprogram is:

Start

Position on SYSDEP.Error_Message_Line_Number

Print message, including file name

3.2.8.6. Convert Function

The algorithm for this subprogram is:

Start

Use Unchecked_Conversion

to convert System.ADDRESS to

SCREEN_BUFFER_POINTER

3.2.8.7. Citation_to_Display Function

The algorithm for this subprogram is:

Start

Convert CITATION_ID of the form

CnPnPn to n.n.n

Ada LRM Reader

Richard Conn

SDD

39

3.2.8.3. Show_Prompt Procedure

The algorithm for this subprogram is:

Start

Get status info from Primitive_Citation_Handler.Current_Citation

Display prompt

3.2.8.4. Show_Error Procedure

The algorithm for this subprogram is:

Start

Position cursor on SYSDEP.

Error_Message_Line_Number

Display message from

array Messages

Set Error_Message_Display_Counter to 2

Ada LRM Reader

Richard Conn

SDD

38

3.2.8.1. Show_Text Procedure

The algorithm for this subprogram is:

Start

Erase Screen and

Home Cursor

Access screen data from

Primitive_Citation_Han�

dler

Display all but UNUSED

lines using Console

3.2.8.2. Mark_Line Procedure

The algorithm for this subprogram is:

Start

Position to SYSDEP.Search_Pointer_Column

using Console.Position_Cursor

Output "<"

Ada LRM Reader

Richard Conn

SDD

37

 -- Given a citation ID, return a string of the form "n.n.n" or "keyword"

end Screen_Display_Controller;

Required Program Units

The following program units are withed into the specification:

SYSDEP

Citation_Definition

System

The following program units are withed into the body:

DAF_Handler

Primitive_Citation_Handler

Console

Unchecked_Conversion

Internal Global Code, Types, and Objects

The following are in the body:

Error_Message_Display_Counter : NATURAL := 0;

 -- counts the number of times since the last error message was displayed;

used

 -- to clear the error message line

Search_String_Limit : constant := 12;

 -- maximum number of characters in the search string to be displayed on

the

 -- command prompt line

subtype MSTRING is STRING (1..52);

 -- type of STRING used to store the error messages, based on the length

of the

 -- longest error message

Messages : constant array (ERROR_MESSAGE_ID) of MSTRING := (-- detail

omitted

);

 -- the text of all error messages to be displayed

Ada LRM Reader

Richard Conn

SDD

36

CSC Specification

-- ***

-- ON-LINE Ada LANGUAGE REFERENCE MANUAL

-- by Richard Conn

with SYSDEP;

with Citation_Definition;

with System; -- standard Ada environment

package Screen_Display_Controller is

 type ERROR_MESSAGE_ID is (INVALID_COMMAND,

 CANNOT_ADVANCE, CANNOT_BACK,

 STACK_EMPTY, STACK_FULL,

 PRINT_LOG,

 TOO_MANY_SCREENS,

 SEARCH_STRING,

 DAF_NOT_FOUND,

 INTERNAL_DAF_NDFO_ERROR,

 INTERNAL_DAF_RE_ERROR,

 INTERNAL_DAF_SO_ERROR,

 INTERNAL_DAF_UE_ERROR,

 UNEXPECTED_ERROR);

 -- Kinds of error messages which may be displayed

 type SCREEN_BUFFER is array (NATURAL’(1)..SYSDEP.Text_Line_Count) of

 DAF_Handler.LINE;

 -- Lines associated with a screen

 type SCREEN_BUFFER_POINTER is access SCREEN_BUFFER;

 -- Pointer to a screen buffer so the full buffer does not have to be

 -- passed

 procedure Show_Text;

 -- Clear screen and display the text area

 procedure Mark_Line (Number : in NATURAL);

 -- Place a mark on the indicated line

 procedure Show_Prompt;

 -- Display prompt on command line; if Search_String is null, do not

 -- display it; clear error message if one is present after one call

 -- to Show_Prompt

 procedure Show_Error (Item : in ERROR_MESSAGE_ID);

 -- Display error message

 procedure Print_Log_File_Closed_Message;

 -- Print the message that the indicated print log file is closed

 function Convert (SB_Address : in System.ADDRESS) return

 SCREEN_BUFFER_POINTER;

 -- Given the address of a screen buffer object, return a pointer to it

 function Citation_to_Display (CitX : in Citation_Definition.CITATION_ID)

 return STRING;

Ada LRM Reader

Richard Conn

SDD

35

3.2.8. Screen_Display_Controller Package

The Screen_Display_Controller package controls all output to the VT100 display. The Screen_Display_Con�

troller serves as the single source for error messages.

Mapping to Requirements

The Screen_Display_Controller addresses the VT100 external interfaces requirement in Section 3.1 of the SRS.

The VT100 Display also appears in Sections 3.3 and 3.4 of the SRS. VT100 adaptation issues are discussed in

Section 3.5 of the SRS. The Screen_Display_Controller implements a large part of the user interface required in

Section 3.8 of the SRS.

Design

The Screen_Display_Controller Package presents the following sets of methods, types, data, and exceptions

in its interface:

Show_Text

Mark_Line

Screen_Display_Controller

Show_Prompt

ERROR_MESSAGE_ID

SCREEN_BUFFER

SCREEN_BUFFER_POINTER

Show_Error

Print_Log_File_Closed_Message

Convert

Citation_to_Display

In this OID symbol, the ovals represent data types and the rectangles represent subprograms.

Ada LRM Reader

Richard Conn

SDD

34

3.2.7.3. Dispatch Procedure

The algorithm for this subprogram is:

Start

Is Citation_to_Process

the QUIT Command?

Erase error message line

and exit subprogram

Yes

No

case Citation_to_Process

Process the following

citations with the cor�

responding call to Ci�

tation_Handler: N, P,

NEXT, PREVIOUS,

POP, REFRESH

Process the following

citations with the cor�

responding call to

Print_Log_Handler:

PRINT, PS

Redisplay current

screen (in case

of an error)

Process the

HELP com�

mand as a

Push of the

HELP Cita�

tion

Process the

PAUSE

command

as a 5 sec�

ond delay

Process the

USER_IN�

PUT Cita�

tion by get�

ting a line

from the

user; pre�

parse and

process the

PUSH, /,

and // Cita�

tions

Process the n.n.n

and l Citations

as Citation_Han�

dler.View_Cita�

tion

Process the

ERROR Ci�

tation as an

Invalid

Command

Set Citation_to_Process as

USER_INPUT

Ada LRM Reader

Richard Conn

SDD

33

3.2.7.2. View_Help Procedure

The algorithm for this subprogram is:

Start

call Citation_Handler.View_Citation (HELP)

call Dispatch(USER_INPUT)

Ada LRM Reader

Richard Conn

SDD

32

DAF_Handler

Primitive_Citation_Handler

Print_Log_Handler

Screen_Display_Controller

Console

Internal Global Code, Types, and Objects

The following is the global data internal to the body of Command_Dispatcher:

New_Command : STRING (1..SYSDEP.Max_String_Length);

New_Command_Length : NATURAL;

Citation_to_Process : Citation_Definition.CITATION_ID;

3.2.7.1. Convert_Citation Function

The algorithm for this subprogram is:

Start

Attempt to convert using

VALUE attribute

Success?

return result

Yes

No - must

be of the

form n.n.n

convert from n.n.n to CnPnPn

or l to Cl

Success?

Yes

return ERROR

No

Ada LRM Reader

Richard Conn

SDD

31

Design

The Command_Dispatcher Package presents the following sets of methods, types, data, and exceptions in its

interface:

View_Help

Dispatch

Command_Dispatcher

Convert_Citation

In this OID symbol, the small rectangles represent subprograms.

CSC Specification

-- ***

-- ON-LINE Ada LANGUAGE REFERENCE MANUAL

-- by Richard Conn

with Citation_Definition;

package Command_Dispatcher is

 function Convert_Citation (CitS : in STRING)

 return Citation_Definition.CITATION_ID;

 -- Convert the indicated string ("n.n.n" or "keyword") to CITATION_ID

 procedure View_Help;

 -- View help citation and then Dispatch (Citation_Definition.USER_INPUT)

 procedure Dispatch (Current_Citation :

 in Citation_Definition.CITATION_ID);

 -- Dispatch Current_Citation as first command and continue with

 -- USER_INPUT until command is QUIT

end Command_Dispatcher;

Required Program Units

The following program units are withed into the specification:

Citation_Definition

The following program units are withed into the body:

SYSDEP

Citation_Handler

Ada LRM Reader

Richard Conn

SDD

30

3.2.6.9. Close Procedure

The Close function works with DAF_IO, the Use_Stack vector, and the Stack vector.

The algorithm for this subprogram is:

Start

Is ID Valid?

No

call DAF_IO.Close

Mark ID as AVAILABLE

Yes

3.2.7. Command_Dispatcher Package

The Command_Dispatcher Package implements a passive object which provides methods to start up the first

citation display, handle events generated by the user (commands issued at the keyboard), and dispatch mes�

sages to the appropriate methods associated with the objects which will handle these events.

Mapping to Requirements

This CSC implements the user command processing and dispatching required for all capabilities identified in

Section 3.2 (including subsections 3.2.1 to 3.2.5) of the SRS. It also meets the design constraint in Section 3.7

of the SRS which stipulates that the Ada LRM Reader be event-driven by synchronous events.

Ada LRM Reader

Richard Conn

SDD

29

3.2.6.7. Read Function

The Read function works with DAF_IO and the Stack vector.

The algorithm for this subprogram is:

Start

Is ID Valid?

raise NO_DAF_OPEN call DAF_IO.Read

No Yes

3.2.6.8. Read_Next Function

The Read_Next function works with DAF_IO and the Stack vector.

The algorithm for this subprogram is:

Start

Is ID Valid?

raise NO_DAF_OPEN call DAF_IO.Read

No Yes

Ada LRM Reader

Richard Conn

SDD

28

3.2.6.5. Is_Open Function

The Is_Open function works with DAF_IO and the Stack vector.

The algorithm for this subprogram is:

Start

Is ID Valid?

raise NO_DAF_OPEN

call DAF_IO.IS_OPEN

No Yes

3.2.6.6. Is_End_of_File Function

The Is_End_of_File function works with DAF_IO and the Stack vector.

The algorithm for this subprogram is:

Start

Is ID Valid?

raise NO_DAF_OPEN call DAF_IO.END_OF_FILE

No Yes

Ada LRM Reader

Richard Conn

SDD

27

3.2.6.4. Open Function

The Open Function works with the DAF_IO Package and the Use_Stack and Stack vectors.

The algorithm for this subprogram is:

Locate an available

DAF_ID via the Use_Stack

DAF_ID

Available?

No

Start

raise exception

STACK_OVERFLOW

call DAF_IO.Open

Yes

Open OK?

No Yes

return available DAF_ID

raise exception

FILE_NOT_FOUND

Ada LRM Reader

Richard Conn

SDD

26

3.2.6.3. Close_Create Procedure

The Close_Create Procedure works with the Create_File_ID data and the DAF_IO Package.

The algorithm for this subprogram is:

call DAF_IO.Close

return

Start

Ada LRM Reader

Richard Conn

SDD

25

3.2.6.1. Create Procedure

The Create procedure works with the Create_File_ID data and the DAF_IO Package.

The algorithm for this subprogram is:

Call DAF_IO.Create to create file

Successful?

Yes No

return raise exception DAF_CREATION_ERROR

Start

3.2.6.2. Write Procedure

The Write Procedure works with the Create_File_ID data and the DAF_IO Package.

The algorithm for this subprogram is:

Write a normal line

with wraparound

Write a section line

with wraparound

Is Item a

section line?

YesNo

Start

return

Ada LRM Reader

Richard Conn

SDD

24

 function Read_Next (ID : in DAF_ID) return LINE;

 -- Read the next line from a DAF file

 procedure Close (ID : in DAF_ID);

 -- Close a DAF file

end DAF_Handler;

Required Program Units

The following program units must be withed by the body of DAF_Handler:

Direct_IO

The following program units are needed by the body DAF_Handler but are already withed by the specification:

SYSDEP

Internal Global Code, Types, and Objects

The following global code, types, and objects reside within the DAF_Handler.

package DAF_IO is new Direct_IO (LINE);

type FILE_ID_STACK is array (1..DAF_ID’LAST) of DAF_IO.FILE_TYPE;

Stack : FILE_ID_STACK;

-- Stack of FILE_TYPE objects associated with DAF_IDs

type USE_FLAG is (UNAVAILABLE, AVAILABLE);

-- Flag to mark a file ID as available or not

type FILE_USE_STACK is array (1..DAF_ID’LAST) of USE_FLAG;

Use_Stack : FILE_USE_STACK := (others => AVAILABLE);

-- Stack of USE_FLAGs to mark DAF_IDs as available or not

Create_File_ID : DAF_IO.FILE_TYPE;

-- Global file type object used for an output DAF

Ada LRM Reader

Richard Conn

SDD

23

CSC Specification

The following is the specification of the DAF_Handler Package:

with SYSDEP;

package DAF_Handler is

-- Handler for Direct Access Files (DAFs)

 -- Types of LINEs (records) in DAFs

 type LINE_TYPE is (NORMAL, SECTION, UNUSED);

 -- The LINE is the record of a DAF

 type LINE is record

 Str : STRING (1..SYSDEP.Screen_String_Length);

 Str_Last : NATURAL := 0; -- index of last char in Str

 Kind : LINE_TYPE := NORMAL;

 end record;

 subtype LINE_NUMBER is NATURAL range 1..NATURAL’LAST;

 subtype DAF_ID is NATURAL range 0..SYSDEP.Citation_Stack_Depth;

-- Exceptions

 DAF_CREATION_ERROR : exception;

 FILE_NOT_FOUND : exception;

 NO_DAF_OPEN : exception;

 READ_ERROR : exception;

 WRITE_ERROR : exception;

 STACK_OVERFLOW : exception;

 UNEXPECTED_ERROR : exception;

-- Subprograms to create a DAF file

 procedure Create (File_Name : in STRING);

 -- Create a DAF file

 procedure Write (Item : in STRING);

 -- Write a string to a DAF file

 procedure Close_Create;

 -- Close a DAF file

-- Subprograms to read DAF files

 function Open (File_Name : in STRING) return DAF_ID;

 -- Open an existing DAF file

 function Is_Open (ID : in DAF_ID) return BOOLEAN;

 -- Determine if the DAF file is currently open

 function Is_End_of_File (ID : in DAF_ID) return BOOLEAN;

 -- Determine if the end of a DAF file has been reached

 function Read (ID : in DAF_ID;

 Lnum : in LINE_NUMBER) return LINE;

 -- Read a specified line from a DAF file

Ada LRM Reader

Richard Conn

SDD

22

Mapping to Requirements

DAFs are employed primarily to address the timing requirements in Section 3.6 of the SRS. DAFs implement

the LRM Data Files and the Ada LRM Reader Support Files identified in Section 3.4 of the SRS.

Design

The DAF_Handler Package presents the following sets of methods, types, data, and exceptions in its interface:

LINE_TYPE

LINE

LINE_NUMBER

DAF_ID

DAF_CREATION_ERROR

FILE_NOT_FOUND

NO_DAF_OPEN

READ_ERROR

STACK_OVERFLOW

UNEXPECTED_ERROR

Create

Write

Close_Create

Open

Is_Open

Is_End_of_File

Read

Read_Next

Close

DAF_Handler

In this OID symbol, the short ovals represent data types, the long ovals represent exceptions, and the small

rectangles represent subprograms. Details on the data types are presented in this SDD, Section 4.3.

Ada LRM Reader

Richard Conn

SDD

21

 HELP, -- HELP and ABOUT citations

 ABOUT,

 ERROR, -- ERROR condition

 N, P, -- commands, including USER_INPUT

 -- detail omitted

 QUIT

);

2. Types CITATION_LOCATION and CITATION_LOCATION_VECTOR, which are used to define the CLV

array. These types are:

type CITATION_LOCATION is record

 Chapter : STRING(1..2);

 Start : DAF_Handler.LINE_NUMBER;

 Stop : DAF_Handler.LINE_NUMBER;

end record;

type CITATION_LOCATION_VECTOR is array (CITATION) of CITATION_LOCATION;

3. The CLV array, which identifies the *.daf file and the starting and ending record numbers of that cita�

tion within the indicated *.daf file. The general format of the CLV array is:

CLV : constant CITATION_LOCATION_VECTOR := (

 C1 => ("01", 23, 46), -- chapters, sections, subsections

 C1P1 => ("01", 47, 55),

 C1P1P1 => ("01", 56, 120),

 -- detail omitted

 CA => ("aa", 24, 506), -- appendices

 CB => ("ab", 23, 175),

 -- detail omitted

 CONTENTS => ("co", 1, 284), -- special parts of the Ada LRM

 FOREWARD => ("fo", 1, 81),

 INDEX => ("in", 1, 5833),

 POSTSCRIPT => ("po", 1, 90),

 HELP => ("he", 1, 38), -- HELP and ABOUT citations

 ABOUT => ("xx", 1, 12),

 ERROR => (" ", 1, 1), -- the commands start here

 N => (" ", 1, 1),

 -- detail omitted

 QUIT => (" ", 1, 1)

);

The Chapter field in the CLV array was designed to easily allow the creation of the *.doc and *.daf file

names associated with a given citation. Note that the *.doc and *.daf file names associated with a

citation are easily created using the CLV array: DOC_File_Name = "chap" & CLV(Cita�

tion).Chapter & ".doc"

3.2.6. DAF_Handler Package

The DAF_Handler Package implements a passive object which provides methods to create and manipulate

DAFs (Direct Access Files).

Ada LRM Reader

Richard Conn

SDD

20

tions in a single file, and these files will map directly to the DAFs, so this value should be a little

larger than 34 in order to assure that buffers are not overflowed (recommended value: 40).

8. Total_Number_of_Citations - This universal integer is the total number of citations in all the *.daf

files. Examination has shown that the *.daf files have 214 citations, so this value should be a little

larger than 214 in order to assure that buffers are not overflowed (recommended value: 230).

9. Max_Number_of_Screens - This universal integer is the maximum number of screens which may be

allocated for a single citation. Examination has shown that the Ada LRM ASCII text files have a

maximum of 5,800 lines in a single file (the index), so, rounding this up to 6,000 for safety, this

number should be no less than 6000 lines/22 lines per screen (recommended value: 273).

10. Full_Copyright_Notice and Intro_Copyright_Notice - These STRING constants are copyright no�

tices which are (1) simply embedded in the code (that is the only purpose of the Full_Copy�

right_Notice aside from acting as a copyright in the SYSDEP package itself) or (2) displayed to

the user when a task (such as the LRM_Reader, Make_Cit, or Make_DAF) starts.

3.2.5. Citation_Definition Package

The Citation_Definition Package was discussed in some detail earlier when the Make_Cit Procedure was dis�

cussed. See the section on Make_Cit (Section 3.2.3.) for further information.

Mapping to Requirements

The Citation_Definition Package was created to address the timing requirements in Section 3.6 of the SRS. It

provides a program-resident index into the *.daf files for each citation, greatly speeding program startup and

routine operation by not requiring this information to be accessed from disk on a periodic basis.

Design

The Citation_Definition Package is created by the Make_Cit Procedure. It consists of three basic components:

1. Type CITATION_ID, an enumerated type identifying each citation in the Ada LRM, the table of con�

tents, the index, the foreward, the postscript, the HELP citation for online documentation in the use

of the Ada LRM Reader, the ABOUT citation, the ERROR condition, the USER_INPUT condition,

and the various commands (N, P, etc.) to which the Command_Dispatcher responds. Type CITA�

TION_ID is of the general form:

type CITATION_ID is (

 C1, -- chapter, section, subsection references

 C1P1,

 C1P1P1,

 -- detail omitted

 CA, -- appendices

 CB,

 CC,

 CD,

 CE,

 CF,

 CONTENTS, -- special parts of the Ada LRM

 FOREWARD,

 INDEX,

 POSTSCRIPT,

Ada LRM Reader

Richard Conn

SDD

19

generating a system which ports to a variety of platforms, and during development the Ada LRM Reader will be

compiled on several different systems to test its portability. However, there are some aspects of the design of

such a system which Ada cannot by itself support the portability of the software. Directory names are a good

example, which may take the form of "/major_dir/sub_dir" on one system (UNIX), "drive:\major_dir\sub_dir"

on another system (MSDOS), or "disk:[major_dir.sub_dir]" on yet another system (VMS). The SYSDEP Pack�

age (short for SYStem DEPendency Package) acts as a container to limit these dependencies to only one CSC

of the CSCI.

Mapping to Requirements

The SYSDEP Package meets requirements 3.5 and 3.5.1 in the SRS.

Design

The SYSDEP Package will contain only constants the the associated type definitions. The constants will be as

reusable as possible:

1. Constant STRING objects will be explicitly unconstrained, allowing a greater ease of modification.

For example, the form

LRM_Files_Directory : constant STRING := "/reader/ada_lrm";

will be used so that changing this string to some other value will require only editing the string.

2. Integer-like constants will be universal integers so they may map to any type. The following is a

universal integer:

Max_String_Length : constant := 110; -- chars

The SYSDEP Package contains the following constants:

1. LRM_Files_Directory - This STRING is the name of the directory containing the LRM DAFs

("chapNN.daf") of a form that a file name may simply be appended to it.

2. Program_Name - This STRING is the name of the Ada LRM Reader with a version number.

3. Print_File_Name - This STRING is the name of the file created in the user’s current directory when

the PRINT and PS commands are executed.

4. Citation_Stack_Depth - This universal integer is the size of the location stack within the

LRM_Reader; it is equal to the maximum number of citations which may be PUSHed (recom�

mended value: 20).

5. Screen_Width, Text_Line_Count, Command_Line_Number, Error_Message_Line_Number,

Screen_String_Length, and Search_Pointer_Column - These universal integers define various at�

tributes of the VT100 display screen. In addition, Screen_String_Length is an attribute of the Str

field a DAF record.

6. Max_String_Length - This universal integer is the maximum length of a string from the console or a

text data file. Examination has shown that the Ada LRM ASCII text files have lines as long as 102

characters, so this value should be a little larger than 102 in order to assure that buffers are not

overflowed (recommended value: 110).

7. Max_Number_of_Citations - This universal integer is the maximum number of citations within a

single DAF. Examination has shown that the Ada LRM ASCII text files have a maximum of 34 cita�

Ada LRM Reader

Richard Conn

SDD

18

PREVIOUS PREVIOUS (previous citation)

PAUSE PAUSE (delay further processing)

PUSH PUSH (push current citation onto location stack and select new citation)

POP POP (return to last citation PUSHed)

SEARCH_FIRST / (search from beginning of current citation for string)

SEARCH_NEXT // (search from current position for string)

REFRESH REFRESH (redisplay the current screen)

QUIT QUIT (terminate the program)

The functional flow of the Make_Cit Procedure is as follows:

Create Index File

Place citation information

from the files chap01.daf

to chapaf.daf into the

Index Array

Place line counts as citation

information from the files

chapco, fo, in, po, he, xx.daf

into the Index Array

Point to first Index Array

Create CIT.ADA

Build type CITATION_ID

from records in Index Array

Finish type CITATION_ID

with citations from

ERROR on to QUIT

Build CITATION_LOCATION

type definition

Build CITATION_

type definition

 LOCATION_VECTOR

Build array CLV

from recs in Index Array

Finish array CLV

with citations from

ERROR on to QUIT

Close CIT.ADA

Start

element

Point to first Index Array

element

3.2.4. SYSDEP Package

The SYSDEP Package is a package which serves as a collection for the system dependency information. It

serves to isolate all system dependencies in one single location so that future adaptation of the Ada LRM

Reader to different environments will be expedited. Writing the Ada LRM Reader in Ada is a first step toward

Ada LRM Reader

Richard Conn

SDD

17

where Citation_ID contains strings like "C1P1" and "C1P2" to identify citations (Chapter 1, Sections 1 and 2 in

this case) and to ultimately form the CITATION_ID enumeration values in the CIT.ADA file.

The CITATION_ID type in the CIT.ADA file is an enumeration type which contains these citation IDs. For exam�

ple:

type CITATION_ID is (C1P1, C1P2);

would the type declaration of the type CITATION_ID if C1P1 and C1P2 were the only citation IDs. The CLV array

is an array of CITATION_LOCATION records, and, for our simple example, would resemble the following if

C1P1 and C1P2 were contained in the file "chap01.daf":

type CITATION_LOCATION is record

 Chapter : STRING(1..2);

 Start : DAF_Handler.LINE_NUMBER;

 Stop : DAF_Handler.LINE_NUMBER;

end record;

type CITATION_LOCATION_VECTOR is array (CITATION_ID) of CITATION_LOCATION;

CLV : constant CITATION_LOCATION_VECTOR := (

 C1P1 => ("01", 1, 23),

 C1P2 => ("01", 24, 43)

);

The formats for the file names were discussed in the section on the preliminary design of the Make_DAF Proce�

dure.

In addition to the conventional citation IDs (C1 to CF), the type CITATION_ID includes the following entries to

provide mappings to the Table of Contents, Index, Foreward, and Postscript parts of the Ada LRM and the on�

line help and about "citations":

Citation Associated File CLV Chapter

CONTENTS chapco.daf co

FOREWARD chapfo.daf fo

INDEX chapin.daf in

POSTSCRIPT chappo.daf po

HELP chaphe.daf he

ABOUT chapxx.daf xx

Finally, the type CITATION_ID includes the following entries to provide mappings to the user commands (pro�

cessed within the Command_Dispatcher package and documented extensively in the SUM), since citations

and commands are both processed as commands:

Citation ID Associated Command

ERROR Invalid command

N N (next screen)

P P (previous screen)

USER_INPUT input from the user

PRINT PRINT (print current citation)

PS PS (print current screen)

NEXT NEXT (next citation)

Ada LRM Reader

Richard Conn

SDD

16

Design

The data flow of the Make_Cit Procedure is as follows:

Ada LRM DAFs

DAF LINE

Index Array Record

Create Index File

Index Array

Index Array Record

CIT.ADA Line

File CIT.ADA

Create CIT.ADA File

The DAF records are structured as follows:

type LINE_TYPE is (NORMAL, SECTION, UNUSED);

type LINE is record

 Str : STRING (1..SYSDEP.Screen_String_Length);

 Str_Last : NATURAL := 0; -- index of last character in Str

 Kind : LINE_TYPE := NORMAL;

end record;

The DAF LINEs whose Kind are SECTION trigger the new entries in the Index Array. The Index Array is simply an

array of records that contain the following information:

subtype FILE_ID_STRING is STRING (1..2);

type CITATION_RECORD is record

 Citation_ID : STRING (1..20);

 Citation_ID_Last : NATURAL;

 File_ID : FILE_ID_STRING;

 Start : DAF_Handler.LINE_NUMBER;

 Stop : DAF_Handler.LINE_NUMBER;

end record;

Ada LRM Reader

Richard Conn

SDD

15

The functional flow of the Make_DAF Procedure is as follows:

Open Next

ASCII Text File

Open OK?

End of Text

Yes

Create OK?

Create Next

DAF

File?

Read ASCII Text Line,

and Write DAF Line

Yes

Yes

Close ASCII Text File

and DAF

End of ASCII

Text Files?

No

No

Print Message

and Abort

No

No

Exit Procedure

Format DAF Line,

Yes

Start

3.2.3. Make_Cit Procedure

The Make_CIT Procedure is used to create the CIT.ADA file from the *.daf files (created by the Make_DAF pro�

cedure). The CIT.ADA file contains two main elements: (1) the type CITATION_ID, which maps to each citation

in each *.daf file, and (2) the CLV (Citation Location Vector), which identifies the associated *.daf file, the start�

ing DAF Record number, and the ending DAF Record number for each citation specified in type CITATION_ID.

CIT.ADA, therefore, is a hard-coded data collection which provides a very fast way to index into the *.daf files

to locate and load a citation of interest.

Mapping to Requirements

The Make_Cit Procedure addresses the timing requirements in Section 3.6 of the SRS by creating the CIT.ADA

file, which will serve as a memory-resident index to the citations.

Ada LRM Reader

Richard Conn

SDD

14

Normal DAF Records differ from Continuation DAF Records in that the Str of Normal DAF Records begins with

two leading spaces while the Str of Continuation DAF Records begin with a continuation mark, which is a verti�

cal bar (|) followed by a space. The Str fields within the DAF Records are ready to be displayed on a VT100

screen without concern for exceeding the width of the screen.

The names of the ASCII text files of the Ada LRM are all of the form "chapNN.doc," and the names of the DAFs

will be similar: "chapNN.daf." NN will take on the following values:

1. 01 to 14 - Ada LRM Chapters

2. aa to af - Ada LRM Appendices

3. co - Ada LRM Contents

4. in - Ada LRM Index

5. fo - Ada LRM Foreward

6. po - Ada LRM Postscript

7. he - Help screens for the HELP command

8. xx - Information screens for the ABOUT command

Ada LRM Reader

Richard Conn

SDD

13

3.2.2. Make_DAF Procedure

The Make_DAF Procedure is used to convert the ASCII text files which comprise the Ada LRM into Direct Ac�

cess Files (DAFs). Placed into DAFs, the information in the Ada LRM can be located and accessed much more

quickly than if it is stored as conventional ASCII text.

Mapping to Requirements

The Make_DAF Procedure addresses the requirements to contain the data in LRM Data Files in Sections 3.3

and 3.4 of the SRS. It also addresses the timing requirements in Section 3.6 of the SRS.

Design

The data flow of the Make_DAF Procedure is as follows:

ASCII Text Line

Normal ASCII Text Line

Section Header ASCII Text Line

Normal DAF Record

Continuation

DAF Record

Ada LRM Text Files

Ada LRM DAFs

Select

Normal or

Section Header

ASCII Text Lines Create Normal

and Continuation

DAF Records

The ASCII Text Lines from the Ada LRM Text Files are of two basic formats: (1) Section Header ASCII Text Lines,

which begin with a "> " in the first column followed by a section number, and (2) Normal ASCII Text Lines, which

begin with a character other than a ">". The DAF records do not contain these flags, but are structured as

follows:

type LINE_TYPE is (NORMAL, SECTION, UNUSED);

type LINE is record

 Str : STRING (1..SYSDEP.Screen_String_Length);

 Str_Last : NATURAL := 0; -- index of last character in Str

 Kind : LINE_TYPE := NORMAL;

end record;

Ada LRM Reader

Richard Conn

SDD

12

3.2. CSCI design description

3.2.1. LRM_Reader Procedure

The LRM_Reader procedure is the mainline procedure for the Ada LRM Reader. Its purpose is to initialize the

system, invoke the Command_Dispatcher, clean up when the Command_Dispatcher is finished, and trap any

unexpected errors.

Mapping to Requirements

The LRM_Reader Procedure is the wrapper encapsulating the body of the Ada LRM Reader entity in the ERD in

Section 3.3 of the SRS. It also meets the command line interface requirement in the SUM to start up with an

optional citation specified on the command line.

Design

The OID in Section 3.1.1.1 of this SDD shows the data flow associated with the LRM_Reader Procedure.

The functional flow of the LRM_Reader Procedure is:

Initialize System

Citation

on Command

Line?

View Help Display View Citation

Close Print Log File if Open

Close all Open Citations

Dispatch User Commands Dispatch User Commands

Start

Ada LRM Reader

Richard Conn

SDD

11

Unexpected Error Handler LRM_Reader

Termination LRM_Reader

3.1.3. Memory and processing time allocation

These allocations are presented for guidance only and are not binding.

3.1.3.1. LRM_Reader-based Task

CSC Memory Time

LRM_Reader Procedure 5% 1%

SYSDEP Package 0% 0%

Citation_Definition Package 5% 1%

Print_Log_Handler Package 5% 2%

Screen_Display_Controller Package 20% 80%

Citation_Handler Package 30% 6%

Primitive_Citation_Handler Package 35% 10%

3.1.3.2. Make_Cit-based Task

CSC Memory Time

Make_Cit Procedure 5% 5%

Console Package 15% 15%

SYSDEP Package 0% 0%

DAF_Handler Package 30% 40%

Output_File Package 50% 40%

3.1.3.3. Make_DAF-based Task

CSC Memory Time

Make_DAF Procedure 5% 5%

Console Package 15% 15%

SYSDEP Package 0% 0%

DAF_Handler Package 30% 45%

Input_File Package 50% 50%

Ada LRM Reader

Richard Conn

SDD

10

Initialization Initial Command

Dispatch

Command Dispatch

Done

Done

Citation Movement

ProcessingProcessing

Print

Processing

Search String

Processing

Other

Processing

Unexpected Error

Handler

Termination

Citation Input

Movement Command

Input

Search String Command

Input

Print Command

Input

Other Command

Input

Termination Command

Input

Done or Citation Not Found

Done or

Invalid Movement Attempted

Done or Print Error

String Found or

String Not Found

Done or Error in Processing

Done

Invalid Command

3.1.2.3. State/Associated CSC Table

The following table shows each state and the CSCs that are principally executing in that state.

State Associated CSCs

Initialization LRM_Reader

Initial Command Dispatch LRM_Reader

Command Dispatch Command Dispatcher, Screen Display Controller

Citation Processing Citation_Handler, Primitive_Citation_Handler

Movement Processing Citation_Handler, Primitive_Citation_Handler

Print Processing Print_Log_Handler

String Search Processing Citation_Handler, Primitive_Citation_Handler

Other Processing Citation_Handler, Primitive_Citation_Handler

Ada LRM Reader

Richard Conn

SDD

9

4. Package Output_File (part of CS Parts), which provides text file manipulation

5. Package Console (part of CS Parts), which provides the ability to display to the console

3.1.2. System States for LRM_Reader Task

This SDD only documents the LRM_Reader task in terms of its states because the other two tasks are far less

complex and do not require an elaborate design model.

3.1.2.1. State Table

The following table itemizes the states of the LRM_Reader CSC:

State Meaning Events

Initialization Startup initialization Done

Unexpected Error

Initial Command Dispatch Command Line Argument is processed Done

Unexpected Error

Command Dispatch User Input is Acquired and Processed Citation Input

Movement Command Input

Print Command Input

String Search Command Input

Other Valid Command Input

Termination Command Input

Invalid Command Input

Unexpected Error

Citation Processing Locate and Display Citation Done

Citation Not Found

Unexpected Error

Movement Processing Move Between Screens and Citations Done

Invalid Movement Attempted

Unexpected Error

Print Processing Print Screen or Citation Done

Print Error

Unexpected Error

String Search Processing Search for String String Found

String Not Found

Unexpected Error

Other Processing Miscellaneous Commands Processed Done

Error in Processing

Unexpected Error

Unexpected Error Handler Recover from Unexpected Errors Done

Termination Close Down System and Exit to OS

3.1.2.2. State Transition Diagram

The following State Transition Table shows these states and the events that cause transition between them. For

each state except the Unexpected Error Handler, an Unexpected Error event causes transition to the Unex�

pected Error Handler; these events and transitions are not shown in order to reduce clutter in the diagram.

Ada LRM Reader

Richard Conn

SDD

8

The key CSCs shown in this dependency diagram are:

1. The MAKE_DAF procedure, which reads the *.doc files that contain the text of the Ada LRM and

creates a corresponding set of *.daf files (DAF stands for Direct Access File)

2. The SYSDEP package, which contains all the System Dependency information

3. The DAF_Handler package, which is used to create and access the information in the *.daf files

4. Package Input_File (part of CS Parts), which provides text file manipulation

5. Package Console (part of CS Parts), which provides the ability to display to the console

3.1.1.4. Dependency Diagram for the Make_Cit Task

The following Dependency diagram (simplified Booch diagram) shows the top-level view of the dependencies

of the Make_Cit CSC:

Make_Cit

Output_File DAF_Handler

SYSDEP

Console

The key CSCs shown in this dependency diagram are:

1. The MAKE_CIT procedure, which reads the *.daf files and creates a CIT.ADA file which contains the

enumeration type CITATION_ID (that contains values corresponding to every citation in all the

*.daf files) and a Citation_Location_Vector (CLV) array that contains a mapping between each ci�

tation and a record of data that contains an identification of the corresponding *.daf file, the start�

ing line number of the citation in the *.daf file, and the ending line number of the citation in the

*.daf file

2. The SYSDEP package, which contains all the System Dependency information

3. The DAF_Handler package, which is used to create and access the information in the *.daf files

Ada LRM Reader

Richard Conn

SDD

7

The key CSCs shown in this dependency diagram are:

1. The LRM_Reader, the mainline procedure

2. The Citation_Definition package, which contains the definition of the type CITATION_ID and the CLV

(Citation_Location_Vector) array

3. Package CLI (part of CS Parts), which is a Command Line Interface

4. The Print_Log_Handler package, which is used to create and write information to the Print_Log file

5. The Screen_Display_Controller package, which is used to display information to the user’s screen

6. The Command_Dispatcher package, which is used to start the Ada LRM Reader and interface with

the user’s keyboard

7. The Citation_Handler package, which is used by the Command_Dispatcher to access the desired

citation

3.1.1.3. Dependency Diagram for the Make_DAF Task

The following Dependency diagram (simplified Booch diagram) shows the top-level view of the dependencies

of the Make_DAF CSC:

Make_DAF

Input_File DAF_Handler

SYSDEP

Console

Ada LRM Reader

Richard Conn

SDD

6

3.1.1.2. Dependency Diagram for the LRM_Reader Task

The following Dependency diagram (simplified Booch diagram) shows the top-level view of the dependen�

cies of the LRM_Reader CSC:

Citatation_Definition

Citation_HandlerCLI

Command_Dispatcher Print_Log_Handler

Screen_Display_Controller

LRM_Reader

Ada LRM Reader

Richard Conn

SDD

5

In addition, the following reusable CSCs provide some needed functionality:

1. Package CLI (part of CS Parts), which is a Command Line Interface

2. Package Console (part of CS Parts), which is a VT100 interface

3. Packages Input_File and Output_File (part of CS Parts), which support ASCII text file manipulation

4. Package System (part of the standard Ada environment), which provides address manipulation

5. Package Direct_IO (part of the standard Ada environment), which provides direct access file manip�

ulation

6. Procedure Unchecked_Conversion (part of the standard Ada environment), which provides the abil�

ity to map addresses to pointers

3.1.1.1. Object Interaction Diagram for the LRM_Reader Task

The following Object Interaction Diagram (OID) shows the principal CSC (the LRM_Reader) and the objects

(also CSCs) with which it interfaces. Note that only the pertinent parts of the object interfaces are shown, as

opposed to the entirety of the object interfaces.

Citation_Handler

CLI

Command_Dispatcher

Print_Log_Handler

Screen_Display_Controller

LRM_Reader

Initialize

ArgC

ArgV

Argument Count

Program Name Prompt

First Citation

Convert_Citation

First Citation

Close_All_

Open_Citations

Close_Print_Log

Show_Error

UNEXPECTED_ERROR

View_Help

Dispatch

CITATION_ID

CITATION_ID

Ada LRM Reader

Richard Conn

SDD

4

3.1.1. CSCI architecture

The Ada LRM Reader CSCI consists of the following CSCs:

1. The LRM_Reader, the mainline procedure; this is one of the three active tasks in the CSCI

2. The MAKE_DAF procedure, which reads the *.doc files that contain the text of the Ada LRM and

creates a corresponding set of *.daf files (DAF stands for Direct Access File); this is one of the

three active tasks in the CSCI

3. The MAKE_CIT procedure, which reads the *.daf files and creates a CIT.ADA file which contains the

enumeration type CITATION_ID (that contains values corresponding to every citation label in all

the *.daf files) and a Citation_Location_Vector (CLV) array that contains a mapping between each

citation and a record of data that contains an ID of the corresponding *.daf file, the starting line

number of the citation in the *.daf file, and the ending line number of the citation in the *.daf file;

this is one of the three active tasks in the CSCI

4. The Citation_Definition package, which contains the definition of the type CITATION_ID and the CLV

array; the type CITATION_ID is an enumerated type that contains names for each citation (such as

C4P1 for Chapter 4 Section 1) and the CLV array contains records associated with each CITA�

TION_ID value that identifies the *.daf file containing the citation and the starting and ending re�

cord numbers in the *.daf file of the citation; the Citation_Definition package is created by the

MAKE_CIT procedure

5. The SYSDEP package, which contains all the System Dependency information

6. The DAF_Handler package, which is used to create and access the information in the *.daf files

7. The Print_Log_Handler package, which is used to create and write information to the Print_Log file

8. The Screen_Display_Controller package, which is used to display information to the user’s screen

9. The Command_Dispatcher package, which is used to start the Ada LRM Reader and interface with

the user’s keyboard

10. The Citation_Handler package, which is used by the Command_Dispatcher to access the desired

citation

11. The Primitive_Citation_Handler package, which provides low-level functions for accessing cita�

tions and is used by Citation_Handler, Screen_Display_Controller, and Print_Log_Handler

Of these CSCs, the first three are active objects (tasks) and the rest are definitions (Citation_Definition and

SYSDEP) and passive objects which are invoked by the three active objects:

Make_DAF

*.daf Files

Make_Cit

CIT.ADA

LRM_Reader

Creates

Creates

Are Used by

Are Used by

Is Incorporated into

Ada LRM Reader

Richard Conn

SDD

3

3. Design

3.1. CSCI overview

The Ada LRM Reader is a program (composed of a single CSCI) which interacts with a user through a com�

mand-line and a line-oriented editor to display information in the Ada Language Reference Manual (LRM) to

the user one screen at a time. The major components of this environment are:

User

CRT

and

Keyboard

ÁÂÄÀÅÄWÀÅkÃÇÉÇÊÀË

Ada LRM Reader

Disks:

VT100 Commands and Text

Text Lines

Citation Info

Print

Log

File

Entries

Citations

Print Log File

VT100 commands are sent to the user’s VT100-compatible CRT to clear screen and position cursor. Text sent

to the user’s CRT is simply displayed. The SUM shows the two basic screen displays.

The text lines sent from the user’s keyboard are strings of ASCII characters terminated by a newline. The oper�

ating system’s or shell’s input line editor allows the user to edit these lines before the Ada LRM Reader "sees"

them.

Entries in the Print Log File are created by the user when he issues the PRINT and PS commands (described in

the SUM). An entry created by the PRINT command is the ASCII text of an entire citation. An entry created by

the PS command is the ASCII text of the current screen.

The citation comes from files on disk. These citations include the numbered paragraphs, the table of contents,

the foreward, the postscript, and the index. The HELP and ABOUT screens are also viewed as "citations."

Ada LRM Reader

Richard Conn

SDD

2

2. References

2.1. Documents

Conn, Richard, Software Requirements Specification for the ÈÍÎÏÌÑMÏÑÓÎÍÓÔ, University of Cincinnati, De�

partment of Electrical and Computer Engineering, Mail Location 30, Cincinnati, Ohio 45221

This document contains other references which may be useful.

Conn, Richard, Software User’s Manual for the ÈÍÎÏÌÑMÏÑÓÎÍÓÔ, University of Cincinnati, Department of

Electrical and Computer Engineering, Mail Location 30, Cincinnati, Ohio 45221

2.2. Terminology

The following application-specific terms are defined below in order to better follow this document:

ÁÂÄÀÄÂÅÃ - A body of text in the Ada LRM or an LRM Support File which is uniquely identified by a numeric

reference or a keyword (these are called citation labels). For example, the citation identified by 4 is:

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÉÊÇËÈÍÎÏÇÈÌÑÇÓÔÖÒÎÏÏÕŠÌÏ

ÇÇ

ÇÇ

ÇÇÚÛÎÇÒÜÙÎÏÇÈÖÖÙÕŸÈŽÙÎÇ�ŠÇ�ÛÎÇÑÕ��ÎÒÎÌ�Ç�ŠÒÍÏÇŠ�ÇÌÈÍÎÇÈÌÑÇÎÔÖÒÎÏÏÕŠÌ�ÇÈÌÑ

ÇÇ�ŠÇ�ÛÎÕÒÇÎ�ÈÙÜÈ�ÕŠÌ�ÇÈÒÎÇ!Õ�ÎÌÇÕÌÇ�ÛÕÏÇŸÛÈÖ�ÎÒÊ

ÁÂÄÀÄÂÅÃ"#À$%& - A numeric reference or a keyword which identifies a citation. For example, 4 is the citation

label for the above citation. Valid citation labels take the following forms:

’()*+ ,*-*/0345

n Chapter (1-14)

n.n Chapter and Section

n.n.n Chapter, Section, and Subsection

letter Appendix (A-F)

CONTENTS Table of Contents

INDEX Index

FOREWARD Foreward

POSTSCRIPT Postscript

HELP Online help screens for the Ada LRM Reader

ABOUT Online program description of the Ada LRM Reader

ÁÂÄÀÄÂÅÃ"67 - An alphabetic reference used in the CITATION_ID enumeration type which maps to a citation

label. Citation IDs are discussed in the Software Design Document for the Ada LRM Reader. Each citation

label has one and only one citation ID.

Ada LRM Reader

Richard Conn

SDD

1

1. Scope

The Ada LRM Reader is a tool for browsing through an online copy of the Ada Language Reference Manu�

al (LRM). This tool allows a user to interactively view the Ada LRM, search for strings, and move through

the Ada LRM with ease. Ease of human interface is a chief concern.

The target user is assumed to have a VT100-style display terminal or VT100 emulation capabilities. The

user will be using this tool in one of several modes:

1. As a user on a UNIX workstation running in a VT100 emulator window,

2. As a user accessing a UNIX workstation remotely, also running a VT100 or VT100 emulator on a PC,

and

3. As a user on a PC running the Ada LRM Reader on the PC.

The Ada LRM Reader is a single program written in Ada and will be considered to be a single CSCI. This

CSCI includes:

1. The source code, in Ada, of the Ada LRM Reader

2. All data files needed by the Ada LRM Reader

3. All source files and programs used to create the data files needed by the Ada LRM Reader

4. All documentation associated with the Ada LRM Reader

5. Installation instructions for compiling the setting up the Ada LRM Reader for a PC or UNIX platform

6. A complete executable version of the Ada LRM Reader with its associated data files and installa�

tion instructions which is ready to run on a PC under MSDOS 3.3 or higher

For: conn

Printed on: Thu, Jun 18, 1992 07:48:38

From book: Ada LRM SDD

Document: SDD

Last saved on: Tue, May 12, 1992 08:17:45

pl2ps 4.0.5 Copyright 1988 Interleaf, Inc.

