
Object-Oriented Design

 4 - 1

CLASSES AND OBJECTS

l What is an Object? l Relationships
Among Classes

l What is Not an Object? l
Relationships Between Classes and

l Kinds of Software Objects
Objects

l Dissecting the Object l Roles of
Classes and Objects in OOD

l Relationships Among Objects l
Building Quality Abstractions

l What is a Class?

Object-Oriented Design

 4 - 2

WHAT IS AN OBJECT?
Object Concept - objects have a permanence and identity apart from any
operation upon them

Informal definition of an object from the perspective of human cognition:
Object - any of the following:
l a tangible and/or visible thing
l something that may be apprehended intellectually
l something toward which thought or action is directed
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 76
Formal definition of an object from the perspective of OOD:
Object - an entity which has state, behavior, and identity; the structure and
behavior of similar objects are defined in their common class; the terms
instance and object are interchangeable
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 77

Object-Oriented Design

 4 - 3

WHAT IS NOT AN OBJECT?
l Attributes, such as time, beauty, or color
l Emotions, such as love or anger
l Entities which are normally objects but are, instead, thought of as
attributes of objects when a particular problem space is considered

Temperature

Temperature
Sensor

Oven_Temp : TEMPERATURE
 := 350.0; -- degrees F

type SENSOR is record
 Temp : TEMPERATURE;
 Redundancy : MULTIPLEX;
 Location: MEMORY_ADDRESS;
end record;
Oven_Temp : SENSOR := (
 Temp => 350.0, -- degrees F
 Redundancy => TRIPLEX,
 Location => 16#1a0#);

Temperature
as an object

Temperature
as an attribute
of an object

Object-Oriented Design

 4 - 4

KINDS OF SOFTWARE OBJECTS
l Real-world, tangible objects with boundaries that may or may not be
clearly defined
l Inventions of the design process which collaborate with other objects
to provide some higher-level behavior
l Intangible events or processes with well-defined conceptual
boundaries

Tangible

Intangible

Clearly-defined boundaries
No clearly-defined boundaries

Clearly-defined boundaries
No clearly-defined boundaries

Events or processes

Inventions of the design process

Object-Oriented Design

 4 - 5

DISSECTING THE OBJECT
Formal definition of an object from the perspective of OOD:
Object - an entity which has state, behavior, and identity; the structure and
behavior of similar objects are defined in their common class; the terms
instance and object are interchangeable
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 77

This definition of an object refers to three key features:
l State
l Behavior
l Identity

These key features will be discussed in detail.

Object-Oriented Design

 4 - 6

DISSECTING THE OBJECT

State
State of an object - encompasses all of the (usually static) properties of the
object plus the current (usually dynamic) values of each of these properties
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 78
Property or attribute of an object - a part of the state of the object which is
an inherent or distinctive characteristic, trait, quality, or feature that
contributes to making an object uniquely that object
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 78
All properties have some value:
l a scalar quantity
l a vector quantity or an object
Because every object has state, every object takes up some amount of
space, be it physical space or computer memory.

Object-Oriented Design

 4 - 7

DISSECTING THE OBJECT

State of an Object - Example

Temperature
Sensor

type TEMPERATURE_SENSOR is record
 Temp : TEMPERATURE; -- degrees F
 Redundancy : MULTIPLEX;
 Location: MEMORY_ADDRESS;
end record;
Oven_Temp : TEMPERATURE_SENSOR := (
 Temp => 350.0, -- degrees F
 Redundancy => TRIPLEX,
 Location => 16#1a0#);

Objects of class TEMPERATURE_SENSOR, such as Oven_Temp, have three
attributes:
l Temp, a dynamic attribute which changes with time
l Redundancy, a static attribute (the number of sensed points) which is
fixed when the object is created
l Location, a static attribute which is fixed when the object is created

Object-Oriented Design

 4 - 8

DISSECTING THE OBJECT

Behavior
Behavior of an object - how an object acts and reacts, in terms of its state
changes and message passing
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80

Operation -- some action that one object performs upon another in order to
elicit a reaction
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80
The terms operation and message are interchangeable.

Method -- operation that a client may perform upon an object
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80
The terms method and member function are interchangeable.

Object-Oriented Design

 4 - 9

DISSECTING THE OBJECT

Behavior of an Object - Example
package Temperature_Sensor is

 type STATUS is (NOT_OK, OK);
 type TEMPERATURE is FLOAT range -400.0 .. 3_000.0; -- deg F
 type MULTIPLEX is (SIMPLEX, DUPLEX, TRIPLEX);
 type MEMORY_ADDRESS is INTEGER range 0 .. 1_024;

 type OBJECT is record
 Temp : TEMPERATURE;
 Redundancy : MULTIPLEX;
 Location : MEMORY_ADDRESS;
 end record;

 function Current_Temperature (Item : in OBJECT)
 return TEMPERATURE;

 function Reliability (Item : in OBJECT)
 return STATUS;

end Temperature_Sensor;

Object-Oriented Design

 4 - 10

DISSECTING THE OBJECT

Behavior - Kinds of Operations
l Modifier - an operation that alters the state of an object, such as a
get_with_update or put operation
l Selector - an operation that accesses the state of an object, but does
not alter the state, such as a get operation
l Iterator - an operation that permits all parts of an object to be accessed
in some well-defined order, such as movement through a linked list
l Constructor - an operation that creates and object and/or initializes its
state
l Destructor - an operation that frees the state of an object and/or
destorys the object itself

Object-Oriented Design

 4 - 11

DISSECTING THE OBJECT

Behavior - The Protocol of an Object
Protocol - all of the methods and free subprograms [procedures or functions
that serve as nonprimitive operations upon an object or objects of the same
or different classes] associated with a particular object
-- Grady Booch, Object-Oriented Design with Applications, 1991, Pp 82-83

The protocol of an object defines the envelope of that object's allowable
behavior, comprising the entire external view of the object (both static and
dynamic).

Object-Oriented Design

 4 - 12

DISSECTING THE OBJECT

Behavior - Objects as Machines
Since an object has state, the order in which operations are invoked is
important. This gives rise to the view of an object as an independent
machine. For some objects, time ordering of their operations is so
important that the object's behavior can be formally characterized in terms
of a finite state machine.
Objects may be either active or passive:
l Active Object - an object that encompasses its own thread of control
l Passive Object - an object that does not encompass its thread of
control
Active objects are autonomous, exhibiting a behavior without being
operated upon by another object.
Passive objects can only undergo a state change when explicitly acted
upon.

Object-Oriented Design

 4 - 13

DISSECTING THE OBJECT

Identity
Identity - that property of an object which distinguishes it from all other
objects
-- Khoshafian and Copeland, "Object Identity," SIGPLAN Notices, Volume 21,
Issues 11, November 1986, Page 406

The failure to distinguish between the name of an object and the object
itself is the source of many errors in object-oriented programming.

Lifetime of an Object - the time span extending from the time an object is
first created (and consumes space) until that space is reclaimed
Note that an object can continue to exist even if all references to it are
lost.

Object-Oriented Design

 4 - 14

DISSECTING THE OBJECT

Identity - Object Assignment
Object Assignment differs from copying in that in object assignment, the
identity of an object is duplicated by assignment to a second name. Two
names then refer to the same object.
Conventional Assignment refers to the act of copying the state information
of one object into another object. The state of two objects is now the same,
but the state of one object may be changed without affecting the other.

Identity - Equality
Like assignment, Equality can have two meanings:
l two names are equal if they designate the same object
l two names are equal if they designate different objects but their state is
identical

Object-Oriented Design

 4 - 15

RELATIONSHIPS AMONG OBJECTS
An object of and by itself is usually uninteresting. However, a system of
objects, wherein the objects collaborate with one another to define the
behavior of the system, is intensely interesting.
Two kinds of object hierarchies are extensively employed in OOD:
l Using relationships, where one object employs the resources of another
l Containing relationships, where one object contains one or more other
objects

Object-Oriented Design

 4 - 16

RELATIONSHIPS AMONG OBJECTS

Using Relationships
Given a collection of objects involved in using relationships, each object
may play one of three roles:
l Actor - an object that can operate upon other objects but that is
never operated upon by other objects; an active object
l Server - an object that never operates upon other objects but is only
operated upon by other objects; a passive object
l Agent - an object that can both operate upon other objects and be
operated upon by other objects; an agent is usually created to do some
work on behalf of an actor or another agent

Whenever one object passes a message to another with which it has a
using relationship, the two objects must be synchronized. In a single
thread of control, a subprogram call is adequate for synchronization.
With multiple threads of control, a more complex method of
synchronization must be devised in order to deal with the problems of
mutual exclusion.

Object-Oriented Design

 4 - 17

RELATIONSHIPS AMONG OBJECTS

Using Relationships, Continued
The need for synchronization in an environment involving multiple threads
of control leads to another way to classify kinds of objects:
l Sequential object - a passive object whose semantics are guaranteed
only in the presence of a single thread of control
l Blocking object - a passive object whose semantics are guaranteed in
the presence of multiple threads of control
l Concurrent object - an active object whose semantics are guaranteed
in the presence of multiple threads of control

Object-Oriented Design

 4 - 18

RELATIONSHIPS AMONG OBJECTS

Containing Relationships
In a containing relationship, an object may encapsulate one or more other
objects. Some real-world object relationships are clearly containing
relationships, such as the automobile engine which contains pistons,
spark plugs, etc.

Containing an object rather than using an object is sometimes better
because containing reduces the number of objects that must be visible at
the level of the enclosing object.
Using an object is sometimes better than containing an object because
containing an object leads to undesirable tighter coupling among objects
in some cases.
Intelligent engineering decisions require careful weighing of these two
factors.

Object-Oriented Design

 4 - 19

WHAT IS A CLASS?
Class - a set of objects that share a common structure and a common
behavior
-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 93

A class represents only an abstraction, whereas an object, an instance of
a class, is a concrete entity that exists in time and space.

What is NOT a Class?
An object is not a class, but a class may be an object (to be discussed
later).

Objects that share no common structure and behavior cannot be grouped
in a class because, by definition, they are unrelated, except by their
general nature as objects.

Object-Oriented Design

 4 - 20

WHAT IS A CLASS?

The Class as a Contractual Binding
The class captures the structure and behavior common to all related objects,
serving as a binding contract between an abstraction and all of its clients.
Strongly typed programming languages can detect violations of the contract
that is a class during compilation.

Two views of a class:
l Interface - the outside view of a class, emphasizing the abstraction
while hiding the structure and details of how its behavior works
l Implementation - the inside view of a class, which details the internal
structure of a class and the details of how its behavior works

Object-Oriented Design

 4 - 21

WHAT IS A CLASS?

The Interface to a Class
The interface to a class consists of:
l primarily, the declarations of all operations applicable to instances of
the class; these operations may be invoked by clients of the class objects
l the declaration of other classes
l constants
l variables
l exceptions

The last four are included if they are needed to complete the abstraction.

Object-Oriented Design

 4 - 22

WHAT IS A CLASS?

The Interface to a Class, Continued
The interface to a class can be divided into three parts:
l Public - a declaration that is visible to all clients of the objects of a
class
l Protected - a declaration that is not visible to any other classes
except the subclasses of the class
l Private - a declaration that is not visible to any other classes

C++ does the best job in allowing a developer to make explicit
distinctions among these different parts of a class interface. Ada permits
declarations to be public or private, but not protected.

Object-Oriented Design

 4 - 23

WHAT IS A CLASS?

The State of an Object
The state of an object is usually represented as constant and variable
declarations placed in the private part of a class interface. This
encapsulates the representation common to the objects of a class, and
changes to this representation do not have a functional affect on the
clients.

Why is the State of an Object
NOT in the Implementation?

Placing state information in the implementation of a class would
completely hide it from the clients, but, with today's technology, placing
state information in the implementation rather than the private interface of
a class would require either object-oriented hardware or very
sophisticated compiler technology. Compiler technology can solve this
problem, but the compiler must be able to discern information about the
size of the object of the class.

Object-Oriented Design

 4 - 24

RELATIONSHIPS AMONG CLASSES
Three basic kinds of class relationships:
l generalization - a "kind of" relationship, as a sailboat is a kind of ship
l aggregation - a "part of "relationship, as a hull is a part of a ship
l association - a semantic connection among otherwise unrelated classes, as
roses and candles representing different classes that share in common the fact
that we might use them to decorate a dinner table
Object-based and object-oriented programming languages support some
combination of the following relationships to realize the basic kinds of class
relationships:
l inheritance relationships, which are perhaps the most powerful, supporting
generalization and association
l using relationships, supporting aggregation
l instantiation relationships, supporting generalization and association in a
different way from inheritance
l metaclass relationships, supporting the notion of a class of a class (classes
as objects are made possible)

Object-Oriented Design

 4 - 25

RELATIONSHIPS AMONG CLASSES

Inheritance Relationships
Inheritance - a "kind of" relationship among classes wherein one class
shares the structure or behavior defined in:
l one other class (single inheritance)
l more than one other class (multiple inheritance)
Superclass - the class from which another class inherits structures and/or
behaviors; a Base Class is the most generalized superclass
Subclass - a class that inherits from one or more other classes, typically
augmenting or redefining the existing structures and behaviors of its
superclasses in itself without affecting the superclasses

The ability of a programming language to support this
kind of inheritance distinguishes object-oriented
languages (which support inheritance) from object-
based languages (which do not support inheritance).

Object-Oriented Design

 4 - 26

RELATIONSHIPS AMONG CLASSES

Single Inheritance Relationships

Telemetry
Data*

Electrical
Data Sensor Data*

Propulsion
Data

Spectrometer
Data

Camera
Data

Radiation
Data

Is a
Kind of Is a

Kind of

Is a
Kind of

Is a
Kind of Is a

Kind of

Is a
Kind of

A simple ERD
showing
relationships
between
different
space craft
data

* Abstract classes, or classes with no instances

Object-Oriented Design

 4 - 27

RELATIONSHIPS AMONG CLASSES

Abstract Classes
Abstract Classes - classes with no instances, written with the expectation
that their subclasses will add to their structures and behaviors, usually by
completing the implementations of their incomplete methods
C++ allows a member function to be defined as a pure virtual function, and
C++ prohibits the creation of instances of classes which contain pure
virtual functions.

Object-Oriented Design

 4 - 28

RELATIONSHIPS AMONG CLASSES

Kinds of Clients
A given class typically has two kinds of clients:
l Instances
l Subclasses

This is the motivation behind the three parts of a class definition:
l Public part - members are visible to both kinds of clients
l Protected part - members are visible to subclasses only
l Private part - members are invisible to both kinds of clients

Object-Oriented Design

 4 - 29

RELATIONSHIPS AMONG CLASSES

Inheritance and Encapsulation
Some tension exists between inheritance and encapsulation in that the
use of inheritance exposes some of the internal details of an inherited
class.

This means that to understand the meaning of a
particular class, you must often study all of its
superclasses, sometimes including their inside views.

Object-Oriented Design

 4 - 30

RELATIONSHIPS AMONG CLASSES

Polymorphism
Polymorphism - a concept in type theory in which a name may denote
objects of many different classes that are related by some common
superclass
Any polymorphic object may respond to some comon set of operations
(defined by the superclass) in different ways.

Is a Kind of
Is a Kind of

Is a Kind of

Communications
Medium
Operation: Display

GIF Picture
Operation: Display

Electronic Mail
Operation: Display

Video Tape
Operation: Display

Object-Oriented Design

 4 - 31

RELATIONSHIPS AMONG CLASSES

Overloading
Many languages, such as Ada and C++, allow functions and procedures to
have the same name so long as they can be distinguished by their
parameters. There many be many functions named GET or "+", for
instance, but there is only one GET function which gets an integer and only
one "+" function which adds two integers. Such functions and procedures
are said to be overloaded.

There are two kinds of polymorphism, then:
l ad hoc polymorphism - otherwise known as operator or subprogram
overloading
l parametric polymorphism - the "class" polymorphism discussed on
the previous transparency

Inheritance without polymorphism is possible, but this kind of inheritance
is not useful.
Polymorphism and late binding go hand in hand.

Object-Oriented Design

 4 - 32

RELATIONSHIPS AMONG CLASSES

Multiple Inheritance
Multiple inheritance comes into play when a class inherits from more than
one superclass. The need for multiple inheritance in object-oriented
programming languages is still a topic of debate.

Multiple Polymorphism
Multiple polymorphism comes hand in hand with multiple inheritance. In
Multiple Polymorphism, the polymorphic function depends on two or more
parameters associated with two or more superclasses.

Displayable_
Object

Display_Device

Video_Tape_
Viewer

Is a Kind of

Object-Oriented Design

 4 - 33

RELATIONSHIPS AMONG CLASSES

Using Relationships
Two kinds of using relationships for classes:
l a class's interface may use another class, in which case the used class
is visible to the clients of the using class
l a class's implementation may use another class, in which case the
used class is not necessarily visible to the clients of the using class

Using relationships imply a cardinality:
l a 1:1 relationship
l a 1:n relationship, created by establishing friends, which are methods
involving two or more objects of different classes
l a m:n relationship, also created by establishing friends

Object-Oriented Design

 4 - 34

RELATIONSHIPS AMONG CLASSES

Instantiation Relationships
Instantiations entail the use of templates which are implemented in one
class to operate on instances of other classes, such as a linked list class
which can create linked lists of integers, floats, strings, files, databases,
etc.
Instantiations are usually realized in the creation of container classes,
which are classes that contain instances of other classes.
Generic Classes or Parameterized Classes - serve as templates for other
classes, such as the class containing a generic sort serving as a template
to sort integers, floats, files, etc.

Object-Oriented Design

 4 - 35

RELATIONSHIPS AMONG CLASSES

Metaclasses
Metaclass - a class whose instances are themselves classes

The three kinds of class relationships discussed so far, namely inheritance,
using, and instantiation, cover all the important kinds of class relationships
that most developers need. The fourth kind of class relationship, the
metaclass, is more exotic and still of a theoretical nature.

The metaclass allows a programmer to manipulate a class as an object, but
is this of real value?
CLOS supports metaclasses, but Ada and C++ do not directly support them,
altho C++ offers the notion of static member data and functions to aid in the
support of a metaclass.

Object-Oriented Design

 4 - 36

RELATIONSHIPS BETWEEN
CLASSES AND OBJECTS

l Every object is the instance of some class.
l Every class has zero or more instances.
l Classes are static, so their existence, semantics, and relationships are
fixed at compile time.
l Objects are static or dynamic.
l The class of most objects is static, meaning that once and object is
created, its class is fixed.
l Objects are created and destroyed often during the lifetime of an
application program.

Object-Oriented Design

 4 - 37

ROLES OF CLASSES AND OBJECTS
IN OOD

During OOA and the early stages of OOD, the developer has two primary
tasks:
l Identify the classes and objects that form the vocabulary of the problem
domain. These classes and objects are called the key abstractions of the
problem.
l Invent the structures whereby sets of objects work together to provide the
behaviors that satisfy the requirements of the problem. These structures are
called the mechanisms of the implementation.

Object-Oriented Design

 4 - 38

BUILDING QUALITY ABSTRACTIONS

In order to build a quality object-oriented system of classes and objects,
we must be able to do several things:
l Measure an abstraction to determine its quality
l Apply heuristics for choosing the operations
l Apply heuristics for choosing the relationships
l Apply heuristics for choosing the implementations

Classes and objects make up the key abstractions of an object-oriented
system, and the framework for such a system is provided by its
mechanisms.

Object-Oriented Design

 4 - 39

BUILDING QUALITY ABSTRACTIONS

Measuring the Quality
of an Abstraction

The design of classes and objects is an incremental, iterative process, and
quality is seldom achieved on a first attempt.
There are five meaningful metrics in assessing the quality of an abstraction:

l Coupling
l Cohesion

l Sufficiency
l Completeness
l Primitiveness

Object-Oriented Design

 4 - 40

BUILDING QUALITY ABSTRACTIONS

Measuring Quality, Continued
Coupling is a measure of the strength of association established by a
connection from one module to another in structured design, and it is a
measure of the a similar strength between classes and objects in object-
oriented design.
In OOD, however, coupling and inheritance are at odds with each other.
Strong coupling complicates a structured system, so weakly-coupled
classes are desired. Inheritance, which strongly couples superclasses
and subclasses, however, is also desired to exploit the commonality
among classes.
Cohesion is a measure of the degree of connectivity among the elements
of a single module in structured design, and it is a measure of a similar
strngth among the elements of classes and objects in object-oriented
design.
Coincidental cohesion, in which unrelated abstractions are thrown into
the same class, is undesirable. Functional cohesion, in which elements of
a class work together to provide some well-rounded behavior, is
desirable.

Object-Oriented Design

 4 - 41

BUILDING QUALITY ABSTRACTIONS

Measuring Quality, Continued
Classes should be sufficient, complete, and primitive:
l By sufficient, the class captures enough characteristics of the
abstraction to permit meaningful and efficient interaction. For example, a
linked list class should allow for adding objects from the list, but it should
also allow for removing objects from the list to be sufficient.
l By complete, the class captures all of the meaningful characteristics of
the abstraction. Sufficiency implies a minimal interface, where
completeness implies one that covers all aspects of the abstraction.
Warning: completeness is a subjective concept and can be overdone,
providing much more functionality than needed for an application.
l By primitive, the operations associated with a class are those that can
be efficiently implemented only if given access to the underlying
representation of the abstraction. An operation that could be implemented
on top of existing primitive operations, but at the cost of significantly more
computational resources, is also a candidate for inclusion as a primitive
operation.

Object-Oriented Design

 4 - 42

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing Operations
l Create fine-grained methods, which are primitive operations that
exhibit small, well-defined behaviors.
l Separate methods that do not communicate with each other.
l Design the methods of a class as a whole, because all these methods
cooperate to form the entire protocol of the abstraction.
l Given a desired behavior, decide in which class to place it based on
the following:
m Reusability - Would the behavior be more useful in more than one
context?
m Complexity - How difficult is it to implement the behavior?
m Applicability - How relevant is the behavior to the class in which it
might be placed?
m Implementation Knowledge - Does the behavior's implementation
depend upon the internal details of a class?

Object-Oriented Design

 4 - 43

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing Operations,
Continued

Once an operation is established and defined in terms of its functional
semantics, its time and space semantics must be determined:
l Synchronous - An operation commences only when the sender has
initiated the action and the receiver is ready to accept the message. The
sender and receiver will wait indefinitely until both parties are ready to
proceed.
l Balking - Like synchronous, except that the sender will abandon the
operation if the receiver is not immediately ready.
l Timeout - Like synchronous, except that the sender will only wait for a
specified amount of time for the receiver to be ready.
l Asynchronous - A sender may initiate an action regardless of whether
the receiver is expecting the message.

Object-Oriented Design

 4 - 44

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing Relationships
l Choosing the relationships among classes and among objects is linked to
the selection of operations, since for one object or class to send a message to
the other, the other object or class must be visible to the first.

Visibility - the ability for one abstraction to access the interface of another
l Law of Demeter - The methods of a class should not depend in any way on
the structure of another class, except for the immediate (top level) structure of its
own class.
l Class structures that are wide and shallow usually represent forests of free-
standing classes that can be mixed and matched, and such classes are more
loosely coupled (which is good) but may not exploit all the commonality that
exists (which is bad).
l Class structures that are narrow and deep represent trees of classes that are
related by a common ancestor, and such classes exploit all the commonality that
exists (which is good) while requiring the user to understand the meanings of all
classes it inherits from or uses (which is bad).

Object-Oriented Design

 4 - 45

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing Implementations
l The implementation can only be designed after the interface is completed.
l The implementation of a class or object should almost always be
encapsulated in the abstraction, making it possible to change the implementation
without violating the interface to the clients.
l Implementations should be optimized for operation based on the most
frequent expected use of the abstraction.
l Examine time versus space constraints to determine how best to implement
the object's state information, particularly when it comes to the tradeoff of storing
state information in the object or computing it when needed.
l Seek to build functionally cohesive, loosely coupled modules, so trade off the
visibility of abstractions and the concept of information hiding against cohesion
and coupling.
l Always consider the possiblities of reuse, security, and documentation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

