
SOFTWARE
ENGINEERING
LABORATORY

Projects and Guides

Table of Contents
µCourse Syllabus 2
Course Schedule 4
Documentation Outlines 5

Software Project Plan...6
Software Requirements Document...9
Software Design Specification..12
Coding Style...18
Software Test Plan...19
Presentation Evaluation Form...21

Project Descriptions 22
Project 1: File Folder Database Manager...22
Project 2: Cruise Control System..22
Project 3: Spacecraft Environment Monitoring System..25
Project 4: Document Concordance Generator..26
Project 5: "Host at Sea" Buoy System..27
Project 6: PC Board Router...30

Check Lists 31
Meeting Diagnosis..31
Project Startup..31
Requirements Analysis Activities...32
Design Activities..33
Coding and Testing Activities...34

Software Engineering Laboratory Projects and Guides
Version 1.0

Page 2 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Course Syllabus

Class time and location: TThF 3:30-5:00, Braunstein 207 Instructor: Prof. Hal Carter, Rhodes
814,Teaching assistant: Darren Insko, Rhodes 805D

Course Summary and Objectives:
This course is the laboratory component of the ECE 493 Software Engineering course.
During the laboratory course the student will apply formal software engineering
techniques to the development of a software product. Each group of three students will
create the project plan, requirements specifications, design specifications, code, and test
plans for a software program to be coded in Ada. Maximum re-use of software
components will be emphasized to ensure timely development of a significant product in
a short period of time. Each group will also prepare five formal documents and
participate in five formal reviews. Each software project will be demonstrated and
evaluated at the end of the course.

Prerequisites:
ECE 226 - Intro to Programming, ECE 328 - Data Structures and Algorithms.

Co-requisites
ECE 493 - Software Engineering

Required Texts:
Naiditch, David J., Rendevous with Ada: A Programmer's Introduction, John Wiley
and Sons, 1989.
Useful Documentation: (Sections to be passed out during the course):
Software Engineering Laboratory: Projects and Guides, Winter 1992.
Grading:
The grades for this course are based upon the following weighted basis:

Item % report/review % total grade

Reports 70

Software Project Plan 15

Software Requirements Spec 25

Software Design Spec 25

Software Code 15

Page 3 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Software Test Plan 15

Course Evaluation 0

Final reports on floppy disk 5

Reviews 30

Project Review 15

Requirements Review 20

Design Review 20

Code Review 15

Test Plan Review 15

Demonstration 15

Total 100

The criteria for grading reports and reviews are:

Criteria weight (%)

Documents:

Content scope 20

Content correctness 25

Content completeness 25

Spelling and Grammar 10

Page 4 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Composition 10

Code:

Completeness of internal documentation 20

Adequate unit test programs 20

Complete code 20

Correct code 20

Coding style 20

Reviews:

Content scope 20

Content correctness 25

Content completeness 25

Presentation overheads 10

Presentation style 10

Project Organization: Each team of three students will select a project from the list of
projects provided later in this guide. Each team will consist of a team leader, analyst, and
test engineer all elected by popular consensus of the group. All team activities will be
mamaged by the team leader. Further, the team leader will be responsible for interfacing
with the project customer (i.e., lab instructor).

The development of the sofware product will take place in the standard software
engineering phases. Work will not proceed to the next phase until the customer has
officially signed off the documentation for the previous phase.

Page 5 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

All coding shall use only the Ada programming language, and will make
maximum use re-usable components.

Page 6 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Course Schedule

The overall schedule for the course is:

Wk Day Date Description Time Reading Report due

1 Tu Jan 7 Intro to lab
Project descriptions
Project plan

2:30-3:00
3:00-3:30
3:30-4:00

Syllabi, schedule
P&G1: projects
P&G: doc guides

2 Tu Jan 14 Requirements spec
Intro to Interleaf
Ada programming

2:30-3:00
3:00-3:30
3:30-5:00

P&G: doc guides

N2:1-5

3 Tu Jan 21 Ada programming
Project review
(20 mins/group)

2:30-3:30

3:30-5:10

N: 6,7 Project Plan

4 Tu Jan 28 Design spec
Ada programming

2:30-3:00
3:00-4:30

P&G: doc guides
N:8-12

5 Tu Feb 4 Requirements review
(30 mins/group)

2:30-5:00 Reqs Spec

6 Tu Feb 11 Ada programming 2:30-4:30 N:13-15

7 Tu Feb 18 DesignReview
(30 mins/group)

2:30-5:00 Design Spec

8 Tu Feb 25 Coding practices
Test Plan

2:30-3:00
3:00-3:30 P&G: doc guides

9 Tu Mar 2 Code Review
(30 mins/group)

2:30-5:00 Code

10 Tu Mar 9 Test Plan review
(30 mins/group)

2:30-5:00 Test Plan

Mar 9-13 Project demos
in Rhodes 800
(30 mins/group)

Exam
schedule

Course eval,
All rpts on
disk

1 Software Engineering laboratory: Projects and Guides
2 Naiditch, David J., Rendezvous with Ada: A Programmers Introduction, Wiley, 1989.

Page 7 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Documentation Outlines

This section contains the documentation outlines along with statements of required content. The following
guides are included:
1. Software Project Plan
2. Software Requirements Specifications
3. Software Design Specifications
4. Coding Style
5. Software Test Plan
6. Course Evaluation Form

The plans and specification reports given here are taken from Pressman, 3rd Ed. while the content
descriptions are in part derived from ANSI/MIL STD-2167A. The outlines are provided in three
formats: Word for Windows, V. 2.0 (*.mww), ASCII text, (*.txt), and Interleaf.

Page 8 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Software Project Plan

SOFTWARE PROJECT PLAN
Outline and Requirements

General comments: The following guidelines are given in italics and represent
the bare minimum required to complete this plan. Non-italicized text is to be
included in your plan verbatim. All sections must be included in your plan, even
if you do not feel it applies.

1. Introduction

One or two paragraphs which introduce the document..Several sentences on the
software to be developed can be included.

1.1. Scope and Purpose of Document
This document outlines the necessary time and cost estimates, risks and risk abatement, and resources
required to carry out the development of the software project. This document is primarily for use by
the development group, and may be used by the project sponsor as information relating to the
management and resource estimates of the project.

1.2. Project Objectives

1.2.1. Objectives

Itemize the objectives of the software development. Characteristics to consider
are:
1. Intended use of the software and scope of user base
2. Environmental constraints in which the software will be executing
3. Lifetime of the software product

1.2.2. Major Functions

Identify all the major functions of the software to be produced at a high level.
For example, consider a compiled simulator project. The major functions could
be:
1. Product will provide a capability to compile a source command language

into an intermediate format and store the resulting modules in a user-
controllable library.

2. Integrate pre-compiled modules stored in the user-controllable library into
an executable simulator program.

3. Load and execute the executable simulation program during which event
times and values are stored in a file for subsequent diagnostics (diagnostic
software is not to be a part of this product).

Page 9 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

1.2.3. Performance Issues

One or two paragraphs detailing all issues relating to the speed at which the
software needs to execute. If realtime needs are important, identify them here.
Even if timeliness of software execution is not an issue, say so and clearly state
why there is no need to be concerned about performance.

1.2.4. Management and Technical Constraints

At a minimum provide one paragraph detailing mangagement constraints
associated with the software development, and another paragraph identifying all
known impacting technical constraints. If there are a number of constraints,
itemize them in lists. Constraints include computers the software is to operate on,
cross compilation constraints, development time and cost constraints, longevity
constraints, memory limitations, and processor limitations (e.g., math
coprocessor, peripherals).

Page 10 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

2. Project Estimates

2.1. Historical Data Used for Estimates

Show sources and organized data obtained from prior projects that you used to in
producing your estimates. Such information is available in journals and publications
if direct knowledge of prior projects is not known.

2.2. Estimation Techniques

Outline all estimation techiques you used to develop your estimates in the next
section.

2.3. Estimates

This is the primary section in this part of the plan. Show in detail all estimates for
manpower loading, hours per task to be accomplished, and costs (yes, even for
student projects). Show all supporting data. A complete spreadsheet form of
presentation is preferred.

3. Project Risks

3.1. Risk Analysis

3.1.1. Identification

Identify all risks associated with this project. Potential risks are 1) limited time to
develop software, 2) lack of software development experience of personnel, 3)
lack of complete understanding of requirements, 4) improper motivation of
developers, 5) lack of knowledge of implementation language.

3.1.2. Risk Estimation

Give an estimate of the importance of each risk identified above. Translate these
importance factors into weighting factors to be used in the next section.

3.1.3. Evaluation

Evaluate the impact of all risks on the development and quality of the software
you will be developing.

Page 11 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

3.2. Risk Management

3.2.1. Risk Aversion Options

Identify all options available to your group to avoid or control risk. Give a table
reflecting how each risk aversion technique will reduce each risk.

3.2.2. Risk Monitoring Procedures

Give several procedures in a list of step format that you will implement to reduce
all risks.

4. Schedule

4.1. Project Work Breakdown Structure

Give a complete work breakdown structure for your project. This requires you to
identify the major subsystems to be developed.

4.2. Task Network

Provide a task network diagram with sufficient explanation which corresponds with
the tasks and breakdown structure.

4.3. Timeline Chart

Provide a Gantt chart for the schedule of effort for your project. The schedule should
be detailed to the day. Identify timelines for all tasks shown in the breakdown
structure.

4.4. Resource Table

Give a table of resources to be used by task.

5. Project Resources

5.1. People

Identify the people participating in the development of the project. Provide a brief
(e.g., one or two paragraphs each) biography of each person as it relates to their skill
and qualifications to carry out the project.

5.2. Hardware and Software

Identify all hardware and software resources that will be used to develop the project
items. Describe when during the development process they will be used. Project
items include reports, source code, executable code, and any other deliverables

Page 12 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

associated with the project.

5.3. Special Resources

Identify any special or unique resources, if required, that are needed. These
resources are usually unique because of limited availability or high useage cost.

6. Staff Organization

6.1. Team Structure

Give an organization chart and description of the organization of the group
developing the project.

6.2. Management Reporting

Describe how the members of the group will report to the team leader (and possibly
to each other). Identify how the group will be keeping the sponsor informed.
Describe how the leader will report to the group.

7. Tracking and Control Mechanisms

Describe the policies, processes, and enforcement methods to be used to assure the
development process is carried out with the lowest possible risk.

8. Appendices

Page 13 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Software Requirements Document

SOFTWARE REQUIREMENTS SPECIFICATION
Outline and Requirements

General comments: The following guidelines are given in italics and represent
the bare minimum required to complete this plan. Non-italicized text is to be
included in your plan verbatim. All sections must be included in your plan, even
if you do not feel it applies.

1. Introduction

One or two paragraphs which introduce the document.

1.1. System reference

One or two paragraphs which briefly describes the overall system within which the
software product executes. This description identifies the context for the software
product.

1.2. Overall description

One or two paragraphs which briefly describes the software product. This
description is an overview of the product itself which introduces it to the reader.

1.3. Software project constraints

One or two paragraphs which briefly identifies the major constraints imposed upon
the product. Use a list format if there are more than two constraints.

2. Information Description

2.1. Information flow representation

One or two paragraphs which introduce the major information flow of the software
product. Also identify nomenclature and symbols to be used in this section.

2.1.1. Data flow

Using a hierarchical decomposition of data flow diagrams, show, in detail, the
data flow of the software product and all its subsystems. Clearly describe the
dataflow diagrams. Use consistent naming conventions for all data. This section
is usually quite lengthy and care must be taken to organize the presentation well.

Page 14 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

2.1.2. Control flow

Using finite state machine models or other similar methods, show, in detail, the
flow of control in the software product and all its subsystems. Clearly describe
all diagrams. Ensure all names are consistent with the data flow diagrams in the
previous section. This section is usually quite lengthy and care must be taken to
organize the presentation well.

2.2. Information content representation

A complete description of all data identified in the Information flow representation
section above is given in this section. The data type, size, description, and other
attributes of each named data item is given, usually in tabular form.

2.3. Standard interface description

Clearly describe the hardware, software, and human interfaces to external system
elements and internal software functions. Use drawings as necessary to show where
the interfaces exist and the contents of the interfaces.

3. Functional Description

Give one or two paragraphs which summarizes the functional description of the
software product.

3.1. Functional partitioning

Provide a partitioned functional representation of the software product in a
hierarchical fashion. Use a formal representation, use text to clarify the figures,
carry the decomposition to the module unit level.. Ensure all named data or control
items are consistent with the data and control-flow models described above.

3.2. Functional description

For each module identified above:

3.2.1. Processing narrative

Describe the operation of the module.

3.2.2. Restrictions and limitations

Identify all restrictions and limitations imposed upon the module.

3.2.3. Performance requirements

Identify all timing, delay, or other performance constraints for the module. Note
that module performance requirements are usually derived from system and
subsystem constraints given in the Functional Partitioning section above. For

Page 15 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

time constrained software, a flowdown of module delays is documented either in
this section or in the Functional Partitioning section above.

3.2.4. Design constraints

Identify and justify all design constraints for each module.

3.2.5. Supporting diagrams

Show and describe all data-flow and control flow diagrams for the module.

3.3. Control description

For each module:

3.3.1. Control specification

Identify the control inputs and outputs for the module.

3.3.2. Design constraints

Identify all design constraints for the module.

4. Behavioral description

4.1. System states

Decompose, show, and describe all finite state diagrams and/or decision charts
reflecting the control of the system, subsystems, and significant control-intensive
modules. Clearly describe the inputs, output ID's, and states for all control state
transitions.

4.2. Events and actions

Clearly identify and describe all events creating the inputs, actions performed by the
output ID's.

5. Validation criteria

5.1. Performance bounds

Identify the performance expectations and bounds for the software product and its
major subsystems. Testing will validate against these bounds.

5.2. Classes of tests

Give a table and description of all major classes fo tests to be applied to the software

Page 16 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

once constructed to assure compliance with requirements specs.

5.3. Expected software response

For each test class, define the expected software response.

5.4. Special considerations

Claify any special issues relating to validation testing such as special setup
conditions, additional resources necessary to conduct the tests, etc.

6. Bibliography

Give references to all documentation used to create this specification including:
· other software engineering documentation
· technical references,
· vendor literature,
· standards

7. Appendix

Page 17 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Software Design Specification

SOFTWARE DESIGN SPECIFICATION
Outline and Requirements

General Comments: The following guidelines are given in italics and reporesent the
base minimim required to complete this plan. Non-italicized text is to be included in
your plan verbatim. All sections must be included in your plan, even if you do not feel it
applies.

1. Scope

The general scope of the project is given in this section. Give one or two introductory paragraphs
here.

1.1. System Objectives

Clearly state the overall objectives and subobjectives of the system of which this
software project is a part. These objectives must be consistent with the objectives
given in the Systems Requirements Document and the Software Requirements
Document.

1.2. Hardware, Software and Human
Interfaces

Clearly identify the scope of all interfaces between the
software project described by this document and the
external software programs, hardware ports, and
human functions such as display screens and mouse
inputs. Include a context diagram or figure to place
your descriptions in context. Note that this section
describes the scope of interfaces, not the interfaces
themselves.

1.3. Major Software Functions

Using applicable diagrams and text, describe all major software functions that are
a part of the software project described in this document. These functions should be
described only to the extent that the functional scope of the project is made clear.

1.4. Externally Defined Database

Define and characterize any significant files, external databases or database
systems used by the program. Level of description should be enough to establish the
scope of interaction between the program and the database or database system.

Page 18 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

1.5. Major Design Constraints and Limitations

Identify all design constraints and limitations against which the software will be
defined. Repeat the constraints and limitations from the SRS and further refine their
description at a design level.

2. Reference Documents

Identify all documents used throughout the design process. Reference documents
include:

· Mandatory compliance and guidance standards
· Documentation on all prior software, components, and libraries used in this

project
· Significant CASE tools documents
· Sources of algorithms, methods, or significant processes used in developing or

within the software itself
Use a standard bibliography style of reference. Separate the listings of
documents into the following categories:

2.1. Existing Software Documentation
2.2. System Documentation
2.3. Vendor Documents
2.4. Technical Reference

Page 19 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

3. Design Description

This section contains the actual design descriptions of the program, subsystems, and
each module. Use graphics and tabular representations augmented by clear and
consise text. Cross-reference liberally.

3.1. Data Description

3.1.1. Review of Data Flow

Copy significant data flow diagrams from the SRS to this section. Explain the
diagrams with text to ensure section stands alone (i.e., do not make references
back to the SRS). At a minimum the level 0 and level 1 diagram must be shown
and described.

3.1.2. Review of Data Structure

Copy from the SRS the data descriptions of all data id's shown in the figures,
table, or text given in Section 3.1.1 above. Explain all data as necessary to
ensure section stands alone without reference to the SRS.

3.2. Derived Program Structure

Give a sequence of heirarchical structure chart figures in decomposeable order
each augmented with tables and text for added clarity. Note that the hierachical
charts do not necessary reflect the same organization as the data flow diagrams in
the SRS, but rather reflect a module-level structure of the program.

3.3. Interfaces within Structure

Completely identify all aspects of the major interfaces between structure elements in the
program. Such interfaces may include data structures, timing diagrams, lists of data item
id's, or other form of explanation. Note that each interface will include explanatory text,
and should include graphical representations wherever possible. The depth of
description should be enough that a complete module design can be given in the next
section where the level of abstraction of the interface is no higher than that of the module
design.

4. Module Design

This section should be organized by module. For each module present in detail the
design of the module. The sections to be given for each module are:

Processing Narrative Describe the behavior of the module in text.

Interface Description First give the calling syntax as proc (arg,

Page 20 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

arg, ...) then define each arg, proc type, and
return type.

Design Language
Description

Code the module using pseudo-code or formal
design language.

Modules Used Give a list of modules called by this module.
Give a short phrase description of each module
name on the list.

Data Organization Completely describe each internal data item in
the module using a formal data method (e.g., C
types, ADA types, etc.).

Comments Give in text all special notes or other items not
included in the Processing Narrative section.

This section can be quite large. Make up each section in a form-like format to make the
task of preparing this section more structured.

5. File Structures and Global Data

Give a brief textual description of each file and global data items as a means of
introducing this section.

5.1. External File Structures

For each file, give the following:

Logical Structure Describe the logical structure of the entire file
graphically or tabularly. Use text as necessary to
clarify the structure.

Logical Record
Description

For each record type in the file, describe its
strucuture and meanings of each field.

Access Method Identify the method of access to the file (e.g., hash,
indexed. pile, sequential, etc.).

Page 21 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

The use of formal data modelling methods is helpful, but not strictly necessary.

5.3 Global Data

Describe each global data item in turn, giving sufficient information for direct coding
into data types in the implementation phase. The use of formal data modelling methods is
helpful, but not required.

5.3. File and Data Cross Reference

In this section, give in tabular and/or graphical form the association between data
items in the program and data items in each file. For instance if you have an input
file where each line is read in turn and the data is parsed into a data structure
called inline, then show how the line structure and fields maps into the data
structure items. Also give any enumeration or range limits.

6. Requirements Cross Reference

This section of several tabular lists such as
· Module versus requirement in the SRS
· Module data item versus data dictionary entry in the SRS
· File name versus file name in the SRS
· ... and any other major association between the contents of the SRS and the

design

7. Test Provisions

This section refines the test plan information given in the SRS. Note that the tests
themselves are not specified here (they are given in the Software Test Plan
document).

7.1. Test Guidelines

Identify all guidelines and suggestions for test setup, environment, and application.
This section applies primarily to the unit testing of each module or collection of
units performing a function.

7.2. Integration Strategy

Give an outline of the procedure or sequence of tasks (including testing tasks) for
integrating the modules into a working program. Ususally, each unit (i.e., module)
is unit tested, then the modules are integrated into functional collections of modules
and each is tested. Then these units combined into subsystems each of which are
tested followed by a complete all-up program test. This section should give a
"cookbook" step-by-step presentation of this process.

Page 22 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

7.3. Special Considerations

This section includes further clarification on test development or application. For
instance, if some special stubs are needed they can be further described here.

8. Packaging

This section describes how the executing segments of the program go together. If
the program is segmented by overlays than section 8.1 applies. Other forms of
program segmentation are allocation of modules or objects to nodes in a parallel
processor, assignment of program sections to parts of memory (such as the TPA,
high memory, or extended memory on a PC). If there are no special packaging
requirements, so state.

8.1. Special Program Overlay Provisions

Graphically show how the program is partitioned for memory or processor
allocation purposes. Use text for clarification.

8.2. Transfer Considerations

If the program is dynamically allocated during operation (e.g., VROOM by Borland
Int.) describe its operation here. This section generally applies to programs
operating over a suite of processors on a network.

9. Special Notes

Anything that doesn't fit above goes here.

10. Appendices

The Appendix contains copies of vendor or internal documents, large graphics that
do not fit well in the body of the document, or other information gemain to the
document but to unwieldy or unimportant to put in the body of the document.

Page 23 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Coding Style

Coding Style

General Comments: The following requirements are the minimum required to
ensure correct coding style for support and maintenance.

These guidelines have been adapted from a coding style guide authored by Prof.
Karen Davis, University of CIncinnati.

1. Identifiers
Identifiers shall be descriptive of their purpose or content. Single letter or non-meaningful names are not
acceptable. Use correct English spelling, do not haphazardly eliminate vowels. Use abbreviations or
acronyms only if they are commonly known.

2. Named Constants
Named constants shall be used rather than literal constants.

3. Modularity
The code shall be written in a modular style. Each module should have only one well-defined task.

4. Variable References
No non-local references to variables shall be made. Variables used in a module are either local or are
parameters.

5. Data Abstraction
Good data abstraction shall be employed. The only access to an abstract data type shall be through the
procedures or functions that define the behavior of the abstract data type.

6. Partitioning
A complete program shall be partitioned into one or more modules each of which are represented as source
code in a separate named file. Each module shall have a module description written as comments at its
beginning. The main or root module shall also contain the program code documentation written as
comments at the beginning of the file before the module description.

Page 24 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

6.1. Program Code Documentation

The format of the program code documentation is:

Purpose: A brief statement of the purpose of the program

Invocation
Syntax:

The specific command syntax for executing the
program and definition of each command line
option.

Description
:

A description of what the program does.

Copyright: A statement of the copyright including limitations
and owner.

Notes: Any additional notes about the program.

6.2. Module Description
The format of the module description is:

Module name: Name of the module.

Pupose: Brief purpose of the module relative to the program as a
whole.

Calling syntax: The specific calling syntax of the module in the form
proc(a,b,c,...) return x where return x applies only to
functions.

Inputs: List of procedure inputs and their definitions.

Outputs: List of prodedure outputs and their definitions.

Files used: List and definition of files read and/or written.

Description: A brief and complete description of the module. If module
implements a published algorithm, give reference.

Author: Name of primary author of the module.

Page 25 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Date: Date of last update to the module.

Revisions: List of revision descriptions with latest revision first.

Note that both program and module descriptions are a high-level description of what task the
code accomplishes. It should not mention data structures, program modules, or variables. It should be
understandable by an intelligent non-programmer.

Correct spelling and punctuation shall be used in all textual descriptions including comments written
throughout the code.

The description of program input and output contains the source/destination of all input and output, as well
as the formats used for each. BNF may be used for describing formats. A brief example of input and
output is often useful.

7. Indention
Adequate use of whitespace shall be employed for indentation and separation of modules. Four spaces for
indentation is suggested, and uniform spacing to indicate levels of control flow is required.

8. Line Length
Long lines shall be broken and indented so that they may be easily read on a screen (no longer than 80
characters).

9. File Protection
Unless several students are working on a module, the files containing the module sources shall be set so
that no one but the individual programmer may have access to it. For example chmod 600 filename gives
read/write access to you and not the rest of the world under UNIX.

Page 26 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Software Test Plan

SOFTWARE TEST PLAN
Outline and Requirements

General Comments: The following guidelines are given in italics and reporesent the
base minimim required to complete this plan. Non-italicized text is to be included in
your plan verbatim. All sections must be included in your plan, even if you do not feel it
applies.

1. Scope of Testing

The general scope of the test plan is given in this section. Summarize the specific functional,
performance, and internal design characteristics that are to be tested. Briefly describe the bounds
of the testing, criteria for completion of each test, and schedule constraints.

2. Test Plan

Testing is divided into phases and builds that address specific functional and
behavioral characteristics of the software. Each of these builds is a group of
modules which are created in a phase.

2.1. Test Phases and Builds

Describe each software development and test phase, and describe the build process
to implements that phase.

2.2. Schedule

Provide estimated start and completion dates for integration, overhead software
development to support test (see next section), test application periods, and test
analysis periods (if applicable) for each test phase. Note that each of these
development of test periods imposes an availability of unit tested modules to
integrate and test.

2.3. Overhead Software

Overhead software consists of software test benches, stubs, and drivers necessary to
carry out the testing. Describe these overhead items.

2.4. Environment and Resources

Define the normal test environment including hardware platforms or external
resources, and software tools necessary to conduct the tests. Also define any
unusual hardware configurations, exotic simulators, special test tools or techniques.

Page 27 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

3. Test Procedure: Build n

This section prsents the detailed testing procedure required to accompish the test
plan (Section 2 above). Separate section 3's containing the unit and integration
tests are defined for each build.

3.1. Order of Integratiion

Briefly describe the order of unit and subsystem integration to be carried out to
create the build.

3.1.1. Purpose

State the purpose of the build and the testing of the build.

3.1.2. Modules to be Tested

Identify the modules in this build to be tested and integrated in the
order they will be tested.

3.2. Unit Tests for Modules in Build

This section describes the actual test for each module m. Briefly introduce the test
here. There are m Section 3.2's, one for each module being tested.

3.2.1. Description of Tests for Module m

Describe each test using a formal point-by-point statement of each
test.

3.2.2. Overhead Software Description

Describe all software items such as stubs, drivers, and test benches
to check out this module.

3.2.3. Expected Results

Identify the expected results of the test. Write this section in a list
fashion such that each test motivates one or more output
descriptions.

3.3. Test Environment

3.3.1. Special Tools or Techniques

Identify all special hardware or software tools or techniques
necessary to carry out this test.

Page 28 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

3.3.2. Overhead Software Description

Describe the overhead software (.i.e., stubs, drivers, test benches)
at a level detailed enough to support coding the item.

3.4. Test Case Data

Identify all test data to be used to conduct the test.

3.5. Expected Results for Build n

Identify the expected results for each input test data case. Note test case data and
expected results can be described in a singe section mainly consisting of large table
where test case data is presented on the left side of the table, and expected results
shown on the right side of the table.

4. Actual Test Results

This section consists of forms with blank spaces to record the actual test results
along with the date of the test, who the tester is, etc. Again, this section can be
integrated with Section 3.4 and 3.5 for each build as an option.

5. References

Identify all documentation references where supporting material has been used.

6. Appendices

Page 29 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Presentation Evaluation Form

This form will be completed by the Professor (and the Teaching Assistant as a cross-check) during each
presentation by each team.

Review Grading Sheet for ____________________________ Presentation.
Date:_____________

 (e.g., Project Plan, Requirements Spec, etc.)

Team Criteria Wt Grade Comments

1 Scope 20

Correctness 25

Completeness 25

Overheads 10

Presentation 10

Grade: 100

2 Scope 20

Correctness 25

Completeness 25

Overheads 10

Presentation 10

Grade 100

3 Scope 20

Page 30 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Correctness 25

Completeness 25

Overheads 10

Presentation 10

Grade 100

4 Scope 20

Correctness 25

Completeness 25

Overheads 10

Presentation 10

Grade 100

5 Scope 20

Correctness 25

Completeness 25

Overheads 10

Presentation 10

Grade 100

Page 31 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Scope: Is content of presentation within the scope of the intent of the review?

Correctness: Is material presented correct?

Completeness: Is presentation complete?

Overheads: Were overheads prepared in a professional manner?

Presentation: Was the presentation given in a professional manner?

Page 32 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Project Descriptions

Project 1: File Folder Database Manager

A File Folder Database Manager maintains a database of the folders in a filing cabinet. It allows the user
to organize the folders by a taxonomy, specify their locations, and print reports on them.

1. For each folder (record), the following information is maintained:
2. Top-level taxonomy entry (40 characters maximum)
3. 2nd-level taxonomy entry (40 characters maximum)
4. 3rd-level taxonomy entry (40 characters maximum)
5. Description of folder contents (3 lines of 60 characters/line maximum)
6. ID of drawer containing folder (5 characters maximum)
7. ID of folder in drawer (5 characters maximum)

The database manager should perform the conventional database functions
(create, import text files, export text files, add records, delete
records, sort records, etc.) and generate the following reports:

1. A listing of the database ordered by the three taxonomy entries
2. A listing of the unused drawer/folder IDs
3. A listing showing the last folder ID for each drawer ID

Project 2: Cruise Control System

A cruise control system maintains a car's speed, even over varying terrain. The basic idea is that the driver
engages the cruise control system, the car reaches a desired speed, and the driver tells the cruise control
system to start controlling the car's speed.

If the cruise control system is controlling the car and the driver touches the brake pedal, the cruise control
system stops controlling the car's speed but remains engaged and remembers the last speed set by
the driver. After touching the brake pedal, if the driver presses the resume switch, the cruise control
system resumes controlling the car at the last desired speed.

If the cruise control system is controlling the car and the driver depresses the accelerator pedal to speed up,
the cruise control system stops controlling the car's speed until the driver releases the accelerator pedal.
After the driver releases the accelerator pedal, the cruise control system resumes controlling the car at the
last desired speed.

This problem is the design a cruise control system and a screen-oriented user interface from the driver's
perspective. Through this interface the driver (at the keyboard) should be able to do the following:

1. Start the engine
2. Depress the accelerator pedal
3. Depress the brake pedal
4. See the speed of the car (a speedometer reading is displayed)
5. See if the cruise control system is engaged and if it is currently controlling the car

Page 33 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

6. Engage the cruise control system
7. Set the current speed as the desired speed, allowing the cruise control system to control the car's

speed
8. Press the resume switch, allowing the cruise control system to resume control of the car's speed
9. Disengage the cruise control system
10. Stop the engine

For the purpose of this problem, an interface to the automobile hardware is provided by an automobile
interface package. If this exercise were to be extended into a real application, the only difference would be
a change to the package body of this automobilie interface from a simulation to an actual hardware-level
interface to the sensors and actuators in the automobile itself. The following is the package specification of
the automobile interface (tentative, subject to change):

-- ***
-- * *
-- * Automobile_Interface * SPEC
-- * *
-- ***
package Automobile_Interface is

 Maximum_Speed : constant := 120.0;
 type SPEED is new FLOAT
 range 0.0 .. Maximum_Speed; -- MPH

 -- ...
 -- . .
 -- . Automobile_Interface.Turn_On_Engine . SPEC
 -- . .
 -- ...
 procedure Turn_On_Engine;
 --| Purpose
 --| Turn on the automobile engine. The Brake
 --| Pedal and Accelerator Pedal routines are
 --| activated.

 -- ...
 -- . .
 -- . Automobile_Interface.Turn_Off_Engine . SPEC
 -- . .
 -- ...
 procedure Turn_Off_Engine;
 --| Purpose
 --| Turn off the automobile engine. The Brake
 --| Pedal and Accelerator Pedal routines are
 --| deactivated and the car comes to a stop.

 -- ..
 -- . .
 -- . Automobile_Interface.Depress_Accelerator_Pedal . SPEC
 -- . .
 -- ..
 procedure Depress_Accelerator_Pedal;
 --| Purpose
 --| The car accelerates.

Page 34 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

 --|
 --| Notes
 --| Turn_On_Engine must first be called.

 -- ..
 -- . .
 -- . Automobile_Interface.Hold_Accelerator_Pedal . SPEC
 -- . .
 -- ..
 procedure Hold_Accelerator_Pedal;
 --| Purpose
 --| The car stops accelerating and holds a steady speed.
 --|
 --| Notes
 --| Turn_On_Engine must first be called.

 -- ..
 -- . .
 -- . Automobile_Interface.Release_Accelerator_Pedal . SPEC
 -- . .
 -- ..
 procedure Release_Accelerator_Pedal;
 --| Purpose
 --| The car stops accelerating and starts to
 --| decelerate.
 --|
 --| Notes
 --| Turn_On_Engine must first be called.

 -- ..
 -- . .
 -- . Automobile_Interface.Depress_Brake_Pedal . SPEC
 -- . .
 -- ..
 procedure Depress_Brake_Pedal;
 --| Purpose
 --| The car decelerates quickly.
 --|
 --| Notes
 --| Turn_On_Engine must first be called.

 -- ..
 -- . .
 -- . Automobile_Interface.Release_Brake_Pedal . SPEC
 -- . .
 -- ..
 procedure Release_Brake_Pedal;
 --| Purpose
 --| The car decelerates at the same speed as
 --| it does if Release_Accelerator_Pedal is called.
 --|
 --| Notes
 --| Turn_On_Engine must first be called.

Page 35 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

 -- ...
 -- . .
 -- . Automobile_Interface.Sensed_Speed . SPEC
 -- . .
 -- ...
 function Sensed_Speed return SPEED;
 --| Purpose
 --| Return the speed of the car.

 -- ...
 -- . .
 -- . Automobile_Interface.Update . SPEC
 -- . .
 -- ...
 procedure Update;
 --| Purpose
 --| Update the status of the car. This routine
 --| should be called periodically, and it advances
 --| the state of the car to the next second.

end Automobile_Interface;

Project 3: Spacecraft Environment Monitoring System

A spacecraft contains a number of sensors which continuously sample the internal ambient temperature,
pressure, and radiation levels within the spacecraft. The problem is to design and implement a monitor
system in software which reads the values of these sensors, displays them (using character graphics and
numeric values) on a CRT screen, and checks to ensure that the sensor values always fall within desired
constraints. If any one sensor or combination of sensors return values which fall outside their constraints,
an alarm indication will be displayed on the screen along with a beeping sound to attract attention.

For the purpose of this problem, an interface to the sensor hardware is provided by a sensor interface
package. If this exercise were to be extended into a real application, the only difference would be a change
to the package body of this sensor interface from a simulation to an actual hardware-level interface to the
sensors themselves. The following is the package specification of the sensor interface (tentative, subject to
change):

-- **
-- * *
-- * Spacecraft_Sensor_Interface * SPEC
-- * *
-- **
package Spacecraft_Sensor_Interface is

 type SPACECRAFT_SECTION is (BRIDGE, AUXILIARY_BRIDGE,
 CREW_QUARTERS, GALLEY,
 LAB1, LAB2, LAB3,
 AIRLOCK1, AIRLOCK2,
 EXPERIMENT_BAY);

 type PRESSURE is new FLOAT
 range 0.0 .. 400.0; -- psi

Page 36 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

 subtype TOLERATED_PRESSURE is PRESSURE
 range 20.0 .. 80.0;

 type TEMPERATURE is new FLOAT
 range -400.0 .. 2_000.0; -- Fahrenheit
 subtype TOLERATED_TEMPERATURE is TEMPERATURE
 range -20.0 .. 120.0;

 type RADIATION_LEVEL is new FLOAT
 range 0.0 .. 8_000.0; -- Roentgens
 subtype TOLERATED_RADIATION_LEVEL is RADIATION_LEVEL
 range 0.0 .. 400.0;

 -- ...
 -- . .
 -- . Spacecraft_Sensor_Interface.Sensed_Value . SPEC
 -- . .
 -- ...
 function Sensed_Value
 (Location : in SPACECRAFT_SECTION) return PRESSURE;
 function Sensed_Value
 (Location : in SPACECRAFT_SECTION) return TEMPERATURE;
 function Sensed_Value
 (Location : in SPACECRAFT_SECTION) return RADIATION_LEVEL;
 --| Purpose
 --| Return sensor readings from different parts of the
 --| spacecraft.
 --|
 --| Exceptions (none)
 --| Notes
 --| If values exceed the limits set for the different
 --| types, the corresponding maximum or minimum values are
 --| returned. Assume that sensor validation is performed
 --| internally to these routines.

 -- ...
 -- . .
 -- . Spacecraft_Sensor_Interface.Update . SPEC
 -- . .
 -- ...
 procedure Update;
 --| Purpose
 --| Examine each sensor and update its status. This
 --| update includes sensor input validation.
 --|
 --| Exceptions (none)
 --| Notes
 --| Update must be called before calling any of the
 --| Sensed_Value routines. Update checks all sensors, so
 --| the scenario is to call Update and then call all the
 --| permutations of the Sensed_Value routines before
 --| calling Update again.

end Spacecraft_Sensor_Interface;

Page 37 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Project 4: Document Concordance Generator
A concordance is an alphabetical index that shows the places in a document where each word may be
found. For example, a concordance of this paragraph might appear as:

Word Line Number

a 1, 2, 3

alphabetical 1

an 1

appear 3

...

word 2

Concordances are typically used as an aid in the study of massive works, such as the Bible or the collected
works of Shakespeare. In a slightly different form, a system that creates a concordance might be used to
provide the functionality of a cross-reference generator for programs or to create
an index.

This problem is to develop a program that, given the name of a file containing a document and the name of
an output file, produces a concordance of the document in the output file. The concordance output file is
to contain a heading at the top of each page, a footer at the bottom of each page with page numbers, and a
title page showing the name of the input file. Articles (the words "a", "an", and "the") are to be omitted
from the concordance. Connectives (the words "and", "or", "then", and "else") are also to be omitted.
Finally, other common words (including "of", "but", "is", "are", "not", "to", "that", "from", "it", "its",
"itself", "in", "out", "very", "most", "it's", and "also") are to be omitted. Design the concordance software
so this list of omitted words can be easily changed and the program recompiled.

Project 5: "Host at Sea" Buoy System

The "Host at Sea" buoy system is a group of free-floating buoys that provide navigation and weather data
to air and ship traffic at sea. The buoys collect data on air and water temperature, wind speed, and their
location through a variety of sensors. Each buoy is equipped with a radio transmitter (to broadcast
weather information, location information, and an SOS signal) and a radio receiver (to receive requests
from passing vessels). Each buoy is equipped with a yellow light, which can be activated by a passing
vessel during sea-search operations. A sailor reaching the buoy can flip a switch on the side of the buoy
which causes the buoy to send out an SOS broadcast and flash a red SOS light.

Page 38 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Software for each buoy must do the following:

1. Obtain air and water temperature and wind speed from the buoy's sensors and broadcast this
information.

2. Obtain location information from the buoy's sensors and broadcast this information.
3. Activate or deactivate the yellow light based on requests from passing vessels.
4. Continuously broadcast an SOS signal and the red light after a sailor engages the emergency

switch. This continues untilsomeone disengages the emergency switch. All other activity is
taking place while the SOS broadcast is taking place.

You are to write a monitor system for all buoys in the world for this problem. This monitor system will
display information about all buoys that are sending out SOS signals or flashing Yellow. Additionally, if
the temperature of the air or the water exceeds 200 degrees Fahrenheit, this is an indication of a nuclear
explosion, and such events must appear on the monitor with a warning alarm (beeping sound). Finally, if
the wind speed at a buoy exceeds 50 MPH, a hurricane is assumed to be present, and this condition should
also set off a warning alarm.

For the purpose of this problem, an interface to the buoy hardware is provided by a sensor interface
package. If this exercise were to be extended into a real application, the only difference would be a change
to the package body from a simulation to an actual hardware-level interface. The following is a listing of
the package specification (tentative, subject to change):

-- **
-- * *
-- * Buoy_Sensor_Interface * SPEC
-- * *
-- **
package Buoy_Sensor_Interface is

 type BUOY_ID is (B01, B02, B03, B04, B05,
 B06, B07, B08, B09, B10,
 B11, B12, B13, B14, B15,
 B16, B17, B18, B19, B20);

 type OFF_ON is (OFF, ON);

 type TEMPERATURE is new FLOAT
 range -100.0 .. 300.0; -- Fahrenheit

 type SPEED is new FLOAT
 range 0.0 .. 200.0; -- MPH

 type NSEW is (NORTH, SOUTH, EAST, WEST);
 type DEGREE is new FLOAT
 range 0.0 .. 90.0; -- Degrees
 type COORDINATE is record
 Direction : NSEW;
 Offset : DEGREE;
 end record;
 type LOCATION is record
 Latitude : COORDINATE;
 Longitude : COORDINATE;
 end record;

Page 39 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

 -- ...
 -- . .
 -- . Buoy_Sensor_Interface.Air_Temperature . SPEC
 -- . .
 -- ...
 function Air_Temperature (ID : in BUOY_ID)
 return TEMPERATURE;
 --| Purpose
 --| Return the Air Temperature around the buoy.
 --|
 --| Notes
 --| Update must be called to update the status
 --| of the buoy sensors first.

 -- ...
 -- . .
 -- . Buoy_Sensor_Interface.Water_Temperature . SPEC
 -- . .
 -- ...
 function Water_Temperature (ID : in BUOY_ID)
 return TEMPERATURE;
 --| Purpose
 --| Return the Water Temperature around the buoy.
 --|
 --| Notes
 --| Update must be called to update the status
 --| of the buoy sensors first.

 -- ...
 -- . .
 -- . Buoy_Sensor_Interface.Wind_Speed . SPEC
 -- . .
 -- ...
 function Wind_Speed (ID : in BUOY_ID)
 return SPEED;
 --| Purpose
 --| Return the Wind Speed around the buoy.
 --|
 --| Notes
 --| Update must be called to update the status
 --| of the buoy sensors first.

 -- ...
 -- . .
 -- . Buoy_Sensor_Interface.Global_Position . SPEC
 -- . .
 -- ...
 function Global_Position (ID : in BUOY_ID)
 return LOCATION;
 --| Purpose
 --| Return the location of the buoy.
 --|
 --| Notes

Page 40 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

 --| Update must be called to update the status
 --| of the buoy sensors first.

 -- ...
 -- . .
 -- . Buoy_Sensor_Interface.Red_Light . SPEC
 -- . .
 -- ...
 function Red_Light (ID : in BUOY_ID) return OFF_ON;
 --| Purpose
 --| Indicate if the red light is on or off.
 --|
 --| Notes
 --| Update must be called to update the status
 --| of the buoy sensors first.

 -- ...
 -- . .
 -- . Buoy_Sensor_Interface.Yellow_Light . SPEC
 -- . .
 -- ...
 function Yellow_Light (ID : in BUOY_ID) return OFF_ON;
 --| Purpose
 --| Indicate if the yellow light is on or off.
 --|
 --| Notes
 --| Update must be called to update the status
 --| of the buoy sensors first.

 -- ...
 -- . .
 -- . Buoy_Sensor_Interface.Update . SPEC
 -- . .
 -- ...
 procedure Update (ID : in BUOY_ID);
 --| Purpose
 --| Update the buoy sensors' status.

end Buoy_Sensor_Interface;
·

Page 41 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Project 6: PC Board Router
This project consists of developing a simple two-layer printed circuit board router to automatically
determine shortest wiring paths between IC and component pads on the board. Assume the board
component assignment has already been done, and a netlist consisting of a list of nets is given where each
net i consists of ni (x,y) points.

The following board physical constraints hold:
1. The maximum board size is six inches by six inches.
2. Wire width is 25 mils and pitch is 50 mils.
3. All pads have a diameter of 25 mils.
4. All component pads lie on a virtual grid with 100 mil spacing in x and y.
5. Wire direction is in either the veritcal or horizontal direction (manhattan

corrdinate system).

The software product must:
1. Automatically route all valid wires.
2. Check for all errors in the netlist and board definition.
3. Display the routed board on the terminal screen as the board is routed.
4. Operate in one of two modes:

a. fully automatic mode - read netlist and fully route displaying as
execution progresses

b. interactive mode - request two-point net from user, route it and display
results on the screen. The interactive mode should also permit deletion
of routed nets or any subnet, and display routing statistics such as %
nets routed, sum of routes, etc.

Page 42 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Check Lists

Use these check lists to ensure your activities throughout the quarter are done properly and efficiently.
There's a lot of good advice here!

Meeting Diagnosis

This checklist is used to assess the planning, execution and effectiveness of meetings. Source: Barbara C.
and Kenneth R. Palmer, The Successful Meeting Master Guide,Prentice-Hall, Inc., 1983.

1. Meeting Goals and Objectives
· Were the issues or topics of the meeting clear to all in attendance?
· Did everyone know what decisions or actions were to be taken?
· Were the meeting's objectives reasonable, given available time and resources?
· Was a good sense of priorities established to guide deliberations?

2. Notification
· Was the agenda made clear by the meeting organizer before the meeting (verbally or in

writing)?
· Were participants told of the meeting sufficiently in advance to allow adequate preparation?
· Were they prepared to make decisions or act?
· Were all necessary materials distributed sufficiently in advance to allow review?
· Was the distribution of unnecessary materials avoided?
· Was the time of the meeting convenient?

3. Participation
· Were all key players present?
· Were the interests of everyone impacted by the meeting outcomes epresented?
· Was your contribution to or benefit from the meeting sufficient to warrantyour attendance?
· Was sufficient time allocated to each item on the agenda?
· Were all people given an opportunity and encouraged to participate?
· Was a spirit of cooperation fostered?
· Was domination of the group by one or two persons avoided?
· Were people presenting information well prepared and organized?
· Did the group adhere to the agenda or get side-tracked?
· Was the meeting leader effective in instilling a sense of common purpose, eeping the group on

track, creating an atmosphere conducive to the free exchange of ideas and information,
resolving conflict, providing positive feedback when warranted, maintaining interest and
enthusiasm, summarizing periodically and/or at the end of the meeting, and moving the group
toward closure on agenda items?

· Was the meeting concluded reasonably close to the scheduled ending time?
4. Meeting Follow-Up

· At the close of the meeting, was there consensus on decisions or actions?
· Were follow-up assignments and responsibilities clear?
· Were minutes, follow-up correspondence, or actions executed in a timely manner?

Project Startup

This checklist is used to get the project off to a good start. These actions should be taken upon the first
meeting of the project group. Source: Barbee Teasley Mynatt, Software Engineering with Student Project

Page 43 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

Guidance, Prentice-Hall, Inc., 1990.

1. Meet with your project group and decide on a team organization.
2. Select a leader for the group.
3. Set up a formal communication network for the group. For example, a telephone chain might

be set up where each member is responsible for contacting the next member on the list. Also, a
common electronic mailing list might be set up on theRm 800 SUN server and group members
may agree to read their electronic mail every day.

4. Decide on meeting procedures: who will call the meetings, where the meetings will be held,
who the meeting leader will be (for at least the next meeting), what the format of the meetings
will be, and how long typical meetings will last.

5. Consider establishing a regular meeting time so that people can build their schedules around the
regular time.

6. Choose a recorder to take minutes of meetings.

Requirements Analysis Activities

This checklist is used to ensure that all activities performed during requirements analysis are completed.
Source: Barbee Teasley Mynatt, Software Engineering with Student Project Guidance, Prentice-Hall, Inc.,
1990.

1. Set up a schedule of analysis activities and assign personnel.
2. Itemize the requirements of the system.
3. Each individual should review and make sure he understands the Project Description. If there

are any questions, discuss them in the group before the meeting with the sponsor.
4. Meet with the sponsor. Make sure the meeting covers the following:

· A meeting with the sponsor IS a meeting. Follow the procedures for a good meeting given
earlier.

· Be sure to take written notes and give the sponsor a copy of those notes after the meeting.
· Review and discuss the Project Description.
· Review and discuss the requirements of the system that your project group has identified.
· Determine the who, what, where, when, why, and how of the project. Write down the

answers.
· Get copies of any forms, data, printouts, and the like that the sponsor uses in the current

system.
· If not already prescheduled, set up regular meeting times with the sponsor.

5. If the sponsor is not the user of the current system, interview or observe the activities and
responsibilities of the people who are.

6. If the sponsor is not the user of the proposed system, interview the people who will be. Be sure
to assess their knowledge and skill in using computers, and analyze their tasks and
responsibilities in the system.

7. Write down an initial description of the system in the form of a statement of system scope.
8. Make a list of the objects in the system and identify their type.
9. Make a list of the operations in the system, and associate each operation with an object.
10. Create one or more Entity-Relationship Diagrams (ERDs) of the system.
11. Create one or more State Transition Diagrams (STDs) of the system.
12. Create one or more Flow Charts of the system.
13. Create one or more Data Flow Diagrams (DFDs) of the system.
14. Create a Data Dictionary (DD) of the system.
15. Study the Interleaf publishing system on the Rm 800 SUNs (or other sophisticated formating

editor like Word for Windows or Wordperfect) and learn how to use it in to create the Software
Requirements Specification (SRS).

Page 44 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

16. Make sure you understand the stylistic guidelines and standards for the DFDs, ERDs, DD,
Flow Charts, and SRS.

17. When your model (DFDs, ERDs, DD, Flow Charts, others) of the system is well-along, have
the sponsor and other people from the current system examine and comment on your model.

18. Create one or more model versions of the proposed system and conduct reviews of these within
the project group.

19. Choose the best model from among those proposed.
20. Assess the feasibility of the proposed system. Identify the areas of risk.
21. Determine the qualification criteria for the proposed system. Make sure to include definitions

for the "success" and "failure" of the system.
22. Assemble and review the Software Requirements Specification document.
23. Review your requirements analysis within the project group before the formal Software

Requirements Review (SRR) with the sponsor and the class. Plan the formal SRR (including
the preparation of transparencies), allowing 5 minutes for questions and discussion.

24. Hand in the SRS to the sponsor.

Design Activities

This checklist is used to ensure that all activities performed during preliminary design are completed.
Source: Barbee Teasley Mynatt, Software Engineering with Student Project Guidance, Prentice-Hall, Inc.,
1990.

1. Schedule user interface design activities and assign personnel.
2. Assess the current system from the standpoint of the user interface. What aspects of the current

system's interface are good or poor? What aspects of the proposed system's interface are good
or poor?

3. Obtain information about the potential users of the system. Will they be novice, intermittent, or
frequent users, or possibly a mixture? Will they be adults or children?

4. If possible, observe the potential users of the system. How do they approach their tasks?
Interview them concerning the pros and cons of the current system.

5. Try out software systems similar to the proposed system and assess the user interfaces.
6. Define the semantics of the proposed system. Organize the tasks into categories. Consider task

flow sequencing alternatives. Make a distinction between objects in the task environment and
actions in the task.

7. Decide on the style or combinations of interface styles to be used. Consider alternative styles
before selecting one. Make prototypes to help in reaching a decision.

8. Decide what other user aids might be needed, such as online help, tutorial systems, or offline
tutorials. Begin planning their design and implementation.

9. Write a draft Software User's Manual (SUM) and review it within the project group.
10. Begin filling out the Software Design Document (SDD) and review it within the project group.
11. Plan a schedule or design activities and set deadlines.
12. Assign personnel to be responsible for the different activities.
13. Using the results of the requirements analysis activity, identify the essential objects of the

system. Document their attributes, the operations performed by them, and the operations
performed on them.

14. Create one or more Object Interaction Diagrams (OIDs) of the system.
15. Design the major data structures for the system.
16. Evaluate the modules of the system for coupling and cohesion.
17. Review your preliminary design within the project group before the formal Preliminary Design

Review (PDR) with the sponsor and the class. Plan the formal PDR (including the preparation
of transparencies), allowing 5 minutes for questions and discussion.

18. Update all diagrams and the Data Dictionary. Complete the design.
19. Evaluate the detailed designs by holding a number of walk-throughs and/or informal reviews

Page 45 of 46

Software Engineering Laboratory Projects and Guides
Version 1.0

within the project group. Have the recorder document the proceedings of these reviews and
distribute them to group members.

20. Review your final design within the project group before the formal Critical Design Review
(CDR) with the sponsor and the class. Plan the formal CDR (including the preparation of
transparencies), allowing 10 minutes for questions and discussion.

21. Hand in the SDD to the sponsor.

Coding and Testing Activities

This checklist is used to ensure that all activities performed during coding and testing are completed.
Source: Barbee Teasley Mynatt, Software Engineering with Student Project Guidance, Prentice-Hall, Inc.,
1990.

1. Assess and study your tools. Is an Ada pretty printer available? Is a language-sensitive editor
available? What other tools are available to help you?

2. Make sure you code according to MIL-HDBK-1804.
3. Assign personnel to coding and testing duties. Make sure that the person who codes a part of

the design does not test that part of the design.
4. Set up a schedule of coding, integration, and testing activities.
5. Conduct code walkthroughs with the project group. Document the results of these

walkthroughs.
6. Keep records of the unit testing done. Review those records for completeness.
7. Prepare the presentation for the delivery and live demonstration of the software.
8. Give a live demonstration of your system to the sponsor and the class. Be sure to have

presentation aids ready to aid in the demo.
9. Hand in your code, SUM, and Version Description Document (VDD) to the sponsor. Also

hand in a copy of all records kept on this project.

Page 46 of 46

	Course Syllabus
	All coding shall use only the Ada programming language, and will make maximum use re-usable components.
	Course Schedule
	Documentation Outlines
	Software Project Plan
	General comments: The following guidelines are given in italics and represent the bare minimum required to complete this plan. Non-italicized text is to be included in your plan verbatim. All sections must be included in your plan, even if you do not feel it applies.

	1. Introduction
	One or two paragraphs which introduce the document..Several sentences on the software to be developed can be included.
	1.1. Scope and Purpose of Document
	1.2. Project Objectives
	1.2.1. Objectives
	1.2.2. Major Functions
	1.2.3. Performance Issues
	One or two paragraphs detailing all issues relating to the speed at which the software needs to execute. If realtime needs are important, identify them here. Even if timeliness of software execution is not an issue, say so and clearly state why there is no need to be concerned about performance.
	1.2.4. Management and Technical Constraints
	At a minimum provide one paragraph detailing mangagement constraints associated with the software development, and another paragraph identifying all known impacting technical constraints. If there are a number of constraints, itemize them in lists. Constraints include computers the software is to operate on, cross compilation constraints, development time and cost constraints, longevity constraints, memory limitations, and processor limitations (e.g., math coprocessor, peripherals).

	2. Project Estimates
	2.1. Historical Data Used for Estimates
	Show sources and organized data obtained from prior projects that you used to in producing your estimates. Such information is available in journals and publications if direct knowledge of prior projects is not known.

	2.2. Estimation Techniques
	Outline all estimation techiques you used to develop your estimates in the next section.

	2.3. Estimates
	This is the primary section in this part of the plan. Show in detail all estimates for manpower loading, hours per task to be accomplished, and costs (yes, even for student projects). Show all supporting data. A complete spreadsheet form of presentation is preferred.

	3. Project Risks
	3.1. Risk Analysis
	3.1.1. Identification
	Identify all risks associated with this project. Potential risks are 1) limited time to develop software, 2) lack of software development experience of personnel, 3) lack of complete understanding of requirements, 4) improper motivation of developers, 5) lack of knowledge of implementation language.
	3.1.2. Risk Estimation
	Give an estimate of the importance of each risk identified above. Translate these importance factors into weighting factors to be used in the next section.
	3.1.3. Evaluation
	Evaluate the impact of all risks on the development and quality of the software you will be developing.

	3.2. Risk Management
	3.2.1. Risk Aversion Options
	Identify all options available to your group to avoid or control risk. Give a table reflecting how each risk aversion technique will reduce each risk.
	3.2.2. Risk Monitoring Procedures
	Give several procedures in a list of step format that you will implement to reduce all risks.

	4. Schedule
	4.1. Project Work Breakdown Structure
	Give a complete work breakdown structure for your project. This requires you to identify the major subsystems to be developed.

	4.2. Task Network
	Provide a task network diagram with sufficient explanation which corresponds with the tasks and breakdown structure.

	4.3. Timeline Chart
	Provide a Gantt chart for the schedule of effort for your project. The schedule should be detailed to the day. Identify timelines for all tasks shown in the breakdown structure.

	4.4. Resource Table
	Give a table of resources to be used by task.

	5. Project Resources
	5.1. People
	Identify the people participating in the development of the project. Provide a brief (e.g., one or two paragraphs each) biography of each person as it relates to their skill and qualifications to carry out the project.

	5.2. Hardware and Software
	Identify all hardware and software resources that will be used to develop the project items. Describe when during the development process they will be used. Project items include reports, source code, executable code, and any other deliverables associated with the project.

	5.3. Special Resources
	Identify any special or unique resources, if required, that are needed. These resources are usually unique because of limited availability or high useage cost.

	6. Staff Organization
	6.1. Team Structure
	Give an organization chart and description of the organization of the group developing the project.

	6.2. Management Reporting
	Describe how the members of the group will report to the team leader (and possibly to each other). Identify how the group will be keeping the sponsor informed. Describe how the leader will report to the group.

	7. Tracking and Control Mechanisms
	Describe the policies, processes, and enforcement methods to be used to assure the development process is carried out with the lowest possible risk.

	8. Appendices
	Software Requirements Document
	General comments: The following guidelines are given in italics and represent the bare minimum required to complete this plan. Non-italicized text is to be included in your plan verbatim. All sections must be included in your plan, even if you do not feel it applies.

	1. Introduction
	One or two paragraphs which introduce the document.
	1.1. System reference
	1.2. Overall description
	One or two paragraphs which briefly describes the software product. This description is an overview of the product itself which introduces it to the reader.

	1.3. Software project constraints
	One or two paragraphs which briefly identifies the major constraints imposed upon the product. Use a list format if there are more than two constraints.

	2. Information Description
	2.1. Information flow representation
	One or two paragraphs which introduce the major information flow of the software product. Also identify nomenclature and symbols to be used in this section.
	2.1.1. Data flow
	Using a hierarchical decomposition of data flow diagrams, show, in detail, the data flow of the software product and all its subsystems. Clearly describe the dataflow diagrams. Use consistent naming conventions for all data. This section is usually quite lengthy and care must be taken to organize the presentation well.
	2.1.2. Control flow
	Using finite state machine models or other similar methods, show, in detail, the flow of control in the software product and all its subsystems. Clearly describe all diagrams. Ensure all names are consistent with the data flow diagrams in the previous section. This section is usually quite lengthy and care must be taken to organize the presentation well.

	2.2. Information content representation
	A complete description of all data identified in the Information flow representation section above is given in this section. The data type, size, description, and other attributes of each named data item is given, usually in tabular form.

	2.3. Standard interface description
	Clearly describe the hardware, software, and human interfaces to external system elements and internal software functions. Use drawings as necessary to show where the interfaces exist and the contents of the interfaces.

	3. Functional Description
	Give one or two paragraphs which summarizes the functional description of the software product.
	3.1. Functional partitioning
	Provide a partitioned functional representation of the software product in a hierarchical fashion. Use a formal representation, use text to clarify the figures, carry the decomposition to the module unit level.. Ensure all named data or control items are consistent with the data and control-flow models described above.

	3.2. Functional description
	For each module identified above:
	3.2.1. Processing narrative
	Describe the operation of the module.
	3.2.2. Restrictions and limitations
	Identify all restrictions and limitations imposed upon the module.
	3.2.3. Performance requirements
	Identify all timing, delay, or other performance constraints for the module. Note that module performance requirements are usually derived from system and subsystem constraints given in the Functional Partitioning section above. For time constrained software, a flowdown of module delays is documented either in this section or in the Functional Partitioning section above.
	3.2.4. Design constraints
	Identify and justify all design constraints for each module.
	3.2.5. Supporting diagrams
	Show and describe all data-flow and control flow diagrams for the module.

	3.3. Control description
	For each module:
	3.3.1. Control specification
	Identify the control inputs and outputs for the module.
	3.3.2. Design constraints
	Identify all design constraints for the module.

	4. Behavioral description
	4.1. System states
	Decompose, show, and describe all finite state diagrams and/or decision charts reflecting the control of the system, subsystems, and significant control-intensive modules. Clearly describe the inputs, output ID's, and states for all control state transitions.

	4.2. Events and actions
	Clearly identify and describe all events creating the inputs, actions performed by the output ID's.

	5. Validation criteria
	5.1. Performance bounds
	Identify the performance expectations and bounds for the software product and its major subsystems. Testing will validate against these bounds.

	5.2. Classes of tests
	Give a table and description of all major classes fo tests to be applied to the software once constructed to assure compliance with requirements specs.

	5.3. Expected software response
	For each test class, define the expected software response.

	5.4. Special considerations
	Claify any special issues relating to validation testing such as special setup conditions, additional resources necessary to conduct the tests, etc.

	6. Bibliography
	Give references to all documentation used to create this specification including:
	· other software engineering documentation
	· technical references,
	· vendor literature,
	· standards

	7. Appendix
	Software Design Specification

	1. Scope
	1.1. System Objectives
	Clearly state the overall objectives and subobjectives of the system of which this software project is a part. These objectives must be consistent with the objectives given in the Systems Requirements Document and the Software Requirements Document.

	1.2. Hardware, Software and Human Interfaces
	Clearly identify the scope of all interfaces between the software project described by this document and the external software programs, hardware ports, and human functions such as display screens and mouse inputs. Include a context diagram or figure to place your descriptions in context. Note that this section describes the scope of interfaces, not the interfaces themselves.

	1.3. Major Software Functions
	Using applicable diagrams and text, describe all major software functions that are a part of the software project described in this document. These functions should be described only to the extent that the functional scope of the project is made clear.

	1.4. Externally Defined Database
	Define and characterize any significant files, external databases or database systems used by the program. Level of description should be enough to establish the scope of interaction between the program and the database or database system.

	1.5. Major Design Constraints and Limitations
	Identify all design constraints and limitations against which the software will be defined. Repeat the constraints and limitations from the SRS and further refine their description at a design level.

	2. Reference Documents
	Identify all documents used throughout the design process. Reference documents include:
	· Mandatory compliance and guidance standards
	· Documentation on all prior software, components, and libraries used in this project
	· Significant CASE tools documents
	· Sources of algorithms, methods, or significant processes used in developing or within the software itself
	Use a standard bibliography style of reference. Separate the listings of documents into the following categories:
	2.1. Existing Software Documentation
	2.2. System Documentation
	2.3. Vendor Documents
	2.4. Technical Reference

	3. Design Description
	This section contains the actual design descriptions of the program, subsystems, and each module. Use graphics and tabular representations augmented by clear and consise text. Cross-reference liberally.
	3.1. Data Description
	3.1.1. Review of Data Flow
	Copy significant data flow diagrams from the SRS to this section. Explain the diagrams with text to ensure section stands alone (i.e., do not make references back to the SRS). At a minimum the level 0 and level 1 diagram must be shown and described.

	3.1.2. Review of Data Structure
	Copy from the SRS the data descriptions of all data id's shown in the figures, table, or text given in Section 3.1.1 above. Explain all data as necessary to ensure section stands alone without reference to the SRS.

	3.2. Derived Program Structure
	Give a sequence of heirarchical structure chart figures in decomposeable order each augmented with tables and text for added clarity. Note that the hierachical charts do not necessary reflect the same organization as the data flow diagrams in the SRS, but rather reflect a module-level structure of the program.

	3.3. Interfaces within Structure
	Completely identify all aspects of the major interfaces between structure elements in the program. Such interfaces may include data structures, timing diagrams, lists of data item id's, or other form of explanation. Note that each interface will include explanatory text, and should include graphical representations wherever possible. The depth of description should be enough that a complete module design can be given in the next section where the level of abstraction of the interface is no higher than that of the module design.

	4. Module Design
	This section should be organized by module. For each module present in detail the design of the module. The sections to be given for each module are:
	Processing Narrative
	Describe the behavior of the module in text.
	Interface Description
	First give the calling syntax as proc (arg, arg, ...) then define each arg, proc type, and return type.
	Design Language Description
	Code the module using pseudo-code or formal design language.
	Modules Used
	Give a list of modules called by this module. Give a short phrase description of each module name on the list.
	Data Organization
	Completely describe each internal data item in the module using a formal data method (e.g., C types, ADA types, etc.).
	Comments
	Give in text all special notes or other items not included in the Processing Narrative section.
	This section can be quite large. Make up each section in a form-like format to make the task of preparing this section more structured.

	5. File Structures and Global Data
	Give a brief textual description of each file and global data items as a means of introducing this section.
	5.1. External File Structures
	For each file, give the following:
	Logical Structure
	Describe the logical structure of the entire file graphically or tabularly. Use text as necessary to clarify the structure.
	Logical Record Description
	For each record type in the file, describe its strucuture and meanings of each field.
	Access Method
	Identify the method of access to the file (e.g., hash, indexed. pile, sequential, etc.).
	The use of formal data modelling methods is helpful, but not strictly necessary.

	5.3 Global Data
	Describe each global data item in turn, giving sufficient information for direct coding into data types in the implementation phase. The use of formal data modelling methods is helpful, but not required.

	5.3. File and Data Cross Reference
	In this section, give in tabular and/or graphical form the association between data items in the program and data items in each file. For instance if you have an input file where each line is read in turn and the data is parsed into a data structure called inline, then show how the line structure and fields maps into the data structure items. Also give any enumeration or range limits.

	6. Requirements Cross Reference
	This section of several tabular lists such as
	· Module versus requirement in the SRS
	· Module data item versus data dictionary entry in the SRS
	· File name versus file name in the SRS
	· ... and any other major association between the contents of the SRS and the design

	7. Test Provisions
	This section refines the test plan information given in the SRS. Note that the tests themselves are not specified here (they are given in the Software Test Plan document).
	7.1. Test Guidelines
	Identify all guidelines and suggestions for test setup, environment, and application. This section applies primarily to the unit testing of each module or collection of units performing a function.

	7.2. Integration Strategy
	Give an outline of the procedure or sequence of tasks (including testing tasks) for integrating the modules into a working program. Ususally, each unit (i.e., module) is unit tested, then the modules are integrated into functional collections of modules and each is tested. Then these units combined into subsystems each of which are tested followed by a complete all-up program test. This section should give a "cookbook" step-by-step presentation of this process.

	7.3. Special Considerations
	This section includes further clarification on test development or application. For instance, if some special stubs are needed they can be further described here.

	8. Packaging
	This section describes how the executing segments of the program go together. If the program is segmented by overlays than section 8.1 applies. Other forms of program segmentation are allocation of modules or objects to nodes in a parallel processor, assignment of program sections to parts of memory (such as the TPA, high memory, or extended memory on a PC). If there are no special packaging requirements, so state.
	8.1. Special Program Overlay Provisions
	Graphically show how the program is partitioned for memory or processor allocation purposes. Use text for clarification.

	8.2. Transfer Considerations
	If the program is dynamically allocated during operation (e.g., VROOM by Borland Int.) describe its operation here. This section generally applies to programs operating over a suite of processors on a network.

	9. Special Notes
	Anything that doesn't fit above goes here.

	10. Appendices
	The Appendix contains copies of vendor or internal documents, large graphics that do not fit well in the body of the document, or other information gemain to the document but to unwieldy or unimportant to put in the body of the document.
	Coding Style
	1. Identifiers
	2. Named Constants
	3. Modularity
	4. Variable References
	5. Data Abstraction
	6. Partitioning
	6.1. Program Code Documentation
	6.2. Module Description

	7. Indention
	8. Line Length
	9. File Protection
	Software Test Plan

	1. Scope of Testing
	2. Test Plan
	Testing is divided into phases and builds that address specific functional and behavioral characteristics of the software. Each of these builds is a group of modules which are created in a phase.
	2.1. Test Phases and Builds
	Describe each software development and test phase, and describe the build process to implements that phase.

	2.2. Schedule
	Provide estimated start and completion dates for integration, overhead software development to support test (see next section), test application periods, and test analysis periods (if applicable) for each test phase. Note that each of these development of test periods imposes an availability of unit tested modules to integrate and test.

	2.3. Overhead Software
	Overhead software consists of software test benches, stubs, and drivers necessary to carry out the testing. Describe these overhead items.

	2.4. Environment and Resources
	Define the normal test environment including hardware platforms or external resources, and software tools necessary to conduct the tests. Also define any unusual hardware configurations, exotic simulators, special test tools or techniques.

	3. Test Procedure: Build n
	This section prsents the detailed testing procedure required to accompish the test plan (Section 2 above). Separate section 3's containing the unit and integration tests are defined for each build.
	3.1. Order of Integratiion
	Briefly describe the order of unit and subsystem integration to be carried out to create the build.
	3.1.1. Purpose
	State the purpose of the build and the testing of the build.

	3.1.2. Modules to be Tested
	Identify the modules in this build to be tested and integrated in the order they will be tested.

	3.2. Unit Tests for Modules in Build
	This section describes the actual test for each module m. Briefly introduce the test here. There are m Section 3.2's, one for each module being tested.
	3.2.1. Description of Tests for Module m
	Describe each test using a formal point-by-point statement of each test.

	3.2.2. Overhead Software Description
	Describe all software items such as stubs, drivers, and test benches to check out this module.

	3.2.3. Expected Results
	Identify the expected results of the test. Write this section in a list fashion such that each test motivates one or more output descriptions.

	3.3. Test Environment
	3.3.1. Special Tools or Techniques
	Identify all special hardware or software tools or techniques necessary to carry out this test.

	3.3.2. Overhead Software Description
	Describe the overhead software (.i.e., stubs, drivers, test benches) at a level detailed enough to support coding the item.

	3.4. Test Case Data
	Identify all test data to be used to conduct the test.

	3.5. Expected Results for Build n
	Identify the expected results for each input test data case. Note test case data and expected results can be described in a singe section mainly consisting of large table where test case data is presented on the left side of the table, and expected results shown on the right side of the table.

	4. Actual Test Results
	This section consists of forms with blank spaces to record the actual test results along with the date of the test, who the tester is, etc. Again, this section can be integrated with Section 3.4 and 3.5 for each build as an option.

	5. References
	Identify all documentation references where supporting material has been used.

	6. Appendices
	Presentation Evaluation Form

	Project Descriptions
	Project 1: File Folder Database Manager
	Project 2: Cruise Control System
	Project 3: Spacecraft Environment Monitoring System
	Project 4: Document Concordance Generator
	Project 5: "Host at Sea" Buoy System
	Project 6: PC Board Router

	Check Lists
	Meeting Diagnosis
	Project Startup
	Requirements Analysis Activities
	Design Activities
	Coding and Testing Activities

