
 Visual Basic Setup Kit
The Visual Basic Setup Kit provides tools to create setup programs for your Visual Basic applications.

Overview

Components of the Visual Basic Setup Kit

How to Use the Setup Kit

How to Create SETUP1.EXE

How to Create a Setup Disk for TESTAPP.EXE

SETUP1.BAS API Reference

Overview

The Visual Basic Setup Kit provides the tools necessary to write professional setup programs using
Visual Basic. The Setup Kit allows you to:

Pre-install the Visual Basic runtime .DLL on your customer's system.
Install files using a single API function call.
Install files into the appropriate Windows directories (\WINDOWS, \WINDOWS\SYSTEM)

regardless of the actual directory names.
Use Windows version stamping resources to determine if a file should be copied to the

customer's machine.
Create Windows Program Manager groups and icons for your application.
Create a customized look and feel for your setup program.

The tools for the Setup Kit are located in \VB\SETUPKIT\KITFILES

Components of the Visual Basic Setup Kit

The Visual Basic Setup Kit is installed in the SETUPKIT directory beneath the Visual Basic Professional
Toolkit directory.

When you create your setup program with the Visual Basic Setup Kit you will work with the following
files:

SETUP.EXE

This is what your customer runs to install your application. SETUP.EXE is provided by the Setup Kit. It
performs the following:

1 Copies VER.DL_ and SETUPKIT.DL_ into the Microsoft Windows directory and renames them
VER.DLL and SETUPKIT.DLL, respectively. If there is a newer version of the file already there, it is
not overwritten.

2 Copies VBRUN100.DL_ into the Microsoft Windows directory and renames it VBRUN100.DLL. If a
copy of VBRUN100.DLL is already in that directory, the file is not copied. SETUP.EXE does not check
to see if there is a copy of VBRUN100.DLL elsewhere on the user's system.

3 Copies SETUP1.EXE into the Microsoft Windows directory and renames it to the name specified in
the file SETUP.LST.

4 Executes SETUP1.EXE (or whatever it has been renamed) from the Microsoft Windows directory.

Note      SETUP.EXE is a pre-install program. It is necessary to pre-install dynamic-link libraries (DLLs)
on your customer's hard disk because otherwise Microsoft Windows may try to load a DLL from a floppy
drive. If this happens and the user removes the floppy disk, Microsoft Windows asks the user to re-insert
the disk that contains the DLL. This can confuse users. A pre-install program such as SETUP.EXE
solves this problem.

SETUP1.EXE

This is a Visual Basic application that you customize. The source files for SETUP1.EXE are provided by
the Setup Kit. You use these source files as a template for creating your own setup program. It is named
SETUP1.EXE so users won't try to execute it from a floppy disk. SETUP.EXE copies SETUP1.EXE into
your customer's Microsoft Windows directory and renames it to the filename you specify in SETUP.LST.
SETUP.EXE then runs this file and installs your software.

Note      Do not confuse SETUP.EXE with SETUP1.EXE. They are different files which perform different
functions.

SETUP.LST

SETUP.LST is a one line text file that you create. It contains a filename. SETUP.EXE looks in this file to
determine what the name of your setup program is so it can be installed properly.

SETUP1.BAS

SETUP1.BAS is a collection of Visual Basic functions. It is supplied by the Setup Kit. SETUP1.BAS uses
VER.DLL and contains easy-to-use functions that:

locate the Microsoft Windows and Microsoft Windows \SYSTEM subdirectories
copy files (with or without version checking)
create Microsoft Windows Program Manager Groups and Icons

TESTAPP.EXE

This is a sample application that you can use to test your setup program.

VBRUN100.DL_

VBRUN100.DL_ is actually VBRUN100.DLL. You rename VBRUN100.DLL to VBRUN100.DL_ when you
copy it to the setup disk. VBRUN100.DLL is supplied by Visual Basic 1.0. It is required by any
application that is written in Visual Basic 1.0. Use the .DL_ extension on the setup disk so that Microsoft
Windows will not try to use it while the setup disk is in the floppy drive. When it is installed it is copied to
the customer's machine as VBRUN100.DLL

VER.DL_

VER.DL_ is actually VER.DLL. You rename VER.DLL to VER.DL_ when you copy it to the setup disk.
VER.DLL is provided by the Setup Kit. It determines the location of the customer's Microsoft Windows
and Microsoft Windows \SYSTEM subdirectories and detects the version of files stamped with a
Windows version stamp. Use the .DL_ extension on the setup disk so that Windows will not try to use it
while the setup disk is in the floppy drive. When it is installed, it is copied to the customer's machine as
VER.DLL

SETUPKIT.DL_

SETUPKIT.DL_ is actually SETUPKIT.DLL. You rename SETUPKIT.DLL to SETUPKIT.DL_ when you
copy it to the setup disk. SETUPKIT.DLL is provided by the Setup Kit. It is used by SETUP1.BAS for
various functions and also is used as an interface to VER.DLL. When installed, it is copied to the
customer's machine as SETUPKIT.DLL.

How to Create SETUP1.EXE

SETUP1.EXE is a program that you create to setup your application. The best way to create this
program is to modify the source code of the sample included with the Setup Kit (SETUP1.MAK).

The source code for the sample SETUP1.EXE is located in \VB\SETUPKIT\SETUP1. The sample
installs the file TESTAPP.EXE, which is located in \VB\SETUPKIT\TESTAPP.

TESTAPP.EXE is a small application that uses the 3D controls, as well as the Common Dialog control.
Therefore, in order to run correctly, TESTAPP.EXE requires that THREED.VBX, CMDIALOG.VBX, and
COMMDLG.DLL are properly installed on the user's system. This is a typical setup scenario for
applications created with the Professional Toolkit.

Follow the instructions in the example to create a floppy disk that uses the sample SETUP1.EXE to
install TESTAPP.EXE.

The sample SETUP1.EXE demonstrates how to ask the user for the source and destination drives, ask
for installation options, validate paths, create nested directories, get available disk space, copy files (with
and without version checking), create program manager icons, and more.

Note      To customize the sample source code so it installs your application instead of TESTAPP.EXE,
you only need to change code in the Form_Load procedure of the SETUP1.FRM module.

SETUP1.MAK includes SETUP1.BAS which is a collection of useful subprograms.

See Also

How to Use the Setup Kit

Components of the Setup Kit

How to Create a Setup Disk for TESTAPP.EXE

Follow these steps to create a floppy disk that uses the Setup Kit to install TESTAPP.EXE:

1. Copy the Setup Kit files to a blank floppy:

File Location

SETUP.EXE \VB\SETUPKIT\KITFILES

SETUP.LST \VB\SETUPKIT\KITFILES

SETUP1.EXE \VB\SETUPKIT\SETUP1

SETUPKIT.DLL \VB\SETUPKIT\KITFILES

VER.DLL \VB\SETUPKIT\KITFILES

VBRUN100.DLL \VB or the Microsoft Windows directory

2. Rename the Setup Kit DLLs (that are now on the floppy drive).

Current Name New Name

SETUPKIT.DLL SETUPKIT.DL_

VBRUN100.DLL VBRUN100.DL_

VER.DLL VER.DL_

For example:
RENAME A:SETUPKIT.DLL A:SETUPKIT.DL_

You must rename the above DLLs with a DL_ extension so Microsoft Windows does not try to use these
DLLs while the setup disk is in the floppy drive.

3. Copy the Test Application's files to the floppy.

File Location

TESTAPP.EXE \VB\SETUPKIT\TESTAPP

THREED.VBX Microsoft Windows \SYSTEM subdirectory

CMDIALOG.VBX Microsoft Windows \SYSTEM subdirectory

COMMDLG.DLL Microsoft Windows \SYSTEM subdirectory

Do not rename COMMDLG.DLL. It is not part of the Setup Kit. It is one of the files required by
TESTAPP.EXE.

The floppy is now complete. To install TESTAPP.EXE, take the floppy to another machine. Insert the disk
in drive A. From the Windows Program Manager (or File Manager) chose Run from the File menu and
type "a:setup".

When you create diskettes for your applications, the steps will be the same, but you will:

1. Substitute your application files for the TESTAPP.EXE Files.
2. Create your own SETUP1.EXE (by modifying the source to this SETUP1.EXE)
3. Optionally change SETUP.LST. (See How to Use the Setup Kit)

How to Use the Setup Kit

This topic describes the entire procedure in detail. For a quick example of how to create a setup
program using the provided sample code, see How to Create a Setup Disk for TESTAPP.EXE.

When you finish the following procedure, you should have a floppy disk containing the following files:

SETUP.EXE

SETUP1.EXE

SETUP.LST

VER.DL_

VBRUN100.DL_

** Application files you want installed on you customer's machine.

1 Determine What Files You Need to Distribute

Each control shipped with the Visual Basic Professional Toolkit requires the appropriate .VBX file.
Some require additional .DLLs or other files. For details about the files required by each custom
control, see Creating, Running, and Distributing Executable (.EXE) Files in the Introduction section of
the Custom Control Reference.

2 Determine Where to Install the Files on Your Customer's Machine

Microsoft recommends that all .VBX and .DLL files that have the potential to be used by more than
one application be installed in your customer's Microsoft Windows \SYSTEM subdirectory. This
applies to all the .VBXs and .DLLs included with the Professional Toolkit.

Your application's executable (.EXE) file should be placed in its own directory along with any files that
will only be used by your application, such as data files and bitmaps.

3 Write Your Setup Program (SETUP1.EXE)

4 Prepare Your Distribution Diskettes

Take a blank, formatted floppy disk and attach a printed label that reads as follows:

Disk1: Setup Disk
Insert this disk in drive A:
In the File Manager, choose Run from the File menu
Type a:setup and press Enter.

This label then provides all the instructions your customer will need to setup your application. If you
cannot fit that much information on the diskette, simply label it, Disk 1:    Setup Disk, and document
the rest of the setup procedure in your documentation. Make as many diskettes that your application
requires plus the files required by the Setup Kit. The first disk, (disk 1) will be referred to as the Setup
Disk. Label the other disks appropriately so the user can insert them in the correct order.

5 Copy SETUP1.EXE to the setup disk.

SETUP1.EXE is the executable file you created in step 3.

6 Create SETUP.LST and Copy it to the Setup Disk

SETUP.LST is a text file that contains the filename that SETUP.EXE uses to rename SETUP1.EXE
when it installs SETUP1.EXE into your customer's Windows directory. SETUP.LST can be more than
one line, but only the first line will be used. Microsoft recommends that you do not pick generic names
such as SETUP.EXE since it is likely that another application already uses that name. The following
are examples of valid filenames:

ACMESET.EXE
MYAPPSET.EXE
CLNDRSET.EXE
MYSETUP.EXE

An example of a valid SETUP.LST file is located in \SETUPKIT\KITFILES.

Copy SETUP.LST to the setup disk.

7 Copy SETUPKIT.DL_, VER.DL_, and VBRUN100.DL_ to the Setup Disk

VER.DLL, SETUPKIT.DLL, and VBRUN100.DLL are required files. VBRUN100.DLL is provided by
Visual Basic 1.0. SETUPKIT.DLL and VER.DLL are included with the Setup Kit. They are located in
the \SETUPKIT\KITFILES subdirectory. To eliminate the possibility of Microsoft Windows loading and
using these .DLLs while they are on a floppy drive, the Setup Kit requires that you rename them to
SETUPKIT.DL_, VER.DL_ , and VBRUN100.DL_, respectively.

Copy SETUPKIT.DLL to the setup disk and rename it SETUPKIT.DL_.

Copy VER.DLL to the setup disk and rename it VER.DL_.

Copy VBRUN100.DLL the setup disk and rename it VBRUN100.DL_.

8 Copy SETUP.EXE to the Setup Disk

SETUP.EXE is the pre-install program supplied by the Setup Kit. This is the file your customers will
run to install your application.

Copy SETUP.EXE to the Setup Disk. At this point in the procedure, your Setup Disk should contain
these files:

SETUP.EXE

SETUP1.EXE

SETUP.LST

SETUPKIT.DL_

VER.DL_

VBRUN100.DL_
9 Copy Your Application Files to the Setup Disk

Copy all the files you determined your application required in step #1 to the Setup Disk. If all of the
files dont fit, copy the remaining files onto additional diskettes. Make sure to label the diskettes as you
make them.

10 Compare Your Disk Layout to Your Setup Application

Now that your files are all copied onto the distribution diskettes, you may discover that your original
disk layout estimate was incorrect. Perhaps files had to be placed on different diskettes than you first
thought, or perhaps you used more diskettes than you anticipated.

Review the code in your setup program to make sure the code agrees with the actual layout. If it does
not, change either the code or the layout of the disks so that they match.

11 Test Your Distribution Diskettes

To test your setup program, place the setup disk in drive A: and run SETUP.EXE. After your
application has been installed, check your hard disk to verify that SETUPKIT.DLL, VER.DLL, and
VBRUN100.DLL have been copied to your Microsoft Windows subdirectory and that the remaining
files required by your program have been copied correctly.

Be sure to test the installation of your application on other systems as well as your own. Your system
may have residual .DLLs, .VBXs, or other files that allow your application to work on your system
even though it would fail on other systems.

SETUP1.BAS API Reference

SETUP1.BAS is a collection of    functions designed to handle the tasks that a setup program performs.
For an example of how to use SETUP1.BAS, see the sample program (SETUP1.MAK) in the
\SETUPKIT\SETUP1 subdirectory.

SETUP1.BAS contains these functions:

CenterForm

CopyFile

CreatePath

CreateProgManGroup

CreateProgManItem

FileExists

GetDiskSpaceFree

GetDrivesAllocUnit

GetFileSize

GetWindowsDir

GetWindowsSysDir

IsValidPath

PromptForNextDisk

SetFileDateTime

UpdateStatus

CopyFile Function

Action

Copies a file from a source to a destination. Optionally checks for version and date stamps, and will not
copy if the source file is older than the destination. Returns integer representing success or error.

Syntax

CopyFile (SourcePath$, DestPath$, FileName$, Older%) As Integer

Remarks

The CopyFile function returns -1 if the copy was successful, or if the function successfully determined
not to copy the file because the source was older. CopyFile returns 0 if there is an error during its
operation.

This function requires STATUS.FRM to be in the project.

The CopyFile function uses these arguments

Argument Description

SourcePath$ The string describing the complete path of the file to be copied. Wildcards are not
allowed. A drive letter must be specified, followed by a colon, followed by the directory
path.

DestPath$ The string describing the complete drive, path, and filename of the destination path.
Wildcards are not allowed. A drive letter must be specified, followed by a colon, followed
by the directory path.

FileName$ A valid DOS filename describing the file to be copied.

Older% If True (-1) CopyFile will use VER.DLL to compare version and date stamps and if the
source file is older, CopyFile will not copy the file. If False (0) CopyFile will copy the file.

Example

Result% = CopyFile ("A:\README.TXT","C:\MYAPP\README.TXT",0)
If Result% = 0 then

MsgBox "Error Copying File README.TXT"
End If

GetWindowsDir Function

Action

Returns the current Microsoft Windows directory.

Syntax

GetWindowsDir () As String

Remarks

The GetWindowsDir function returns the path to the current Windows directory.

Example

windir$ = GetWindowsDir ()

GetWindowsSysDir Function

Action

Returns the current Microsoft Windows \SYSTEM subdirectory.

Syntax

GetWindowsSysDir () As String

Remarks

The GetWindowsSysDir function returns the path to the current Windows \SYSTEM subdirectory.

Example

winsysdir$ = GetWindowsSysDir ()

CreateProgManGroup Subprogram

Action

Creates a new Microsoft Windows Program Manager Group

Syntax

CreateProgManGroup (FormName As Form, GroupName$, GroupPath$)

Remarks

This subprogram establishes a DDE connection with the Program Manager and creates a new Microsoft
Windows Program Manager Group.

Important      FormName must contain a label control named Label1. Label1 is used for DDE operations.

The CreateProgManGroup subprogram uses these arguments

Argument Description

MyForm The form containing the label used to establish a DDE connection with the Program
Manager.

GroupName$ The string containing the title of the Program Manager Group to be created.

GroupPath$ The string containing the filename of the new Program Manager Group.

Example

CreateProgramManagerGroup Form1, "My Cool Apps", "MYAPPS.GRP"

CreateProgManItem Subprogram

Action

Creates a new Microsoft Windows Program Manager Item

Syntax

CreateProgManItem (FormName As Form, CmdLine$, IconTitle$)

Remarks

This subprogram establishes a DDE connection with the Program Manager and creates a new Windows
Program Manager Item.

Important      FormName must contain a label control named Label1. Label1 is used for DDE operations.

The CreateProgManItem subprogram uses these arguments

Argument Description

MyForm The form containing the label used to establish a DDE connection with the Program
Manager.

CmdLine$ The string containing the DOS command to execute when the item/icon is activated.

IconTitle$ The string containing the caption of the Program Manager Icon to be created.

Example

CreateProgramManagerIcon Form1,"C:\MYAPP.EXE","My First Application"

CreatePath Function

Action

Creates the specified path on the user's disk.

Syntax

CreatePath (ByVal DestPath$) As Integer

Remarks

The first three characters in DestPath$ must contain a drive letter, followed by a ":\". The remaining
characters of the string contain the desired path, if any.

The CreatePath function returns -1 if the path is created successfully, otherwise 0 is returned.

This function is more useful than MKDIR because it can create paths more than one level deep.

Example

NewDir$ = "C:\MYAPPDIR\TEST\DEEP\FILES\"
result% = CreatePath (ByVal NewDir$)
If result then

Print NewDir$ + " created"
Else

Print NewDir$ + " not created"
Endif

CenterForm Subprogram

Action

Moves the specified form to slightly above the screen's center.

Syntax

CenterForm (MyForm As Form)

Remarks

Use this subprogram to display dialog boxes centered on the screen. After calling this routine, use the
Show method to display the form.

Example

' Load the form as centered
CenterForm frmChoose
' Display the form as modal
frmChoose.Show 1

GetFileSize Function

Action

Returns the size, in bytes, of a specified file.

Syntax

GetFileSize (FileName$) As Long

Remarks

FileName$ must contain a full path name.

Example

MyFile$ = "C:\APPS\APPDATA\FORMS.DAT"
filesize& = GetFileSize (MyFile$)

IsValidPath Function

Action

Determines if a specified path is valid.

Syntax

IsValidPath (Path$, DefaultDrive$) As Integer

Remarks

This function returns -1 if the path specified by Path$ is valid, otherwise 0 is returned.

Argument Description

Path$ The path to be checked.

DefaultDrive$ The drive to use if no drive is specified in Path$.

This function reconstructs Path$ so that it is in the format "Drive:\Dir\...\". If Path$ doesn't contain a drive
letter, DefaultDrive$ is prepended to Path$.

DefaultDrive must be in the format "Drive:".

UpdateStatus Subprogram

Action

Updates the installation status bar in STATUS.FRM.

Syntax

UpdateStatus (FileLen&)

Remarks

Use this function to provide the user with a visual cue while the program is copying files or performing
some other lengthy process. This subprogram requires STATUS.FRM to be in the project.

Example

FileLength& = LOF(1)
UpdateStatus FileLength&

FileExists Function

Action

Determines if a specified file already exists.

Syntax

FileExists (FileName$) As Integer

Remarks

This function returns -1 if the file specified by FileName$ already exists, otherwise it returns 0.
Filename$ must contain the full pathname of the file you want to verify.

Example

result% = FileExists ("C:\MYAPP\MYFILE.DAT")
If result% Then

Call DoIt
Else

Call DontDoIt
End If

GetDiskSpaceFree Function

Action

Returns the amount of free disk space on a drive.

Syntax

GetDiskSpaceFree (Drive$) As Long

Remarks

This function returns the amount of available disk space, in bytes, for the drive specified in Drive$.
Drive$ must contain a drive letter, followed by a colon ("C:"). It can optionally contain a full pathname
("C:\MYAPPS\COOLAPP\APP.DAT").

Example

freespace& = GetDiskSpaceFree ("C:\MYAPPS")
filesize& = GetFileSize ("MYAPP.DAT")

If freespace& > filesize& Then
Call CopyFile (ByVal Source$, ByVal Dest$, ByVal FileName$, VerFlag%)

Else
MsgBox "Not enough disk space"

End If

GetDrivesAllocUnit Function

Action

Returns the disk allocation unit for a drive.

Syntax

GetDrivesAllocUnit (Drive$) As Long

Remarks

This function returns the disk allocation unit for the drive specified in Drive$. Drive$ must contain a drive
letter, followed by a colon ("C:"). It can optionally contain a full pathname ("C:
\MYAPPS\COOLAPP\APP.DAT").

SetFileDateTime Function

Action

Sets the destination file's date and time to the source file's date and time.

Syntax

SetFileDateTime (SourceFile$, DestinationFile$) As Integer

Remarks

This function returns -1 if the procedure was successful, otherwise 0 is returned.

This function is used by the CopyFile function.

Example

result% = SetFileDateTime (SourceFile$, DestFile$)

PromptForNextDisk Function

Action

Prompts the user to enter another disk.

Syntax

PromptForNextDisk (DiskNum%, FileToLookFor$) As Integer

Remarks

This function returns -1 if the correct disk is inserted, otherwise 0 is returned.

Argument Description

DiskNum% The number of the disk to prompt for.

FileToLookFor$ The filename is used to verify that the user inserted the disk specified by
DiskNum%.

This function first looks for FileToLookFor$. If this file is not found, a dialog box is displayed which asks
the user to insert the disk numbered disknum%. If the user inserts the correct disk, -1 is returned. If the
user selects the dialog's Exit button, 0 is returned. If the user inserts the wrong disk, the dialog is
redisplayed.

