
 Part A

MicrosoftÒ DirectXÔ 2
Software Development Kit

MICROSOFT CONFIDENTIAL 5/13/96

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

3D Studio is a registered trademark of Autodesk, Inc.
OpenGL is a registered trademark of Silicon Graphics, Inc.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 3

C H A P T E R 5

Direct3D Overview...
Microsoft's 3D-Graphics Solutions..
Direct3D Architecture...
A Technical Foundation for 3D Programming..
Performance Optimization..

Direct3D Retained-Mode Overview..
About Retained Mode...
Introduction to Direct3D Retained-Mode Objects..
Direct3D Retained-Mode Tutorial...

Direct3D Immediate-Mode Overview...
About Immediate Mode..
Introduction to Direct3D Immediate-Mode Objects...
Direct3D Immediate-Mode Tutorial..

Direct3D Overview

Microsoft's 3D-Graphics Solutions
The Microsoft family of advanced 3D-graphics solutions includes the Direct3D™
and OpenGL® application programming interfaces (APIs).

The relationship between the Windows graphics systems, applications written
with the Win32® API, the rest of the Windows system, and the hardware is
shown in the following illustration.

Direct3D Overviews

MICROSOFT CONFIDENTIAL 5/13/96

Direct3D
Direct3D is Microsoft's high-speed 3D software solution. It gives you the ability
to create high-performance, real-time 3D applications for typical desktop
computers. The system was designed for speed and requires little memory.

Direct3D is implemented in two distinctly different modes: Retained Mode, a
high-level API in which the application retains the graphics data, and Immediate
Mode, a low-level API in which the application explicitly streams the data out to
an execute buffer.

Retained Mode
Direct3D Retained Mode API is designed for manipulating 3D objects and
managing 3D scenes. Retained Mode makes it easy to add 3D capabilities to
existing Windows-based applications or to create new 3D applications. Its built-in
geometry engine supports advanced capabilities like key frame animation and
frees you from creating object databases and managing the internal structures of
objects. In other words, after using a single call to load a predefined 3D object,
the application can use simple methods from the API to manipulate the object in
the scene in real-time without having to work explicitly with any of the internal
geometry.

Retained Mode is built on top of Immediate Mode and is tightly coupled with the
DirectDraw™ application programming interface (API). Microsoft will
incorporate Retained Mode into a future version of Windows. For more
information, see DirectDraw and Introduction to Direct3D Retained-Mode
Objects.

Immediate Mode
Direct3D Immediate Mode is Microsoft's low-level 3D API. It allows you to port
games and other high-performance multimedia applications to the Windows
operating system.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 5

Immediate Mode is a thin layer above real-time 3D accelerator hardware that
gives you access to the features of that hardware. It also offers optimal software
rendering for some hardware features that are not present. Immediate Mode gives
you the flexibility to exploit your own rendering and scene management
technologies. It is a device-independent way for applications to communicate
with accelerator hardware at a low level, enabling maximum performance.

Unlike Retained Mode, Immediate Mode does not provide a geometry engine;
applications that use Immediate Mode must provide their own object and scene
management. Therefore, you should be knowledgeable in 3D graphics
programming to use Immediate Mode effectively.

Direct3D is based on the OLE Component Object Model (COM), and is tightly
integrated with DirectDraw. Microsoft will incorporate Direct3D into a future
version of Windows. For more information, see Introduction to Direct3D
Immediate-Mode Objects.

Hardware Abstraction and Emulation
The Direct3D API (like the rest of the DirectX API) is built on top of a hardware-
abstraction layer (HAL), which insulates you from device-specific dependencies
present in the hardware. A companion piece to the Direct3D HAL is the
hardware-emulation layer (HEL). The Direct3D HEL provides software-based
emulation of features that are not present in hardware. The combination of these
hardware abstraction and emulation layers ensures that the services of the API are
always available to you.

The Direct3D HAL is tightly integrated with the DirectDraw HAL and the GDI
display driver, giving hardware manufacturers a single, consistent interface to
Microsoft graphics APIs, and a long-term, unified driver model for accelerated
3D. Hardware manufacturers need to write only a single driver to accelerate
Direct3D, DirectDraw, GDI, and OpenGL. Hardware can accelerate all or part of
the 3D graphics rendering pipeline, including geometry transformations, 3D
clipping and lighting, and rasterization. The Direct3D HAL has been designed to
accommodate future graphics accelerators in addition to those available today.

DirectDraw
DirectDraw provides the fastest way to display graphics on-screen. It is the
Windows composition engine for 2D graphics, 3D graphics, and video.
DirectDraw composes and moves images very quickly and can employ page
flipping to enable smooth animation. This combination of capabilities allows you
to create high-speed games and multimedia applications and to port existing titles
to Windows quickly and easily. DirectDraw is also the composition engine for all
of Microsoft's newest graphics subsystems. You can use it to quickly integrate
images generated by Windows GDI, Direct3D, ActiveMovie™, and OpenGL.

MICROSOFT CONFIDENTIAL 5/13/96

DirectDraw is a thin layer above the display hardware that enables you to easily
take advantage of the powerful composition abilities of graphics accelerators
designed for Windows, including high-speed blitting, interpolated stretching, and
overlays. It also supports color space conversion, allowing accelerated video
playback. Like Direct3D, DirectDraw is a device-independent way for
applications to communicate with hardware. Under MS-DOS, you had to
optimize code for each target device. With DirectDraw, however, you can attain
high performance consistently across all of the hardware that accelerates
DirectDraw.

DirectDraw is a COM-based API. Microsoft will incorporate DirectDraw into a
future version of Windows. For more information, see About DirectDraw.

OpenGL
OpenGL is a precise 3D technology used for high-end CAD/CAM, modeling and
animation, simulations, scientific visualization, and other exacting 3D-image
rendering. It is provided with Windows NT and is available to you for use with
Windows 95. Putting OpenGL on Windows 95 means that you can run Win32
OpenGL applications on any Win32 workstation. OpenGL currently takes
advantage of any high-end hardware that has OpenGL functionality, using a client
driver model designed for OpenGL. A future release of OpenGL will be able to
take advantage of lower-priced 3D hardware (provided that it supports the
precision conformance requirements of OpenGL) through the Direct3D API,
providing a hardware solution that complements Direct3D.

Direct3D Architecture

The Direct3D Vision
Direct3D is designed to enable world-class game and interactive 3D graphics on a
computer running Windows. Its mission is to provide device-dependent access to
3D video-display hardware in a device-independent manner. The application does
not need to implement the specific calling procedures required to draw texture-
mapped, perspective-corrected, or alpha-blended 3D primitives on a particular
piece of hardware. Simply put, Direct3D is a drawing interface for 3D hardware.
It integrates tightly with DirectDraw as its buffer-management system, allowing
DirectDraw surfaces to be used both as 3D rendering targets and as source texture
maps. This allows for hardware-decompressed motion-video mapping, hardware
3D rendering in 2D overlay planes, or even sprites, for example.

Direct3D is designed to set a standard for hardware acceleration—including
geometry transformations, 3D clipping, and lighting. Direct3D provides a highly
optimized, software-only implementation of the full 3D rendering pipeline. Any
part or all of this pipeline can be replaced at any stage by accelerating hardware.
This allows you to write applications now that will be able to use better hardware
acceleration as new hardware is developed.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 7

Direct3D is tightly integrated with DirectDraw. The DirectDraw driver COM
interfaces and the Direct3D driver COM interface both allow you to communicate
with the same underlying object. For more information about the integration of
Direct3D and DirectDraw, see Direct3D Integration with DirectDraw. For
information about DirectDraw's support the 3D surfaces, see Support for 3D
Surfaces.

Much of the information in this section describes implementation details of
Direct3D that do not directly apply to those of you who use the Retained-Mode
interface. If you use the Immediate-Mode interface, however, you'll need a good
understanding of these implementation details. Those of you who use the
Retained-Mode interface will also benefit from a good theoretical grounding in
the system architecture.

Rendering Engine
The Direct3D architecture is based on a virtual 3D rendering engine composed of
three separate modules:

· The transformation module handles the transformation of geometry by using
three 4-by-4 matrices, one each for the view, world, and projection
transformations. This module supports arbitrary projection matrices, allowing
perspective and orthographic views.

· The lighting module calculates lighting information for geometry, supporting
ambient, directional, point, and spotlight light sources.

· The rasterization module uses the output of the geometry and lighting modules
to render the scene. The scene description is in an extensible display-list–based
format that can support both 2D and 3D primitives.

The following illustration shows how the three modules of the rendering engine
interact with the rest of the Direct3D architecture.

MICROSOFT CONFIDENTIAL 5/13/96

The rasterization module interacts with DirectDraw as shown in the following
illustration. Direct3D makes use of DirectDraw surfaces as render targets and
texture sources.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 9

Each of these modules can be hardware-accelerated or emulated in software.
Direct3D can be queried to verify which components are currently running under
emulation. When used together, these modules form the Direct3D rendering
pipeline.

All three modules are dynamically loadable and can be changed on the fly
between rendered frames. This allows new modules to be swapped in for either
hardware acceleration or different rendering effects. Direct3D comes with one
transformation module but a choice of two lighting and two rasterization modules.
This provides greater flexibility in lighting and rendering, allowing the
possibility, for example, of rendering more realistic scenes by simply switching
the lighting module. An independent vendor could even provide its own special-
effects-rasterization modules.

Execute Buffers
Each of the three modules in the rendering engine maintains state information that
is set by using the Direct3D API. After all the state information is set, the
rendering engine is ready to process display lists, which are known as execute
buffers. Your application works explicitly with execute buffers only in Immediate
Mode; Retained-Mode applications work at a higher level than this.

Execute buffers are fully self-contained, independent packets of information.
They contain a vertex list followed by an instruction stream. The instruction
stream consists of operation codes, or opcodes, and the data that is operated on by
those opcodes. Direct3D's opcodes are listed in the D3DOPCODE enumerated
type. The D3DINSTRUCTION structure describes instructions in an execute
buffer; it contains an opcode, the size of each instruction data unit, and a count of
the relevant data units that follow.

The following illustration shows the format of execute buffers.

MICROSOFT CONFIDENTIAL 5/13/96

The instructions define how the vertex list should be lit and rendered. One of the
most common instructions is a triangle list (D3DOP_TRIANGLE), which is
simply a list of triangle primitives that reference vertices in the vertex list.
Because all the primitives in the instruction stream reference vertices in the vertex
list only, it is easy for the transformation module to reject a whole buffer of
primitives if its vertices are outside the viewing frustum.

The hardware determines the size of the execute buffer. You can retrieve this size
by calling the IDirect3DDevice::GetCaps method and examining the
dwMaxBufferSize member of the D3DDEVICEDESC structure. Typically, 64K
is a good size for execute buffers when you are using a software driver because
this size makes the best use of the secondary cache. When your application can
take advantage of hardware acceleration, however, it should use smaller execute
buffers to take advantage of the primary cache.

You can disable the lighting module or both the lighting and transformation
modules when you are working with execute buffers. This changes the way the
vertex list is interpreted, allowing the user to supply pretransformed or prelit
vertices only for the rasterization phase of the rendering pipeline. Note that only
one vertex type can be used in each execute buffer.

In addition to execute buffers and state changes, Direct3D accepts a third calling
mechanism. Either of the transformation or lighting modules can be called
directly. This functionality is useful when rasterization is not required, such as
when using the transformation module for bounding-box tests.

Transformation Module
The transformation module has four state registers that the user can modify: the
viewport, the viewing matrix, the world matrix, and the projection matrix.
Whenever one of these parameters is modified, they are combined to form a new
transformation matrix, which is also maintained by the transformation module.
The transformation matrix defines the rotation and projection of a set of 3D
vertices from their model coordinates to the 2D window.

Although the application can set the transformation matrix directly, it is not
recommended. A number of matrix classifications take place in the combination
phase that allow optimized transformation math to be used, but this is precluded if
the application specifies the matrix directly.

A display list supports a number of different vertex types. For rasterization-only
hardware, the application should use the D3DTLVERTEX structure, which is a
transformed and lit vertex—that is, it contains screen coordinates and colors. If
the hardware handles the transformations, the application should use a

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 11

D3DLVERTEX structure. This structure contains only data and a color that
would be filled by software lighting. The D3DHVERTEX structure defines a
homogeneous vertex used when the application is supplying model-coordinate
data that needs clipping. If the hardware supports lighting, the application simply
uses a D3DVERTEX structure, because this type of vertex can be transformed
and lit during rendering. The software emulation driver supports all of these
vertex types.

There are two types of methods for the transformation module: those that set the
state of the transformation module and those that use the transformation module
directly to act on a set of vertices. Calling the transformation module directly is
useful for testing bounding volumes or for transforming a set of vectors. These
operations transform geometry by using the current transformation matrices. They
can also perform clipping tests against the current viewing volume. The structure
used for all the direct transformation functions is D3DTRANSFORMDATA.

Lighting Module
The lighting module maintains a stack of current lights, the ambient light level,
and a material.

When using the lighting module directly, each element of input data to the
lighting module (the D3DLIGHTINGELEMENT structure) contains a direction
vector and a position (for positional light sources such as point lights and
spotlights).

Two lighting models—monochromatic and RGB—are supported. The color fields
are always placed after the D3DLIGHTINGELEMENT structure in the
D3DLIGHTDATA structure.

The monochromatic lighting model (sometimes also called the "ramp" lighting
model) uses the gray component of each light to calculate a single shade value.
The RGB lighting model produces more realistic results, using the full color
content of light sources and materials to calculate the lit colors.

For materials with no specular component, the shade is the diffuse component of
the light intensity and ranges from 0 (ambient light only) to 1 (full intensity light).
For materials with a specular component, the shade combines both the specular
and diffuse components of the light according to the following equation:

This shade value is designed to work with precalculated ramps of colors (either in
the hardware's color-lookup table or in lookup tables implemented in software).
These precalculated ramps are divided into two sections. A ramp of the material's
diffuse color takes up the first three-quarters of the precalculated ramp; this
ranges from the ambient color to the maximum diffuse color. A ramp ranging

MICROSOFT CONFIDENTIAL 5/13/96

from the maximum diffuse color to the maximum specular color of the material
takes up the last quarter of the precalculated ramp. For rendering, the shade value
should be scaled by the size of the ramp and used as an index to look up the color
required.

A packed RGB color is defined as the following:

#define RGB_MAKE (red, green, blue) \
 ((red) << 16) | \
 ((green) << 8) | \
 (blue))

A packed RGBA color is defined as the following:

#define RGBA_MAKE(red, green, blue, alpha) \
(((alpha) << 24) | \
 ((red) << 16) | \
 ((green) << 8) | \
 (blue))

Colors in Direct3D are defined as follows:

typedef unsigned long D3DCOLOR;

The type of the light must be one of the members of the D3DLIGHTTYPE
enumerated type: D3DLIGHT_DIRECTIONAL, D3DLIGHT_POINT,
D3DLIGHT_PARALLELPOINT, D3DLIGHT_SPOT, or D3DLIGHT_GLSPOT.
This enumerated type is part of the D3DLIGHT structure. Another member of
this structure is a D3DCOLORVALUE structure, which specifies the color of the
light. The values given for the red, green, and blue light components typically
range from 0 to 1. The value for the ramp lighting model is based on the
following equation:

Each of the color values can fall outside of the 0 to 1 range, allowing the use of
advanced lighting effects (such as dark lights). The direction vectors in the
D3DLIGHT structure describe the direction from the model to the light source.
This vector should be normalized for directional lights. All vectors should be
given in world coordinates; these vectors are transformed into model coordinates
by using the current world matrix, allowing the efficient lighting of models
without the need to transform the vectors into world coordinates. For point lights
and spotlights, the range parameter gives the effective range of the light source.
Vertices that are outside this range will not be affected by the light. The intensity
of the light is modified by a quadratic attenuation factor, where d is the distance
from the vertex being lit to the light, as shown in the following equation:

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 13

The remaining members of the D3DLIGHT structure (dvTheta and dvPhi) are
used for spotlights to define the angles of the umbra and penumbra cones,
respectively. The falloff factor (dvFalloff) is applied between the umbra and
penumbra cones of the spotlight.

There are two types of methods for the lighting module, those that set the state of
the lighting module, and those that use the lighting module directly to act on a set
of points.

Like the transformation module, the lighting module can also be called directly.
The D3DLIGHTDATA structure is used for all the direct lighting functions.

Rasterization Module
The rasterization module handles only execute calls—the calls that render execute
buffers. Instructions in the execute buffer set the state for the rasterization
module.

Execute buffers are processed first by the transformation module. This module
runs through the vertex list, generating transformed vertices by using the state
information set up for the transformation module. Clipping can be enabled,
generating additional clipping information by using the viewport parameters to
clip against. The whole buffer can be rejected here if none of the vertices is in
view. Then, the vertices are processed by the lighting module, which adds color to
them according to the lighting instructions in the execute buffer. Finally, the
rasterization module parses the instruction stream, rendering primitives by using
the generated vertex information.

When an application calls the IDirect3DDevice::Execute method, the system
determines whether the vertex list needs to be transformed or transformed and lit.
After these operations have been completed, the instruction list is parsed and
rendered.

The screen coordinates range from (0, 0) for the top left of the device (screen or
window) to (width – 1, height – 1) for the bottom right of the device. The depth
values range from 0 at the front of the viewing frustum to 1 at the back.
Rasterization is performed so that if two triangles that share two vertices are
rendered, no pixel along the line joining the shared vertices is rendered twice. The
rasterizer culls backfacing triangles by determining the winding order of the three
vertices of the triangle. Only those triangles whose vertices are traversed in a
clockwise orientation are rendered.

MICROSOFT CONFIDENTIAL 5/13/96

Colors and Fog
Colors in Direct3D are properties of vertices, textures, materials, faces, lights,
and, of course, palettes.

Palette Entries
Your application can use the IDirect3DRM::CreateDeviceFromSurface method
to draw to a DirectDraw surface. You must be sure to attach a DirectDraw palette
to the primary DirectDraw surface to avoid unexpected colors in Direct3D
applications. The Direct3D sample code in this SDK attaches the palette to the
primary surface whenever the window receives a WM_ACTIVATE message. If
you need to track the changes that Direct3D makes to the palette of an 8-bit
DirectDraw surface, you can call the IDirectDrawPalette::GetEntries method.

Your application can use three flags to specify how it will share palette entries
with the rest of the system:

D3DPAL_FREE The renderer may use this entry freely.

D3DPAL_READONLY The renderer may not set this entry.

D3DPAL_RESERVED The renderer may not use this entry.

These flags can be specified in the peFlags member of the standard Win32
PALETTEENTRY structure. (You can also use the members of the
D3DRMPALETTEFLAGS enumerated type in the
D3DRMPALETTEENTRY structure to specify how to share palette entries.)
Your application can use these flags when using either the RGB or
monochromatic (ramp) renderer. Although you could supply a read-only palette
to the RGB renderer, you will get better results with the ramp renderer.

Fog
Fog is simply the alpha part of the color specified in the specular member of the
D3DTLVERTEX structure. Another way of thinking about this is that specular
color is really RGBF color, where "F" is "fog."

In monochromatic lighting mode, fog works properly only when the fog color is
black or when there is no lighting, in which case any fog color has the same
effect.

There are three fog modes: linear, exponential, and exponential squared. Only the
linear fog mode is supported for DirectX 2.

When you use linear fog, you specify a start and end point for the fog effect. The
fog effect begins at the specified starting point and increases linearly until it
reaches its maximum density at the specified end point.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 15

The exponential fog modes begin with a barely visible fog effect and increase to
the maximum density along an exponential curve. The following is the formula
for the exponential fog mode:

In the exponential squared fog mode, the fog effect increases more quickly than in
the exponential fog mode. The following is the formula for the exponential
squared fog mode:

In these formulas, e is the base of the natural logarithms; its value is
approximately 2.71828. Note that fog can be considered as a measure of visibility
—the lower the fog value, the less visible an object is.

For example, if an application used the exponential fog mode and a fog density of
0.5, the fog value at a distance from the camera of 0.8 would be 0.6703, as shown
in the following example:

States and State Overrides
Direct3D interprets the data in execute buffers according to the current state
settings. Applications set up these states before instructing the system to render
data. The D3DSTATE structure contains three enumerated types that expose this
architecture: D3DTRANSFORMSTATETYPE, which sets the state of the
transform module; D3DLIGHTSTATETYPE, for the lighting module; and
D3DRENDERSTATETYPE, for the rasterization module.

Each state includes a Boolean value that is essentially a read-only flag. If this flag
is set to TRUE, no further state changes are allowed.

Applications can override the read-only state of a module by using the
D3DSTATE_OVERRIDE macro. This mechanism allows an application to
reuse an execute buffer, changing its behavior by changing the system's state.
Direct3D Retained Mode uses state overrides to accomplish some tasks that
otherwise would require completely rebuilding an execute buffer. For example,
the Retained-Mode API uses state overrides to replace the material of a mesh with
the material of a frame.

MICROSOFT CONFIDENTIAL 5/13/96

An application might use the D3DSTATE_OVERRIDE macro to lock and
unlock the Gouraud shade mode, as shown in the following example. (The shade-
mode render state is defined by the D3DRENDERSTATE_SHADEMODE
member of the D3DRENDERSTATETYPE enumerated type.)

OP_STATE_RENDER(2, lpBuffer);
 STATE_DATA(D3DRENDERSTATE_SHADEMODE, D3DSHADE_GOURAUD, lpBuffer);
 STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), TRUE,
lpBuffer);

The OP_STATE_RENDER macro implicitly uses the
D3DOP_STATERENDER opcode, one of the members of the D3DOPCODE
enumerated type. D3DSHADE_GOURAUD is one of the members of the
D3DSHADEMODE enumerated type.

After executing the execute buffer, the application could use the
D3DSTATE_OVERRIDE macro again, to allow the shade mode to be changed:

 STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), FALSE,
lpBuffer);

The OP_STATE_RENDER and STATE_DATA macros are defined in the
D3dmacs.h header file in the Misc directory of the DirectX 2 SDK sample code;
these macros are also described in Setting the Immediate-Mode Render State.

Direct3D File Format
The Direct3D file format stores meshes, textures, animation sets, and user-
definable objects, facilitating the exchange of 3D information between
applications. Support for animation sets allows predefined paths to be stored for
playback in real time. Instancing and hierarchies are also supported, allowing
multiple references to a single data object (such as a mesh) while storing the data
for the object only once per file.

Direct3D files have a .X file name extension. This DirectX™ 2 Software
Development Kit (SDK) includes conversion tools (Conv3ds.exe and
Convxof.exe) that allow you to convert files from 3DS files generated by
Autodesk 3D Studio® and from XOF files that were generated for earlier versions
of Direct3D.

The Direct3D file format is used natively by the Direct3D Retained-Mode API,
providing support for loading predefined objects into an application and for
writing mesh information constructed by the application in real time.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 17

A Technical Foundation for 3D
Programming
The following sections describe some of the technical concepts you need to
understand before you write programs that incorporate 3D graphics. In these
sections, you will find a general discussion of coordinate systems and
transformations. This is not a discussion of broad architectural details, such as
setting up models, lights, and viewing parameters. For more information about
these topics, see Introduction to Direct3D Retained-Mode Objects.

If you are already experienced in producing 3D graphics, simply scan the
following sections for information that is unique to Direct3D Retained Mode.

3D Coordinate Systems
There are two varieties of Cartesian coordinate systems in 3D graphics: left-
handed and right-handed. In both coordinate systems, the positive x-axis points to
the right and the positive y-axis points up. You can remember which direction the
positive z-axis points by pointing the fingers of either your left or right hand in
the positive x direction and curling them into the positive y direction. The
direction your thumb points, either toward or away from you, is the direction the
positive z-axis points for that coordinate system.

Direct3D's Coordinate System
Direct3D uses the left-handed coordinate system. This means the positive z-axis
points away from the viewer, as shown in the following illustration:

In a left-handed coordinate system, rotations occur clockwise around any axis that
is pointed at the viewer.

If you need to work in a right-handed coordinate system—for example, if you are
porting an application that relies on right-handedness—you can do so by making
two simple changes to the data passed to Direct3D.

· Flip the order of triangle vertices so that the system traverses them clockwise from
the front. In other words, if the vertices are v0, v1, v2, pass them to Direct3D as
v0, v2, v1.

MICROSOFT CONFIDENTIAL 5/13/96

· Scale the projection matrix by -1 in the z direction. To do this, flip the signs of the
_13, _23, _33, and _43 members of the D3DMATRIX structure.

U- and V-Coordinates
Direct3D also uses texture coordinates. These coordinates (u and v) are used
when mapping textures onto an object. The v-vector describes the direction or
orientation of the texture and lies along the z-axis. The u-vector (or the up vector)
typically lies along the y-axis, with its origin at [0,0,0]. For more information
about u- and v-coordinates, see Direct3DRMWrap.

3D Transformations
In programs that work with 3D graphics, you can use geometrical transformations
to:

· Express the location of an object relative to another object.

· Rotate, shear, and size objects.

· Change viewing positions, directions, and perspective.

You can transform any point into another point by using a 4-by-4 matrix. In the
following example, a matrix is used to reinterpret the point (x, y, z), producing the
new point (x', y', z'):

You perform the following operations on (x, y, z) and the matrix to produce the
point (x', y', z'):

The most common transformations are translation, rotation, and scaling. You can
combine the matrices that produce these effects into a single matrix to calculate
several transformations at once. For example, you can build a single matrix to
translate and rotate a series of points.

Matrices are specified in row order. For example, the following matrix could be
represented by an array:

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 19

The array for this matrix would look like the following:

D3DMATRIX scale = {
 D3DVAL(s), 0, 0, 0,
 0, D3DVAL(s), D3DVAL(t), 0,
 0, 0, D3DVAL(s), D3DVAL(v),
 0, 0, 0, D3DVAL(1)
};

Translation
The following transformation translates the point (x, y, z) to a new point (x ', y', z'):

Rotation
The transformations described in this section are for left-handed coordinate
systems, and so may be different from transformation matrices you have seen
elsewhere.

The following transformation rotates the point (x, y, z) around the x-axis,
producing a new point (x', y', z'):

The following transformation rotates the point around the y-axis:

MICROSOFT CONFIDENTIAL 5/13/96

The following transformation rotates the point around the z-axis:

Note that in these example matrices, the Greek letter theta stands for the angle of
rotation, specified in radians. Angles are measured clockwise when looking along
the rotation axis toward the origin.

Scaling
The following transformation scales the point (x, y, z) by arbitrary values in the
x-, y-, and z-directions to a new point (x', y', z'):

Polygons
Three-dimensional objects in Direct3D are made up of meshes. A mesh is a set of
faces, each of which is described by a simple polygon. The fundamental polygon
type is the triangle. Although Retained-Mode applications can specify polygons
with more than three vertices, the system translates these into triangles before the
objects are rendered. Immediate-Mode applications must use triangles.

Geometry Requirements
Triangles are the preferred polygon type because they are always convex and they
are always planar, two conditions that are required of polygons by the renderer. A
polygon is convex if a line drawn between any two points of the polygon is also
inside the polygon.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 21

The three vertices of a triangle always describe a plane, but it is easy to
accidentally create a non-planar polygon by adding another vertex.

Face and Vertex Normals
Each face in a mesh has a perpendicular face normal whose direction is
determined by the order in which the vertices are defined and by whether the
coordinate system is right- or left-handed. If the normal vector of a face is
oriented toward the viewer, that side of the face is its front. In Direct3D, only the
front side of a face is visible, and a front face is one in which vertices are defined
in clockwise order.

Direct3D applications do not need to specify face normals; the system calculates
them automatically when they are needed. The system uses face normals in the
flat shade mode. For Phong and Gouraud shade modes, and for controlling
lighting and texturing effects, the system uses vertex normals.

MICROSOFT CONFIDENTIAL 5/13/96

Shade Modes
In the flat shade mode, the system duplicates the color of one vertex across all the
other faces of the primitive. In the Gouraud and Phong shade modes, vertex
normals are used to give a smooth look to a polygonal object. In Gouraud
shading, the color and intensity of adjacent vertices is interpolated across the
space that separates them. In Phong shading, the system calculates the appropriate
shade value for each pixel on a face.

Phong shading is not supported for DirectX 2.

Most applications use Gouraud shading because it allows objects to appear
smooth and is computationally efficient. Gouraud shading can miss details that
Phong shading will not, however. For example, Gouraud and Phong shading
would produce very different results in the case shown by the following
illustration, in which a spotlight is completely contained within a face.

In this case, the Phong shade mode would calculate the value for each pixel and
display the spotlight. The Gouraud shade mode, which interpolates between
vertices, would miss the spotlight altogether; the face would be rendered as
though the spotlight did not exist.

In the flat shade mode, the following pyramid would be displayed with a sharp
edge between adjoining faces; the system would generate automatic face normals.
In the Gouraud or Phong shade modes, however, shading values would be

Not
e

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 23

interpolated across the edge, and the final appearance would be of a curved
surface.

If you want to use the Gouraud or Phong shade mode to display curved surfaces
and you also want to include some objects with sharp edges, your application
would need to duplicate the vertex normals at any intersection of faces where a
sharp edge was required, as shown in the following illustration.

In addition to allowing a single object to have both curved and flat surfaces, the
Gouraud shade mode lights flat surfaces more realistically than the flat shade
mode. A face in the flat shade mode is a uniform color, but Gouraud shading
allows light to fall across a face correctly; this effect is particularly obvious if
there is a nearby point source. Gouraud shading is the preferred shade mode for
most Direct3D applications.

Triangle Interpolants
The system interpolates the characteristics of a triangle's vertices across the
triangle when it renders a face. The following are the triangle interpolants:

· Color

· Specular

· Fog

· Alpha

All of the triangle interpolants are modified by the current shade mode:

MICROSOFT CONFIDENTIAL 5/13/96

Flat No interpolation is done. Instead, the color of the
first vertex in the triangle is applied across the
entire face.

Gouraud Linear interpolation is performed between all
three vertices.

Phong Vertex parameters are reevaluated for each pixel
in the face, using the current lighting. The Phong
shade mode is not supported for DirectX 2.

The color and specular interpolants are treated differently, depending on the color
model. In the RGB color model (D3DCOLOR_RGB), the system uses the red,
green, and blue color components in the interpolation. In the monochromatic
model (D3DCOLOR_MONO), the system uses only the blue component of the
vertex color.

For example, if the red component of the color of vertex 1 were 0.8 and the red
component of vertex 2 were 0.4, in the Gouraud shade mode and RGB color
model the system would use interpolation to assign a red component of 0.6 to the
pixel at the midpoint of the line between these vertices.

The alpha component of a color is treated as a separate interpolant because device
drivers can implement transparency in two different ways: by using texture
blending or by using stippling.

An application can use the dwShadeCaps member of the D3DPRIMCAPS
structure to determine what forms of interpolation the current device driver
supports.

Triangle Strips and Fans
You can use triangle strips and triangle fans to specify an entire surface without
having to provide all three vertices for each of the triangles. For example, only
seven vertices are required to define the following triangle strip.

The system uses vertices v0, v1, and v2 to draw the first triangle, v1, v3, and v2
to draw the second triangle, v3, v4, and v2 to draw the third, and so on. Notice

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 25

that the vertices of the second triangle are out of order; this is required to make
sure that all of the triangles are drawn in a clockwise orientation.

A triangle fan is similar to a triangle strip, except that all of the triangles share
one vertex.

The system uses vertices v0, v1, and v2 to draw the first triangle, v0, v2, and v3
to draw the second triangle, and so on.

You can use the wFlags member of the D3DTRIANGLE structure to specify the
flags that build triangle strips and fans.

Vectors and Quaternions
Vectors are used throughout Direct3D to describe position and orientation. Each
vertex in a primitive is described by a vector that gives its position, a normal
vector that gives its orientation, texture coordinates, and a color. (In Retained
Mode, the D3DRMVERTEX structure contains these values.)

Quaternions add a fourth element to the [x, y, z] values that define a vector. They
are an alternative to the matrix methods that are typically used for 3D rotations.
Direct3D's Retained Mode includes some functions that help you work with
quaternions. For example, the D3DRMQuaternionFromRotation function adds
a rotation value to a vector that defines an axis of rotation and returns the result in
a quaternion defined by a D3DRMQUATERNION structure.

Retained-Mode applications can use the following functions to simplify the task
of working with vectors and quaternions:

D3DRMQuaternionFromRotation

MICROSOFT CONFIDENTIAL 5/13/96

D3DRMQuaternionMultiply

D3DRMQuaternionSlerp

D3DRMVectorAdd

D3DRMVectorCrossProduct

D3DRMVectorDotProduct

D3DRMVectorModulus

D3DRMVectorNormalize

D3DRMVectorRandom

D3DRMVectorReflect

D3DRMVectorRotate

D3DRMVectorScale

D3DRMVectorSubtract

Floating-point Precision
Direct3D, like the rest of the DirectX architecture, uses a floating-point precision
of 53 bits. If your application needs to change this precision, it must change it
back to 53 when the calculations are finished. Otherwise, system components that
depend on the default value will stop working.

Performance Optimization
Every developer who creates real-time applications that use 3D graphics is
concerned about performance optimization. This section provides you with
guidelines about getting the best performance from your code.

You can use the guidelines in the following sections for any Direct3D application:

· Clip Tests on Execution

· Batching Primitives

· Texture Size

· Triangle Flags

Direct3D applications can use either the ramp driver (for the monochromatic
color model) or the RGB driver. The performance notes in the following sections
apply to the ramp driver:

· Ramp Performance Tips

· Ramp Textures

· Z-Buffers

· Copy Mode

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 27

Clip Tests on Execution
Your application can use the IDirect3DDevice::Execute method to render
primitives with or without automatic clipping. Using this method without clipping
is always faster than setting the clipping flags because clipping tests during either
the transformation or rasterization stages slow the process. If your application
does not use automatic clipping, however, it must ensure that all of the rendering
data is wholly within the viewing frustum. The best way to ensure this is to use
simple bounding volumes for the models and transform these first. You can use
the results of this first transformation to decide whether to wholly reject the data
because all the data is outside the frustum, whether to use the no-clipping version
of the IDirect3DDevice::Execute method because all the data is within the
frustum, or whether to use the clipping flags because the data is partially within
the frustum. In Immediate Mode it is possible to set up this sort of functionality
within one execute buffer by using the flags in the D3DSTATUS structure and
the D3DOP_BRANCHFORWARD member of the D3DOPCODE enumerated
type to skip geometry when a bounding volume is outside the frustum. Direct3D's
Retained Mode automatically uses these features to speed up its use of execute
buffers.

Batching Primitives
To get the best rendering performance during execution, you should try to work
with primitives in batches and keep the number of render-state changes as low as
possible. For example, if you have an object with two textures, group the triangles
that use the first texture and follow them with the necessary render state to change
the texture, then group all the triangles that use the second texture. The simplest
hardware support for Direct3D is called with batches of render states and batches
of primitives through the hardware-abstraction layer (HAL). The more effectively
the instructions are batched, the fewer HAL calls are performed during execution.

Texture Size
Texture-mapping performance is heavily dependent on the speed of memory.
There are a number of ways to maximize the cache performance of your
application's textures.

· Keep the textures small; the smaller the textures are, the better chance they have
of being maintained in the main CPU's secondary cache.

· Do not change the textures on a per-primitive basis. Try to keep polygons grouped
in order of the textures they use.

· Use square textures whenever possible. Textures whose dimensions are 256 by
256 are the fastest. If your application uses four 128-by-128 textures, for example,
try to ensure that they use the same palette and place them all into one 256-by-256
texture. This technique also reduces the amount of texture swapping. Of course,
you should not use 256-by-256 textures unless your application requires that much

MICROSOFT CONFIDENTIAL 5/13/96

texturing because, as already mentioned, textures should be kept as small as
possible.

Triangle Flags
The wFlags member of the D3DTRIANGLE structure includes flags that allow
the system to reuse vertices when building triangle strips and fans. Effective use
of these flags allows some hardware to run much faster than it would otherwise.

Applications can use these flags in two ways as acceleration hints to the driver:

D3DTRIFLAG_STARTFLAT(len)

If the current triangle is culled, the driver can also cull the number of
subsequent triangles given by len in the strip or fan.

D3DTRIFLAG_ODD and D3DTRIFLAG_EVEN

The driver needs to reload only one new vertex from the triangle and it can
reuse the other two vertices from the last triangle that was rendered.

The best possible performance occurs when an application uses both the
D3DTRIFLAG_STARTFLAT flag and the D3DTRIFLAG_ODD and
D3DTRIFLAG_EVEN flags.

Because some drivers might not check the D3DTRIFLAG_STARTFLAT flag,
applications must be careful when using it. An application using a driver that
doesn't check this flag might not render polygons that should have been rendered.

Applications must use the D3DTRIFLAG_START flag before using the
D3DTRIFLAG_ODD and D3DTRIFLAG_EVEN flags. D3DTRIFLAG_START
causes the driver to reload all three vertices. All triangles following the
D3DTRIFLAG_START flag can use the D3DTRIFLAG_ODD and
D3DTRIFLAG_EVEN flags indefinitely, providing the triangles share edges.

The debugging version of this SDK validates the D3DTRIFLAG_ODD and
D3DTRIFLAG_EVEN flags.

For more information, see Triangle Strips and Fans.

Ramp Performance Tips
Applications should use the following techniques to achieve the best possible
performance when using the monochromatic (ramp) driver:

· Share the same palette among all textures.

· Keep the number of colors in the palette as low as possible—64 or fewer is best.

· Keep the ramp size in materials at 16 or less.

· Make all materials the same (except the texture handle)—allow the textures to
specify the coloring. For example, make all the materials white and keep their

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 29

specular power the same. Many applications do not need more than two materials
in a scene: one with a specular power for shiny objects, and one without for matte
objects.

· Keep textures as small as possible.

· Fit multiple small textures into a single texture that is 256-by-256 pixels.

· Render small triangles by using the Gouraud shade mode, and render large
triangles by using the flat shade mode.

Developers who must use more than one palette can optimize their code by using
one palette as a master palette and ensuring that the other palettes contain a subset
of the colors in the master palette.

Ramp Textures
Applications that use the ramp driver should be conservative with the number of
texture colors they require. Each color used in a monochromatic texture requires
its own lookup table during rendering. If your application uses hundreds of colors
in a scene during rendering, the system must use hundreds of lookup tables,
which do not cache well. Also, try to share palettes between textures whenever
possible. Ideally, all of your application's textures will fit into one palette, even
when you are using a ramp driver with depths greater than 8-bit color.

Z-Buffers
Applications that use the ramp driver can increase performance when using z-
buffering and texturing by ensuring that scenes are rendered from front to back.
Textured z-buffered primitives are pretested against the z-buffer on a scanline
basis. If a scanline is hidden by a previously rendered polygon, the system rejects
it quickly and efficiently. Z-buffering can improve performance, but the technique
is most useful when a scene includes a great deal of overdraw. Overdraw is the
average number of times a screen pixel is written to. Overdraw is difficult to
calculate exactly, but you can often make a close approximation. If the overdraw
averages less than 2, you can achieve the best performance by turning z-buffering
off.

You can also improve the performance of your application by z-testing
primitives; that is, by testing a given list of primitives against the z-buffer. This
allows for fast bounding-box rejection of occluded geometry.

The Retained-Mode API can automatically order its scenes from front to back to
facilitate z-buffer optimization. Retained Mode also z-tests primitives for all
meshes that contain more than a few hundred triangles.

You can use the fill-rate test in the D3dtest.exe application that is provided with
this SDK to demonstrate overdraw performance for a given driver. (The fill-rate
test draws four tunnels from front to back or back to front, depending on the
setting you choose.)

MICROSOFT CONFIDENTIAL 5/13/96

On faster personal computers, software rendering to system memory is often
faster than rendering to video memory, although it has the disadvantage of not
being able to use double buffering or hardware-accelerated clear operations. If
your application can render to either system or video memory, and if you include
a routine that tests which is faster, you can take advantage of the best approach on
the current system. The Direct3D sample code in this SDK demonstrates this
strategy. It is necessary to implement both methods because there is no other way
to test the speed. Speeds can vary enormously from computer to computer,
depending on the main-memory architecture and the type of graphics adapter
being used. Although you can use D3dtest.exe to test the speed of system memory
against video memory, it cannot predict the performance of your user's personal
computer.

You can run all of the Direct3D samples in system memory by using the "-
systemmemory" command-line option. This is also useful when developing code
because it allows your application to fail in a way that stops the renderer without
stopping your system—DirectDraw does not take the WIN16 lock for system-
memory surfaces. (The WIN16 lock serializes access to GDI and USER, shutting
down Windows for the interval between calls to the IDirectDrawSurface::Lock
and IDirectDrawSurface::Unlock methods, as well as between calls to the
IDirectDrawSurface::GetDC and IDirectDrawSurface::ReleaseDC methods.)

Copy Mode
Applications that use the ramp driver can sometimes improve performance by
using the D3DTBLEND_COPY texture-blending mode from the
D3DTEXTUREBLEND enumerated type.

To use copy mode, your application's textures must use the same pixel format as
the primary surface and also must use the same palette as the primary surface.
Copy mode does no lighting and simply copies texture pixels to the screen. This
is often a good technique for prelit textured scenes.

If your application uses the monochromatic model with 8-bit color and no
lighting, performance can improve if you use copy mode. If your application uses
16-bit color, however, copy mode is not quite as fast as using modulated textures;
for 16-bit color, textures are twice the size as in the 8-bit case, and the extra
burden on the cache makes performance slightly worse than using an 8-bit lit
texture. Again, you can use D3dtest.exe to verify system performance in this case.

Direct3D Retained-Mode Overview

About Retained Mode
This section describes Direct3D's Retained Mode, Microsoft's solution for real-
time 3D graphics on the personal computer. If you need to create a 3D

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 31

environment and manipulate it in real time, you should use Direct3D's Retained-
Mode API.

Direct3D is integrated tightly with DirectDraw. A DirectDraw object encapsulates
both the DirectDraw and Direct3D states—your application can use the
IDirectDraw::QueryInterface method to retrieve an IDirect3D interface to a
DirectDraw object. For more information about this integration, see Direct3D
Driver Interface.

If you have written code that uses 3D graphics before, many of the concepts
underlying Retained Mode will be familiar to you. If, however, you are new to 3D
programming, you should pay close attention to Introduction to Direct3D
Retained-Mode Objects, and you should read A Technical Foundation for 3D
Programming. Whether you are new to 3D programming or just beginning, you
should look carefully at the sample code included with this SDK; it illustrates
how to put Retained Mode to work in real-world applications.

This section is an introduction to 3D programming. It describes Microsoft's 3D-
graphics solutions and some of the technical background you need to manipulate
points in three dimensions. It is not an introduction to programming with
Direct3D's Retained Mode; for this information, see Direct3D Retained-Mode
Tutorial.

Introduction to Direct3D Retained-Mode
Objects
All access to Direct3D Retained Mode is through a small set of objects. The
following table lists these objects and a brief description of each:

Object Description

Direct3DRMAnimation This object defines how a transformation
will be modified, often in reference to a
Direct3DRMFrame object; therefore, you
can use it to animate the position,
orientation, and scaling of
Direct3DRMVisual, Direct3DRMLight,
and Direct3DRMViewport objects.

Direct3DRMAnimationSet This object allows
Direct3DRMAnimation objects to be
grouped together.

Direct3DRMDevice This object represents the visual display
destination for the renderer.

Direct3DRMFace This object represents a single polygon in
a mesh.

Direct3DRMFrame This object positions objects within a
scene and defines the positions and

MICROSOFT CONFIDENTIAL 5/13/96

orientations of visual objects.

Direct3DRMLight This object defines one of five types of
lights that are used to illuminate the
visual objects in a scene.

Direct3DRMMaterial This object defines how a surface reflects
light.

Direct3DRMMesh This object consists of a set of polygonal
faces. You can use this object to
manipulate groups of faces and vertices.

Direct3DRMMeshBuilder This object allows you to work with
individual vertices and faces in a mesh.

Direct3DRMObject This object is a base class used by all
other Direct3D Retained-Mode objects; it
has characteristics that are common to all
objects.

Direct3DRMPickedArray This object identifies a visual object that
corresponds to a given 2D point.

Direct3DRMShadow This object defines a shadow.

Direct3DRMTexture This object is a rectangular array of
colored pixels.

Direct3DRMUserVisual This object is defined by an application to
provide functionality not otherwise
available in the system.

Direct3DRMViewport This object defines how the 3D scene is
rendered into a 2D window.

Direct3DRMVisual This object is anything that can be
rendered in a scene. Visual objects need
not be visible; for example, a frame can
be added as a visual object.

Direct3DRMWrap This object calculates texture coordinates
for a face or mesh.

Many objects can be grouped into arrays, called array objects. Array objects
make it simpler to apply operations to the entire group. The COM interfaces that
allow you to work with array objects contain the GetElement and GetSize
methods. These methods retrieve a pointer to an element in the array and the size
of the array, respectively. For more information about array interfaces, see
Introduction to Array Interfaces.

Objects and Interfaces
Calling the IObjectName::QueryInterface method retrieves a valid interface
pointer only if the object supports that interface; therefore, you could call the
IDirect3DRMDevice::QueryInterface method to retrieve the

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 33

IDirect3DRMWinDevice interface, but not to retrieve the IDirect3DRMVisual
interface.

Object name Supported interfaces

Direct3DRMAnimation IDirect3DRMAnimation

Direct3DRMAnimationSet IDirect3DRMAnimationSet

Direct3DRMDevice IDirect3DRMDevice, IDirect3DRMWinDevice

Direct3DRMFace IDirect3DRMFace

Direct3DRMFrame IDirect3DRMFrame, IDirect3DRMVisual

Direct3DRMLight IDirect3DRMLight

Direct3DRMMaterial IDirect3DRMMaterial

Direct3DRMMesh IDirect3DRMMesh, IDirect3DRMVisual

Direct3DRMMeshBuilder IDirect3DRMMeshBuilder,
IDirect3DRMVisual

Direct3DRMShadow IDirect3DRMShadow, IDirect3DRMVisual

Direct3DRMTexture IDirect3DRMTexture, IDirect3DRMVisual

Direct3DRMUserVisual IDirect3DRMUserVisual, IDirect3DRMVisual

Direct3DRMViewport IDirect3DRMViewport

Direct3DRMWrap IDirect3DRMWrap

The following code sample illustrates how to create two interfaces to a single
Direct3DRMDevice object. The IDirect3DRM::CreateObject method creates an
uninitialized Direct3DRMDevice object. The
IDirect3DRMDevice::InitFromClipper method initializes the object. The call
to the IDirect3DRMDevice::QueryInterface method creates a second interface
to the Direct3DRMDevice object—an IDirect3DRMWinDevice interface the
application will use to handle WM_PAINT and WM_ACTIVATE messages.

d3drmapi->CreateObject(CLSID_CDirect3DRMDevice, NULL,
 IID_IDirect3DRMDevice,(LPVOID FAR*)&dev1);
dev1->InitFromClipper(lpDDClipper, IID_IDirect3DRMDevice,
 r.right, r.bottom);
dev1->QueryInterface(IID_IDirect3DRMWinDevice, (LPVOID*) &dev2);

To determine if two interfaces refer to the same object, call the QueryInterface
method of each interface and compare the values of the pointers they return. If the
pointer values are the same, the interfaces refer to the same object.

All Direct3D Retained-Mode objects support the IDirect3DRMObject and
IUnknown interfaces in addition to the interfaces in the preceding list. Array
objects are not derived from IDirect3DRMObject, however. Array objects have
no class identifiers (CLSIDs) because they are not needed. Applications cannot

MICROSOFT CONFIDENTIAL 5/13/96

create array objects in a call to the IDirect3DRM::CreateObject method;
instead, they should use the creation methods listed below for each interface:

Array interface Creation method

IDirect3DRMDeviceArray IDirect3DRM::GetDevices

IDirect3DRMFaceArray IDirect3DRMMeshBuilder::GetFaces

IDirect3DRMFrameArray IDirect3DRMPickedArray::GetPick

or IDirect3DRMFrame::GetChildren

IDirect3DRMLightArray IDirect3DRMFrame::GetLights

IDirect3DRMPickedArray IDirect3DRMViewport::Pick

IDirect3DRMViewportArray IDirect3DRM::CreateFrame

IDirect3DRMVisualArray IDirect3DRMFrame::GetVisuals

Objects and Reference Counting
Whenever an object is created, its reference count is increased. Each time an
application creates a child of an object or a method returns a pointer to an object,
the system increases the reference count for that object. The object is not deleted
until its reference count reaches zero.

Applications should need to keep track of the reference count for a single object
only: the root of the scene. The system keeps track of the other reference counts
automatically. Applications should be able to simply release the scene, the
viewport, and the device when they clean up before exiting. (When your
application releases the viewport, the system automatically takes care of the
camera's references.) An application could theoretically release a viewport
without releasing the device, such as if it needed to add a new viewport to the
device, but whenever an application releases a device, it should release the
viewport as well.

The reference count of a frame object increases whenever a child frame or visual
object is added to the frame. When you use the IDirect3DRMFrame::AddChild
method to move a child from one parent to another, the system handles the
reference counting automatically.

After your application loads a visual object into a scene, the scene handles the
reference counting for the visual object. The application no longer needs the
visual object and can release it.

Creating and applying a wrap does not increase the reference count of any
objects, because wrapping is really just a convenient method of calculating
texture coordinates.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 35

Direct3DRMAnimation and
Direct3DRMAnimationSet
An animation in Retained Mode is defined by a set of keys. A key is a time value
associated with a scaling operation, an orientation, or a position. A
Direct3DRMAnimation object defines how a transformation is modified
according to the time value. The animation can be set to operate on a
Direct3DRMFrame object, so it could be used to animate the position, orientation,
and scaling of Direct3DRMVisual, Direct3DRMLight, and Direct3DRMViewport
objects.

TheIDirect3DRMAnimation::AddPositionKey,
IDirect3DRMAnimation::AddRotateKey, and
IDirect3DRMAnimation::AddScaleKey methods each specify a time value
whose units are arbitrary. If an application adds a position key with a time value
of 99, for example, a new position key with a time value of 49 would occur
exactly halfway between the (zero-based) beginning of the animation and the first
position key.

The animation is driven by calling the IDirect3DRMAnimation::SetTime
method. This sets the visual object's transformation to the interpolated position,
orientation, and scale of the nearby keys in the animation. As with the methods
that add animation keys, the time value for IDirect3DRMAnimation::SetTime
is an arbitrary value, based on the positions of keys the application has already
added.

A Direct3DRMAnimationSet object allows Direct3DRMAnimation objects to be
grouped together. This allows all the animations in an animation set to share the
same time parameter, simplifying the playback of complex articulated animation
sequences. An application can add an animation to an animation set by using the
IDirect3DRMAnimationSet::AddAnimation method, and it can remove one by
using the IDirect3DRMAnimationSet::DeleteAnimation method. Animation
sets are driven by calling the IDirect3DRMAnimationSet::SetTime method.

For related information, see the IDirect3DRMAnimation and
IDirect3DRMAnimationSet interfaces.

Direct3DRMDevice and Direct3DRMDeviceArray
All forms of rendered output must be associated with an output device. The
device object represents the visual display destination for the renderer.

The renderer's behavior depends on the type of output device that is specified.
You can define multiple viewports on a device, allowing different aspects of the
scene to be viewed simultaneously. You can also specify any number of devices,
allowing multiple destination devices for the same scene.

MICROSOFT CONFIDENTIAL 5/13/96

Retained Mode supports devices that render directly to the screen, to windows, or
into application memory.

For related information, see the IDirect3DRMDevice interface.

Quality
The device allows the scene and its component parts to be rendered with various
degrees of realism. Each mesh can have its own quality, but the maximum quality
available for a mesh is that of the device.

An application can change the rendering quality of a device by using the
IDirect3DRMDevice::SetQuality and IDirect3DRMMeshBuilder::SetQuality
methods. To retrieve the rendering quality for a device, it can use the
IDirect3DRMDevice::GetQuality and
IDirect3DRMMeshBuilder::GetQuality methods.

Color Models
Retained Mode supports two color models: an RGB model and a monochromatic
(or ramp) model. To retrieve the color model, an application can use the
IDirect3DRMDevice::GetColorModel method.

The RGB model treats color as a combination of red, green, and blue light, and it
supports multiple light sources that can be colored. There is no limit to the
number of colors in the scene. You can use this model with 8-, 16-, 24-, and 32-
bit displays. If the display depth is less than 24 bits, the limited color resolution
can produce banding artifacts; you can avoid these artifacts by using optional
dithering.

The monochromatic model also supports multiple light sources, but their color
content is ignored. Each source is set to a gray intensity. RGB colors at a vertex
are interpreted as brightness levels, which (in Gouraud shading) are interpolated
across a face between vertices with different brightnesses. The number of
differently colored objects in the scene is limited; after all the system's free palette
entries are used up, the system's internal palette manager finds colors that already
exist in the palette and that most closely match the intended colors. Like the RGB
model, you can use this model with 8-, 16-, 24-, and 32-bit displays. (The
monochromatic model supports only 8-bit textures, however.) The advantage of
the monochromatic model over the RGB model is simply performance.

It is not possible to change the color model of a Direct3D device. Your
application should use the IDirect3D::EnumDevices or IDirect3D::FindDevice
method to identify a driver that supports the required color model, then specify
this driver in one of the device-creation methods.

Window Management
For correct operation, applications must inform Retained Mode when
WM_MOVE, WM_PAINT, and WM_ACTIVATE messages are received from

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 37

the operating system by using the IDirect3DRMWinDevice::HandlePaint and
IDirect3DRMWinDevice::HandleActivate methods.

For related information, see IDirect3DRMWinDevice.

Direct3DRMFace and Direct3DRMFaceArray
A face represents a single polygon in a mesh. An application can set the color,
texture, and material of the face by using the IDirect3DRMFace::SetColor,
IDirect3DRMFace::SetColorRGB, IDirect3DRMFace::SetTexture, and
IDirect3DRMFace::SetMaterial methods.

Faces are constructed from vertices by using the IDirect3DRMFace::AddVertex
and IDirect3DRMFace::AddVertexAndNormalIndexed methods. An
application can read the vertices of a face by using the
IDirect3DRMFace::GetVertices and IDirect3DRMFace::GetVertex methods.

For related information, see IDirect3DRMFace.

Direct3DRMFrame and Direct3DRMFrameArray
The term frame is derived from an object's physical frame of reference. The
frame's role in Retained Mode is similar to a window's role in a windowing
system. Objects can be placed in a scene by stating their spatial relationship to a
relevant reference frame; they are not simply placed in world space. A frame is
used to position objects in a scene, and visuals take their positions and orientation
from frames.

A scene in Retained Mode is defined by a frame that has no parent frame; that is,
a frame at the top of the hierarchy of frames. This frame is also sometimes called
a root frame or master frame. The scene defines the frame of reference for all of
the other objects. You can create a scene by calling the
IDirect3DRM::CreateFrame function and specifying NULL for the first
parameter.

You should be comfortable with Direct3D's left-handed coordinate system before
working with frames. For more information about coordinate systems, see 3D
Coordinate Systems.

Hierarchies
The frames in a scene are arranged in a tree structure. Frames can have a parent
frame and child frames. Remember, a frame that has no parent frame defines a
scene.

Child frames have positions and orientations relative to their parent frames. If the
parent frame moves, the child frames also move.

An application can set the position and orientation of a frame relative to any other
frame in the scene, including the root frame if it needs to set an absolute position.

MICROSOFT CONFIDENTIAL 5/13/96

You can also remove frames from one parent frame and add them to another at
any time by using the IDirect3DRMFrame::AddChild method. To remove a
child frame entirely, use the IDirect3DRMFrame::DeleteChild method. To
retrieve a frame's child and parent frames, use the
IDirect3DRMFrame::GetChildren and IDirect3DRMFrame::GetParent
methods.

You can add frames as visuals to other frames, allowing you to use a given
hierarchy many times throughout a scene. The new hierarchies are referred to as
instances. Be careful to avoid instancing a parent frame into its children, because
that will degrade performance. Retained Mode does no run-time checking for
cyclic hierarchies. You cannot create a cyclic hierarchy by using the methods of
the IDirect3DRMFrame interface; instead, this is possible only when you add a
frame as a visual.

Transformations
You can also think of the position and orientation of a frame relative to its parent
frame as a linear transformation that takes vectors defined relative to the child
frame and changes them to equivalent vectors defined relative to the parent.

Transformations can be represented by 4-by-4 matrices, and coordinates can be
represented by four-element row vectors, [x, y, z, 1].

If vchild is a coordinate in the child frame, then vparent, the equivalent coordinate in
the parent frame, is defined as:

vparent=vchildTchild

Tchild is the child frame's transformation matrix.

The transformations of all the parent frames above a child frame up to the root
frame are concatenated with the transformation of that child to produce a world
transformation. This world transformation is then applied to the visuals on the
child frame before rendering. Coordinates relative to the child frame are
sometimes called model coordinates. After the world transformation is applied,
coordinates are called world coordinates.

The transformation of a frame can be modified directly by using the
IDirect3DRMFrame::AddTransform, IDirect3DRMFrame::AddScale,
IDirect3DRMFrame::AddRotation, and
IDirect3DRMFrame::AddTranslation methods. Each of these methods
specifies a member of the D3DRMCOMBINETYPE enumerated type, which
specifies how the matrix supplied by the application should be combined with the
current frame's matrix.

The IDirect3DRMFrame::GetRotation and
IDirect3DRMFrame::GetTransform methods allow you to retrieve a frame's

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 39

rotation axis and transformation matrix. To change the rotation of a frame, use the
IDirect3DRMFrame::SetRotation method.

Use the IDirect3DRMFrame::Transform and
IDirect3DRMFrame::InverseTransform methods to change between world
coordinates and frame coordinates.

Motion
Every frame has an intrinsic rotation and velocity. Frames that are neither rotating
nor translating simply have zero values for these attributes. These attributes are
used before each scene is rendered to move objects in the scene, and they can also
be used to create simple animations.

Callback Functions
Frames support a callback function that you can use to support more complex
animations. The application registers a function that the frame calls before the
motion attributes are applied. Where there are multiple frames in a hierarchy,
each with associated callback functions, the parent frames are called before the
child frames. For a given hierarchy, rendering does not take place until all of the
required callback functions have been invoked.

To add this callback function, use the IDirect3DRMFrame::AddMoveCallback
method; to remove it, use the IDirect3DRMFrame::DeleteMoveCallback
method.

You can use these callback functions to provide new positions and orientations
from a preprogrammed animation sequence or to implement dynamic motion in
which the activities of visuals depend upon the positions of other objects in the
scene.

Direct3DRMLight and Direct3DRMLightArray
Lighting effects are employed to increase the visual fidelity of a scene. The
system colors each object based on the object's orientation to the light sources in
the scene. The contribution of each light source is combined to determine the
color of the object during rendering. All lights have color and intensity that can be
varied independently.

An application can attach lights to a frame to represent a light source in a scene.
When a light is attached to a frame, it illuminates visual objects in the scene. The
frame provides both position and orientation for the light. In other words, the light
originates from the origin of the frame it is attached to. An application can move
and redirect a light source simply by moving and reorienting the frame the light
source is attached to.

MICROSOFT CONFIDENTIAL 5/13/96

Each viewport owns one or more lights. No light can be owned by more than one
viewport. For more information about the interdependencies of Direct3D
components, see Object Connectivity.

Retained Mode currently provides five types of light sources: ambient,
directional, parallel point, point, and spotlight.

Ambient
An ambient light source illuminates everything in the scene, regardless of the
orientation, position, and surface characteristics of the objects in the scene.
Because ambient light illuminates a scene with equal strength everywhere, the
position and orientation of the frame it is attached to are inconsequential. Multiple
ambient light sources are combined within a scene.

Directional
A directional light source has orientation but no position. The light is attached to
a frame but appears to illuminate all objects with equal intensity, as if it were at
an infinite distance from the objects. The directional source is commonly used to
simulate distant light sources, such as the sun. It is the best choice of light to use
for maximum rendering speed.

Parallel Point
A parallel point light source illuminates objects with parallel light, but the
orientation of the light is taken from the position of the parallel point light source.
That is, like a directional light source, a parallel point light source has orientation,
but it also has position. For example, two meshes on either side of a parallel point
light source are lit on the side that faces the position of the source. The parallel
point light source offers similar rendering-speed performance to the directional
light source.

Point
A point light source radiates light equally in all directions from its origin. It
requires the calculation of a new lighting vector for every facet or normal it
illuminates, and for this reason it is computationally more expensive than a
parallel point light source. It does, however, produce a more faithful lighting
effect and should be chosen where visual fidelity is the deciding concern.

Spotlight
A spotlight emits a cone of light. Only objects within the cone are illuminated.
The cone produces light of two degrees of intensity, with a central brightly lit
section (the umbra) that acts as a point source, and a surrounding dimly lit section
(the penumbra) that merges with the surrounding deep shadow. The angles of
these two sections can be individually specified by using the
IDirect3DRMLight::GetPenumbra, IDirect3DRMLight::GetUmbra,

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 41

IDirect3DRMLight::SetPenumbra, and IDirect3DRMLight::SetUmbra
methods.

Direct3DRMMaterial
A material defines how a surface reflects light. A material has two components:
an emissive property (whether it emits light) and a specular property, whose
brightness is determined by a power setting. The value of the power determines
the sharpness of the reflected highlights, with a value of 5 giving a metallic
appearance and higher values giving a more plastic appearance.

An application can control the emission of a material by using the
IDirect3DRMMaterial::GetEmissive and
IDirect3DRMMaterial::SetEmissive methods, the specular component by using
the IDirect3DRMMaterial::GetSpecular and
IDirect3DRMMaterial::SetSpecular methods, and the power by using the
IDirect3DRMMaterial::GetPower and IDirect3DRMMaterial::SetPower
methods.

Direct3DRMMesh and Direct3DRMMeshBuilder
A mesh is a visual object that is made up of a set of polygonal faces. A mesh
defines a set of vertices and a set of faces (the faces are defined in terms of the
vertices and normals of the mesh). Changing a vertex or normal that is used by
several faces changes the appearance of all faces sharing it.

The vertices of a mesh define the positions of faces in the mesh, and they can also
be used to define 2D coordinates within a texture map.

You can manipulate meshes in Retained Mode by using two COM interfaces:
IDirect3DRMMesh and IDirect3DRMMeshBuilder. IDirect3DRMMesh is
very fast, and you should use it when a mesh is subject to frequent changes, such
as when morphing. IDirect3DRMMeshBuilder is built on top of the
IDirect3DRMMesh interface. Although the IDirect3DRMMeshBuilder

MICROSOFT CONFIDENTIAL 5/13/96

interface is a convenient way to perform operations on individual faces and
vertices, the system must convert a Direct3DRMMeshBuilder object into a
Direct3DRMMesh object before rendering it. For meshes that do not change or
that change infrequently, this conversion has a negligible impact on performance.

If an application needs to assign the same characteristics (such as material or
texture) to several vertices or faces, it can use the IDirect3DRMMesh interface
to combine them in a group. If the application needs to share vertices between
two different groups (for example, if neighboring faces in a mesh are different
colors), the vertices must be duplicated in both groups. The
IDirect3DRMMesh::AddGroup method assigns a group identifier to a
collection of faces. This identifier is used to refer to the group in subsequent calls.

The IDirect3DRMMeshBuilder and IDirect3DRMMesh interfaces allow an
application to create faces with more than three sides. They also automatically
split a mesh into multiple buffers if, for example, the hardware the application is
rendering to has a limit of 64K and a mesh is larger than that size. These features
set the Direct3DRMMesh and Direct3DRMMeshBuilder API apart from the
Direct3D API.

You can add vertices and faces individually to a mesh by using the
IDirect3DRMMeshBuilder::AddVertex,
IDirect3DRMMeshBuilder::AddFace, and
IDirect3DRMMeshBuilder::AddFaces methods.

You can define individual color, texture, and material properties for each face in
the mesh, or for all faces in the mesh at once, by using the
IDirect3DRMMesh::SetGroupColor,
IDirect3DRMMesh::SetGroupColorRGB,
IDirect3DRMMesh::SetGroupTexture, and
IDirect3DRMMesh::SetGroupMaterial methods.

For a mesh to be rendered, you must first add it to a frame by using the
IDirect3DRMFrame::AddVisual method. You can add a single mesh to
multiple frames to create multiple instances of that mesh.

Your application can use flat, Gouraud, and Phong shade modes, as specified by a
call to the IDirect3DRMMesh::SetGroupQuality method. (Phong shading is not
available for DirectX 2, however.) This method uses values from the
D3DRMRENDERQUALITY enumerated type. For more information about
shade modes, see Polygons.

You can set normals (which should be unit vectors), or normals can be calculated
by averaging the face normals of the surrounding faces by using the
IDirect3DRMMeshBuilder::GenerateNormals method.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 43

Direct3DRMObject
Direct3DRMObject is the common superclass of all objects in the system. A
Direct3DRMObject object has characteristics common to all objects.

Each Direct3DRMObject object is instantiated as a COM object. In addition to
the methods of the IUnknown interface, each object has a standard set of
methods that are generic to all.

To create an object, the application must first have instantiated a Direct3D
Retained-Mode object by calling the Direct3DRMCreate function. The
application then calls the method of the object's interface that creates an object,
and it specifies parameters specific to the object. For example, to create a
Direct3DRMAnimation object, the application would call the
IDirect3DRM::CreateAnimation method. The creation method then creates a
new object, initializes some of the object's attributes from data passed in the
parameters (leaving all others with their default values), and returns the object.
Applications can then specify the interface for this object to modify and use the
object.

Any object can store 32 bits of application-specific data. This data is not
interpreted or altered by Retained Mode. The application can read this data by
using the IDirect3DRMObject::GetAppData method, and it can write to it by
using the IDirect3DRMObject::SetAppData method. Finding this data is
simpler if the application keeps a structure for each Direct3DRMFrame object.
For example, if calling the IDirect3DRMFrame::GetParent method retrieves a
Direct3DRMFrame object, the application can easily retrieve the data by using a
pointer to its private structure, possibly avoiding a time-consuming search.

You might also want to assign a name to an object to help you organize an
application or as part of your application's user interface. You can use the
IDirect3DRMObject::SetName and IDirect3DRMObject::GetName methods
to set and retrieve object names.

Another example of possible uses for application-specific data is when an
application needs to group the faces within a mesh into subsets (for example, for
front and back faces). You could use the application data in the face to note in
which of these groups a face should be included.

An application can specify a function to call when an object is destroyed, such as
when the application needs to deallocate memory associated with the object. To
do this, use the IDirect3DRMObject::AddDestroyCallback method. To remove
a function previously registered with this method, use the
IDirect3DRMObject::DeleteDestroyCallback method.

The callback function is called only when the object is destroyed—that is, when
the object's reference count has reached 0 and the system is about to deallocate
the memory for the object. If an application kept additional data about an object

MICROSOFT CONFIDENTIAL 5/13/96

(so that its dynamics could be implemented, for example), the application could
use this callback function as a way to notify itself that it can dispose of the data.

For related information, see IDirect3DRMObject.

Direct3DRMPickedArray
Picking is the process of searching for visuals in a scene, given a 2D coordinate in
a viewport. You can use the IDirect3DRMViewport::Pick method to retrieve an
IDirect3DRMPickedArray interface, and then call the
IDirect3DRMPickedArray::GetPick method to retrieve an
IDirect3DRMFrameArray interface and a visual object. The array of frames is
the path through the hierarchy leading to the visual object; that is, a hierarchical
list of the visual object's parent frames, with the top-most parent in the hierarchy
first in the array.

Direct3DRMShadow
Applications can produce an initialized and usable shadow simply by calling the
IDirect3DRM::CreateShadow method. The IDirect3DRMShadow interface
exists so that applications that create a shadow by using the
IDirect3DRM::CreateObject method can initialize the shadow by calling the
IDirect3DRMShadow::Init method.

Direct3DRMTexture
A texture is a rectangular array of colored pixels. (The rectangle does not
necessarily have to be square, although the system deals most efficiently with
square textures.) You can use textures for texture-mapping faces, in which case
their dimensions must be powers of two.

An IDirect3DRMTexture interface is actually an interface to a
DirectDrawSurface object, not to a distinct Direct3D texture object. For more
information about the relationship between textures in Direct3D and surfaces in
DirectDraw, see Direct3D Texture Interface.

Your application can use the IDirect3DRM::CreateTexture method to create a
texture from a D3DRMIMAGE structure, or the
IDirect3DRM::CreateTextureFromSurface method to create a texture from a
DirectDraw surface. The IDirect3DRM::LoadTexture method allows your
application to load a texture from a file; the texture should be in Windows bitmap
(.bmp) or Portable Pixmap (.ppm) format.

The texture coordinates of each face define the region in the texture that is
mapped onto that particular face. Your application can use a wrap to calculate
texture coordinates. For more information, see Direct3DRMWrap.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 45

Decals
Textures can also be rendered directly, as visuals. Textures used this way are
sometimes known as decals, a term adopted by Retained Mode. A decal is
rendered into a viewport-aligned rectangle. The rectangle can optionally be scaled
by the depth component of the decal's position. The size of the decal is taken from
a rectangle defined relative to the containing frame by using the
IDirect3DRMTexture::SetDecalSize method. (An application can retrieve the
size of the decal by using the IDirect3DRMTexture::GetDecalSize method.)
The decal is then transformed and perspective projection is applied.

Decals have origins that your application can set and retrieve by using the
IDirect3DRMTexture::SetDecalOrigin and
IDirect3DRMTexture::GetDecalOrigin methods. The origin is an offset from
the top-left corner of the decal. The default origin is [0, 0]. The decal's origin is
aligned with its frame's position when rendering.

Texture Colors
You can set and retrieve the number of colors that are used to render a texture by
using the IDirect3DRMTexture::SetColors and
IDirect3DRMTexture::GetColors methods.

If your application uses the RGB color model, you can use 8-bit, 24-bit, and 32-
bit textures. If you use the monochromatic (or ramp) color model, however, you
can use only 8-bit textures.

Several shades of each color are used when lighting a scene. An application can
set and retrieve the number of shades used for each color by calling the
IDirect3DRMTexture::SetShades and IDirect3DRMTexture::GetShades
methods.

A Direct3DRMTexture object uses a D3DRMIMAGE structure to define the
bitmap that the texture will be rendered from. If the application provides the
D3DRMIMAGE structure, the texture can easily be animated or altered during
rendering.

Mipmaps
A mipmap is a sequence of textures, each of which is a progressively lower
resolution, prefiltered representation of the same image. Mipmapping is a
computationally low-cost way of improving the quality of rendered textures. Each
prefiltered image, or level, in the mipmap is a power of two smaller than the
previous level. You can specify mipmaps when filtering textures by calling the
IDirect3DRMDevice::SetTextureQuality method.

For more information about how to use DirectDraw to create mipmaps, see
Mipmaps.

MICROSOFT CONFIDENTIAL 5/13/96

Texture Filtering
After a texture has been mapped to a surface, the texture elements (texels) of the
texture rarely correspond to individual pixels in the final image. A pixel in the
final image can correspond to a large collection of texels or to a small piece of a
single texel. You can use texture filtering to specify how to interpolate texel
values to pixels.

You can use the IDirect3DRMDevice::SetTextureQuality method and the
D3DRMTEXTUREQUALITY enumerated type to specify the texture filtering
mode for your application.

Texture Transparency
You can use the IDirect3DRMTexture::SetDecalTransparency method to
produce transparent textures. Another method for achieving transparency is to use
DirectDraw's support for color keys. Color keys are colors or ranges of colors that
can be part of either the source or destination of a blit or overlay operation. You
can specify that these colors should always be overwritten or never be
overwritten.

For more information about DirectDraw's support for color keys, see Color
Keying.

For related information, see IDirect3DRMTexture.

Direct3DRMUserVisual
User-visual objects are application-defined data that an application can add to a
scene and then render, typically by using a customized rendering module. For
example, an application could add sound as a user-visual object in a scene, and
then render the sound during playback.

You can use the IDirect3DRM::CreateUserVisual method to create a user-
visual object.

Direct3DRMViewport and
Direct3DRMViewportArray
The viewport defines how the 3D scene is rendered into a 2D window. The
viewport defines a rectangular area on a device that objects will be rendered into.

Camera
The viewport uses a Direct3DRMFrame object as a camera. The camera frame
defines which scene is rendered and the viewing position and direction. The
viewport renders only what is visible along the positive z-axis of the camera
frame, with the up direction being in the direction of the positive y-axis.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 47

An application can call the IDirect3DRMViewport::SetCamera method to set a
camera for a given viewport. This method sets a viewport's position, direction,
and orientation to that of the given camera frame. To retrieve the current camera
settings, call the IDirect3DRMViewport::GetCamera method.

Viewing Frustum
The viewing frustum is a 3D volume in a scene positioned relative to the
viewport's camera. Objects within the viewing frustum are visible. For
perspective viewing, the viewing frustum is the volume of an imaginary pyramid
that is between the front clipping plane and the back clipping plane.

The camera is at the tip of the pyramid, and its z-axis runs from the tip of the
pyramid to the center of the pyramid's base. The front clipping plane is a distance
D from the camera, and the back clipping plane is a distance F from the front
clipping plane. An application can set and retrieve these values by using the
IDirect3DRMViewport::SetFront, IDirect3DRMViewport::SetBack,
IDirect3DRMViewport::GetFront, and IDirect3DRMViewport::GetBack
methods. The height of the front clipping plane is 2h and defines the field of
view. An application can set and retrieve the value of h by using the
IDirect3DRMViewport::SetField and IDirect3DRMViewport::GetField
methods.

The angle of view, A, is defined by the following equation, which can be used to
calculate a value for h when a particular camera angle is desired:

MICROSOFT CONFIDENTIAL 5/13/96

The viewing frustum is a pyramid only for perspective viewing. For orthographic
viewing, the viewing frustum is cuboid. These viewing types (or projection types)
are defined by the D3DRMPROJECTIONTYPE enumerated type and used by
the IDirect3DRMViewport::GetProjection and
IDirect3DRMViewport::SetProjection methods.

Transformations
To render objects with 3D coordinates in a 2D window, the object must be
transformed into the camera's frame. A projection matrix is then used to give a
four-element homogeneous coordinate [x y z w], which is used to derive a three-
element coordinate [x/w y/w z/w], where [x/w y/w] is the coordinate to be used in
the window and z/w is the depth, ranging from 0 at the front clipping plane to 1 at
the back clipping plane. The projection matrix is a combination of a perspective
transformation followed by a scaling and translation to scale the objects into the
window.

The following matrix is the projection matrix. In these formulas, h is the half-
height of the viewing frustum, F is the position in z-coordinates of the back
clipping plane, and D is the position in z-coordinates of the front clipping plane:

The following matrix is the window-scaling matrix. (The scales are dependent on
the size and position of the window.) In these formulas, s is the window-scaling
factor and o is the window origin:

The following matrix is the viewing matrix. This is a combination of the
projection matrix and window matrix, or the dot product of P and W:

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 49

The scaling factors and origin sx, sy, ox, and oy are chosen so that the region [-h -h
D] to [h h D] fits exactly into either the window's height or the window's width,
whichever is larger.

The application can use the IDirect3DRMViewport::Transform and
IDirect3DRMViewport::InverseTransform methods to transform vectors to
screen coordinates from world coordinates and vice versa. An application can use
these methods to support dragging, as shown in the following example:

/*
 * Drag a frame by [delta_x delta_y] pixels in the view.
 */
void DragFrame(LPDIRECT3DRMVIEWPORT view,
 LPDIRECT3DRMFRAME frame,
 LPDIRECT3DRMFRAME scene,
 int delta_x, int delta_y)
{
 D3DVECTOR p1;
 D3DRMVECTOR4D p2;

 frame->GetPosition(scene, &p1);
 view->Transform(&p2, &p1);
 p2.x += delta_x * p2.w;
 p2.y += delta_y * p2.w;
 view->InverseTransform(&p1, &p2);
 frame->SetPosition(scene, p1.x, p1.y, p1.z);
}

An application uses the viewport transformation to ensure that the distance by
which the object is moved in world coordinates is scaled by the object's distance
from the camera to account for perspective. Note that the result from
IDirect3DRMViewport::Transform is a four-element homogeneous vector.
This avoids the problems associated with coordinates being scaled by an infinite
amount near the camera's position.

The viewport projection matrix produces a well-defined 3D coordinate only for
points inside the viewing frustum. For a homogeneous point [x y z w] after
projection, this is true if the following equations hold:

MICROSOFT CONFIDENTIAL 5/13/96

Picking
Picking is the process of searching for visuals in the scene given a 2D coordinate
in the viewport's window. An application can use the
IDirect3DRMViewport::Pick method to retrieve either the closest object in the
scene or a depth-sorted list of objects.

Direct3DRMVisual and Direct3DRMVisualArray
Visuals are objects that can be rendered in a scene. Visuals are visible only when
they are added to a frame in that scene. An application can add a visual to a frame
by using the IDirect3DRMFrame::AddVisual method. The frame provides the
visual with position and orientation for rendering.

You should use the IDirect3DRMVisualArray interface to work with groups of
visual objects; although there is a IDirect3DRMVisual COM interface, it has no
methods.

The most common visual types are Direct3DRMMeshBuilder and
Direct3DRMTexture objects.

Direct3DRMWrap
You can use a wrap to calculate texture coordinates for a face or mesh. To create
a wrap, the application must specify a type, a reference frame, an origin, a
direction vector, and an up vector. The application must also specify a pair of
scaling factors and an origin for the texture coordinates.

Your application calls the IDirect3DRM::CreateWrap function to create an
IDirect3DRMWrap interface. This interface has two unique methods:
IDirect3DRMWrap::Apply, which applies a wrap to the vertices of the object,
and IDirect3DRMWrap::ApplyRelative, which transforms the vertices of a
wrap as it is applied.

The D3DRMMAPPING type includes the D3DRMMAP_WRAPU and
D3DRMMAP_WRAPV flags. These flags determine how the rasterizer interprets
texture coordinates. The rasterizer always interpolates the shortest distance
between texture coordinates—that is, a line. The path taken by this line, and the

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 51

valid values for the u- and v-coordinates, varies with the use of the wrapping
flags. If either or both flags is set, the line can wrap around the texture edge in the
u or v direction, as if the texture had a cylindrical or toroidal topology.

· In flat wrapping mode, in which neither of the wrapping flags is set, the plane
specified by the u- and v-coordinates is an infinite tiling of the texture. In this
case, values greater than 1.0 are valid for u and v. The shortest line between (0.1,
0.1) and (0.9, 0.9) passes through (0.5, 0.5).

· If either D3DRMMAP_WRAPU or D3DRMMAP_WRAPV is set, the texture is a
cylinder with an infinite length and a circumference of 1.0. Texture coordinates
greater than 1.0 are valid only in the dimension that is not wrapped. The shortest
distance between texture coordinates varies with the wrapping flag; if
D3DRMMAP_WRAPU is set, the shortest line between (0.1, 0.1) and (0.9, 0.9)
passes through (0, 0.5).

· If both D3DRMMAP_WRAPU and D3DRMMAP_WRAPV are set, the texture is
a torus. Because the system is closed, texture coordinates greater that 1.0 are
invalid. The shortest line between (0.1, 0.1) and (0.9, 0.9) passes through (0, 0).

Although texture coordinates that are outside the valid range may be truncated to
valid values, this behavior is not defined.

Typically, applications set a wrap flag for cylindrical wraps when the intersection
of the texture edges does not match the edges of the face; applications do not set a
wrap flag when more than half of a texture is applied to a single face.

Wrapping Types
There are four wrapping types:

· Flat

· Cylindrical

· Spherical

· Chrome

This section describes these wrapping types. In the examples, the direction vector
(the v vector) lies along the z-axis, and the up vector (the u vector) lies along the
y-axis, with the origin at [0 0 0].

Flat
The flat wrap conforms to the faces of an object as if the texture were a piece of
rubber that was stretched over the object.

The [u v] coordinates are derived from a vector [x y z] by using the following
equations:

u=sux–ou

MICROSOFT CONFIDENTIAL 5/13/96

v=svy–ov

In these formulas, s is the window-scaling factor and o is the window origin. The
application should choose a pair of scaling factors and offsets that map the ranges
of x and y to the range from 0 to 1 for u and v.

Cylindrical
The cylindrical wrap treats the texture as if it were a piece of paper that is
wrapped around a cylinder so that the left edge is joined to the right edge. The
object is then placed in the middle of the cylinder and the texture is deformed
inward onto the surface of the object.

For a cylindrical texture map, the effects of the various vectors are shown in the
following illustration.

The direction vector specifies the axis of the cylinder, and the up vector specifies
the point on the outside of the cylinder where u equals 0. To calculate the texture
[u v] coordinates for a vector [x y z], the system uses the following equations:

Typically, u would be left unscaled and v would be scaled and translated so that
the range of z maps to the range from 0 to 1 for v.

Spherical
For a spherical wrap, the u-coordinate is derived from the angle that the vector [x
y 0] makes with the x-axis (as in the cylindrical map) and the v-coordinate from
the angle that the vector [x y z] makes with the z-axis. Note that this mapping
causes distortion of the texture at the z-axis.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 53

This translates to the following equations:

The scaling factors and texture origin will often not be needed here as the
unscaled range of u and v is already 0 through 1.

Chrome
A chrome wrap allocates texture coordinates so that the texture appears to be
reflected onto the objects. The chrome wrap takes the reference frame position
and uses the vertex normals in the mesh to calculate reflected vectors. The texture
u- and v-coordinates are then calculated from the intersection of these reflected
vectors with an imaginary sphere that surrounds the mesh. This gives the effect of
the mesh reflecting whatever is wrapped on the sphere.

Direct3D Retained-Mode Tutorial
To create a Windows-based Direct3D Retained-Mode application, you set up the
features of two different environments: the devices, viewports, and color
capabilities of the Windows environment, and the models, textures, lights, and
positions of the virtual environment. This section describes some simple
Retained-Mode sample code that is part of this SDK.

Setting up the Windows Environment
The Rmmain.cpp file in the samples provded with this SDK is used as a basis for
all of the Retained-Mode samples. This file contains the standard Windows
framework of initialization, setting up a message loop, and creating a window
procedure for message processing, but it also does some work that is specific to
Direct3D Retained-Mode applications:

MICROSOFT CONFIDENTIAL 5/13/96

· It enumerates the current Direct3D device drivers. This is described in the
Enumerating Direct3D Device Drivers section.

· It creates the Retained-Mode API, the scene and camera frames, and a
DirectDrawClipper object. This is described in the Initialization section.

· It creates a Direct3DRM device and viewport. This is described in the Creating a
Direct3DRM Device and Viewport section.

· It sets the rendering quality, dithering flag, texture quality, shades, default texture
colors, and default texture shades. This is described in the Setting the Render
State section.

· It calls a locally defined BuildScene function to set up the lights and visuals in a
scene. This is described in the Setting Up the Virtual Environment section.

· It renders the scene. This is described in the Rendering into a Viewport section.

· It makes the mouse status available to sample applications. This is described in the
OverrideDefaults and ReadMouse section.

Enumerating Direct3D Device Drivers
Rmmain.cpp calls the locally defined InitApp function as its first action inside the
WinMain function, and it fails if InitApp is not successful. InitApp creates the
window and initializes all objects that are required to begin rendering a 3D scene.

After performing some standard tasks in the initialization of a Windows
application and initializing global variables to acceptable default settings, InitApp
verifies that Direct3D device drivers are present by calling the locally defined
EnumDrivers function.

EnumDrivers sets up a callback function that examines each of the drivers in the
system and picks the best one for the application's needs. This is not the easiest or
even the best way to find Direct3D device drivers, however. Instead of setting up
an enumeration routine, most applications will allow the system to automatically
enumerate the current drivers by calling the
IDirect3DRM::CreateDeviceFromClipper method and specifying NULL for
the lpGUID parameter. This is the recommended way to create a Retained-Mode
device because it always works, even if the user installs new hardware. When you
use this method and both a hardware and a software device meet the default
requirements, the system always retrieves the hardware device. An application
should enumerate devices instead of specifying NULL for lpGUID only if it has
unusual requirements.

EnumDrivers first calls the DirectDrawCreate function to create a DirectDraw
object and then calls IDirectDraw::QueryInterface to retrieve an interface to
Direct3D. The first parameter of this method is the interface identifier (IID) that
identifies the IDirect3D COM interface. These identifiers are defined in the
D3d.h header file. Each identifier is in the form IID_InterfaceName. For example,
the IID for the IDirect3DRMTexture interface is IID_IDirect3DRMTexture.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 55

After creating the Direct3D interface, EnumDrivers calls the
IDirect3D::EnumDevices method to enumerate the Direct3D drivers. The first
parameter to this method is a D3DENUMDEVICESCALLBACK callback
function, in this case named enumDeviceFunc. The second parameter is a pointer
to the myglobs structure, which contains the global variables Rmmain.cpp uses to
set up the 3D environment. The CurrDriver member of the myglobs structure is
simply an integer indicating the number of the Direct3D driver currently being
used. The application initializes this value to -1 before calling
IDirect3D::EnumDevices; the callback function checks this value to find out
whether the driver being enumerated is the first valid driver.

static BOOL EnumDrivers(HWND win)
{
LPDIRECTDRAW lpDD;
LPDIRECT3D lpD3D;
HRESULT rval;
HMENU hmenu;

rval = DirectDrawCreate(NULL, &lpDD, NULL);
rval = lpDD->QueryInterface(IID_IDirect3D, (void**) &lpD3D);

myglobs.CurrDriver = -1;
rval = lpD3D->EnumDevices(enumDeviceFunc, &myglobs.CurrDriver);

lpD3D->Release();
lpDD->Release();

// Code omitted here that adds the driver names to the File menu.

return TRUE;
}

The enumDeviceFunc (D3DENUMDEVICESCALLBACK) callback function
records each usable Direct3D device driver's name and globally unique identifier
(GUID) and chooses a driver. The following code sample shows the
enumDeviceFunc callback function. First, this callback function creates a
D3DDEVICEDESC structure and copies the input lpContext parameter to a
parameter called lpStartDriver. (The lpContext parameter is application-defined
data—it can be any data the application requires.) The fourth parameter passed to
enumDeviceFunc is a pointer to a D3DDEVICEDESC structure describing the
hardware; the function uses the dcmColorModel member of this structure to
determine whether it should examine the description of the hardware or the
description of the hardware emulation layer (HEL). Any driver that cannot
support the current bit-depth is skipped. The current driver's GUID and name are
copied into the myglobs structure. Then the enumDeviceFunc callback function
performs a few tests to compare the driver being enumerated against the driver
stored as lpStartDriver. Whenever the driver being enumerated is implemented in

MICROSOFT CONFIDENTIAL 5/13/96

hardware or uses the RGB instead of the monochromatic color model, that driver
becomes the new lpStartDriver.

Finally, enumDeviceFunc increments the variable that counts the number of
drivers. If this count exceeds the maximum, it returns D3DENUMRET_CANCEL
to cancel the enumeration. Otherwise, it returns D3DENUMRET_OK to continue
the enumeration.

static HRESULT WINAPI enumDeviceFunc(
 LPGUID lpGuid, LPSTR lpDeviceDescription, LPSTR lpDeviceName,
 LPD3DDEVICEDESC lpHWDesc, LPD3DDEVICEDESC lpHELDesc,
 LPVOID lpContext)
{
static BOOL hardware = FALSE; // Current start driver is hardware
static BOOL mono = FALSE; // Current start driver is mono light
LPD3DDEVICEDESC lpDesc;
int *lpStartDriver = (int *)lpContext;

// Decide which device description we should consult.

lpDesc = lpHWDesc->dcmColorModel ? lpHWDesc : lpHELDesc;

// If this driver cannot render in the current display bit depth, skip
// it and continue with the enumeration.

if (!(lpDesc->dwDeviceRenderBitDepth & BPPToDDBD(myglobs.BPP)))
 return D3DENUMRET_OK;

// Record this driver's info.

memcpy(&myglobs.DriverGUID[myglobs.NumDrivers], lpGuid, sizeof(GUID));
strcpy(&myglobs.DriverName[myglobs.NumDrivers][0], lpDeviceName);

// Choose hardware over software, RGB lights over mono lights.

if (*lpStartDriver == -1) {

 // This is the first valid driver.

 *lpStartDriver = myglobs.NumDrivers;
 hardware = lpDesc == lpHWDesc ? TRUE : FALSE;
 mono = lpDesc->dcmColorModel & D3DCOLOR_MONO ? TRUE : FALSE;
} else if (lpDesc == lpHWDesc && !hardware) {

 // This driver is hardware and start driver is not.

 *lpStartDriver = myglobs.NumDrivers;
 hardware = lpDesc == lpHWDesc ? TRUE : FALSE;
 mono = lpDesc->dcmColorModel & D3DCOLOR_MONO ? TRUE : FALSE;
} else if ((lpDesc == lpHWDesc && hardware) || (lpDesc == lpHELDesc

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 57

 && !hardware)) {
 if (lpDesc->dcmColorModel == D3DCOLOR_MONO && !mono) {

 // This driver and start driver are the same type, and this
 // driver is mono while start driver is not.

 *lpStartDriver = myglobs.NumDrivers;
 hardware = lpDesc == lpHWDesc ? TRUE : FALSE;
 mono = lpDesc->dcmColorModel & D3DCOLOR_MONO ? TRUE : FALSE;
 }
}
myglobs.NumDrivers++;
if (myglobs.NumDrivers == MAX_DRIVERS)
 return (D3DENUMRET_CANCEL);
return (D3DENUMRET_OK);
}

When EnumDrivers function returns, it calls the IDirect3D::Release and
IDirectDraw::Release methods to decrease the reference count of these COM
objects. Every time an application calls the Release method on an object, the
reference count for that object is reduced by 1. The system deallocates the object
when its reference count reaches 0.

Whenever Rmmain.cpp calls a COM method, the return value is checked and the
function fails if the method does not succeed. This error-checking has been
omitted from the samples in this section for the sake of brevity. Sometimes the
error-checking code calls the D3DRMErrorToString function (which is
implemented in Rmerror.c in the same directory as Rmmain.cpp). This function
simply maps an HRESULT error value to an explanatory string and returns the
string.

If any COM interfaces have already been successfully created when a method
fails, the error-checking code calls the Release method for that interface before
returning FALSE.

Initialization
After enumerating the Direct3D device drivers, the InitApp function in
Rmmain.cpp calls the Direct3DRMCreate function to create the Retained-Mode
API:

LPDIRECT3DRM lpD3DRM;
HRESULT rval;

rval = Direct3DRMCreate(&lpD3DRM);

The sample then uses the Direct3DRM object to create the master reference frame
(the "scene") and the camera frame by calling the IDirect3DRM::CreateFrame

MICROSOFT CONFIDENTIAL 5/13/96

method. After creating the camera frame, this sample calls the
IDirect3DRMFrame::SetPosition method to set its position.

rval = lpD3DRM->CreateFrame(NULL, &myglobs.scene);
rval = lpD3DRM->CreateFrame(myglobs.scene, &myglobs.camera);

// Set the position of the camera frame.

rval = myglobs.camera->SetPosition(myglobs.scene, D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(0.0));

The scene and camera members of the myglobs structure have the same type:
LPDIRECT3DRMFRAME. The D3DVAL macro creates a value whose type is
D3DVALUE from a supplied floating-point number.

Next, InitApp creates a DirectDraw clipper object by calling the
DirectDrawCreateClipper function, and associates the window with the clipper
object by calling the IDirectDrawClipper::SetHWnd method. This clipper
object is subsequently used to create the Direct3D Windows device. The
advantage of using a clipper object to create the device is that in this case
DirectDraw does the clipping automatically.

LPDIRECTDRAWCLIPPER lpDDClipper;
HWND win;

rval = DirectDrawCreateClipper(0, &lpDDClipper, NULL);
rval = lpDDClipper->SetHWnd(0, win);

InitApp uses the DirectDraw clipper object and the Direct3D driver retrieved by
the EnumDrivers function in a call to the locally defined CreateDevAndView
function. CreateDevAndView is discussed in the following section, Creating a
Direct3DRM Device and Viewport.

GetClientRect(win, &rc);
if (!CreateDevAndView(lpDDClipper, myglobs.CurrDriver,
 rc.right, rc.bottom)) {
 return FALSE;
}

// Create the scene to be rendered by calling this sample's BuildScene.

if (!BuildScene(myglobs.dev, myglobs.view, myglobs.scene,
 myglobs.camera))
 return FALSE;

// Ready to render.

myglobs.bInitialized = TRUE;

// Display the window.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 59

ShowWindow(win, cmdshow);
UpdateWindow(win);

return TRUE;

Creating a Direct3DRM Device and Viewport
The InitApp function calls the locally defined CreateDevAndView function to
create a Direct3DRM device and viewport. This function's parameters are a
pointer to a DirectDrawClipper object, the number identifying the current driver,
and the width and height of the current window's client rectangle.

After verifying that the window dimensions are valid, CreateDevAndView calls
the IDirect3DRM::CreateDeviceFromClipper method to create a Direct3DRM
device (stored in the dev member of the myglobs structure).

static BOOL CreateDevAndView(LPDIRECTDRAWCLIPPER lpDDClipper,
 int driver, int width, int height)
{
HRESULT rval;

if (!width || !height) {
 Msg("Cannot create a D3DRM device with invalid window dimensions.");
 return FALSE;
}

// Create the D3DRM device from this window and using the specified D3D
// driver.

rval = lpD3DRM->CreateDeviceFromClipper(lpDDClipper,
 &myglobs.DriverGUID[driver], width, height, &myglobs.dev);

CreateDevAndView uses the device it just created and the camera frame in a call
to the IDirect3DRM::CreateViewport method that creates a Direct3DRM
viewport. The width and height of the viewport are retrieved by calling the
IDirect3DRMDevice::GetWidth and IDirect3DRMDevice::GetHeight
methods. The viewport is stored in the view member of the myglobs structure.
After creating the viewport, the code sets its background depth to a large number
by calling the IDirect3DRMViewport::SetBack method.

width = myglobs.dev->GetWidth();
height = myglobs.dev->GetHeight();
rval = lpD3DRM->CreateViewport(myglobs.dev, myglobs.camera, 0, 0, width,
 height, &myglobs.view);

rval = myglobs.view->SetBack(D3DVAL(5000.0));

MICROSOFT CONFIDENTIAL 5/13/96

Finally, CreateDevAndView calls the locally defined SetRenderState function to
set the rendering quality, fill mode, lighting state, and color shade. This function
is described in Setting the Render State.

// Set the rendering quality, fill mode, lighting state and
// color shade information.

if (!SetRenderState())
 return FALSE;
return TRUE;
}

Setting the Render State
The InitApp function calls CreateDevAndView, which in turn calls the
SetRenderState function to set the rendering quality, fill mode, lighting state, and
color shade. Rmmain.cpp calls the SetRenderState function whenever the render
state may have changed; for example, whenever the user changes the fill or
lighting modes.

SetRenderState calls the IDirect3DRMDevice::SetQuality method to set the
rendering quality, IDirect3DRMDevice::SetDither to set the dithering flag, and
IDirect3DRMDevice::SetTextureQuality to set the texture quality. Each of
these methods has a Get counterpart, which SetRenderState calls before setting
any values. If the current value in the myglobs structure is the same as the value
retrieved by the Get method, the function takes no further action.

BOOL SetRenderState(void)
{
HRESULT rval;

if (myglobs.dev->GetQuality() != myglobs.RenderQuality) {
 rval = myglobs.dev->SetQuality(myglobs.RenderQuality);
}

if (myglobs.dev->GetDither() != myglobs.bDithering) {
 rval = myglobs.dev->SetDither(myglobs.bDithering);
}

if (myglobs.dev->GetTextureQuality() != myglobs.TextureQuality) {
 rval = myglobs.dev->SetTextureQuality(myglobs.TextureQuality);
}

Now SetRenderState sets the shades, default texture colors, and default texture
shades based on the current number of bits per pixel.

· If the device supports only one bit per pixel, SetRenderState uses
IDirect3DRMDevice::SetShades to set the number of shades to four; this is the
number of shades in a ramp of colors used for shading. SetRenderState also calls

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 61

IDirect3DRM::SetDefaultTextureShades to set the default number of shades for
textures.

· If the device supports 16 bits per pixel, SetRenderState calls an additional method:
IDirect3DRM::SetDefaultTextureColors. This method sets the default number
of colors used in textures.

· If the device supports 24 or 32 bits per pixel, SetRenderState calls the same
methods as for 16 bits per pixel. The only difference is that in this case it sets the
shades and default texture shades to 256 instead of 32.

switch (myglobs.BPP) {
 case 1:
 if (FAILED(myglobs.dev->SetShades(4)))
 goto shades_error;
 if (FAILED(lpD3DRM->SetDefaultTextureShades(4)))
 goto shades_error;
 break;
 case 16:
 if (FAILED(myglobs.dev->SetShades(32)))
 goto shades_error;
 if (FAILED(lpD3DRM->SetDefaultTextureColors(64)))
 goto shades_error;
 if (FAILED(lpD3DRM->SetDefaultTextureShades(32)))
 goto shades_error;
 break;
 case 24:
 case 32:
 if (FAILED(myglobs.dev->SetShades(256)))
 goto shades_error;
 if (FAILED(lpD3DRM->SetDefaultTextureColors(64)))
 goto shades_error;
 if (FAILED(lpD3DRM->SetDefaultTextureShades(256)))
 goto shades_error;
 break;
}
return TRUE;

shades_error:
Msg("A failure occurred while setting color shade information.\n");
return FALSE;
}

The FAILED macro is defined as follows in the Winerror.h header file:

#define FAILED(Status) ((HRESULT)(Status)<0)

Setting Up the Virtual Environment
After the InitApp function has created the window, enumerated the Direct3D
drivers, created the Retained-Mode API, created the scene and camera frames,

MICROSOFT CONFIDENTIAL 5/13/96

created a DirectDrawClipper object, and created the Direct3D device and
viewport, it calls a locally defined BuildScene function to build the scene. Each of
the Direct3D samples in this SDK includes its own BuildScene function. These
implementations of BuildScene vary depending on the capabilities being
demonstrated by the sample.

This section discusses the simplest implementation of BuildScene in this SDK:
the version in Egg.c. In this module, BuildScene performs the following tasks:

· Sets up the lights. This is described in the Setting Up the Lights section.

· Adds a mesh to the scene and sets up the position, rotation, and orientation of its
frame. This is described in the Loading and Adding a Mesh section.

· Releases the objects that it has created. This is described in the Releasing the
Direct3DRM Objects section.

· Overrides several of the default settings from Rmmain.cpp. This is described in
the OverrideDefaults and ReadMouse section.

Setting Up the Lights
The BuildScene function implements two light sources: an ambient light and a
directional light. An ambient light casts a uniform light over the entire scene. The
position and orientation of its containing frame are ignored. A directional light, on
the other hand, has direction but no position. It is attached to a frame but appears
to illuminate all objects with equal intensity, as if it were at an infinite distance
from each object.

First the BuildScene function creates a frame for the directional light and calls the
IDirect3DRMFrame::SetPosition method to set its position in the scene. Then it
calls the IDirect3DRM::CreateLightRGB method to create a directional light
source. The IDirect3DRMFrame::AddLight method adds the directional light to
the lighting frame. Then the IDirect3DRMFrame::SetRotation method causes
the lighting frame to rotate.

After setting up the directional light, BuildScene creates a much dimmer ambient
light source, again by calling IDirect3DRM::CreateLightRGB. Because
ambient lights are not affected by the position and orientation of their containing
frame, the BuildScene function specifies the frame for the entire scene in the call
to IDirect3DRMFrame::AddLight that adds the ambient light.

LPDIRECT3DRMFRAME lights = NULL;
LPDIRECT3DRMLIGHT light1 = NULL;
LPDIRECT3DRMLIGHT light2 = NULL;
 .
 .
 .
if (FAILED(lpD3DRM->lpVtbl->CreateFrame(lpD3DRM, scene, &lights)))
 goto generic_error;

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 63

if (FAILED(lights->lpVtbl->SetPosition(lights, scene, D3DVAL(5),
 D3DVAL(5), -D3DVAL(1))))
 goto generic_error;
if (FAILED(lpD3DRM->lpVtbl->CreateLightRGB(lpD3DRM,
 D3DRMLIGHT_DIRECTIONAL, D3DVAL(0.9),
 D3DVAL(0.8), D3DVAL(0.7), &light1)))
 goto generic_error;
if (FAILED(lights->lpVtbl->AddLight(lights, light1)))
 goto generic_error;
if (FAILED(lights->lpVtbl->SetRotation(lights, scene, D3DVAL(0),
 D3DVAL(1), D3DVAL(1), D3DVAL(-0.02))))
 goto generic_error;
if (FAILED(lpD3DRM->lpVtbl->CreateLightRGB(lpD3DRM, D3DRMLIGHT_AMBIENT,
 D3DVAL(0.1), D3DVAL(0.1), D3DVAL(0.1), &light2)))
 goto generic_error;
if (FAILED(scene->lpVtbl->AddLight(scene, light2)))
 goto generic_error;

The generic_error label identifies a place in the code where Egg.c displays a
message box with an error value, releases any created COM objects, and returns
FALSE from the BuildScene function.

Loading and Adding a Mesh
The BuildScene function in Egg.c loads a simple egg-shaped mesh into the scene
and rotates the frame containing the mesh.

A call to the IDirect3DRM::CreateMeshBuilder method retrieves the
IDirect3DRMMeshBuilder COM interface. BuildScene uses this interface for
only one call before releasing it; it calls the IDirect3DRMMeshBuilder::Load
method to load a mesh file named Egg.x.

Next, BuildScene calls IDirect3DRM::CreateFrame to create a frame for the
mesh, and then it calls IDirect3DRMFrame::AddVisual to add the mesh to that
frame.

Then, BuildScene sets the position and orientation of the camera frame in relation
to the scene frame by calling the IDirect3DRMFrame::SetPosition and
IDirect3DRMFrame::SetOrientation methods. Finally, it rotates the mesh
frame in relation to the scene frame by calling the
IDirect3DRMFrame::SetRotation method.

LPDIRECT3DRMMESHBUILDER egg_builder = NULL;
LPDIRECT3DRMFRAME egg = NULL;
 .
 .
 .
if (FAILED(lpD3DRM->lpVtbl->CreateMeshBuilder(lpD3DRM, &egg_builder)))
 goto generic_error;
rval = egg_builder->lpVtbl->Load(egg_builder, "egg.x", NULL,

MICROSOFT CONFIDENTIAL 5/13/96

 D3DRMLOAD_FROMFILE, NULL, NULL);

if (FAILED(lpD3DRM->lpVtbl->CreateFrame(lpD3DRM, scene, &egg)))
 goto generic_error;

if (FAILED(egg->lpVtbl->AddVisual(
 egg, (LPDIRECT3DRMVISUAL)egg_builder)))
 goto generic_error;

if (FAILED(camera->lpVtbl->SetPosition(
 camera, scene, D3DVAL(0), D3DVAL(0), -D3DVAL(10))))
 goto generic_error;
if (FAILED(camera->lpVtbl->SetOrientation(
 camera, scene, D3DVAL(0), D3DVAL(0), D3DVAL(1), D3DVAL(0),
 D3DVAL(1), D3DVAL(0))))
 goto generic_error;
if (FAILED(egg->lpVtbl->SetRotation(
 egg, scene, D3DVAL(0), D3DVAL(1), D3DVAL(1), D3DVAL(0.02))))
 goto generic_error;

Releasing the Direct3DRM Objects
The last task performed by the BuildScene function in Egg.c is to release the
Direct3DRM objects it creates—the frames for the mesh and lights, the mesh
itself, and the two lights:

RELEASE(egg);
RELEASE(lights);
RELEASE(egg_builder);
RELEASE(light1);
RELEASE(light2);

The RELEASE macro calls the Release method for the appropriate interface. It is
defined in C++ and C versions in the Rmdemo.h header file. The syntax of the C
version looks like this:

#define RELEASE(x) if (x != NULL) {x->lpVtbl->Release(x); x = NULL;}

Rmmain.cpp also releases any objects it creates, in its CleanUpAndPostQuit
function. The code calls CleanUpAndPostQuit whenever initialization has been
completed and the application must exit: when a WM_QUIT message is received,
when the user chooses the Exit command, on fatal errors, and so on.

void CleanUpAndPostQuit(void)
{
myglobs.bInitialized = FALSE;
RELEASE(myglobs.scene);
RELEASE(myglobs.camera);
RELEASE(myglobs.view);
RELEASE(myglobs.dev);

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 65

RELEASE(lpD3DRM);
RELEASE(lpDDClipper);
myglobs.bQuit = TRUE;
}

OverrideDefaults and ReadMouse
Samples can use the OverrideDefaults function with Rmmain.cpp, in addition to
the standard BuildScene function. Egg.c includes an implementation of
OverrideDefaults that simply sets the bNoTextures member to TRUE in the
Defaults structure (defined in Rmdemo.h) and changes the name of the
application:

void OverrideDefaults(Defaults *defaults)
{
 defaults->bNoTextures = TRUE;
 strcpy(defaults->Name, "Egg Direct3DRM Example");
}

Rmmain.cpp includes another function, ReadMouse, that samples can use to
retrieve the mouse status. For an example of how this function is used, see the
Quat.c sample in this SDK.

void ReadMouse(int* b, int* x, int* y)
{
 *b = myglobs.mouse_buttons;
 *x = myglobs.mouse_x;
 *y = myglobs.mouse_y;
}

Rendering into a Viewport
The Rmmain.cpp file calls the RenderLoop function as part of the message loop
in the WinMain function. The RenderLoop function performs a few simple tasks:

· Calls IDirect3DRMFrame::Move to apply the rotations and velocities for all
frames in the hierarchy.

· Calls IDirect3DRMViewport::Clear to clear the current viewport, setting it to
the current background color.

· Calls IDirect3DRMViewport::Render to render the current scene into the
current viewport.

· Calls IDirect3DRMDevice::Update to copy the rendered image to the display.

static BOOL RenderLoop()
{
HRESULT rval;
rval = myglobs.scene->Move(D3DVAL(1.0));
rval = myglobs.view->Clear();

MICROSOFT CONFIDENTIAL 5/13/96

rval = myglobs.view->Render(myglobs.scene);
rval = myglobs.dev->Update();
return TRUE;
}

Direct3D Immediate-Mode Overview

About Immediate Mode
This section describes Direct3D's Immediate Mode, Microsoft's low-level 3D
API. Direct3D's Immediate Mode is ideal for developers who need to port games
and other high-performance multimedia applications to the Microsoft Windows
operating system. Immediate Mode is a device-independent way for applications
to communicate with accelerator hardware at a low level. Direct3D's Retained
Mode is built on top of Immediate Mode.

Developers who use Immediate Mode instead of Retained Mode are typically
experienced in high-performance programming issues, and may also be
experienced in 3D graphics. Even if this is the case for you, you should read A
Technical Foundation for 3D Programming. This section discusses
implementation details of Direct3D that you need to know to work effectively
with the system. The overall Direct3D architecture is described in Direct3D
Architecture; this is essential reading for Immediate-Mode developers. If you
want an overview of Immediate Mode, you should read Introduction to
Direct3D Immediate-Mode Objects. Your best source of information about
Immediate Mode, however, is probably the sample code included with this SDK;
it illustrates how to put Direct3D's Immediate Mode to work in real-world
applications.

This section is not an introduction to programming with Direct3D's Immediate
Mode; for this information, see Direct3D Immediate-Mode Tutorial.

Introduction to Direct3D Immediate-Mode
Objects
Direct3D's Immediate Mode consists of API elements that create objects, fill them
with data, and link them together. Direct3D's Retained Mode is built on top of
Immediate Mode. For a description of the overall organization of the system and
the organization of Immediate Mode in particular, see Direct3D Architecture.

The following table shows the eight object types in Immediate Mode, their
Component Object Model (COM) interfaces, and a description of each:

Object type COM interface and description

Interface IDirect3D

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 67

COM interface object

Device IDirect3DDevice

Hardware device

Texture IDirect3DTexture

DirectDraw surface containing an image

Material IDirect3DMaterial

Surface properties, such as color and texture

Light IDirect3DLight

Light source

Viewport IDirect3DViewport

Screen region to draw to

Matrix IDirect3DDevice

4-by-4 homogeneous transformation matrix

ExecuteBuffer IDirect3DExecuteBuffer

List of vertex data and instructions about how to render it

Rendering is done by using execute buffers. These buffers contain vertex data and
a list of opcodes that, when interpreted, instruct the rendering engine to produce
an image. The execute buffer COM object contains only pointers and some
descriptions of the format of the buffer. The contents of the buffer are
dynamically allocated and can reside in the memory of the graphics card.

Each of the objects can effectively exist in one or more of the following forms:

· A COM object.

· A structure exposed to the developer that effectively contains a copy of the data in
the COM object. This form is typically used to copy data into or out of the actual
COM object.

· A handle. In this case, the data resides on the hardware and can be manipulated by
it.

The following table shows the forms in which each of the Direct3D objects can
exist:

COM interface Structure Handle

Device x

Texture x x x

Material x x x

Light x x

Viewport x

Matrix x x

MICROSOFT CONFIDENTIAL 5/13/96

ExecuteBuffer x x

Direct3D Object Types
This section describes Direct3D object types. An application creates Direct3D
objects roughly in the following order:

Direct3D objects

Device objects

Texture objects

Material objects

Light objects

Viewport objects

Execute-buffer objects

Direct3D Interface Objects
You can create a Direct3D interface object by calling the
IDirectDraw::QueryInterface method, as follows:

lpDirectDraw->QueryInterface(
 IID_IDirect3D, // IDirect3D interface ID
 lpD3D); // Address of a Direct3D object

The object referred to by an IDirect3D interface contains a list of viewports,
lights, materials, and devices. You can use the methods of the IDirect3D interface
to create other objects or to find Direct3D devices.

Direct3D Device Objects
You can create a Direct3D device object by calling the
IDirectDrawSurface::QueryInterface method for a backbuffer surface. The
following example calls the IDirectDraw::CreateSurface and
IDirectDrawSurface::GetAttachedSurface methods to retrieve the backbuffer
surface.

lpDirectDraw->CreateSurface(
 lpDDSurfDesc, // Address of a DDSURFACEDESC structure
 lpFrontBuffer, // Address of a DIRECTDRAWSURFACE structure
 pUnkOuter); // NULL
lpFrontBuffer->GetAttachedSurface(
 &ddscaps, // Address of a DDSCAPS structure
 &lpBackBuffer); // Address of a DIRECTDRAWSURFACE structure
lpBackBuffer->QueryInterface(
 GUIDforID3DDevice, // ID for IDirect3DDevice interface
 lpD3DDevice); // Address of a DIRECT3DDEVICE object

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 69

The first parameter of the call to the IDirectDrawSurface::QueryInterface
method for the back buffer is the globally unique identifier (GUID) for the
IDirect3DDevice interface. You can retrieve this GUID by calling the
IDirect3D::EnumDevices method; the system supplies the GUID when it calls
the D3DENUMDEVICESCALLBACK callback function you supply in the call
to IDirect3D::EnumDevices.

A Direct3D device object resides on (or "is owned by") the interface list and has
its own list of execute buffers and viewports. It also has a list of textures and
materials, each of which points both to the next texture or material in the list and
back to the device. For more information about this hierarchy, see Object
Connectivity.

The methods of the IDirect3DDevice interface report hardware capabilities,
maintain a list of viewports, manipulate matrix objects, and execute execute-
buffer objects.

Matrices appear to you only as handles. You can create a Direct3D matrix by
calling the IDirect3DDevice::CreateMatrix method, and you can set the
contents of the matrix by calling the IDirect3DDevice::SetMatrix method.
Matrix handles are used in execute buffers.

Direct3D Texture Objects
A texture is a rectangular array of colored pixels. (The rectangle does not
necessarily have to be square, although the system deals most efficiently with
square textures.) You can use textures for texture-mapping faces, in which case
their dimensions must be powers of two. If your application uses the RGB color
model, you can use 8-, 24-, and 32-bit textures. If you use the monochromatic (or
ramp) color model, however, you can use only 8-bit textures.

You can retrieve an interface to a Direct3D texture object by calling the
IDirectDrawSurface::QueryInterface method and specifying
IID_IDirect3DTexture. An IDirect3DTexture interface is actually an interface to
a DirectDrawSurface object, not to a distinct Direct3D texture object. For more
information about the relationship between textures in Direct3D and surfaces in
DirectDraw, see Direct3D Texture Interface.

The following example demonstrates how to create an IDirect3DTexture
interface and then how to load the texture by calling the
IDirect3DTexture::GetHandle and IDirect3DTexture::Load methods.

lpDDS->QueryInterface(IID_IDirect3DTexture,
 lpD3DTexture); // Address of a DIRECT3DTEXTURE object
lpD3DTexture->GetHandle(
 lpD3DDevice, // Address of a DIRECT3DDEVICE object
 lphTexture); // Address of a D3DTEXTUREHANDLE
lpD3DTexture->Load(
 lpD3DTexture); // Address of a DIRECT3DTEXTURE object

MICROSOFT CONFIDENTIAL 5/13/96

Texture objects reside on the interface list and point both to the next texture in a
device's list and back to their associated device or devices. (For more information
about this hierarchy, see Object Connectivity.) The texture handle is used in
materials and execute buffers, and as a z-buffer for a viewport. You can use the
IDirect3DTexture interface to load and unload textures, retrieve handles, and
track changes to palettes.

Texture Wrapping
The texture coordinates of each face define the region in the texture that is
mapped onto that particular face. Your application can use a wrap to calculate
texture coordinates. For more information, see Direct3DRMWrap.

Your application can use the D3DRENDERSTATE_WRAPU and
D3DRENDERSTATE_WRAPV render states (from the
D3DRENDERSTATETYPE enumerated type) to specify how the rasterizer
should interpret texture coordinates. The rasterizer always interpolates the
shortest distance between texture coordinates; that is, a line. The path taken by
this line, and the valid values for the u- and v-coordinates, varies with the use of
the wrapping flags. If either or both flags is set, the line can wrap around the
texture edge in the u or v direction, as if the texture had a cylindrical or toroidal
topology.

· In flat wrapping mode, in which neither of the wrapping flags is set, the plane
specified by the u- and v-coordinates is an infinite tiling of the texture. In this
case, values greater than 1.0 are valid for u and v. The shortest line between (0.1,
0.1) and (0.9, 0.9) passes through (0.5, 0.5).

· If either D3DRENDERSTATE_WRAPU or D3DRENDERSTATE_WRAPV is
set, the texture is an infinite cylinder with a circumference of 1.0. Texture
coordinates greater than 1.0 are valid only in the dimension that is not wrapped.
The shortest distance between texture coordinates varies with the wrapping flag; if
D3DRENDERSTATE_WRAPU is set, the shortest line between (0.1, 0.1) and
(0.9, 0.9) passes through (0, 0.5).

· If both D3DRENDERSTATE_WRAPU and D3DRENDERSTATE_WRAPV are
set, the texture is a torus. Because the system is closed, texture coordinates greater
that 1.0 are invalid. The shortest line between (0.1, 0.1) and (0.9, 0.9) passes
through (0, 0).

Although texture coordinates that are outside the valid range may be truncated to
valid values, this behavior is not defined.

Typically, applications set a wrap flag for cylindrical wraps when the intersection
of the texture edges does not match the edges of the face, and do not set a wrap
flag when more than half of a texture is applied to a single face.

For more information about wrapping, see Wrapping Types in the introduction
to Direct3D Retained-Mode objects.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 71

Texture Filtering and Blending
After a texture has been mapped to a surface, the texture elements (texels) of the
texture rarely correspond to individual pixels in the final image. A pixel in the
final image can correspond to a large collection of texels or to a small piece of a
single texel. You can use texture filtering to specify how to interpolate texel
values to pixels.

You can use the D3DRENDERSTATE_TEXTUREMAG and
D3DRENDERSTATE_TEXTUREMIN render states (from the
D3DRENDERSTATETYPE enumerated type) to specify the type of texture
filtering to use.

The D3DRENDERSTATE_TEXTUREMAPBLEND render state allows you to
specify the type of texture blending. Texture blending combines the colors of the
texture with the color of the surface to which the texture is being applied. This
can be an effective way to achieve a translucent appearance. Texture blending can
produce unexpected colors; the best way to avoid this is to ensure that the color of
the material is white. The texture-blending options are specified in the
D3DTEXTUREBLEND enumerated type.

You can use the D3DRENDERSTATE_SRCBLEND and
D3DRENDERSTATE_DSTBLEND render states to specify how colors in the
source and destination are combined. The combination options (called blend
factors) are specified in the D3DBLEND enumerated type.

Mipmaps
A mipmap is a sequence of textures, each of which is a progressively lower
resolution, prefiltered representation of the same image. Mipmapping is a
computationally low-cost way of improving the quality of rendered textures. Each
prefiltered image, or level, in the mipmap is a power of two smaller than the
previous level.

You can use mipmaps when texture-filtering by specifying the appropriate filter
mode in the D3DTEXTUREFILTER enumerated type. To find out what kinds
of mipmapping support are provided by a device, use the flags specified in the
dwTextureFilterCaps member of the D3DPRIMCAPS structure.

For more information about how to use DirectDraw to create mipmaps, see
Mipmaps.

Transparency and Translucency
As already mentioned, one method for achieving the appearance of transparent or
translucent textures is by using texture blending. You can also use alpha channels
and the D3DRENDERSTATE_BLENDENABLE render state (from the
D3DRENDERSTATETYPE enumerated type).

MICROSOFT CONFIDENTIAL 5/13/96

A more straightforward approach to achieving transparency or translucency is to
use DirectDraw's support for color keys. Color keys are colors or ranges of colors
that can be part of either the source or destination of a blit or overlay operation.
You can specify whether these colors should always or never be overwritten.

For more information about DirectDraw's support for color keys, see Color
Keying.

Direct3D Material Objects
You can create an interface to a Direct3D material by calling the
IDirect3D::CreateMaterial method. The following example demonstrates how
to create an IDirect3DMaterial interface. Then it demonstrates how to set the
material and retrieve its handle by calling the IDirect3DMaterial::SetMaterial
and IDirect3DMaterial::GetHandle methods.

lpDirect3D->CreateMaterial(
 lplpDirect3DMaterial, // Address of a new material
 pUnkOuter); // NULL
lpDirect3DMaterial->SetMaterial(
 lpD3DMat); // Address of a D3DMATERIAL structure
lpDirect3DMaterial->GetHandle(
 lpD3DDevice, // Address of a DIRECT3DDEVICE object
 lpD3DMat); // Address of a D3DMATERIAL structure

Material objects reside on the interface list and point both to the next material in a
device's list and back to their associated device or devices. (For more information
about this hierarchy, see Object Connectivity.) A material contains colors and
may contain a texture handle. The material handle is used inside execute buffers
or to set the background of a viewport. You can use the IDirect3DMaterial
interface to get and set materials, retrieve handles, and reserve colors.

Direct3D Light Objects
You can create a Direct3D light object by calling the IDirect3D::CreateLight
method. The following example demonstrates how to create an IDirect3DLight
interface, and then it sets the light by calling the IDirect3DLight::SetLight
method.

lpDirect3D->CreateLight(
 lplpDirect3DLight, // Address of a new light
 pUnkOuter); // NULL
lpDirect3DLight->SetLight(
 lpLight); // Address of a D3DLIGHT structure

Light objects reside on the interface list and on a viewport list. You can use the
IDirect3DLight interface to get and set lights.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 73

Direct3D Viewport Objects
You can create a Direct3D viewport object by calling the
IDirect3D::CreateViewport method. The following example demonstrates how
to create an IDirect3DViewport interface. Then it demonstrates how to add the
viewport to a device by calling the IDirect3DDevice::AddViewport method and
how to set up the viewport by calling the IDirect3DViewport::SetViewport,
IDirect3DViewport::SetBackground, and IDirect3DViewport::AddLight
methods.

lpDirect3D->CreateViewport(
 lplpDirect3DViewport, // Address of a new viewport
 pUnkOuter); // NULL
lpD3DDevice->AddViewport(
 lpD3DViewport) // Attach viewport to device
lpD3DViewport->SetViewport(
 lpData); // Address of a D3DVIEWPORT structure that
 // Sets the viewport's location on the screen
lpD3DViewport->SetBackground(
 lphMat); // Address of a D3DMATERIALHANDLE for
 // background
lpD3DViewport->AddLight(
 lpD3DLight); // Address of a light object

Viewport objects reside on the interface and device lists. The object maintains a
list of lights as well as screen data, and it may have a material handle and a
texture handle for the background. You can use the IDirect3DViewport interface
to get and set backgrounds and viewports, add and delete lights, and transform
vertices.

Direct3D Execute-Buffer Objects
Execute buffers contain a vertex list followed by an instruction stream. The
instruction stream consists of operation codes, or opcodes, and the data that
modifies those opcodes. For a description of execute buffers, see Execute
Buffers.

You can create a Direct3D execute-buffer object by calling the
IDirect3DDevice::CreateExecuteBuffer method.

lpD3DDevice->CreateExecuteBuffer(
 lpDesc, // Address of a DIRECT3DEXECUTEBUFFERDESC structure
 lplpDirect3DExecuteBuffer, // Address to contain a pointer to the
 // Direct3DExecuteBuffer object
 pUnkOuter); // NULL

Execute-buffer objects reside on a device list. You can use the
IDirect3DDevice::CreateExecuteBuffer method to allocate space for the actual
buffer, which may be on the hardware device.

MICROSOFT CONFIDENTIAL 5/13/96

The buffer is filled with two contiguous arrays of vertices and opcodes by using
the following calls to the IDirect3DExecuteBuffer::Lock,
IDirect3DExecuteBuffer::Unlock, and
IDirect3DExecuteBuffer::SetExecuteData methods:

lpD3DExBuf->Lock(
 lpDesc);. // Address of a DIRECT3DEXECUTEBUFFERDESC structure
// .
// . Store contents through the supplied address
// .
lpD3DExBuf->Unlock();
lpD3DExBuf->SetExecuteData(
 lpData); // Address of a D3DEXECUTEDATA structure

The last call in the preceding example is to the
IDirect3DExecuteBuffer::SetExecuteData method. This method notifies
Direct3D where the two parts of the buffer reside relative to the address that was
returned by the call to the IDirect3DExecuteBuffer::Lock method.

You can use the IDirect3DExecuteBuffer interface to get and set execute data,
and to lock, unlock, optimize, and validate the execute buffer.

Object Connectivity
The following illustration shows how each execute buffer and viewport is owned
by exactly one device, and each light is owned by exactly one viewport.

Material and texture objects can be associated with more than one device. Each
node in the following illustration contains a pointer back to the head of the list it
is in. (These pointers, however, are not shown in the illustration.) From any
texture or material node, pointers lead back both to the texture or material object
and to the relevant device.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 75

You can create interface, device, and texture objects by calling the
QueryInterface method. Material, light, and viewport objects are created by calls
to the methods of the IDirect3D interface. Execute buffers and matrices are
created by calls to the methods of the IDirect3DDevice interface. An interface
object (Direct3D object) has a list of all created device, viewport, light, and
material objects, but not execute buffers or textures.

Direct3D Immediate-Mode Tutorial
To create a Windows-based Direct3D Immediate-Mode application, you create
DirectDraw and Direct3D objects, set render states, fill execute buffers, and
execute those buffers. This section explains some simple Immediate-Mode
sample code that is part of this SDK.

The D3dmain.cpp file in the samples provided with this SDK is used as a basis
for all of the other Immediate-Mode samples. D3dmain.cpp contains the standard
Windows framework of initialization, setting up a message loop, and creating a
window procedure for message processing, but it also does some work that is
specific to Direct3D Immediate-Mode applications. This work is discussed in the
following sections:

· Beginning Initialization

· Creating DirectDraw and Direct3D Objects

· Setting Up the Device-Creation Callback Function

· Initializing the Viewport

· Setting the Immediate-Mode Render State

· Completing Initialization

MICROSOFT CONFIDENTIAL 5/13/96

· Running the Rendering Loop

· Cleaning Up

The Immediate-Mode samples in this SDK include some code that is not
documented here. In particular, this SDK includes a collection of helper functions
collectively referred to as the D3DApp functions. You might find them useful
when writing your own Immediate-Mode applications. These helper functions are
referred to frequently in this documentation but are not covered exhaustively.
They are implemented by the D3dapp.c, Ddcalls.c, D3dcalls.c, Texture.c, and
Misc.c source files. The Stats.cpp source file sends frame-rate and screen-mode
information to the screen.

Every sample that uses D3dmain.cpp must implement the following functions,
which enable samples to customize their behavior:

· InitScene

· InitView

· RenderScene

· ReleaseView

· ReleaseScene

· OverrideDefaults

In addition, samples can use the SetMouseCallback and SetKeyboardCallback
functions to read mouse and keyboard input.

Beginning Initialization
The first Direct3D task the WinMain function in D3dmain.cpp does is call the
locally defined AppInit function, which creates the application window and
initializes all objects needed to begin rendering. The WinMain function also
implements the message pump for D3dmain.cpp and calls the locally defined
RenderLoop and CleanUpAndPostQuit functions. The AppInit function calls
other functions to help it do its work, and these functions, in turn, call still more
functions; this group of initialization functions is the subject of most of this
tutorial.

After performing some standard tasks in the initialization of a Windows
application and initializing global variables to acceptable default settings, AppInit
calls the InitScene function that each sample that uses D3dmain.cpp must
implement. Simple sample applications, such as Oct1.c, implement versions of
InitScene that do nothing but return TRUE. More complicated samples, such as
Tunnel.c, use InitScene to allocate memory, generate points, and set global
variables.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 77

The last thing the AppInit function does before it returns is call the
CreateD3DApp function, which is implemented in D3dmain.cpp. The functions
called by CreateD3Dapp do much of the initialization work.

Creating DirectDraw and Direct3D Objects
The CreateD3DApp function in D3dmain.cpp is responsible for initializing the
DirectDraw and Direct3D objects that are required before rendering begins.
Important local functions called by CreateD3DApp include
D3DAppCreateFromHWND, D3DAppGetRenderState, OverrideDefaults,
D3DAppSetRenderState, ReleaseView, and InitView. Functions whose names
begin with D3DApp are part of the D3DApp series of helper functions.

The same command-line options passed to the WinMain function are also passed
to CreateD3DApp. Valid options are -systemmemory and -emulation. The
-systemmemory option is used purely for debugging. The -emulation option
prevents the application from using DirectDraw or Direct3D hardware.

CreateD3DApp calls the D3DAppAddTexture function to generate a series of
textures. Then the D3DAppAddTexture function creates a source texture surface
and object in system memory. Then it creates a second, initially empty, texture
surface in video memory if hardware is present. The source texture is loaded into
the destination texture surface and then discarded. This two-stage process allows
a device to compress or reformat a texture map as it enters video memory. The
code uses the IDirectDrawSurface::QueryInterface method to retrieve an
interface to an IDirect3DTexture interface and the IDirect3DTexture::Load
method to load the textures. The IDirect3DTexture::GetHandle method is used
to create a list of texture handles.

After creating a list of textures, CreateD3DApp creates the DirectDraw and
Direct3D objects required to start rendering. The code uses the
D3DAppCreateFromHWND helper function. D3DAppCreateFromHWND uses
functions that are implemented in the D3dapp.c, D3dcalls.c, Texture.c, and
Ddcalls.c source files.

First, D3DAppCreateFromHWND uses the DirectDrawEnumerate and
DirectDrawCreate functions to create and initialize the DirectDraw object, sets
the values of global variables, and enumerates the display modes by calling the
IDirectDraw2::EnumDisplayModes method.

D3DAppCreateFromHWND then creates the Direct3D object and enumerates the
Direct3D device drivers. To create the Direct3D object, it calls the
IDirectDraw::QueryInterface method, passing the IID_IDirect3D interface
identifier. It uses IDirect3D::EnumDevices to enumerate the device drivers.

Calling IDirect3D::EnumDevices is not the easiest or even the best way to find
Direct3D device drivers, however. Instead of setting up an enumeration routine,
most Immediate-Mode applications use the IDirect3D::FindDevice method. This

MICROSOFT CONFIDENTIAL 5/13/96

method allows you to simply specify the capabilities of the device you prefer—
the system examines the available drivers and returns the globally unique
identifier (GUID) for the first matching device. The system always searches the
hardware first, so if both a hardware and a software device meet the required
capabilities, the system returns the GUID for the hardware device.

After choosing a device driver and display mode (full-screen versus windowed),
D3DAppCreateFromHWND creates front and back buffers for the chosen display
mode. The code performs different actions based on whether the application is
running in a window or the full screen, and whether video memory or system
memory is being employed. If the application is running in a window, the code
calls the IDirectDraw::CreateClipper method to create a clipper object and then
calls the IDirectDrawClipper::SetHWnd method to attach it to the window and
the IDirectDrawSurface::SetClipper method to attach it to the front buffer.

Then, D3DAppCreateFromHWND checks whether the front buffer is palettized.
If it is, the code initializes the palette. First it creates the palette by calling the
IDirectDraw::CreatePalette method, then it uses the
IDirectDrawSurface::SetPalette method to set this as the palette for the front
and back surfaces.

At this point the code calls the IDirectDraw::CreateSurface method to create a
z-buffer, the IDirectDrawSurface::AddAttachedSurface method to attach the
z-buffer to the back buffer, and the IDirectDrawSurface::GetSurfaceDesc
method to determine whether the z-buffer is in video memory.

Then the code creates an IDirect3DDevice interface and uses it to enumerate the
texture formats. The sample calls the IDirectDrawSurface::QueryInterface
method to create the interface and the IDirect3DDevice::EnumTextureFormats
method to enumerate the texture formats. When the textures have been
enumerated, the code uses the same series of calls it employed in CreateD3DApp
to load the textures and create a list of texture handles.

After using the driver's bit-depth and total video memory to filter the appropriate
display modes, the code sets up the device-creation callback function, which is
described in Setting Up the Device-Creation Callback Function.

When the device-creation callback function has been set up,
D3DAppCreateFromHWND sets the application's render state, which is described
in Setting the Immediate-Mode Render State.

When the D3DAppCreateFromHWND function has created the required
Direct3D objects and set up the render state, it is almost finished. The function
calls a local function to set the dirty rectangles for the front and back buffers to
the entire client area, sets flags indicating that the application is initialized and
that rendering can proceed, and returns TRUE.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 79

The last part of the D3DAppCreateFromHWND function is its error-handling
section. Whenever a call fails, the error-handling code jumps to the
exit_with_error label. This section calls the callback function that destroys the
device, resets the display mode and cooperative level if the application was
running in full-screen mode, releases all the Direct3D and DirectDraw objects
that were created, and returns FALSE.

Setting Up the Device-Creation Callback
Function
The third parameter of the D3DAppCreateFromHWND function is an address of
a callback function that is implemented as the AfterDeviceCreated function in
D3dmain.cpp. AfterDeviceCreated creates the Direct3D viewport and returns it to
D3DAppCreateFromHWND.

First the code calls the IDirect3D::CreateViewport method to create a viewport,
and then it calls the IDirect3DDevice::AddViewport method to add the viewport
to the newly created Direct3D device. After initializing the viewport's dimensions
in a D3DVIEWPORT structure, the code calls the
IDirect3DViewport::SetViewport method to set the viewport to those
dimensions.

Then, the AfterDeviceCreated function calls the InitView function. InitView, like
the InitScene function called earlier by D3dmain.cpp, must be implemented by
each sample that uses D3dmain.cpp. One implementation of InitView is described
in Initializing the Viewport.

After calling InitView and changing some of the menu items, AfterDeviceCreated
finishes by calling the CleanUpAndPostQuit function. This function is described
in Cleaning Up.

Initializing the Viewport
Each of the code samples that uses D3dmain.cpp must implement a version of the
InitView function to set up the viewport and create the sample's execute buffers.
This section discusses the implementation of InitView found in the Oct1.c
sample.

First, InitView creates and initializes some materials, material handles, and
texture handles. It uses the IDirect3D::CreateMaterial method to create a
material, the IDirect3DMaterial::SetMaterial method to set the material data
that InitView has just initialized, and the IDirect3DMaterial::GetHandle and
IDirect3DViewport::SetBackground methods to set this material as the
background for the viewport.

Now the InitView function sets the view, world, and projection matrices for the
viewport. InitView uses the MAKE_MATRIX macro to create and set matrices.
MAKE_MATRIX is defined in D3dmacs.h as follows:

MICROSOFT CONFIDENTIAL 5/13/96

#define MAKE_MATRIX(lpDev, handle, data) \
 if (lpDev->lpVtbl->CreateMatrix(lpDev, &handle) != D3D_OK) \
 return FALSE; \
 if (lpDev->lpVtbl->SetMatrix(lpDev, handle, &data) != D3D_OK) \
 return FALSE

As you can see, MAKE_MATRIX is simply a convenient way of calling the
IDirect3DDevice::CreateMatrix and IDirect3DDevice::SetMatrix methods in
a single step.

Now InitView creates and sets up an execute buffer. After initializing the
members of a D3DEXECUTEBUFFERDESC structure, the code calls the
IDirect3DDevice::CreateExecuteBuffer method to create the execute buffer and
IDirect3DExecuteBuffer::Lock to lock it so that it can be filled.

InitView fills the execute buffer by using the OP_STATE_TRANSFORM and
STATE_DATA macros from D3dmacs.h. These macros are described in Setting
the Immediate-Mode Render State, along with more information about working
with execute buffers.

When the execute buffer has been set up, InitView calls the
IDirect3DExecuteBuffer::Unlock method to unlock it, the
IDirect3DExecuteBuffer::SetExecuteData method to set the data into the
buffer, and then the IDirect3DDevice::BeginScene, IDirect3DDevice::Execute,
and IDirect3DDevice::EndScene methods to execute the execute buffer. Because
the function has no further use for this execute buffer, it then calls
IDirect3DExecuteBuffer::Release.

The InitView function now sets up two more materials by using the same
procedure it used to set the materials earlier: it uses the
IDirect3D::CreateMaterial method to create a material, the
IDirect3DMaterial::SetMaterial method to set the material data (after filling the
members of the D3DMATERIAL structure), and the
IDirect3DMaterial::GetHandle method to retrieve a handle to the material.
These handles are used later with the D3DLIGHTSTATE_MATERIAL
member of the D3DLIGHTSTATETYPE enumerated type to associate lights
with the new materials.

Now InitView sets up the vertices. The code uses the D3DVALP macro to
convert floating-point numbers into the D3DVALUE members of the
D3DVERTEX structure. It also uses the D3DRMVectorNormalize function to
normalize the x-coordinate of the normal vector for each of the vertices it sets up.

When the vertices have been set up, InitView creates another execute buffer,
copies the vertices to the buffer, and sets the execute data. It does not execute the
execute buffer, however; this time, executing the execute buffer occurs in the
rendering loop.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 81

Finally, InitView sets up the lights for Oct1.c. After initializing the members of a
D3DLIGHT structure, it calls the IDirect3D::CreateLight,
IDirect3DLight::SetLight, and IDirect3DViewport::AddLight methods to add
the light to the viewport.

Setting the Immediate-Mode Render State
The D3DAppISetRenderState function in the D3dcalls.c source file creates and
executes an execute buffer that sets the render state and light state for the current
viewport. The D3DAppCreateFromHWND function calls
D3DAppISetRenderState from D3dapp.c; generally, the sample code calls
D3DAppISetRenderState whenever the render state needs to be set or reset. This
section reproduces the D3DAppISetRenderState function (except for some error-
checking code).

After setting some local variables, including the D3DEXECUTEBUFFERDESC
and D3DEXECUTEDATA structures, D3DAppISetRenderState calls the
IDirect3DDevice::CreateExecuteBuffer method to create an execute buffer.
When the execute buffer has been created, the code calls the
IDirect3DExecuteBuffer::Lock method to lock it so that it can be filled.

BOOL D3DAppISetRenderState()
{
D3DEXECUTEBUFFERDESC debDesc;
D3DEXECUTEDATA d3dExData;
LPDIRECT3DEXECUTEBUFFER lpD3DExCmdBuf = NULL;
LPVOID lpBuffer, lpInsStart;
size_t size;

// Create an execute buffer of the required size and lock it
// so that it can be filled.

size = 0;
size += sizeof(D3DINSTRUCTION) * 3;
size += sizeof(D3DSTATE) * 17;
memset(&debDesc, 0, sizeof(D3DEXECUTEBUFFERDESC));
debDesc.dwSize = sizeof(D3DEXECUTEBUFFERDESC);
debDesc.dwFlags = D3DDEB_BUFSIZE;
debDesc.dwBufferSize = size;

LastError = d3dappi.lpD3DDevice->lpVtbl->CreateExecuteBuffer(
 d3dappi.lpD3DDevice, &debDesc, &lpD3DExCmdBuf, NULL);

LastError = lpD3DExCmdBuf->lpVtbl->Lock(lpD3DExCmdBuf, &debDesc);
memset(debDesc.lpData, 0, size);

lpInsStart = debDesc.lpData;
lpBuffer = lpInsStart;

MICROSOFT CONFIDENTIAL 5/13/96

The d3dappi.lpD3DDevice parameter in the call to
IDirect3DDevice::CreateExecuteBuffer is a pointer to a Direct3DDevice
object. The lpData member of the debDesc variable (a
D3DEXECUTEBUFFERDESC structure) is a pointer to the actual data in the
execute buffer.

Now the D3DAppISetRenderState function sets the render states. It uses the
OP_STATE_DATA macro to help do some of this work. This macro, in turn,
uses the PUTD3DINSTRUCTION macro. These macros are defined as follows in
the D3dmacs.h header file in this SDK:

#define PUTD3DINSTRUCTION(op, sz, cnt, ptr) \
 ((LPD3DINSTRUCTION) ptr)->bOpcode = op; \
 ((LPD3DINSTRUCTION) ptr)->bSize = sz; \
 ((LPD3DINSTRUCTION) ptr)->wCount = cnt; \
 ptr = (void *)(((LPD3DINSTRUCTION) ptr) + 1)
#define OP_STATE_RENDER(cnt, ptr) \
 PUTD3DINSTRUCTION(D3DOP_STATERENDER, sizeof(D3DSTATE), cnt, ptr)

Notice that the PUTD3DINSTRUCTION macro is little more than an initializer
for the D3DINSTRUCTION structure. D3DOP_STATERENDER, the first
parameter of the call to PUTD3DINSTRUCTION in the OP_STATE_RENDER
macro, is one of the opcodes in the D3DOPCODE enumerated type; the second
parameter is the size of the D3DSTATE structure.

The STATE_DATA macro, which is also defined in D3dmacs.h, handles the
render states. To work with the render states, it uses pointers to members in the
D3DSTATE structure—in particular, a pointer to the
D3DRENDERSTATETYPE enumerated type.

#define STATE_DATA(type, arg, ptr) \
 ((LPD3DSTATE) ptr)->drstRenderStateType = (D3DRENDERSTATETYPE)type; \
 ((LPD3DSTATE) ptr)->dwArg[0] = arg; \
 ptr = (void *)(((LPD3DSTATE) ptr) + 1)

The following code fragment from D3DAppISetRenderState uses the
OP_STATE_RENDER and STATE_DATA macros to set 14 render states. The
d3dapprs structure is the D3DAppRenderState structure, which is defined in the
D3dapp.h header file.

OP_STATE_RENDER(14, lpBuffer);
 STATE_DATA(D3DRENDERSTATE_SHADEMODE, d3dapprs.ShadeMode, lpBuffer);
 STATE_DATA(D3DRENDERSTATE_TEXTUREPERSPECTIVE,
 d3dapprs.bPerspCorrect, lpBuffer);
 STATE_DATA(D3DRENDERSTATE_ZENABLE, d3dapprs.bZBufferOn &&
 d3dappi.ThisDriver.bDoesZBuffer, lpBuffer);
 STATE_DATA(D3DRENDERSTATE_ZWRITEENABLE, d3dapprs.bZBufferOn,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_ZFUNC, D3DCMP_LESSEQUAL, lpBuffer);

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 83

 STATE_DATA(D3DRENDERSTATE_TEXTUREMAG, d3dapprs.TextureFilter,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_TEXTUREMIN, d3dapprs.TextureFilter,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_TEXTUREMAPBLEND, d3dapprs.TextureBlend,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_FILLMODE, d3dapprs.FillMode, lpBuffer);
 STATE_DATA(D3DRENDERSTATE_DITHERENABLE, d3dapprs.bDithering,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_SPECULARENABLE, d3dapprs.bSpecular,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_ANTIALIAS, d3dapprs.bAntialiasing,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_FOGENABLE, d3dapprs.bFogEnabled,
 lpBuffer);
 STATE_DATA(D3DRENDERSTATE_FOGCOLOR, d3dapprs.FogColor, lpBuffer);

Now the OP_STATE_RENDER and STATE_DATA macros set three light states.
The OP_EXIT macro simply uses the PUTD3DINSTRUCTION macro to call the
D3DOP_EXIT opcode from the D3DOPCODE enumerated type.

OP_STATE_LIGHT(3, lpBuffer);
 STATE_DATA(D3DLIGHTSTATE_FOGMODE, d3dapprs.bFogEnabled ?
 d3dapprs.FogMode : D3DFOG_NONE, lpBuffer);
 STATE_DATA(D3DLIGHTSTATE_FOGSTART,
 (unsigned long)&d3dapprs.FogStart, lpBuffer);
 STATE_DATA(D3DLIGHTSTATE_FOGEND, *(unsigned long*)&d3dapprs.FogEnd,
 lpBuffer);
OP_EXIT(lpBuffer);

Now that the render states have been set, D3DAppISetRenderState unlocks the
execute buffer by calling the IDirect3DExecuteBuffer::Unlock method. It sets
the execute data by calling the IDirect3DExecuteBuffer::SetExecuteData
method. Finally, it begins the scene, executes the execute buffer, and ends the
scene again by calling the IDirect3DDevice::BeginScene,
IDirect3DDevice::Execute, and IDirect3DDevice::EndScene methods.

LastError = lpD3DExCmdBuf->lpVtbl->Unlock(lpD3DExCmdBuf);

memset(&d3dExData, 0, sizeof(D3DEXECUTEDATA));
d3dExData.dwSize = sizeof(D3DEXECUTEDATA);
d3dExData.dwInstructionOffset = (ULONG) 0;
d3dExData.dwInstructionLength = (ULONG) ((char*)lpBuffer -
 (char*)lpInsStart);
lpD3DExCmdBuf->lpVtbl->SetExecuteData(lpD3DExCmdBuf, &d3dExData);
LastError =
 d3dappi.lpD3DDevice->lpVtbl->BeginScene(d3dappi.lpD3DDevice);
LastError =
 d3dappi.lpD3DDevice->lpVtbl->Execute(d3dappi.lpD3DDevice,

MICROSOFT CONFIDENTIAL 5/13/96

 lpD3DExCmdBuf, d3dappi.lpD3DViewport);
LastError = d3dappi.lpD3DDevice->lpVtbl->EndScene(d3dappi.lpD3DDevice);

The D3DAppISetRenderState has finished its work with the execute buffer, so it
calls the IDirect3DExecuteBuffer::Release method to release it, and it returns.

lpD3DExCmdBuf->lpVtbl->Release(lpD3DExCmdBuf);
return TRUE;
}

Completing Initialization
The CreateD3DApp function that is called by the AppInit function in WinMain
has created most of the underpinnings of a Direct3D application, but it hasn't
finished yet. Before D3dmain.cpp calls the rendering loop, CreateD3DApp must
complete a few more tasks.

After copying the current render states into the application's local
D3DAppRenderState structure, CreateD3DApp calls the OverrideDefaults
function. OverrideDefaults is another function that must be supported by all
samples that use D3dmain.cpp. Sometimes an application will do very little in its
OverrideDefaults function; for example, the Oct1.c sample simply replaces the
default name with the string, "Octagon D3D Example".

Now CreateD3DApp calls the D3DAppSetRenderState function, which simply
checks the status of the saved render states and either resets them (if no render
states were provided in the call) or saves them before calling the
D3DAppISetRenderState function, which is discussed in Setting the Immediate-
Mode Render State.

As a final step before entering the rendering loop, CreateD3DApp calls the
ReleaseView and InitView functions. These functions, like OverrideDefaults, are
implemented by each sample application. ReleaseView simply releases any
objects created in a previous call to the InitView function. (InitView, as you
recall, is first called as part of the AfterDeviceCreated callback function.) This
final call to InitView sets up the viewport again (in case there have been changes
since the device was created) and re-creates the sample's execute buffers. For
more information about InitView, see Initializing the Viewport.

This is the end not only of the CreateD3DApp function in D3dmain.cpp; it is also
the end of the AppInit function. Now that the code has finished with the
initialization part of the work, it can enter the rendering loop.

Running the Rendering Loop
After initializing the application, the WinMain function in D3dmain.cpp sets up
the message loop. The code monitors the message queue until there are no
pressing messages and then calls the RenderLoop function. RenderLoop is

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 5 Part A: Direct3D Overviews 85

defined in D3dmain.cpp. WinMain maintains a count of the number of times
RenderLoop can fail; if it fails more than three times, the application quits.

The RenderLoop function renders the next frame in the scene and updates the
window.

The first task in the RenderLoop function is to restore any lost DirectDraw
surfaces, if possible. It calls the IDirectDrawSurface::IsLost method to identify
lost surfaces and IDirectDrawSurface::Restore to restore them. Then
RenderLoop clears the back buffer and, if enabled, the z-buffer, by calling the
IDirect3DRMViewport::Clear method.

Now RenderLoop calls the RenderScene function implemented by the sample
application calling D3dmain.cpp. A sample's RenderScene function can take into
account a complex series of special cases, or it can be as simple as the
implementation in Oct1.c. Then, the RenderScene function executes the execute
buffer by calling IDirect3DDevice::BeginScene, IDirect3DDevice::Execute,
and IDirect3DDevice::EndScene, retrieves any new execute data by calling
IDirect3DExecuteBuffer::GetExecuteData, updates the screen extents, and then
calls a local TickScene function that changes the viewing position by calling the
IDirect3DDevice::SetMatrix method.

Finally, the RenderLoop function calls the D3DAppRenderExtents helper
function to keep track of the changed sections of the front and back buffers and
blits or flips the back buffer to the front buffer.

Cleaning Up
Whenever an error occurs from which the application cannot recover, or the
application receives a WM_QUIT or MENU_EXIT message, the application calls
the CleanUpAndPostQuit function. CleanUpAndPostQuit does some simple
error-checking and then calls the ReleaseScene function. ReleaseScene is the last
of the functions that must be implemented by sample applications using
D3dmain.cpp. This is an application's chance to release any remaining objects or
free memory. For simple applications, like Oct1.c, ReleaseScene is simply a stub.

Finally, the CleanUpAndPostQuit function calls the PostQuitMessage function to
end the application.

MICROSOFT CONFIDENTIAL 5/13/96

	Microsoft's 3D-Graphics Solutions
	Direct3D
	Retained Mode
	Immediate Mode
	Hardware Abstraction and Emulation

	DirectDraw
	OpenGL

	Direct3D Architecture
	The Direct3D Vision
	Rendering Engine
	Execute Buffers
	Transformation Module
	Lighting Module
	Rasterization Module
	Colors and Fog
	Palette Entries
	Fog

	States and State Overrides
	Direct3D File Format

	A Technical Foundation for 3D Programming
	3D Coordinate Systems
	Direct3D's Coordinate System
	U- and V-Coordinates

	3D Transformations
	Translation
	Rotation
	Scaling

	Polygons
	Geometry Requirements
	Face and Vertex Normals
	Shade Modes
	Triangle Interpolants

	Triangle Strips and Fans
	Vectors and Quaternions
	Floating-point Precision

	Performance Optimization
	Clip Tests on Execution
	Batching Primitives
	Texture Size
	Triangle Flags
	Ramp Performance Tips
	Ramp Textures
	Z-Buffers
	Copy Mode

	Direct3D Retained-Mode Overview
	About Retained Mode
	Introduction to Direct3D Retained-Mode Objects
	Objects and Interfaces
	Objects and Reference Counting
	Direct3DRMAnimation and Direct3DRMAnimationSet
	Direct3DRMDevice and Direct3DRMDeviceArray
	Quality
	Color Models
	Window Management

	Direct3DRMFace and Direct3DRMFaceArray
	Direct3DRMFrame and Direct3DRMFrameArray
	Hierarchies
	Transformations
	Motion
	Callback Functions

	Direct3DRMLight and Direct3DRMLightArray
	Ambient
	Directional
	Parallel Point
	Point
	Spotlight

	Direct3DRMMaterial
	Direct3DRMMesh and Direct3DRMMeshBuilder
	Direct3DRMObject
	Direct3DRMPickedArray
	Direct3DRMShadow
	Direct3DRMTexture
	Decals
	Texture Colors
	Mipmaps
	Texture Filtering
	Texture Transparency

	Direct3DRMUserVisual
	Direct3DRMViewport and Direct3DRMViewportArray
	Camera
	Viewing Frustum
	Transformations
	Picking

	Direct3DRMVisual and Direct3DRMVisualArray
	Direct3DRMWrap
	Wrapping Types
	Flat
	Cylindrical
	Spherical
	Chrome

	Direct3D Retained-Mode Tutorial
	Setting up the Windows Environment
	Enumerating Direct3D Device Drivers
	Initialization
	Creating a Direct3DRM Device and Viewport
	Setting the Render State
	Setting Up the Virtual Environment
	Setting Up the Lights
	Loading and Adding a Mesh
	Releasing the Direct3DRM Objects
	OverrideDefaults and ReadMouse
	Rendering into a Viewport

	Direct3D Immediate-Mode Overview
	About Immediate Mode
	Introduction to Direct3D Immediate-Mode Objects
	Direct3D Object Types
	Direct3D Interface Objects
	Direct3D Device Objects
	Direct3D Texture Objects
	Texture Wrapping
	Texture Filtering and Blending
	Mipmaps
	Transparency and Translucency

	Direct3D Material Objects
	Direct3D Light Objects
	Direct3D Viewport Objects
	Direct3D Execute-Buffer Objects
	Object Connectivity

	Direct3D Immediate-Mode Tutorial
	Beginning Initialization
	Creating DirectDraw and Direct3D Objects
	Setting Up the Device-Creation Callback Function
	Initializing the Viewport
	Setting the Immediate-Mode Render State
	Completing Initialization
	Running the Rendering Loop
	Cleaning Up

