
MicrosoftÒ DirectXÔ 2
Software Development Kit

MICROSOFT CONFIDENTIAL 5/13/96

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

3D Studio is a registered trademark of Autodesk, Inc.
OpenGL is a registered trademark of Silicon Graphics, Inc.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 3

C H A P T E R 4

Overview..
DirectPlay Architecture...
Globally Unique Identifiers..
Using DirectPlay..
Session Management...
Player Management...
Group Management...
Message Management...

Reference..
Functions..
Callback Functions..
IDirectPlay Interface...
Structures..
Return Values...

DirectPlay

MICROSOFT CONFIDENTIAL 5/13/96

Overview
The Microsoft® DirectPlay™ application programming interface (API) for
Windows® 95 is a software interface that simplifies your application's access to
communication services. DirectPlay was primarily developed for game
communication, but could be used for other applications that require
communication independent of the underlying transport, protocol, or online
service.

Games are more fun if they can be played against real players, and the personal
computer has richer connectivity options than any game platform in history.
Instead of forcing you, as a game developer, to deal with the differences that each
of these connectivity solutions represents, DirectPlay provides well defined,
generalized communication capabilities. DirectPlay shields you from the
underlying complexities of diverse connectivity implementations, freeing you to
concentrate on producing a great game.

DirectPlay Architecture
DirectPlay uses a simple send/receive communication model to implement a
connectivity API tailored to the needs of game play. The DirectPlay architecture
is composed of two types of components: DirectPlay itself and the service
provider. DirectPlay is provided by Microsoft and presents a common interface to
the game. The service provider furnishes medium-specific communication
services as requested by DirectPlay. Any organization, including online services,
can supply service providers for specialized hardware and communications
media. Microsoft includes two service providers with DirectPlay, one for
networking and one for modem support.

The DirectPlay interface hides the complexities and unique tasks required to
establish an arbitrary communications link inside the DirectPlay service provider
implementation. When you design a game for use with DirectPlay, you need only
concern yourself with the performance of the communications medium, not
whether that medium is provided by a modem, network, or online service.

DirectPlay will dynamically bind to any DirectPlay service provider installed on
the user's system. The game interacts with the DirectPlay object. The DirectPlay
object interacts with one of the available DirectPlay service providers, and the
selected service provider interacts with the transport or protocol.

Globally Unique Identifiers
Each game requires a globally unique identifier (GUID) that it uses to identify
itself on the communications medium. These GUIDs, sometimes called UUIDs,
can be generated on any computer that has a network card and a copy of
Uuidgen.exe, provided as part of the Microsoft Win32® SDK. You create a

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 5

GUID once while developing the game, and use that GUID throughout the life of
the product. There is no need to register this number with Microsoft.

Using DirectPlay
Implement DirectPlay in your application using the following steps:

1 Request that the user of your application select a communication medium for the
game.

You can identify the service providers installed on a personal computer by using
the DirectPlayEnumerate function.

2 Create a DirectPlay object based on the selected provider by calling the
DirectPlayCreate function and specifying the appropriate service provider GUID.

Calling the DirectPlayCreate function causes DirectPlay to load the library for
the service provider selected.

3 Request game information, including preferences, from the user. You can store
this information in the dwUser member of the DPSESSIONDESC structure.

If the user wants to start a new game, skip to step six.

4 Enumerate existing sessions (existing games that a user can join) by using the
IDirectPlay::EnumSessions method.

5 If the user wants to join a game enumerated by the IDirectPlay::EnumSessions
method, connect to that game by using the IDirectPlay::Open method and
specify the DPOPEN_OPENSESSION flag.

6 If the user wants to start a new game, create a game by using the
IDirectPlay::Open method and specifying the DPOPEN_CREATESESSION
flag.

7 Create a player or players.

A player's communication capabilities can be determined using the
IDirectPlay::GetCaps and IDirectPlay::GetPlayerCaps methods. Other players
can be discovered by using the IDirectPlay::EnumPlayers method.

8 Exchange messages among players, including the name server (player ID 0), by
using the IDirectPlay::Send and IDirectPlay::Receive methods.

Each player is associated with a friendly name and a formal name that the game
can use for tasks such as error reporting and scoring. The game can exchange
messages among players by using the unique player ID that is created with the
player. The service provider, not DirectPlay, limits the number of players that can
participate in a gaming session. In the current implementation, the number of
players ranges from 16 for a modem connection to 256 for a network connection.

When using DirectPlay, you are able to define most messages in order to address
the particular needs of the game. However, some system messages are defined by
DirectPlay. For example, when a player quits or joins a game, that game receives
a system message that provides the player's name and the status change that has

MICROSOFT CONFIDENTIAL 5/13/96

just occurred. System messages are always sent by the name server, a virtual
player whose player ID is 0. System messages start with a 32-bit value that
identifies the type of message. Constants that represent system messages begin
with 'DPSYS_', and have a corresponding message structure that must be used to
interpret them.

Broadcasting a message to all players in the game is simply a matter of sending a
message to the name server (that is, to player ID 0). Players receiving a message
broadcast in this way see the message as having come from the player who sent it,
not from the name server.

DirectPlay does not attempt to provide a general approach for game
synchronization; to do so would necessarily impose limitations on the game-
playing paradigm. However, the system includes some services that are designed
to help you with these tasks. For example, you can specify a notification event
when your application creates a player, then use the Microsoft Win32 function
WaitForSingleObject to find out whether there is a message pending for that
player.

Session Management
A DirectPlay session is an instance of a game. The applications you design can
use DirectPlay's session-management functions to open or close a communication
channel, save a session in the registry, or enumerate past sessions that have been
saved in the registry. A game either creates a new session or enumerates existing
or previous sessions and finds one to connect to. If a game has saved a session, it
could enumerate previous sessions and perhaps reconnect to the saved session.
(This is a particularly appropriate scenario in a modem environment, where a
saved session would include phone numbers.) Not all DirectPlay service
providers will support saving sessions, however, and this functionality is currently
only implemented for modem connections.

The IDirectPlay::Open method is used to create new sessions or to connect to
existing or saved sessions. A session is described by its corresponding
DPSESSIONDESC structure. This structure contains game-specific values and
session particulars, such as the name of the session, an optional password for the
session, and the number of players to be allowed in the session. After opening a
session, you can call the IDirectPlay::GetCaps method to retrieve the speed of
the communications link. To save a record of the session in the registry, call the
IDirectPlay::SaveSession method. For a modem connection, you can save the
current session and later enumerate all of the saved sessions by calling
IDirectPlay::EnumSessions and specifying the
DPENUMSESSIONS_PREVIOUS flag. Opening one of these saved sessions
retrieves the phone number for that session and dials it. When a game session is
over, it can be closed with the IDirectPlay::Close method.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 7

Player Management
The applications you design can use DirectPlay's player-management methods to
manage the players in a game session. In addition to creating and destroying
players, you can enumerate them or retrieve their communication capabilities.

The IDirectPlay::CreatePlayer and IDirectPlay::DestroyPlayer methods
create and delete players in a game session. Upon creation, each player is given a
friendly name, a formal name, and a DirectPlay player ID. The player ID is used
by the game and DirectPlay to route message traffic. The friendly and formal
names are not used internally by DirectPlay; instead, you can use them when
communicating with the players. The IDirectPlay::GetPlayerName and
IDirectPlay::SetPlayerName methods allow your application to work with the
friendly and formal names while the game is being played. The
IDirectPlay::EnableNewPlayers method enables or disables the addition of new
players and can be used to prohibit the creation of new players once a game is in
progress.

You can use the IDirectPlay::EnumPlayers method to discover what players are
in a current game session and their friendly and formal names. This function is
typically called immediately after the IDirectPlay::Open method opens an
existing session. The IDirectPlay::GetPlayerCaps method retrieves information
about the speed of a player's connection to the session.

Group Management
The group-management methods allow your application to create groups of
players in a session. You can then use a single instance of the IDirectPlay::Send
method to send messages to an entire group, rather than to one player at a time.
Some service providers can send messages to groups more efficiently than they
can send them to the individual players, so, in addition to simplifying player
management, groups can be used to conserve communication channel bandwidth.

The IDirectPlay::CreateGroup and IDirectPlay::DestroyGroup methods
create and delete a group of players. When you create a group, you assign it a
friendly and formal name, just as you would when creating a player. The group is
initially empty; you can use the IDirectPlay::AddPlayerToGroup and
IDirectPlay::DeletePlayerFromGroup methods to control the membership of
the group. The state of the IDirectPlay::EnableNewPlayers method does not
affect the ability to create groups.

To discover what groups exist, you can call the IDirectPlay::EnumGroups
method. To enumerate the players in a group, call the
IDirectPlay::EnumGroupPlayers method.

MICROSOFT CONFIDENTIAL 5/13/96

Message Management
The message-management functions help your application route messages
between game players. With the exception of a small number of messages that
have been defined by the system, the messages can be defined in any way that
you require. Messages should not be excessively large, however. You can use the
IDirectPlay::Send method to send a message to an individual player, to a group,
or to all the players in the session; simply specify a player ID, a group ID, or 0 as
the destination.

To retrieve a message from the message queue, use the IDirectPlay::Receive
method. This method allows you to specify whether to retrieve the first message
in the queue, only the messages to a particular player, or only those from a
particular player. You can use the IDirectPlay::GetMessageCount method to
retrieve the number of messages waiting for a given player.

Reference

Functions
The DirectPlay functions are used to initiate communication through the
DirectPlay interface. The DirectPlayCreate function is used to instantiate a
DirectPlay object for a particular service provider. The DirectPlayEnumerate
function is used to obtain a list of all the DirectPlay service providers installed on
the system. This is the mechanism DirectPlay uses to support multiple
communication transports and protocols. To utilize protocol-independent
communication services, your application need only select a specific service
provider and instantiate it.

DirectPlayCreate
HRESULT DirectPlayCreate(LPGUID lpGUID,
 LPDIRECTPLAY FAR * lplpDP, IUnknown FAR * pUnkOuter);

Creates an instance of a DirectPlay object.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_EXCEPTION DPERR_INVALIDPARAMS

DPERR_UNAVAILABLE

lpGUID
Address for the GUID that represents the driver to be created.

lplpDP
Address for a pointer to initialize with a valid DirectPlay pointer.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 9

pUnkOuter
Address for the IUnknown interface. This parameter is provided for future
compatibility with COM aggregation features. Presently, however, the
DirectPlayCreate function will return an error if this parameter is anything but
NULL.

This function attempts to initialize a DirectPlay object and sets a pointer to it if
successful. It is a good idea to call the DirectPlayEnumerate function
immediately before initialization in order to determine what types of service
providers are available.

See also DirectPlayEnumerate

DirectPlayEnumerate
LT DirectPlayEnumerate(
 LPDPENUMDPCALLBACK lpEnumDPCallback, LPVOID lpContext);

Enumerates the DirectPlay service providers installed on the system.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_EXCEPTION DPERR_GENERIC

lpEnumDPCallback
Address for the EnumDPCallback function that will be called with a description
of each DirectPlay service provider interface installed in the system.

lpContext
Address for a caller-defined structure that will be passed to the callback function
each time the function is invoked.

Callback Functions
Most of the functionality of DirectPlay is provided by the methods of its
Component Object Model (COM) interfaces. This section lists the callback
functions that are not implemented as part of a COM interface.

EnumDPCallback
BOOL EnumDPCallback(LPGUID lpSPGuid,
 LPSTR lpFriendlyName, DWORD dwMajorVersion,
 DWORD dwMinorVersion, LPVOID lpContext);

Application-defined callback procedure for the DirectPlayEnumerate function.

· Returns TRUE to continue the enumeration or FALSE to stop it.

MICROSOFT CONFIDENTIAL 5/13/96

lpSPGuid
Address for the unique identifier of the DirectPlay service provider driver.

lpFriendlyName
Address for a string containing the driver description.

dwMajorVersion
Major version number of the driver.

dwMinorVersion
Minor version number of the driver.

lpContext
Address for a caller-defined context.

EnumPlayersCallback
BOOL EnumPlayersCallback(DPID dpID,
 LPSTR lpFriendlyName, LPSTR lpFormalName,
 DWORD dwFlags, LPVOID lpContext);

Application-defined callback procedure for the IDirectPlay::EnumGroups,
IDirectPlay::EnumGroupPlayers, and IDirectPlay::EnumPlayers methods.

· Returns TRUE to continue the enumeration or FALSE to stop it.

dpID
Player ID of the group being enumerated.

lpFriendlyName
Address for the zero-terminated string that contains the friendly name of the
group.

lpFormalName
Address for the zero-terminated string that contains the formal name of the group.

dwFlags
Specifies the optional control flags.

DPENUMPLAYERS_GROUP

Specifies that group names and player names should be enumerated.

DPENUMPLAYERS_LOCAL

Specifies that only local player names need to be enumerated.

DPENUMPLAYERS_REMOTE

Specifies that only remote player names need to be enumerated.

lpContext
Address for a caller-defined context.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 11

EnumSessionsCallback
BOOL EnumSessionsCallback(LPDPSESSIONDESC lpDPSGameDesc,
 LPVOID lpContext, LPDWORD lpdwTimeOut,
 DWORD dwFlags);

Application-defined callback procedure for the IDirectPlay::EnumSessions
method.

· Returns TRUE to continue the enumeration or FALSE to stop it.

lpDPSGameDesc
Address for a DPSESSIONDESC structure describing the enumerated session.
This parameter will be set to NULL if the enumeration has timed out.

lpContext
Address for a caller-defined context.

lpdwTimeOut
Address for a doubleword containing the current time-out value. This can be reset
if you feel that some sessions have yet to respond.

dwFlags
Specifies the optional control flag.

DPESC_TIMEDOUT

The enumeration has timed out. Reset lpdwTimeOut and return TRUE to
continue, or FALSE to stop the enumeration.

IDirectPlay Interface

IDirectPlay Interface Method Groups
Applications use the methods of the IDirectPlay interface to create DirectPlay
objects and work with system-level variables. This interface supports the
following methods:

Group management AddPlayerToGroup

CreateGroup

DeletePlayerFromGroup

DestroyGroup

EnumGroupPlayers

EnumGroups

IUnknown AddRef

QueryInterface

Release

MICROSOFT CONFIDENTIAL 5/13/96

Message management GetMessageCount

Receive

Send

Player management CreatePlayer

DestroyPlayer

EnableNewPlayers

EnumPlayers

GetPlayerCaps

GetPlayerName

SetPlayerName

Session management Close

EnumSessions

GetCaps

Open

SaveSession

All COM interfaces inherit the IUnknown interface methods, which are listed in
the "IUnknown" group above. These three methods allow additional interfaces to
be added to the DirectPlay object without affecting the functionality of the
original interface.

IDirectPlay::AddPlayerToGroup
HRESULT AddPlayerToGroup(DPID pidGroup, DPID pidPlayer);

Adds an existing player to an existing group.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_GENERIC DPERR_INVALIDOBJECT

DPERR_INVALIDPLAYER

pidGroup
ID of the group to be augmented.

pidPlayer
ID of the player to be added to the group.

A DPMSG_GROUPADD system message is automatically generated to inform
other players that the specified player has been added. Groups cannot be added to

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 13

other groups, but players can be members of multiple groups. The
IDirectPlay::AddPlayerToGroup method will generate an error if the player is
already a member of the group.

See also IDirectPlay::CreateGroup, IDirectPlay::DeletePlayerFromGroup,
DPMSG_GROUPADD

IDirectPlay::AddRef
ULONG AddRef();

Increases the reference count of the DirectPlay object by 1. This method is part of
the IUnknown interface inherited by DirectPlay.

· Returns the new reference count of the object.

When the DirectPlay object is created, its reference count is set to 1. Every time
an application obtains an interface to the object or calls the AddRef method, the
object's reference count is increased by 1. Use the IDirectPlay::Release method
to decrease the reference count of the object by 1.

See also IDirectPlay::Initialize, IDirectPlay::QueryInterface,
IDirectPlay::Release

IDirectPlay::Close
HRESULT Close();

Closes a previously opened communication channel. All locally created players
will be destroyed, with corresponding DPMSG_DELETEPLAYER system
messages sent to other session participants.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

See also IDirectPlay::DestroyPlayer, DPMSG_DELETEPLAYER

IDirectPlay::CreateGroup
HRESULT CreateGroup(LPDPID lppidID,
 LPSTR lpGroupFriendlyName, LPSTR lpGroupFormalName);

Creates a group of players for a session. A player ID representing the new group
will be returned to the caller.

· Returns DP_OK if successful, or one of the following error values otherwise:

MICROSOFT CONFIDENTIAL 5/13/96

DPERR_CANTADDPLAYER DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS DPERR_OUTOFMEMORY

lppidID
Address for the DPID that will hold the DirectPlay player ID.

lpGroupFriendlyName
Address for the zero-terminated string that contains the friendly name of the
group.

lpGroupFormalName
Address for the zero-terminated string that contains the formal name of the group.

Messages sent to a player ID designating this group will be sent to all members of
the group. The lpGroupFriendlyName and lpGroupFormalName parameters are
provided for players' convenience only; they are not used internally and do not
need to be unique. However, player IDs assigned by DirectPlay will always be
unique within a session. Groups are recognized as players for the session player
count; if you have a four player game with four existing players, calls to
IDirectPlay::CreateGroup will fail. The state of the
IDirectPlay::EnableNewPlayers method does not affect your application's
ability to create groups.

Upon successful completion, this method sends a DPMSG_ADDPLAYER
system message to all of the other players in the game announcing that a new
group has been created.

See also IDirectPlay::DestroyGroup, DPMSG_ADDPLAYER,
IDirectPlay::EnableNewPlayers, IDirectPlay::EnumGroups,
IDirectPlay::EnumGroupPlayers

IDirectPlay::CreatePlayer
HRESULT CreatePlayer(LPDPID lppidID,
 LPSTR lpPlayerFriendlyName,
 LPSTR lpPlayerFormalName, LPHANDLE lpEvent);

Creates a player for the current game session.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_CANTADDPLAYER DPERR_CANTCREATEPLAYER

DPERR_GENERIC DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS DPERR_NOCONNECTION

lppidID
Address for the DPID that will hold the DirectPlay player ID.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 15

lpPlayerFriendlyName
Address for the zero-terminated string that contains the friendly name of the
player.

lpPlayerFormalName
Address for the zero-terminated string that contains the formal name of the player.

lpEvent
Pointer to an event that will be triggered when a message addressed to this player
is received.

A single process can have multiple players that communicate through a
DirectPlay object with any number of other players running on multiple
computers. The player ID returned to the caller will be used internally to direct
the player's message traffic and manage the player. The lpPlayerFriendlyName
and lpPlayerFormalName parameters are provided for players' convenience only;
they are not used internally and need not be unique. Player IDs assigned by
DirectPlay will always be unique within the session.

Upon successful completion, this method sends a DPMSG_ADDPLAYER
system message to all of the other players in the game session announcing that a
new player has joined the session. The newly created player can use the
IDirectPlay::EnumPlayers method to find out who else is in the game session.

It is highly recommended that an application provide a non-NULL lpEvent and
use this event for synchronization. After creation of a player, use
WaitForSingleObject(*lpEvent, dwTimeout = 0) from Win32 to determine if a
player has messages (the return value will be WAIT_TIMEOUT if there are not
any waiting messages) or use a different time-out to wait for a message to come
in. It is inefficient to loop on the IDirectPlay::Receive method.

See also IDirectPlay::DestroyPlayer, DPMSG_ADDPLAYER,
IDirectPlay::EnumPlayers, IDirectPlay::Receive

IDirectPlay::DeletePlayerFromGroup
HRESULT DeletePlayerFromGroup(DPID pidGroup,
 DPID pidPlayer);

Removes a player from a group.

· Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPLAYER

pidGroup
Player ID of the group to be adjusted.

pidPlayer
ID of the player to be removed from the group.

MICROSOFT CONFIDENTIAL 5/13/96

A DPMSG_GROUPDELETE system message is automatically generated to
inform the other players of this change.

See also IDirectPlay::AddPlayerToGroup, DPMSG_GROUPDELETE

IDirectPlay::DestroyGroup
HRESULT DestroyGroup(DPID pidID);

Deletes a group from the session. The player ID belonging to this group will not
be reused during the current session.

· Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPLAYER

pidID
Player ID of the group being removed from the game.

It is not necessary to empty a group before deleting it. The individual players
belonging to the group are not destroyed; however, they will be notified by a
DPMSG_DELETEPLAYER system message that the group has been removed
from the session.

See also IDirectPlay::CreateGroup, DPMSG_DELETEPLAYER

IDirectPlay::DestroyPlayer
HRESULT DestroyPlayer(DPID pidID);

Deletes a player from the game session, removes any pending messages destined
for that player from the message queue, and removes the player from any groups
to which it belonged. The player ID will not be reused during the current session.

· Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPLAYER

pidID
ID of the player that is being removed from the game.

Calling this method automatically sends a DPMSG_DELETEPLAYER system
message to all other players, informing them that this player has been removed
from the session.

See also IDirectPlay::CreatePlayer, DPMSG_DELETEPLAYER

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 17

IDirectPlay::EnableNewPlayers
HRESULT EnableNewPlayers(BOOL bEnable);

Enables or disables the creation of new players.

· Returns DP_OK if successful, or DPERR_INVALIDOBJECT otherwise.

bEnable
If TRUE (the default condition for a session), new players can be created unless
the session has reached its maximum capacity. If FALSE, any attempt to create a
new player will return an error.

This method does not affect your ability to create groups. Typically, new players
and groups can be added to a session until the session's player limit has been
reached. This method can override this behavior if, for example, a session is in
progress and new players are not desired. The IDirectPlay::EnumSessions
method will not enumerate sessions where IDirectPlay::EnableNewPlayers has
been set to FALSE unless the DPENUMSESSIONS_ALL flag is used.

See also IDirectPlay::CreatePlayer, IDirectPlay::CreateGroup,
IDirectPlay::EnumSessions

IDirectPlay::EnumGroupPlayers
HRESULT EnumGroupPlayers(DPID pidGroupPID,
 LPDPENUMPLAYERSCALLBACK lpEnumPlayersCallback,
 LPVOID lpContext, DWORD dwFlags);

Enumerates all of the players of a particular group existing in the current session.

· Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_EXCEPTION DPERR_INVALIDFLAGS

DPERR_INVALIDOBJECT DPERR_INVALIDPLAYER

pidGroupPID
Player ID of the group to be enumerated.

lpEnumPlayersCallback
Address for the EnumPlayersCallback function to be called for every player in
the group.

lpContext
Address for a caller-defined context that is passed to each enumeration callback.

dwFlags
This parameter is not currently used and must be set to 0.

See also IDirectPlay::CreatePlayer, IDirectPlay::DestroyPlayer

MICROSOFT CONFIDENTIAL 5/13/96

IDirectPlay::EnumGroups
HRESULT EnumGroups(DWORD dwSessionID,
 LPDPENUMPLAYERSCALLBACK lpEnumPlayersCallback,
 LPVOID lpContext, DWORD dwFlags);

Enumerates the groups in a session.

· Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

DPERR_UNSUPPORTED

dwSessionID
Session of interest. Do not use unless the DPENUMPLAYERS_SESSION flag is
specified.

lpEnumPlayersCallback
Address of the EnumPlayersCallback function to be called for every group in the
session.

lpContext
Address for a caller-defined context that is passed to each enumeration callback.

dwFlags
Specifies the optional control flag.

DPENUMPLAYERS_SESSION

Requests the name server for the specified session supply its group list.

By default, this method will enumerate using the local player list for the current
session. The DPENUMPLAYERS_SESSION flag can be used, along with a
session ID, to request that a session's name server provide its list for enumeration.
This method cannot be called from within an IDirectPlay::EnumSessions
enumeration. Furthermore, use of the DPENUMPLAYERS_SESSION flag with
this method must occur after the IDirectPlay::EnumSessions method has been
called, and before any attempt to open or close has been made.

See also IDirectPlay::CreatePlayer, IDirectPlay::DestroyPlayer

IDirectPlay::EnumPlayers
HRESULT EnumPlayers(DWORD dwSessionId,
 LPDPENUMPLAYERSCALLBACK lpEnumPlayersCallback,
 LPVOID lpContext, DWORD dwFlags);

Enumerates the players in a session. Groups can also be included in the
enumeration by using the DPENUMPLAYERS_GROUP flag.

· Returns DP_OK if successful, or one of the following error values otherwise:

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 19

DPERR_EXCEPTION DPERR_GENERIC

DPERR_INVALIDOBJECT DPERR_UNSUPPORTED

dwSessionID
Session of interest. Not used unless the DPENUMPLAYERS_SESSION flag is
specified.

lpEnumPlayersCallback
Address for the EnumPlayersCallback function that will be called for every
player in the session.

lpContext
Address for a caller-defined context that is passed to each enumeration callback.

dwFlags
Specifies the control flags.

DPENUMPLAYERS_GROUP

Includes groups in the enumeration of players.

DPENUMPLAYERS_PREVIOUS

Enumerates players previously stored in the registry. Not yet supported.

DPENUMPLAYERS_SESSION

Requests that the name server supply its group list for the specified
session.

This method is often called immediately after the DirectPlay object is opened, and
will enumerate using the local player list for the current session by default. The
IDirectPlay::EnumPlayers method may be called after the
IDirectPlay::EnumSessions method in order to obtain a list of players in a
particular session. IDirectPlay::EnumPlayers uses the
DPENUMPLAYERS_SESSION flag and the session ID returned from the
IDirectPlay::EnumSessions method to obtain this list. However, it cannot be
called from within an IDirectPlay::EnumSessions enumeration. The use of the
DPENUMPLAYERS_SESSION flag with this method must occur after the
IDirectPlay::EnumSessions method has been called and before either the
IDirectPlay::Close or the IDirectPlay::Open method has been called.

See also IDirectPlay::CreatePlayer, IDirectPlay::DestroyPlayer,
IDirectPlay::EnumSessions

IDirectPlay::EnumSessions
HRESULT EnumSessions(LPDPSESSIONDESC lpSDesc,
 DWORD dwTimeout,
 LPDPENUMSESSIONSCALLBACK lpEnumSessionsCallback,
 LPVOID lpContext, DWORD dwFlags);

MICROSOFT CONFIDENTIAL 5/13/96

Enumerates the game sessions connected to this DirectPlay object.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

DPERR_NOSESSIONS

lpSDesc
Address for a DPSESSIONDESC structure describing the sessions to be
enumerated. If a list of all connected sessions, regardless of GUID, is desired, then
the guidSession member in the DPSESSIONDESC structure should be set to
NULL. If the DPENUMSESSIONS_AVAILABLE flag is going to be used with a
password, then the szPassword member should be set accordingly.

dwTimeout
Total amount of time, in milliseconds, that DirectPlay will allow for the
enumeration to complete (not the time between each enumeration).

lpEnumSessionsCallback
Address for the EnumSessionsCallback function to be called for each DirectPlay
session responding.

lpContext
Address for a user-defined context that is passed to each enumeration callback.

dwFlags
Specifies the optional control flags.

DPENUMSESSIONS_AVAILABLE

Enumerates all sessions with a matching password (if provided), opens
player slots, and sets the IDirectPlay::EnableNewPlayers method to
TRUE.

DPENUMSESSIONS_PREVIOUS

Enumerates sessions previously stored in the registry.

This method is usually called immediately after the DirectPlay object is
instantiated; it cannot be called while a game is connected to a session or after a
game has created a session. IDirectPlay::EnumSessions broadcasts an
enumeration request and collects replies from the DirectPlay objects that respond.
The amount of time DirectPlay spends listening for these replies is controlled by
the dwTimeout parameter. When this time interval has expired, your callback will
be notified using the DPESC_TIMEDOUT flag, and a NULL value will be
passed for the lpDPSGameDesc parameter. At this point, you may choose to
continue the enumeration by setting dwTimeOut to a new value and returning
TRUE, or returning FALSE to cancel the enumeration.

See also DPSESSIONDESC, IDirectPlay::EnableNewPlayers

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 21

IDirectPlay::GetCaps
HRESULT GetCaps(LPDPCAPS lpDPCaps);

Obtains the capabilities of this DirectPlay object.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

lpDPCaps
Address for a DPCAPS structure that will be filled with the capabilities of the
DirectPlay object.

See also IDirectPlay::GetPlayerCaps, DPCAPS

IDirectPlay::GetMessageCount
HRESULT GetMessageCount(DPID pidID, LPDWORD lpdwCount);

Queries the name server for the number of messages queued for a specific local
player.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

pidID
Player ID for which the message count is requested. The player must be local.

lpdwCount
Address for a doubleword that will be set to the message count.

See also IDirectPlay::Receive

IDirectPlay::GetPlayerCaps
HRESULT GetPlayerCaps(DPID pidID, LPDPCAPS lpDPPlayerCaps);

Obtains the capabilities of the player's connection by querying the DirectPlay
object.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

pidID
Player ID for which the communication capabilities are requested.

MICROSOFT CONFIDENTIAL 5/13/96

lpDPPlayerCaps
Address for a DPCAPS structure that will be filled with the communication
capabilities of the specified player on this DirectPlay object.

This method is needed because communicating with some players may be slower
than communicating with others.

See also IDirectPlay::GetCaps

IDirectPlay::GetPlayerName
HRESULT GetPlayerName(DPID pidID,
 LPSTR lpPlayerFriendlyName,
 LPDWORD lpdwFriendlyNameLength,
 LPSTR lpPlayerFormalName,
 LPDWORD lpdwFormalNameLength);

Obtains the player's friendly and formal names from the name server.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS DPERR_INVALIDPLAYER

pidID
Player ID for which the player names are being requested.

lpPlayerFriendlyName
Address for the buffer to be filled with the player's friendly name. Set to NULL if
you are only looking for the size of the friendly name or are only looking for the
formal name.

lpdwFriendlyNameLength
Address for a doubleword that either contains the length of the buffer pointed to
by the lpPlayerFriendlyName field or will be filled with the length needed for the
buffer. Set to NULL if you are only interested in the formal name.

lpPlayerFormalName
Address for the buffer to be filled with the player's formal name. Set to NULL if
you are only looking for the size of the formal name or are only looking for the
friendly name.

lpdwFormalNameLength
Address for a doubleword that either contains the length of the buffer pointed to
by the lpPlayerFormalName parameter or will be filled with the length needed for
the buffer. Set to NULL if you are only interested in the friendly name.

If just one of the names is required, you can set the pair of pointers to the other
name to NULL. If the length of the names needs to be determined, the pointers to
the lengths must be valid; however, they can point to zeros or you can set the
pointers to the friendly and formal names to NULL.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 23

If the supplied buffer is not long enough to hold one of the names, an error code
will be returned and the corresponding buffer length will be adjusted to be the
size of the buffer needed.

See also IDirectPlay::SetPlayerName

IDirectPlay::Initialize
HRESULT Initialize(LPGUID lpGUID);

Provided to comply with the Common Object Model (COM) protocol.

· Returns DPERR_ALREADYINITIALIZED.

lpGUID
Address for the GUID used as the interface identifier.

Since the DirectPlay object is initialized when it is created, calling this method
will always result in the DPERR_ALREADYINITIALIZED return value.

See also IDirectPlay::AddRef, IDirectPlay::QueryInterface

IDirectPlay::Open
HRESULT Open(LPDPSESSIONDESC lpSDesc);

Establishes the communication link between DirectPlay and a service provider.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACTIVEPLAYERS DPERR_GENERIC

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

DPERR_UNAVAILABLE DPERR_UNSUPPORTED

DPERR_USERCANCEL

lpSDesc
Address for the DPSESSIONDESC structure describing the session to be
connected to or created.

In a modem environment, calling this method is equivalent to actually dialing the
phone. This prompts the required user interface to configure the communications
protocol that will be invoked with the DirectPlay object. In the case of the serial
modem service provider supplied with DirectPlay, the user is prompted for
dialing information. If the user cancels the dialing process, IDirectPlay::Open
will return a DPERR_USERCANCEL error. This method will also return an error
if any local players exist when it is called.

See also IDirectPlay::Close, DPSESSIONDESC

MICROSOFT CONFIDENTIAL 5/13/96

IDirectPlay::QueryInterface
HRESULT QueryInterface(REFIID riid, LPVOID * ppvObj);

Determines if the DirectPlay object supports a particular COM interface. If it
does, the system increases the reference count for the object, and the application
can begin using that interface immediately. This method is part of the IUnknown
interface inherited by DirectPlay.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

riid
Reference identifier of the interface being requested.

ppvObj
Address for a pointer to be filled with the interface pointer if the query is
successful.

If the application does not need to use the interface retrieved by a call to this
method, it must call the Release method for that interface to free it. The
IDirectPlay::QueryInterface method allows DirectPlay objects to be extended
by Microsoft and third parties without interfering with each other's existing or
future functionality.

See also IDirectPlay::AddRef, IDirectPlay::Release

IDirectPlay::Receive
HRESULT Receive(LPDPID lppidFrom, LPDPID lppidTo,
 DWORD dwFlags, LPVOID lpvBuffer, LPDWORD lpdwSize);

Retrieves a message from the message queue.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL DPERR_GENERIC

DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS

DPERR_NOMESSAGES

lppidFrom
Address for a DPID structure to be filled with the sender's player ID.

lppidTo
Address for a DPID structure to be filled with the receiver's player ID.

dwFlags
Specifies the optional control flags.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 25

DPRECEIVE_ALL

Returns the first available message. This is the default.

DPRECEIVE_FROMPLAYER

Returns the first message from the player ID that the lppidFrom parameter
points to.

DPRECEIVE_PEEK

Returns a message as specified by the other flags, but does not remove it
from the message queue.

DPRECEIVE_TOPLAYER

Returns the first message intended for the player ID that the lppidTo
parameter points to. System messages are addressed to player ID 0.

lpvBuffer
Address for the message buffer. If this buffer is not long enough to hold the
message, an error will be returned and lpdwSize will be filled with the size of
message buffer needed.

lpdwSize
Address for the doubleword that specifies the length of the message buffer.

Any message received from player ID 0 is a system message from the name
server. A message sent to the name server to broadcast to all players still appears
to be from the sender. Both the DPRECEIVE_TOPLAYER and
DPRECEIVE_FROMPLAYER flags can be specified, in which case
IDirectPlay::Receive will return whichever message is encountered first.

See also IDirectPlay::Send

IDirectPlay::Release
ULONG Release();

Decreases the reference count of the DirectPlay object by 1. This method is part
of the IUnknown interface inherited by DirectPlay.

· Returns the new reference count of the object.

The DirectPlay object deallocates itself when its reference count reaches 0. Use
the IDirectPlay::AddRef method to increase the reference count of the object by
1.

See also IDirectPlay::AddRef, IDirectPlay::QueryInterface

IDirectPlay::SaveSession
HRESULT SaveSession();

MICROSOFT CONFIDENTIAL 5/13/96

Saves the current session in the registry.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_GENERIC DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS DPERR_OUTOFMEMORY

DPERR_UNSUPPORTED

The functionality of this method is dependent on the service provider, which will
save enough transport-specific information in the registry to restore the
connection. IDirectPlay::SaveSession is unsupported in the TCP and IPX service
providers. In the serial modem service provider, IDirectPlay::SaveSession
functions only for the client session (the one that dials), in which case it will save
the phone number in the registry for future use.

See also IDirectPlay::EnumSessions

IDirectPlay::Send
HRESULT Send(DPID pidFrom, DPID pidTo, DWORD dwFlags,
 LPVOID lpvBuffer, DWORD dwBuffSize);

Sends messages to other players, to other groups of players, or to all players in the
session.

· Returns DP_OK if successful, the number of messages waiting for transmission in
DirectPlay's internal queue, or one of the following error values:

DPERR_BUSY DPERR_INVALIDOBJECT

DPERR_INVALIDPLAYER DPERR_SENDTOOBIG

pidFrom
ID of the sending player.

pidTo
ID of the receiving player.

dwFlags
Indicates how the message should be sent. Not all options may be supported by a
particular service provider.

DPSEND_GUARANTEE

Sends the message using a reliable method. Retries until the message is
received or until the DirectPlay time-out occurs.

DPSEND_HIGHPRIORITY

Sends the message as a HIGHPRIORITY message.

DPSEND_TRYONCE

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 27

Sends the message without error detection and without retry options
enabled.

lpvBuffer
Address for the message being sent.

dwBuffSize
Length of the message being sent.

To send a message to another player, specify the appropriate player ID. To send a
message to a group of players, send the message to the player ID assigned to the
previously created group. To send messages to the entire session, specify the
player ID 0, which always represents the name server. IDirectPlay::Send will
either return one of the values listed above or the number of messages currently
queued for transmission. If the internal queue fills to the limit specified by the
dwMaxQueueSize member of the DPCAPS structure, an error will be generated
and the message will not be added to the queue. The IDirectPlay::Send method
cannot be used inside an IDirectDrawSurface::Lock /
IDirectDrawSurface::Unlock or IDirectDrawSurface::GetDC /
IDirectDrawSurface::ReleaseDC method pair.

See also IDirectPlay::Receive

IDirectPlay::SetPlayerName
HRESULT SetPlayerName(DPID pidID,
 LPSTR lpPlayerFriendlyName, LPSTR lpPlayerFormalName);

Changes the player's friendly and formal names.

· Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDPLAYER DPERR_INVALIDOBJECT

pidID
ID for which the player name is being requested.

lpPlayerFriendlyName
Address to a string containing the player's new friendly name.

lpPlayerFormalName
Address to a string containing the player's new formal name.

This method cannot be used to change the names of a group.

See also IDirectPlay::GetPlayerName

Structures
DirectPlay structures must have their size fields, where present, properly set
before calling DirectPlay functions or an error will result.

MICROSOFT CONFIDENTIAL 5/13/96

Data structures DPCAPS

DPSESSIONDESC

Message structures DPMSG_ADDPLAYER

DPMSG_DELETEPLAYER

DPMSG_GENERIC

DPMSG_GROUPADD

DPMSG_GROUPDELETE

DPCAPS
typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwMaxBufferSize;
 DWORD dwMaxQueueSize;
 DWORD dwMaxPlayers;
 DWORD dwHundredBaud;
 DWORD dwLatency;
} DPCAPS;

Contains the capabilities of a DirectPlay object after a call to the
IDirectPlay::GetCaps method. This structure is read-only.

dwSize
Size of this structure, in bytes. Must be initialized before the structure is used.

dwFlags
Specifies the optional control flags.

DPCAPS_GUARANTEED

Supports verification of received messages. Retransmits the message, if
necessary.

DPCAPS_NAMESERVER

The computer represented by the calling application is the name server.

DPCAPS_NAMESERVICE

A name server is supported.

dwMaxBufferSize
Maximum buffer size for this DirectPlay object.

dwMaxQueueSize
Maximum queue size for this DirectPlay object.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 29

dwMaxPlayers
Maximum number of players supported in a session.

dwHundredBaud
Baud rate specified in hundredths. For example, 2400 baud is represented by the
value 24.

dwLatency
Latency estimate per service provider, in milliseconds. If this value is 0,
DirectPlay cannot provide an estimate. Accuracy for some service providers rests
on application-to-application testing, taking into consideration the average
message size.

DPSESSIONDESC
typedef struct {
 DWORD dwSize;
 GUID guidSession;
 DWORD dwSession;
 DWORD dwMaxPlayers;
 DWORD dwCurrentPlayers;
 DWORD dwFlags;
 char szSessionName[DPSESSIONNAMELEN];
 char szUserField[DPUSERRESERVED];
 DWORD dwReserved1;
 char szPassword[DPPASSWORDLEN];
 DWORD dwReserved2;
 DWORD dwUser1;
 DWORD dwUser2;
 DWORD dwUser3;
 DWORD dwUser4;
} DPSESSIONDESC;
typedef DPSESSIONDESC FAR *LPDPSESSIONDESC;

Contains a description of the capabilities of a DirectPlay session.

dwSize
Size of this structure, in bytes. Must be initialized before the structure is used.

guidSession
Globally unique identifier (GUID) for the game. It identifies the game so that
DirectPlay connects only to other machines playing the same game.

dwSession
Session identifier of the session that has been created or opened.

dwMaxPlayers
Maximum number of players and groups allowed in this session. This member is
ignored if the application is not creating a new session.

dwCurrentPlayers
Current players and groups in the session.

MICROSOFT CONFIDENTIAL 5/13/96

dwFlags
Specifies one of the control flags:

DPOPEN_CREATESESSION

Creates a new session described by the DPSESSIONDESC structure.

DPOPEN_OPENSESSION

Opens the session identified by the dwSession member.

DPENUMSESSIONS_ALL

Enumerates all active sessions connected to this DirectPlay object,
regardless of their occupancy, passwords, or the
IDirectPlay::EnableNewPlayers method's status.

szSessionName
String containing the name of the session.

szUserField
String containing user data.

dwReserved1
Reserved for future use.

szPassword
String containing the optional password that, once set up, is required to join this
session.

dwReserved2
Reserved for future use.

dwUser1, dwUser2, dwUser3, dwUser4
User-specific data for the game or session.

System Messages
Messages returned by the IDirectPlay::Receive method from player ID 0 are
system messages. All system messages begin with a doubleword dwType. You
can cast the buffer returned by the IDirectPlay::Receive method to a generic
message (DPMSG_GENERIC) and switch on the dwType element, which will
have a value equal to one of the DPSYS_* messages (DPSYS_ADDPLAYER,
and so on).

Your application should be prepared to handle the following system messages:

Value of dwType Message structure

DPSYS_ADDPLAYER DPMSG_ADDPLAYER

DPSYS_ADDPLAYERTOGROUP DPMSG_GROUPADD

DPSYS_DELETEGROUP DPMSG_DELETEPLAYER

DPSYS_DELETEPLAYER DPMSG_DELETEPLAYER

DPSYS_DELETEPLAYERFROMGRP DPMSG_GROUPDELETE

DPSYS_SESSIONLOST DPMSG_GENERIC

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 31

DPMSG_ADDPLAYER
typedef struct{
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 char szLongName[DPLONGNAMELEN];
 char szShortName[DPSHORTNAMELEN];
 DWORD dwCurrentPlayers;
} DPMSG_ADDPLAYER;

Contains information for the DPSYS_ADDPLAYER system message. The
system sends this message when players and groups are added to a session.

dwType
Identifier for the message.

dwPlayerType
Indicates whether a player or a group was added. TRUE indicates a player was
added; FALSE indicates a group was added.

dpId
ID for a player or group.

szLongName
Formal name for player or group.

szShortName
Friendly name for player or group.

dwCurrentPlayers
Number of players in the session.

DPMSG_DELETEPLAYER
typedef struct{
 DWORD dwType;
 DPID dpId;
} DPMSG_DELETEPLAYER;

Contains information for the DPSYS_DELETEPLAYER and
DPSYS_DELETEGROUP system messages. The system sends these messages
when players and groups are deleted from a session.

dwType
Identifier for the message.

dpId
ID of a player or group that has been deleted.

MICROSOFT CONFIDENTIAL 5/13/96

DPMSG_GENERIC
typedef struct{
 DWORD dwType;
} DPMSG_GENERIC;

This structure is provided for message processing.

dwType
Identifier for the message.

Your application can first cast the unknown message to the DPMSG_GENERIC
type, then perform further processing based on the value of dwType. One other
system message, DPSYS_SESSIONLOST, also uses this structure.

DPMSG_GROUPADD
typedef struct{
 DWORD dwType;
 DPID dpIdGroup;
 DPID dpIdPlayer;
} DPMSG_GROUPADD;

Contains information for the DPSYS_ADDPLAYERTOGROUP and
DPSYS_DELETEPLAYERFROMGRP system messages. The system sends
these messages when players are added to and deleted from a group, respectively.

dwType
Identifier for the message.

dpIdGroup
ID of the group to which the player was added or deleted.

dpIdPlayer
ID of the player that was added to or deleted from the specified group.

DPMSG_GROUPDELETE
typedef DPMSG_GROUPADD DMSG_GROUPDELETE;

Contains information for the DPSYS_DELETEPLAYERFROMGRP message.
For a description of the structure members, see the DPMSG_GROUPADD
structure.

Return Values
Errors are represented by negative values and cannot be combined. This table lists
the values that can be returned by all IDirectPlay methods. For a list of the error
codes each method is capable of returning, see the individual method
descriptions.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 4 DirectPlay 33

DP_OK

The request completed successfully.

DPERR_ACCESSDENIED

The session is full or an incorrect password was supplied.

DPERR_ACTIVEPLAYERS

The requested operation cannot be performed because there are existing
active players.

DPERR_ALREADYINITIALIZED

This object is already initialized.

DPERR_BUFFERTOOSMALL

The supplied buffer is not large enough to contain the requested data.

DPERR_BUSY

The DirectPlay message queue is full.

DPERR_CANTADDPLAYER

The player cannot be added to the session.

DPERR_CANTCREATEPLAYER

A new player cannot be created.

DPERR_CAPSNOTAVAILABLEYET

The capabilities of the DirectPlay object have not been determined yet. This
error will occur if the DirectPlay object is implemented on a connectivity
solution that requires polling to determine available bandwidth and latency.

DPERR_EXCEPTION

An exception occurred when processing the request.

DPERR_GENERIC

An undefined error condition occurred.

DPERR_INVALIDFLAGS

The flags passed to this function are invalid.

DPERR_INVALIDOBJECT

The DirectPlay object pointer is invalid.

DPERR_INVALIDPARAMS

One or more of the parameters passed to the function are invalid.

DPERR_INVALIDPLAYER

The player ID is not recognized as a valid player ID for this game session.

DPERR_NOCAPS

The communication link underneath DirectPlay is not capable of this
function.

DPERR_NOCONNECTION

No communication link was established.

MICROSOFT CONFIDENTIAL 5/13/96

DPERR_NOMESSAGES

There are no messages to be received.

DPERR_NONAMESERVERFOUND

No name server could be found or created. A name server must exist in order
to create a player.

DPERR_NOPLAYERS

There are no active players in the session.

DPERR_NOSESSIONS

There are no existing sessions for this game.

DPERR_OUTOFMEMORY

There is insufficient memory to perform the requested operation.

DPERR_SENDTOOBIG

The message buffer passed to the IDirectPlay::Send method is larger than
allowed.

DPERR_TIMEOUT

The operation could not be completed in the specified time.

DPERR_UNAVAILABLE

The requested service provider or session is not available.

DPERR_UNSUPPORTED

The function is not available in this implementation.

DPERR_USERCANCEL

The user canceled the connection process during a call to the
IDirectPlay::Open method.

MICROSOFT CONFIDENTIAL 5/13/96

	Overview
	DirectPlay Architecture
	Globally Unique Identifiers
	Using DirectPlay
	Session Management
	Player Management
	Group Management
	Message Management

	Reference
	Functions
	DirectPlayCreate
	DirectPlayEnumerate

	Callback Functions
	EnumDPCallback
	EnumPlayersCallback
	EnumSessionsCallback

	IDirectPlay Interface
	IDirectPlay Interface Method Groups
	IDirectPlay::AddPlayerToGroup
	IDirectPlay::AddRef
	IDirectPlay::Close
	IDirectPlay::CreateGroup
	IDirectPlay::CreatePlayer
	IDirectPlay::DeletePlayerFromGroup
	IDirectPlay::DestroyGroup
	IDirectPlay::DestroyPlayer
	IDirectPlay::EnableNewPlayers
	IDirectPlay::EnumGroupPlayers
	IDirectPlay::EnumGroups
	IDirectPlay::EnumPlayers
	IDirectPlay::EnumSessions
	IDirectPlay::GetCaps
	IDirectPlay::GetMessageCount
	IDirectPlay::GetPlayerCaps
	IDirectPlay::GetPlayerName
	IDirectPlay::Initialize
	IDirectPlay::Open
	IDirectPlay::QueryInterface
	IDirectPlay::Receive
	IDirectPlay::Release
	IDirectPlay::SaveSession
	IDirectPlay::Send
	IDirectPlay::SetPlayerName

	Structures
	DPCAPS
	DPSESSIONDESC
	System Messages
	DPMSG_ADDPLAYER
	DPMSG_DELETEPLAYER
	DPMSG_GENERIC
	DPMSG_GROUPADD
	DPMSG_GROUPDELETE

	Return Values

