
MicrosoftÒ DirectXÔ 2
Software Development Kit

MICROSOFT CONFIDENTIAL 5/13/96

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

3D Studio is a registered trademark of Autodesk, Inc.
OpenGL is a registered trademark of Silicon Graphics, Inc.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 3

C H A P T E R 1

Using DirectX 2 in Windows...
Reasons for Developing DirectX Windows Applications..
Providing Standards for Hardware Accelerators...

DirectX 2 Components..
DirectDraw...
DirectSound...
DirectPlay...
Direct3D...
DirectInput...
AutoPlay...
Sample Applications..

DirectX and the Component Object Model...
The Component Object Model...
IUnknown...
DirectX 2 SDK COM Interfaces..
C++ and the COM Interface...
Accessing COM Objects Using C..
Interface Method Names and Syntax...
Using Macro Definitions...
Floating-point Precision..

Differences Between the Game SDK and the DirectX 2 SDK..
DirectDraw...
DirectSound...
DirectPlay...
Direct3D...
DirectInput...
AutoPlay...
DirectSetup...

Conventions...

Introducing the DirectX 2
Software Development Kit

MICROSOFT CONFIDENTIAL 5/13/96

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 5

Using DirectX 2 in Windows
The Microsoft® DirectX™ 2 Software Development Kit (SDK) provides a finely-
tuned set of application programming interfaces (APIs) that give you, as a
developer, the resources needed to design high-performance, real-time
applications, such as the next generation of computer games and multimedia
applications.

Microsoft developed the DirectX 2 SDK for a number of reasons. The primary
reason is to make performance on Windows-based platforms rival or exceed
performance on MS-DOS-based platforms and game console-system platforms.
Other reasons are to promote game development for Microsoft Windows®, and to
assist you by providing a robust, standardized, and well-documented platform for
which to write games.

Reasons for Developing DirectX Windows
Applications
DirectX was developed to provide Microsoft Windows applications with high-
performance, real-time access to available hardware on current computer systems.
DirectX provides a consistent interface between hardware manufacturers and you,
the application developer, thereby reducing the complexity of installation and
configuration while utilizing the hardware to its best advantage.

One of the primary reasons for creating DirectX was to promote games
development on the Windows platform. The majority of games developed for the
personal computer today are MS-DOS-based. However, when developing MS-
DOS-based games, you must conform to a number of hardware implementations
for a variety of cards, which complicates installation. In addition, development of
MS-DOS-based games can be much more complex on a personal computer than
on a console system, due to the generalized processor, greater RAM size, and
persistent storage of the personal computer.

A high-performance Windows-based game will:

· Install successfully.

· Take advantage of hardware accelerator cards designed specifically for improving
performance.

· Take advantage of Windows hardware and software standards such as Plug and
Play.

· Take advantage of the communications services built into Windows.

MICROSOFT CONFIDENTIAL 5/13/96

Providing Standards for Hardware
Accelerators
The primary goals of the DirectX 2 SDK are to provide portable access to the
features in use with MS-DOS® today, to not compromise MS-DOS or game
console performance, and to remove the obstacles to hardware innovation on the
personal computer platform.

Another important goal is to provide guidelines for hardware companies based on
feedback from high-performance application developers and independent
hardware vendors (IHVs). Therefore, the DirectX 2 SDK components often
provide specifications for hardware accelerator features that do not yet exist. In
many cases, these specifications are emulated in the software. In other cases, the
capabilities of the hardware must be polled first, and the feature bypassed if it is
not supported.

Some of the display hardware features coming out in the near future include:

· Overlays. Overlays will be supported so page flipping will be enabled within a
window in a graphic device interface (GDI). Page flipping is the double-buffer
scheme used to display frames on the entire screen.

· Sprite engines, used to make overlaying sprites easier.

· Stretching with interpolation. Stretching a smaller frame to fit the entire screen
can be an efficient way to conserve display RAM.

· Alpha blending, used to mix colors at the hardware pixel level.

· Three-dimensional (3D) accelerators with perspective-correct textures. This
allows textures to be displayed on a 3D surface; for example, hallways in a castle
generated by 3D software can be textured with a brick wall bitmap that maintains
the correct perspective.

· Z-buffer-aware blits for 3D graphics.

· 2 megabytes (MB) of display memory as standard. 3D games, for example,
generally need at least this much display RAM.

· A compression standard so you can put more data into display memory. This
standard will be used for textures, will include transparency compression, and will
be very fast when implemented in software as well as hardware.

Audio hardware features that will be released include:

· 3D audio enhancers that provide a spatial placement for different sounds. This will
be particularly effective with headphones.

· Onboard memory for audio boards.

· Audio-video combination boards that share onboard memory.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 7

In addition, video playback will see the benefit of hardware accelerators that will
be compatible with the DirectX 2 SDK. One of the features that will be supported
by future releases of the DirectX 2 SDK is hardware-accelerated decompression
of YUV video.

DirectX 2 Components
The DirectX 2 SDK is composed of several interfaces that address and answer the
performance issues of programming games and high-performance applications in
the Windows 95 operating system:

· The Microsoft DirectDraw™ application programming interface. This accelerates
hardware and software animation techniques by providing direct access to bitmaps
in off-screen display memory as well as extremely fast access to the blitting and
buffer-flipping capabilities of the hardware.

· The Microsoft DirectSound™ application programming interface. This enables
hardware and software sound mixing and playback.

· The Microsoft DirectPlay™ application programming interface. This allows easy
connectivity of games over a modem link or network.

· The Microsoft Direct3D™ application programming interface. This provides a
high-level Retained-mode interface that allows applications to easily implement a
complete 3D graphical system, and a low-level Immediate-mode interface that
applications can use to take complete control over the rendering pipeline.

· The Microsoft DirectInput™ application programming interface. This provides
joystick input capabilities to your game that are scalable to future Windows
hardware input APIs and drivers.

· The Microsoft AutoPlay feature of the Microsoft Windows 95 operating system.
This lets your CD run an installation program or the game itself immediately upon
insertion of the CD.

The last two features, DirectInput and AutoPlay, exist in Microsoft Win32®
application programming interface and are not unique to the DirectX 2 SDK.

DirectDraw
The biggest gain in performance in the DirectX 2 SDK comes from the
DirectDraw services, a combination of four Component Object Model (COM)
interfaces: IDirectDraw, IDirectDrawSurface, IDirectDrawPalette, and
IDirectDrawClipper. For more information about the COM concepts required for
programming applications using the DirectX 2 SDK, see The Component
Object Model.

A DirectDraw object, created using the DirectDrawCreate function, represents
the display adapter card. One of the object's methods,
IDirectDraw::CreateSurface, creates the primary DirectDrawSurface object,

MICROSOFT CONFIDENTIAL 5/13/96

which represents the display memory being viewed on the monitor. From the
primary surface, off-screen surfaces can be created in a linked-list fashion.

In the most common case, one back buffer surface is created in addition to the
primary surface and exchanges images with the primary surface. While the screen
is busy displaying the lines of the image in the primary surface, the back buffer
surface frame is being composed. This is done by transferring a series of off-
screen bitmaps stored on other DirectDrawSurface objects in display RAM. The
IDirectDrawSurface::Flip method is called to display the recently composed
frame, which sets a register so the exchange occurs when the screen performs a
vertical retrace. This operation is asynchronous, so the application can continue
processing after calling IDirectDrawSurface::Flip. (After this method has been
called, the back buffer is automatically write-blocked until the exchange occurs.)
After the exchange occurs, this process continues: the application composes the
next frame in the back buffer, calls IDirectDrawSurface::Flip, and so on.

DirectDraw improves performance over the Windows 3.1 GDI model. The
Windows 3.1 GDI model had no direct access to bitmaps in display memory.
Blits always occurred in system RAM and were then transferred to display
memory, thereby slowing performance. With DirectDraw, all processing is done
on the display adapter card whenever possible. DirectDraw also improves
performance over the Microsoft Windows 95 and Windows NT GDI model,
which uses the CreateDIBSection function to enable hardware processing.

The third type of DirectDraw object is DirectDrawPalette. Because the physical
display palette is usually maintained in display hardware, an object represents and
manipulates it. The IDirectDrawPalette interface implements palettes in hardware.
These bypass Windows palettes and are therefore only available when a game has
exclusive access to the display hardware. DirectDrawPalette objects are also
created from DirectDraw objects.

The fourth type of DirectDraw object is DirectDrawClipper. DirectDraw manages
clipped regions of display memory by using this object.

Transparent blitting is the technique by which a bitmap is transferred to a surface
and a certain color, or range of colors, in the bitmap is defined as transparent.
Transparent blits are achieved using color keying. Source color keying operates
by defining which color or color range on the bitmap is transparent and therefore
not copied during a transfer operation. Destination color keying operates by
defining which color or color range on the surface will be covered by pixels of
that color or color range in the source bitmap.

Finally, DirectDraw supports overlays in hardware and by software emulation.
Overlays present an easier means of implementing sprites and managing multiple
layers of animation. Any DirectDrawSurface object can be created as an overlay
with all of the capabilities of any other surface, plus extra capabilities associated
only with overlays. These capabilities require extra display memory, and if there

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 9

are no overlays in display memory, the overlay surfaces can exist in system
memory.

Color keying works in the same way for overlays as for transparent blits. The z-
order of the overlay automatically handles the occlusion and transparency
manipulations between overlays.

DirectSound
Programming for high-performance applications and games requires efficient and
dynamic sound production. Microsoft provides two methods for achieving this:
MIDI streams and DirectSound. MIDI streams are actually part of the Windows
95 multimedia application programming interface. They provide the ability to
time stamp MIDI messages and send a buffer of these messages to the system,
which can then efficiently integrate them with its processes. For more information
about MIDI streams, see the documentation included with the Win32 SDK.

DirectSound implements a new model for playing back digitally-recorded sound
samples and mixing different sample sources together. As with other object
classes in the DirectX 2 SDK, DirectSound uses the hardware to its greatest
advantage whenever possible and emulates hardware features in software when
the feature is not present in hardware. You can query hardware capabilities at run
time to determine the best solution for any given personal computer
configuration.

DirectSound is built on the COM-based interfaces IDirectSound and
IDirectSoundBuffer, and is extensible to other interfaces. For more information
about the COM concepts required for programming applications using the
DirectX 2 SDK, see The Component Object Model.

The DirectSound object represents the sound card and its various attributes. The
DirectSoundBuffer object is created using the DirectSound object's
IDirectSound::CreateSoundBuffer method and represents a buffer containing
sound data. Several DirectSoundBuffer objects can exist and be mixed together
into the primary DirectSoundBuffer object. DirectSound buffers are used to start,
stop, and pause sound playback, and to set attributes such as frequency, format,
and so on.

Depending on the card type, DirectSound buffers can exist in hardware as
onboard RAM, wave table memory, a direct memory access (DMA) channel, or a
virtual buffer (for an I/O port-based audio card). Where there is no hardware
implementation of a DirectSound buffer, it is emulated in system memory.

The primary buffer is generally used to mix sound from secondary buffers, but
can be accessed directly for custom mixing or other specialized activities. (Use
caution in locking the primary buffer, because this blocks all access to the sound
hardware from other sources).

MICROSOFT CONFIDENTIAL 5/13/96

The secondary buffers can store common sounds played throughout an
application, such as in a game. A sound stored in a secondary buffer can be
played as a single event or as a looping sound that plays repeatedly.

Secondary buffers can also play sounds larger than available sound buffer
memory. When used to play a sound that is larger than the buffer, the secondary
buffer serves as a queue that stores the portions of the sound about to be played.

DirectPlay
One of the most compelling features of the personal computer as a game platform
is its easy access to communication services. DirectPlay is a service that
capitalizes on this capability and allows multiple players to interact with a game
through standard modems, network connections, or online services.

The IDirectPlay interface contains methods providing capabilities such as
creating and destroying players, adding players to and deleting players from
groups, sending messages to players, inviting players to participate in a game, and
so on.

DirectPlay is composed of the interface to the game, as defined by the IDirectPlay
interface and the DirectPlay server. DirectPlay servers are provided by Microsoft
for modems and networks, as well as by third parties. When using a supported
server, DirectPlay-enabled games can bypass connectivity and communication
overhead details.

Direct3D
Direct3D is the next generation of real-time, interactive 3D technology for
mainstream computer users on the desktop and the Internet. It provides the API
services and device independence that you need, delivers a common driver model
for hardware vendors, enables turn-key 3D solutions to be offered by personal
computer manufacturers, and makes it easy for end-users to add high-end 3D to
their systems.

Direct3D is a complete set of real-time 3D graphics services that delivers fast
software-based rendering of the full 3D rendering pipeline (transformations,
lighting, and rasterization) and transparent access to hardware acceleration.
Direct3D offers a comprehensive next-generation 3D solution for mainstream
computers. API services include an integrated high-level Retained mode and low-
level Immediate mode API, and support for other systems that might use
Direct3D to gain access to 3D hardware acceleration. Direct3D is fully scalable,
enabling all or part of the 3D rendering pipeline to be accelerated by hardware.
Direct3D exposes advanced graphics capabilities of 3D hardware accelerators,
including z-buffering, anti-aliasing, alpha blending, mipmapping, atmospheric
effects, and perspective-correct texture mapping. Tight integration with other
DirectX technologies enables Direct3D to deliver such advanced features as video

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 11

mapping, hardware 3D rendering in 2D overlay planes—and even sprites—
providing seamless use of 2D and 3D graphics in interactive media titles.

DirectInput
The joystick represents a class of devices that report tactile movements and
actions players make within a game. DirectInput provides the functionality to
process the data representing these movements and actions from joysticks, as well
as other related devices, such as trackballs and flight harnesses.

Currently, DirectInput is simply another name for an existing Win32 function,
joyGetPosEx. This function provides extended capabilities to its predecessor,
joyGetPos, and should be used for any joystick services. In future support for
input devices, including virtual reality hardware, games that use joyGetPosEx
will be automatically supported for joystick input services. This is not the case for
joyGetPos.

AutoPlay
AutoPlay is a feature of Windows 95 that automatically plays a CD-ROM or
audio CD when inserted into a CD-ROM drive. While this feature is not specific
to the Windows 95 DirectX 2 SDK; any CD-ROM product that bears the
Windows 95 logo must be enabled with the AutoPlay feature.

Sample Applications
Sample applications that demonstrate the components of the Windows 95 DirectX
2 SDK are located in the SDK\SAMPLES directory.

DirectX and the Component Object Model

The Component Object Model
Many of the APIs in the DirectX 2 SDK are composed of objects and interfaces
based on the Component Object Model (COM). COM is a foundation for an
object-based system that focuses on reuse of interfaces and is the model at the
heart of OLE programming. It is also an interface specification from which any
number of interfaces can be built. It is an object model at the operating system
level.

Many DirectX 2 APIs are instantiated as a set of OLE objects. The object can be
considered a black box that represents the hardware and requires communication
with applications through an interface. The commands sent to and from the object
through the COM interface are called methods. For example, the
IDirectDraw::GetDisplayMode method is sent through the IDirectDraw

MICROSOFT CONFIDENTIAL 5/13/96

interface to get the current display mode of the display adapter from the
DirectDraw object.

Objects can bind to other objects at run time and use the implementation of
interfaces provided by the other object. If you know an object is an OLE object,
and what interfaces that object supports, your application, or another object, can
determine what services the first object can be called upon to perform. One of the
methods inherited by all OLE objects, called QueryInterface, lets you determine
what interfaces are supported by an object and create pointers to these interfaces.

IUnknown
All COM interfaces are derived from an interface called IUnknown. The
IUnknown interface provides DirectX with control of the object's lifetime, and the
ability to navigate multiple interfaces. IUnknown has only three methods:

· AddRef, which increments the reference count of the object by 1 when an
interface or another application binds itself to the object.

· Release, which decrements the reference count of the object by 1. When the count
reaches 0, the object is deallocated.

· QueryInterface, which queries the object about the features it supports by asking
for pointers to a specific interface.

AddRef and Release maintain the reference count of a particular object. For
example, if you create a DirectDrawSurface object, the reference count of the
object is set to 1. Each time a function returns a pointer to an interface for that
object, the function must then call AddRef through that pointer to increment the
reference count. All AddRef calls must be matched with a call to Release. Before
the pointer can be destroyed, you must call Release through that pointer. Once the
reference count of a particular object reaches 0, the object is destroyed and all
interfaces to that object are then invalid.

QueryInterface determines whether an object supports a specific interface. If the
interface is supported, QueryInterface returns a pointer to that particular
interface. You can then use the methods contained in that interface to
communicate with the object. If QueryInterface successfully returns a pointer to
an interface, it implicitly calls AddRef to increment the reference count, so your
application must call Release to decrement the reference count before destroying
the pointer to the interface.

DirectX 2 SDK COM Interfaces
The interfaces in the DirectX 2 SDK have been created at a very basic level of the
COM programming hierarchy. Each main device object interface, such as
IDirectDraw, IDirectSound, or IDirectPlay, derives directly from the IUnknown
interface in OLE. Creation of these basic objects is handled by specialized

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 13

functions in the dynamic link library (DLL) for each object rather than by the
Win32 CoCreateInstance function typically used to create COM objects.

In general, the DirectX 2 SDK object model provides one main object for each
device, from which other support service objects are derived. For example, the
DirectDraw object represents the display adapter. It is used to create
DirectDrawSurface objects that represent the display RAM and
DirectDrawPalette objects that represent hardware palettes. Similarly, the
DirectSound object represents the audio card and creates DirectSoundBuffer
objects that represent the sound sources on that card.

Besides the ability to generate subordinate objects, the main device object
determines the capabilities of the hardware device it represents, such as the screen
size and number of colors, or whether the audio card has wave table synthesis.

C++ and the COM Interface
To C++ programmers, a COM interface is like an abstract base class. That is, it
defines a set of signatures and semantics but not the implementation, and no state
data is associated with the interface. In a C++ abstract base class, all methods are
defined as "pure virtual," which means they have no code associated with them.

Pure virtual C++ functions and COM interfaces both employ a device called a
vtable. A vtable contains the addresses of all functions that implement the given
interface. If you want a program or object to use these functions, you can use the
QueryInterface method to verify the interface exists on an object, and to obtain a
pointer to that interface. What your program or object actually receives from the
object after sending QueryInterface is a pointer to the vtable, through which this
method can call the interface methods implemented by the object. This
mechanism totally isolates private data used by the object and the calling client
process.

Another similarity of COM objects to C++ objects is that the first argument of a
method is the name of the interface or class, called the this argument in C++.
Because COM objects and C++ objects are totally binary compatible, the
compiler treats COM interfaces like C++ abstract classes and assumes the same
syntax. This results in less complex code. For example, the this argument in C++
is treated as an understood parameter and not coded, and the indirection through
the vtable is handled implicitly in C++.

Accessing COM Objects Using C
Any COM interface method can be called from a C program. There are two things
you need to remember when calling an interface method from C:

· The first parameter of the method is always a reference to the object that has been
created and is invoking the method (the this argument).

MICROSOFT CONFIDENTIAL 5/13/96

· Each method in the interface is referenced through a pointer to the object's vtable.

The following example creates a surface associated with a DirectDraw object by
calling the IDirectDraw::CreateSurface method using the C programming
language:

ret = lpDD->lpVtbl->CreateSurface (lpDD, &ddsd, &lpDDS,
 NULL);

The DirectDraw object associated with the new surface is referenced by the lpDD
parameter. Incidentally, this method fills in a surface description structure
(&ddsd) and returns a pointer the new surface (&lpDDS).

To call the IDirectDraw::CreateSurface method, you first dereference the
DirectDraw object's vtable, then dereference the method from the vtable. The first
parameter supplied in the method is a reference to the DirectDraw object that has
been created and is invoking the method.

To illustrate the difference between calling a COM object method in C and C++,
the same method in C++ is shown below (C++ implicitly dereferences the vtbl
pointer and passes the this pointer):

ret = lpDD->CreateSurface(&ddsd, &lpDDS, NULL)

Interface Method Names and Syntax
All of the COM interface methods described in this document are shown using
C++ class names. This naming convention is used for consistency, and to
differentiate between methods used for different DirectX objects that use the
same name, such as QueryInterface, AddRef, and Release. This does not imply
that these methods can only be used with C++.

In addition, the syntax provided for the methods uses C++ conventions for
consistency. It does not include the this pointer to the interface. When
programming in C, the pointer to the interface must be included in each method.
For example, the following example shows the C++ syntax for the
IDirectDraw::GetCaps method:

HRESULT GetCaps(LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps);

The same example using C syntax looks like this:

HRESULT GetCaps(LPDIRECTDRAW lpDD,
 LPDDCAPS lpDDDriverCaps, LPDDCAPS lpDDHELCaps);

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 15

The lpDD parameter is a pointer to the DirectDraw structure that represents the
DirectDraw object.

Using Macro Definitions
Many of the header files for the DirectX interfaces include macro definitions for
each method. These macros are included to simplify the use of the methods in
your programming.

For example, the following example uses the IDirectDraw_CreateSurface macro
to call the IDirectDraw::CreateSurface method. The first parameter is a
reference to the DirectDraw object that has been created and is invoking the
method:

ret = IDirectDraw_CreateSurface (lpDD, &ddsd, &lpDDS,
 NULL);

To obtain a current list of the methods supported by macro definitions, see the
appropriate header file for the DirectX component you want to use.

Floating-point Precision
The DirectX architecture uses a floating-point precision of 53. If your application
needs to change this precision, it must be changed back to 53 when the
calculations are finished. Otherwise, system components that depend on the
default value will stop working.

Differences Between the Game SDK and the
DirectX 2 SDK

The DirectX 2 SDK provides more services—and more avenues for innovation—
than did the Game SDK. Although the DirectX 2 SDK contains additional
functions and services, all of the applications you have written with the Game
SDK will compile and run successfully without changes.

This section identifies some of the most significant differences and improvements
of the DirectX 2 SDK over the Game SDK. The purpose of this section is to help
developers familiar with the Game SDK quickly identify several important areas
of the DirectX SDK that are significantly different.

MICROSOFT CONFIDENTIAL 5/13/96

DirectDraw
The DirectDraw API functions have been significantly improved over those found
in the Game SDK. The following list briefly describes the major improvements:

· The IDirectDraw2 and IDirectDrawSurface2 interfaces were added. For more
information, see IDirectDraw2 Interface and IDirectDrawSurface2 Interface.

· The following flags were added:

DDBLT_DEPTHFILL DDCAPS_BLTDEPTHFILL

DDCAPS_CANBLTSYSMEM DDCAPS_CANCLIP

DDCAPS_CANCLIPSTRETCHED DDCAPS2_NO2DDURING3DSCENE

DDEDM_REFRESHRATES DDPCAPS_1BIT

DDPCAPS_2BIT DDPF_PALETTEINDEXED1

DDPF_PALETTEINDEXED2 DDSCAPS_ALLOCONLOAD

DDSCAPS_MIPMAP DDSD_MIPMAPCOUNT

DDSD_REFRESHRATE

In addition, the name of the DDSCAPS_TEXTUREMAP flag was changed to
DDSCAPS_TEXTURE and the name of the DDPF_PALETTEINDEXED4TO8
flag was changed to DDPF_PALETTEINDEXEDTO8.

· The following error messages were added:

DDERR_CANTLOCKSURFACE DDERR_CANTPAGELOCK

DDERR_CANTPAGEUNLOCK DDERR_DCALREADYCREATED

DDERR_INVALIDSURFACETYPE DDERR_NOMIPMAPHW

DDERR_NOTPAGELOCKED DDERR_NOTINITIALIZED

· The IDirectDraw2::SetDisplayMode method contains two new parameters,
dwRefreshRate and dwFlags. If neither of these parameters are needed, you can
still use IDirectDraw::SetDisplayMode.

· The IDirectDraw2::EnumDisplayModes method was added to enumerate the
refresh rate of the monitor and store it in the dwRefreshRate member of the
DDSURFACEDESC structure.

· A new method has been added to the IDirectDraw2 interface:
IDirectDraw2::GetAvailableVidMem.

· Three new methods have been added to the IDirectDrawSurface2 interface:
IDirectDrawSurface2::GetDDInterface, IDirectDrawSurface2::PageLock,
and IDirectDrawSurface2::PageUnlock.

· DirectDraw in the Game SDK limited the available display modes to 640 by 480
with pixel depths of 8 bpp and 16 bpp. DirectDraw now allows an application to
change the mode to allow any supported by the display driver.

· DirectDraw now checks the display modes it is capable of using against the
display restrictions of the installed monitor. If the requested mode is not

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 17

compatible with the monitor, then the IDirectDraw2::SetDisplayMode method
will fail. Only modes supported on the installed monitor will be enumerated in the
IDirectDraw2::EnumDisplayModes method.

· In the Game SDK, DirectDraw only allowed the creation of one DirectDraw
object per process. If your process happened to use another system component,
such as DirectPlay, that created a DirectDraw object, the process would be unable
to create another DirectDraw object for its own use. It is now possible for a
process to call the DirectDrawCreate function as many times as necessary. A
unique and independent interface will be returned from each call. For more
information, see Multiple DirectDraw Objects per Process.

· DirectDraw on the Game SDK required an HWND be specified in the
IDirectDraw::SetCooperativeLevel method call regardless of whether or not a
full-screen, exclusive mode was being requested. This method no longer requires
an HWND be specified if the application is requesting DDSCL_NORMAL mode.
It is now possible for an application to use DirectDraw with multiple windows.
All of these windows can be used simultaneously in normal mode.

· In DirectDraw on the Game SDK, if a surface was in system memory, the
hardware emulation layer (HEL) automatically performed the blit. However, some
display cards have DMA hardware that allows them to efficiently blit to and from
system memory surfaces. In the DirectX 2 version of DirectDraw, the DDCAPS
structure has been expanded to allow drivers to report this capability. The
following members have been added:

DWORD dwSVBCaps
DWORD dwSVBCKeyCaps
DWORD dwSVBFXCaps
DWORD dwSVBRops[DD_ROP_SPACE]

DWORD dwVSBCaps
DWORD dwVSBCKeyCaps
DWORD dwVSBFXCaps
DWORD dwVSBRops[DD_ROP_SPACE]

DWORD dwSSBCaps
DWORD dwSSBCKeyCaps
DWORD dwSSBFXCaps
DWORD dwSSBRops[DD_ROP_SPACE]

· In DirectDraw on the Game SDK, palettes could only be attached to the primary
surface. Palettes can now be attached to any paletized surface (primary, back
buffer, off-screen plain, or texture map). For more information, see Setting
Palettes on Non-Primary Surfaces.

· Palettes can now be shared between multiple surfaces. For more information, see
Sharing Palettes.

MICROSOFT CONFIDENTIAL 5/13/96

· In DirectDraw on the Game SDK, only 8-bit (256 entry) palettes were supported.
DirectDraw on the DirectX 2 SDK supports 1-bit (2 entry), 2-bit (4 entry), and 4-
bit (16 entry) palettes as well. For more information, see New Palette Types.

· Clippers can now be shared between multiple surfaces. For more information, see
Sharing Clippers.

· A new API function, DirectDrawCreateClipper was added. This function allows
clipper objects to be created that are not owned by a DirectDraw object. For more
information, see Driver Independent Clippers.

· In DirectDraw on the Game SDK, the HEL could only create surfaces whose pixel
format exactly matched that of the current primary surface. This restriction has
been relaxed for the DirectX 2 version of DirectDraw. For more information, see
Surface Format Support in the Hardware Emulation Layer (HEL).

· Support for surfaces specific to 3D rendering (texture maps, mipmaps, and z-
buffers) has been added or enhanced in the DirectX 2 version of DirectDraw. For
more information, see Texture Maps, Mipmaps, and Z-Buffers.

DirectSound
Although there are few visible external differences between DirectSound on the
Game SDK and DirectSound on the DirectX 2 SDK, significant internal
improvements have been made. The following is a brief list of some of these
differences:

· Improvements to the wave emulation code, used when no device driver is
available, to support wave drivers that do not work correctly.

· Changes to the sound focus management. These changes should not make any
difference to most games. They were needed to support out-of-proc (exe server)
COM objects, and to support the requirements of ActiveX™ (Microsoft's high-
level media streaming architecture).

· The DSBCAPS_STICKYFOCUS flag was added. This flag can be specified in a
IDirectSound::CreateSoundBuffer method call in order to change the focus
behavior of the sound buffer.

DirectPlay
The difference below reflects the only external change that has been made to
DirectPlay:

· The error DPERR_SENDTOOBIG is now returned if the message buffer passed
to the IDirectPlay::Send method is larger than DirectPlay allows.

MICROSOFT CONFIDENTIAL 5/13/96

Chapter 1 Introducing the DirectX 2 Software Development Kit 19

Direct3D
The Game SDK did not contain any Direct3D functionality. All of the Direct3D
functionality is new in the DirectX 2 SDK.

DirectInput
No changes were made to this version of DirectInput.

AutoPlay
No changes were made to this version of AutoPlay.

DirectSetup
The DSETUP_D3D flag was added to the dwFlags parameter of the
DirectXSetup function.

Conventions
The following conventions are used to define syntax.

Convention Meaning

Italic text Denotes a placeholder or variable. You must provide
the actual value. For example, the statement
SetCursorPos(X, Y) requires you to substitute values
for the X and Y parameters.

[] Enclose optional parameters.

| Separates an either/or choice.

... Specifies that the preceding item may be repeated.

. Represents an omitted portion of a sample application.

.

.

In addition, certain typographic conventions are used to help you understand this
material.

Convention Meaning

SMALL CAPITALS Indicates the names of keys, key sequences, and key
combinations—for example, ALT+SPACEBAR.

FULL CAPITALS Indicates most type and structure names, which are
also bold, and constants.

monospace Sets off code examples and shows syntax spacing.

MICROSOFT CONFIDENTIAL 5/13/96

MICROSOFT CONFIDENTIAL 5/13/96

	Using DirectX 2 in Windows
	Reasons for Developing DirectX Windows Applications
	Providing Standards for Hardware Accelerators

	DirectX 2 Components
	DirectDraw
	DirectSound
	DirectPlay
	Direct3D
	DirectInput
	AutoPlay
	Sample Applications

	DirectX and the Component Object Model
	The Component Object Model
	IUnknown
	DirectX 2 SDK COM Interfaces
	C++ and the COM Interface
	Accessing COM Objects Using C
	Interface Method Names and Syntax
	Using Macro Definitions
	Floating-point Precision

	Differences Between the Game SDK and the DirectX 2 SDK
	DirectDraw
	DirectSound
	DirectPlay
	Direct3D
	DirectInput
	AutoPlay
	DirectSetup

	Conventions

