
Delphi for Visual Basic Programmers
This version of Delphi includes a special set of productivity tools for Visual Basic programmers. Delphi
offers the performance of a native code compiler with a powerful visual development environment. Delphi
can be used with Visual Basic, or as a replacement for Visual Basic.

This help file includes:

Visual Basic commands to Delphi equivalents

Visual Basic Controls and Delphi Components

Component Pages Reference

Keystroke Mappings

Refer to your Delphi CD ROM for:

          Visual Basic to Delphi, A Technical Discussion (VB2Delphi.doc).
          A directory containing Visual Basic sample files translated into Delphi. (/VB/CODE)

Visual Basic command to Delphi equivalent
This Visual Basic to Delphi command reference includes all Visual Basic commands, the Delphi
equivalent, descriptions of each Delphi command, the appropriate syntax for usage, and sample code.
The reference is organized in alphabetical order by Visual Basic command. To use this list, select the
appropriate Visual Basic command from following list:

#Const Directive

#If... Then ... #Else Directive

hDC Property

hInstance Property

hPal Property

hScrollBar, VScrollBar Controls

hWnd Property

A
ALTER TABLE Statement (SQL)

Abs Function

AbsolutePosition Property

ActiveControl Property

ActiveForm Property

Add Method

AddItem Method

AddNew Method

AfterColUpdate Event

AfterDelete Event

AfterInsert Event

Align Property

Alignment Property

All, DISTINCT, DISTINCTROW, TOP Predicates (SQL)

AllowDelete Property

AllowSizing Property

AllowUpdate Property

AppActivate Statement

Appearance Property

Append Method

ApplsRunning Property

Archive, Hidden, Normal, System Properties

Arrange Method

Array Function

Asc Function

Atn Function

Attributes Property

AutoActive Property

AutoRedraw Property

AutoShowChildren Property

AutoSize Property

AutoVerbMenu Property

Avg Function (SQL)

B
BackColor, ForeColor Properties

BackStyle Property

Beep Statement

Before Delete Event

Before Update Event

BeforeColUpdate Event

BeforeInsert Event

BeginTrans, CommitTrans, Rollback Methods

BeginTrans, CommitTrans, Rollback Statements

Between...And Operator (SQL)

Bof, EOF Properties

Bold Property

Bookmark Property

BorderColor Property

BorderStyle Property

BorderWidth Property

BoundText Property

C
CREATE INDEX Statement (SQL)

CREATE TABLE Statement (SQL)

Cancel Property

CancelUpdate Method

Caption Property

Cbool Function

Cbyte Function

Ccur Function

Cdate Function

Cdbl Function

CellText Method

CellValue Method

ChDir Statement

ChDrive Statement

Change Event

CheckBox Control

Checked Property

Choose Function

Chr Function

Cint Function

Circle Method

Class Property

ClassModule Object

Clear Method

Clear Method (Clipboard, ComboBox, ListBox)

Click Event

Clip Property

Clipboard Object

Close Method

Close Method (OLE Container)

Close Statement

Cls Method

Col, Row Properties

ColAlignment Property

ColContaining Method

ColIndex Property

ColPos Property

ColResize Event

ColWidth Property

CollsVisible Propert

Column Object, Columns Collection

Columns Property (DBGrid)

ComboBox Control

Command Function

CommandButton Control

Comments Property

CommitTrans Method

CommitTrans Statement

CommonDialog Control

CompactDatabase Method

CompactDatabase Statement

CompanyName Property

Const Statement

Container Object, Containers Collection

Container Property

Container Property (Data Access)

ControlBox Property

Controls Collection

Copies Property

Copy Method

Cos Function

Count Function (SQL)

Count Property (Data Access)

Count Property (VB Collections)

CreateDatabase Function

CreateDatabase Method

CreateDynaset Method

CreateEmbed Method

CreateField Method

CreateIndex Method

CreateLink Method

CreateObject Function

CreateQueryDef Method

CreateSnapshot Method

CreateTableDef Method

CurDir Function

CurrentX, CurrentY Properties

D
DBCombo Control

DBEngine Object

DBGrid Control

DBList Control

DELETE Statement (SQL)

DISTINCT, DISTINCTROW Predicates (SQL)

Data Control

DataUpdatable Property

Database Object, Database Collection

Database Property

Date Function

Date Statement

DatePart Function

DateSerial Function

DateValue Function

Day Function

DblClick Event

Deactivate Event

Default Property

DefaultExt Property

DefaultValue Property

Delete Method

Delete Method (OLE Container)

DeleteQueryDef Method

Description Property (Data Access)

DeviceName Property

DialogTitle Property

Dim Statement

DirListBox Control

DisplayType Property

Do...Loop Statement

DoEvents Function

DoVerb Method

Drag Method

DragDrop Event

DragIcon Property

DragMode Property

DragOver Event

DrawMode Property

DrawStyle Property

DrawWidth Property

Drive Property

DriveListBox Control

DriverName Property

DropDown Event

Duplex Property

Dynaset Object

E
EOF Function

EOF Property

EXEName Property

Edit Method

EditMode Property

Enabled Property

End Statement

EndDoc Method

Environ Function

Err Object

Error Event

Error Function

Error Object, Errors Collection

Error Statement

Exclusive Property

Execute Method

ExecuteSQL Method

Exit Statement

Exp Function

F
FROM Clause (SQL)

FV Function

FetchVerbs Method

Field Object, Fields Collection

FieldSize Method

Fields Property

FileAttr Function

FileCopy Statement

FileDateTime Function

FileDescription Property

FileLen Function

FileListBox Control

FileName Property

FileTitle Property

FillStyle Property

Filter Property

Filter Property (Common Dialog)

FilterIndex Property

FindFirst, FindLast, FindNext, Find Previous Method

FirstRow Property

Fix Function

FixedCols, FixedRows Properties

Flags Property (Color Dialog)

Flags Property (File Dialog)

Flags Property (Font Dialog)

Flags Property (Print Dialog)

Font Object

Font Property

FontBold, FontItalic, FontStrikethru, FontUnderline Property

FontName Property

FontSize Property

For...Next Statement

ForeColor Property

ForeignName Property

ForeignTable Property

Form Object, Forms Collection

Format Function

Format Property

Frame Control

FreeLocks Statement

FromPage, ToPage Properties

Function Statement

G
GROUPBY Clause (SQL)

Get Statement

GetAllSettings Function

GetAttr Function

GetBookmark Method

GetData Method

GetFormat Method

GetSetting Function

GetText Method

GoTo Statement

GotFocus Event

Grid Control

GridLineWidth Property

GridLines Property

H
Handle Property

Having Clause (SQL)

HeadFont Property

Height, Width Properties

HelpCommand Property

HelpContext Property

HelpContext Property (CommonDialog)

HelpContext, HelpFile Properties (Data Access)

HelpContextID Property

HelpFile Property (App, CommonDialog, MenuLine)

Hex Function

Hidden Property

Hide Method

HideSelection Property

Hour Function

I
INNER JOIN Operation (SQL)

INSERT INTO Statement (SQL)

IPmt Function

IRR Function

Icon Property

If...Then...Else Statement

Image Control

Image Property

Index Object, Indexes Collection

Index Property (Data Access)

InitDir Property

Initialize Event

Input # Statement

Input Function

InputBox Function

InsertObjDlg Method

Int, Fix Functions

IntegralHeight Property

Interval Property

IpOleObject Property

IsArray Function

IsEmpty Function

IsNull Function

Italic Property

Item Method

ItemData Property

K

KeyDown, KeyUp Events

KeyPress Event

KeyPreview Property

Kill Statement

KillDoc Method

L
LBound Function

LCase Function

LEFT JOIN, RIGHT JOIN Operations

LOF Function

LTrim, RTrim, and Trim Functions

Label Control

LargeChange, SmallChange Properties

LastFunction (SQL)

Left Function

LeftTopProperties

LeftCol Property

LegalCopyRight Property

LegalTrademarks Property

Len Function

Like Operator (SQL)

Line Control

Line Input # Statement

Line Method

LinkClose Event

LinkError Event

LinkExecute Event

LinkExecute Method

LinkItem Property

LinkMode Property

LinkOpen Event

LinkPoke Method

LinkRequest Method

LinkTopic Property

List Property

ListBox Control

ListCount Property

ListField Property

ListFields Method

ListIndex Property

ListIndexes Method

ListParameters Method

ListTables Method

Load Event

LoadPicture Function

LoadResData Function

LoadResPicture Function

LoadResString Function

Loc Function

Locked Property

Log Function

LogMessages Property

LoginTimeout Property

LostFocus Event

M
MDIChild Property

MDIForm Object

MIRR Function

Max, Min Properties (CommonDialog)

Max, Min Properties (Scroll Bar)

MaxButton Property

MaxLength Property

Menu Control

Mid Function

Min, Max Functions (SQL)

MinButton Property

Minute Function

MkDir Statement

Month Function

MouseDown, MouseUp Events

MouseIcon Property

MouseMove Event

MousePointer Property

Move Method

Move Method (Data Access)

MoveFirst, MoveLast, MoveNext, MovePrevious Methods

MsgBox Function

MultiLine Property

MultiSelect Property

N
NPV Function

NPer Function

Name Property

Name Property (Data Access)

Name Statement

Named Date/TIme Formats (Format Function)

Named Numeric Formats (Format Function)

NegotiateMenus Property

NegotiatePosition Property

NewPage Method

NewPassword Method

NoMatch Property

Normal Property

Now Function

Number Property

NumberFormat Property

O
OLE Container Control

OLEDropAllowed Property

OLEType Property

ORDER BY Clause (SQL)

ObjectMove Event

ObjectVerbs Property

ObjectVerbsCount Property

On Error Statement

On..GoSub, On...GoTo Statements

Open Statement

OpenDatabase Function

OpenDatabase Method

OpenQueryDef Method

OpenRecordset Method

OpenTable Method

OptionButton Control

OrdinalPosition Property

Orientation Property

P
PPmt Function

PSet Method

PV Function

Page Property

Paint Event

PaintPicture Method

PaperBin Property

PaperSize Property

Parameter Object, Parameters Collection

Parent Property

PasswordChar Property

Paste Method

PasteOK Property

PasteSpecialDlg Method

Path Property

PathChange Event

Pattern Property

PatternChange Event

Percent Position Property

Picture Object

Picture Property

PictureBox Control

Pmt Function

Point Method

PopupMenu Method

Port Property

Primary Property

Print # Statement

Print Method

PrintForm Method

PrintQuality Property

Printer Object, Printers Collection

Property Get Statement

Property Let Statement

Public Property

Put Statement

Q
QBColor Function

QueryDef Object, QueryDefs Collection

QueryUnload Event

R
RGB Function

RSet Statement

RTrim Function

Raise Method

Randomize Statement

Rate Function

ReadFromFile Method

ReadOnly Property

ReadOnly Property (Data Access)

RecordCount Property

RecordSelectors Property

RecordSource Property

Recordset Object, Recordsets Collection

Recordset Property

RecordsetType Property

Refresh Method

Refresh Method (Data Access)

Relations Object, Relations Collection

Rem Statement

RemoveItem Method

Reposition Event

Requery Method

Required Property

Reset Statement

Resize Event

Restartable Property

ReturnsRecords Property

Right Function

RmDir Statement

Rnd Function

Rollback Method

Rollback Statement

Row Property

RowColChange Event

S
SELECT Statement (SQL)

SLN Function

SQL Property

SQL Subqueries

SYD Function

SavePicture Statement

SaveSetting Statement

SaveToFile Method

ScaleX, ScaleY Methods

Screen Object

Scroll Event

Scroll Method

ScrollBars Property

Second Function

Seek Function

Seek Method

Seek Statement

SelBookmarks Collection

SelBookmarks Property

SelChange Event

SelCount Property

SelEndCol, SelStartCol, SelEndRow, SelStartRow Properties

SelLength, SelStart, SelText Properties

Select Case Statement

Selected Property

SelectedItem Property

Set Statement

SetAttr Statement

SetData Method

SetDataAccessOption Statement

SetDefaultWorkspace Statement

SetFocus Method

SetText Method

Shape Control

Shape Property

Shell Function

Shortcut Property

Show Method

ShowColor Method

ShowFont Method

ShowHelp Method

ShowOpen Method

ShowPrinter Method

ShowSave Method

Sin Function

Size Property (Data Access)

Size Property (Font)

SizeMode Property

SmallChange Property

Snapshot object

Snapshot-Type Reordset

Sorted Property

Souce Property (Data Access)

Source Property

SourceDoc Property

SourceField, SourceTable Properties

SourceTableName Property

Space Function

Sqr Function

Stop Statement

Str Function

StrComp Function

StrConv Function

Stretch Property

StrikeThrough Property

String Function

Style Property

Sub Statement

Sum Function (SQL)

System Property

T
TabIndex Property

TabStop Property

Table Object

Table Property

Table-type Recordset

Tag Property

Tan Function

TaskVisible Property

Terminate Event

Text Property

TextBox Control

TextHeight Method

TextWidth Method

Time Function

TimeSerial Function

TimeValue Function

Timer Control

Timer Event

Title Property

ToPage Property

Top Property

TopIndex Property

TopRow Property

TrackDefault Property

Trim Function

TwipsPerPixelX, TwipsPerPixelY Properties

Type Property (Data Access)

Type Property (Picture)

Type Statement

TypeName Function

U
UBound Function

UBound Property

UCase Function

UNION Operation (SQL)

UPDATE Statement (SQL)

Underline Property

Unique Property

Unload Event

Updatable Property

Update Method (Data Access)

Update Method (OLE Container)

UpdateControls Method

UpdateOptions Property

UseMnemonic Property

User-Defined Date/Time Formats (Format Function)

User-Defined Numeric Formats (Format Function)

User-Defined String Formats (Format Function)

V
Val Function

Validate Event

ValidationRule Property

ValidationText Property

Value Property

Value Property (Data Access)

VarType Functions

Verb Property

Visible Property

VisibleCols Property

VisibleCount Property

VisibleRows Property

W
WHERE Clause (SQL)

Weekday Function

Weight Property

WhatsThisButton Property (Windows 95)

WhatsThisID Property (Windows 95)

While...Wend Statement

Width Property

WindowList Property

WindowStateProperty

With Statement

WordWrap Property

Workspace Object, Workspaces CollectionWorkspaceObjectWorkspacesCollection

Write # Statement

X
X1, Y1, X2, Y2 Properties

Y
Year Function

Z
Zoom Property

Zorder Method

#Const Directive

Delphi equivalent
{$...}

Description
Conditional directives control compilation of parts of the source text, based on evaluation of a symbol
following the directive. You can define your own symbols or you can use the Object Pascal predefined
symbols.

Conditional directive Meaning
$DEFINE Defines a conditional symbol
$ELSE Compiles or ignores a portion of source text
$ENDIF Ends the conditional section
$IFDEF Compiles source text if Name is defined
$IFNDEF Compiles source text if Name is NOT defined
$IFOPT Compiles source text if a compiler switch is in a specified state (+ or -)
$UNDEF Undefines a previously defined conditional symbol

Example
{$MINSTACKSIZE $00004000}
{$MAXSTACKSIZE $00100000}
{$IMAGEBASE $00400000}
{$APPTYPE GUI}

#If... Then ... #Else Directive

Delphi equivalent
$If... $Else...$Endif Directive

Description
Conditional directives produce different code from the same source text, based on the state of conditional
symbols. Object Pascal identifiers cannot be used in conditional directives.

Note Changing your conditional defines should generally be followed by rebuilding your program.

There are two possible conditional constructs:

{$IFxxx} ... {$ENDIF}
{$IFxxx} ... {$ELSE} ... {$ENDIF}

or

$IF ... $ENDIF

The $IFxxx ... $ENDIF construct compiles the source code between $IFxxx and $ENDIF only if the
condition specified in $IFxxx evaluates to True.

If the condition is False, the source text between the two directives is ignored.

Example
{$ifdef BUILD_EXE}
program Hello_EXE
{$else}
library Hello_DLL
{$endif}

ALTER TABLE Statement (SQL)

Delphi equivalent
ALTER TABLE Statement (SQL)

Description
SQL Syntax

Example
The following example will Drop the LAST_NAME and FIRST_NAME fields while adding the FULL_NAME
field to the employee DBASE Table.

ALTER TABLE "employee.dbf" DROP LAST_NAME, DROP FIRST_NAME, ADD FULL_NAME
CHAR[30]

Abs Function

Delphi equivalent
Abs Function

Declaration
function Abs(X);

Description
The Abs function returns the absolute value of the argument.

X is an integer-type or real-type expression.

Example
var
 r: Real;
 i: Integer;
begin
 r := Abs(-2.3); { 2.3 }
 i := Abs(-157); { 157 }
end;

AbsolutePosition Property

Delphi equivalent
RecNo Property

Declaration
property RecNo: Longint;

Description
Run-time and read-only. The RecNo property returns a record number for the current record in the
dataset. Record numbers are only available for Paradox and dBASE tables; the concept isn't supported
by most SQL servers so a table in a SQL database always returns -1 for RecNo.

Example
Num:= Table1.RecNo; {Only on Paradox and dBASE Tables}

ActiveControl Property

Delphi equivalent
ActiveControl

Declaration
property ActiveControl: TWinControl;

Description
For forms, the ActiveControl property indicates which control has focus, or has focus initially when the
form becomes active. Your application can use the ActiveControl property to access methods of the active
control. Only one control, the active control, can have focus at a given time in an application.

Example
The following event handler responds to timer events by moving the active control one pixel to the right:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 ActiveControl.Left := ActiveControl.Left + 1;
end;

ActiveForm Property

Delphi equivalent
ActiveForm

Declaration
property ActiveForm: TForm;

Description
Run-time and read only. The ActiveForm property indicates which form currently has focus, or will have
focus when the application becomes active again after another Windows application has been active.

Example
This example changes the color of the current form.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Screen.ActiveForm := clBlue;
end;

Add Method

Delphi equivalent
Add Method

Description
The Add method adds an item to a component.

Example
This code uses a button and a list box on a form. When the user clicks the button, the code adds a new
string to a list box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add('New string');
end;
This code uses a list box, a button, and a label on a form. When the user clicks the button, the code adds
a new string to the list box and reports its position in the list box as the caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
var
 Position: Integer;
begin
 Position:= ListBox1.Items.Add('New item');
 Label1.Caption := IntToStr(Position);
end;

AddItem Method

Delphi equivalent
Add Method; AddObject Method

Description
The Add method adds an item to a component.

Example
The following code adds a new item at the top level of the outline. The new item is identified by the text
'New item':

Outline1.Add(0, 'New item');

The following code defines a record type of TMyRec and a record pointer type of PMyRec.

type
 PMyRec = ^TMyRec;
 TMyRec = record
 FName: string;
 LName: string;
 end;

Assuming these types are used, the following code adds an outline node to Outline1. A TMyRec record is
associated with the added item. The FName and LName fields are obtained from edit boxes Edit1 and
Edit2. The Index parameter is obtained from edit box Edit3. The item is added only if the Index is a valid
value.

var
 MyRecPtr: PMyRec;
 OutlineIndex: LongInt;
begin
 New(MyRecPtr);
 MyRecPtr^.FName := Edit1.Text;
 MyRecPtr^.LName := Edit2.Text;
 OutlineIndex := StrToInt(Edit3.Text);
 if (OutlineIndex <= Outline1.ItemCount) and (OutlineIndex >= 0) then
 Outline1.AddObject(OutlineIndex, 'New item', MyRecPtr);
end;

After an item containing a TMyRec record has been added, the following code retrieves the FName and
LName values associated with the item and displays the values in labels.

Label4.Caption := PMyRec(Outline1.Items[Outline1.SelectedItem].Data)^.FName;
Label5.Caption := PMyRec(Outline1.Items[Outline1.SelectedItem].Data)^.LName;

AddNew Method

Delphi equivalent
Insert Method

Declaration
procedure Insert;

Description
The Insert method puts the dataset into Insert state and opens a new, empty record at the current cursor
location. When an application calls Post, the new record will be inserted in the dataset in a position based
on its index, if defined. To discard the new record, use Cancel.

Example
with Table1 do
 begin
{ Move to the end ot the component }
 Last;
 Insert;
 FieldByName('CustNo').AsString := '9999';
 { Fill in other fields here }
 if { you are sure you want to do this} then Post
 else { if you changed your mind } Cancel;
 end.

AfterColUpdate Event

Delphi equivalent
OnColExit Event

Declaration
property OnColExit: TNotifyEvent;

Description
The OnColExit event occurs when the user uses the Tab key to move out of a column or clicks a cell in
another column. Use the OnColExit event to specify any special processing you want to occur when
exiting the column.

Example
The following code deletes the first two characters from the display label of the selected field when exiting
a column. Note that FirstTime is a Boolean field that prevents characters from being deleted the first time
a column is exited. Use this code in conjunction with code in the example of OnColEnter to modify the
appearance of the display label of columns while they are entered.

procedure TForm1.DBGrid1ColExit(Sender: TObject);
var
 TheLabel: string;
begin
 if FirstTime then
 FirstTime := False
 else
 begin
 with DBGrid1.SelectedField do
 begin
 TheLabel := DisplayLabel;
 Delete(TheLabel, 1, 2);
 DisplayLabel := TheLabel;
 end;
 end;
end;

AfterDelete Event

Delphi equivalent
AfterDelete Event

Declaration
property AfterDelete: TDataSetNotifyEvent;

Description
The AfterDelete event is activated when the dataset finishes a call to the Delete method. This event is the
last action before Delete returns to the caller. When AfterDelete is called, the deleted record has already
been removed from the dataset, and the dataset cursor will be positioned on the following record.

Example
This example displays a message on the form's status bar indicating the table's record count after a
record is deleted.

procedure TForm1.Table1AfterDelete(DataSet: TDataSet);
begin
 StatusBar1.SimpleText := Format('There are now %d records in the table',
 [DataSet.RecordCount]);
end;

AfterInsert Event

Delphi equivalent
AfterInsert Event

Declaration
property AfterInsert: TDataSetNotifyEvent;

Description
The AfterInsert event is activated when a dataset finishes a call to the Insert or Append methods. This
event is the last action before Insert or Append returns to the caller.

Example
This example updates the form's status bar with a message when an AfterInsert event occurs.

procedure TForm1.Table1AfterInsert(DataSet: TDataSet);
begin
 StatusBar1.SimpleText := 'Inserting new record';
end;

Align Property

Delphi equivalent
Align Property

Declaration
property Align: TAlign;

Description
The Align property determines how the controls align within their container (or parent control).

Example
The following code will change the alignment of a TDBMemo component when a button is clicked.

procedure Button1Click(Sender : TObject);
begin
 DBMemo1.Align := alClient;
end;

Alignment Property

Delphi equivalent
Alignment Property

Declaration
property Alignment: TLeftRight;

Description
Positions the caption to the right or left of a check box or radio button.

Example
This code aligns text to the right side of a label named Label1 in response to a click on a button named
RightAlign:

procedure TForm1.RightAlignClick(Sender: TObject);
begin
 Label1.Alignment := taRightJustify;
end;

All, DISTINCT, DISTINCTROW, TOP Predicates (SQL)

Delphi equivalent
All, DISTINCT Predicates (SQL)

Description
SQL Syntax, select non unique or unique values from a table

Example
Select Distinct LastName, City from Customer

AllowDelete Property

Delphi equivalent
AllowDelete Property

Declaration
property AllowDelete: Boolean;

Description
If True (the default), the user can delete the current record by pressing Ctrl+Delete. (You can get the
same effect in code by calling DoKey with the rkDelete parameter.) If False, TDBCtrlGrid won't delete
records, though you can still do so by calling the attached dataset's Delete method.

Example
DBCtrlGrid.AllowDelete := TRUE;

AllowSizing Property

Delphi equivalent
Options....dgColumnResize

Declaration
property Options: TDBGridOptions;

Description
When True, the columns can be resized. A column can't be resized, however, until its field has been
added to the grid. To add a field to the grid, choose Add from the Fields editor.

Example
This line of code displays column titles, makes the column indicator visible, and permits the user to edit
the data displayed in the data grid:

procedure TForm1.FormClick(Sender: TObject);
begin
 DBGrid1.Options := [dgColumnResize, dgColLines, dgIndicator, dgEditing,
dgTitles];
end;

AllowUpdate Property

Delphi equivalent
Options....dgEditing

Declaration
property Options: TDBGridOptions;

Description
When True, allows the user to edit data in the data grid.

Example
This line of code displays column titles, makes the column indicator visible, and permits the user to edit
the data displayed in the data grid:

procedure TForm1.FormClick(Sender: TObject);
begin
 DBGrid1.Options := [dgColumnResize, dgColLines, dgIndicator, dgEditing,
dgTitles];
end;

AppActivate Statement

Delphi equivalent
ShowWindow (API)

Description
See Win32.hlp

Example
The following code will activate the NotePad Application.

procedure TForm1.Button1Click(Sender: TObject);
var
 h : HWnd;
begin
 h := findWindow(nil, 'Untitled - Notepad');
 showWindow(h, SW_SHOWNORMAL);
end;

Appearance Property

Delphi equivalent
CTL3D Property

Declaration
property Ctl3D: Boolean;

Description
The Ctl3D property determines whether a control has a three-dimensional (3-D) or two-dimensional look.
If Ctl3D is True, the control has a 3-D appearance. If Ctl3D is False, the control appears normal or flat.
The default value of Ctl3D is True.

Example
The following code toggles the 3-D look of a memo control when the user clicks a button named Toggle:

procedure TForm1.ToggleClick(Sender: TObject);
begin
 Memo1.Ctl3D := not Memo1.Ctl3D; {Toggles the Ctl3D property of Memo1}
end;

Append Method

Delphi equivalent
Append Method

Declaration
procedure Append(const S: string);

Description
The Append method performs the same function as the Add method for strings and string lists but doesn't
return the result. Use this method rather than Add when you need it as a parameter for a function
requiring a TGetStrProc or when you don't need to know where the string is added.

Example
This example appends a new record to a table when the user clicks a button. The two fields
ALPHANUMERIC and INTEGER are filled from the contents of two edit controls.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Table1.Append;
 Table1['ALPHANUMERIC'] := Edit1.text;
 Table1['INTEGER'] := StrToInt(Edit2.text);
 Table1.Post;
end;

ApplsRunning Property

Delphi equivalent
DoVerb Method

Declaration
procedure DoVerb(Verb: Integer);

Description
Requests the OLE object to perform some action. OLE defines several verbs, such as ovShow (to display
the OLE object) and ovPrimary (the default action, usually to activate the OLE object). OLE objects can
define their own custom verbs. You can use the ObjectVerbs property to get a list of those custom verbs.

Example
OleContainer1.DoVerb(ovPrimary);

Archive, Hidden, Normal, System Properties

Delphi equivalent
FileType Property

Declaration
property FileType: TFileType;

Description
The FileType property determines which files are displayed in the file list box based on the attributes of
the files. Because FileType is of type TFileType, which is a set of file attributes, FileType can contain
multiple values. For example, if the value of FileType is a set containing the values ftReadOnly and
ftHidden, only files that have the read-only and hidden attributes are displayed in the list box. Refer to the
main Delphi help system for FileType values.

Example
This example uses a file list box on a form. When the application runs, only read-only files, directories,
volume IDs, and files with no attributes appear in the list box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.FileType := [ftReadOnly, ftDirectory, ftVolumeID, ftNormal];
end;

Arrange Method

Delphi equivalent
Cascade, Tile and ArrageIcons

Declaration
procedure Cascade; Tile; ArrangeIcons

Description
The Cascade method rearranges the child forms in your application so they overlap. The Tile method
arranges the child forms of a parent form in your application so that the forms are all the same size.

Example
This code arranges all MDI children of the current MDI parent form in a cascade pattern when the user
chooses the Cascade menu command:

procedure TForm1.Cascade1Click(Sender: TObject);
begin
 Cascade;
end;

Array Function

Delphi equivalent
VarArrayOf

Declaration
function VarArrayOf(const Values: array of Variant): Variant;

Description
The VarArrayOf function returns a one-dimensional variant array with the elements given by the Values
parameter. The low bound of the returned array is zero, the high bound is the number of values given by
the Values parameter less one, and the element type is Variant.

Asc Function

Delphi equivalent
Ord

Description:
Returns the element's numerical ordering within the set.

Example
uses Dialogs;
type
 Colors = (RED,BLUE,GREEN);
var
 S: string;
 begin
 S := 'BLUE has an ordinal value of ' + IntToStr(Ord(BLUE)) + #13#10;
 S := 'The ASCII code for "c" is ' + IntToStr(Ord('c')) + ' decimal';
 MessageDlg(S, mtInformation, [mbOk], 0);
 end;

Atn Function

Delphi equivalent
ArcTan Function

Declaration
function ArcTan(X: Extended): Extended;

Description
The ArcTan function returns the resulting arctangent of the argument.

Example
var
 R: Extended;
begin
 R := ArcTan(Pi);
end;

Attributes Property

Delphi equivalent
TableDefs and FieldDefs

Declaration
property FieldDefs: TFieldDefs;

Description
Run-time only. The FieldDefs property holds information about each TFieldDef in the dataset. You can
use this property to determine which fields are in the dataset, their name, type, and size.

AutoActive Property

Delphi equivalent
AutoActivate Property

Declaration
TAutoActivate = (aaManual, aaGetFocus, aaDoubleClick);
property AutoActivate: TAutoActivate;

Description
The AutoActivate property determines how an object in an OLE container can be activated, as defined in
the following table:

Values
aaManual The user can't activate the object. You can activate the OLE object in code

by calling DoVerb(ovShow).
aaGetFocus The OLE object is activated whenever the OLE container gets the focus

(by clicking on it with the mouse or pressing Tab to move the focus to it).
aaDoubleClick (Default) The OLE object is activated by doubleclicking it or pressing Enter

while the container has the focus.

Example
OleContainer1.AutoActivate := aaGetFocus;

AutoRedraw Property

Delphi equivalent
Invalidate Method

Declaration
procedure Invalidate;

Description
The Invalidate method forces a control to repaint as soon as possible.

Example
The following code invalidates Form1.

Form1.Invalidate;

AutoShowChildren Property

Delphi equivalent
Project | Options | Forms

Description:
Use the Forms page of the Project Options dialog box to select the main form for your applications, and to
choose which of the available forms are automatically created and in which order.

AutoSize Property

Delphi equivalent
AutoSize Property

Declaration
property AutoSize: Boolean;

Description
When the AutoSize property is True, the image control resizes to accommodate the image it contains
(specified by the Picture property). When AutoSize is False, the image control remains the same size,
regardless of the size of the image. If the image control is smaller than the image, only the portion of the
picture that fits inside the image component will be visible.

The default value is False.

Example
The following code keeps the size of the label control constant, even though the length of the label's
caption changes. As a result, the caption of the label is probably too long to display in the label when the
user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.AutoSize := False;
 Label1.Caption := 'This string is too long as the caption of this label';
end;

AutoVerbMenu Property

Delphi equivalent
AutoVerbMenu Property

Declaration
property AutoVerbMenu: Boolean;

Description
Determines whether TOleContainer automatically creates a popup menu containing the OLE object's
verbs. If AutoVerbMenu is True (the default), TOleContainer replaces any existing PopupMenu property. If
AutoVerbMenu is False, no popup menu is automatically created.

Example
OleContainer1.AutoVerbMenu := TRUE;

Avg Function (SQL)

Delphi equivalent
Avg Function (SQL)

Description
SQL Syntax

Example
Select Avg(Total) from "Sales.db"

BackColor, ForeColor Properties

Delphi equivalent
Color, Font.Color Properties

Declaration
property Color: TColor;

Description
For all components or objects except the Color dialog box, the Color property determines the background
color of a form or the color of a control or graphics object.

Example
This code will set the label's color and font color to the current windows settings.

Label1.Color := clWindow;
Label1.Font.Color := clWindowText;

BackStyle Property

Delphi equivalent
Transparent Property

Declaration
property Transparent: Boolean;

Description
The Transparent property determines if a label or database text control is transparent. You could place a
transparent label or text control on top of a bitmap, and the control won't hide part of the bitmap. For
example, if you have placed a bitmap of the world on a form, you could label the South American
continent with a label control, and you would still see the continent in the label space.

Example
This code makes a label transparent:

Label1.Transparent := True;

Beep Statement

Delphi equivalent
Beep

Declaration
procedure Beep;

Description
The Beep procedure calls the Windows API MessageBeep with a parameter of zero.

Example
This code will cause the machine to beep when Button1 is pressed.

Procedure TForm1.Button1Click(Sender : TObject);
begin
 beep;
end;

Before Delete Event

Delphi equivalent
BeforeDelete Event

Declaration
property BeforeDelete: TDataSetNotifyEvent;

Description
The BeforeDelete event is activated when the dataset begins a call to Delete. This event is the first action
taken by the Delete method.

By assigning a method to this property, you can take any special actions required by the event. By raising
an exception in this event handler, you can prevent the Delete operation from occurring.

Example
The following code will delete the child records in the linked Table2 prior to deleting the master record.

procedure TForm3.Table1BeforeDelete(DataSet: TDataSet);
var
 i : integer;
begin
 for i := 0 to Table2.RecordCount - 1 do
 begin
 Table2.Delete;
 end;
end;

Before Update Event

Delphi equivalent
OnEnter Event

Declaration
property OnEnter: TNotifyEvent;

Description
The OnEnter event occurs when a component becomes active. Use the OnEnter event handler to specify
any special processing you want to occur when a component becomes active.

BeforeColUpdate Event

Delphi equivalent
OnColEnter Event

Declaration
property OnColEnter: TNotifyEvent;

Description
The OnColEnter event occurs when the user clicks a cell in a column or moves to a column with the Tab
key within the data grid. Use the OnColEnter event to specify any processing you want to occur as soon
as a column is entered.

Example
The following code concatenates an asterisk to the display label of a field when the column is entered.

procedure TForm1.DBGrid1ColEnter(Sender: TObject);
begin
 with DBGrid1.SelectedField do
 DisplayLabel := '* ' + DisplayLabel;
end;

BeforeInsert Event

Delphi equivalent
BeforeInsert Event

Declaration
property BeforeInsert: TDataSetNotifyEvent;

Description
The BeforeInsert event is activated when the dataset begins a call to the Insert or Append methods. This
event is the first action taken by Insert or Append.

By assigning a method to this property, you can take any special actions required by the event. By raising
an exception (such as by calling the Abort procedure) in this event handler, you can prevent the Insert
operation from occurring.

Example
This example uses the BeforeInsert event to do data validation; if the StrToInt function raises an
exception, the edit control's contents are set to a valid value so the assignment to the INTEGER field in
the table will succeed.

procedure TForm1.Table1BeforeInsert(DataSet: TDataSet);
begin
 try
 {Make sure edit field can be converted to integer --
 will throw an exception if it can't }
 StrToInt(Edit1.Text);
 except
 Edit1.Text := '1000';
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Table1.Insert;
 Table1.FieldByName('INTEGER').AsInteger := StrToInt(Edit1.Text);
 Table1.Post;
end;

BeginTrans, CommitTrans, Rollback Methods

Delphi equivalent
StartTransaction, Commit, Rollback Methods

Declaration
procedure StartTransaction;

Description
The StartTransaction method begins a transaction at the isolation level specified by the TransIsolation
property. If a transaction is currently active, Delphi raises an exception.

Modifications made to the database are not stored permanently until the Commit method is called to
commit the changes. Modifications are discarded if the Rollback method is called to cancel the changes.

Example
with Database1 do
 begin
 StartTransaction;
 { Update one or more records in tables linked to Database1 }
...
 Commit;
 end;

BeginTrans, CommitTrans, Rollback Statements

Delphi equivalent
StartTransaction, Commit, Rollback Methods

Declaration
procedure StartTransaction;

Description
The StartTransaction method begins a transaction at the isolation level specified by the TransIsolation
property. If a transaction is currently active, Delphi raises an exception.

Modifications made to the database are not stored permanently until the Commit method is called to
commit the changes. Modifications are discarded if the Rollback method is called to cancel the changes.

Example
with Database1 do
 begin
 StartTransaction;
 { Update one or more records in tables linked to Database1 }
...
 Commit;
 end;

Between...And Operator (SQL)

Delphi equivalent
Between...And Operator (SQL)

Description
SQL Syntax

Example
Select * from Orders
where OrderDate Between '08/01/96' and '08/31/96'

Bof, EOF Properties

Delphi equivalent
EOF Properties

Declaration
property EOF: Boolean;

Description
Run-time and read-only. BOF is a Boolean property that indicates whether a dataset is known to be at its
first row.EOF is a Boolean property that indicates whether a dataset is known to be at its last row. The
EOF property returns a value of True after:

 An application opens an empty dataset
 A call to a table's Last method
 A call to a table's Next fails because the cursor is on the last row

Example
This example uses TDataSource's OnDataChange event to detect when the user moves to another
record. If the end of file is reached (EOF property becomes True), a message is displayed on the form's
status bar.

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
 if Table1.EOF then
 StatusBar1.SimpleText := 'You''re already at the end of the table';
end;

Bold Property

Delphi equivalent
Style Property

Declaration
property Style: TFontStyles;

Description
The Style property determines whether the font is normal, italic, underlined, bold, and so on.    See
Delphi.hlp for further details on the Style property

Example
The following code boldfaces the font used in the memo..

Memo1.Font.Style := [fsBold];

Bookmark Property

Delphi equivalent
Bookmark Property

Declaration
property Bookmark: TBookmarkStr;

Description
Run-time only. The Bookmark property returns a bookmark for the current row.    Assigning to the property
moves the cursor to the record corresponding to the bookmark.

BorderColor Property

Delphi equivalent
BorderColor Property

Declaration
property BorderColor: TColor;

Description
The BorderColor property is used to color the border of a shape component. For a complete list of the
values the BorderColor property can have, see the Color property.

Example
This example changes the border color of a shape component at run time:

Shape1.BorderColor := clBlack;

BorderStyle Property

Delphi equivalent
BorderStyle Property

Applies to
TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo, TDBLookupList, TDBMemo, TDrawGrid,
TEdit, TForm, THeader, TListBox, TListView, TMaskEdit, TMemo, TOutline, TPanel, TRichEdit,
TScrollBox, TStringGrid, TTreeView components

Description
The BorderStyle property controls the kind of border the component displays.

Example
This example creates a form with a single-line border that the user can't resize:

Form1.BorderStyle := bsSingle;

BorderWidth Property

Delphi equivalent
BorderWidth Property

Declaration
property BorderWidth: TBorderWidth;

Description
The BorderWidth property determines the width in pixels of the border around a panel. The default value
is 0, which means no border.

Example
This example uses a panel component and a button named CreateStatusLine on a form. The code moves
the panel to the bottom of the form when the user clicks the button, and gives the panel the appearance
of a status line by changing the value of the BevelInner, BevelOuter, BevelWidth, and BorderWidth
properties:

procedure TForm1.CreateStatusLineClick(Sender: TObject);
begin
 with Panel1 do
 Align := alBottom;
 BevelInner := bvLowered;
 BevelOuter := bvRaised;
 BorderWidth := 1;
 BevelWidth := 1;
 end;
end;

BoundText Property

Delphi equivalent
TField.value Property

Declaration
property Value: Variant {All field components}
property Value: string; {TStringField, TBlobField}
property Value: Longint; {TAutoIncField, TIntegerField, TSmallintField,
TWordField}
property Value: Double; {TBCDField, TCurrencyField, TFloatField}
property Value: Boolean; {TBooleanField}
property Value: TDateTime {TDateField, TDateTimeField, TTimeField}

Description
Run-time only. Value is the actual data in a TField. Use Value to read data directly from and write data
directly to a TField.

Example
The following expression will return the value of the field associated with the DBEdit control.

(Sender As TDBText).DataSource.DataSet.fieldbyname((Sender As
TDBText).DAtaField).Value

CREATE INDEX Statement (SQL)

Delphi equivalent
CREATE INDEX Statement (SQL)

Description
SQL Syntax

Example
CREATE INDEX index_name ON table_name (column [, column ...])

Using CREATE INDEX is the only way to create indexes for dBASE tables. For example, the following
statement creates an index on a dBASE table:

CREATE INDEX NAMEX ON "employee.dbf" (LAST_NAME)

Paradox users can create only secondary indexes with CREATE INDEX. Primary Paradox indexes can be
created only by specifying a PRIMARY KEY constraint when creating a new table with CREATE TABLE.

CREATE TABLE Statement (SQL)

Delphi equivalent
CREATE TABLE Statement (SQL)

Description
SQL Syntax

Example
For example, the following statement creates a Paradox table with a PRIMARY KEY constraint on the
LAST_NAME and FIRST_NAME columns:

CREATE TABLE "employee.db"
(
LAST_NAME CHAR(20),
FIRST_NAME CHAR(15),
SALARY NUMERIC(10,2),
DEPT_NO SMALLINT,
PRIMARY KEY(LAST_NAME, FIRST_NAME)
)

Cancel Property

Delphi equivalent
Cancel Property

Declaration
property Cancel: Boolean;

Description
The Cancel property indicates whether a button or a bitmap button is a Cancel button. If Cancel is True,
any time the user presses Esc, the OnClick event handler for the button executes. Although your
application can have more than one button designated as a Cancel button, the form calls the OnClick
event handler only for the first button in the tab order that is visible.

Example
The following code designates a button called Button1 as a Cancel button:

Button1.Cancel := True;

CancelUpdate Method

Delphi equivalent
CancelUpdates Method

Declaration
procedure CancelUpdates;

Description
CancelUpdates discards all pending cached updates. CancelUpdates is always successful, so no errors
will occur. The dataset returns to the state it was at before cached updates were enabled.

Example
Table1.CancelUpdates;

Caption Property

Delphi equivalent
Caption Property

Declaration
property Caption: string;

Description
The Caption property is the text that appears in the form's title bar; this text also appears as the icon label
when the form is minimized. For components other than forms, the Caption property contains the text
string that labels the component. To underline a character in a string, include an ampersand (&) before
the character.

Example
This code changes the caption of a group box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 GroupBox1.Caption := 'Fancy options';
end;

Cbool Function

Delphi equivalent
AsBoolean

Declaration
property AsBoolean: Boolean;

Description
Run-time only. This is a conversion property. For a TBooleanField, AsBoolean can be used to read or set
the value of the field, but Value should be used for this purpose instead.

Cbyte Function

Delphi equivalent
Byte

Description
See Delphi.hlp BYTE

Ccur Function

Delphi equivalent
Format Strings

Description
Set Format string to m to display money. Format strings passed to the string formatting routines contain
two types of objects--plain characters and format specifiers. Plain characters are copied verbatim to the
resulting string. Format specifiers fetch arguments from the argument list and apply formatting to them.

Cdate Function

Delphi equivalent
StrToDate

Declaration
function StrToDate(const S: string): TDateTime;

Description
The StrToDate function converts a string to date format. The date in the string must be a valid date.

Cdbl Function

Delphi equivalent
AsFloat

Declaration
property AsFloat: Double;

Description
Run-time only. This is a conversion property. For a TFloatField, TBCDField or TCurrencyField, AsFloat
can be used to read or set the value of the field as a Double, but Value should be used for this purpose
instead.

For a TStringField, AsFloat converts a float to a string on assigning a value to the field, and converts a
string to a float when reading from the field.

CellText Method

Delphi equivalent
Cells Property

Declaration
property Cells[ACol, ARow: Integer]: string;

Description
Run-time only. The Cells property is an array of strings, one string for each cell in the grid. Use the Cells
property to access a string within a particular cell. ACol is the column coordinate of the cell, and ARow is
the row coordinate of the cell. The first row is row zero, and the first column is column zero.

Example
This code fills each cell of a grid with the same string.

procedure TForm1.Button1Click(Sender: TObject);
var
 I, J: Integer;
begin
 with StringGrid1 do
 for I := 0 to ColCount - 1 do
 for J:= 0 to RowCount - 1 do
 Cells[I,J] := 'Delphi';
end;

CellValue Method

Delphi equivalent
Cells Property

Declaration
property Cells[ACol, ARow: Integer]: string;

Description
Run-time only. The Cells property is an array of strings, one string for each cell in the grid. Use the Cells
property to access a string within a particular cell. ACol is the column coordinate of the cell, and ARow is
the row coordinate of the cell. The first row is row zero, and the first column is column zero.

Example
This code fills each cell of a grid with the same string.

procedure TForm1.Button1Click(Sender: TObject);
var
 I, J: Integer;
begin
 with StringGrid1 do
 for I := 0 to ColCount - 1 do
 for J:= 0 to RowCount - 1 do
 Cells[I,J] := 'Delphi';
end;

ChDir Statement

Delphi equivalent
ChDir

Declaration
procedure ChDir(S: string);

Description
The ChDir procedure changes the current directory to the path specified by S.

If S specifies a drive letter, the current drive is also changed.

Example
begin
 {$I-}
 { Change to directory specified in Edit1 }
 ChDir(Edit1.Text);
 if IOResult <> 0 then
 MessageDlg('Cannot find directory', mtWarning, [mbOk], 0);
end;

ChDrive Statement

Delphi equivalent
ChDir

Declaration
procedure ChDir(S: string);

Description
The ChDir procedure changes the current directory to the path specified by S.

If S specifies a drive letter, the current drive is also changed.

Change Event

Delphi equivalent
OnChange Event

Applies to
TBitmap, TBrush, TCanvas, TFont, TGraphic, TGraphicsObject, TMetafile, TPen, TPicture, TStringList,
TConversion objects; TComboBox, TDirectoryListBox, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TMaskEdit, TMemo, TPageControl, TRichEdit, TScrollBar, TTrackBar, components

Declaration
property OnChange: TNotifyEvent;

Description
The OnChange event specifies which event handler should execute when the contents of a component or
object changes.

For graphics objects, OnChange occurs when the specific graphics item encapsulated by the object
changes. For example, the OnChange event for a pen occurs when the Color, Mode, Style, or Width
properties of the TPen object are modified.

For components, OnChange occurs when the main value or values of the component are modified. For
example, OnChange occurs when the Text property of an edit box is modified.

For combo boxes, the OnChange event also occurs when an item is selected in the drop down list.

For string list objects, the OnChange event occurs when a change to a string stored in the list of strings
changes.

Example
This example uses a color grid on a form. The color grid is a component on the Samples page of the
Component palette. When the user clicks a color rectangle or drags the mouse cursor across the color
grid, the color of the form changes.

procedure TForm1.ColorGrid1Change(Sender: TObject);
begin
 Color := ColorGrid1.ForegroundColor;
end;

CheckBox Control

Delphi equivalent
TCheckBox Component

Description
See Standard Page Components

Checked Property

Delphi equivalent
Checked Property

Declaration
property Checked: Boolean;

Description
Run-time only. The Checked property determines whether an option is selected.

Example
This example fills in a radio button at run time:

RadioButton1.Checked := True;

This example uses a main menu component that contains a menu item named SnapToGrid1 on a form.
When the user chooses the Snap To Grid command, a check mark appears next to the command. When
the user chooses the Snap To Grid command again, the check marks disappears:

procedure TForm1.SnapToGrid1Click(Sender: TObject);
begin
 SnapToGrid1.Checked := not SnapToGrid1.Checked;
end;

Choose Function

Delphi equivalent
Use Index of TStringList Object

Description
The TStringList object maintains a list of strings. Use a string list object when you are managing a list of
strings that is not maintained by a control.

You can add, delete, insert, move, and exchange strings using the Add, Append, Delete, Insert, Move,
and Exchange methods. The Clear method clears all the strings in the list of strings. The Count property
contains the number of strings in the list. Each string list object has a Strings property that lets you access
a particular string by its position in the list of strings. To find the position of a string in the list, use the
IndexOf method.

Chr Function

Delphi equivalent
Chr Function

Declaration
function Chr(X: Byte): Char;

Description
The Chr function returns the character with the ordinal value (ASCII value) of the byte-type expression, X.

Example
begin
 Canvas.TextOut(10, 10, Chr(65)); { The letter 'A'}
end;

Cint Function

Delphi equivalent
AsInteger

Declaration
property AsInteger: Longint;

Description
Run-time only. This is a conversion property. For a TIntegerField, TSmallintField or TWordField, AsInteger
can be used to read or set the value of the field as a Longint, but Value should be used for this purpose
instead.

For a TStringField, AsInteger converts an integer to a string on assigning a value to the field, and converts
a string to an integer when reading from the field.

Run-time only. This is a conversion property. For a TIntegerField, TSmallintField or TWordField, AsInteger
can be used to read or set the value of the field as a Longint, but Value should be used for this purpose
instead.

For a TStringField, AsInteger converts an integer to a string on assigning a value to the field, and converts
a string to an integer when reading from the field.

Circle Method

Delphi equivalent
Ellipse Method

Declaration
procedure Ellipse(X1, Y1, X2, Y2: Integer);

Description
The Ellipse method draws an ellipse defined by a bounding rectangle on the canvas. The top left point of
the bounding rectangle is at pixel coordinates (X1, Y1) and the bottom right point is at (X2, Y2). If the
points of the rectangle form a square, a circle is drawn.

Example
The following code draws an ellipse filling the background of a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Ellipse(0, 0, ClientWidth, ClientHeight);
end;

Class Property

Delphi equivalent
OLEClassName Method

Declaration
property OleClassName: string;

Description
Runtime and readonly. Returns the class name of the OLE object. An OLE object must already be loaded
in the container before accessing the OleClassName property.

Example
Caption := OleContainer1.OLEClassName;

ClassModule Object

Delphi equivalent
Type section in a Unit

Description
A type Declaration specifies an identifier that denotes a type. A variable's type defines the set of values it
can have and the operations that can be performed on it.

See Delphi.hlp UNIT

Example
Type
 MyObject = Class(TObject);

Clear Method

Delphi equivalent
Clear Method

Applies to
TClipboard, TCollection, TFieldDefs, THeaderSections, TIndexDefs, TList, TListItems, TParam, TParams,
TStatusPanels, TStringList, TStrings, TDBGridColumns, TListColumns objects; TBCDField, TBlobField,
TBooleanField, TBytesField, TComboBox, TDBComboBox, TCurrencyField, TDateField, TDateTimeField,
TDBEdit, TDBListBox, TDBMemo, TDirectoryListBox, TDriveComboBox, TEdit, TFileListBox,
TFilterComboBox, TFloatField, TGraphicField, TImageList, TIndexDefs, TIntegerField, TListBox,
TMaskEdit, TMemo, TMemoField, TOutline, TSmallintField, TStringField, TTimeField, TVarBytesField,
TWordField components

Description
See Delphi.hlp for more information

Example
The following code will clear the contents of the field named date.

Table1.FieldByName('Date').Clear;

Clear Method (Clipboard, ComboBox, ListBox)

Delphi equivalent
Clear Method (Clipboard, ComboBox, ListBox)

Declaration
procedure Clear;

Description
The Clear method deletes all text from the control, or, in the case of collection, list and string objects or
outlines, deletes all items. For the Clipboard object, Clear deletes the contents of the Clipboard; this
happens automatically each time data is added to the Clipboard (cut and copy operations).

Example
The following code removes the text from an edit box control called NameField:

NameField.Clear;
This example uses a list box and a button on a form. When the form is created, strings are added to the
list box. When the user clicks the button, all the strings contained in the Items property, a TStrings object,
are cleared.

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListBox1.Items.Add('One');
 ListBox1.Items.Add('Two');
 ListBox1.Items.Add('Three');
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Clear;
end;

Click Event

Delphi equivalent
OnClick Event

Declaration
procedure Click;

Description
The Click method simulates a mouse click, as if the user had clicked a menu item or button, executing
any code attached to the OnClick event.

Example
The form in this example changes color each time the user clicks it:

procedure TForm1.FormClick(Sender: TObject);
begin
 Randomize;
 Color := Random(65535);
end;

Clip Property

Delphi equivalent
Cells[]

Declaration
property Cells[ACol, ARow: Integer]: string;

Description
Run-time only. The Cells property is an array of strings, one string for each cell in the grid. Use the Cells
property to access a string within a particular cell. ACol is the column coordinate of the cell, and ARow is
the row coordinate of the cell. The first row is row zero, and the first column is column zero.

Example
This code fills each cell of a grid with the same string.

procedure TForm1.Button1Click(Sender: TObject);
var
 I, J: Integer;
begin
 with StringGrid1 do
 for I := 0 to ColCount - 1 do
 for J:= 0 to RowCount - 1 do
 Cells[I,J] := 'Delphi';
end;

Clipboard Object Clipboard Object

Delphi equivalent
Clipboard Object

Description
The TClipboard object encapsulates the Windows Clipboard. Whenever you cut, copy, or paste text or
graphics objects within a Delphi application or between a Delphi application and another Windows
application, you are using the TClipboard object.

The Clipbrd unit declares the variable Clipboard as an instance of TClipboard. Use the Clipboard function
instead of creating your own instance of TClipboard.

You can place text in and retrieve text from the Clipboard using the AsText property. If you want to place
pictures in and retrieve pictures from the Clipboard, use the Assign property. To add or retrieve a
component object to the Clipboard, call the GetComponent and SetComponent methods.

Close Method

Delphi equivalent
Close Method

Declaration
procedure Close;

Description
The Close method closes the object.    See Delphi.hlp for application.

Example
The following method closes a form when a button called Done is clicked:

procedure TForm1.DoneButtonClick(Sender: TObject);
begin
 Close;

Close Method (OLE Container)

Delphi equivalent
Close Method

Declaration
procedure Close

Description
Deactivates the OLE object and terminates its server application, but doesn't remove it from the container.
Any changes the user made to the OLE object are automatically saved. There must be an OLE object in
the container before calling Close. After calling Close, the container's State property is osLoaded.

Example
OleContainer1.Close;

Close Statement

Delphi equivalent
CloseFile Procedure

Declaration
procedure CloseFile(var F);

Description
Due to naming conflicts, the CloseFile procedure replaces the Borland Pascal Close procedure. Use the
CloseFile procedure instead of Close to terminate the association between the file variable and an
external disk file.

F is a file variable of any file type opened using Reset, Rewrite, or Append. The external file associated
with F is completely updated and then closed, freeing the file handle for reuse.

Example
var
 F: TextFile;
begin
 if OpenDialog1.Execute then { Bring up open file dialog }
 begin
 AssignFile(F, OpenDialog1.FileName);
 { File selected in dialog }
 Reset(F);
 Edit1.Text := IntToStr(FileSize(F);
 { Put file size string in a TEdit control }
 CloseFile(F); { Close file }
 end;
end;

Cls Method

Delphi equivalent
TCanvas.FillRect

Declaration
procedure FillRect(const Rect: TRect);

Description
The FillRect method fills the specified rectangle on the canvas using the current brush.

Example
The following code will fill Form1's canvas with the current brush color when Button1 is clicked

Procedure TForm1.Button1Click(Sender : TObject);
begin
 Canvas.Brush.Color := Color;
 Canvas.FillRect(Canvas.ClipRect);
end;

Col, Row Properties

Delphi equivalent
Col, Row Properties

Declaration
property Col: Longint;

Description
Run-time only. The value of the Col property indicates the current column of the cell that has input focus.
You can use the Col property along with the Row property to determine which cell is selected at run time.

Example
The following line of code adds the string 'Hello' to the end of the list of strings in column four of the string
grid named StringGrid1:

StringGrid1.Cols[3].Add('Hello');

ColAlignment Property

Delphi equivalent
TField.Alignment Property

Declaration
property Alignment: TAlignment;

Description
The Alignment property is used by some data-aware controls to center, left-, or right-align the data in a
field. Data-aware controls that support alignment include TDBGrid and TDBEdit.

Example
The following line of code will center the display of the Name field.

Table1.FieldByName('Name').Alignment := taCenter;

ColContaining Method

Delphi equivalent
Use ColWidths Property (Protected)

Declaration
property ColWidths[Index: Longint]: Integer;

Description
Run-time only. The ColWidths property determines the width in pixels of all the cells within the column
referenced by the Index parameter.

By default, all the columns are the same width, the value of the DefaultColWidth property. To change the
width of all columns within a grid, change the DefaultColWidth property value.

To change the width of one column without affecting others, change the ColWidths property. Specify the
column you want to change as the value of the Index parameter. Remember the first column always has
an Index value of 0.

ColIndex Property

Delphi equivalent
ColumnMoved Method (Protected)

Declaration
procedure ColumnMoved(FromIndex, ToIndex: Longint); dynamic;

Description
The ColumnMoved method is the protected implementation for a custom grid's OnColumnMoved event
handler. The ColumnMoved method does nothing except call any event handler attached to the
OnColumnMoved event. You can override ColumnMoved to provide other responses in addition to the
inherited event-handler call.

The ColumnMoved method is called when the user moves a column in a grid that has goColMoving in the
Options property set. The FromIndex parameter specifies the original column index (corresponding to the
Col property) of the column being moved. The ToIndex parameter specifies the destination column index.
Use the ColumnMoved method to move any data that underlies a column when a column is moved.

Example
The following code will move the first column of DBGrid1 to the second column when Button1 is clicked.

Type
 TMyDBGrid = class(TDBGrid);

Procedure TForm1.Button1Click(Sender : TObject);
begin
 TMyDBGrid(DBGrid1).ColumnMoved(1, 2);
end;

ColPos Property

Delphi equivalent
Use DefaultWidth Method

Declaration
function DefaultWidth: Integer;

Description
Returns the default width of a column in a TDBGrid component. The default column width is based on
several factors. If you create a field object using the Fields editor, the field's DisplayWidth property is used
to calculate the width in pixels. If the grid has a title row and the width of the column title is bigger than
that of DisplayWidth, the title width becomes the default column width.

ColResize Event

Delphi equivalent
ColWidths Property (Protected)

Description
See ColWidth Property

ColWidth Property

Delphi equivalent
ColWidths Property (Protected)

Declaration
property ColWidths[Index: Longint]: Integer;

Description
Run-time only. The ColWidths property determines the width in pixels of all the cells within the column
referenced by the Index parameter.

By default, all the columns are the same width, the value of the DefaultColWidth property. To change the
width of all columns within a grid, change the DefaultColWidth property value.

To change the width of one column without affecting others, change the ColWidths property. Specify the
column you want to change as the value of the Index parameter. Remember the first column always has
an Index value of 0.

Example
Type
 TMyDBGrid= class(TDBGrid);

Procedure TForm1.ButtonClick(Sender : TObject);
begin
 TMyDBGrid(DBGrid1).ColWidths[0] := TMyDBGrid(DBGrid1).DefaultColWidth *
2;
end;

Collection Object

Delphi equivalent
TCollection Object

Description

The TCollection object is used to maintain a collection of TCollectionItem objects. TCollection
maintains an index of the collection items in its Items array. The Count property contains the
number of items in the collection. Use the Add and Clear properties to add new items to the
collection or to delete items from the collection. Objects descended from TCollection can contain
objects descended from TCollectionItem. Examples are in the TStatusBar and THeaderControl
controls which use TStatusPanels and THeaderSections collection objects to contain
TStatusPanel and THeaderSection collection items.
In addition to these properties, methods, and events, the TCollection object also has the methods that
apply to all objects and is a direct descendent of TPersistent.

CollsVisible Property

Delphi equivalent
Use TField.Visible Property

Declaration
property Visible: Boolean;

Description
The Visible property determines whether the component appears onscreen. If Visible is True, the
component appears. If Visible is False, the component is not visible.

For controls, calling the Show method makes the control's Visible property True, but it also performs other
actions to ensure that the user can see the control.

Example
The following code will toggle the visiblity of the Name field.

TForm1.Button1Click(Sender : TObject);
begin
 With TAble1 do
 FieldByName('Name').Visible := NOT FieldByName('Name').Visible;
end;

Color Property

Delphi equivalent
Color Property

Description
When you use the Color dialog box(TcolorDialog) to select a color, you are assigning a new color value to
the dialog box's Color property. You can then use the value within the Color property and assign it to the
Color property of another control.

Example
This code colors a form red:

Form1.Color := clRed;

ColorMode Property

Delphi equivalent
Use ADeviceMode Parameter of SetPrinter

Declaration
procedure SetPrinter(ADevvice, ADriver, APort: PChar; ADeviceMode: THandle);

Description
The SetPrinter method specifies a printer as the current printer. You should seldom, if ever, need to call
this method, but instead should access the printer you want in the Printers property array. For more
information, see the Windows API CreateDC function.

Cols, Rows Properties

Delphi equivalent
Cols, Rows Properties

Declaration
property Cols[Index: Integer]: TStrings;

Description
The Cols property is an array of the strings and their associated objects in a column. The number of
strings and associated objects is always equal to the value of the ColCount property, the number of
columns in the grid. Use the Cols property to access the strings and their associated objects within a
particular column in the grid. The Index parameter is the number of the column you want to access; the
Index value of the first column in the grid is zero.

The Rows property is an array of the strings and their associated objects in a row. The number of strings
and associated objects is always the value of the RowCount property, the number of rows in the grid.

Example
The following line of code adds the string 'Hello' to the end of the list of strings in column four of the string
grid named StringGrid1:

StringGrid1.Cols[3].Add('Hello');

Column Object, Columns Collection

Delphi equivalent
Columns Property

Declaration
property Columns: TDBGridColumns;

Description
The Columns property returns the TDBGridColumns collection object holding the TColumn objects
representing the columns in the grid. Use Columns to access TDBGridColumns methods and properties
for manipulating the attributes of one or more columns or to add or delete columns from the grid.

Example
The following line of code will set the width of the first column in DBGrid1 to 45 pixels;

DBGrid1.Columns[0].Width := 45;

Columns Property (DBGrid)

Delphi equivalent
Columns Property

Declaration
property Columns: TDBGridColumns;

Description
The Columns property returns the TDBGridColumns collection object holding the TColumn objects
representing the columns in the grid. Use Columns to access TDBGridColumns methods and properties
for manipulating the attributes of one or more columns or to add or delete columns from the grid.

Example
The following line of code will set the width of the first column in DBGrid1 to 45 pixels;

DBGrid1.Columns[0].Width := 45;

Columns Property (ListBox)

Delphi equivalent
Columns Property

Declaration
property Columns: Longint;

Description
The Columns property denotes the number of columns in the list box or radio group box. Specify the
number of columns you want for the list box or radio group box as the value of Columns.

Example
ListBox1.Columns := 2;

ComboBox Control

Delphi equivalent
ComboBox Component

Description
See Standard Page Components

Command Function

Delphi equivalent
ParamStr Function

Declaration
function ParamStr(Index: Integer): string;

Description
The ParamStr function returns a specified command-line parameter.

Index is an expression of type Integer. ParamStr returns the parameter from the command line that
corresponds to Index, or an empty string if Index is greater than ParamCount. For example, an Index
value of 2 returns the second command-line parameter.

ParamStr(0) returns the path and file name of the executing program (for example, C:
\TEST\MYPROG.EXE).

Example
var
    I: Word;
 Y: Integer;
begin
 Y := 10;
 for I := 1 to ParamCount do begin
 Canvas.TextOut(5, Y, ParamStr(I));
 Y := Y + Canvas.TextHeight(ParamStr(I)) + 5;
 end;
end;

CommandButton Control

Delphi equivalent
TButton Component

Description
See Standard Page Components

Comments Property

Delphi equivalent
VersionInfo API

Description
See Win32.HLP

CommitTrans Method

Delphi equivalent
Commit Method

Declaration
procedure Commit;

Description
The Commit method writes all modifications since the last call to StartTransaction to the database and
ends the current transaction. If no transaction is active, Delphi raises an exception.

Example
with Database1 do
 begin
 StartTransaction;
{ Update one or more records in tables linked to Database1 }
...
 Commit;
 end;

CommitTrans Statement

Delphi equivalent
Commit Method

Declaration
procedure Commit;

Description
The Commit method writes all modifications since the last call to StartTransaction to the database and
ends the current transaction. If no transaction is active, Delphi raises an exception.

Example
with Database1 do
 begin
 StartTransaction;
{ Update one or more records in tables linked to Database1 }
...
 Commit;
 end;

CommonDialog Control

Delphi equivalent
TOpenDialog

Description
See Dialogs Page Components

CompactDatabase Method

Delphi equivalent
DBIPackTable (BDE)

Example
The following code will pack the Table associated with Table1 when Button1 is clicked. Table1.Exclusive
must be true.

Procedure TForm1.Button1Click(Sender : TObject);
begin
 DBIPackTable(Table1.DBHandle, Table1.Handle, Nil, szParadox, TRUE);
end;

CompactDatabase Statement

Delphi equivalent
DBIPackTable (BDE)

Example
The following code will pack the Table associated with Table1 when Button1 is clicked. Table1.Exclusive
must be true.

Procedure TForm1.Button1Click(Sender : TObject);
begin
 DBIPackTable(Table1.DBHandle, Table1.Handle, Nil, szParadox, TRUE);
end;

CompanyName Property

Delphi equivalent
VersionInfo API

Description
See WinAPI.HLP

Const Statement

Delphi equivalent
Const Reserved Word

Description

The const reserved word defines an identifier whose value cannot change within the block
containing the Declaration. A constant identifier cannot be included in its own Declaration.
Delphi allows constant expressions.

Expressions used in constant Declarations must be written such that the compiler can evaluate
them at compile time.

Examples

(* Constant Declarations *)
const
 MaxData = 1024 * 64 - 16;
 NumChars = Ord('Z') - Ord('A') + 1;
 Message = 'Hello world...';

(* Typed constants *)
const
 identifier: type = value;
 ...
 identifier: type = value;

Container Object, Containers Collection

Delphi equivalent
TSession.DataBases, TDataBase.Datasets Properties

Declaration
property Databases[Index: Integer]: TDatabase;

Description
Run-time and read-only. The Databases property holds a list of all of the currently active TDatabase
components.

Example
{ Check to see if any record associated with this database has pending
updates }
Changed := False;
with Database1 do
 for I := 0 to DatasetCount - 1 do
 Changed := Changed or DataSets[I].Modified;

Container Property

Delphi equivalent
Parent Property

Declaration
property Parent: TWinControl;

Description
The Parent property contains the name of the parent of the control. The parent of a control is the
windowed control that contains the control. If one control (parent) contains others, the contained controls
are child controls of the parent. For example, if your application includes three radio buttons in a group
box, the group box is the parent of the three radio buttons, and the radio buttons are the child controls of
the group box.

Example
To set up the form for this example, put a group box on the form and add a radio button to the group box.
Put two labels and a button on the form. This code displays the name of the parent of the radio button and
the class name of the owner of the radio button in the captions of the two labels when the user clicks the
button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := RadioButton1.Parent.Name + ' is the parent';
 Label2.Caption := RadioButton1.Owner.ClassName +
 ' is the class name of the owner';
end;

This example uses a button and a group box on a form. When the user clicks the button, the button
moves inside the group box, because the group box is now the parent of the button.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Parent := GroupBox1;
end;

Container Property (Data Access)

Delphi equivalent
Database Name, Session Name Properties

Declaration
property DatabaseName: TFileName;

Description
Set the DatabaseName property to specify the database to access. This property can specify:

    A defined BDE alias,
    A directory path for desktop database files,
    An application-specific alias defined by a TDatabase component

ControlBox Property

Delphi equivalent
Use BorderIcons Property

Declaration
property BorderIcons: TBorderIcons;

Description
The BorderIcons property is a set whose values determine which icons appear on the title bar of a form.
These are the possible values that the BorderIcons set can contain:

Value Meaning
biSystemMenu The form has a Control menu (also known as a System menu)
biMinimize The form has a Minimize button
biMaximize The form has a Maximize button
biHelp The form shows help in pop-up windows, rather than starting Windows Help

(WINHELP.EXE). If biMinimize and biMaximize are excluded, a question mark
appears in the form's title bar; otherwise, it is hidden.

Example
The following code removes a form's System menu when the user clicks a button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 BorderIcons := BorderIcons - [biSystemMenu];
end;

Controls Collection

Delphi equivalent
Controls Property

Declaration
property Controls[Index: Integer]: TControl;

Description
Run-time and read only. The Controls property is an array of all controls that are children of the control.
The Controls property is most useful if you have a need to refer to the children of a control by number
rather than name.

Don't confuse the Controls property with the Components property. The Components property lists all
components that are owned by the component, while the Controls property lists all the controls that are
child windows of the control. All components put on a form are owned by the form, and therefore, they
appear in the form's Components property list.

Example
This example uses a group box on a form, with several controls contained within the group box. The form
also has an edit box and a button outside of the group box. The code counts each control's child controls
turning each of them invisible as they are counted. The total number of controls counted displays in the
edit box.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I:= 0 to GroupBox1.ControlCount -1 do
 GroupBox1.Controls[I].Visible := False;
 Edit1.Text := IntToStr(GroupBox1.ControlCount) + ' controls';
end;

Copies Property

Delphi equivalent
Copies Property

Declaration
property Copies: Integer;

Description
The value of the Copies property determines the number of copies of the print job to print. If you change
the value of Copies at design time, the value you specify is the default value in the edit box control when
the Print dialog box appears. The default value is 0.

Example
The following code sets the default number of copies for the print dialog box, PrintDialog1, to 3 before
displaying the dialog box:

PrintDialog1.Copies := 3;
PrintDialog1.Execute;

Copy Method

Delphi equivalent
Copy Method

Declaration
procedure Copy;

Description
Copies the OLE object to the Windows clipboard. There must be an OLE object in the container before
calling Copy.

Example
Procedure TForm1.Button1Click(Sender : TObject);
begin
 OleContainer1.copy;
end;
Note There must be an OLE object in the container before calling Copy.

Cos Function

Delphi equivalent
Cos Function

Declaration
function Cos(X: Extended): Extended;

Description
The Cos function returns the cosine of the angle X, in radians.

Count Function (SQL)

Delphi equivalent
Count Function (SQL)

Description
SQL Syntax

Example
Select Count(OrderNo) from Orders

Count Property (Data Access)

Delphi equivalent
DataBaseCount, DataSetCount Properties

Declaration
property DatabaseCount: Integer;

Description
Run-time and read-only. DatabaseCount is the number of TDataBase components currently attached to
the Session.      DatasetCount is the number of dataset components (TTable, TQuery, and TStoredProc)
that are currently using the TDatabase component. Read-only and run-time only.

Example
{ Check to see if any record associated with this database has pending
updates }
Changed := False;
with Database1 do
 for I := 0 to DatasetCount - 1 do
 Changed := Changed or DataSets[I].Modified;

Count Property (VB Collections)

Delphi equivalent
Count Property

Declaration
property Count: Integer;

Description
Run-time and read only. The Count property contains the number of items in a collection, list, menu item,
tree nodes object, tree node, header section, list column or a status bar.

Example
The following code displays the number of items in a list box in the caption of a label when the user clicks
the CountItems button:

procedure TForm1.CountItemsClick(Sender: TObject);
begin
 Label1.Caption := 'There are ' + IntToStr(ListBox1.Items.Count) +
 ' items in the listbox.';
end;

The following example assumes the form contains a main menu component, which includes a File menu
and a label. This code displays the number of menu items that make up the File menu.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(FileMenu.Count):
end;

CreateDatabase Function

Delphi equivalent
TDatabase.Create Method

Declaration
constructor Create(AOwner: TComponent);
Tdatabase Component

For information on TDatabase Component see Data Access Page Components

Description
The Create method allocates memory to create the component and initializes its data as needed. Each
object can have a Create method customized to create that particular kind of object. The owner of the
created component is passed in the AOwner parameter.

Usually you don't need to create objects manually. Objects you design in Delphi are automatically created
for you when you run the application and destroyed when you close the application.

Example
MyDatabase := TDatabase.create(self);

CreateDatabase Method

Delphi equivalent
TDatabase.Create Method

Description
See CreateDatabase Function

ExampleMyDatabase := TDatabase.create(self);

CreateDynaset Method

Delphi equivalent
TQuery.Create Method

Declaration
constructor Create(AOwner: TComponent);
Tquery Component

For information on TQuery Component see Data Access Page Components

Description
The Create method allocates memory to create the component and initializes its data as needed. Each
object can have a Create method customized to create that particular kind of object. The owner of the
created component is passed in the AOwner parameter.

Usually you don't need to create objects manually. Objects you design in Delphi are automatically created
for you when you run the application and destroyed when you close the application.

Example
MyQuery := TQuery.Create(Self);

CreateEmbed Method

Delphi equivalent
CreateObject Method

Declaration
procedure CreateObject(const OleClassName: string; Iconic: Boolean);

Description
Creates an embedded OLE object given its class name (also known as programmatic identifier). Iconic
indicates whether the object is shown as an icon (True) or displayed as it would be in the server
application (False). If there's already an OLE object in the container, it's destroyed and any changes the
user made to it are discarded.

Example
OleContainer1.CreateObject('PdoxWin7Table', TRUE);

CreateField Method

Delphi equivalent
TField.Create Method

Declaration
constructor Create;
Tfield Component

For information on Tfield Component see Data Access Page Components

Description
The Create method constructs a new object instance. Create returns an instance of the type being
created, allocated on the global heap.

Example
The following example creates a new TStringField named Query1CO_NAME.

procedure TForm1.Button2Click(Sender: TObject);
var
 T: TStringField;
begin
 Query1.Close;

 T := TStringField.Create(Self);

 T.FieldName := 'CO_NAME';
 T.Name := Query1.Name + T.FieldName;
 T.Index := Query1.FieldCount;
 T.DataSet := Query1;

 Query1.FieldDefs.UpDate;
 Query1.Open;
end;

CreateIndex Method
Delphi command
AddIndex Method

Declaration
procedure AddIndex(const Name, Fields: string; Options: TIndexOptions);

Description
The AddIndex method creates a new index for the TTable. Name is the name of the new index. Fields is a
list of the fields to include in the index. Separate the field names by a semicolon. Options is a set of
values from the TIndexOptions type.

Example
Table1.AddIndex('NewIndex', 'CustNo;CustName', [ixUnique,
ixCaseInsensitive]);

CreateLink Method

Delphi equivalent
CreateLinkToFile Method

Declaration
procedure CreateLinkToFile(const FileName: string; Iconic: Boolean);

Description
Creates a linked OLE object from the contents of the given file. Iconic indicates whether the object is
shown as an icon (True) or displayed as it would be in the server application (False). If there's already an
OLE object in the container, it's destroyed and any changes the user made to it are discarded.

Example
OleContainer1.CreateLinkToFile('TITAN.BMP', FALSE);

CreateObject Function

Delphi equivalent
CreateOleObject Function

Declaration
function CreateOleObject(const ClassName: string): Variant;

Description
The CreateOleObject function creates an OLE automation object of the specified class and returns it in a
variant. This is the way to get a new instance of an OLE automation server object for your automation
controller.

Example
Procedure TForm1.Button1Click(Sender : TObject)
begin
 MyVariant := CreateOleObject('MyAutomationProgID');
end;

CreateQueryDef Method

Delphi equivalent
TQuery.Create Method

Declaration
constructor Create(AOwner: TComponent);
Tquery Component

For more information on TQuery Component see Data Access Page Components

Description
The Create method allocates memory to create the component and initializes its data as needed. Each
object can have a Create method customized to create that particular kind of object.

Example
MyQuery := TQuery.create(Self);

CreateSnapshot Method

Delphi equivalent
TQuery.Create Method

Declaration
constructor Create(AOwner: TComponent);
Tquery Component

For more information on TQuery Component see Data Access Page Components.

Description
The Create method allocates memory to create the component and initializes its data as needed. Each
object can have a Create method customized to create that particular kind of object.

Example
MyQuery := TQuery.create(Self);

CreateTableDef Method

Delphi equivalent
TTable.Create Method

Declaration
constructor Create(AOwner: TComponent);
TTable Component

For more information on TTable Component see Data Access PageComponents.

Description
The Create method allocates memory to create the component and initializes its data as needed. Each
object can have a Create method customized to create that particular kind of object.

Example
MyTable := TTAble.Create(Self);

CurDir Function

Delphi equivalent
GetDir Procedure

Declaration
procedure GetDir(D: Byte; var S: string);

Description
The GetDir procedure returns the current directory of a specified drive.

D can be set to any of the following values:

Value Drive
0 Default
1 A
2 B
3 C

Performs no error checking. If the drive specified by D is invalid, S returns X:\ as if it were the root
directory of the invalid drive.

Example
var
 s : string;
 begin
 GetDir(0,s); { 0 = Current drive }
 MessageDlg('Current drive and directory: ' + s, mtInformation, [mbOk] ,
0);
 end;

CurrentX, CurrentY Properties

Delphi equivalent
PenPos Property

Declaration
property PenPos: TPoint;

Description
The PenPos property is the current drawing position of the pen. You should use the MoveTo method to
set the drawing position, rather than changing PenPos directly.

Example
The following code will move the current pen and display the its position.

procedure TForm1.Button1MouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var
 pt : TPoint;
begin
 Canvas.MoveTo(x,y);
 pt := Canvas.PenPos;
 Canvas.TextOut(0, 0 , 'The Current Pen Position is at : '+
IntToStr(pt.x) + ', ' + IntToStr(pt.y));
end;

DBCombo Control

Delphi equivalent
DBComboBox Component

Description
See Data Controls Page Components

DBEngine Object

Delphi equivalent
TSession Component

Description
The TSession component provides global control over database connections for an application. Delphi
automatically creates a default TSession component at runtime for applications which use database
controls.    This component may be accessed at runtime through the global variable Session.    Do not
close or destroy the default session.

There is also a TSession component on the data access page of the component palette.    This
component is only needed if you are writing a multi-threaded application which will perform simultaneous
data access (such as running two queries at the same time).    The global variable Sessions is a
TSessionList which provides a way to manage applications which use multiple sessions.

TSession provides global control over database connections for an application. The Databases property
of TSession is an array of all the active databases in the session. The DatabaseCount property is an
integer specifying the number of active databases in the Session.

DBGrid Control

Delphi equivalent
DBGrid Component

Description
See Data Controls Page Components

DBList Control

Delphi equivalent
DBListBox Component

Description
See Data Controls Page Component

DDB Function

Delphi equivalent
DoubleDecliningBalance Function

Declaration
function DoubleDecliningBalance(Cost, Salvage: Extended;
 Life, Period: Integer): Extended;

Description
The DoubleDecliningBalance function determines accelerated depreciation values for an asset, given the
initial cost, life expectancy, end value, and depreciation period. It calculates depreciation using the
double-declining balance method.

DELETE Statement (SQL)

Delphi equivalent
DELETE Statement (SQL)

Description
SQL Syntax

Example
Delete From Customer
Where IDField = 1234

DISTINCT, DISTINCTROW Predicates (SQL)

Delphi equivalent
DISTINCT, DISTINCTROW Predicates (SQL)

Description
SQL Syntax

Example
The following statement retrieves data from a Paradox table and a dBASE table:

SELECT DISTINCT C.CUST_NO, C.STATE, O.ORDER_NO
FROM "CUSTOMER.DB" C, "ORDER.DBF" O
WHERE C.CUST_NO = O.CUST_NO

DROP Statement (SQL)

Delphi equivalent
DROP Statement (SQL)

Description
SQL Syntax

Example
DROP TABLE "employee.db"

Data Control

Delphi equivalent
Datasource Component

Description
See Data Access Page Components

DataChanged Property

Delphi equivalent
Modified Property

Declaration
property Modified: Boolean;

Description
Run-time only. The Modified property determines whether the text of an edit box or memo control was
changed since it was created or since the last time the Modified property was set to False. If Modified is
True, the text was changed. If Modified is False, the text was not changed.

Example
procedure TForm1.Button1Click(Sender: TObject);
begin
if DBEdit1.Modified = True then
 begin
 MessageDlg('DBEdit box text was modified',
 mtInformation, [mbOK], 0);
 DBEdit1.Modified := False;
 end
 else
 MessageDlg('DBEdit box text was not modified',
 mtInformation, [mbOK], 0);
end;

DataField Property

Delphi equivalent
DataField Property

Declaration
property DataField: string;

Description
The DataField property identifies the field from which the data-aware control displays data. The dataset
the field is located in is specified in a data source component (TDataSource). The DataSource property of
the data-aware control specifies which data source component.

If the DataField value of a database edit box (TDBEdit) is an integer or floating-point value, only
characters that are valid in such a field can be entered in the edit box. Characters that are not legal are
not accepted.

Example
The following code specifies that the DataField of DBEdit1 is 'FNAME'.

DBEdit1.DataField := 'FNAME';

DataSource Property

Delphi equivalent
DataSource Property

Declaration
property DataSource: TDataSource;

Description
The DataSource property determines where the component obtains the data to display. Specify the data
source component that identifies the dataset the data is found in.

Example
The following code specifies DataSource1 to be the DataSource of DBGrid1.

DBGrid1.DataSource := DataSource1;

DataUpdatable Property

Delphi equivalent
CanModify Property

Declaration
property CanModify: Boolean;

Description
Run-time and read only. Specifies if a field can be modified for any reason, such as during a SetKey
operation. CanModify is True if the value of the field can be modified. If the ReadOnly property of the field
is True, or the ReadOnly property of the dataset is True, then CanModify is False.

Example
If Table1.Fields[0].CanModify then
 Table1.Fields[0].Clear;

Database Object, Database Collection

Delphi equivalent
TDatabase Component

Description
See Data Access Page Components

Database Property

Delphi equivalent
Database Property

Declaration
property Database: TDatabase;

Description
Run-time and read-only. Database specifies the database (TDatabase) component associated with the
dataset component. If you did not create a TDatabase at design time, then Delphi will create one at run
time. Use the Database property to reference the properties and methods of the database.

Example
{ Do a transaction }
with Table1.Database do
 begin
 StartTransAction;
 { Post some records with Table1 }
 Commit;
 end;

DatabaseName Property

Delphi equivalent
DatabaseName Property

Declaration
property DatabaseName: TFileName;

Description
Set the DatabaseName property to specify the database to access. This property can specify:

    A defined BDE alias,
    A directory path for desktop database files,
    An application-specific alias defined by a TDatabase component

Example
Database1.DatabaseName := 'Delphi_Demos';

Date Function

Delphi equivalent
Date Function

Declaration
function Date: TDateTime;

Description
The Date function returns the current date.

Example
This example uses a label and a button on a form. When the user clicks the button, the current date is
displayed in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := 'Today is ' + DateToStr(Date);
end;

Date Statement

Delphi equivalent
SetLocalTime (API)

Description
See Win32.hlp

DatePart Function

Delphi equivalent
DecodeDate Function

Declaration
procedure DecodeDate(Date: TDateTime; var Year, Month, Day: Word);

Description
The DecodeDate procedure breaks the value specified as the Date parameter into Year, Month, and Day
values. If the given TDateTime value is less than or equal to zero, the year, month, and day return
parameters are all set to zero.

Example
This example uses a button and two labels on a form. When the user clicks the button, the current date
and time are reported in the captions of the two labels.

procedure TForm1.Button1Click(Sender: TObject);
var
 Present: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
 begin
 Present:= Now;
 DecodeDate(Present, Year, Month, Day);
 Label1.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
 + IntToStr(Month) + ' of Year ' + IntToStr(Year);
 DecodeTime(Present, Hour, Min, Sec, MSec);
 Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
 + IntToStr(Hour);
end;

DateSerial Function

Delphi equivalent
EncodeDate Function

Declaration
function EncodeDate(Year, Month, Day: Word): TDateTime;

Description
The EncodeDate function returns a TDateTime type from the values specified as the Year, Month, and
Day parameters.

The year must be between 1 and 9999.

Valid Month values are 1 through 12.

Valid Day values are 1 through 28, 29, 30, or 31, depending on the Month value. For example, the
possible Day values for month 2 (February) are 1 through 28 or 1 through 29, depending on whether or
not the Year value specifies a leap year.

If the specified values are not within range, an EConvertError exception is raised. The resulting value is
one plus the number of days between 12/30/1899 and the given date.

Example
This example uses a button and a label on a form. When the user clicks the button, a specified date is
encoded as a MyDate variable of type TDateTime. MyDate is then displayed as a string in the caption of
the label.

procedure TForm1.Button1Click(Sender: TObject);
var
 MyDate: TDateTime;
begin
 MyDate := EncodeDate(83, 12, 31);
 Label1.Caption := DateToStr(MyDate);
end;

DateValue Function

Delphi equivalent
StrToDate Function

Declaration
function StrToDate(const S: string): TDateTime;

Description
The StrToDate function converts a string to date format. The date in the string must be a valid date.

The string must consist of two or three numbers, separated by the character defined by the
DateSeparator global variable. The order for month, day, and year is determined by the ShortDateFormat
global variable--possible combinations are m/d/y, d/m/y, and y/m/d.

If the string contains only two numbers, it is interpreted as a date (m/d or d/m) in the current year. Year
values between 0 and 99 are assumed to be in the current century.

If the given string does not contain a valid date, an EConvertError exception is raised.

Example
This example uses an edit box, a label, and a button on a form. When the user enters a date in the edit
box in the MM/DD/YY format, the string entered is converted to a TDateTime value. This value is then
converted back to a string value so it can appear as the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 ADate: TDateTime;
begin
 ADate := StrToDate(Edit1.Text);
 Label1.Caption := DateToStr(ADate);
end;

Day Function

Delphi equivalent
DecodeDate Function

Declaration
procedure DecodeDate(Date: TDateTime; var Year, Month, Day: Word);

Description
The DecodeDate procedure breaks the value specified as the Date parameter into Year, Month, and Day
values. If the given TDateTime value is less than or equal to zero, the year, month, and day return
parameters are all set to zero.

Example
This example uses a button and two labels on a form. When the user clicks the button, the current date
and time are reported in the captions of the two labels.

procedure TForm1.Button1Click(Sender: TObject);
var
 Present: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
 begin
 Present:= Now;
 DecodeDate(Present, Year, Month, Day);
 Label1.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
 + IntToStr(Month) + ' of Year ' + IntToStr(Year);
 DecodeTime(Present, Hour, Min, Sec, MSec);
 Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
 + IntToStr(Hour);
end;

DblClick Event

Delphi equivalent
OnDblClick Event

Declaration
property OnDblClick: TNotifyEvent;

Description
The OnDblClick event occurs when the user double-clicks the mouse button while the mouse pointer is
over the component.

Example
This example notifies the user that the form was double-clicked.

procedure TForm1.FormClick(Sender: TObject);
begin
 MessageDlg('You double-clicked the form', mtInformation, [mbOk], 0);
end;

Deactivate Event

Delphi equivalent
OnDeactivate Event

Declaration
property OnDeactivate: TNotifyEvent;

Description
The OnDeactivate event occurs when the user switches from your application to another Windows
application. Use the OnDeactive event to do any special processing you want to occur before your
application is deactivated.

Note See Handling Application Events for more information about creating event handlers for
application events.

Example
The following code minimizes an application when it's deactivated. Note that AppDeactivate should be
declared a method of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnDeactivate := AppDeactivate;
end;
procedure TForm1.AppDeactivate(Sender: TObject);
begin
 Application.Minimize;
end;

DefColWidth Property

Delphi equivalent
DefaultColWidth (Protected)

Declaration
property DefaultColWidth: Integer;

Description
The DefaultColWidth property determines the width of all the columns within the grid.

If you want to change the width of a single column within a grid without changing other columns, use the
ColWidths property during run time. If you change the DefaultColWidth property value after changing the
width of specified columns, all the columns become the height specified in the DefaultColWidth property
once again.

The default value is 64 pixels.

Example
Type
 TMyDBGrid= class(TDBGrid);

Procedure TForm1.ButtonClick(Sender : TObject);
begin
 TMyDBGrid(DBGrid1).ColWidths[0] := TMyDBGrid(DBGrid1).DefaultColWidth *
2;
end;

Default Property

Delphi equivalent
Default Property

Declaration
property Default: Boolean;

Description
The Default property indicates whether a push or bitmap button is the default button. If Default is True,
any time the user presses Enter, the OnClick event handler for that button runs. The only exception to this
is if the user selects another button before pressing Enter, in which case the OnClick event handler for
that button runs. Although your application can have more than one button designated as a default button,
the form calls the OnClick event handler for the first button in the tab order.

Whenever any button has focus, it becomes the default button temporarily. When the focus moves to a
control that isn't a button, the button with its Default property set to True becomes the default button once
again.

Example
This example makes the button named OK the default button:

procedure TForm1.FormCreate(Sender: TObject);
begin
 OK.Default := True;
end;

DefaultExt Property

Delphi equivalent
DefaultExt Property

Declaration
property DefaultExt: TFileExt;

Description
The DefaultExt property specifies the extension that is added to the file name the user types in the File
Name edit box if the user doesn't include a file-name extension in the filename. If the user specifies an
extension for the filename, the value of the DefaultExt property is ignored. If the DefaultExt value remains
blank, no extension is added to the filename entered in the File Name edit box.

Legal property values include strings up to 3 characters in length. Don't include the period (.) that divides
the filename and its extension.

Example
This example sets the default file extension to TXT, displays the Open dialog box, then assigns the
filename the user selects with the dialog box to a variable the application can use to open a file:

procedure TForm1.Button1Click(Sender: TObject);
var
 NameOfFile : TFileName;
begin
 OpenDialog1.DefaultExt := 'TXT';
 if OpenDialog1.Execute then
 NameOfFile := OpenDialog1.FileName;
end;

When this code runs, if the user types a filename in the File Name edit box in the Open dialog box, but
doesn't specify an extension, the TXT extension is added to the filename, and the entire filename is saved
in the NameOfFile variable. For example, if the user types MYNOTES as the filename, the string saved in
the NameOfFile variable is MYNOTES.TXT.

DefaultValue Property

Delphi equivalent
Use OnEnter Event

Declaration
property OnEnter: TNotifyEvent;

Description
The OnEnter event occurs when a component becomes active. Use the OnEnter event handler to specify
any special processing you want to occur when a component becomes active.

Delete Method

Delphi equivalent
Delete Method

Declaration
procedure Delete;

Description
The Delete method deletes the current record from the dataset. The next record then becomes the new
current record. If the record deleted was the last record in the dataset, then the previous record becomes
the current record.

This method is valid only for datasets that return a live result set.

Example
Table1.delete;

Delete Method (OLE Container)

Delphi equivalent
Close Method

Declaration
procedure Close

Description
Deactivates the OLE object and terminates its server application, but doesn't remove it from the container.
Any changes the user made to the OLE object are automatically saved. There must be an OLE object in
the container before calling Close. After calling Close, the container's State property is osLoaded.

Example
OleContainer1.Close;

DeleteQueryDef Method

Delphi equivalent
Free Method

Declaration
procedure Free;

Description
The Free method destroys the object and frees its associated memory. If you created the object yourself
using the Create method, you should use Free to destroy and release memory. Free is successful even if
the object is nil, so if the object was never initialized, for example, calling Free won't result in an error.

Example
MyTable.Free;

DeleteSetting Statement

Delphi equivalent
DeleteKey Method

Declaration
function DeleteKey(const Key: string): Boolean;

Description
DeleteKey removes a specified key and its associated data from the registry. If the key has subkeys, the
subkeys and any associated data are also removed.

DeleteKey returns True if key deletion is successful. On error, DeleteKey returns False.

Example
var
 MyReg : TRegistry;
begin
 MyReg := TRegistry.create;
 MyReg.DeleteKey('Software\Borland\MyApplicationKey');
 MyReg.Free;
end;

Description Property (Data Access)

Delphi equivalent
Message Property

Example
try
 Table1.open;
on
 E : EDBEngineError do
 showMessage(E.Message);
end;

DeviceName Property

Delphi equivalent
Printers Property

Declaration
property Printers: TStrings;

Description
Run-time and read-only. The Printers property is a list of all printers installed in Windows.

Example
listbox1.items := printer.printers;

DialogTitle Property

Delphi equivalent
Title Property

Declaration
property Title: string;

Description
The Title property determines the text that appears in the dialog box's title bar.

Example
This code displays the Open dialog box with the text "Open Pascal files" in its title bar and lists only
Pascal files in the list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.Filter := 'Pascal files (*.PAS)|*.PAS';
 OpenDialog1.Title := 'Open Pascal files';
 OpenDialog1.Execute;
end;

Dim Statement

Delphi equivalent
Var

Description

A variable (var) Declaration associates an identifier and a type with a location in memory where
values of that type can be stored.
An absolute clause can be used to specify an absolute memory address.

The var reserved word is also used to declare variable parameters.

Example

{ Variable Declarations }
 var
 X, Y, Z: real;
 I, J, K: Integer;
 Done, Error: Boolean;
 Vector: array[1..10] of real;
 Name: string[15];
 InFile, OutFile: Text;
 Letters: set of 'A'..'Z';

Dir Function

Delphi equivalent
FileExists

Declaration
function FileExists(const FileName: string): Boolean;

Description
The FileExists function returns True if the file specified by FileName exists. If the file does not exist,
FileExists returns False.

Example
The following code prompts you for confirmation before deleting a file:

if FileExists(FileName) then
 if MsgBox('Do you really want to delete ' + ExtractFileName(FileName)
 + '?'), []) = IDYes then DeleteFile(FileName);

DirListBox Control

Delphi equivalent
DirectoryListBox Component

Description
See System Page Components

DisplayType Property

Delphi equivalent
Iconic Property

Declaration
property Iconic: Boolean;

Description
Determines how the OLE object is displayed. If Iconic is True, it's displayed as an icon; if False, it's
displayed as it would be in the server application.

Do...Loop Statement

Delphi equivalent
Repeat...Until Statement

Description
The statements between repeat and until are executed in sequence while the Boolean expression in the
until statement evaluates to True.

Using this loop ensures that the sequence is executed at least once because the Boolean expression is
evaluated after the execution of each sequence.

Example
{ Repeat Statements }
 repeat Ch := GetChar until Ch <> ' ';
 repeat
 Write('Enter value: ');
 ReadLn(I);
 until (I >= 0) and (I <= '9');

DoEvents Function

Delphi equivalent
Application.ProcessMessages

Declaration
procedure ProcessMessages;

Description
The ProcessMessages method interrupts the execution of your application so that Windows can respond
to events. In Win32, neglecting message processing doesn't affect other applications, it only affects the
responsiveness of your own process. By calling ProcessMessages, your application permits Windows to
process these events at the time ProcessMessages is called. The ProcessMessages method cycles the
Windows message loop until it is empty and then returns control to your application.

Example
This example uses two buttons that are long enough to accommodate lengthy captions on a form. When
the user clicks the button with the caption Ignore Messages, the code begins to generate a long series of
random numbers. If the user tries to resize the form while the handler is running, nothing happens until
the handler is finished. When the user clicks the button with the caption Process Messages, more random
numbers are generated, but Windows can still respond to a series of mouse events, such as resizing the
form.

Note How quickly these event handlers run depends on the microprocessor of your computer. A
message appears on the form informing you when the handler has finished executing.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Button1.Caption := 'Ignore Messages';
 Button2.Caption := 'Process Messages';
end;
procedure TForm1.Button1Click(Sender: TObject);
var
 I, J, X, Y: Word;
begin
 I := 0;
 J := 0;
 while I < 64000 do
 begin
 Randomize;
 while J < 64000 do
 begin
 Y := Random(J);
 Inc(J);
 end;

 X := Random(I);
 Inc(I);
 end;
 Canvas.TextOut(10, 10, 'The Button1Click handler is finished');
end;
procedure TForm1.Button2Click(Sender: TObject);
var
 I, J, X, Y: Word;
begin
 I := 0;
 J := 0;
 while I < 64000 do

 begin
 Randomize;
 while J < 64000 do
 begin
 Y := Random(J);
 Inc(J);
 Application.ProcessMessages;
 end;

 X := Random(I);
 Inc(I);
 end;
 Canvas.TextOut(10, 10, 'The Button2Click handler is finished');
end;

DoVerb Method

Delphi equivalent
DoVerb Method

Declaration
procedure DoVerb(Verb: Integer);

Description
Requests the OLE object to perform some action. OLE defines several verbs, such as ovShow (to display
the OLE object) and ovPrimary (the default action, usually to activate the OLE object). OLE objects can
define their own custom verbs. You can use the ObjectVerbs property to get a list of those custom verbs.

Example
OleContainer1.DoVerb(ovPrimary);

Drag Method

Delphi equivalent
BeginDrag Method

Declaration
procedure BeginDrag(Immediate: Boolean);

Description
The BeginDrag method starts the dragging of a control. If the Immediate parameter is True, the mouse
pointer changes to the value of the DragCursor property and dragging begins immediately. If Immediate is
False, the mouse pointer doesn't change to the value of the DragCursor property and dragging doesn't
begin until the user moves the mouse pointer a short distance (5 pixels). This allows the control to accept
mouse clicks without beginning a drag operation.

Your application needs to call the BeginDrag method to begin dragging only when the DragMode property
value for the control is dmManual.

Example
The following code handles a mouse-down event on a file list box by beginning dragging only if it was the
left mouse button pressed:

procedure TFMForm.FileListBox1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then { only drag if left button pressed }
 with Sender as TFileListBox do { treat Sender as TFileListBox }
 begin
 if ItemAtPos(Point(X, Y), True) >= 0 then { is there an item here? }
 BeginDrag(True); { if so, drag it }
 end;
end;

DragDrop Event

Delphi equivalent
OnDragDrop Event

Declaration
TDragDropEvent = procedure(Sender, Source: TObject; X, Y: Integer) of object;
property OnDragDrop: TDragDropEvent;

Description
The OnDragDrop event occurs when the user drops an object being dragged. Use the OnDragDrop event
handler to specify what you want to happen when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped
on. The X and Y parameters are the coordinates of the mouse positioned over the control.

The TDragDropEvent type points to a method that handles the dropping of a dragged object. The Source
parameter is the object being dragged, Sender is the object the Source is being dropped on, and X and Y
are screen coordinates in pixels.

Example
This code comes from an application that contains a list box and three labels, each with a different font
and color. The user can select a label and drag it to a list box and drop it. When the label is dropped, the
items in the list box assume the color and font of the dropped label. This is the OnDragDrop event
handler.

procedure TForm1.ListBox1DragDrop(Sender, Source: TObject; X, Y: Integer);
begin
 if (Sender is TListBox) and (Source is TLabel) then
 begin
 (Sender as TListBox).Font := (Source as TLabel).Font;
 end;
end;

The Source in this example is the label, and the Sender is the list box.

DragIcon Property

Delphi equivalent
DragCursor Property

Declaration
property DragCursor: TCursor;

Description
The DragCursor property determines the shape of the mouse pointer when the pointer is over a
component that will accept an object being dragged.    See Delphi.hlp (DragCursor) for further infomation.

Example
The following code changes the DragCursor of Memo1 to crIBeam.

Memo1.DragCursor := crDrag;

DragMode Property

Delphi equivalent
DragMode Property

Declaration
property DragMode: TDragMode;

Description
The DragMode property determines the drag and drop behavior of a control. These are the possible
values:

Value Meaning
dmAutomatic If dmAutomatic is selected, the control is ready to be dragged; the user just clicks

and drags it.
dmManual If dmManual is selected, the control can't be dragged until the application calls the

BeginDrag method.

If a control's DragMode property value is dmAutomatic, the application can disable the drag and drop
capability at run time by changing the DragMode property value to dmManual.

Example
This example determines whether the drag mode of the button on the form is manual. If it is, the dragging
the button becomes possible.

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Button1.DragMode = dmManual then
 Button1.BeginDrag(True);
end;

DragOver Event

Delphi equivalent
OnDragOver Event

Declaration
TDragOverEvent = procedure(Sender, Source: TObject; X, Y: Integer; State:
TDragState; var Accept: Boolean) of object;
property OnDragOver: TDragOverEvent;

Description
The OnDragOver event occurs when the user drags an object over a component. You use an
OnDragOver event to accept an object so the user can drop it.

The OnDragOver event accepts an object when its Accept parameter is True.

Usually, you will want the cursor to change shape, indicating that the control can accept the dragged
object if the user drops it. You can change the shape of the cursor by changing the value of the
DragCursor property for the control either at design time or at run time before an OnDragOver event
occurs.

The TDragOverEvent type points to a method that handles the dragging of one object over another. The
Source parameter is the object being dragged. Sender is the object the Source is being dragged over. X
and Y are the coordinates within the control in pixels. State is the state of the drag object in relationship to
the object being dragged over. And Accept determines whether the Sender recognizes the drag object.
Accept defaults to False.

Example
This OnDragOver event handler permits the list box to accept a dropped label:

procedure TForm1.ListBox1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 Accept := Source is TLabel;
end;

The Source parameter identifies what is being dragged. The Sender is the control being dragged over.

This code permits the list box to accept any dropped control:

procedure TForm1.ListBox1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 Accept := True;
end;

DrawMode Property

Delphi equivalent
Pen.Mode Property

Declaration
property Mode: TPenMode;

Description
The Mode property determines how the pen draws lines on the canvas. See Delphi.hlp for a table that
describes the behavior for each pen mode.

Example
The following code sets the mode of the pen of the Canvas of Form1 to the inverse of the pen Color.

Form1.Canvas.Pen.Mode := pmNotCopy;

DrawStyle Property

Delphi equivalent
Pen.Style Property

Declaration
property Style: TPenStyle;

Description
The Style property determines the style in which the pen draws lines. See Delphi.hlp for a    table that
shows the different style values.

Example
This example uses two radio buttons on a form. When the user drags the mouse pointer across the form,
lines are drawn. The user can use the two radio buttons to choose between two pen styles. Selecting the
first radio button draws a dotted line. Selecting the second radio button draws a solid line.

var
 Drawing: Boolean;
procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
end;
procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X,
 Y: Integer);
begin
 if Drawing then
 Canvas.LineTo(X, Y);
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;

 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);
 Drawing := False;
end;
procedure TForm1.RadioButton1Click(Sender: TObject);
begin
 Canvas.Pen.Style := psDot;
end;
procedure TForm1.RadioButton2Click(Sender: TObject);
begin
 Canvas.Pen.Style := psSolid;
end;

DrawWidth Property

Delphi equivalent
Pen.Width Property

Declaration
property Width: Integer;

Description
The Width property determines the maximum width of the graphics object in pixels.

Example
To set the pen width to a random value from 1 to 10,

Canvas.Pen.Width := 1 + Random(10);

Drive Property

Delphi equivalent
Drive Property

Declaration
property Drive: Char;

Description
Run-time only. For the drive combo box, the Drive property determines which drive is displayed in the edit
control of the combo box. When the user uses the drive combo box to select a new drive, the selected
drive becomes the value of the Drive property. The value of the Text property also changes to the new
volume name when the Drive property value changes.

For the directory list box, the Drive property determines which drive the list box displays the directory
structure on. When the value of Drive changes, the Directory value changes also to the current directory
on the specified drive.

For the file list box, the Drive property determines which drive the list box displayed the files on. When the
value of Drive changes, the Directory value also changes to the current directory on the specified drive.

Example
The following example assumes that a drive combo box, a file list box, and a directory list box are on a
form. This code changes the drive displayed in the drive combo box, displays the current directory of the
selected drive in the directory list box, and displays the files in the current directory of the selected drive in
the file list box when the user selects a drive in the drive combo box:

procedure TForm1.DriveComboBox1Change(Sender: TObject);
begin
 DirectoryListBox1.Drive := DriveComboBox1.Drive;
 FileListBox1.Directory := DirectoryListBox1.Directory;
end;

DriveListBox Control

Delphi equivalent
DriveComboBox Component

Description
See System Page Components

DriverName Property

Delphi equivalent
GetPrinter Method

Declaration
procedure GetPrinter (ADevice, ADriver, APort: PChar; var ADeviceMode:
THandle);

Description
The GetPrinter method retrieves the current printer. You should rarely need to call this method and should
instead access the printer you want in the Printers property array. For more information, see the
CreateDC function in the Win32 Developer's Reference (WIN32.HLP).

DropDown Event

Delphi equivalent
OnDropDown Event

Declaration
property OnDropDown: TNotifyEvent;

Description
The OnDropDown event occurs when the user opens (drops down) a combo box or list box.

Example
The following code doesn't sort the items in a combo box until the user opens it.

procedure TForm1.ComboBox1DropDown(Sender: TObject);
begin
 ComboBox1.Sorted := True;
end;

Duplex Property

Delphi equivalent
Use ADeviceMode Parameter of SetPrinter/GetPrinter Methods

Declaration
procedure GetPrinter (ADevice, ADriver, APort: PChar; var ADeviceMode:
THandle);

Description
The GetPrinter method retrieves the current printer. You should rarely need to call this method and should
instead access the printer you want in the Printers property array. For more information, see the
CreateDC function in the Win32 Developer's Reference (WIN32.HLP).

Dynaset Object

Delphi equivalent
TQuery Component

Description
See Data Access Components Page

EOF Function

Delphi equivalent
EOF Function

Declaration
Typed or untyped files:
function Eof(var F): Boolean;

Text files:
function Eof [(var F: Text)]: Boolean;

Description
The Eof function tests whether or not the current file position is the end-of-file.

F is a text file variable. If F is omitted, the standard file variable Input is assumed.

Eof(F) returns True if the current file position is beyond the last character of the file or if the file contains
no components; otherwise, Eof(F) returns False.

{$I+} lets you handle run-time errors using exceptions. For more information on handling run-time library
exceptions, see Handling RTL Exceptions. (Delphi.hlp)

Example
var
 F1, F2: TextFile;
 Ch: Char;
begin
 if OpenDialog1.Execute then begin
 AssignFile(F1, OpenDialog1.Filename);
 Reset(F1);
 if SaveDialog1.Execute then begin
 AssignFile(F2, OpenDialog1.Filename);
 Rewrite(F2);
 while not Eof(F1) do
 begin
 Read(F1, Ch);
 Write(F2, Ch);
 end;
 CloseFile(F2);
 end;
 CloseFile(F1);

 end;
end;

EOF Property

Delphi equivalent
EOF Property

Declaration
property EOF: Boolean;

Description
Run-time and read-only. EOF is a Boolean property that indicates whether a dataset is known to be at its
last row. The EOF property returns a value of True after:

    An application opens an empty dataset
    A call to a table's Last method
    A call to a table's Next fails because the cursor is on the last row

Example
This example uses TDataSource's OnDataChange event to detect when the user moves to another
record. If the end of file is reached (EOF property becomes True), a message is displayed on the form's
status bar.

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
 if Table1.EOF then
 StatusBar1.SimpleText := 'You''re already at the end of the table';
end;

EXEName Property

Delphi equivalent
EXEName Property

Declaration
property ExeName: string;

Description
Run-time and read-only. The ExeName property contains the name of the executable application
including path information. The name of the application is the name you gave the project file with an .EXE
extension. If you haven't specified a name, the default name is PROJECT1.EXE.

Example
This code displays the current name of the application's .EXE file in a label control when the user clicks
the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := Application.ExeName;
end;

For example, if the application name is C:\DELPHI\WORK\MYAPP.EXE, that entire string appears in the
label control.

Edit Method

Delphi equivalent
Edit Method

Declaration
procedure Edit;

Description
The Edit method prepares the current record of the dataset for changes and puts the dataset in Edit
mode, setting the State property to dsEdit. Data-aware controls cannot modify existing records unless the
dataset is in Edit mode.

Calling this method for a dataset that cannot be modified raises an exception. The CanModify property
will be True for datasets that can be modified. This method is valid only for datasets that return a live
result set.

Example
if Table1.State <> dsEdit then
 Table1.edit;
Table1.FieldByName('Name').AsString := Randy;
Table1.post;

EditMode Property

Delphi equivalent
State Property

Declaration
property State: TDataSetState;

Description
Run-time and read-only. The State property specifies the current state of the dataset. The possible values
are those of the TDataSetState type:

    dsInactive when the dataset is closed
    dsBrowse when the dataset is in Browse state
    dsEdit when the dataset is in Edit state
    dsInsert when the dataset is in Insert state
    dsSetKey when the dataset is in SetKey state
    dsCalcFields when the OnCalcFields event is called.

Example
if Table1.State <> dsEdit then
 Table1.edit;
Table1.FieldByName('Name').AsString := Randy;
Table1.post;

Enabled Property

Delphi equivalent
Enabled Property

Description
The Enabled property determines if the control responds to mouse, keyboard, or timer events, or if the
data-aware controls update each time the dataset they are connected to changes.

Example
To disable a button called FormatDiskButton,

FormatDiskButton.Enabled := False;

This code alternately dims or enables a menu command when a user clicks the button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if OpenCommand.Enabled then
 OpenCommand.Enabled := False
 else
 OpenCommand.Enabled := True;
end;

End Statement

Delphi equivalent
End Statement

Desciption
The reserved word end marks the end of a block. End can be used with:

    begin to form compound statements
    case to form case statements
    record to declare record types
    object to declare object types
    asm to call the built-in assembler
    except to end an exception list
    finally to end a finally block

The final end of a module is followed by a period to denote that there is nothing after it.

Examples
(* with begin to form compound statement *)
if First < Last then
begin
 Temp := First;
 First := Last;
 Last := Temp;
end;
(* with case statement *)
case Ch of
 'A'..'Z', 'a'..'z': WriteLn('Letter');
 '0'..'9': WriteLn('Digit');
 '+', '-', '*', '/': WriteLn('Operator');
else
 WriteLn('Special character');
end;
(* in record type definitions *)
type
 MyClass = (Num, Dat, Str);

 Date = record
 D, M, Y: Integer;
 end;
 Facts = record
 Name: string[10];
 case Kind: MyClass of
 Num: (N: real);
 Dat: (D: Date);
 Str: (S: string);
 end;
(* in object type definitions *)
type
Location = object
 X, Y: Integer;
 procedure Init(PX, PY: Integer);
 function GetX: Integer;
 function GetY: Integer;
end;
(* with asm *)

asm
 mov ax,1
 mov cx, 100
end;

EndDoc Method

Delphi equivalent
EndDoc Method

Declaration
procedure EndDoc;

Description
The EndDoc method ends the current print job and closes the text file variable. After the application calls
EndDoc, the printer begins printing. Use EndDoc after successfully sending a print job to the printer. If the
print job isn't successful, use the Abort method.

The Close procedure calls the EndDoc method.

Example
This example uses a button on a form. When the user clicks it, the event handler prints a rectangle on the
printer and displays a message on the form.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with Printer do
 begin
 BeginDoc;
 Canvas.Rectangle(20, 20, 400, 300);
 EndDoc;
 end;
      Canvas.TextOut(10, 10, 'Printed');
end;

To use the EndDoc method, you must add the Printers unit to the uses clause of your unit.

Environ Function

Delphi equivalent
GetEnvironmentVariable (API)

Description
See Win32.HLP

Err Object

Delphi equivalent
Exception Class

Declaration
const ExceptionClass: TClass;

Description
ExceptionClass is a class reference variable that determines what exception classes will be reported by
the debugger. ExceptionClass is set to Exception by default, so only objects descended from Exception
and raised in the Raise statement will be reported by the debugger during a debug session.

Error Event

Delphi equivalent
EDBException Object (EDatabaseError)

Declaration
EDatabaseError = class(Exception);

Description
The EDatabaseError type is the exception type raised when a database error is detected by a
component. Use EDatabaseError with an exception handling block or to create a database exception.
With an exception handling block, you can detect the condition and handle it yourself. If something in your
code encounters an error, you can create and raise the exception yourself.

Error Function

Delphi equivalent
Exception Class

Declaration
const ExceptionClass: TClass;

Description
See Exception Handling (Delphi.HLP)

Each statement in the except part of a try..except block defines code to execute to handle a particular
kind of exception. The form of these exception-handling statements is as follows:

on <type of exception> do <statement>;

By using exceptions, you can spell out the "normal" expression of your algorithm, then provide for those
exceptional cases when it doesn't apply. Without exceptions, you have to test every single time to make
sure you're allowed to proceed with each step in the calculation.

Error Object, Errors Collection

Delphi equivalent
Exception Class

Declaration
const ExceptionClass: TClass;

Description
See Exception Handling (Delphi.HLP)

Each statement in the except part of a try..except block defines code to execute to handle a particular
kind of exception. The form of these exception-handling statements is as follows:

on <type of exception> do <statement>;

By using exceptions, you can spell out the "normal" expression of your algorithm, then provide for those
exceptional cases when it doesn't apply. Without exceptions, you have to test every single time to make
sure you're allowed to proceed with each step in the calculation.

Error Statement

Delphi equivalent
Raise

Description
When an exception occurs, you might want to display some sort of message to the user, then proceed
with the standard handling. To do that, you declare a local exception handler that displays the message
then calls the reserved word raise.

Examples

For example, given the following Declaration,
type
 EPasswordInvalid = class(Exception);

You can raise a "password invalid" exception at any time by calling raise with an instance of
EPasswordInvalid, like this:

if Password <> CorrectPassword then
 raise EPasswordInvalid.Create('Incorrect password entered');

Exclusive Property

Delphi equivalent
Exclusive Property

Declaration
property Exclusive: Boolean;

Description
Set the Exclusive property to True to prevent any other user from accessing the table. If other users are
accessing the table when you try to open it, your exception handler will have to wait for those users to
release it. If you do not provide an exception handler and another user already has the table open, your
application will be terminated.

Example
{ Try to open Table1 with Exclusive True }
{ First, close Table1 }
Table1.Active := False;
repeat { until successful or Cancel button is pressed }
 try
 Table1.Exclusive := True; { See if it will open }
 Table1.Active := True;
 Break; { If no error, exit the loop }
 except
 on EDatabaseError do
 { Ask if it is OK to retry }
 if MessageDlg('Could not open Table1 exclusively - OK to retry?',
mtError,

 [mbOK, mbCancel], 0) <> mrOK then raise; { If not, reraise to abort }
 { Otherwise resume the repeat loop }
 end;
 until False;

Execute Method

Delphi equivalent
Open Method

Declaration
procedure Open;

Description
The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the Active
property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement does not return
a result set (for example, an INSERT or UPDATE statement), then use ExecSQL instead of Open.

For TStoredProc, use Open to execute the stored procedure if the procedure returns a result set. If the
stored procedure returns a single row, use ExecProc instead.

Example
try
 Query1.Open;
except
 on EDataBaseError do { The dataset could not be opened };
end;

ExecuteSQL Method

Delphi equivalent
ExecSQL Method

Declaration
procedure ExecSQL;

Description
Use the ExecSQL method to execute an SQL statement assigned to the SQL property of a TQuery if the
statement does not return a result set. If the SQL statement is an INSERT, UPDATE, DELETE, or any
DDL statement, then use this method.

If the SQL statement is a SELECT statement, use Open instead.

Example
Query1.Close;
Query1.SQL.Clear;
Query1.SQL.Add('Delete from Country where Name = 'Argentina');
Query1.ExecSQL;

Exit Statement

Delphi equivalent
Exit Procedure

Declaration
procedure Exit;

Description
The Exit procedure immediately passes control away from the current procedure.

If the current procedure is the main program, Exit causes the program to terminate.

Exit will cause the calling procedure to continue with the statement after the point at which the procedure
was called.

Exp Function

Delphi equivalent
Exp Function

Declaration
function Exp(X: Real): Real;

Description
The Exp function returns the exponential of X.

The return value is e raised to the power of X, where e is the base of the natural logarithms.

Example
 var
 S: string;
begin
 S := 'e = ' + FloatToStr(Exp(1.0));
 Canvas.TextOut(10, 10, S);
end;

FROM Clause (SQL)

Delphi equivalent
FROM Clause (SQL)

Description
SQL Syntax

Example
The FROM clause specifies the table or tables from which to retrieve data. Table_reference can be a
single table, a comma-delimited list of tables, or can be an inner or outer join as specified in the SQL-92
standard. For example, the following statement specifies a single table:

SELECT PART_NO
FROM "PARTS.DBF"

The next statement specifies a left outer join for table_reference:

SELECT * FROM PARTS LEFT OUTER JOIN INVENTORY
ON PARTS.PART_NO = INVENTORY.PART_NO

FV Function

Delphi equivalent
FutureValue Function

Declaration
function FutureValue(Rate: Extended; NPeriods: Integer; Payment,
PresentValue:
 Extended; PaymentTime: TPaymentTime): Extended;

Description
The FutureValue function returns the future value of an investment of PresentValue where Payment is
invested for NPeriods at the rate of Rate per period. The PaymentTime parameter indicates whether the
investment is an ordinary annuity or an annuity due (enter 0 if payments are at the end of each period, 1 if
they are at the beginning).

FetchVerbs Method

Delphi equivalent
UpdateVerbs Method

Declaration
procedure UpdateVerbs;

Description
Refreshes the list of verbs the OLE object responds to. TOleContainer automatically calls UpdateVerbs
when you first access the ObjectVerbs property, but some OLE objects change their verbs as they
perform some actions. The Media Clip OLE object, for example, changes its "Play" verb to "Stop" while
running. An OLE object must already be loaded in the container before calling UpdateVerbs.

Example
ListBox1.Items := OleContainer1.ObjectVerbs;

Field Object, Fields Collection

Delphi equivalent
TField Component

Description
See Data Access Page Components

FieldSize Method

Delphi equivalent
Size Property

Declaration
property Size: Integer;

Description
For a TStringField, Size is the number of bytes reserved for the field in the dataset. For a TBCDField, it is
the number of digits following the decimal point. For a TBlobField, TBytesField, TVarBytesField,
TMemoField, or TGraphicField, it is the size of the field as stored in the table.

Fields Property

Delphi equivalent
IndexFields Property

Declaration
property IndexFields[Index: Integer]: TField;

Description
Run-time only. The IndexFields property gives you access to information about each field of the current
index for the dataset. The Active property must be True or the information will not be valid.

Example
S := '';
with Table1 do
{ Create a composite string with the index's names separated by "@" }
for I := 0 to IndexFieldCount - 1 do
 S := S + '@' + IndexFields[I].FieldName;

FileAttr Function

Delphi equivalent
FileGetAttr Function

Declaration
function FileGetAttr(const FileName: string): Integer;

Description
The FileGetAttr function returns the file attributes of the file given by FileName.

Example
Procedure TForm1.FormActivate(Sender : TObject);
begin
 If (FileGetAttr('C:\Autoexec.bat') AND faReadOnly) = 1 then
 CheckBox1.Checked := TRUE;
end;

FileCopy Statement

Delphi equivalent
CopyFile (API)

Description
See Win32.HLP

FileDateTime Function

Delphi equivalent
FileGetDate Function

Declaration
function FileGetDate(Handle: Integer): Integer;

Description
The FileGetDate function returns the DOS date-and-time stamp of the file given by Handle. The return
value is -1 if the handle is invalid. The FileDateToDateTime function can be used to convert the returned
value to a TDateTime value.

FileDescription Property

Delphi equivalent
VerInfo (API)

Description
See Win32.hlp

FileLen Function

Delphi equivalent
FileSize Function

Declaration
function FileSize(var F): Integer;

Description
The FileSize function returns the size in bytes of file F. However, if F is a record file FileSize will return the
number of records in the file.

To use FileSize the file must be open and it can't be used on a text file.

F is a file variable.

If the file is empty, FileSize(F) returns 0.

Example
var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;

 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

FileListBox Control

Delphi equivalent
FileListBox Component

Description
See System Page Components

FileName Property

Delphi equivalent
FileName Property

Declaration
property FileName: string;

Description
Run-time only. The FileName property contains the name of the selected file in the list box, including the
path name.

Example
This example displays an Open dialog box and suggests the filename LIST.PAS to the user. Once the
user selects a filename, the code displays that name in a label on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.FileName := 'LIST.PAS';
 if OpenDialog1.Execute then
 Label1.Caption := OpenDialog1.FileName;
end;

FileTitle Property

Delphi equivalent
Title Property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property Title: string;

Description
The Title property determines the text that appears in the dialog box's title bar.

Example
This code displays the Open dialog box with the text "Open Pascal files" in its title bar and lists only
Pascal files in the list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.Filter := 'Pascal files (*.PAS)|*.PAS';
 OpenDialog1.Title := 'Open Pascal files';
 OpenDialog1.Execute;
end;

FillColor Property

Delphi equivalent
Brush.Color Property

Description
A TBrush object is used when filling solid shapes, such as rectangles and ellipses. The interior of the
shape is filled with a color or pattern. TBrush encapsulates a Windows HBRUSH.

The color of the brush is specified by the Color property.

Example
This example displays a rectangle filled with red horizontal stripes whenever a form OnPaint event
occurs.

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 begin
 Brush.Style := bsHorizontal;
 Brush.Color := clRed;
 Rectangle(12, 50, 100, 200);
 end;
end;

FillStyle Property

Delphi equivalent
Brush.Style Property

Description
A TBrush object is used when filling solid shapes, such as rectangles and ellipses. The pattern is
specified by the Style property.

Example
This example displays a rectangle filled with red horizontal stripes whenever a form OnPaint event
occurs.

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 begin
 Brush.Style := bsHorizontal;
 Brush.Color := clRed;
 Rectangle(12, 50, 100, 200);
 end;
end;

Filter Property

Delphi equivalent
Filter Property

Applies to
TTable, TQuery, TStoredProc components

Declaration
property Filter: string;

Description
The Filter property is a string that lets you specify which records you want to see in the data set. Filters
are similar to, though less powerful than, queries, with the benefit that filters work on the data set itself,
meaning that the result is always "live" (unlike queries which sometimes produce result sets that can't be
modified). You can turn a filter on and off by changing the Filtered property.

The syntax for the filter string is very similar to that used in the WHERE clause of an SQL statement.   
See Delphi.HLP for more information.

Example
Procedure TForm1.Button1Click(Sender : TObject);
begin
 Table1.Filter := 'Company = ''Unisco''';
 Table1.Filtered := True;
end;

Filter Property (Common Dialog)

Delphi equivalent
Filter Property (Dialogs)

Applies to
TOpenDialog, TSaveDialog components

Declaration
property Filter: string;

Description
The Filter property determines the file masks available to the user for use in determining which files
display in the dialog box's list box.

Example
This code sets the value of the Filter property, displays the dialog box, and assigns the file name the user
selects to a variable:

procedure TForm1.Button1Click(Sender: TObject);
var
 NameOfFile : TFileName;
begin
 OpenDialog1.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +
 '|*.PAS|Quattro Pro files (*.WB1)|*.WB1';
 if OpenDialog1.Execute then
 NameOfFile := OpenDialog1.FileName;

end;

FilterIndex Property

Delphi equivalent
FilterIndex Property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property FilterIndex: Integer;

Description
The FilterIndex property determines which file filter specified in the Filter property appears as the default
file filter in the List Files of Type drop-down list box. For example, if you set the FilterIndex value to 2, the
second file filter listed in the Filter property becomes the default filter when the dialog box appears. The
default FilterIndex value is 1. If you specify a value greater than the number of file filters in the Filter
property, the first filter is chosen.

The default value is 1.

Example
This code specifies three file filters as the value of the Filter property, sets the FilterIndex to 2 so that the
second file filter is the default file filter, and displays the Open dialog box. Once the user selects a file with
the dialog box and chooses OK, the filename the user selected appears in a label on the form.

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.Filter := 'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)' +
 '|*.PAS|dBASE program files (*.PRG)|*.PRG';
 OpenDialog1.FilterIndex := 2;
 if OpenDialog1.Execute then
 Label1.Caption := OpenDialog1.FileName;
end;

FindFirst, FindLast, FindNext, FindPrevious Method

Delphi equivalent
Lookup

Applies to
TTable, TQuery, TStoredProc components

Declaration
function Lookup(const KeyFields: string; const KeyValues: Variant;
 const ResultFields: string): Variant;

Description
The Lookup method locates and moves to the first record matching the supplied search criteria.
KeyFields lists the field or fields you want to search; to search more than one, separate each field name
with a semicolon. KeyValues is a variant specifying the field value to match, or an array of field values, if
KeyFields lists more than one field.

Lookup uses the fastest possible method to locate a matching record; if the dataset has an index on the
specified fields, the index will be used. Otherwise, Lookup sets up a Borland Database Engine filter for
efficient searching.

If a matching record couldn't be found, Lookup returns Null. If one could be found, Lookup performs the
lookup operations you set up in the lookup fields defined for the dataset (if any). It then extracts the value
of the field specified in ResultFields and uses it as its return value. You can list multiple fields in
ResultFields by separating their names with semicolons; if you do so, the field values will be returned in a
variant array.

FirstRow Property

Delphi equivalent
TopRow Property

Declaration
property TopRow: Longint;

Description
Run-time only. The TopRow property determines which row in the grid appears at the top of the grid.

If you have one or more nonscrolling rows in the grid, they remain at the top, regardless of the value of
the TopRow property. In this case, the row you specify as the top row will be the first row below the
nonscrolling rows.

Example
This code uses a string grid and a button on a form. When the user clicks the button, the last row of the
string grid becomes the top row:

procedure TForm1.Button1Click(Sender: TObject);
begin
 StringGrid1.TopRow := StringGrid1.RowCount;
end;

Fix Function

Delphi equivalent
Trunc Function

Declaration
function Trunc(X: Extended): Longint;

Description
The Trunc function truncates a real-type value to an integer-type value.

X is a real-type expression. Trunc returns a Longint value that is the value of X rounded toward zero.

If the truncated value of X is not within the Longint range, an error occurs, which you can handle using the
EInvalidOp exception. If you do not handle it, you will receive a run-time error.

Example
var
 S, T: string;
begin
 Str(1.4:2:1, T);
 S := T + ' Truncs to ' + IntToStr(Trunc(1.4)) + #13#10;
 Str(1.5:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(1.5)) + #13#10;
 Str(-1.4:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(-1.4)) + #13#10;
 Str(-1.5:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(-1.5));
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

FixedCols, FixedRows Properties

Delphi equivalent
FixedCols, FixedRows Properties

Applies to
TDrawGrid, TStringGrid components

Declaration
property FixedCols: Integer;

Description
The FixedCols property determines the number of nonscrolling columns within a grid. The default value is
1. Nonscrolling columns remain fixed at the far left of the grid, even when the user scrolls the other
columns. Nonscrolling columns are useful for displaying row titles that need to remain visible in the grid at
all times.

Each grid must have a least one column that isn't fixed. In other words, the value of the FixedCols
property must always be at least one less than the value of the ColCount property, which contains the
number of columns in the grid.

Example
This example uses a string grid and a button. When the user clicks the button, a message dialog box
appears informing the user that a fixed column number of 2 is recommended. The dialog box also offers
the user an opportunity to accept the recommended number if the number of fixed columns isn't already
2. If the user chooses Yes, the number of fixed columns changes to 2.

procedure TForm1.Button1Click(Sender: TObject);
var
 Check: Integer;
begin
 if StringGrid1.FixedCols <> 2 then
 begin
 Check := MessageDlg('2 fixed columns are recommended! Change?',
 mtWarning, mbYesNoCancel, 0);
 if Check = IdYes then
 StringGrid1.FixedCols := 2;
 end;
end;

Flags Property (Color Dialog)
Delphi command
Options Property

Applies to
TColorDialog component

Declaration
property Options: TColorDialogOptions;

Description
These are the possible values that can be included in the Options set:

Value Meaning
cdFullOpen Displays the custom coloring options when the Color dialog opens
cdPreventFullOpen Disables the Create Custom Colors button in the Color dialog box so the user

cannot create their own custom colors.
cdShowHelp Adds a Help button to the Color dialog box.
cdSolidColor Directs the dialog box to display only solid colors.
cdAnyColor Directs the dialog box to display any color.

The default value is [], the empty set, meaning all of these values are False and none of the options are
in effect.

Example
This example displays the Color dialog box with a Help button and the Create Custom Colors button
dimmed. The form is colored whatever color the user chooses.

procedure TForm1.Button1Click(Sender: TObject);
begin
 ColorDialog1.Options := [cdPreventFullOpen, cdShowHelp];
 if ColorDialog1.Execute then
 Color := ColorDialog1.Color;
end;

Flags Property (File Dialog)

Delphi equivalent
Options Property

Applies to
TOpenDialog, TSaveDialog component

Declaration
property Options: TOpenOptions;

Description
See Delphi.HLP for the possible values that can be included in the Options set for the Open and Save
dialog boxes.

Example
This example uses an Open dialog box and a button on a form. The code forces the user to enter valid
filename characters, prevents the read-only check box from appearing in the dialog box, and let's the user
choose to overwrite a file if the user selects a file that doesn't exist; the selected filename appears in a
label on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.Options := [ofNoValidate, ofHideReadOnly, ofCreatePrompt];
 if OpenDialog1.Execute then
 Label1.Caption := OpenDialog1.FileName;
end;

Flags Property (Font Dialog)

Delphi equivalent
Options Property

Applies to
TFontDialog component

Declaration
property Options: TFontDialogOptions

Description
See Delphi.hlp for the possible values that can be included in the Options set for the Fonts dialog box.

Example
This example sets the options of the Font dialog box so that when the dialog box displays, only TrueType
fonts show in the list of fonts and no font size is selected:

procedure TForm1.Button1Click(Sender: TObject);
begin
 FontDialog1.Options := [fdTrueTypeOnly, fdNoSizeSel];
 if FontDialog1.Execute then
 Memo1.Font := FontDialog1.Font;
end;

Flags Property (Print Dialog)

Delphi equivalent
Options Property

Applies to
TPrintDialog component

Declaration
property Options: TPrintDialogOptions;

Description
See Delphi.hlp for the possible values that can be included in the Options set for the Print dialog box.

Example
This example displays the Printer dialog box that includes a Help button. If users try to print when no
printer is installed, they will see a warning message.

procedure TForm1.Button1Click(Sender: TObject);
begin
 PrinterDialog1.Options := [poHelp, poWarning];
 if PrinterDialog1.Execute then
 ...
end;

Font Object

Delphi equivalent
TFont Object

Description
A TFont object defines the appearance of text. TFont encapsulates a Windows HFONT.

A TFont object defines a set of characters by specifying their height, font family (typeface) name, and so
on. The height is specified by the Height property. The typeface is specified by the Name property. The
size in points is specified by the Size property. The color is specified by the Color property. The attributes
of the font (bold, italic, and so on) are specified by the Style property.

When a font is modified, an OnChange event occurs.

Font Property

Delphi equivalent
Font Property

Declaration
property Font: TFont;

Description
The Font property is a font object that controls the attributes of text written on or in the component or
object or sent to the printer. To modify a font, you change the value of the Color, Name, Size, or Style
properties of the font object.

Example
This code changes color of text in a memo control to dark blue:

Memo1.Font.Color := clNavy;

FontBold, FontItalic, FontStrikethru, FontUnderline Property

Delphi equivalent
Style Property

Applies to
TFont objects

Declaration
property Style: TFontStyles;

Description
The Style property determines whether the font is normal, italic, underlined, bold, and so on. These are
the possible values:

Value Meaning
fsBold The font is boldfaced.
fsItalic The font is italicized.
fsUnderline The font is underlined.
fsStrikeout The font is displayed with a horizontal line through it.

The Style property is a set, so it can contain multiple values. For example, a font could be both boldfaced
and italicized.

Example
The following code boldfaces the font used in the memo..

Memo1.Font.Style := [fsBold];

FontName Property

Delphi equivalent
Name Property

Applies to
TFont objects

Declaration
property Name: TFontName;

Description
The Name property of a font object determines the name of the font contained within the font object.

Example
This code sets the font for all text that appears on the form to Times New Roman. If the controls on the
form have their ParentFont property set to True, text on these controls will also be in Times New Roman.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Font.Name := 'Times New Roman';
end;

FontSize Property

Delphi equivalent
Size Property

Applies to
TFont component

Declaration
property Size: Integer;

Description
The Size property is the size of the font in points. It is the height of the font plus the font's excluding
internal leading. If you are concerned with the height of the font on the screen--the number of pixels the
font needs--use the Height property instead. If you want to specify a font's height using pixels, use the
Size property.

Delphi calculates Size using this formula:

Font.Size = -Font.Height * Font.PixelsPerInch / 72

Therefore, whenever you enter a point size in the Size property, you'll notice the Height property changes
to a negative value. Conversely, if you enter a positive Height value, the Size property value changes to a
negative value.

Example
This examples uses a button on a form. When the user clicks the button, the size of the font used by the
button changes to 24 points.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Font.Size := 24;
end;

Fonts Property

Delphi equivalent
Fonts Property

Applies to
TPrinter object; TScreen component

Declaration
property Fonts: TStrings;

Description
Run-time and read-only. The Fonts property for the screen component returns a list of fonts supported by
the screen.

The Fonts property for a printer object holds a list of fonts supported by the printer. The list contains
TrueType fonts even if the printer doesn't support them natively because the Windows Graphics Device
Interface (GDI) can draw TrueType fonts accurately when a print job uses them.

Example
This code displays the fonts supported by the screen in a FontList list box when the user clicks the
ListFonts button:

procedure TForm1.ListFontsClick(Sender: TObject);
begin
 FontList.Clear;
 FontList.Sorted := True;
 FontList.Items := Screen.Fonts;
end;

For...Next Statement

Delphi equivalent
For..To, For...Downto Reserved Words

Description
The for statement causes the statements after do to be executed once for each value between the initial
value of the range and final value, inclusive. For loops are useful if you know beforehand exactly how
many times you want the loop to be executed.

The control variable always starts off at initial value.

to Increments the control variable by 1 for each loop. The initial value must be less than the
final value.

downto Decrements the control variable by 1 for each loop. The initial value must be greater than
the final value.

The following rules apply to the control variable:

    It must be a variable identifier that is local in scope to the block containing the for statement.
    It must be of an ordinal type.
    The initial and final values must be of a type assignment compatible with the ordinal type of the

control variable.
    After a for statement is executed, the value of the control variable is undefined, unless execution

of the for statement was interrupted by a goto statement.

Example
(* for ... to, for ... downto *)
for I := 1 to ParamCount do
 WriteLn(ParamStr(I);
for I := 1 to 10 do
 for J := 1 to 10 do
 begin
 X := 0;
 for K := 1 to 10 do
 X := X + Mat1[I, K] * Mat2[K, J];
 Mat[I, J] := X;
 end;

ForeColor Property

Delphi equivalent
Font.Color Property

Description
See BackColor

Example
This code will set the label's color and font color to the current windows settings.

Label1.Color := clWindow;
Label1.Font.Color := clWindowText;

ForeignName Property

Delphi equivalent
Use MasterSource, MasterFields Properties

Applies to
TTable component

Declaration
property MasterSource: TDataSource;

Description
When linking a detail table to a master table, use the MasterSource property to specify the TDataSource
from which the TTable will get data for the master table.

Example
Suppose you have a master table named Customer that contains a CustNo field, and you also have a
detail table named Orders that also has a CustNo field. To display only those records in Orders that have
the same CustNo value as the current record in Customer, write this code:

Orders.MasterSource := 'CustSource';
Orders.MasterFields := 'CustNo';

If you want to display only the records in the detail table that match more than one field value in the
master table, specify each field and separate them with a semicolon.

Orders.MasterFields := 'CustNo;SaleDate';

ForeignTable Property

Delphi equivalent
Use MasterSource, MasterFields Properties

Applies to
TTable component

Declaration
property MasterSource: TDataSource;

Description
When linking a detail table to a master table, use the MasterSource property to specify the TDataSource
from which the TTable will get data for the master table.

Example
Suppose you have a master table named Customer that contains a CustNo field, and you also have a
detail table named Orders that also has a CustNo field. To display only those records in Orders that have
the same CustNo value as the current record in Customer, write this code:

Orders.MasterSource := 'CustSource';
Orders.MasterFields := 'CustNo';

If you want to display only the records in the detail table that match more than one field value in the
master table, specify each field and separate them with a semicolon.

Orders.MasterFields := 'CustNo;SaleDate';

Form Object, Forms Collection

Delphi equivalent
TForm Component, TScreen.Forms Property

Description
The Form component is at the center of Delphi applications. You design your application by putting other
components on a form. Forms can be used as windows, dialog boxes, or simply as forms, such as data-
entry forms.

Example
The following code adds the name of all forms on the screen to ListBox1 when Button1 is clicked.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 For I := 0 to Screen.FormCount-1 do
 ListBox1.Items.Add(Screen.Forms[I].Name);
end;

Format Function

Delphi equivalent
Format Function

Declaration
function Format(const Format: string; const Args: array of const): string;

Description
This function formats the series of arguments in the open array Args. Formatting is controlled by the
Object Pascal format string Format; the results are returned in the function result as a Pascal string.

For information on the format strings, see Format Strings in DELPHI.HLP.

Example
Format('%d %d %0:d %d', [10, 20]) = '10 20 10 20'.

Format Property

Delphi equivalent
EditMask Property

Applies to
TDateField, TDateTimeField, TMaskEdit, TStringField, TTimeField components

Declaration
property EditMask: string;

Description
The EditMask property is the mask that is used to limit the data that can be put into a masked edit box or
entered into a data field. A mask restricts the characters the user can enter to valid characters and
formats. If the user attempts to enter a character that is not valid, the edit box does not accept the
character. Validation is performed on a character-by-character basis. Use an OnValidate event to validate
the entire input.

Example
This example assigns an edit mask to the masked edit box on the form. The edit mask makes it easy to
enter American telephone numbers in the edit box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 MaskEdit1.EditMask := '!\(999\)000-0000;1;
 MaskEdit1.Text := '';
 MaskEdit1.AutoSelect := False;
end;

Frame Control

Delphi equivalent
GroupBox Component

Description
Standard Page Components

FreeLocks Statement

Delphi equivalent
DBISaveChanges (BDE)

Example
Check(DBISaveChanges(Table1.Handle));

FromPage, ToPage Properties

Delphi equivalent
FromPage, ToPage Properties

Applies to
TPrintDialog component

Declaration
property FromPage: Integer;

Description
The value of the FromPage property determines on which page the print job begins. The default value is
0.

Example
This example uses a Print dialog box on a form. These lines set up the Print dialog box so that when it
appears, the default values of 1 and 1 are the default starting and ending values for the Pages From and
To edit boxes.

PrintDialog1.Options := [poPageNums];
PrintDialog1.FromPage := 1;
PrintDialog1.ToPage := 1;

Function Statement

Delphi equivalent
Function Reserved Word

Description
The reserved word function defines a block that computes and returns a value.

The function heading specifies the identifier for the function, the formal parameters (if any), and the
function result type.

Functions can return values of any type except file types.

A function can have Declaration parts following the function heading.
The function heading is followed by:

    Declarations of local variables, types, labels, constants, procedures, or functions
    Statements that execute when the function is called

Example

(* Function Declaration *)
function UpCaseStr(S: string): string;
var
 I: Integer;
begin
 for I := 1 to Length(S) do
 if (S[I] >= 'a') and (S[I] <= 'z') then
 Dec(S[I], 32);
 UpCaseStr := S;
end;

GROUPBY Clause (SQL)

Delphi equivalent
GROUP BY Clause (SQL)

Description
SQL Syntax

Example
SELECT DISTINCT CustNo, COUNT(*)
FROM "Orders.db"
GROUP BY CustNo
ORDER BY CustNo

Get Statement

Delphi equivalent
Read Procedure

Declaration
Typed files:
procedure Read(F , V1 [, V2,...,Vn]);

Text files:
procedure Read([var F: Text;] V1 [, V2,...,Vn]);

Description
The Read procedure can be used in the following ways.

    For typed files, it reads a file component into a variable.
    For text files, it reads one or more values into one or more variables.

Example
uses Dialogs;
 var
 F1, F2: TextFile;
 Ch: Char;
begin
 if OpenDialog1.Execute then begin
 AssignFile(F1, OpenDialog1.Filename);
 Reset(F1);
 if SaveDialog1.Execute then begin
 AssignFile(F2, OpenDialog1.Filename);
 Rewrite(F2);
 while not Eof(F1) do
 begin
 Read(F1, Ch);
 Write(F2, Ch);
 end;
 CloseFile(F2);
 end;
 CloseFile(F1);

 end;
end.

GetAllSettings Function

Delphi command
ReadSection Method

Applies to
TIniFile object

Declaration
procedure ReadSection (const Section: string; Strings: TStrings);

Description
The ReadSection method reads all the variables of a section of an .INI file into a string object. The Strings
parameter specifies the string list object. If you want to use a string list that is maintained by a component
such as a list box, Strings should specify the property of the component that contains the string list. If you
want to maintain the string list independent of any components, use a TStringList object.

GetAttr Function

Delphi command
FileGetAttr Function

Declaration
function FileGetAttr(const FileName: string): Integer;

Description
The FileGetAttr function returns the file attributes of the file given by FileName.

Example
Procedure TForm1.FormActivate(Sender : TObject);
begin
 If (FileGetAttr('C:\Autoexec.bat') AND faReadOnly) = 1 then
 CheckBox1.Checked := TRUE;
end;

GetBookmark Method

Delphi command
GetBookmark Method

Applies to
TTable, TQuery, TStoredProc components

Declaration
function GetBookmark: TBookmark;

Description
The GetBookmark method saves the current record information of the dataset to allow you to return to
that record with a later call to the GotoBookmark method. The bookmark should be eventually be passed
to the FreeBookmark method to release the resources reserved during the call to GetBookmark. If the
dataset is empty or not in Browse state, GetBookmark will return nil.

Example
var MyBookmark: TBookmark;
...
with Table1 do
 begin
{ Save the current record position in MyBookmark }
 MyBookmark := GetBookmark;
 ... { Other code here }
{ Return to the record associated with MyBookmark }
 GotoBookmark(MyBookmark);
{ Release the resources for MyBookmark }
 FreeBookmark(MyBookmark);
 end;

GetData Method

Delphi command
GetAsHandle Method

Applies to
TClipboard object

Declaration
function GetAsHandle (Format: Word): THandle;

Description
The GetAsHandle method returns the data from the Clipboard in a windows handle for the format
specified in the Format parameter. For more information, see the Win32 Developer's Reference
(WIN32.HLP) for information about the available formats.

Example
The following code locks the memory for text on the Clipboard, then converts the text to a Pascal-style
string.

var
 MyHandle: THandle;
 TextPtr: PChar;
 MyString: string;
begin
 ClipBoard.Open
 Try
 MyHandle := Clipboard.GetAsHandle(CF_TEXT);
 TextPtr := GlobalLock(MyHandle);
 MyString := StrPas(TextPtr);
 GlobalUnlock(MyHandle);
 finally
 Clipboad.Close;
 end;
end;

GetFormat Method

Delphi command
HasFormat Method

Applies to
TClipboard object

Declaration
procedure HasFormat(Format: Word): Boolean;

Description
The HasFormat method determines if the Clipboard object contains a particular format. If asFormat is
True, the format is present; if False, the format is absent. The Clipboard object keeps a list of available
formats in the Formats array property.

Example
This example uses a button on a form. When the user clicks the button, a message box appears if there
is no text on the Clipboard; otherwise, you don't see anything happen.

procedure TForm1.Button1Click(Sender: TObject);
begin
 if not Clipboard.HasFormat(CF_TEXT) then
 MessageDlg('There is no text on the Clipboard', mtInformation,
 [mbOK],0);
end;

GetSetting Function

Delphi command
See TRegistry and TRegIniFile Objects

Description
A TRegistry object is a low-level wrapper for the Microsoft Windows95/NT system registry and functions
that operate on the registry. The registry is a database that your applications can use to store and retrieve
configuration information. Configuration information is stored in a hierarchical tree. Each node in the tree
is called a key. Every key can contain subkeys and data values that represent part of the configuration
information for an application.

GetText Method

Delphi command
AsText Property

Applies to
TClipboard object

Declaration
property AsText: string;

Description
Run-time only. The AsText property returns the current contents of the Clipboard as a string. The
Clipboard must contain a string or an exception occurs.    The string value of the AsText property is limited
to 255 characters. If you need to set and retrieve more than 255 characters, use the SetTextBuf and
GetTextBuf Clipboard methods.

Example
The following code retrieves the contents of the Clipboard as a string and displays the value in a label:

begin
 Label1.Caption := Clipboard.AsText;
end;

GoTo Statement

Delphi command
GoTo Reserved Word

Description
The reserved word goto transfers program execution to the statement prefixed by the label referenced in
the statement.

Example
label 1, 2;
goto 1
 .
 .
 .
1: WriteLn ('Abnormal program termination');
2: WriteLn ('Normal program termination');

GotFocus Event

Delphi command
OnEnter Event

Declaration
property OnEnter: TNotifyEvent;

Description
The OnEnter event occurs when a component becomes active. Use the OnEnter event handler to specify
any special processing you want to occur when a component becomes active.

Example
This example uses an edit box and a memo control on a form. When either the edit box or the memo is
the active control, it is colored yellow. When the active control becomes inactive, the color of the control
returns to the Windows system color for a window.

procedure TForm1.Edit1Enter(Sender: TObject);
begin
 Edit1.Color := clYellow;
end;
procedure TForm1.Edit1Exit(Sender: TObject);
begin
 Edit1.Color := clWindow;
end;
procedure TForm1.Memo1Enter(Sender: TObject);
begin
 Memo1.Color := clYellow;
end;
procedure TForm1.Memo1Exit(Sender: TObject);
begin
 Memo1.Color := clWindow;
end;

Grid Control

Delphi command
TStringGrid, TDrawGrid Components

Description
See Additional Page Components

GridLineWidth Property

Delphi command
GridLineWidth Property

Applies to
TDrawGrid, TStringGrid components

Declaration
property GridLineWidth: Integer;

Description
The GridLineWidth property determines the width of the lines between the cells in the grid. The default
value is 1 pixel. Larger values create heavier lines.

Example
This example includes a draw grid on a form. When the application runs and the form is created, the
width of the lines on the draw grid changes if the default column width of the grid is over 90 pixels wide:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with DrawGrid1 do
 begin
 if DefaultColWidth > 90 then
 GridLineWidth := 2
 else
 GridLineWidth := 1;
 end;
end;

GridLines Property

Delphi command
Options Property

Applies to
TDrawGrid, TStringGrid component

Declaration
property Options: TGridOptions;

Description
See Delphi.HLP for Options properties on Grid controls

Example
This code changes the look of the grid; only horizontal lines appear in both the body of the grid and in the
nonscrolling regions when the user clicks the ChangeGridStyle button:

procedure TForm1.ChangeGridStyleClick(Sender: TObject);
begin
 DrawGrid1.Options := [goFixedHorzLine, goHorzLine, goVertLine];
end;

Handle Property

Delphi command
Handle Property

Applies to
TBitmap, TBrush, TCanvas, TFont, TIcon, TMetafile, TPen, objects

Declaration
property Handle: HBitmap; {for TBitmap objects}
property Handle: HBrush; {for TBrush objects}
property Handle: HDC; {for TCanvas objects}
property Handle: HFont; {for TFont objects}
property Handle: HIcon; {for TIcon objects}
property Handle: HMetafile; {for TMetafile objects}
property Handle: HPen; {for TPen objects}

Description
The Handle property lets you access the Windows GDI object handle, so you can access the GDI object.
If you need to use a Windows API function that requires the handle of a pen object, you could pass the
handle from the Handle property of a TPen object.

Having Clause (SQL)

Delphi command
Having Clause (SQL)

Description
SQL Syntax

Example
Select DeptNo, DeptName from Depts
Group By DeptNo, DeptName
Having Count(*) < 5

HeadFont Property

Delphi command
TitleFont Property

Applies to
TDBGrid component

Declaration
property TitleFont: TFont;

Description
The TitleFont property determines which font and text attributes are used to display the title of a column in
a DBGrid component. At design time, the TitleFont property is set by bringing up the Font dialog box. To
modify the TitleFont at runtime, change the value of the Color, Name, Size, or Style properties of the font
object

Example
DBGrid1.TitleFont.Name := 'MS Sans Serif';
DBGrid1.TitleFont.Style := [fsBold];

Height, Width Properties

Delphi command
Height, Width Properties

Applies to
All controls; TBitmap, TFont, TGraphic, TIcon, TMetafile, TPicture, TTextAttributes objects; TForm,
TImageList, TScreen components

Description
The Height property determines vertical size of a component or object.    The Width property determines
the horizontal size of a component or object.

Example
The following code doubles the height of a list box control:

ListBox1.Height := ListBox1.Height * 2;

HelpCommand Property

Delphi command
HelpCommand Method

Applies to
TApplication component

Declaration
function HelpCommand(Command: Word; Data: Longint): Boolean;

Description
The HelpCommand method gives you quick access to any of the Help commands in the WinHelp API
(application programming interface). For information about the commands you can call and the data
passed to them, see the WinHelp topic in the Help system.

Example
This example uses a bitmap button on a form. When the user clicks the button, the Help contents screen
of the specified Help file appears.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 Application.HelpFile := 'MYHELP.HLP';
 Application.HelpCommand(HELP_CONTENTS, 0);
end;

HelpContext Property

Delphi command
HelpContext Property

Applies to
All controls

Declaration
property HelpContext: THelpContext;

Description
The HelpContext property provides a context number for use in calling context-sensitive online Help.
Each screen in the Help system should have a unique context number. When a component is selected in
the application, pressing F1 displays a Help screen. Which Help screen appears depends on the value of
the HelpContext property.

HelpContext Property (CommonDialog)

Delphi command
HelpContext Property

Declaration
property HelpContext: THelpContext;

Description
The HelpContext property provides a context number for use in calling context-sensitive online Help.
Each screen in the Help system should have a unique context number. When a component is selected in
the application, pressing F1 displays a Help screen. Which Help screen appears depends on the value of
the HelpContext property.

Example
The following code associates a Help file with the application, and makes the screen with a context
number of 7 the context-sensitive Help screen for the Edit1 edit box:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Application.HelpFile := 'MYHELP.HLP';
 PrintDialog1.HelpContext := 7;
end;

HelpContext, HelpFile Properties (Data Access)

Delphi command
HelpContext Property

Declaration
property HelpContext: THelpContext;

Description
The HelpContext property provides a context number for use in calling context-sensitive online Help.
Each screen in the Help system should have a unique context number. When a component is selected in
the application, pressing F1 displays a Help screen. Which Help screen appears depends on the value of
the HelpContext property.

HelpContextID Property

Delphi command
HelpContext Property

Declaration
property HelpContext: THelpContext;

Description
The HelpContext property provides a context number for use in calling context-sensitive online Help.
Each screen in the Help system should have a unique context number. When a component is selected in
the application, pressing F1 displays a Help screen. Which Help screen appears depends on the value of
the HelpContext property.

Example
The following code associates a Help file with the application, and makes the screen with a context
number of 7 the context-sensitive Help screen for the Edit1 edit box:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Application.HelpFile := 'MYHELP.HLP';
 Edit1.HelpContext := 7;
end;

HelpFile Property (App, CommonDialog, MenuLine)

Delphi command
HelpFile Property

Applies to
TApplication component

Declaration
property HelpFile: string;

Description
Run-time only. The HelpFile property holds the name of the file the application uses to display Help. By
default, HelpFile is a null string, and the application's Help method ignores attempts to display Help. If
HelpFile contains anything, the HelpContext method passes it to the Windows Help system as the name
of the file to use for Help.

Example
To specify the MYHELP.HLP file as the Help file for your application, use this line of code:

Application.HelpFile := 'MYHELP.HLP';

Hex Function

Delphi command
Format Function

Declaration
function Format(const Format: string; const Args: array of const): string;

Description
This function formats the series of arguments in the open array Args. Formatting is controlled by the
Object Pascal format string Format; the results are returned in the function result as a Pascal string.    x is
the argument for Hexadecimal. The argument must be an integer value. The value is converted to a string
of hexadecimal digits. If the format string contains a precision specifier, it indicates that the resulting string
must contain at least the specified number of digits; if the value has fewer digits, the resulting string is left-
padded with zeros.

Hidden Property

Delphi command
FileType Property

Applies to
TFileListBox component

Declaration
property FileType: TFileType;

Description
The FileType property determines which files are displayed in the file list box based on the attributes of
the files. When ftHidden is True, the list box can display files with the hidden attribute.

Example
This example uses a file list box on a form. When the application runs, only read-only files, directories,
volume IDs, and files with no attributes appear in the list box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.FileType := [ftReadOnly, ftDirectory, ftVolumeID, ftNormal];
end;

Hide Method

Delphi command
Hide Method

Declaration
procedure Hide;

Description
The Hide method makes a form or control invisible by setting the Visible property of the form or control to
False. Although a form or control that is hidden is not visible, you can still set the properties of the form or
control, or call its methods.

Example
This code uses a button and a timer on a form. When the user clicks the button, the form disappears for
the period of time specified in the Interval property of the timer control, then the form reappears:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Timer1.Enabled := True;
 Hide;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 Visible := True;
 Timer1.Enabled := False;
end;

HideSelection Property

Delphi command
HideSelection Property

Applies to
TEdit, TListView, TMemo, TRichEdit, TTreeView components

Declaration
property HideSelection: Boolean;

Description
The HideSelection property determines whether text that is selected in an edit or memo remains selected
when the focus shifts to another control. If True, the text is no longer selected until the focus returns to the
control. If False, the text remains selected. The default value is True.

Example
This example uses an edit box and a memo on a form. When the user jumps from one control to the
other, selected text remains selected in the memo, but not in the edit box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Edit1.HideSelection := True;
 Memo1.HideSelection := False;
end;

Hour Function

Delphi command
DecodeTime Procedure

Declaration
procedure DecodeTime(Time: TDateTime; var Hour, Min, Sec, MSec: Word);

Description
The DecodeTime procedure breaks the value specified as the Time parameter into hours, minutes,
seconds, and milliseconds.

Example
This example uses a button and two labels on a form. When the user clicks the button, the current date
and time are reported in the captions of the two labels.

procedure TForm1.Button1Click(Sender: TObject);
var
 Present: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
 begin
 Present:= Now;
 DecodeDate(Present, Year, Month, Day);
 Label1.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
 + IntToStr(Month) + ' of Year ' + IntToStr(Year);
 DecodeTime(Present, Hour, Min, Sec, MSec);
 Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
 + IntToStr(Hour);

end;

INNER JOIN Operation (SQL)

Delphi command
Select Statement (SQL)

Description
SQL Syntax

Example
SELECT * FROM PARTS LEFT INNER JOIN INVENTORY

ON PARTS.PART_NO = INVENTORY.PART_NO

INSERT INTO Statement (SQL)

Delphi command
Insert Statement (SQL)

Description
SQL Syntax

Examples
The following statement adds a row to a table, assigning values to two columns:

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID) VALUES (52, "DGPII");

The next statement specifies values to insert into a table with a SELECT
statement:

INSERT INTO PROJECTS
 SELECT * FROM NEW_PROJECTS
 WHERE NEW_PROJECTS.START_DATE > "6-JUN-1994";

IPmt Function

Delphi command
InterestPayment Function

Declaration
function InterestPayment(Rate: Extended; Period, NPeriods: Integer;
PresentValue,
 FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

Description
The InterestPayment function calculates what portion of a loan payment is interest. Rate represents the
fixed periodic interest rate, Period identifies the payment period, NPeriods is the number of periods of the
loan, PresentValue represents the amount borrowed (the principal), FutureValue is the future value of the
investment, and PaymentTime indicates whether the cash flows occur at the beginning or end of the
period (by entering a value of 1 or 0, respectively).

IRR Function

Delphi command
InternalRateOfReturn Function

Declaration
function InternalRateOfReturn(Guess: Extended;
 const CashFlows: array of Double): Extended;

Description
The InternalRateOfReturn function determines the internal rate of return on an investment. It references
an array that contains cash flow information and uses the supplied internal rate of return estimate to
calculate results.

Before you use this function, define an array containing expected cash flow amounts over a period of
time. It is assumed that the amounts are received at regular intervals. Negative amounts are interpreted
as cash outflows, and positive amounts as inflows. The first amount must be a negative number, to reflect
the initial investment. The following amounts can all be the same for each time period, or they can be
different (including a mixture of negatives, positives, or zeros).

Icon Property

Delphi command
Icon Property

Applies to
TForm component

Declaration
property Icon: TIcon

Description
The Icon property determines the icon that is displayed when the window or form is minimized. If you
don't assign a specific icon to Icon, the form uses the application's icon.

Example
This code assigns an icon to a form when the form is created:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Icon.LoadFromFile('MYICON.ICO');
end;

If...Then...Else Statement

Delphi command
If...Then...Else Statement

Description
If, then, and else specify the conditions under which a statement will be executed.

If the Boolean expression after if is True, the statement after then is executed.

Otherwise, if the expression evaluates to False and the else part is present, the statement after else is
executed. If the else part is not present, execution continues with the next statement following the if
statement.

Note No semicolon is allowed preceding an else clause.

Example
(* if statements *)
if (I < Min) or (I > Max) then I := 0;
if x < 1.5 then
 z := x + y
else
 z := 1.5;

Image Control

Delphi command
Image Component

Description
See Additional Page Components

Image Property

Delphi command
TCanvas.Handle

Description
The Handle property lets you access the Windows GDI object handle, so you can access the GDI object.
If you need to use a Windows API function that requires the handle of a pen object, you could pass the
handle from the Handle property of a TPen object.

InStr Function

Delphi command
Pos Function

Declaration
function Pos(Substr: string; S: string): Integer;

Description
The Pos function searches for a substring in a string.

Substr and S are string-type expressions.

Pos searches for Substr within S and returns an integer value that is the index of the first character of
Substr within S.

If Substr is not found, Pos returns zero.

Example
var S: string;
begin
 S := ' 123.5';
 { Convert spaces to zeroes }
 while Pos(' ', S) > 0 do
 S[Pos(' ', S)] := '0';
end;

Index Object, Indexes Collection

Delphi command
TIndexDef, TIndexDefs Objects

Description
The TIndexDef object describes the index for a table.

Use the Fields property to get a list of the fields in the index. Use the Name property to get the name of
the index. Test the flags in the Options property for a specific characteristic of the index.

In addition to these properties and methods, this object also has the methods that apply to all objects.

Index Property (Data Access)

Delphi command
IndexName Property

Applies to
TTable component

Declaration
property IndexName: string;

Description
The IndexName property identifies a secondary index for the TTable. If no value is assigned to
IndexName, the table's primary index will be used to order the records.

Example
Table1.IndexName := 'CustNoIndex';

InitDir Property

Delphi command
InitialDir Property

Applies to
TOpenDialog, TSaveDialog components

Declaration
property InitialDir: string;

Description
The InitialDir property determines the current directory when the dialog box first appears and value of the
InitialDir property is shown as the current directory in the directory tree. Only files in the current directory
appear in the dialog box's list box of filenames. After the dialog box appears, users can then use the
directory tree to change to another directory if they want.

When specifying the initial directory, include the full path name. For example,

C:\WINDOWS\SYSTEM

If no initial directory is specified, the directory that is current when the dialog box appears remains the
current directory. The same is true if you specify a directory that does not exist.

Example
This code specifies C:\WINDOWS as the initial directory when the dialog box appears, displays the dialog
box, and displays the name of the file the user selects with the dialog box in a label on the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 OpenDialog1.InitialDir := 'C:\WINDOWS';
 if OpenDialog1.Execute then
 Label1.Caption := OpenDialog1.FileName;
end;

Initialize Event

Delphi command
OnCreate Event

Applies to
TForm component

Declaration
property OnCreate: TNotifyEvent;

Description
The OnCreate event specifies which event handler to call when the form is first created. You can write
code in the event handler that sets initial values for properties and does any processing you want to occur
before the user begins interacting with the form.

Delphi creates a form when the application is run by calling the Create method.

Example
This very simple OnCreate event handler assures that the form is the same color as the Windows system
color of your application workspace:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Color := clAppWorkSpace;
end;

Note The Color property in this example is not prefaced with the name of the form. If you write the
statement like this:

Form1.Color := clAppWorkSpace;

The application won't run without error, because Form1 does not yet exist at the time this code is
executed

Input # Statement

Delphi command
Read Procedure

Declaration
Typed files:
procedure Read(F , V1 [, V2,...,Vn]);

Text files:
procedure Read([var F: Text;] V1 [, V2,...,Vn]);

Description
The Read procedure can be used in the following ways.

    For typed files, it reads a file component into a variable.
    For text files, it reads one or more values into one or more variables.

Example
uses Dialogs;
 var
 F1, F2: TextFile;
 Ch: Char;
begin
 if OpenDialog1.Execute then begin
 AssignFile(F1, OpenDialog1.Filename);
 Reset(F1);
 if SaveDialog1.Execute then begin
 AssignFile(F2, OpenDialog1.Filename);
 Rewrite(F2);
 while not Eof(F1) do
 begin
 Read(F1, Ch);
 Write(F2, Ch);
 end;
 CloseFile(F2);
 end;
 CloseFile(F1);

 end;
end.

Input Function

Delphi command
Read Procedure

Declaration
Typed files:
procedure Read(F , V1 [, V2,...,Vn]);

Text files:
procedure Read([var F: Text;] V1 [, V2,...,Vn]);

Description
The Read procedure can be used in the following ways.

    For typed files, it reads a file component into a variable.

    For text files, it reads one or more values into one or more variables.

Example
uses Dialogs;
 var
 F1, F2: TextFile;
 Ch: Char;
begin
 if OpenDialog1.Execute then begin
 AssignFile(F1, OpenDialog1.Filename);
 Reset(F1);
 if SaveDialog1.Execute then begin
 AssignFile(F2, OpenDialog1.Filename);
 Rewrite(F2);
 while not Eof(F1) do
 begin
 Read(F1, Ch);
 Write(F2, Ch);
 end;
 CloseFile(F2);
 end;
 CloseFile(F1);

 end;
end.

InputBox Function

Delphi command
InputBox Function

Declaration
function InputBox(const ACaption, APrompt, ADefault: string): string;

Description
The InputBox function displays an input dialog box ready for the user to enter a string in its edit box. The
ACaption parameter is the caption of the dialog box, the APrompt parameter is the text that prompts the
user to enter input in the edit box, and the ADefault parameter is the string that appears in the edit box
when the dialog box first appears.

If the user chooses the Cancel button, the default string is the value returned. If the user chooses the OK
button, the string in the edit box is the value returned.

Example
This example displays an input dialog box when the user clicks the button on the form. The input dialog
box includes a prompt string and a default string. The string the user enters in the dialog box is stored in
the InputString variable.

uses Dialogs;
procedure TForm1.Button1Click(Sender: TObject);
var
 InputString: string;
begin
 InputString:= InputBox('Input Box', 'Prompt', 'Default string');
end;

InsertObjDlg Method

Delphi command
InsertObjectDialog method

Applies to
TOleContainer component

Declaration
function InsertObjectDialog: Boolean;

Description
Executes the Insert Object OLE dialog box, which lets the user create an OLE object. The OLE object can
be embedded or linked. InsertObjectDialog returns True if the dialog box was successfully display and the
user chose the OK button or False otherwise. If the user chose OK and there's already an OLE object in
the container, it's destroyed and any changes the user made to it are discarded.

Int, Fix Functions

Delphi command
Trunc Function

Declaration
function Trunc(X: Extended): Longint;

Description
The Trunc function truncates a real-type value to an integer-type value.

X is a real-type expression. Trunc returns a Longint value that is the value of X rounded toward zero.

If the truncated value of X is not within the Longint range, an error occurs, which you can handle using the
EInvalidOp exception. If you do not handle it, you will receive a run-time error.

Example
var
 S, T: string;
begin
 Str(1.4:2:1, T);
 S := T + ' Truncs to ' + IntToStr(Trunc(1.4)) + #13#10;
 Str(1.5:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(1.5)) + #13#10;
 Str(-1.4:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(-1.4)) + #13#10;
 Str(-1.5:2:1, T);
 S := S + T + ' Truncs to ' + IntToStr(Trunc(-1.5));
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

IntegralHeight Property

Delphi command
IntegralHeight Property

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox component

Declaration
property IntegralHeight: Boolean;

Description
The IntegralHeight property controls the way the list box represents itself on the form. If IntegralHeight is
True, the list box shows only entries that fit completely in the vertical space, and the bottom of the list box
moves up to the bottom of the last completely drawn item in the list. If IntegralHeight is False, the bottom
of the list box is at the location determined by its ItemHeight property, and the bottom item visible in the
list might not be complete.

If the list box has a Style property value of lbOwerDrawVariable, setting the IntegralHeight property to
True has no effect.

If the Style property value of the list box is lsOwnerDrawFixed, the height of the list box at design time is
always an increment of the ItemHeight value.

Example
This example uses a list box on a form. To try it, enter as many strings in the Items property as you like
using the Object Inspector. When the application runs, the list box displays only entries that fit completely
in the vertical space, and the bottom of the list box moves up to the bottom of the last string in the list box
if the form is less than 300 pixels in height:

procedure TForm1.FormCreate(Sender: TObject);
begin
 if Height < 300 then
 ListBox1.IntegralHeight := True
 else
 ListBox1.IntegralHeight := False;
end;

Interval Property

Delphi command
Interval Property

Applies to
TTimer component

Declaration
property Interval: Cardinal;

Description
The Interval property determines in milliseconds the amount of time that passes before the timer
component initiates another OnTimer event.

You can specify any value in the cardinal range as the interval value, but the timer component won't call
an OnTimer event if the value is 0. The default value is 1000 (one second).

Example
The code in this OnTimer event handler moves a ball, the shape component (TShape) slowly across a
form.

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 Timer1.Interval := 100;
 Shape1.Shape := stCircle;
 Shape1.Left := Shape1.Left + 1;
end;

IpOleObject Property

Delphi command
OleObject Property

Applies to
TAutoObject

Declaration
property OleObject: Variant;

Description
For TAutoObject, the OleObject property provides a variant containing the automation object. When your
server needs to pass an OLE object to a controller, the controller expects it in the form of a variant. You
should therefore always references to an automation object's OleObject property, rather than references
to the object itself.

For TOleContainer (runtime and readonly) the OleObject property returns an OLE Automation object for
the OLE object. If the OLE object doesn't support OLE Automation, an exception is raised. An OLE object
must already be loaded in the container before accessing the OleObject property.

IsArray Function

Delphi command
VarIsArray Function

Declaration
function VarIsArray(const V: Variant): Boolean;

Description
The VarIsArray function returns True if the given variant is an array. Otherwise, the function result is
False.

IsEmpty Function

Delphi command
VarIsEmpty Function

Declaration
function VarIsEmpty(const V: Variant): Boolean;

Description
The VarIsEmpty function returns True if the given variant contains the value Unassigned. If the variant
contains any other value, the function result is False.

IsNull Function

Delphi command
VarIsNull Function

Declaration
function VarIsNull(const V: Variant): Boolean;

Description
The VarIsNull function returns True if the given variant contains the value Null. If the variant contains any
other value, the function result is False.

Italic Property

Delphi command
TFont.Style Property

Applies to
TFont objecs

Declaration
property Style: TFontStyles;

Description
The Style property determines whether the font is normal, italic, underlined, bold, and so on. The font is
italicized if style is set to fsItalic.

Example
The following code boldfaces the font used in the memo..

Memo1.Font.Style := [fsItalic];

Item Method

Delphi command
Items Property

Declaration
property Items[Index:Integer]:TCollectionItem;

Description
Run-time only. The Items property provides access to a collection item (TCollectionItem) by its position in
the collection. The value of the Index parameter corresponds to the Index property and represents the
position of the collection item in the Items array.

ItemData Property

Delphi command
Use TStrings.Value or TStrings.Objects

Applies to
TStrings, TStringList objects

Declaration
property Values[const Name: string]: string;

Description
The Values property gives you access to a specific string in a list of strings. The strings must have a
unique structure before you can use the Values property array to access them:

Name=Value

The Name that identifies the string is to the left of the equal sign (=), and the current Value of the Name
identifier is on the right side of the equal sign. There should be no spaces present before and after the
equal sign.

Example
The following code allows the user to specify a bitmap file with the OpenDialog1 open dialog box
component when Form1 is created. Then, the bitmap file specified is added to the Items list of ListBox1.

If ListBox1 is an owner-draw control (specified by a Style property of lbOwnerDrawFixed or
lbOwnerDrawVariable), the second procedure is the OnDrawItem event handler for ListBox1. The bitmap
in the Object property and the text of an item are retrieved and displayed in Listbox1.

procedure TForm1.FormCreate(Sender: TObject);
var
 TheBitmap: TBitmap;
begin
 if OpenDialog1.Execute then
 begin
 TheBitmap := TBitmap.Create;
 TheBitmap.LoadFromFile(OpenDialog1.FileName);
 ListBox1.Items.AddObject(OpenDialog1.FileName, TheBitmap);
 end;
end;
procedure TForm1.ListBox1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var

 DrawBitmap: TBitmap;
begin
 DrawBitmap := TBitmap(ListBox1.Items.Objects[Index]);
 with ListBox1.Canvas do
 begin
 Draw(Rect.Left, Rect.Top + 4, DrawBitmap);
 TextOut(Rect.Left + 2 + DrawBitmap.Width, Rect.Top + 2,
ListBox1.Items[Index]);
 end;
end;

Example 2
Assume that a string that identifies the password needed to access a database exists in the Params
string list. You can change the acceptable password using this code:

Database1.Params.Values['Password'] := 'TopSecret';

If there is no password string, the same code creates one at the bottom of the list of strings and assigns
the 'TopSecret' string as its value.

You can also assign the value of the string to a variable. For example, this code assigns the current value
of the password string to a variable called StringValue:

var
 StringValue: string;
StringValue := Database1.Params.Values['Password'];

KeyDown, KeyUp Events

Delphi command
OnKeyDown Event

Declaration
TKeyEvent = procedure (Sender: TObject; var Key: Word; Shift: TShiftState) of
object;
property OnKeyDown: TKeyEvent;

Description
The OnKeyDown event occurs when a user presses any key while the control has focus. Use the
OnKeyDown event handler to specify special processing to occur when a key is pressed. The
OnKeyDown handler can respond to all keyboard keys, including function keys and keys combined with
the Shift, Alt, and Ctrl keys, and pressed mouse buttons.

Example
This event handler displays a message dialog when the user presses Alt+F10:

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
 if ((Shift = [ssAlt]) and (Key = VK_F10)) then
 MessageDlg('Alt+F10 pressed down', mtInformation, [mbOK], 0);
end;

KeyPress Event

Delphi command
OnKeyPress Event

Declaration
TKeyPressEvent = procedure (Sender: TObject; var Key: Char) of object;
property OnKeyPress: TKeyPressEvent;

Description
The OnKeyPress event occurs when a user presses a single character key. Use the OnKeyPress event
handler when you want something to happen as a result of a single character key press.

Example
This event handler displays a message dialog box specifying which key was pressed:

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin
 MessageDlg(Key + ' has been pressed', mtInformation, [mbOK], 0)
end;

KeyPreview Property

Delphi command
KeyPreview Property

Applies to
TForm component

Declaration
property KeyPreview: Boolean;

Description
When the KeyPreview property is True, most key events (OnKeyDown event, OnKeyUp event, and
OnKeyPress event) go to the form first, regardless of which control is selected on the form. This allows
your application to determine how to process key events. After going to the form, key events are then
passed to the control selected on the form. When KeyPreview is False, the key events go directly to the
controls. The default value is False.

The exceptions are the navigation keys, such as Tab, BackTab, the arrow keys, and so on. If the selected
control processes such keys, you can use KeyPreview to intercept them; otherwise, you can't.

If KeyPreview is False, all key events go to the selected control.

Example
This example changes a form's color to aqua when the user presses a key, even when a control on the
form has the focus. When the user releases the key, the form returns to its original color.

var
 FormColor: TColor;
procedure TForm1.FormCreate(Sender: TObject);
begin
 KeyPreview := True;
end;
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
    FormColor := Form1.Color;
    Form1.Color := clAqua;
end;
procedure TForm1.FormKeyUp(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
 Form1.Color := FormColor;
end;

Kill Statement

Delphi command
DeleteFile Function

Declaration
function DeleteFile(const FileName: string): Boolean;

Description
The DeleteFile function erases the file named by FileName from the disk.

If the file cannot be deleted or does not exist, the function returns False but does not raise an exception.

Example
The following code erases the file DELETE.ME in the current directory:

DeleteFile('DELETE.ME');

KillDoc Method

Delphi command
Abort Method

Applies to
TPrinter object

Declaration
procedure Abort;

Description
The Abort procedure terminates the printing of a print job, dropping all unprinted data. The device is then
set for the next print job. Use Abort to terminate the print job before it completes; otherwise, use the
EndDoc method.

To use the Abort method, you must add the Printers unit to the uses clause of your unit.

Example
The following code aborts a print job if the user presses Esc. Note that you should set KeyPreview to True
to ensure that the OnKeyDown event handler of Form1 is called.

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word; Shift:
TShiftState);
begin
 if (Key=VK_ESCAPE) and Printer.Printing then
 begin
 Printer.Abort;
 MessageDlg('Printing aborted', mtInformation, [mbOK],0);
 end;
end;

LBound Function

Delphi command
Low

Declaration
function Low(X);

Description
The Low function returns the lowest value in the range of the argument.

Result type is X, or the index type of X where X is either a type identifier or a variable reference.

Type Low returns
Ordinal type The lowest value in the range of the type
Array type The lowest value within the range of the index type of the array
String type Returns 0
Open array Returns 0
String parameter Returns 0

Example
function Sum(var X: array of Double): Double;
var
 I: Word;
 S: Real;
begin
 S := 0; { Note that open array index range is always zero-
based. }
 for I := 0 to High(X) do S := S + X[I];
 Sum := S;
end;
procedure TForm1.Button1Click(Sender: TObject);
var
 List1: array[0..3] of Double;
 List2: array[5..17] of Double;
 X: Word;

 S, TempStr: string;
begin
 for X := Low(List1) to High(List1) do
 List1[X] := X * 3.4;
 for X := Low(List2) to High(List2) do
 List2[X] := X * 0.0123;
 Str(Sum(List1):4:2, S);
 S := 'Sum of List1: ' + S + #13#10;
 S := S + 'Sum of List2: ';
 Str(Sum(List2):4:2, TempStr);
 S := S + TempStr;
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

LCase Function

Delphi command
LowerCase, StrLower, AnsiiLowerCase

Declaration
function LowerCase(const S: string): string;

Description
The LowerCase function returns a string with the same text as the string passed in S, but with all letters
converted to lowercase. The conversion affects only 7-bit ASCII characters between 'A' and 'Z'. To convert
8-bit international characters, use AnsiLowerCase.

Example
This example uses two edit boxes and a button on a form. When the user clicks the button, the text in the
Edit1 edit box displays in the Edit2 edit box in lowercase letters.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Edit2.Text := LowerCase(Edit1.Text);
end;

LEFT JOIN, RIGHT JOIN Operations

Delphi command
LEFT JOIN, RIGHT JOIN Operations (SQL)

Description
SQL Syntax

Example
Select CustName, OrderNo from Customer
Left Outer Join Orders On Customer.CustNo = Orders.CustNo

LOF Function

Delphi command
FileSize function

Declaration
function FileSize(var F): Integer;

Description
The FileSize function returns the size in bytes of file F. However, if F is a record file FileSize will return the
number of records in the file.

To use FileSize the file must be open and it can't be used on a text file.

F is a file variable.

If the file is empty, FileSize(F) returns 0.

Example
var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;

 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

LTrim, RTrim, and Trim Functions

Delphi command
TrimLeft, TrimRight, and Trim functions

Declaration
function TrimLeft(const S: string): string;

Description
The TrimLeft function trims leading spaces and control characters from the given string S. The Trim
function trims leading and trailing spaces and control characters from the given string S.    The TrimRight
trims trailing spaces and control characters from the given string S.

Label Control

Delphi command
TLabel Component

Description
See Standard Page Components

LargeChange, SmallChange Properties

Delphi command
LargeChange, SmallChange Properties

Applies to
TScrollBar component

Declaration
property LargeChange: TScrollBarInc;
property SmallChange: TScrollBarInc;

Description
The LargeChange property determines how far the scroll box moves when the user clicks the scroll bar
on either side of the scroll box or presses PgUp or PgDn. The default value is 1 position.

For example, if the LargeChange property setting is 1000, each time the user clicks the scroll bar, the
scroll box moves 1000 positions. How big the change from one position to another depends on the
difference between the Max property value and the Min property value. If Max is 3000 and Min is 0, the
user needs to click the scroll bar three times to move the scroll box from one end of the scroll bar to the
other.

Example
This code determines that when the user clicks the scroll bar on either side of the scroll box, the scroll
box moves 100 positions on the scroll bar:

ScrollBar1.LargeChange := 100;
ScrollBar1.SmallChange := 10;

LastFunction (SQL)

Delphi command
Last Method

Declaration
procedure Last;

Description
The Last method moves the cursor to the last record in the active range of records of the dataset. The
active range of records is affected by the filter established with SetRangeEnd.

Example
Table1.Last;

Left Function

Delphi command
Copy, StrLCopy

Declaration
function Copy(S: string; Index, Count: Integer): string;

Description
The Copy function returns a substring of a string.

S is a string-type expression. Index and Count are integer-type expressions. Copy returns a string
containing Count characters starting with at S[Index].

If Index is larger than the length of S, Copy returns an empty string.

If Count specifies more characters than are available, the only the characters from S[Index] to the end of
S are returned.

Example
 var S: string;
begin
 S := 'ABCDEF';
 S := Copy(S, 2, 3); { 'BCD' }
end;

Left, Top Properties

Delphi command
Left, Top Properties

Declaration
property Left: Integer;
property Top: Integer;

Description
The Left property determines the horizontal coordinate of the left edge of a component relative to the form
in pixels. If the control is contained in a TPanel, the Left and Top properties will be relative to the panel. If
the control is contained directly by the form, it will be relative to the form. For forms, the value of the Left
property is relative to the screen in pixels.

Example
The following code moves a button 10 pixels up and to the left each time a user clicks it:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Top := Button1.Top - 10;
 Button1.Left := Button1.Left - 10;
end;

LeftCol Property

Delphi command
LeftCol Property

Applies to
TDrawGrid, TStringGrid components

Declaration
property LeftCol: Longint;

Description
Run-time only. The LeftCol property determines which column in the grid appears at the far left side of the
grid.

Example
This line of code positions the fourth column of a string grid at the left edge of the grid:

StringGrid1.LeftCol := 3;

LegalCopyRight Property

Delphi command
Version Info (API)

Description
See Win32.hlp

LegalTrademarks Property

Delphi command
Version Info (API)

Description
See Win32.hlp

Len Function

Delphi command
Length, StrLen functions

Declaration
function StrLen(Str: PChar): Cardinal;
function Length(S: string): Integer;

Description
The Length function returns the number of characters actually used in the string S.    The StrLen function
returns the number of characters in Str, not counting the null terminator.

Example
var
 S: string;
begin
 S := 'The Black Knight';
 Canvas.TextOut(10, 10, 'String Length = ' + IntToStr(Length(S)));
end;

Like Operator (SQL)

Delphi command
Like Operator (SQL)

Description
SQL Syntax

Example
Select * from Customer
where LastName Like 'Sm%'

Line Control

Delphi command
TShape Component

Description
See Additional Page Components

Line Input # Statement

Delphi command
Readln procedure

Declaration
procedure Readln([var F: Text;] V1 [, V2, ...,Vn]);

Description
The Readln procedure reads a line of text and then skips to the next line of the file.

Readln(F) with no parameters causes the current file position to advance to the beginning of the next line
if there is one; otherwise, it goes to the end of the file.

Example
program Project1;

{$AppType ConSole}

uses windows;

var
 s : string;
begin
 Write('Enter a line of text: ');
 Readln(s);
 Writeln('You typed: ',s);
 Writeln('Hit <Enter> to exit');
 Readln;
end.

Line Method

Delphi command
LineTo, Rectangle, PolyLine methods (TCanvas)

Declaration
procedure LineTo(X, Y: Integer);

Description
The LineTo method draws a line on the canvas from the current drawing position (specified by the
PenPos property) to the point specified by X and Y and sets the pen position to (X, Y).    See Tcanvas
Object in Delphi.hlp for more information.

Example
The following code draws a line from the upper left corner of a form to the point clicked with the mouse.

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(0, 0);
 Canvas.LineTo(X, Y);
end;

LinkClose Event

Delphi command
OnClose, OnClose events (TDdeClientConv, TDDeServerConv)

Applies to
TDDEClientConv component

Declaration
property OnClose: TNotifyEvent;

Description
An OnClose event occurs when a DDE conversation is terminated. A conversation is terminated when
one of the applications involved is closed, or when the CloseLink method is called.

Example
The following code displays a message when a conversation is closed.

procedure TForm1.DdeClientConv1Close(Sender: TObject);
begin
 MessageDlg('This conversation is finished!', mtInformation, [mbOK],0);
end;

LinkError Event

Delphi command
EDdeError

Declaration
EDDEError = class(Exception);

Description
The EDDEError exception is raised when your application can't find the specified server or conversation,
or when a session is unexpectedly terminated.

LinkExecute Event

Delphi command
OnExecuteMacro event (TDdeserver)

Declaration
TMacroEvent = procedure(Sender: TObject; Msg : string) of object;
property OnExecuteMacro : TMacroEvent;

Description
The OnExecuteMacro event occurs when a DDE client application sends a macro to a DDE server
conversation component. Write code to process the macro in the OnExecuteMacro event handler. See
the DDE client application documentation for information about how it sends macros. If the DDE client is a
Delphi application, a macro is sent with the ExecuteMacro method of the TDDEClientConv component.

The TMacroEvent type points to a method that handles the passing of a macro string from a DDE client to
a DDE server conversation (TDDEServerConv) component. Msg contains the macro.

Example
The following code clears the contents of a memo in the server application if the appropriate message is
sent from the client application.

procedure TForm1.DdeServerConv1ExecuteMacro(Sender: TObject; Msg: TStrings);
begin
 if Msg.Strings[0] = 'Edit|Clear' then
 Memo1.Clear;
end;

LinkExecute Method

Delphi command
ExecuteMacro method (TDdeClientConv)

Declaration
TMacroEvent = procedure(Sender: TObject; Msg : string) of object;
property OnExecuteMacro : TMacroEvent;

Description
The OnExecuteMacro event occurs when a DDE client application sends a macro to a DDE server
conversation component. Write code to process the macro in the OnExecuteMacro event handler. See
the DDE client application documentation for information about how it sends macros. If the DDE client is a
Delphi application, a macro is sent with the ExecuteMacro method of the TDDEClientConv component.

The TMacroEvent type points to a method that handles the passing of a macro string from a DDE client to
a DDE server conversation (

TDDEServerConv) component. Msg contains the macro.

Example
The following code executes the macro that is specified by the Text of Edit1. The macro sets WaitFlg to
True to wait until the server has completed macro execution.

var
 TheMacro: PChar;
begin
 StrPCopy(TheMacro, Edit1.Text);
 DDEClientConv1.ExecuteMacro(TheMacro, True);
end;

LinkItem Property

Delphi command
DdeItem property (TDdeClientItem)

Applies to
TDDEClientItem component

Declaration
property DDEItem: string;

Description
The DDEItem property specifies the item of a DDE conversation. The value of DDEItem depends on the
linked DDE server application. DDEItem is typically a selectable portion of text, such as a spreadsheet
cell or a database field in an edit box. If the DDE server is a Delphi application, DDEItem is the name of
the linked DDE server component. For example, to link to a DDE server component named DDEServer1,
set DDEItem to 'DDEServer1'.

See the documentation for the DDE server application for the specific information about specifying
DDEItem.

At design time, you can specify DDEItem either by typing the item string in the object inspector or by
pasting a link using the DDE Info dialog box, which appears if you click the ellipsis (...) button for
DDEService or DDETopic in the Object Inspector. After you choose Paste Link in the DDE Info dialog box,
you can choose the item from a list of possible items for DDEItem in the object inspector if link information
is still on the Clipboard.

Example
The following code specifies a DDE item of 'DDEServer1'.

DDEClientItem1.DDEItem := 'DDEServer1';

LinkMode Property

Delphi command
ConnectMode property (TDdeClientItem)

Applies to
TDDEClientConv component

Declaration
property ConnectMode: TDataMode;

Description
The ConnectMode property determines the type of connection to establish when initiating a link with a
DDE server application. These are the possible values:

Value Meaning
ddeAutomatic The link is automatically established when the form containing the TDDEClient

component is created at run time. This is the default value.
ddeManual The link is established only when the OpenLink method is called.

Example
The following code sets the connect mode of DDEClientConv1 to manual.

DDEClientConv1.ConnectMode := ddeManual;

LinkOpen Event

Delphi command
OnOpen event (TDdeClientConv, TDdeServerConv)

Applies to
TDDEClientConv, TDDEServerConv components

Declaration
property OnOpen: TNotifyEvent;

Description
An OnOpen event occurs when a DDE conversation is opened. A DDE conversation can be initiated
automatically or manually. Automatically open a conversation by setting the value of the ConnectMode
property to ddeAutomatic. When the form containing the DDE client conversation component is created at
run time, the DDE conversation opens. Manually open a conversation by setting the value of
ConnectMode to ddeManual and calling the OpenLink method.

Example
The following code sends a macro to the server and closes the link immediately after opening it.

procedure TForm1.DdeClientConv1Open(Sender: TObject);
begin
 with DDEClientConv1 do
 begin
 ExecuteMacro('File|New', False);
 CloseLink;
 end;
end;

LinkPoke Method

Delphi command
PokeData, PokeDataLines methods (TDdeClientConv)

Applies to
TDDEClientConv component

Declaration
function PokeData(Item: string; Data: PChar): Boolean;
function PokeDataLines(Item: string; Data: TStrings): Boolean;

Description
The PokeData method sends data to a DDE server application. Text data from a linked control in the DDE
client application is transferred to the linked section of the DDE server application. Item specifies the
linked item in the DDE server. Data is a null-terminated string that specifies the text data to transfer to the
DDE server.

The PokeDataLines method sends data to a DDE server application. Text data from a linked control in the
DDE client application is transferred to the linked section of the DDE server application. Item specifies the
linked item in the DDE server. Data is a TStrings object that specifies the text data to transfer to the DDE
server.

Example
The following code pokes the data that is in Edit1 to the DDE server. The DDE item of the conversation is
specified in the DDEItem property of DDEClientItem1. TheData is a PChar variable.

DDEClientConv1.PokeData(DDEClientItem1.DDEItem, StrPCopy(TheData,
Edit1.Text));

LinkRequest Method

Delphi command
RequestData method (TDdeClientConv)

Applies to
TDDEClientConv component

Declaration
function RequestData(const Item: string): PChar;

Description
The RequestData method requests data from a DDE server. Call RequestData when you want your DDE
client application to receive data from the server once, instead of being updated continually. Another
reason to use RequestData is that some DDE servers contain DDE items that can't be continually
updated; the only way for your client to access these items is to explicitly request the data.

Example
The following code requests data from the DDE server and displays it in Label1. The DDE item of the
conversation is specified in the DDEItem property of DDEClientItem1.

var
 TheData: PChar;
begin
 TheData := DDEClientConv1.RequestData(DDEClientItem1.DDEItem);
 Label1.Caption := StrPas(TheData);
end;

LinkTopic Property

Delphi command
DdeTopic property (TDdeClientConv)

Applies to
TDDEClientConv component

Declaration
property DDETopic: string;

Description
The DDETopic property specifies the topic of a DDE conversation. Typically, DDETopic is a filename (and
path, if necessary) used by the application specified in DDEService. If the DDE server is an Delphi
application, by default DDETopic is the caption of the form containing the linked component. For example,
to link to a component on a form named Form1, set DDETopic to 'Form1'. However, if the DDE client is
linked to a TDDEServerConv component, DDETopic is the name of the server conversation component
instead of the form caption. For example, to link to DDEServerConv1, set DDETopic to
'DDEServerConv1'.

See the documentation for the DDE server application for the specific information about specifying
DDETopic.

Example
The following code specifies a DDE topic of 'Form1'.

DDEClientConv1.DDETopic := 'Form1';

List Property

Delphi command
Items property (TListBox)

Applies to
TComboBox, TDBRadioGroup, TDirectoryListBox, TDriveComboBox, TFileListBox, TFilterComboBox,
TListBox, TRadioGroup components

Declaration
property Items: TStrings;

Description
The Items property contains the strings that appear in the list box or combo box, or as radio buttons in a
radio group box. Because Items is an object of type TStrings, you can add, delete, insert, and move items
using the Add, Delete, Insert, Exchange, and Move methods of the TStrings object.

The ItemIndex property determines which item is selected, if any.

To determine if a particular item in the list of strings that makes up the Items property for a list box or
combo box is selected, use the Selected property.

Example
This example uses an edit box, a list box, and a button on a form. When the user clicks the button, the
text in the edit box is added to the list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add(Edit1.Text);
end;

ListBox Control

Delphi command
TListBox Component

Description
See Standard Page Components

ListCount Property

Delphi command
Count property (TListbox.Items)

Declaration
property Count: Integer;

Description
Run-time and read only. The Count property contains the number of items in a collection, list, menu item,
tree nodes object, tree node, header section, list column or a status bar.

For list objects, Count is the number of items in the list.

Example
The following code displays the number of items in a list box in the caption of a label when the user clicks
the CountItems button:

procedure TForm1.CountItemsClick(Sender: TObject);
begin
 Label1.Caption := 'There are ' + IntToStr(ListBox1.Items.Count) +
 ' items in the listbox.';
end;

The following example assumes the form contains a main menu component, which includes a File menu
and a label. This code displays the number of menu items that make up the File menu.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(FileMenu.Count):
end;

ListField Property

Delphi command
DataField property (data aware controls)

Declaration
property DataField: string;

Description
The DataField property identifies the field from which the data-aware control displays data. The dataset
the field is located in is specified in a data source component (TDataSource). The DataSource property of
the data-aware control specifies which data source component.

If the DataField value of a database edit box (TDBEdit) is an integer or floating-point value, only
characters that are valid in such a field can be entered in the edit box. Characters that are not legal are
not accepted.

Example
The following code specifies that the DataField of DBEdit1 is 'FNAME'.

DBEdit1.DataField := 'FNAME';

ListFields Method

Delphi command
Use Fields[], FieldCount properties (TDataset)

Declaration
property FieldCount: Integer;

Description
Run-time and read-only. The FieldCount property specifies the number of fields (columns) in a dataset. It
may not be the same as the number of fields in the underlying data set, because you can add calculated
fields and remove fields with the fields editor.

For the data grid and database lookup list box, the value of the FieldCount property is the number of
fields in the dataset displayed in the control.

ListIndex Property

Delphi command
ItemIndex property

Applies to
TComboBox, TDBComboBox, TDBRadioGroup, TDirectoryListBox, TDriveComboBox,
TFileListBox, TFilterComboBox, TListBox, TRadioGroup components

Declaration
property ItemIndex: Integer;

Description
Run-time only except for the TRadioGroup component. The value of the ItemIndex property is the ordinal
number of the selected item in the control's item list. If no item is selected, the value is -1, which is the
default value unless MultiSelect is True. To select an item at run time, set the value of ItemIndex to the
index of the item in the list you want selected, with 0 being the first item in the list.

For list boxes and combo boxes, if the value of the MultiSelect property is True and the user selects more
than one item in the list box or combo box, the ItemIndex value is the index of the selected item that has
focus. If MultiSelect is True, ItemIndex defaults to 0.

Example
This example uses a drive combo box on a form. When the user selects a drive in the combo box, the
index value of the selected item appears in the caption of the label:

procedure TForm1.DriveComboBox1Change(Sender: TObject);
begin
 Label1.Caption := 'Index value ' + IntToStr(DriveComboBox1.ItemIndex);
end;

ListIndexes Method

Delphi command
Use IndexDefs, IndexFields, IndexFieldCount (TTable)

Applies to
TTable component

Declaration
property IndexDefs: TIndexDefs;
property IndexFields[Index: Integer]: TField;
property IndexFieldCount: Integer;

Description
Run-time and read-only. The IndexDefs property holds information about all the indexes for the TTable.

Run-time only. The IndexFields property gives you access to information about each field of the current
index for the dataset. The Active property must be True or the information will not be valid.

Run-time only. The IndexFieldCount property is the number of actual fields for the current index. If you are
using the primary index for the component, this value will be one. If the component is not Active, the value
of IndexFieldCount will be zero.

Example
{ Get the current available indicies }
Table1.IndexDefs.Update;
{ Find one which combines Customer Number ('CustNo') and Order Number
('OrderNo') }
for I := 0 to Table1.IndexDefs.Count - 1 do
 if Table1.IndexDefs.Items[I].Fields = 'CustNo;OrderNo' then

ListParameters Method

Delphi command
Use Params property (TQuery)

Applies to
TQuery component

Declaration
property Params[Index: Word]: TParam;

Description
When you enter a query, Delphi creates a Params array for the parameters of a dynamic SQL statement.
Params is a zero-based array of TParam objects with an element for each parameter in the query; that is,
the first parameter is Params[0], the second Params[1], and so on. The number of parameters is specified
by ParamCount. Read-only and run-time only.

Note Use the ParamByName method instead of Params to avoid dependencies on the order of the
parameters.

Example
For example, suppose a TQuery component named Query2 has the following statement for its SQL
property:

INSERT
 INTO COUNTRY (NAME, CAPITAL, POPULATION)
 VALUES (:Name, :Capital, :Population)

An application could use Params to specify the values of the parameters as follows:

Query2.Params[0].AsString := 'Lichtenstein';
Query2.Params[1].AsString := 'Vaduz';
Query2.Params[2].AsInteger := 420000;

These statements would bind the value "Lichtenstein" to the :Name parameter, "Vaduz" to the :Capital
parameter, and 420000 to the :Population parameter.

ListTables Method

Delphi command
Use Datasets[], DatasetCount (TDatabase)

Applies to
TDataBase component

Declaration
property DatasetCount: Integer;

Description
DatasetCount is the number of dataset components (TTable, TQuery, and TStoredProc) that are currently
using the TDatabase component. Read-only and run-time only.

Load Event

Delphi command
OnCreate event (TForm)

Applies to
TForm component

Declaration
property OnCreate: TNotifyEvent;

Description
The OnCreate event specifies which event handler to call when the form is first created. You can write
code in the event handler that sets initial values for properties and does any processing you want to occur
before the user begins interacting with the form.

Delphi creates a form when the application is run by calling the Create method.

Example
This very simple OnCreate event handler assures that the form is the same color as the Windows system
color of your application workspace:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Color := clAppWorkSpace;
end;

Note The Color property in this example is not prefaced with the name of the form. If you write the
statement like this,

Form1.Color := clAppWorkSpace;

The application won't run without error, because Form1 does not yet exist at the time this code is
executed

Load Statement

Delphi command
Create method (TForm)

Applies to
TForm component

Declaration
property OnCreate: TNotifyEvent;

Description
The OnCreate event specifies which event handler to call when the form is first created. You can write
code in the event handler that sets initial values for properties and does any processing you want to occur
before the user begins interacting with the form.

Delphi creates a form when the application is run by calling the Create method.

Example
This example will create an instance (Form2) of the type TForm2.

Form2 := TForm2.create(Application);

LoadPicture Function

Delphi command
LoadFromFile method

Applies to
TBlobField, TGraphicField, TMemoField components

Declaration
procedure LoadFromFile(const FileName: string);

Description
The LoadFromFile method reads a file with the name passed in FileName and loads the contents in
TBlobField, TMemoField, or TGraphicField.

Note For TMemoField and TGraphicField, the file should have been created by the SaveToFile or
SaveToStream method.

Example
This example loads a bitmap into an image component.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Image1.Picture.Bitmap.LoadFromFile('TARTAN.BMP');
end;

LoadResData Function

Delphi command
LoadResource (API)

Description
See Win32.hlp

LoadResPicture Function

Delphi command
LoadResource (API)

Description
See Win32.hlp

LoadResString Function

Delphi command
LoadString Function

Description
See Win32.hlp

Loc Function

Delphi command
FilePos Function

Declaration
function FilePos(var F): Longint;

Description
The FilePos function returns the current file position within a file.

To use FilePos the file must be open and it can't be used on a text file.

F is a file variable.

Position Result
Beginning of file FilePos(F) = 0
Middle of file FilePos(F) = current file position
End of file Eof(F) = True

Example
var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;

 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

Locked Property

Delphi command
ReadOnly property

Applies to
TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo,
TDBLookupComboBox, TDBLookupList, TDBLookupListBox, TDBMemo, TDBRadioGroup, TEdit,
TListView, TMaskEdit, TMemo, TRichEdit, TTable, TTreeViewcomponents

Declaration
property ReadOnly: Boolean;

Description
The ReadOnly property determines if the user can change the contents of the control. If ReadOnly is
True, the user can't change the contents. If ReadOnly is False, the user can modify the contents. The
default value is False.

For data-aware controls, the ReadOnly property determines whether the user can use the data-aware
control to change the value of the field of the current record, or if the user can use the control only to
display data. If ReadOnly is False, the user can change the field's value as long as the dataset is in edit
mode.

When the ReadOnly property of a data grid is True, the user can no longer use the Insert key to insert a
new row in the grid, nor can the user append a new row at the end of the data grid with the Down Arrow
key.

Example
This code toggles the read-only state of an edit box each time the user double-clicks the form:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Edit1.Left := 2;
 Edit1.Top := 2;
 Edit1.ReadOnly := True;
 Edit1.Text := 'Change Me';
 Canvas.TextOut(10, 40, 'Double-click form to toggle read-only state');
end;
procedure TForm1.FormDblClick(Sender: TObject);
begin
 Edit1.ReadOnly := not Edit1.ReadOnly;
end;

Log Function

Delphi command
Ln function

Declaration
function Ln(X: Real): Real;

Description
The Ln function returns the natural logarithm (Ln(e) = 1) of the real-type expression X.

Example
var
 e : real;
 S : string;
begin
 e := Exp(1.0);
 Str(ln(e):3:2, S);
 S := 'ln(e) = ' + S;
 Canvas.TextOut(10, 10, S);
end;

LogMessages Property

Delphi command
Trace Mode setting (BDE) Also TDatabase, Tession TraceFlags

Description
See Delphi.hlp

LoginTimeout Property

Delphi command
Time Out setting (BDE)

LostFocus Event

Delphi command
OnExit event

Applies to
All windowed controls

Declaration
property OnExit: TNotifyEvent;

Description
The OnExit event occurs when the input focus shifts away from one control to another. Use the OnExit
event handler when you want special processing to occur when this control ceases to be active.

Example
This example uses an edit box and a memo control on a form. When either the edit box or the memo is
the active control, it is colored yellow. When the active control becomes inactive, the color of the control
returns to the Windows system color for a window.

procedure TForm1.Edit1Enter(Sender: TObject);
begin
 Edit1.Color := clYellow;
end;
procedure TForm1.Edit1Exit(Sender: TObject);
begin
 Edit1.Color := clWindow;
end;
procedure TForm1.Memo1Enter(Sender: TObject);
begin
 Memo1.Color := clYellow;
end;
procedure TForm1.Memo1Exit(Sender: TObject);
begin
 Memo1.Color := clWindow;
end;

MDIChild Property

Delphi command
FormStyle property of fsMDIChild (TForm)

Declaration
property FormStyle: TFormStyle;

Description
The FormStyle property determines the style of the form.

Example
This example ensures the main form of the application is an MDI parent form:

procedure TForm1.FormCreate(Sender: TObject);
begin
 if FormStyle <> fsMDIForm then
 FormStyle := fsMDIForm;
 if FormStyle = fsMDIForm then
 Edit1.Text := 'MDI form'
 else
 Edit1.Text := 'Not an MDI form'; {This line never runs}
end;

MDIForm Object

Delphi command
FormStyle property set to fsMDIForm (TForm)

Declaration
property FormStyle: TFormStyle;

Description
The FormStyle property determines the style of the form.

Example
This example ensures the main form of the application is an MDI parent form:

procedure TForm1.FormCreate(Sender: TObject);
begin
 if FormStyle <> fsMDIForm then
 FormStyle := fsMDIForm;
 if FormStyle = fsMDIForm then
 Edit1.Text := 'MDI form'
 else
 Edit1.Text := 'Not an MDI form'; {This line never runs}
end;

MIRR Function

Delphi command
InternalRateOfReturn (Math.Pas unit)

Declaration
function InternalRateOfReturn(Guess: Extended;
 const CashFlows: array of Double): Extended;

Description
The InternalRateOfReturn function determines the internal rate of return on an investment. It references
an array that contains cash flow information and uses the supplied internal rate of return estimate to
calculate results.

Before you use this function, define an array containing expected cash flow amounts over a period of
time. It is assumed that the amounts are received at regular intervals. Negative amounts are interpreted
as cash outflows, and positive amounts as inflows. The first amount must be a negative number, to reflect
the initial investment. The following amounts can all be the same for each time period, or they can be
different (including a mixture of negatives, positives, or zeros).

Max, Min Properties (CommonDialog)

Delphi command
MaxFontSize, MinFontSize properties (TFontDialog)

Applies to
TFontDialog component

Declaration
property MaxFontSize: Integer;
property MinFontSize: Integer;

Description
The MaxFontSize/MinFontSize propertes determines the largest/smallest font sizes available in the Font
dialog box. Use the MaxFontSize property when you want to limit the font sizes available to the user. To
limit the font sizes available, the Options set property of the Font dialog box must also contain the value
fdLimitSize. If fdLimitSize is False, setting the MaxFontSize property has no affect on number of fonts
available in the Font dialog box.

The default value is 0, which means there is no maximum/minium font size specified.

Example
This example uses a Font dialog box, a button, and a label on a form. When the user clicks the button,
the Font dialog box appears. The font sizes available are within the range of 10 to 14. When the user
chooses OK, the selected font is applied to the caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
begin
 FontDialog1.Options := [fdLimitSize];
 FontDialog1.MaxFontSize := 14;
 FontDialog1.MinFontSize := 10;
 if FontDialog1.Execute then
 Label1.Font := FontDialog1.Font;
end;

Max, Min Properties (Scroll Bar)

Delphi command
Max, Min properties (TScrollBar)

Applies to
TScrollBar components

Declaration
property Max: Integer;

Description
The Max property along with the Min property determines the number of possible positions the scroll box
can have on the scroll bar. The LargeChange and SmallChange properties use the number of positions to
determine how far to move the scroll box when the user uses the scroll bar.

Example
The following code sets the minimum position to the value specified in an edit box, and sets the maximum
position to 1000 more than the minimum position.

ScrollBar1.Min := StrToInt(Edit1.Text);
ScrollBar1.Max := ScrollBar1.Min + 1000;

MaxButton Property

Delphi command
biMaximize in BorderIcons set (TForm)

Applies to
TForm component

Declaration
property BorderIcons: TBorderIcons;

Description
The BorderIcons property is a set whose values determine which icons appear on the title bar of a form.
With BorderIcons set to biMaximize, the form has a Maximize button

Example
The following code removes a form's Maximize button when the user clicks a button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 BorderIcons := BorderIcons - [biMaximize];
end;

MaxLength Property

Delphi command
MaxLength (TMaskEdit)

Declaration
property MaxLength: Integer;

Description
The MaxLength property specifies the maximum number of characters the user can enter in an edit box,
memo, or combo box. The default setting for MaxLength is 0, which means that there is no limit on the
number of characters the control can contain. Any other number limits the number of characters the
control accepts.

Example
The following example sets the maximum number of characters for an edit box to 80:

MaskEdit1.MaxLength := 80;

Menu Control

Delphi command
TMainMenu, TPopUpMenu Components

Description
See Standard Page Components

Mid Function

Delphi command
Copy

Declaration
function Copy(S: string; Index, Count: Integer): string;

Description
The Copy function returns a substring of a string.

S is a string-type expression. Index and Count are integer-type expressions. Copy returns a string
containing Count characters starting with at S[Index].

If Index is larger than the length of S, Copy returns an empty string.

If Count specifies more characters than are available, the only the characters from S[Index] to the end of
S are returned.

Example
 var S: string;
begin
 S := 'ABCDEF';
 S := Copy(S, 2, 3); { 'BCD' }
end;

Min, Max Functions (SQL)

Delphi command
Min, Max functions (SQL)

Description
SQL Syntax

Example
Select Max(OrderNo) from Orders

MinButton Property

Delphi command
biMinimize in BorderIcons set (TForm)

Applies to
TForm component

Declaration
property BorderIcons: TBorderIcons;

Description
The BorderIcons property is a set whose values determine which icons appear on the title bar of a form.

Example
The following code removes a form's Maximize button when the user clicks a button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 BorderIcons := BorderIcons - [biMinimize];
end;

Minute Function

Delphi command
DecodeTime procedure

Declaration
procedure DecodeTime(Time: TDateTime; var Hour, Min, Sec, MSec: Word);

Description
The DecodeTime procedure breaks the value specified as the Time parameter into hours, minutes,
seconds, and milliseconds.

Example
This example uses a button and two labels on a form. When the user clicks the button, the current date
and time are reported in the captions of the two labels.

procedure TForm1.Button1Click(Sender: TObject);
var
 Present: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
 begin
 Present:= Now;
 DecodeDate(Present, Year, Month, Day);
 Label1.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
 + IntToStr(Month) + ' of Year ' + IntToStr(Year);
 DecodeTime(Present, Hour, Min, Sec, MSec);
 Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
 + IntToStr(Hour);

end;

MkDir Statement

Delphi command
MkDir procedure

Declaration
procedure MkDir(S: string);

Description
The MkDir procedure creates a new subdirectory with the path specified by string S. The last item in the
path cannot be an existing file name.

{$I+} lets you handle run-time errors using exceptions. For more information on handling run-time library
exceptions, see Handling RTL Exceptions.

Example
uses Dialogs;
begin
 {$I-}
 { Get directory name from TEdit control }
 MkDir(Edit1.Text);
 if IOResult <> 0 then
 MessageDlg('Cannot create directory', mtWarning, [mbOk], 0)
 else
 MessageDlg('New directory created', mtInformation, [mbOk], 0);
end;

Month Function

Delphi command
DecodeDate procedure

Declaration
procedure DecodeDate(Date: TDateTime; var Year, Month, Day: Word);

Description
The DecodeDate procedure breaks the value specified as the Date parameter into Year, Month, and Day
values. If the given TDateTime value is less than or equal to zero, the year, month, and day return
parameters are all set to zero.

Example
This example uses a button and two labels on a form. When the user clicks the button, the current date
and time are reported in the captions of the two labels.

procedure TForm1.Button1Click(Sender: TObject);
var
 Present: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
 begin
 Present:= Now;
 DecodeDate(Present, Year, Month, Day);
 Label1.Caption := 'Today is Day ' + IntToStr(Day) + ' of Month '
 + IntToStr(Month) + ' of Year ' + IntToStr(Year);
 DecodeTime(Present, Hour, Min, Sec, MSec);
 Label2.Caption := 'The time is Minute ' + IntToStr(Min) + ' of Hour '
 + IntToStr(Hour);

end;

MouseDown, MouseUp Events

Delphi command
OnMouseDown, OnMouseUp events

Declaration
TMouseEvent = procedure (Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer) of object;
property OnMouseDown: TMouseEvent;
property OnMouseUp: TMouseEvent;

Description
The OnMouseDown event occurs when the user presses a mouse button with the mouse pointer over a
control. Use the OnMouseDown event handler when you want some processing to occur as a result of
pressing a mouse button.

The OnMouseUp event occurs when the user releases a mouse button that was pressed with the mouse
pointer over a component. Use the OnMouseUp event handler when you want processing to occur when
the user releases a mouse button.

Example
The following code creates and displays a label when a mouse button is pressed. If you attach this event
handler to the OnMouseDown event of a form, a label specifying the coordinates of the mouse pointer
appears when the user clicks the mouse button. Note that the StdCtrls unit must be added to the uses
clause of the interface section of the form's unit to be able to create labels dynamically.

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var
 NewLabel: TLabel;
begin
 NewLabel := TLabel.Create(Form1);
 NewLabel.Parent := Self;
 NewLabel.Left := X;
 NewLabel.Top := Y;
 NewLabel.Caption := '(' + IntToStr(X) + ',' + IntToStr(Y) + ')';
 NewLabel.Visible := True;
end;

MouseIcon Property

Delphi command
Screen.Cursor Property

Applies to
TScreen component

Declaration
property Cursor: TCursor;

Description
The Screen object's Cursor property controls the mouse cursor shape at a global level. Assigning any
value but crDefault to the Screen object's Cursor property sets the mouse cursor shape for all windows
belonging to the application. The global mouse cursor shape remains in effect until you assign crDefault
to the Screen object's Cursor property, at which point normal cursor behavior is restored.

To see a list of possible cursor shapes, see the Cursor property for all controls.

Example
Assignments to the Screen object's cursor property are typically guarded by a try...finally statement to
ensure that normal cursor behavior is restored, for example:

Screen.Cursor := crHourglass; { Show hourglass cursor }
try
 { Do some lengthy operation }
finally
 Screen.Cursor := crDefault; { Always restore to normal }
end;

MouseMove Event

Delphi command
OnMouseMove event

Declaration
TMouseMoveEvent = procedure(Sender: TObject; Shift: TShiftState; X, Y:
Integer) of object;
property OnMouseMove: TMouseMoveEvent;

Description
The OnMouseMove event occurs when the user moves the mouse pointer while the mouse pointer is
over a control. Use the OnMouseMove event handler when you want something to happen when the
mouse pointer moves within the control.

By using the Shift parameter of the OnMouseDown event handler, you can respond to the state of the
mouse buttons and shift keys. Shift keys are the Shift, Ctrl, and Alt keys.

Example
The following code updates two labels when the mouse pointer is moved. The code assumes you have
two labels on the form, lblHorz and lblVert. If you attach this code to the OnMouseMove event of a form,
lblHorz continually displays the horizontal position of the mouse pointer, and lblVert continually displays
the vertical position of the mouse pointer while the pointer is over the form.

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y:
Integer);
begin
 lblHorz.Caption := IntToStr(X);
 lblVert.Caption := IntToStr(Y);
end;

MousePointer Property

Delphi command
Screen.Cursor Property

Declaration
property Cursor: TCursor;

Description
The Screen object's Cursor property controls the mouse cursor shape at a global level. Assigning any
value but crDefault to the Screen object's Cursor property sets the mouse cursor shape for all windows
belonging to the application. The global mouse cursor shape remains in effect until you assign crDefault
to the Screen object's Cursor property, at which point normal cursor behavior is restored.

To see a list of possible cursor shapes, see the Cursor property for all controls.

Example
Assignments to the Screen object's cursor property are typically guarded by a try...finally statement to
ensure that normal cursor behavior is restored, for example:

Screen.Cursor := crHourglass; { Show hourglass cursor }
try
 { Do some lengthy operation }
finally
 Screen.Cursor := crDefault; { Always restore to normal }
end;

Move Method

Delphi command
SetBounds method

Declaration
procedure Setbounds(ALeft, ATop, AWidth, AHeight: Integer);

Description
The SetBounds method sets the component's boundary properties, Left, Top, Width, and Height, to the
values passed in ALeft, ATop, AWidth, and AHeight, respectively.

SetBounds enables you to set more than one of the component's boundary properties at a time. Although
you can always set the individual boundaries, using SetBounds enables you to make several changes at
once without repainting the control for each change.

Example
The following code doubles the size of a button control when the user clicks it:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.SetBounds(Left, Top, Height * 2, Width * 2);
end;

Note that you could use the following code instead, but each click would result in the button being
redrawn twice: once to change the height, and once to change the width:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Height := Button1.Height * 2;
 Button1.Width := Button1.Width * 2;
end;

Move Method (Data Access)

Delphi command
MoveBy (TTable, TQuery, TStoredProc)

Declaration
function MoveBy(Distance: Integer): Integer;

Description
The MoveBy method moves the dataset cursor by Distance records. If Distance is negative, the move is
backward. If Distance is positive, the movement is forward. If Distance is zero, no move is done. MoveBy
returns the number of records that were traversed.

If the dataset is in Insert or Edit state, MoveBy will perform an implicit Post of any pending data, even if
Distance is 0.

Example
The following code skips three records forward:

Table1.MoveBy(3);

MoveFirst, MoveLast, MoveNext, MovePrevious Methods

Delphi command
First, Last, Next, Prior methods

Declaration
procedure First;
procedure Last;
procedure Next;
procedure Prior;

Description
The First method moves the cursor to the first record in the active range of records of the dataset.

The Last method moves the cursor to the last record in the active range of records of the dataset.

The Prior method moves the current record position of the dataset backward by one record.

The Next method moves the cursor forward by one record. If the cursor is already on the last record, it
does not move.

The active range of records is affected by the filter established with ApplyRange.

If the dataset is in Edit or Insert state, all will perform an implicit Post of any pending data.

Example
{ Move to the next record }
Table1.Next;
if Table1.Eof then { No more records };

Example 2

Table1.Last;

MsgBox Function

Delphi command
MessageBox (TApplication)

Declaration
function MessageBox(Text, Caption: PChar; Flags: Word): Integer;

Description
See MessageBox in Delphi.hlp for message box formatting

The MessageBox method is an encapsulation of the Windows API MessageBox function except that you
don't need to supply a window handle.

The MessageBox method displays a generic dialog box that displays a message and one or more
buttons. The value of the Text parameter is the message, which can be longer than 255 characters if
necessary. Long messages are automatically wrapped in the message box. The value of the Caption
property is the caption that appears in the title bar of the dialog box. Captions can be longer than 255
characters, but they don't wrap. A long caption results in a wide message box.

Example
This example uses a button and a label on a form. When the user clicks the button, a message box
appears. When the user responds to the message box, the button selected is reported in the caption of
the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 Button: Integer;
begin
 Button := Application.MessageBox('Welcome to Delphi!', 'Message Box',
mb_OKCancel +
 mb_DefButton1);
 if Button = IDOK then
 Label1.Caption := 'You chose OK';
 if Button = IDCANCEL then
 Label1.Caption := 'You chose Cancel';
end;

MultiLine Property

Delphi command
Use TEdit control for single line

Description
See Standard Page Components

MultiSelect Property

Delphi command
MultiSelect property

Applies to
TFileListBox, TListBox, TListView components

Declaration
property MultiSelect: Boolean;

Description
The MultiSelect property determines whether the user can select more than one element at a time from
the list. If MultiSelect is True, the user can select multiple items. If MultiSelect if False, multiple items can
be selected in the list box at the same time. The default value is False.

Example
This line of code ensures that the user can select multiple items in a list box:

ListBox1.MultiSelect := True;

NPV Function

Delphi command
NetPresentValue function (Math.pas unit)

Declaration
function NetPresentValue(Rate: Extended; const CashFlows: array of Double;
 PaymentTime: TPaymentTime): Extended;

Description
The NetPresentValue function calculates the current value of an array of estimated cash flow values,
discounted at the given interest rate of Rate. PaymentTime indicates whether the cash flows occur at the
beginning or end of the period (by entering a value of 1or 0, respectively). NetPresentValue helps you
determine how much an investment is currently worth, based on expected earnings, although its accuracy
depends on the accuracy of the cash flows in the array.

NPer Function

Delphi command
NumberOfPeriods function (Math.pas unit)

Declaration
function NumberOfPeriods(Rate, Payment, PresentValue, FutureValue: Extended;
 PaymentTime: TPaymentTime): Extended;

Description
The NumberOfPeriods function computes the number of payment periods required for an investment of
PresentValue to reach a value of FutureValue, while making regular payments of Payment and accruing
interest at the rate of Rate per compounding period. PaymentTime indicates whether the cash flows occur
at the beginning or end of the period (by entering a value of 1or 0, respectively).

Name Property

Delphi command
Name property

Applies to
All components

Declaration
property Name: TComponentName;

Description
The Name property contains the name of the component as referenced by other components. By default,
Delphi assigns sequential names based on the type of the component, such as 'Button1', 'Button2', and
so on. You may change these to suit your needs.

Example
The following code lists the names of all the components of Form1 in a list box.

var
 I: Integer;
begin
 for I := 0 to Form1.ComponentCount-1 do
 ListBox1.Items.Add(Form1.Components[I].Name);
end;

Name Property (Data Access)

Delphi command
Name property

Applies to
All components

Declaration
property Name: TComponentName;

Description
The Name property contains the name of the component as referenced by other components. By default,
Delphi assigns sequential names based on the type of the component, such as 'Button1', 'Button2', and
so on. You may change these to suit your needs.

Example
The following code lists the names of all the components of Form1 in a list box.

var
 I: Integer;
begin
 for I := 0 to Form1.ComponentCount-1 do
 ListBox1.Items.Add(Form1.Components[I].Name);
end;

Name Statement

Delphi command
RenameFile function

Declaration
function RenameFile(const OldName, NewName: string): Boolean;

Description
The RenameFile function attempts to change the name of the file specified by OldFile to NewFile. If the
operation succeeds, RenameFile returns True. If it cannot rename the file (for example, if a file called
NewName already exists), it returns False.

Example
The following code renames a file:

if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
 ErrorMsg('Error renaming file!');

Named Date/TIme Formats (Format Function)

Delphi command
ShortDateFormat, Format Strings (DateToStr function, Format)

Declaration
function DateToStr(Date: TDateTime): string;

Description
The DateToStr function converts a variable of type TDateTime to a string. The conversion uses the format
specified by the ShortDateFormat global variable.

Named Numeric Formats (Format Function)

Delphi command
Format Strings (Format function)

Declaration
function Format(const Format: string; const Args: array of const): string;

Description
This function formats the series of arguments in the open array Args. Formatting is controlled by the
Object Pascal format string Format; the results are returned in the function result as a Pascal string.

For information on the format strings, see Format Strings in Delphi.HLP.

NegotiateMenus Property

Delphi command
AutoMerge property (TMainMenu)

Applies to
TMainMenu component

Declaration
property AutoMerge: Boolean;

Description
The AutoMerge property determines if the main menus (TMainMenu) of forms other than the main form
merge with the main menu of the main form in non-MDI applications at run time. The default value is
False. To merge the form's menus with the main menu in the main form, set the AutoMerge property of
each main menu you want merged to True. Make sure that the AutoMerge property of the main menu you
are merging with other menus remains False. How menus merge depends on the value of the
GroupIndex property for each menu item.

If the application is an MDI application (the FormStyle properties are set so the main form is a parent form
and subsequent forms are child forms), menu merging occurs automatically and you don't need to use the
AutoMerge property.

Example
This example uses two forms with a main menu and a button on each form. Using the Object Inspector,
set the GroupIndex value for each menu item on the menu bar in the second form to a number greater
than 0. When the application runs and the user clicks the button on the first form, the main menu on the
second form merges with the main menu of the first form. When the user clicks the button on the second
form, the form closes.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.MainMenu1.AutoMerge := True;
 Form2.Show;
end;

This is the code for the button-click event handler on the second form:

procedure TForm2.Button1Click(Sender: TObject);
begin
 Close;
end;

To run this example, you must add Unit2 to the uses clause of Unit1.

NegotiatePosition Property

Delphi command
GroupIndex (TmenuItem)

Applies to
TMenuItem component

Declaration
property GroupIndex: Byte;

Description
If your application has multiple forms, you'll probably want your application's main menu to change as
different forms become active. The alternative is for each form to display its own menu within itself. MDI
applications always merge the menus of child windows with the main menu of the parent window. By
using the GroupIndex property for menu items, you can determine how menus are merged. You can
choose to replace or insert menu items in a menu bar.

Each menu item has a GroupIndex property value. By default, all menu items in a menu bar have the
same GroupIndex value, unless you explicitly change them. Each successive menu item in a menu bar
must have a GroupIndex value equal to or greater than the previous menu item.

NewPage Method

Delphi command
NewPage method (TPrinter)

Declaration
procedure NewPage;

Description
The NewPage method forces the current print job to begin printing on a new page in the printer. It also
increments the value of the PageNumber property and resets the value of the Pen property of the Canvas
back to (0, 0).

Example
This example uses a button on a form. When the user clicks the button, a rectangle is printed twice, one
per page.

To run this example successfully, you must add the Printers unit to the uses clause of your unit.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with Printer do
 begin
 BeginDoc;
 Canvas.Rectangle(10, 10, 200, 200);
 NewPage;
 Canvas.Rectangle(10, 10, 200, 200);
 EndDoc;
 end;
end;

NewPassword Method

Delphi command
Use AddPassword method for Paradox tables

Declaration
procedure AddPassword(const Password: string);

Description
The AddPassword method is used to add a new password to the current TSession component for use
with Paradox tables. When an application opens a Paradox table that requires a password, the user will
be prompted to enter a password unless the Session has a valid password for the table.

NoMatch Property

Delphi command
FindKey , GoToKey, FindFirst, FindNext, etc. Methods

Applies to
TTable component

Declaration
function FindKey(const KeyValues: array of const): Boolean;

Description
The FindKey method searches the database table to find a record whose index fields match those passed
in KeyValues. FindKey takes a comma-delimited array of values as its argument, where each value
corresponds to a index column in the underlying table. The values can be literals, variables, null, or nil. If
the number of values supplied is less than the number of columns in the database table, then the
remaining values are assumed to be null. FindKey will search for values specified in the array in the
current index.

Example
This example will search for CustNo = '1234':

if Table1.FindKey(['1234']) then
 ShowMessage('Customer Found');

Normal Property

Delphi command
FileType Property

Applies to
TFileListBox component

Declaration
property FileType: TFileType;

Description
The FileType property determines which files are displayed in the file list box based on the attributes of
the files. Because FileType is of type TFileType, which is a set of file attributes, FileType can contain
multiple values. For example, if the value of FileType is a set containing the values ftReadOnly and
ftHidden, only files that have the read-only and hidden attributes are displayed in the list box

When ftNormal is True, the list box can display files with no attributes.

Example
This example uses a file list box on a form. When the application runs, only read-only files, directories,
volume IDs, and files with no attributes appear in the list box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.FileType := [ftReadOnly, ftDirectory, ftVolumeID, ftNormal];
end;

Now Function

Delphi command
Now Function

Declaration
function Now: TDateTime;

Description
The Now function returns the current date and time, corresponding to Date + Time.

Example
This example uses a label and a button on a form. When the user clicks the button, the current date and
time appear as the caption of the label.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := 'The date and time is ' + DateTimeToStr(Now);
end;

Number Property

See Exception Handling in Users Guide.

NumberFormat Property

Delphi command
DisplayFormat Property

Applies to
TDateField, TDateTimeField, TIntegerField, TSmallintField, TTimeField, TWordField, TBCDField,
TCurrencyField, TFloatField components

Declaration
property DisplayFormat: string

Description
The DisplayFormat property is used to format the value of the field for display purposes.

For TIntegerField, TSmallintField, and TWordField, formatting is performed by FloatToTextFmt. If
DisplayFormat is not assigned a string, the value is formatted by Str.

For TDateField, TDateTimeField, and TTimeField, formatting is performed by DateTimeToStr. If
DisplayFormat is not assigned a string, the value is formatted according to the default Windows
specifications in the [International] section of the WIN.INI file.

For TBCDField, TCurrencyField, and TFloatField, formatting is performed by FloatToTextFmt. If
DisplayFormat is not assigned a string, the value is formatted according to the value of the Currency
property.

OLE Container Control

Delphi command
OLEContainer Component

Description
The TOleContainer component lets you embed or link OLE objects in your Delphi 2.0 application.
TOleContainer handles many of the complexities of OLE 2.0 for you. Letting the user choose an OLE
object to insert is as simple as calling the InsertObjectDialog method. Call the CreateObject or
CreateObjectFromFile methods to create an embedded OLE object; use the CreateLinkToFile method to
create a linked OLE object.

OLEDropAllowed Property

Delphi command
See OnDragOver Event in Delphi.hlp

Example
This OnDragOver event handler permits the list box to accept a dropped label:

procedure TForm1.ListBox1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 Accept := Source is TLabel;
end;

The Source parameter identifies what is being dragged. The Sender is the
control being dragged over.
This code permits the list box to accept any dropped control:

procedure TForm1.ListBox1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 Accept := True;
end;

OLEType Property

Delphi command
Linked Property

Applies to
TOleContainer component

Declaration
property Linked: Boolean;

Description
Runtime and readonly. Indicates whether the OLE object is linked. If True, the OLE object is linked; if
False, it's embedded. An OLE object must already be loaded in the container before accessing the Linked
property.

ORDER BY Clause (SQL)

Delphi command
ORDER BY Clause (SQL)

Description
SQL Syntax

Example
The ORDER BY clause specifies the order of retrieved rows. For example, the following query retrieves a
list of all parts listed in alphabetical order by part name:

SELECT * FROM PARTS
ORDER BY PART_NAME ASC

The next query retrieves all part information ordered in descending numeric order by part number:

SELECT * FROM PARTS
ORDER BY PART_NO DESC

Calculated fields can be ordered by correlation name or ordinal position. For example, the following query
orders rows by FULL_NAME, a calculated field:

SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME, PHONE,
FROM CUSTOMER
ORDER BY FULL_NAME

Projection of all grouping or ordering columns is not required.

ObjectMove Event

Delphi command
OnObjectMove Event

Applies to
TOleContainer component

Declaration
TObjectMoveEvent = procedure(OleContainer: TOleContainer;const Bounds: TRect)
of object;
property OnObjectMove: TObjectMoveEvent;

Description
Occurs when the users moves or resizes the OLE object (by moving or sizing the hatched frame around
the OLE object). You must handle this event to let the user move or resize the OLE object; you must set
the OLE container's BoundsRect to the Bounds parameter of the event handler or the OLE object won't
change its location or size.

Example:
procedure TMDIChildForm.BobOleContainerObjectMove(OleContainer:
TOleContainer;
const Bounds: TRect);
begin
 OleContainer.BoundsRect := Bounds;
end;

ObjectVerbs Property

Delphi command
ObjectVerbs Property

Applies to
TOleContainer component

Declaration
property ObjectVerbs: TStrings;

Description
Runtime and readonly. Returns a string list containing the names of the verbs the OLE object supports.
The verb names can have embedded ampersand ('&') characters to indicate shortcut keys. An OLE object
must already be loaded in the container before accessing the ObjectVerbs property.

ObjectVerbsCount Property

Delphi command
ObjectVerbs.Count Property

Description
Runtime and readonly. This function should return the number of verbs the OLE Object supports.

On Error Statement

Delphi command
See Exception Handling

Description
Object Pascal makes it easy to incorporate error handling into your applications because exceptions don't
get in the way of the normal flow of your code. In fact, by moving error checking and error handling out of
the main flow of your algorithms, exceptions can simplify the code you write.

When you declare a protected block, you define specific responses to exceptions that might occur within
that block. When an exception occurs in that block, execution immediately jumps to the response you
defined, then leaves the block.

On..GoSub, On...GoTo Statements

Delphi command
GoTo Statement

When using goto statements, you must observe the following rules:

The label referenced by the goto statement must be in the same block as the goto statement. You cannot
jump into or out of a procedure or statement.

Jumping into a structured statement from outside that structured statement can have undefined effects,
although the compiler does not indicate an error.

Good programming practices recommend that you use goto statements as little as possible.

Example
label 1, 2;
goto 1
 .
 .
 .
1: WriteLn ('Abnormal program termination');
2: WriteLn ('Normal program termination');

Open Statement

Delphi command
FileOpen Function

Declaration
function FileOpen(const FileName: string; Mode: Integer): Integer;

Description
The FileOpen function opens the specified file using the specified access mode.

Example
procedure OpenForShare(const FileName: String);
var
 FileHandle : Integer;
begin
 FileHandle := FileOpen(FileName, fmOpenWrite or fmShareDenyNone);
 if FileHandle > 0 then
 [valid file handle}
 else
 [Open error: FileHandle = negative DOS error code]
end;

Note Use of the non-native Pascal file variable handlers such as FileOpen is discouraged. These
routines map to the Windows API functions and return file handles, not normal Pascal file
variables. These are low-level file access routines. For normal file operations use the normal
AssignFile, Rewrite, Reset operations instead of FileOpen.

OpenDatabase Function

Delphi command
Open Method

Applies to
TQuery, TStoredProc, TTable components

Declaration
procedure Open;

Description
The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the Active
property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement does not return
a result set (for example, an INSERT or UPDATE statement), then use ExecSQL instead of Open.

Example
Database1.Open;

OpenDatabase Method

Delphi command
Open Method

Applies to
TQuery, TStoredProc, TTable components

Declaration
procedure Open;

Description
The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the Active
property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement does not return
a result set (for example, an INSERT or UPDATE statement), then use ExecSQL instead of Open.

Example
Database1.Open;

OpenQueryDef Method

Delphi command
Open Method

Applies to
TQuery, TStoredProc, TTable components

Declaration
procedure Open;

Description
The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the Active
property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement does not return
a result set (for example, an INSERT or UPDATE statement), then use ExecSQL instead of Open.

Example
try
 Query1.Open;
except
 on EDataBaseError do { The dataset could not be opened };
end;

OpenRecordset Method

Delphi command
Open Method

Applies to
TQuery, TStoredProc, TTable components

Declaration
procedure Open;

Description
The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the Active
property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement does not return
a result set (for example, an INSERT or UPDATE statement), then use ExecSQL instead of Open.

Example
try
 Table1.Open;
except
 on EDataBaseError do { The dataset could not be opened };
end;

OpenTable Method

Delphi command
Open Method

Applies to
TQuery, TStoredProc, TTable components

Declaration
procedure Open;

Description
The Open method opens the dataset, putting it in Browse state. It is equivalent to setting the Active
property to True.

For TQuery, Open executes the SELECT statement in the SQL property. If the statement does not return
a result set (for example, an INSERT or UPDATE statement), then use ExecSQL instead of Open.

Example
try
 Table1.Open;
except
 on EDataBaseError do { The dataset could not be opened };
end;

OptionButton Control

Delphi command
See GroupIndex Property of TSpeedButton Component

Applies to
TSpeedButton component

Declaration
property GroupIndex: Integer;

Description
The GroupIndex property determines which speed buttons work together as a group.

By default, speed buttons have a GroupIndex property value of 0, indicating that they do not belong to a
group. When the user clicks such a speed button, the button appears "pressed," or in its down state, then
the button returns to its normal up state when the user releases the mouse button.

Speed buttons with the same GroupIndex property value (other than 0), work together as a group. When
the user clicks one of these speed buttons, it remains "pressed," or in its down state, until the user clicks
another speed button belonging to the same group. Speed buttons used in this way can present mutually
exclusive choices to the user.

The default value is 0.

Example
This code assures that the three speed buttons work together as a group:

SpeedButton1.GroupIndex := 1;
SpeedButton2.GroupIndex := 1;
SpeedButton3.GroupIndex := 1;

OrdinalPosition Property

Delphi command
FieldNo Property

Declaration
property FieldNo: Integer;

Description
Run-time and read-only. FieldNo is the ordinal of the TField component in its dataset. This property is
available for programs that make direct calls to the Borland Database Engine.

Orientation Property

Delphi command
Orientation Property

Applies to
TPrinter object;

Declaration
property Orientation: TPrinterOrientation;

Description
Run-time only. The value of the Orientation property determines if the print job prints vertically or
horizontally on a page. These are the possible values:

Value Meaning
poPortrait The print job prints vertically on the page.
poLandscape The print job prints horizontally on the page.

Example
This example uses two radio buttons on a form named Landscape and Portrait. The form also includes a
button. When the user selects an orientation by clicking one of the radio buttons and then clicks the
button to print one line of text, the print job prints using the selected orientation:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Printer.BeginDoc;
 Printer.Canvas.TextOut(100,100,'Hi there');
 Printer.EndDoc;
end;
procedure TForm1.PortraitClick(Sender: TObject);
begin
 Printer.Orientation := poPortrait;
end;
procedure TForm1.LandscapeClick(Sender: TObject);
begin
 Printer.Orientation := poLandscape;
end;

PPmt Function

Delphi command
Payment Function

Declaration
function Payment(Rate: Extended; NPeriods: Integer;
 PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

Description
The Payment function calculates the fully amortized payment of borrowing PresentValue dollars at Rate
percent per period over NPeriods. It assumes that interest is paid at the end of each period.

FutureValue is the value that the investment will reach at some point. PaymentTime indicates whether the
cash flows occur at the beginning or end of the period (enter a value of 1 for the beginning or 0 for the
end).

PSet Method

Delphi command
TCanvas.Pixels Properrty

Applies to
TCanvas object

Declaration
property Pixels[X, Y: Longint]: TColor;

Description
The Pixels array enables you to access any pixel on the canvas directly, to either set or read the color
there. Each element in Pixels contains the color of the corresponding pixel in the canvas. The array
indexes, X and Y, specify the horizontal and vertical coordinates of the pixel, respectively.

Note This is the slowest way to draw an image.

Example
This example draws a red line (very slowly) when the form becomes active. Attach the following code to
the OnActivate event handler:

procedure TForm1.FormActivate(Sender: TObject);
var
 W: Word;
begin
 for W := 10 to 200 do
 Canvas.Pixels[W, 10] := clRed;
end;

PV Function

Delphi command
PresentValue Function

Declaration
function PresentValue(Rate: Extended; NPeriods: Integer;
 Payment, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

Description
The PresentValue function calculates the present value of an investment where Payment is received for
NPeriods and is discounted at the rate of Rate per period. FutureValue is the value the investment may
reach at some point. PaymentTime indicates whether the cash flows occur at the beginning or end of the
period (enter a value of 1 for the beginning or 0 for the end).

Page Property

Delphi command
PageNumber Property

Declaration
property PageNumber: Integer;

Description
Run-time and read-only. The PageNumber property contains the number of the current page. Each time
an application calls the NewPage method, NewPage increments the value of PageNumber.

Example
This example uses a button on a form. When the user clicks the button, one line of text is printed on six
separate pages. As each page is printed, a message indicating the number of the page being printed
appears on the form.

To run this example successfully, you must add Printers to the uses clause of your unit.

procedure TForm1.Button1Click(Sender: TObject);
var
 I, X, Y: Integer;
begin
 Printer.BeginDoc;
 X := 10;
 Y := 10;
 for I := 1 to 6 do
 begin
 Printer.Canvas.TextOut(100, 100, 'Object Pascal is great');
 Canvas.TextOut(X, Y, 'Printing page ' + IntToStr(Printer.PageNumber));
 Printer.NewPage;
 Y := Y + 20;
 end;
 Printer.EndDoc;
end;

Paint Event

Delphi command
OnPaint Event

Applies to
TForm, TPaintBox component

Declaration
property OnPaint: TNotifyEvent;

Description
The OnPaint event occurs when Windows requires the form or paint box to paint, such as when the form
or paint box receives focus or becomes visible when it wasn't previously. Your application can use this
event to draw on the canvas of the form or paint box.

Example
The following code is an entire unit that loads a background bitmap onto the Canvas of the main form in
the OnPaint event handler.

unit Unit1;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms,
Dialogs;
type
 TForm1 = class(TForm)
 procedure FormPaint(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 TheGraphic: TBitmap; { Add this Declaration for the graphic}
 public
 { Public Declarations }
 end;
var
 Form1: TForm1;
implementation

{$R *.DFM}
procedure TForm1.FormPaint(Sender: TObject); { OnPaint event handler}
begin
 Form1.Canvas.Draw(0, 0, TheGraphic); { Draw the graphic on the Canvas }
end;
procedure TForm1.FormCreate(Sender: TObject); { OnCreate event handler }
begin
 TheGraphic := TBitmap.Create; { Create the bitmap object }
 TheGraphic.LoadFromFile('C:\APP\BKGRND.BMP'); { Load the bitmap from a
file}
end;
end.

PaintPicture Method

Delphi command
TCanvas.Draw Method

Applies to
TCanvas objects

Declaration
procedure Draw(X, Y: Integer; Graphic: TGraphic);

Description
The Draw method draws the graphic specified by the Graphic parameter on the canvas at the location
given in the screen pixel coordinates (X, Y). Graphics can be bitmaps, icons, or metafiles.

Example
The following code draws the graphic in C:\WINDOWS\TARTAN.BMP centered in Form1 when the user
clicks Button1. Attach this code to the OnClick event handler of Button1.

procedure TForm1.Button1Click(Sender: TObject);
var
 Bitmap1: TBitmap;
begin
 Bitmap1 := TBitmap.Create;
 Bitmap1.LoadFromFile('c:\windows\tartan.bmp');
 Form1.Canvas.Draw((Form1.Width div 2)-(Bitmap1.Width div 2),
 (Form1.Height div 2) - (Bitmap1.Height div 2), Bitmap1);
end;

PaperBin Property

Delphi command
ADeviceMode parameter of SetPrinter Method

Applies to
TPrinter object

Declaration
procedure SetPrinter(ADevvice, ADriver, APort: PChar; ADeviceMode: THandle);

Description
The SetPrinter method specifies a printer as the current printer. You should seldom, if ever, need to call
this method, but instead should access the printer you want in the Printers property array. For more
information, see the Windows API CreateDC function.

PaperSize Property

Delphi command
ADeviceMode Parameter of SetPrinter Method

Applies to
TPrinter object

Declaration
procedure SetPrinter(ADevvice, ADriver, APort: PChar; ADeviceMode: THandle);

Description
The SetPrinter method specifies a printer as the current printer. You should seldom, if ever, need to call
this method, but instead should access the printer you want in the Printers property array. For more
information, see the Windows API CreateDC function.

Parameter Object, Parameters Collection

Delphi command
TQuery.Params Property

Applies to
TQuery component

Declaration
property Params[Index: Word]: TParam;

Description
When you enter a query, Delphi creates a Params array for the parameters of a dynamic SQL statement.
Params is a zero-based array of TParam objects with an element for each parameter in the query; that is,
the first parameter is Params[0], the second Params[1], and so on. The number of parameters is specified
by ParamCount. Read-only and run-time only.

Note Use the ParamByName method instead of Params to avoid dependencies on the order of the
parameters.

Example
For example, suppose a TQuery component named Query2 has the following statement for its SQL
property:

INSERT
 INTO COUNTRY (NAME, CAPITAL, POPULATION)
 VALUES (:Name, :Capital, :Population)

An application could use Params to specify the values of the parameters as follows:

Query2.Params[0].AsString := 'Lichtenstein';
Query2.Params[1].AsString := 'Vaduz';
Query2.Params[2].AsInteger := 420000;

These statements would bind the value "Lichtenstein" to the :Name parameter, "Vaduz" to the :Capital
parameter, and 420000 to the :Population parameter.

Parent Property

Delphi command
Parent Property

Applies to
All controls

Declaration
property Parent: TWinControl;

Description
The Parent property contains the name of the parent of the control. The parent of a control is the
windowed control that contains the control. If one control (parent) contains others, the contained controls
are child controls of the parent. For example, if your application includes three radio buttons in a group
box, the group box is the parent of the three radio buttons, and the radio buttons are the child controls of
the group box.

Don't confuse the Parent property with the Owner property. A form is the owner of all the components on
it, whether or not they are windowed controls. A child control is always a windowed control contained
within another windowed control (its parent). If you put three radio buttons in a group box on a form, the
owner of the radio buttons is still the form, while the parent is the group box.

PasswordChar Property

Delphi command
PasswordChar Property

Applies to
TDBEdit, TEdit, TMaskEdit components

Declaration
property PasswordChar: Char;

Description
The PasswordChar property lets you create an edit box that displays special characters in place of the
entered text. By default, PasswordChar is the null character (ANSI character zero), meaning that the
control displays its text normally. If you set PasswordChar to any other character, the control displays that
character in place of each character in the control's text.

Example
The following code displays asterisks for each character in an edit box called PasswordField:

PasswordField.PasswordChar := '*';

Paste Method
Delphi command
Paste Method

Applies to
TOleContainer component

Declaration
procedure Paste;

Description
Pastes the contents of the Windows clipboard as an embedded object. If there's already an OLE object in
the container, it's destroyed and any changes the user made to it are discarded.

PasteOK Property

Delphi command
CanPaste Property

Applies to
TOleContainer component

Declaration
property CanPaste: Boolean;

Description
Runtime and readonly. Indicates whether the data in the Windows clipboard is suitable for pasting as an
embedded object.

PasteSpecialDlg Method

Delphi command
PasteSpecialDialog Method

Applies to
TOleContainer component

Declaration
function PasteSpecialDialog: Boolean;

Description
Executes the Paste Special OLE dialog to give the user more control over how the contents of the
Windows clipboard are pasted into the container. The Paste Special dialog box lets the user select the
format of the data, whether it should be embedded or linked, and whether to display the OLE object
should be displayed as an icon (and if so, to choose a different icon). PasteSpecialDialog returns True if
the dialog box was successfully display and the user chose the OK button or False otherwise. If the user
chose the OK button and there's already an OLE object in the container, it's destroyed and any changes
the user made to it are discarded.

Path Property

Delphi command
Directory Property

Applies to
TDirectoryListBox, TFileListBox components

Declaration
property Directory: string;

Description
The value of the Directory property determines the current directory for the file list box and directory list
box components. The file list box displays the files in the directory specified in the Directory property. The
directory list box displays the value of the Directory property as the current directory in the list box.

Examine the example to see how a directory list box and a file list box can work together through their
Directory properties.

Example
If you have a file list box and a directory list box on a form, this code changes the current directory in the
directory list box and displays the files in that directory in the file list box when the user changes
directories using the directory list box:

procedure TForm1.DirectoryListBox1Change(Sender: TObject);
begin
 FileListBox1.Directory := DirectoryListBox1.Directory;
end;

PathChange Event

Delphi command
OnChange Event

Declaration
property OnChange: TNotifyEvent;

The OnChange event specifies which event handler should execute when the contents of a component or
object changes.

Pattern Property

Delphi command
Mask Property

Applies to
TFileListBox components

Declaration
property Mask: string;

Description
The Mask property determines which files are displayed in the file list box. A file mask or file filter is a
filename that usually includes wildcard characters (*.PAS, for example). Only files that match the mask
are displayed in list box. The file mask *.* displays all files, which is the default value.

You can specify multiple file masks. Separate the file mask specifications with semicolons. For example,
*.PAS; *.EXE.

Example
This example uses a file list box on a form. When the application runs, the list box displays only files with
a .PAS file extension:

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.Mask := '*.PAS';
end;

PatternChange Event

Delphi command
OnChange Event

Applies to
TFileListBox components

Declaration
property OnChange: TNotifyEvent;
property Mask: string;

Description
The OnChange event specifies which event handler should execute when the contents of a component or
object changes.

The Mask property determines which files are displayed in the file list box. A file mask or file filter is a
filename that usually includes wildcard characters (*.PAS, for example). Only files that match the mask
are displayed in list box. The file mask *.* displays all files, which is the default value.

You can specify multiple file masks. Separate the file mask specifications with semicolons. For example,
*.PAS; *.EXE.

Percent Position Property

See RecNo and RecordCount Properties in Delphi.hlp

Picture Object

Delphi command
TPicture Object

Description
See Additional Components Page

Picture Property

Delphi command
Picture Property

Applies to
TDBImage, TImage components

Declaration
property Picture: TPicture;

Description
The Picture property determines the image that appears on the image control. The property value is a
TPicture object which can contain an icon, metafile, bitmap graphic, or user-defined graphic object.

Example
This example uses two picture components. When the form first appears, two bitmaps are loaded into the
picture components and stretched to fit the size of the components. To try this code, substitute names of
bitmaps you have available.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Image1.Stretch := True;
 Image2.Stretch := True;
 Image1.Picture.LoadFromFile('BITMAP1.BMP');
 Image2.Picture.LoadFromFile('BITMAP2.BMP');
end;

PictureBox Control

Delphi command
TImage Component

Description
See Additional Page Components

Pmt Function

Delphi command
Payment Function

Declaration
function Payment(Rate: Extended; NPeriods: Integer;
 PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

Description
The Payment function calculates the fully amortized payment of borrowing PresentValue dollars at Rate
percent per period over NPeriods. It assumes that interest is paid at the end of each period.

FutureValue is the value that the investment will reach at some point. PaymentTime indicates whether the
cash flows occur at the beginning or end of the period (enter a value of 1 for the beginning or 0 for the
end).

Point Method

Delphi command
TCanvas.Pixels Property

Applies to
TCanvas object

Declaration
property Pixels[X, Y: Longint]: TColor;

Description
The Pixels array enables you to access any pixel on the canvas directly, to either set or read the color
there. Each element in Pixels contains the color of the corresponding pixel in the canvas. The array
indexes, X and Y, specify the horizontal and vertical coordinates of the pixel, respectively.

Note This is the slowest way to draw an image.

Example
This example draws a red line (very slowly) when the form becomes active. Attach the following code to
the OnActivate event handler:

procedure TForm1.FormActivate(Sender: TObject);
var
 W: Word;
begin
 for W := 10 to 200 do
 Canvas.Pixels[W, 10] := clRed;
end;

PopupMenu Method

Delphi command
TPopupMenu Component

Description
See Standard Page Components

Port Property

Delphi command
GetPrinter Method

Applies to
TPrinter object

Declaration
procedure GetPrinter (ADevice, ADriver, APort: PChar; var ADeviceMode:
THandle);

Description
The GetPrinter method retrieves the current printer. You should rarely need to call this method and should
instead access the printer you want in the Printers property array. For more information, see the
CreateDC function in the Win32 Developer's Reference (WIN32.HLP).

Primary Property

Delphi command
TIndexDef.Options Property

Applies to
TIndexDef object

Declaration
property Options: TIndexOptions;

Description
Run-time and read-only. Options is the set of characteristics of the index. Possible elements are those of
the TIndexOptions type: ixPrimary, ixUnique, ixDescending, ixNonMaintained, and ixCaseInsensitive.

Example
Table1.AddIndex('Key', 'CustNo', [ixPrimary]);

Print # Statement

Delphi command
WriteLn Procedure

Declaration
procedure Writeln([var F: Text;] P1 [, P2, ...,Pn]);

Description
The Writeln procedure is an extension to the Write procedure, as it is defined for text files.

After executing Write, Writeln writes an end-of-line marker (carriage-return/linefeed) to the file. Writeln(F)
with no parameters writes an end-of-line marker to the file. (Writeln with no parameter list corresponds to
Writeln(Output).)

The file must be open for output.

Example
var
 s : string;
 begin
 Write('Enter a line of text: ');
 Readln(s);
 Writeln('You typed: ',s);
 Writeln('Hit <Enter> to exit');
 Readln;
 end;

Print Method

Delphi command
BeginDoc, EndDoc Methods

Applies to
TPrinter object

Declaration
procedure BeginDoc;

Description
The BeginDoc method sends a print job to the printer. If the print job is sent successfully, the application
should call EndDoc to end the print job. The print job won't actually start printing until EndDoc is called.

To use the BeginDoc method, you must add the Printers unit to the uses clause of your unit.

PrintForm Method

Delphi command
Print Method

Applies to
TForm component

Declaration
procedure Print;

Description
The Print method prints the form.

Example
This example uses a button named PrintButton on a form. When the user chooses the button, the form
prints.

procedure TForm1.PrintButtonClick(Sender: TObject);
begin
 Print;
end;

PrintQuality Property

Delphi command
ADeviceMode parameter of SetPrinter Method

Applies to
TPrinter object

Declaration
procedure SetPrinter(ADevvice, ADriver, APort: PChar; ADeviceMode: THandle);

Description
The SetPrinter method specifies a printer as the current printer. You should seldom, if ever, need to call
this method, but instead should access the printer you want in the Printers property array. For more
information, see the Windows API CreateDC function.

Printer Object, Printers Collection

Delphi command
TPrinter Object; Printers Property

Description
The TPrinter object encapsulates the printer interface of Windows. Within the Printers unit, the Printer
function will create an instance of TPrinter, ready for you to use.

To start a print job, call the BeginDoc method. To end a print job that is sent successfully to the printer, call
the EndDoc method. If a problem occurs and you need to terminate a print job that was not sent to the
printer successfully, call the Abort method.

You can determine if a job is printing by checking the value of the Printing property. If the job aborted, the
Aborted property is True.

The printing surface of a page is represented by the Canvas property. You can use the Brush, Font, and
Pen properties of the Canvas object to determine how drawing or text appears on the page.

The list of installed printers is found in the Printers property. The value of the PrinterIndex property is the
currently selected printer. The list of fonts supported by the current printer is found in the Fonts property.

You can determine if a print job prints in landscape or portrait orientation using the Orientation property.

You height and width of the current page is found in the PageHeight and PageWidth properties. The
current page is the value of the PageNumber property.

The Title property determines the text that appears listed in the Print Manager and on network header
pages.

Using the PrintScale property of a TForm component, you determine how the printed image of the form
appears.

Whenever you use a TPrinter object, you must add Printers to the uses clause of the unit that implements
the properties or methods of a TPrinter object.

The TPrinter object is a direct descendent of TObject. In addition to these properties and methods, this
object also has the methods that apply to all objects.

Example
The following code displays the names of all printers in ListBox1.

begin
 ListBox1.Items := Printer1.Printers;
end;

Property Get Statement

Delphi command
Property Reserved Word

Description
The reserved word property enables you to declare properties. A property definition in a class declares a
named attribute for objects of the class and the actions associated with reading and writing the attribute.

Property Let Statement

Delphi command
Property Reserved Word

Description
The reserved word property enables you to declare properties. A property definition in a class declares a
named attribute for objects of the class and the actions associated with reading and writing the attribute.

Public Property

Delphi command
Public Standard Directive

Description
The public directive is used within class type Declarations.

Component identifiers declared in public component parts have no special restrictions on their scope.

Put Statement

Delphi command
Write Procedure

Declaration
procedure Write([var F: Text;] P1 [, P2,..., Pn]);

Description
The Write procedure writes one or more values to a text file. F, if specified, is a text file variable. If F is
omitted, the standard file variable Output is assumed. Each P is a write parameter. Each write parameter
includes an output expression whose value is to be written to the file. A write parameter can also contain
the specifications of a field width and a number of decimal places. Each output expression must be of a
type Char, one of the Integer types (Byte, Shortint, Word, Longint, Cardinal) , one of the floating-point
types (Single, Real, Double, Extended, Currency) , one of the string types (PChar, AnsiString,
ShortString) , a packed string, or one of the Boolean types (Boolean, Bool).

QBColor Function

Delphi command
ColorToRGB Function

Declaration
function ColorToRGB(Color: TColor): Longint;

Description
The ColorToRGB function returns the RGB value that Windows uses from a TColor type used by Delphi. If
the color represents a system color, the current RGB value for that system color is returned.

Example
The following code converts the color of the current form, Form1, to a Windows RGB value:

var
 L : Longint;
begin
 L := ColorToRGB(Form1.Color);
end;

QueryDef Object, QueryDefs Collection

Delphi command
TQuery Component

Description
See Data Access Page Components

QueryUnload Event

Delphi command
OnCloseQuery Event

Applies to
TForm component

Declaration
TCloseQueryEvent = procedure(Sender: TObject; var CanClose: Boolean) of
object;
property OnCloseQuery: TCloseQueryEvent;

Description
The OnCloseQuery event occurs when an action to close the form takes place--that is, when the Close
method is called or when the user chooses Close from the form's System menu. An OnCloseQuery event
handler contains a Boolean CanClose variable that determines whether a form is allowed to close. It's
default value is True.

You can use an OnCloseQuery event handler to ask users if they are sure they really want the form
closed immediately. For example, you can use the handler to display a message box that prompts the
user to save a file before closing the form.

The TCloseQueryEvent type points to the method that determines whether a form can be closed. The
value of the CanClose parameter determines if the form can close or not.

Example
When the user attempts to close the form in this example, a message dialog appears that asks the user if
it is OK to close the form. If the user chooses the OK button, the form closes. If the user chooses Cancel,
the form doesn't close.

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
 if MessageDlg('Close the form?', mtConfirmation,
 [mbOk, mbCancel], 0) = mrCancel then
 CanClose := False;
end;

RGB Function

Delphi command
RGB (API)

Description
See Win32.hlp

RSet Statement

Delphi command
Format Function

Declaration
function Format(const Format: string; const Args: array of const): string;

Description
This function formats the series of arguments in the open array Args. Formatting is controlled by the
Object Pascal format string Format; the results are returned in the function result as a Pascal string.

For information on the format strings, see Format Strings in DELPHI.HLP.

Example
Format('%d %d %0:d %d', [10, 20]) = '10 20 10 20'.

RTrim Function

Delphi command
TrimRight Function

Declaration
function TrimRight(const S: string): string;

Description
The Trim function trims trailing spaces and control characters from the given string S.

Raise Method

Delphi command
Raise Reserved Word

Description
To indicate an error condition in an application, you can raise an exception which involves constructing an
instance of that type and calling the reserved word raise

To raise an exception, call the reserved word raise, followed by an instance of an exception object.

When an exception handler actually handles the exception, it finishes by destroying the exception
instance, so you never need to do that yourself.

Setting the exception address
Raising an exception sets the ErrorAddr variable in the System unit to the address where the application
raised the exception. You can refer to ErrorAddr in your exception handlers, for example, to notify the
user of where the error occurred. You can also specify a value for ErrorAddr when you raise an exception.

To specify an error address for an exception, add the reserved word at after the exception instance,
followed by and address expression such as an identifier.

Examples
For example, given the following Declaration,

type
 EPasswordInvalid = class(Exception);

you can raise a "password invalid" exception at any time by calling raise with an instance of
EPasswordInvalid, like this:

if Password <> CorrectPassword then
 raise EPasswordInvalid.Create('Incorrect password entered');

Randomize Statement

Delphi command
Randomize Procedure

Declaration
procedure Randomize;

Description
The Randomize procedure initializes the built-in random number generator with a random value (obtained
from the system clock).

The random number generator should be initialized by making a call to Randomize, or by assigning a
value to RandSeed.

Example
var
 I: Integer;
 begin
 Randomize;
 for I := 1 to 50 do begin
 { Write to window at random locations }
 Canvas.TextOut(Random(Width), Random(Height), 'Boo!');
 end;
 end;

Rate Function

Delphi command
InterestRate Function

Declaration
function InterestRate(NPeriods: Integer;
 Payment, PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime):
Extended;

Description
The InterestRate function calculates the interest rate required in order for an investment of PresentValue,
with periodic payments of Payment, to be worth FutureValue within NPeriods compounding periods. If
NPeriods represents years, an annual interest rate results; if NPeriods represents months, a monthly
interest rate results, and so on. The PaymentTime parameter indicates whether the cash flows occur at
the beginning or end of the period (by entering a value of 1or 0, respectively).

ReadFromFile Method

Delphi command
LoadFromFile Method

Applies to
TOleContainer component

Declaration
procedure LoadFromFile(const FileName: string);

Description
Loads an OLE object from the specified file. If there's already an OLE object in the container, it's
destroyed and any changes the user made to it are discarded. If OldStreamFormat is False,
LoadFromFile only loads files saved with Delphi 2.0's TOleContainer component; if OldStreamFormat is
True, LoadFromFile loads files saved with Delphi 1.0's TOLEContainer component as well as Delphi 2.0's
TOleContainer.

ReadOnly Property

Delphi command
ReadOnly Property

Applies to
TDBCheckBox, TDBComboBox, TDBEdit, TDBGrid, TDBImage, TDBListBox, TDBLookupCombo,
TDBLookupComboBox, TDBLookupList, TDBLookupListBox, TDBMemo, TDBRadioGroup, TEdit,
TListView, TMaskEdit, TMemo, TRichEdit, TTable, TTreeView components

Declaration
property ReadOnly: Boolean;

Description
The ReadOnly property determines if the user can change the contents of the control. If ReadOnly is
True, the user can't change the contents. If ReadOnly is False, the user can modify the contents. The
default value is False.

For data-aware controls, the ReadOnly property determines whether the user can use the data-aware
control to change the value of the field of the current record, or if the user can use the control only to
display data. If ReadOnly is False, the user can change the field's value as long as the dataset is in edit
mode.

When the ReadOnly property of a data grid is True, the user can no longer use the Insert key to insert a
new row in the grid, nor can the user append a new row at the end of the data grid with the Down Arrow
key.

Example
This code toggles the read-only state of an edit box each time the user double-clicks the form:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Edit1.Left := 2;
 Edit1.Top := 2;
 Edit1.ReadOnly := True;
 Edit1.Text := 'Change Me';
 Canvas.TextOut(10, 40, 'Double-click form to toggle read-only state');
end;
procedure TForm1.FormDblClick(Sender: TObject);
begin
 Edit1.ReadOnly := not Edit1.ReadOnly;
end;

ReadOnly Property (Data Access)

Delphi command
ReadOnly Property

Applies to
TTable components

Declaration
property ReadOnly: Boolean;

Description
Use the ReadOnly property to prevent users from changing data in the table.

Note Set the Active property to False before changing ReadOnly.

RecordCount Property

Delphi command
RecordCount Property

Applies to
TQuery, TStoredProc, TTable components

Declaration
property RecordCount: Longint;

Description
Run-time and read-only. The RecordCount property specifies the number of records in the dataset. The
number of records reported may depend on the server and whether a range limitation is in effect.

Note If the TTable is connected to a dBASE table, RecordCount only reports the total number of
records in the table. If you try to limit the number of records in the dataset by calling SetRange,
RecordCount will be unaffected; RecordCount reports the total number of records, not the
number of records in the limited range.

RecordSelectors Property

Delphi command
Options Property

Applies to
TDBGrid component

Declaration
property Options: TDBGridOptions;

Description
dgRowSelect and dbAlwaysShowSelection control the display of record selection.

When dgRowSelect is True, the user can select whole rows only instead of individual cells. Mutually
exclusive with dgAlwaysShowEditor.

When dgAlwaysShowSelection is True, the cell selected in the grid continues to display as selected even
if the data grid doesn't have the focus.

Example
This line of code displays column titles, makes the column indicator visible, and permits the user to edit
the data displayed in the data grid:

procedure TForm1.FormClick(Sender: TObject);
begin
 DBGrid1.Options := [dgIndicator, dgEditing, dgTitles];
end;

RecordSource Property

Delphi command
DataSet Property

Applies to
TDataSource component

Declaration
property DataSet: TDataSet

Description
DataSet specifies the dataset component (TTable, TQuery, and TStoredProc) that is providing data to the
data source. Usually you set DataSet at design time with the Object Inspector, but you can also set it
programmatically. The advantage of this interface approach to connecting data components is that the
dataset, data source, and data-aware controls can be connected and disconnected from each other
through the TDataSource component. In addition, these components can belong to different forms.

Example
DataSource1.DataSet := Table1; {get data from this form's Table1}
DataSource1.DataSet := Form2.Table1; {get data from Form2's Table1}

Recordset Object, Recordsets Collection

Delphi command
DataSet Components

Applies to
TDataSource component

Declaration
property DataSet: TDataSet

Description
DataSet specifies the dataset component (TTable, TQuery, and TStoredProc) that is providing data to the
data source. Usually you set DataSet at design time with the Object Inspector, but you can also set it
programmatically. The advantage of this interface approach to connecting data components is that the
dataset, data source, and data-aware controls can be connected and disconnected from each other
through the TDataSource component. In addition, these components can belong to different forms.

Recordset Property

Delphi command
See DataSet Property

Applies to
TDataSource component

Declaration
property DataSet: TDataSet

Description
DataSet specifies the dataset component (TTable, TQuery, and TStoredProc) that is providing data to the
data source. Usually you set DataSet at design time with the Object Inspector, but you can also set it
programmatically. The advantage of this interface approach to connecting data components is that the
dataset, data source, and data-aware controls can be connected and disconnected from each other
through the TDataSource component. In addition, these components can belong to different forms.

Example
DataSource1.DataSet := Table1; {get data from this form's Table1}
DataSource1.DataSet := Form2.Table1; {get data from Form2's Table1}

RecordsetType Property

Delphi command
See RequestLive Property in Delphi.HLP

Refresh Method

Delphi command
Refresh Method

Applies to
All controls components

Declaration
procedure Refresh;

Description
The Refresh method erases whatever image is on the screen and then repaints the entire control. Within
the implementation of Refresh, the Invalidate and then the Update methods are called.

Example
The following code refreshes all windowed controls of Form1, then refreshes Form1.

var
 I: Integer;
begin
 for I := 0 to Form1.ComponentCount-1 do
 if Form1.Components[i] is TWinControl then
 with Form1.Components[i] as TWinControl do
 Refresh;
 Form1.Refresh;
end;

Refresh Method (Data Access)

Delphi command
Refresh Method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure Refresh;

Description
The Refresh method rereads all records from the dataset. Use Refresh to be certain that data controls
display the latest information from the dataset.    If used with a TTable, the corresponding table must have
a unique index.    If used with a TQuery, the result set    must be live, the tables must be local (Paradox or
dBASE) and have a unique index.

Relations Object, Relations Collection

Delphi command
See MasterSource, MasterFields, DataSource Properties

Applies to
TTable component

Declaration
property MasterSource: TDataSource;

Description
When linking a detail table to a master table, use the MasterSource property to specify the TDataSource
from which the TTable will get data for the master table.

Example
Suppose you have a master table named Customer that contains a CustNo field, and you also have a
detail table named Orders that also has a CustNo field. To display only those records in Orders that have
the same CustNo value as the current record in Customer, write this code:

Orders.MasterSource := 'CustSource';
Orders.MasterFields := 'CustNo';

If you want to display only the records in the detail table that match more than one field value in the
master table, specify each field and separate them with a semicolon.

Orders.MasterFields := 'CustNo;SaleDate';

Rem Statement

Delphi command
{}; //

Description
Adds comments to code

Examples
 { Any text not containing right brace }
 (* Any text not containing asterisk/right parenthesis *)
 // Any text from a double-slash to the end of the line

RemoveItem Method

Delphi command
Delete Method

Applies to
TListItems object

Declaration
procedure Delete(Index: Integer);

Description
The Delete method removes the item (TListItem object) in the list view specified with the Index parameter.
The index is zero-based, so the first item has an index of 0, the second item has an index on 1, and so
on.

Example
The following code deletes the selected item from Outline1.

Outline1.Delete(Outline1.SelectedItem);

Reposition Event

Delphi command
OnDataChange Event

Applies to
TDataSource component

Declaration
TDataChangeEvent = procedure(Sender: TObject; Field: TField) of object;
property OnDataChange: TDataChangeEvent;

Description
The OnDataChange occurs when the State property changes from dsInactive, or when a data-aware
control notifies the TDataSource that something has changed.

Notification occurs when the following items change because of field modification or scrolling to a new
record: field component, record, dataset component, content, and layout. The Field parameter to the
method may be nil if more than one of the fields changed simultaneously (as in a move to a different
record). Otherwise, Field is the field which changed.

The TDataChangeEvent type points to a method that handles the changing of data in a data source
component (TDataSource). The Field parameter is the field in which the data is changing. It is used by the
OnDataChange event of the data source.

Requery Method

Delphi command
Refresh Method

Applies to
TTable, TQuery, TStoredProc components

Declaration
procedure Refresh;

Description
The Refresh method rereads all records from the dataset. Use Refresh to be certain that data controls
display the latest information from the dataset.    If used with a TTable, the corresponding table must have
a unique index.    If used with a TQuery, the result set    must be live, the tables must be local (Paradox or
dBASE) and have a unique index.

Required Property

Delphi command
Required Property

Applies to
TBCDField, TBooleanField, TBytesField, TCurrencyField, TDateField, TDateTimeField, TFloatField,
TIntegerField, TSmallintField, TStringField, TTimeField, TVarBytesField, TWordField components

Declaration
property Required: Boolean;

Description
Specifies whether a non-nil value for a field is required. The default value is False, meaning a field does
not require a value. If a field is created with the Fields Editor, then this property is set based on the
underlying table. Set Required to True for fields that must get values (for example, a password or part
number), and write an OnValidate event handler for the field. Before a record is posted, exceptions are
raised for any required fields that have nil values.

Reset Statement

Delphi command
CloseFile Procedure

Declaration
procedure CloseFile(var F);

Description
Due to naming conflicts, the CloseFile procedure replaces the Borland Pascal Close procedure. Use the
CloseFile procedure instead of Close to terminate the association between the file variable and an
external disk file.

F is a file variable of any file type opened using Reset, Rewrite, or Append. The external file associated
with F is completely updated and then closed, freeing the file handle for reuse.

Example
var
 F: TextFile;
begin
 if OpenDialog1.Execute then { Bring up open file dialog }
 begin
 AssignFile(F, OpenDialog1.FileName);
 { File selected in dialog }
 Reset(F);
 Edit1.Text := IntToStr(FileSize(F);
 { Put file size string in a TEdit control }
 CloseFile(F); { Close file }
 end;
end;

Resize Event

Delphi command
OnResize Event

Applies to
TDBNavigator, TForm, TPanel, TScrollBox components

Declaration
property OnResize: TNotifyEvent;

Description
The OnResize event occurs whenever the form is resized while an application is running. Use the
OnResize event handler when you want something to happen in your application when the form is
resized.

Restartable Property

Delphi command
See RequestLive Property in Delphi.hlp

ReturnsRecords Property

Delphi command
See ExecSQL Method

Example
Query1.Close;
Query1.SQL.Clear;
Query1.SQL.Add('Delete from Country where Name = 'Argentina');
Query1.ExecSQL;

Right Function

Delphi command
Copy Function

Declaration
function Copy(S: string; Index, Count: Integer): string;

Description
The Copy function returns a substring of a string.

S is a string-type expression. Index and Count are integer-type expressions. Copy returns a string
containing Count characters starting with at S[Index].

If Index is larger than the length of S, Copy returns an empty string.

If Count specifies more characters than are available, the only the characters from S[Index] to the end of
S are returned.

Example
 var S: string;
begin
 S := 'ABCDEF';
 S := Copy(S, 2, 3); { 'BCD' }
end;

RmDir Statement

Delphi command
RmDir Procedure

Declaration
procedure RmDir(S: string);

Description
The RmDir procedure deletes an empty subdirectory.

RmDir removes the subdirectory with the path specified by S. If the path does not exist, is non-empty, or
is the currently logged directory, an I/O error occurs.

{$I+} lets you handle run-time errors using exceptions. For more information on handling run-time library
exceptions, see Handling RTL Exceptions.

Example
uses Dialogs;
begin
 {$I-}
 { Get directory name from TEdit control }
 RmDir(Edit1.Text);
 if IOResult <> 0 then
 MessageDlg('Cannot remove directory', mtWarning, [mbOk], 0)
 else
 MessageDlg('Directory removed', mtInformation, [mbOk], 0);
 end;

Rnd Function

Delphi command
Random Function

Declaration
function Random [(Range: Integer)];

Description
The Random function returns a random number within the range 0 <= X < Range.

If Range is not specified, the result is a real-type random number within the range

0 <= X < 1.

To initialize the random number generator, call Randomize, or assign a value to the RandSeed variable.

Example
var
 I: Integer;
 begin
 Randomize;
 for I := 1 to 50 do begin
 { Write to window at random locations }
 Canvas.TextOut(Random(Width), Random(Height), 'Boo!');
 end;
 end;

Note Because the implementation of the Random function may change between compiler versions, we
do not recommend using Random for encryption or other purposes that require reproducible
sequences of pseudo-random numbers.

Rollback Method

Delphi command
Rollback Method

Applies to
TDataBase component

Declaration
procedure Rollback;

Description
The Rollback method undoes any modifications made within the current transaction, those changes made
since the last call to StartTransaction. If a transaction is not active when this method is called, an
exception is raised.

Example
with Database1 do
 begin
 StartTransaction;
 { Update one or more records in tables linked to Database1 }
...
 Rollback;
 end;

Rollback Statement

Delphi command
Rollback Method

Applies to
TDataBase component

Declaration
procedure Rollback;

Description
The Rollback method undoes any modifications made within the current transaction, those changes made
since the last call to StartTransaction. If a transaction is not active when this method is called, an
exception is raised.

Example
with Database1 do
 begin
 StartTransaction;
 { Update one or more records in tables linked to Database1 }
...
 Rollback;
 end;

Row Property

Delphi command
Row Property (Protected)

Applies to
TDrawGrid, TOutline, TStringGrid components

Declaration
property Row: Longint;

Description
Run-time only. The value of the Row property indicates which row of the control has focus. For outlines,
you can use the Row property to determine which item is selected at run time. For the grid components,
you can use Row along with the Col property to determine which cell is selected.

Example
This examples uses a string grid with a label above it on a form. When the user clicks a cell in the grid,
the location of the cursor is displayed in the caption of the label.

procedure TForm1.StringGrid1Click(Sender: TObject);
begin
 Label1.Caption := 'The cursor is in column ' + IntToStr(StringGrid1.Col +
1)
 + ', row ' + IntToStr(StringGrid1.Row + 1);
end;

RowColChange Event

Delphi command
See OnColEnter and OnColExit Events in Delphi.hlp

Example
The following code concatenates an asterisk to the display label of a field when the column is entered.

procedure TForm1.DBGrid1ColEnter(Sender: TObject);
begin
 with DBGrid1.SelectedField do
 DisplayLabel := '* ' + DisplayLabel;
end;

SELECT Statement (SQL)

Delphi command
SELECT Statement (SQL)

Description
SQL Syntax

Example
Select * from Customer

SLN Function

Delphi command
SLNDepreciation Function

Declaration
function SLNDepreciation(Cost, Salvage: Extended; Life: Integer): Extended;

Description
The SLNDepreciation function calculates the straight-line depreciation allowance for an asset over one
period of its life. The function divides the Cost minus the Salvage by the number of years of useful Life of
the asset. Cost is the amount initially paid for the asset. Salvage is the value of the asset at the end of its
useful life.

To compute accelerated depreciation (allowing higher depreciation values in the first years of the assets
life), use the SYDDepreciation function.

SQL Aggregate Functions (SQL Only)

Delphi command
SQL Aggregate Functions (SQL Only)

Description
SQL Syntax

Example
Select Count(CustNo) from Customer

SQL Property

Delphi command
SQL Property

Applies to
TQuery component

Declaration
property SQL: TStrings;

Description
The SQL property holds the text of the SQL statement that will be executed when Open or ExecSQL is
called. Once a query has been executed by Open, you must call the Close method before you can
change the SQL text.

Example
Query1.Close;
Query1.SQL.Clear;
Query1.SQL.Add('Delete from Country where Name = 'Argentina');
Query1.ExecSQL;

SQL Subqueries

Delphi command
SQL Subqueries

Description
SQL syntax

Example
select p.part_no from parts p
where p.quantity in
(select i.quantity from inventory i
where i.part_no = 'aa9393')

SYD Function

Delphi command
SYDDepreciation Function

Declaration
function SYDDepreciation(Cost, Salvage: Extended; Life, Period: Integer):
Extended;

Description
The SYDDepreciation function (for "sum-of-years-digits depreciation") calculates depreciation amounts for
an asset using an accelerated depreciation method. This allows for higher depreciation in the earlier
years of an asset's life.

Cost is the initial cost of the asset. Salvage is the value of the asset at the end of its life expectancy. Life
is the length of the asset's life expectancy. Period is the period for which you want to calculate the
depreciation.

SavePicture Statement

Delphi command
SaveToFile Method

Applies to
TCustomMemoryStream

Declaration
procedure SaveToFile(const FileName: string);

Description
The SaveToFile method writes the entire contents of the memory stream to the file specified by FileName.
If the specified file already exists, SaveToFile overwrites it. The file becomes a binary copy of the memory
stream contents.

SaveSetting Statement

Delphi command
See TRegistry, TRegIniFile Objects in Delphi.hlp

Description
A TRegistry object is a low-level wrapper for the Microsoft Windows95/NT system registry and functions
that operate on the registry. The registry is a database that your applications can use to store and retrieve
configuration information. Configuration information is stored in a hierarchical tree. Each node in the tree
is called a key. Every key can contain subkeys and data values that represent part of the configuration
information for an application.

SaveToFile Method

Delphi command
SaveToFile Method

Declaration
procedure SaveToFile(const FileName: string);

Description
The SaveToFile method saves an object to the file specified in FileName. The graphic objects save a
graphic to the file, the outline, tree view and string objects save text to the file, and the field components
save the contents of the field to the file.

ScaleX, ScaleY Methods

Delphi command
ScaleBy Method

Declaration
procedure ScaleBy(M, D: Integer);

Description
The ScaleBy method scales a control to a percentage of its former size. The M parameter is the multiplier
and the D parameter is the divisor. For example, if you want a control to be 75% of its original size,
specify the value of M as 75, and the value of D as 100 (75/100). You could also obtain the same results
by specifying the value of M as 3, and the value of D as 4 (3/4). Both fractions are equal and result in the
control being scaled by the same amount, 75%.

If you want the control to be 33% larger than its previous size, specify the value of M as 133, and the
value of D as 100 (133/100). You can also obtain the same results by specifying the value of M as 4, and
the value of D as 3 (4/3), as the fraction 133/100 is approximately equal to 4/3.

Example
This example makes your form 50 percent larger:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ScaleBy(150, 100);
end;

Screen Object

Delphi command
TScreen Component

Description
The TScreen component represents the state of the screen as your application runs. A Screen variable of
type TScreen is already declared, ready for you to use as an instance of TScreen.

The screen component lists all forms displayed on the screen in the Forms property array. The number of
forms is kept as the value of the FormCount property. You can find out which form currently has the focus
by checking the value of the ActiveForm property. Similarly, the control that has the focus is the value of
the ActiveControl property.

The screen component lists all data modules that are currently created in the application in the
DataModules property. The number of created data modules is kept as the value of the DataModuleCount
property.

Scroll Event

Delphi command
OnScroll Event

Applies to
TScrollBar component

Declaration
TScrollEvent = procedure(Sender: TObject; ScrollCode: TScrollCode; var
ScrollPos: Integer) of object;
property OnScroll: TScrollEvent;

Description
The OnScroll event occurs whenever the user uses the scroll bar control. Use the OnScroll event handler
if you want something to happen when the user uses the scroll bar control. Within the handler, write the
code that responds to the user using the scroll bar.

Refer to Delphi.hlp for scollbar parameters.

Example
The following code repositions the thumb tab position by varying amounts. If Page Up was pressed, the
box moves up only one. If Page Down was pressed, the box moves down 10. This shows how you can
use the OnScroll event handler to move the thumb tab by different increments than specified by the
LargeChange and SmallChange properties.

procedure TForm1.ScrollBar1Scroll(Sender: TObject; ScrollCode: TScrollCode;
 var ScrollPos: Integer);
begin
 if ScrollCode = scPageUp then ScrollPos := ScrollPos - 1
 else if ScrollCode = scPageDown then ScrollPos := ScrollPos + 10;
 Label1.Caption := IntToStr(ScrollPos);
end;

Scroll Method

Delphi command
ScrollBy Method

Applies to
All controls; TForm component

Declaration
procedure ScrollBy(DeltaX, DeltaY: Integer);

Description
The ScrollBy method scrolls the contents of a form or windowed control. You will seldom need to call the
ScrollBy method unless you want to write your own scrolling logic rather than use a scroll bar.

The DeltaX parameter is the change in pixels along the X axis. A positive DeltaX value scrolls the
contents to the right; a negative value scrolls the contents to the left. The DeltaY parameter is the change
in pixels along the Y axis. A positive DeltaY value scrolls the contents down; a negative value scrolls the
contents up.

Example
This example uses a timer and several controls of your choosing on a form. When the application runs,
the controls on the form appear to slide down and off to the right. This is because the contents of the form
are scrolling both down and to the right by one pixel each time a timer event occurs:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Timer1.Interval := 1;
end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
 ScrollBy(1,1);
end;

ScrollBars Property

Delphi command
Scrollbars Property

Applies to
TDBMemo, TDrawGrid, TMemo, TRichEdit, TStringGrid components

Declaration
property ScrollBars: TScrollStyle;

Description
The ScrollBars property controls whether a memo control, a rich edit control, or a grid control has any
scroll bars. You can set ScrollBars to any of the following values:

Value Meaning
ssNone No scroll bar
ssHorizontal Puts a scroll bar on the right edge
ssVertical Puts a scroll bar on the bottom edge
ssBoth Puts a scroll bar on both the right and bottom edges

By default, grids have both vertical and horizontal scroll bars, while memo controls have none.

Example
The following example adds a scroll bar to the bottom of memo control Memo1:

Memo1.ScrollBars := scHorizontal;

Second Function

Delphi command
FormatDateTime Function

Declaration
function FormatDateTime(const Format: string; DateTime: TDateTime): string;

Description
FormatDateTime formats the date-and-time value given by DateTime using the format given by Format. S
displays the second without a leading zero (0-59).    ss displays the second with a leading zero (00-59).

Example
The following example assigns 'The meeting is on Wednesday, February 15, 1995 at 10:30 AM' to the
string variable S.

S := FormatDateTime('"The meeting is on" dddd, mmmm d, yyyy, ' +
 '"at" hh:mm AM/PM', StrToDateTime('2/15/95 10:30am'));

Seek Function

Delphi command
Seek Procedure

Declaration
procedure Seek(var F; N: Longint);

Description
The Seek procedure moves the current position of a file to a specified component. You can use Seek only
on open typed or untyped files.

In the above syntax, F is a typed or untyped file variable, and N is an expression of type Longint.

The current file position of F moves to component number N. The number of the first component of a file
is 0.

To expand a file, you can seek one component beyond the last component; that is, the statement Seek(F,
FileSize(F)) moves the current file position to the end of the file.

{$I+} lets you handle run-time errors using exceptions. For more information on handling run-time library
exceptions, see Handling RTL Exceptions.

Example
uses Dialogs;
var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);

 y := y + Canvas.TextHeight(S) + 5;
 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

Seek Method

Delphi command
FindKey, GoToKey Methods

Applies to
TTable component

Declaration
function FindKey(const KeyValues: array of const): Boolean;

Description
The FindKey method searches the database table to find a record whose index fields match those passed
in KeyValues. FindKey takes a comma-delimited array of values as its argument, where each value
corresponds to a index column in the underlying table. The values can be literals, variables, null, or nil. If
the number of values supplied is less than the number of columns in the database table, then the
remaining values are assumed to be null. FindKey will search for values specified in the array in the
current index.

Example
This example will search for CustNo = '1234':

if Table1.FindKey(['1234']) then
 ShowMessage('Customer Found');

Seek Statement

Delphi command
Seek Procedure

Declaration
procedure Seek(var F; N: Longint);

Description
The Seek procedure moves the current position of a file to a specified component. You can use Seek only
on open typed or untyped files.

In the above syntax, F is a typed or untyped file variable, and N is an expression of type Longint.

The current file position of F moves to component number N. The number of the first component of a file
is 0.

To expand a file, you can seek one component beyond the last component; that is, the statement Seek(F,
FileSize(F)) moves the current file position to the end of the file.

{$I+} lets you handle run-time errors using exceptions. For more information on handling run-time library
exceptions, see Handling RTL Exceptions.

Example
uses Dialogs;
var
 f: file of Byte;
 size : Longint;
 S: string;
 y: integer;
 begin
 if OpenDialog1.Execute then begin
 AssignFile(f, OpenDialog1.FileName);
 Reset(f);
 size := FileSize(f);
 S := 'File size in bytes: ' + IntToStr(size);
 y := 10;
 Canvas.TextOut(5, y, S);
 y := y + Canvas.TextHeight(S) + 5;
 S := 'Seeking halfway into file...';
 Canvas.TextOut(5, y, S);

 y := y + Canvas.TextHeight(S) + 5;
 Seek(f,size div 2);
 S := 'Position is now ' + IntToStr(FilePos(f));
 Canvas.TextOut(5, y, S);
 CloseFile(f);
 end;
 end;

SelBookmarks Collection

Delphi command
TBookMarkList Object

SelBookmarks Property

Delphi command
SelectedRows Property

SelChange Event

Delphi command
OnColEnter, OnColExit Events

Applies to
TDBGrid component

Declaration
property OnColEnter: TNotifyEvent;
property OnColExit: TNotifyEvent

Description
The OnColEnter event occurs when the user clicks a cell in a column or moves to a column with the Tab
key within the data grid. Use the OnColEnter event to specify any processing you want to occur as soon
as a column is entered.

Example
The following code concatenates an asterisk to the display label of a field when the column is entered.

procedure TForm1.DBGrid1ColEnter(Sender: TObject);
begin
 with DBGrid1.SelectedField do
 DisplayLabel := '* ' + DisplayLabel;
end;

SelCount Property

Delphi command
SelCount Property

Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox components

Declaration
property SelCount: Integer;

Description
Run-time and read-only. The SelCount property reports the number of items that are selected in a list box
when the value of the MultiSelect property is True. When MultiSelect property is False, only one item can
be selected. If no items are selected, the value of SelCount is 0.

Example
This example uses a list box, a label, and a button on a form. Enter several strings in the list box as the
value of the Items property. When the user selects items in the list box and clicks the button, the number
of items selected in the list box is displayed in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := IntToStr(ListBox1.SelCount) + ' items are selected';
end;

SelEndCol, SelStartCol, SelEndRow, SelStartRow Properties

Delphi command
Selection Property

Applies to
TDrawGrid, TStringGrid components

Declaration
property Selection: TGridRect;

Description
The Selection property contains the column and row coordinates of the cell or cells selected in the grid.

Example
The following code selects the rectangle containing rows 1 and 2, and columns 3 and 4.

StringGrid1.Selection := Rect(3,1,2,4);

SelLength, SelStart, SelText Properties

Delphi command
SelLength, SelStart, SelText Properties

Applies to
TComboBox, TDBComboBox, TDBEdit, TDBMemo, TDriveComboBox, TEdit, TFilterComboBox,
TMaskEdit, TMemo components

Declaration
property SelLength: Integer;
property SelStart: Integer;
property SelText: string;

Description
The SelLength property returns the length (in characters) of the control's selected text. By using
SelLength along with the SelStart property, you specify which part of the text in the control is selected.
You can change the number of selected characters by changing the value of SelLength. When the
SelStart value changes, the SelLength value changes accordingly.

The edit box or memo must be the active control when you change the value of SelLength, or nothing
appears to happen.

The SelStart property returns the starting position of the selected part of the control's text, with the first
character in the text having a value of 0. The SelText property contains the selected part of the control's
text.

Example
This example uses an edit box and a label on a form. When the user selects text in the edit box, the
number of selected characters is reported in the caption of the label:

procedure TForm1.Edit1MouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Label1.Caption := 'Selected length = ' +
 IntToStr(Edit1.SelLength);
end;

Select Case Statement

Delphi command
Case Reserved Word

Description
Case statements are used to branch code depending on the results or values the code encounters.

A case statement consists of an expression (the selector) and a list of statements, each prefixed with one
or more constants (called case constants) or with the reserved word else. The selector must be of an
ordinal type, so string types are invalid selector types.

All case constants must be unique and of an ordinal type compatible with the selector type.

When the program enters a case statement, it evaluates each expression until a match is found. The
program then performs the actions associated with that expression. If no match is found program defaults
to the else statement. If there is no else part, execution continues with the next statement following the
case statement.

Example
case Ch of
 'A'..'Z', 'a'..'z': WriteLn('Letter');
 '0'..'9': WriteLn('Digit');
 '+', '-', '*', '/': WriteLn('Operator');
else
 WriteLn('Special character');
end;

Selected Property

Delphi command
Selected Property

Applies to
TDBListBox, TDirectoryListBox, TFileListBox components

Declaration
property Selected[X: Integer]: Boolean;

Description
The Selected property determines whether a particular item is selected in the list box. The X parameter is
the item referenced by its position in the list box, with the first item having an X value of 0. If the specified
item is selected in the list box, the value of the Selected property is True. If the specified item is not
selected, Selected is False.

If you want the user to be able to select more than one item in the list box, use the MultiSelect property

Example
This example uses a list box on a form. When the form is first created, 3 items are added to the list box.
When the user selects an item in the list box, the list box color changes to reflect the item selected:

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Items.Add('Blue');
 ListBox1.Items.Add('Yellow');
 ListBox1.Items.Add('Red');
end;
procedure TForm1.ListBox1Click(Sender: TObject);
begin
 if ListBox1.Selected[0] then
 ListBox1.Color := clBlue;
 if ListBox1.Selected[1] then
 ListBox1.Color := clYellow;
 if ListBox1.Selected[2] then

 ListBox1.Color := clRed;
end;

SelectedItem Property

Delphi command
ItemIndex Property

Applies to
TComboBox, TDBComboBox, TDBRadioGroup, TDirectoryListBox, TDriveComboBox, TFileListBox,
TFilterComboBox, TListBox, TRadioGroup components

Declaration
property ItemIndex: Integer;

Description
Run-time only except for the TRadioGroup component. The value of the ItemIndex property is the ordinal
number of the selected item in the control's item list. If no item is selected, the value is -1, which is the
default value unless MultiSelect is True. To select an item at run time, set the value of ItemIndex to the
index of the item in the list you want selected, with 0 being the first item in the list.

For list boxes and combo boxes, if the value of the MultiSelect property is True and the user selects more
than one item in the list box or combo box, the ItemIndex value is the index of the selected item that has
focus. If MultiSelect is True, ItemIndex defaults to 0.

Example
This example uses a drive combo box on a form. When the user selects a drive in the combo box, the
index value of the selected item appears in the caption of the label:

procedure TForm1.DriveComboBox1Change(Sender: TObject);
begin
 Label1.Caption := 'Index value ' + IntToStr(DriveComboBox1.ItemIndex);
end;

Set Statement

Delphi command
:=

SetAttr Statement

Delphi command
FileSetAttr Function

Declaration
function FileSetAttr(const FileName: string; Attr: Integer): Integer;

Description
The FileSetAttr function sets the file attributes of the file given by FileName to the value given by Attr.

SetData Method

Delphi command
Assign Method

Declaration
procedure Assign(Source: TPersistent);

Description
Assign copies data from one field to another. Both fields must be valid and have the same DataType and
Size, and the DataSize of Source must be 255 bytes or less.

Example
The following code copies the bitmap of a speed button named SpeedButton1 to the Clipboard:

Clipboard.Assign(SpeedButton1.Glyph);

SetDataAccessOption Statement

Delphi command
NetFileDir Property

Applies to
TSession component

Declaration
property NetFileDir: string;

Description
The NetFileDir property specifies the directory that contains the BDE network control file,
PDOXUSRS.NET. This property enables multiple users to share Paradox tables on network drives.
NetFileDir overrides the specification defined for the Paradox driver in the BDE Configuration Utility.

All applications that need to share the same Paradox database must specify the same directory, and all
must have read/write/create rights for the directory.

SetDefaultWorkspace Statement

Delphi command
AddPassword Method

Applies to
TSession component

Declaration
procedure AddPassword(const Password: string);

Description
The AddPassword method is used to add a new password to the current TSession component for use
with Paradox tables. When an application opens a Paradox table that requires a password, the user will
be prompted to enter a password unless the Session has a valid password for the table.

Example
Session.AddPassword('ASecret');

SetFocus Method

Delphi command
SetFocus Method

Applies to
All controls; TForm component

Declaration
procedure SetFocus;

Description
The SetFocus method gives the input focus to the control. If the control is a form, the form calls the
SetFocus method of its active control.

Example
When the user clicks the button on this form, the list box becomes the active control and receives the
input focus:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.SetFocus;
end;

SetText Method

Delphi command
AsText Property; Assign Method

Applies to
TClipboard object

Declaration
property AsText: string;

Description
Run-time only. The AsText property returns the current contents of the Clipboard as a string. The
Clipboard must contain a string or an exception occurs.

You can also use the AsText property to place a copy of a string on the Clipboard. Assign a string as the
value of AsText.

The string value of the AsText property is limited to 255 characters. If you need to set and retrieve more
than 255 characters, use the SetTextBuf and GetTextBuf Clipboard methods.

If the Clipboard contains a string, this expression is True:

Clipboard.HasFormat(CF_TEXT)

Example
The following code retrieves the contents of the Clipboard as a string and displays the value in a label:

begin
 Label1.Caption := Clipboard.AsText;
end;

Shape Control

Delphi command
Shape Component

Description
See Additional Page Components

Shape Property

Delphi command
Shape Property

Applies to
TShape components

Declaration
property Shape: TShapeType;

Description
The Shape property determines how a TShape component appears on a form. These are the possible
values and their meanings:

Value Meaning
stEllipse The shape is an ellipse.
stRectangle The shape is a rectangle.
stRoundRect The shape is a rectangle with rounded corners.
stRoundSquare The shape is a square with rounded corners.
stSquare The shape is a square.
stCircle The shape is a circle.

Example
This example uses a shape component on a form. When the user clicks the shape, it becomes a ball with
red stripes:

procedure TForm1.Shape1MouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
with Shape1 do
 begin
 Shape := stCircle;
 Brush.Color := clRed;
 Brush.Style := bsVertical;
 end;
end;

Shell Function

Delphi command
WinExec (API)

Description
See Win32.hlp

Shortcut Property

Delphi command
ShortCut Property

Applies to
TMenuItem component

Declaration
property ShortCut: TShortCut;

Description
The ShortCut property determines the key strokes users can use to access a menu item. The key
combination the user can use appears to the right of the menu item in the menu. To see an example of
menu shortcuts, pull down the Delphi Edit menu and note the menu shortcuts on the right side of some of
the editing commands.

Example
This code creates a shortcut, Ctrl+C, at run time and assigns it to the Close command on a File menu.

begin
 CloseCommand.ShortCut := ShortCut(Word('C'), [ssCtrl]);
end;

Show Method

Delphi command
Show Method

Applies to
All controls; TForm component

Declaration
procedure Show;

Description
The Show method makes a form or control visible by setting its Visible property to True. If the Show
method of a form is called and the form is somehow obscured, Show tries to make the form visible by
bringing it to the front with the BringToFront method.

If the control is in an auto-scrolling control, such as a TForm or TScrollBox, Show will make sure that the
form is also scrolled into view. If the control is contained in a pages control such as the TPageControl, the
page the control is contained on will be brought to the front.

Example
This code puts away the current form and displays another:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form1.Hide;
 Unit2.Form2.Show;
end;

ShowColor Method

Delphi command
Execute Method

Applies to
TColorDialog, TFontDialog, TOpenDialog, TPrintDialog, TPrinterSetupDialog, TSaveDialog components

Declaration
function Execute: Boolean;

Description
The Execute method displays the dialog box in the application and returns True when the user closes the
dialog box by choosing the OK button. If the user chooses Cancel or closes the dialog box by using the
system menu, Execute returns False.

ShowFont Method

Delphi command
Execute Method

Applies to
TColorDialog, TFontDialog, TOpenDialog, TPrintDialog, TPrinterSetupDialog, TSaveDialog components

Declaration
function Execute: Boolean;

Description
The Execute method displays the dialog box in the application and returns True when the user closes the
dialog box by choosing the OK button. If the user chooses Cancel or closes the dialog box by using the
system menu, Execute returns False.

ShowHelp Method

Delphi command
HelpCommand Method

Applies to
TApplication component

Declaration
function HelpCommand(Command: Word; Data: Longint): Boolean;

Description
The HelpCommand method gives you quick access to any of the Help commands in the WinHelp API
(application programming interface). For information about the commands you can call and the data
passed to them, see the WinHelp topic in the Help system.

Example
This example uses a bitmap button on a form. When the user clicks the button, the Help contents screen
of the specified Help file appears.

procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 Application.HelpFile := 'MYHELP.HLP';
 Application.HelpCommand(HELP_CONTENTS, 0);
end;

ShowOpen Method

Delphi command
Execute Method

Applies to
TColorDialog, TFontDialog, TOpenDialog, TPrintDialog, TPrinterSetupDialog, TSaveDialog components

Declaration
function Execute: Boolean;

Description
The Execute method displays the dialog box in the application and returns True when the user closes the
dialog box by choosing the OK button. If the user chooses Cancel or closes the dialog box by using the
system menu, Execute returns False.

Example
This example uses a main menu component, a memo, an Open dialog box, and a Save dialog box on a
form. To use it, you need to create a File menu that includes an Open command. This code is an event
handler for the OnClick event of the Open command on the File menu. If the user has selected a filename
by choosing the Open dialog box's OK button, the code sets the Save dialog box Filename property to the
same filename, and displays the selected filename as the caption of the form.

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenDialog1.Execute then
 begin
 Memo1.Lines.LoadfromFile(OpenDialog1.FileName);
 SaveDialog1.Filename := OpenDialog1.FileName;
 Caption := OpenDialog1.FileName;
 end;
end;

ShowPrinter Method

Delphi command
Execute Method

Applies to
TColorDialog, TFontDialog, TOpenDialog, TPrintDialog, TPrinterSetupDialog, TSaveDialog components

Declaration
function Execute: Boolean;

Description
The Execute method displays the dialog box in the application and returns True when the user closes the
dialog box by choosing the OK button. If the user chooses Cancel or closes the dialog box by using the
system menu, Execute returns False.

ShowSave Method

Delphi command
Execute Method

Applies to
TColorDialog, TFontDialog, TOpenDialog, TPrintDialog, TPrinterSetupDialog, TSaveDialog components

Declaration
function Execute: Boolean;

Description
The Execute method displays the dialog box in the application and returns True when the user closes the
dialog box by choosing the OK button. If the user chooses Cancel or closes the dialog box by using the
system menu, Execute returns False.

Sin Function

Delphi command
Sin Function

Declaration
function Sin(X: Extended): Extended;

Description
The Sin function returns the sine of the argument.

X is a real-type expression. Sin returns the sine of the angle X in radians.

Example
var
 R: Extended;
 S: string;
begin
 R := Sin(Pi);
 Str(R:5:3, S);
 Canvas.TextOut(10, 10, 'The Sin of Pi is ' + S);
end;

Size Property (Data Access)

Delphi command
Size Property

Applies to
TBCDField, TBlobField, TBytesField, TGraphicField, TIntegerField, TMemoField, TStringField,
TTimeField, TVarBytesField components

Declaration
property Size: Integer;

Description
For a TStringField, Size is the number of bytes reserved for the field in the dataset. For a TBCDField, it is
the number of digits following the decimal point. For a TBlobField, TBytesField, TVarBytesField,
TMemoField, or TGraphicField, it is the size of the field as stored in the table.

Size Property (Font)

Delphi command
Size Property

Applies to
TFont component

Declaration
property Size: Integer;

Description
The Size property is the size of the font in points. It is the height of the font plus the font's excluding
internal leading. If you are concerned with the height of the font on the screen--the number of pixels the
font needs--use the Height property instead. If you want to specify a font's height using pixels, use the
Size property.

Delphi calculates Size using this formula:

Font.Size = -Font.Height * Font.PixelsPerInch / 72

Therefore, whenever you enter a point size in the Size property, you'll notice the Height property changes
to a negative value. Conversely, if you enter a positive Height value, the Size property value changes to a
negative value.

Example
This examples uses a button on a form. When the user clicks the button, the size of the font used by the
button changes to 24 points.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Font.Size := 24;
end;

SizeMode Property

Delphi command
SizeMode Property

Applies to
TOleContainer component

Declaration
property SizeMode: TSizeMode;

Description
Determines how the OLE object will be sized within the container. See TSizeMode for possible values.

SmallChange Property

Delphi command
SmallChange Property

Applies to
TScrollBar component

Declaration
property SmallChange: TScrollBarInc;

Description
The SmallChange property determines how far the thumb tab moves when the user clicks the arrows at
the end of the scroll bar to scroll or uses the arrow keys on the keyboard. The default value is 1.

For example, if SmallChange is 1000, each time the user clicks an arrow on the scroll bar, the thumb tab
moves 1000 positions. The number of positions is determined by the difference between the Max property
value and the Min property value. If the Max property is 30000 and the Min property is 0, the user would
need to click an arrow on the scroll bar 30 times to move the thumb tab from one end of the scroll bar to
the other.

Example
This code determines that when the user clicks an arrow on the scroll bar, the thumb tab moves 10
positions on the scroll bar:

ScrollBar1.SmallChange := 10;

Snapshot object

Delphi command
TQuery Component

Description
See Data Access Page Components

Snapshot-Type Reordset

Delphi command
TQuery Component

Description
See Data Access Page Components

Sorted Property

Delphi command
Sorted Property

Applies to
TComboBox, TDBComboBox, TDBListBox, TListBox components

Declaration
property Sorted: Boolean;

Description
The Sorted property indicates whether the items in a list box or combo box are arranged alphabetically. To
sort the items, set the Sorted value to True. If Sorted is False, the items are unsorted.

If you add or insert items when Sorted is True, Delphi automatically places them in alphabetical order.

Example
This example uses an edit box, a list box, and two buttons on a form. The buttons are named Add and
Sort. When the user clicks the Add button, the text in the edit box is added to the list in the list box. When
the user clicks the Sort button, the list in the list box is sorted and remains sorted, even if additional
strings are added:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListBox1.Items.Add('Not');
 Listbox1.Items.Add('In');
 ListBox1.Items.Add('Alphabetical');
 ListBox1.Items.Add('Order');
end;
procedure TForm1.AddClick(Sender: TObject);
begin
 ListBox1.Items.Add(Edit1.Text);
end;
procedure TForm1.SortClick(Sender: TObject);
begin
 ListBox1.Sorted := True;
end;

Souce Property (Data Access)

Delphi command
Sender Parameter of Exception Handler

Example
The following code defines the default exception handling of the application, assuming AppException is
declared a method of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnException := AppException;
end;
procedure TForm1.AppException(Sender: TObject; E: Exception);
begin
 Application.ShowException(E);
end;

Source Property

Delphi command
Sender Parameter of Exception Handler

Example
The following code defines the default exception handling of the application, assuming AppException is
declared a method of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnException := AppException;
end;
procedure TForm1.AppException(Sender: TObject; E: Exception);
begin
 Application.ShowException(E);
end;

SourceDoc Property

Delphi command
SourceDoc Property

Applies to
TOleContainer component

Declaration
property SourceDoc: string;

Description
Runtime and readonly. Returns the name of the source document for a linked OLE object. An OLE object
must already be loaded in the container before accessing the SourceDoc property. If the OLE object isn't
linked, SourceDoc returns an empty string.

SourceField, SourceTable Properties

Delphi command
FieldName, DataSet.TableName Properties

Declaration
property FieldName: string;
property DataSet: TDataSet;

Description
FieldName is the name of the physical column in the underlying dataset to which a TField component is
bound. FieldName is used as a default column heading by the data grid when the DisplayLabel property
is null. For calculated fields, supply a FieldName when you define the field. For non-calculated fields, an
exception occurs if a FieldName is not a column name in the physical table.

DataSet identifies the dataset to which a TField component belongs.

SourceTableName Property

Delphi command
TableName Property

Applies to
TTable component

Declaration
property TableName: TFileName;

Description
The TableName property is the name of the database table to which the TTable is linked.

Space Function

Delphi command
Format Function

Declaration
function Format(const Format: string; const Args: array of const): string;

Description
This function formats the series of arguments in the open array Args. Formatting is controlled by the
Object Pascal format string Format; the results are returned in the function result as a Pascal string.

For information on the format strings, see Format Strings in Delphi.hlp

Sqr Function

Delphi command
Sqrt Function

Declaration
function Sqrt(X: Extended): Extended;

Description
The Sqrt function returns the square root of the argument.

X is a floating-point expression. The result is the square root of X.

Example
var
 S, Temp: string;
begin
 Str(Sqr(5.0):3:1, Temp);
 S := '5 squared is ' + Temp + #13#10;
 Str(Sqrt(2.0):5:4, Temp);
 S := S + 'The square root of 2 is ' + Temp;
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

Stop Statement

Delphi command
DebugBreak (API)

Description
See Win32.hlp

Str Function

Delphi command
Str Procedure

Declaration
procedure Str(X [: Width [: Decimals]]; var S);

Description
The Str procedure converts X to a string representation according to the Width and Decimals formatting
parameters. The effect is like a call to Write except the resulting string is stored in S instead of being
written to a text file.

X is an integer-type or real-type expression. Width and Decimals are integer-type expressions. S is a
string-type variable or a zero-based character array variable if extended syntax is enabled.

Example
function MakeItAString(I: Longint): string;
{ Convert any integer type to a string }
var
 S: string[11];
begin
 Str(I, S);
 MakeItAString:= S;
end;
begin
 Canvas.TextOut(10, 10, MakeItAString(-5322));
end;

StrComp Function

Delphi command
StrComp Function

Declaration
function StrComp(Str1, Str2 : PChar): Integer;

Description
The StrComp function compares Str1 to Str2.

Return value Condition
<0 if Str1< Str2
=0 if Str1= Str2
>0 if Str1 > Str2

Example
uses SysUtils;
const
 S1: PChar = 'Wacky';
 S2: PChar = 'Code';
var
 C: Integer;
 Result: string;
begin
 C := StrComp(S1, S2);
 if C < 0 then Result := ' is less than ' else
 if C > 0 then Result := ' is greater than ' else
 Result := ' is equal to ';
 Canvas.TextOut(10, 10, StrPas(S1) + Result + StrPas(S2));
end;

StrConv Function

Delphi command
StringToWideChar, WideCharToString Functions

Declaration
function StringToWideChar(const Source: string; Dest: PWideChar; DestSize:
Integer): PWideChar;
function WideCharLenToString(Source: PWideChar; SourceLen: Integer): string;

Description
The StringToWideChar function converts the string given by Source from ANSI to UNICODE and stores
the result in the buffer given by Dest and DestSize. Following the call, the Dest buffer contains at most
DestSize - 1 characters from the source string, terminated by a NULL wide character. The function result
value is Dest.

Stretch Property

Delphi command
Stretch Property

Applies to
TImage, TDBImage components

Declaration
property Stretch: Boolean;

Description
Setting the Stretch property to True permits bitmaps and metafiles to assume the size and shape of the
image control. When the image control is resized, the image resizes also. Stretch will also resize an
image to fit into a smaller TImage control. The Stretch property has no affect on icons.

If you prefer to have the image control resize to fit the native size of the image, set the AutoSize property
to True.

Example
This example uses an image component on a form. When the form is created, the specified image is
loaded and stretched to fit the boundaries of the image component.

procedure TForm1.FormCreate(Sender: TObject);
begin
 Image1.Stretch := True;
 Image1.Picture.LoadFromFile('C:\DELPHI\DEMOS\GRAPHEX\PASTE.BMP');
end;

StrikeThrough Property

Delphi command
Font.Style Property

Declaration
property Style: TFontStyles;

Description
The Style property determines whether the font is normal, italic, underlined, bold, and so on.    With
fsStrikeout, the font is displayed with a horizontal line through it.

Example
The following code boldfaces the font used in the memo..

Memo1.Font.Style := [fsBold];

String Function

Delphi command
FillChar Procedure

Declaration
procedure FillChar(var X; Count: Integer; value);

Description
The FillChar procedure fills Count number of contiguous bytes with a specified value (can be type Byte or
Char).

This function does not perform any range checking.

Example
 var
 S: array[0..79] of char;
begin
 { Set to all spaces }
 FillChar(S, SizeOf(S), ' ');
end;

Style Property

Delphi command
Style Property

Declaration
TComboBoxStyle = (csDropDown, csSimple, csDropDownList, csOwnerDrawFixed,
csOwnerDrawVariable);

Description
The TComboBoxStyle type defines the styles of combo boxes. TComboBoxStyle is the type of the combo
box control's Style property.

Example
This example uses a combo box and a check box on a form. If the user checks the check box, the combo
box becomes a drop-down list. When the user unchecks the check box, the combo box becomes a simple
combo box:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 if CheckBox1.Checked then
 ComboBox1.Style := csDropDownList
 else
 ComboBox1.Style := csSimple;
end;

Sub Statement

Delphi command
Procedure Reserved Word

Description
Procedures let you nest additional blocks in the main program block. Each procedure Declaration has a
heading followed by a block of statements.

The procedure heading specifies the identifier for the procedure and the formal parameters (if any).

A procedure is activated by a procedure statement, which states the procedure's identifiers and actual
parameters, if any.

The procedure heading is followed by:

A Declaration part that declares local objects

The statements between begin and end, which specify what is to be executed when the procedure is
called.

Example
{ Procedure Declaration }
procedure NumString(N: Integer; var S: string);
var
 V: Integer;
begin
 V := Abs(N);
 S := '';
    repeat
 S := Chr(N mod 10 + Ord('0')) + S;
 N := N div 10;
 until N = 0;
 if N < 0 then
 S := '-' + S;
end;

Sum Function (SQL)

Delphi command
SUM Function (SQL)

Description:
SQL Syntax

Example
Select Sum(Total) from Orders

System Property

Delphi command
FileType Property

Declaration
property FileType: TFileType;

Description
The FileType property determines which files are displayed in the file list box based on the attributes of
the files. When ftSystem is True, the list box can display files with the system attribute.

Example
This example uses a file list box on a form. When the application runs, only read-only files, directories,
volume IDs, and files with no attributes appear in the list box.

procedure TForm1.FormCreate(Sender: TObject);
begin
 FileListBox1.FileType := [ftReadOnly, ftDirectory, ftVolumeID, ftNormal];
end;

TabIndex Property

Delphi command
TabOrder Property

Declaration
property TabOrder: TTabOrder;

Description
The TabOrder property indicates the position of the control in its parent's tab order, the order in which
controls receive the focus when the user presses the Tab key.

Initially, the tab order is always the order in which the components were added to the form, but you can
change this by changing the TabOrder property. The value of the TabOrder property is unique for each
component on the form. The first component added to the form has a TabOrder value of 0, the second is
1, the third is 2, and so on. These values determine where a control is in the tab order.

Example
This example ensures that the check box on the form is the first in the tab order, and therefore, the active
control whenever the form appears, no matter how many other controls are on the form:

procedure TForm1.FormCreate(Sender: TObject);
begin
 CheckBox1.TabStop := True;
 CheckBox1.TabOrder := 0;
end;

TabStop Property

Delphi command
TabStop Property

Declaration
property TabStop: Boolean;

Description
The TabStop property determines if the user can tab to a control. If TabStop is True, the control is in the
tab order. If TabStop is False, the control is not in the tab order; therefore, the user can't press the Tab key
to move to the control. The default value for most controls is True.

Example
This code removes ListBox1 from the tab order, so that the user can't use the Tab key to get to the list
box:

ListBox1.TabStop := False;

Table Object

Delphi command
TTable Component

Description
See Data Access Page Components

Table Property

Delphi command
Mastersource, MasterFields (TTable); DataSource (TQuery)

Declaration
property MasterSource: TDataSource;

Description
When linking a detail table to a master table, use the MasterSource property to specify the TDataSource
from which the TTable will get data for the master table.

Example
Suppose you have a master table named Customer that contains a CustNo field, and you also have a
detail table named Orders that also has a CustNo field. To display only those records in Orders that have
the same CustNo value as the current record in Customer, write this code:

Orders.MasterSource := 'CustSource';
Orders.MasterFields := 'CustNo';

If you want to display only the records in the detail table that match more than one field value in the
master table, specify each field and separate them with a semicolon.

Orders.MasterFields := 'CustNo;SaleDate';

Table-type Recordset

Delphi command
TTable Component

Description
See Data Access Page Components

Tag Property

Delphi command
Tag Property

Declaration
property Tag: Longint;

Description
The Tag property is available to store an integer value as part of a component. While the Tag property has
no meaning to Delphi, your application can use the property to store a value for its special needs.

Example
The following code assumes that the OnClick event handlers of more than one button point to the
TForm1.Button1Click method. When a button is clicked, the procedure checks to see if the value of the
Tag of the clicked button is 42. If so, the caption of that button is changed.

procedure TForm1.Button1Click(Sender: TObject);
begin
 if (Sender as TButton).Tag = 42 then
 (Sender as TButton).Caption := 'A-Ha!';
end;

Tan Function

Delphi command
Tan Function

Declaration
function Tan(X: Extended): Extended;

Description
The Tan function returns the tangent of X. Tan(X) = Sin(X) / Cos(X).

TaskVisible Property

Delphi command
Use ShowWindow.

Declaration
See Win32.HLP

Terminate Event

Delphi command
OnDestroy Event

Declaration
property OnDestroy: TNotifyEvent;

Description
The OnDestroy event occurs when a form is about to be destroyed. A form is destroyed by the Destroy,
Free, or Release methods, or when the main form of the application is closed.

Example
The following code explicitly allocates memory for a pointer in the OnCreate event of Form1, then
releases the memory in the OnDestroy event. Assume that MyPtr is a Pointer type field of TForm1.

procedure TForm1.FormCreate(Sender: TObject);
begin
 New(MyPtr);
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 Dispose(MyPtr);
end;

Text Property

Delphi command
Text Property

Description
The Text property specifies a text string to appear in a component or object.

Example
The following code stores the value of the first item of a combo box in the Text property in the OnCreate
event handler of the form containing the combo box. The first item will be displayed in the combo box at
run time.

procedure TForm1.FormCreate(Sender: TObject);
begin
 ComboBox1.Text := ComboBox1.Items[0];
end;

TextBox Control

Delphi command
TEdit Component

Description
See Data Controls Page Components

TextHeight Method

Delphi command
TextHeight Method

Applies to
TCanvas object

Declaration
function TextHeight(const Text: string): Integer;

Description
TextHeight returns the height in pixels of the string passed in Text when rendered in the current font. You
can use TextHeight to specify whether the entire string will appear in a given space.

Example
This example displays the height of a text string in the current font of the canvas in an edit box on the
form:

procedure TForm1.FormCreate(Sender: TObject);
var
 L: LongInt;
begin
 L := Canvas.TextHeight('Object Pascal is the best');
 Edit1.Text := IntToStr(L) + ' pixels in height';
end;

TextWidth Method

Delphi command
TextWidth Method

Applies to
TCanvas object

Declaration
function TextWidth(const Text: string): Integer;

Description
The TextWidth method returns the width in pixels of the string passed in Text when rendered in the current
font. You can use TextWidth to determine whether a given string will fit in a particular space.

Example
This example determines the width of a specified string, and if the string is too wide to display in an edit
box, the edit box is widened to accommodate the string. The string displays in the edit box.

procedure TForm1.Button1Click(Sender: TObject);
var
 T: Longint;
 S: string;
begin
 S := 'Object Pascal is the language for me';
 T := Canvas.TextWidth(S);
 if T > Edit1.Width then
 Edit1.Width := T + 10;
 Edit1.Text := S;
end;

Time Function

Delphi command
Time Function

Declaration
function Time: TDateTime;

Description
The Time function returns the current time.

Example
This example uses a label and a button on a form. When the user clicks the button, the current time
displays in the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := 'The time is ' + TimeToStr(Time);
end;

TimeSerial Function

Delphi command
EncodeTime Function

Declaration
function EncodeTime(Hour, Min, Sec, MSec: Word): TDateTime;

Description
The EncodeTime function returns a TDateTime type from the values specified as the Hour, Min, Sec, and
MSec parameters.

If the value of the Time24Hour typed constant is False, valid Hour values are 0 through 12. If the value of
Time24Hour is True, valid Hour values are 0 through 23.

Valid Min and Sec values are 0 through 59. Valid MSec values are 0 through 999.

If the specified values are not within range, an EConvertError exception is raised. The resulting value is a
number between 0 (inclusive) and 1 (not inclusive) that indicates the fractional part of a day given by the
specified time. The value 0 corresponds to midnight, 0.5 corresponds to noon, 0.75 corresponds to 6:00
pm, etc.

Example
procedure TForm1.Button1Click(Sender: TObject);
var
 MyTime: TDateTime;
begin
 MyTime := EncodeTime(0, 45, 45, 7);
 Label1.Caption := TimeToStr(MyTime);
end;

TimeValue Function

Delphi command
StrToTime Function

Declaration
function StrToTime(const S: string): TDateTime;

Description
The StrToTime function converts the given string to a time value. The string must consist of two or three
numbers, separated by the character defined by the TimeSeparator global variable, optionally followed by
an AM or PM indicator. The numbers represent hour, minute, and (optionally) second, in that order. If the
time is followed by AM or PM, it is assumed to be in 12-hour clock format. If no AM or PM indicator is
included, the time is assumed to be in 24-hour clock format. If the given string does not contain a valid
time, an EConvertError exception is raised.

Example
This example uses an edit box, a label, and a button on a form. When the user enters a time in the edit
box in the HH:MM:SS format, the string entered is converted to a TDateTime value. This value is then
converted back to a string value so it can appear as the caption of the label:

procedure TForm1.Button1Click(Sender: TObject);
var
 ATime: TDateTime;
begin
 ATime := StrToTime(Edit1.Text);
 Label1.Caption := TimeToStr(ATime);
end;

Timer Control

Delphi command
TTimer Component

Description
See System Page Components

Timer Event

Delphi command
OnTimer Event

Declaration
property OnTimer: TNotifyEvent;

Description
The OnTimer event is used to execute code at regular intervals. Place the code you want to execute
within the OnTimer event handler.

The Interval property of a timer component determines how frequently the OnTimer event occurs. Each
time the specified interval passes, the OnTimer event occurs.

Example
Here is an example of an OnTimer event handler that moves a ball slowly across the screen:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 Timer1.Interval := 100;
 Shape1.Left := Shape1.Left + 1;
end;

Title Property

Delphi command
Title Property

Applies to
TApplication component

Declaration
property Title: string;

Description
The Title property determines the text that appears with an icon representing your application when it is
minimized. The default value is the project name (the name of the project file without the .PRJ file
extension).

You can set the title at run time, or you can enter the value of the Title property on the Application page of
the Options|Project Options dialog box.

Example
procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.Title := 'My Incredible Application';
end;

ToPage Property

Delphi command
ToPage Property

Applies to
TPrintDialog component

Declaration
property ToPage: Integer;

Description
The value of the ToPage property determines on which page the print job ends. The default value is 0,
which means no ending page is specified.

Example
This example uses a print dialog box on a form. The code sets up the print dialog box so that when it
appears, the default values of 1 and 1 are the default starting and ending values for the Pages From and
To edit boxes:

PrintDialog1.Options := [poPageNums];
PrintDialog1.FromPage := 1;
PrintDialog1.ToPage := 1;

Top Property

Delphi command
Top Property

Declaration
property Top: Integer;

Description
The Top property determines the Y coordinate of the top left corner of a control, relative to its parent or
containing control in pixels. If the control is contained in a TPanel, the Left and Top properties will be
relative to the panel. If the control is contained directly by the form, it will be relative to the form. For
forms, the value of the Top property is relative to the screen in pixels.

For the Find and Replace dialog boxes, Top is a run-time only property. The default value is -1.

Example
The following code moves a button 10 pixels up each time a user clicks it:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Button1.Top := Button1.Top - 10;
end;

TopIndex Property

Delphi command
TopIndex Property

Declaration
property TopIndex: Integer;

Description
The TopIndex property is the index number of the item that appears at the top of the list box. You can use
the TopIndex property to determine which item is the first item displayed at the top of the list box and to
set it to the item of your choosing.

Example
This example uses a list box containing a list of strings, a button, and an edit box on a form. When the
user runs the application and clicks the button, the third item in the list becomes the first item, and the
index value of that item appears in the edit box. The index value displayed is 2, indicating the third item in
the list (the first item in the list has an index value of 0):

procedure TForm1.FormCreate(Sender: TObject);
var
 Number: Integer;
begin
 for Number := 1 to 20 do
 ListBox1.Items.Add('Item ' + IntToStr(Number));
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.TopIndex := 2;
 Edit1.Text := IntToStr(ListBox1.TopIndex);
end;

TopRow Property

Delphi command
TopRow Property

Applies to
TDrawGrid, TStringGrid components

Declaration
property TopRow: Longint;

Description
Run-time only. The TopRow property determines which row in the grid appears at the top of the grid.

If you have one or more nonscrolling rows in the grid, they remain at the top, regardless of the value of
the TopRow property. In this case, the row you specify as the top row will be the first row below the
nonscrolling rows.

Example
This code uses a string grid and a button on a form. When the user clicks the button, the last row of the
string grid becomes the top row:

procedure TForm1.Button1Click(Sender: TObject);
begin
 StringGrid1.TopRow := StringGrid1.RowCount;
end;

TrackDefault Property

Delphi command
UpdateFormatSettings Property

Declaration
property UpdateFormatSettings: Boolean;

Description
The UpdateFormatSettings property specifies whether the format settings are updated automatically
when the user alters the system configuration. Set UpdateFormatSettings to False at application startup
to not have format setting s update automatically.

Trim Function

Delphi command
Trim Function

Declaration
function Trim(const S: string): string;

Description
The Trim function trims leading and trailing spaces and control characters from the given string S.

TwipsPerPixelX, TwipsPerPixelY Properties

Delphi command
Use PixelsPerInch Property

Applies to
TScreen components

Declaration
property PixelsPerInch: Integer;

Description
Read and run-time only. Windows PixelsPerInch is a misnomer: it tells you nothing about the pixel
resolution or aspect ratio of the video screen. All PixelsPerInch tells you is the relative size of the
Windows system font. The value in PixelsPerInch is retrieved from Windows when Delphi loads.

Example
This example adds 30 to the form's PixelsPerInch property if the screen's PixelsPerInch property is
greater than 100:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Form1.Scaled := True;
 if PixelsPerInch > 100 then
 Form1.PixelsPerInch := Form1.PixelsPerInch + 30;
end;

Type Property (Data Access)

Delphi command
DataType Property

Applies to
All field components

Declaration
property DataType: TFieldType;

Description
Run-time and read-only. DataType identifies the data type of the TField. Possible values are those of the
TFieldType type.

Type Property (Picture)

Delphi command
BitMap Property; MetaFile Property, Icon Property (TPicture)

Applies to
TPicture object

Declaration
property Bitmap: TBitmap;

Description
The Bitmap property specifies the contents of the TPicture object as a bitmap graphic (.BMP file format).
If Bitmap is referenced when the TPicture contains a Metafile or Icon graphic, the graphic won't be
converted. Instead, the original contents of the TPicture are discarded and Bitmap returns a new, blank
bitmap.

Example
The following code copies the bitmap in Picture1 to the Glyph of BitBtn1.

BitBtn1.Glyph := Picture1.Bitmap;

Type Statement

Delphi command
Type Reserved Word

Description
A type Declaration specifies an identifier that denotes a type. A variable's type defines the set of values it
can have and the operations that can be performed on it.

TypeName Function

Delphi command
ClassName Method; Is Operator

Declaration
class function ClassName: ShortString;

Description
The ClassName method returns a string containing the name of the actual type of an object. For example,
you can assign any type of object to a variable of type TObject. If you then call that variable's ClassName
method, it returns the actual type of the assigned object, rather than TObject.

For most purposes, you don't need the name of an object type. If you need to know the type of an object,
the is operator or the ClassType method provide more useful information than ClassName.

Example
This example uses a button, a label, a list box, a check box, and an edit box on a form. When the user
clicks one of the controls, the name of the control's class appears in the edit box.

procedure FindClassName(AControl:TObject);
begin
 Form1.Edit1.Text := AControl.ClassName;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 FindClassName(Button1);
end;
procedure TForm1.Label1Click(Sender: TObject);
begin
 FindClassName(Label1);
end;
procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 FindClassName(CheckBox1);
end;
procedure TForm1.ListBox1Click(Sender: TObject);

begin
 FindClassName(ListBox1);
end;

UBound Function

Delphi command
High Function

Declaration
function High(X);

Description
The High function returns the highest value in the range of the argument.

Example
function Sum(var X: array of Double): Double;
var
 I: Word;
 S: Double;
begin
 S := 0; { Note that open array index range is always zero-based. }
 for I := 0 to High(X) do S := S + X[I];
 Sum := S;
end;
procedure TForm1.Button1Click(Sender: TObject);
var
 List1: array[0..3] of Double;
 List2: array[5..17] of Double;
 X: Word;
 S, TempStr: string;

begin
 for X := Low(List1) to High(List1) do
 List1[X] := X * 3.4;
 for X := Low(List2) to High(List2) do
 List2[X] := X * 0.0123;
 Str(Sum(List1):4:2, S);
    S := 'Sum of List1: ' + S + #13#10;
 S := S + 'Sum of List2: ';
 Str(Sum(List2):4:2, TempStr);
 S := S + TempStr;
 MessageDlg(S, mtInformation, [mbOk], 0);
end;

UBound Property

Delphi command
ControlCount Property; ComponentCount Property

Declaration
property ControlCount: Integer;

Description
Run-time and read only. The ControlCount property indicates the number of controls that are children of
the control. The children are listed in the Controls property array.

Example
This code uses several controls on a form, including a button and an edit box. When the user clicks the
button, the code counts all the components on the form and displays the number in the Edit1 edit box.
While the components are being counted, each is evaluated to see if it is a button component. If the
component is a button, the code changes the font on the button face.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ComponentCount -1 do
 if Components[I] is TButton then
 TButton(Components[I]).Font.Name := 'Courier';
 Edit1.Text := IntToStr(ComponentCount) + ' components';
end;

UCase Function

Delphi command
UpperCase Function

Declaration
function UpperCase(const S: string): string;

Description
The UpperCase function returns a string containing the same text as S, but with all letters converted to
uppercase.

Example
This example uses a list box and a button on a form. Use the Items property editor in the Object Inspector
to enter a list of strings in the list box. When you run the application and click the button, the strings in the
list box become uppercase.

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to ListBox1.Items.Count -1 do
 ListBox1.Items[I] := UpperCase(ListBox1.Items[I]);
end;

UNION Operation (SQL)

Delphi command
UNION Clause (SQL)

Description
SQL Syntax

Example
Select * from OldOrders
Union
Select * from Orders
where OrdDate < '01/01/96'

UPDATE Statement (SQL)

Delphi command
UPDATE Statement (SQL)

Description
SQL Syntax

Example
Update Orders Set Status = 'Closed'
where OrderNo = 1100

Underline Property

Delphi command
TFont.Style Property

Declaration
TFontStyle = (fsBold, fsItalic, fsUnderline, fsStrikeOut);
TFontStyles = set of TFontStyle;

Description
The TFontStyles type is the set of font styles the Style property of a font object (TFont) can assume.

Example
The following code boldfaces the font used in the memo..

Memo1.Font.Style := [fsBold];

Unique Property

Delphi command
AddIndex Method

Declaration
procedure AddIndex(const Name, Fields: string; Options: TIndexOptions);

Description
The AddIndex method creates a new index for the TTable. Name is the name of the new index. Fields is a
list of the fields to include in the index. Separate the field names by a semicolon. Options is a set of
values from the TIndexOptions type.

Example
Table1.AddIndex('NewIndex', 'CustNo;CustName', [ixUnique,
ixCaseInsensitive]);

Unload Event

Delphi command
OnClose Event

Applies to
TForm component

Declaration
TCloseAction = (caNone, caHide, caFree, caMinimize);
TCloseEvent = procedure(Sender: TObject; var Action: TCloseAction) of object;
property OnClose: TCloseEvent;

Description
The OnClose event specifies which event handler to call when a form is about to close. The handler
specified by OnClose might, for example, test to make sure all fields in a data-entry form have valid
contents before allowing the form to close.

A form is closed by the Close method or when the user chooses Close from the form's system menu.

Example
This example displays a message dialog box when the user attempts to close the form. If the user clicks
the Yes button, the form closes; otherwise, the form remains open.

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 if MessageDlg('Close application ?', mtConfirmation,
 [mbYes, mbNo], 0) = mrYes then
 Action := caFree
 else
 Action := caNone;
end;

Updatable Property

Delphi command
CanModify Property

Declaration
property CanModify: Boolean;

Description
Run-time and read only. Specifies if a field can be modified for any reason, such as during a SetKey
operation. CanModify is True if the value of the field can be modified. If the ReadOnly property of the field
is True, or the ReadOnly property of the dataset is True, then CanModify is False.

Update Method (Data Access)

Delphi command
UpdateRecord Method

Declaration
procedure UpdateRecord;

Description
The UpdateRecord method notifies each TDataSource component that the current record is about to be
posted to the dataset. Each data source in turn notifies all data controls so that they can update the fields
of the record from the current values displayed in the controls. UpdateRecord is called automatically by
Post, but an application can also use it separately to bring the current record up to date without posting it.

Update Method (OLE Container)

Delphi command
UpdateObject Method

Applies to
TOleContainer component

Declaration
procedure UpdateObject;

Description
Updates the OLE object. Linked OLE objects and embedded objects that contain linked OLE objects get
outofdate when the source of the link is updated. UpdateObject rereads the source to ensure that the
OLE object has current data. If there is no OLE object loaded into the container, UpdateObject has no
effect.

Example
The following example will reread the linked OLE object to ensure that the OLE object has current data.

OleContainer1.UpdateObject;

UpdateControls Method

Delphi command
Refresh Method

Declaration
procedure Refresh;

Description
The Refresh method erases whatever image is on the screen and then repaints the entire control. Within
the implementation of Refresh, the Invalidate and then the Update methods are called.

Example
Table1.Refresh;

UpdateOptions Property

Delphi command
See UpdateObject Method in Delphi.hlp

Example
The following example will reread the linked OLE object to ensure that the OLE object has current data.

OleContainer1.UpdateObject;

UseMnemonic Property

Delphi command
Always True by Default

User-Defined Date/Time Formats (Format Function)

Delphi command
FormatDateTime Function

Example
The following example assigns 'The meeting is on Wednesday, February 15, 1995 at 10:30 AM' to the
string variable S.

S := FormatDateTime('"The meeting is on" dddd, mmmm d, yyyy, ' +
 '"at" hh:mm AM/PM', StrToDateTime('2/15/95 10:30am'));

User-Defined Numeric Formats (Format Function)

Delphi command
FormatFloat Function

Declaration
function FormatFloat(const Format: string; Value: Extended): string;

Description
FormatFloat formats the floating-point value given by Value using the format string given by Format.

User-Defined String Formats (Format Function)

Delphi command
Format Function

Declaration
function Format(const Format: string; const Args: array of const): string;

Description
This function formats the series of arguments in the open array Args. Formatting is controlled by the
Object Pascal format string Format; the results are returned in the function result as a Pascal string.

For information on the format strings, see Format Strings in DELPHI.HLP.

Example
Format('%d %d %0:d %d', [10, 20]) = '10 20 10 20'.

Val Function

Delphi command
Val Function

Declaration
procedure Val(S; var V; var Code: Integer);

Description
The Val function converts the string value S to its numeric representation, as if it were read from a text file
with Read.

S is a string-type expression; it must be a sequence of characters that form a signed whole number. V is
an integer-type or real-type variable. Code is a variable of type Integer.

Example
uses Dialogs;
var
 I, Code: Integer;
begin
 { Get text from TEdit control }
 Val(Edit1.Text, I, Code);
 { Error during conversion to integer? }
 if code <> 0 then
 MessageDlg('Error at position: ' + IntToStr(Code), mtWarning, [mbOk], 0);
 else
 Canvas.TextOut(10, 10, 'Value = ' + IntToStr(I));
 Readln;
end;

Validate Event

Delphi command
OnValidate Event

Declaration
TFieldNotifyEvent = procedure(Sender: TField) of object;
property OnValidate: TFieldNotifyEvent;

Description
The OnValidate event is activated when a field is modified.

Example
Field1.OnValidate := ValidateFieldRange;

ValidationRule Property

Delphi command
Use OnValidate Event

Declaration
TFieldNotifyEvent = procedure(Sender: TField) of object;
property OnValidate: TFieldNotifyEvent;

Description
The OnValidate event is activated when a field is modified.

Example
Field1.OnValidate := ValidateFieldRange;

ValidationText Property

Delphi command
Use OnValidate Event

Declaration
TFieldNotifyEvent = procedure(Sender: TField) of object;
property OnValidate: TFieldNotifyEvent;

Description
The OnValidate event is activated when a field is modified.

Example
Field1.OnValidate := ValidateFieldRange;

Value Property

Delphi command
Checked Property

Declaration
property Checked: Boolean;

Description
Run-time only. The Checked property determines whether an option is selected.

Example
This example fills in a radio button at run time:

RadioButton1.Checked := True;

This example uses a main menu component that contains a menu item named SnapToGrid1 on a form.
When the user chooses the Snap To Grid command, a check mark appears next to the command. When
the user chooses the Snap To Grid command again, the check marks disappears:

procedure TForm1.SnapToGrid1Click(Sender: TObject);
begin
 SnapToGrid1.Checked := not SnapToGrid1.Checked;
end;

Value Property (Data Access)

Delphi command
Value Property

Description
Run-time only. Value is the actual data in a TField. Use Value to read data directly from and write data
directly to a TField.

Examples
StringField1.Value := 'Delphi';

DateField1.Value := StrToDateTime('02/14/95 00:00:00');

VarType Functions

Delphi command
VarType Function (Only for Variant); Is Operator

Declaration
function VarType(const V: Variant): Integer;

Description
The VarType function returns the type code of the given variant.

Verb Property

Delphi command
DoVerb Method

Declaration
procedure DoVerb(Verb: Integer);

Description
Requests the OLE object to perform some action.

Example
The following code will activate the OLE Object with its primary verb.

OleContainer1.DoVerb(ovPrimary);

Visible Property

Delphi command
Visible Property

Declaration
property Visible: Boolean;

Description
The Visible property determines whether the component appears onscreen.

Example
The following code shows how to make a button invisible:

Button1.Visible := False;

VisibleCols Property

Delphi command
FieldCount Property

Declaration
property FieldCount: Integer;

Description
Run-time and read-only. The FieldCount property specifies the number of fields (columns) in a dataset.

Example
This example displays a message box with the names of all fields in the table.

procedure TForm1.Button2Click(Sender: TObject);
var
 i: Integer;
 Info: String;
begin
 Info := 'The fields are:'#13#10#13#10;
 for i := 0 to Table1.FieldCount - 1 do
 Info := Info + Table1.Fields[i].FieldName + #13#10;
 ShowMessage(Info);
end;

VisibleCount Property

Delphi command
DropDownCount Property

Declaration
property DropDownCount: Integer;

Description
The DropDownCount property determines how long the drop-down list of a combo box is.

Example
The following code assigns three to the DropDownCount property of ComboBox1. To see more than three
items in the drop-down list, the user must scroll.

ComboBox1.DropDownCount := 3;

VisibleRows Property

Delphi command
TField.Visible Property

Declaration
property Visible: Boolean;

Description
The Visible property determines whether the component appears onscreen. If Visible is True, the
component appears. If Visible is False, the component is not visible.

Example
The following code prevents the BillDate field from appearing in a DBGrid.

Table1.FieldByName('BillDate').Visible := False;

WHERE Clause (SQL)

Delphi command
WHERE Clause (SQL)

Description
SQL Syntax

Example
 SELECT * FROM PARTS
 WHERE PART_NO IN (543, 544, 546, 547)

Weekday Function

Delphi command
DayOfWeek Function

Declaration
function DayOfWeek(Date: TDateTime): Integer;

Description
The DayOfWeek function returns the day of the week of the specified date as an integer between 1 and 7.
Sunday is the first day of the week and Saturday is the seventh.

Example
This example uses a button, an edit box, and a label on a form. When the user enters a date in the edit
box using the Month/Day/Year format, the caption of the label reports the day of the week for the specified
date.

procedure TForm1.Button1Click(Sender: TObject);
var
 ADate: TDateTime;
begin
 ADate := StrToDate(Edit1.Text);
 Label1.Caption := 'Day ' + IntToStr(DayOfWeek(ADate)) + ' of the week';
end;

Weight Property

Delphi command
TFont.Style Property

Declaration
TFontStyle = (fsBold, fsItalic, fsUnderline, fsStrikeOut);
TFontStyles = set of TFontStyle;

Description
The TFontStyles type is the set of font styles the Style property of a font object (TFont) can assume.

Example
The following code boldfaces the font used in the memo..

Memo1.Font.Style := [fsBold];

WhatsThisButton Property (Windows 95)

Delphi command
BorderIcons Property

Example
The following code removes a form's Maximize button when the user clicks a button:

procedure TForm1.Button1Click(Sender: TObject);
begin
 BorderIcons := BorderIcons - [biMaximize];
end;

WhatsThisID Property (Windows 95)

Delphi command
HelpContext Property

Declaration
property HelpContext: THelpContext;

Description
The HelpContext property provides a context number for use in calling context-sensitive online Help.

Example
The following code associates a Help file with the application, and makes the screen with a context
number of 7 the context-sensitive Help screen for the Edit1 edit box:

procedure TForm1.FormActivate(Sender: TObject);
begin
 Application.HelpFile := 'MYHELP.HLP';
 Edit1.HelpContext := 7;
end;

While...Wend Statement

Delphi command
While Statement

Description
A while statement controls the repeated execution of a singular or compound statement.

The statement after do executes as long as the Boolean expression is True.

The expression is evaluated before the statement is executed, so if the expression is False at the
beginning, the statement is not executed.

Example
The following example will run through the records of a table.

Procedure TForm1.Button1Click(Sender : TObject);
begin
 Table1.First;
 While NOT Table1.EOF do
 begin
 {Do Something Here}
 Table1.Next;
 end;
end;

Width Property

Delphi command
Width Property

Description
The Width property determines horizontal size

Example
The following code doubles the width of a button:

Button1.Width := Button1.Width * 2;

WindowList Property

Delphi command
WindowMenu Property

Declaration
property WindowMenu: TMenuItem;

Description
Most Windows MDI applications contain a Window menu that contains menu items such as Cascade,
Arrange Icons, Tile, and so on that let the user manage the windows in the application. Usually this menu
lists (at the bottom) the child windows that are currently open in the application. When the user selects
one of these windows from the menu, the window becomes the active window in the application.

The WindowMenu property determines which menu includes the open child windows (or forms) in your
application.

Example
For this code to run, a menu item called MyWindows must exist on an MDI form parent form. This line of
code designates the MyWindows menu to be the Window menu, the menu that lists all open child
windows in an MDI application:

WindowMenu := MyWindows;

WindowStateProperty

Delphi command
WindowState Property

Declaration
property WindowState: TWindowState

Description
The WindowState determines the initial state of the form.

Example
The following code responds to the user clicking a button named Shrink by minimizing the form:

procedure TForm1.ShrinkClick(Sender: TObject);
begin
 WindowState := wsMinimized;
end;

With Statement

Delphi command
With Statement

Description
The with statement is a shorthand method for referencing the fields of a record and the fields and
methods of an object.

Within a with statement, the fields of one or more record variables can be referenced using only their field
identifiers.

Within a with statement, each variable reference is first checked to see if it can be interpreted as a field of
the record. If so, it is always interpreted as such, even if a variable with the same name is also accessible.

Example
type
 TDate = record
 Day : Integer;
 Month: Integer;
 Year : Integer;
 end;

var
 OrderDate: TDate;

with OrderDate do
 if Month = 12 then
 begin
 Month := 1;
 Year := Year + 1
 end
 else
 Month := Month + 1;

WordWrap Property

Delphi command
WordWrap Property

Declaration
property WordWrap: Boolean;

Description
The WordWrap property determines if text in a label, memo, or rich edit control wraps at the right margin
so that it fits in the control. You can give the user access to the lines which aren't visible in a memo or rich
edit control by setting its ScrollBars property to add horizontal, vertical, or both scrollbars to the memo
control. There should be no reason to use a horizontal scroll bar if WordWrap is True.

Example
This example allows text a user enters in the Memo1 control to wrap to the next line, if the control is large
enough to hold the text:

Memo1.WordWrap := True;

Workspace Object, Workspaces Collection

Delphi command
TSession Component

Description
The TSession component provides global control over database connections for an application. Delphi
automatically creates a default TSession component at runtime for applications which use database
controls.    This component may be accessed at runtime through the global variable Session.

Write # Statement

Delphi command
WriteLn

Declaration
procedure Writeln([var F: Text;] P1 [, P2, ...,Pn]);

Description
The Writeln procedure is an extension to the Write procedure, as it is defined for text files.

After executing Write, Writeln writes an end-of-line marker (carriage-return/linefeed) to the file. Writeln(F)
with no parameters writes an end-of-line marker to the file. (Writeln with no parameter list corresponds to
Writeln(Output).)

Example
program Project1;

{$AppType ConSole}

uses windows;

var
 s : string;
begin
 Write('Enter a line of text: ');
 Readln(s);
 Writeln('You typed: ',s);
 Writeln('Hit <Enter> to exit');
 Readln;
end.

X1, Y1, X2, Y2 Properties

Delphi command
MoveTo and LineTo Methods

Applies to
TCanvas object

Declaration
procedure LineTo(X, Y: Integer);
procedure MoveTo(X, Y: Integer);

Description
The LineTo method draws a line on the canvas from the current drawing position (specified by the
PenPos property) to the point specified by X and Y and sets the pen position to (X, Y).

The MoveTo method changes the current drawing position to the coordinates passed in X and Y. The
current position is given by the PenPos property.

Example
The following example draws a line from the upper left corner of a form to the point clicked with the
mouse.

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(0, 0);
 Canvas.LineTo(X, Y);
end;

Year Function

Delphi command
FormatDateTime Function

Declaration
function FormatDateTime(const Format: string; DateTime: TDateTime): string;

Description
FormatDateTime formats the date-and-time value given by DateTime using the format given by Format.

yy displays the year as a two-digit number (00-99).

Yyyy displays the year as a four-digit number (0000-9999).

Example
The following example will display the current year on the form's caption bar.

Caption := FormatDateTime('yyyy', now);

Zoom Property

Delphi command
StretchDraw Method

Declaration
procedure StretchDraw(const Rect: TRect; Graphic: TGraphic);

Description
This method draws the graphic specified by the Graphic parameter in the rectangle specified by the Rect
parameter. Use this method to stretch or resize a graphic to the size of the rectangle.

Example
The following code stretches the bitmap to fill the client area of Form1.

Form1.Canvas.StretchDraw(Form1.ClientRect, TheGraphic);

Zorder Method

Delphi command
BringToFront Method; SendToBack Method

Declaration
procedure BringToFront;
procedure SendToBack;

Description
The BringToFront method puts the component or form in front of all other components or forms within its
parent component or form. BringToFront is especially useful for making certain that a form is visible. You
can also use it to reorder overlapping components within a form.

The SendToBack method puts a windowed component behind all other windowed components within its
parent component or form, or it puts a non-windowed component behind all other non-windowed
components within its parent component or form.

Example
The following example will Show Form2 and bring it to the top in the Zorder.

procedure TForm1.ShowPaletteButtonClick(Sender: TObject);
begin
 if NOT Form2.Visible then Form2.Show;
 Form2.BringToFront;
end;

hDC Property

Delphi command
TCanvas.Handle Property
property Handle: HDC; {for TCanvas objects}

Description
The Handle property lets you access the Windows GDI object handle, so you can access the GDI object.
If you need to use a Windows API function that requires the handle of a pen object, you could pass the
handle from the Handle property of a TPen object.

Example
The following example will select the Palette from Image2 for Image1.

Image1.Picture.Bitmap.Palette := SelectPalette(Image2.Canvas.Handle,
Image2.Picture.Bitmap.Palette, TRUE);

hInstance Property

Delphi command
HInstance Variable

Declaration
var HInstance: Longint;

Description
The HInstance variable contains the instance handle of the application or library as provided by the
Windows environment.

Example
The following code will load a bitmap from a resource file linked into the application's EXE and then
display it on the form.

procedure TForm1.Button1Click(Sender: TObject);
var
 Bmp: TBitmap;
begin
 Bmp := TBitmap.Create;
 Bmp.Handle := LoadBitmap(HInstance,'BITMAP_1');
 Canvas.Draw(0, 0, Bmp);
 Bmp.Free;
end;

hPal Property

Delphi command
Palette Property

Declaration
property Palette: HPalette;

Description
The Palette property controls a bitmap's color mapping. The Palette of a bitmap contains up to 256 colors
that can be used to display the bitmap on screen.

When running in a 256 color video mode, and if the bitmap is drawn by an application running in the
foreground, all colors of Palette will be added to the Windows system palette. If the bitmap is drawn by an
application running in the background and another application has loaded the system palette with its own
colors, the bitmap's colors will be mapped to the system palette. Palette=0 if the bitmap has no palette.
You can assign custom palettes created with CreatePalette to this property.

Example
The following code will select the Palette from Image2 for use by Image1.

 Image1.Picture.Bitmap.Palette := SelectPalette(Image1.Canvas.Handle,
Image2.Picture.Bitmap.Palette, TRUE);

 hScrollBar, VScrollBar Controls

Delphi command
TScrollBar Component

Description
Standard Page Components

hWnd Property

Delphi command
Handle Property

Applies to
All windowed controls

Declaration
property Handle: HWND;

Description
Read and run-time only. The Handle property gives you access to window handle of the application, the
Find and Replace dialog boxes, and all controls in case you need to call a Windows API function that
requires a handle.

Example
The following code will send the cursor to the next control on the form.

 PostMessage(Handle, WM_NEXTDLGCTL, 0, 0);

Key Mappings
The following tables contain the shortcut keys and mappings to the Visual Basic keys that produce the
same results in the Delphi environment.

The Debug window

Code window key combinations

Code Window keyboard shortcuts

The Project Manager

The Form Window

The Object Inspector (Properties List focus)

The Object Inspector (Setting Box focus)

Debug window key mappings

Visual Basic Delphi To
ENTER F7 Trace into code.
CTRL+Z CTRL+Z Undo the last edit.
CTRL+C CTRL+C Copy the selected text to the Clipboard.
CTRL+V CTRL+V Paste the contents of the Clipboard.
CTRL+X CTRL+X Cut the selected text to the Clipboard.
F5 F9 Run application.
F8 F7 Trace into code.
SHIFT+F8 F8 Step over procedure.
DEL DEL Delete the selected text.
CTRL+ENTER ENTER Insert carriage return.
ENTER CTRL F5 Display Watch Window.
F4 F11 Display the Object Inspector.

Code window key combinations
Visual Basic Delphi To
F1 F1 Get context-sensitive Help.
F9 F5 Toggle breakpoint.
F5 F9 Run an application.
F8 F7 Trace into procedure.
SHIFT+F8 F8 Step over procedure.
CTRL+BREAK CTRL F2 Program reset.
PAGE DOWN PAGE DOWN Page down.
PAGE UP PAGE UP Page up.
CTRL+SHIFT+F2 CTRL Q P Move back to the last position in your code.
CTRL+HOME CTRL+HOME Move to the beginning of the unit.
CTRL+END CTRL+END Move to the end of the unit.
CTRL+RIGHT CTRL+RIGHT Move one word to the right.
CTRL+LEFT CTRL+LEFT Move one word to the left.
END END Move to the end of the line.
HOME HOME Move to the beginning of the line.
CTRL+C CTRL+C Copy the selected text to the Clipboard.
CTRL+X CTRL+X Cut the selected text to the Clipboard.
DEL DEL Delete the selected text.
CTRL+V CTRL+V Paste the contents of the Clipboard.
CTRL+Z CTRL+Z Undo the last edit.
CTRL+BACKSPACE CTRL+BACKSPACE Delete to the beginning of the word.
F3 F3 Find Next.

Code Window Keyboard Shortcuts
Visual Basic Delphi To
F7 F12 View Editor Window.
CTRL+F CTRL+F Find.
CTRL+R CTRL+R Replace.
F3 F3 Find Next.
CTRL+PAGE DOWN PAGE DOWN Move one screen down.
CTRL+PAGE UP PAGE UP Move one screen up.
CTRL+SHIFT+F2 CTRL Q P Go to last position.
CTRL+HOME CTRL+HOME Move to beginning of Unit.
CTRL+END CTRL+END Move to end of Unit.
CTRL+RIGHT ARROW CTRL+RIGHT ARROW Move one word right.
CTRL+LEFT ARROW CTRL+LEFT ARROW Move one word left.
END END Move to end of line.
HOME HOME Move to beginning of line.
CTRL+N ENTER Insert new line.
CTRL+BACKSPACE SHIFT+CTRL+Z Redo.
CTRL+Z CTRL+Z Undo.
CTRL+Y CTRL+Y Delete current line.
CTRL+DELETE CTRL+RIGHT ARROW DEL Delete to end of word.
TAB TAB Indent.
SHIFT+TAB BACKSPACE Outdent.

Project Manager Keys
Visual Basic Delphi To
SHIFT+ENTER ENTER Open the selected unit from list.
ENTER SHIFT+ENTER Open the selected form from list.
HOME HOME Select the first object in the list.
END END Select the last object in the list.

Form Window Keys
Visual Basic Delphi To
SHIFT+CTRL+alpha F11 TAB alpha Select a property in the Properties list of the Object Inspector.
alpha alpha Enter a value in the Object Inspector for the selected property.
F7 F12 Open the Editor Window.
CTRL+C CTRL+C Copy the selected components to the Clipboard.
CTRL+X CTRL+X Cut the slected components to the Clipboard.
DEL DEL Delete the selected components.
CTRL+V CTRL+V Paste the Clipboard contents on the form.
CTRL+Z CTRL+Z Undo a deletion of components.
TAB TAB Cycle forward through components in tab order.
SHIFT+TAB SHIFT+TAB Cycle backward through components in tab order.
CTRL+CLICK SHIFT+CLICK Add or remove a components from the selection.
CLICK+DRAG CLICK+DRAG Select multiple components.
F4 F11 Display the Object Inspector.

Object Inspector Keys (Properties List focus)
Use these key combinations when the Properties List has the focus in the Object Inspector

Visual Basic Delphi To

PAGE DOWN PAGE DOWN Move down one screen of the Property list.
PAGE UP PAGE UP Move up one screen of the Property list.
DOWN ARROW DOWN ARROW Move down through each property.
UP ARROW UP ARROW Move up through each property.
ALT+F6 F11 Switch from the Object Inspector to the form.
TAB TAB Move the insertion point to the property's settings box.
SHIFT+CTRL+alpha N/A Move to the next property in the list that begins with the

alpha character.
Double-Click Double-Click Cycle through settings of enumerated properties.

Object Inspector Keys (Settings Box focus)

Use these key combinations when the Settings Box for a property has the focus in the Object Inspector

Visual Basic Delphi To
CTRL+Z CTRL+Z Undo the last edit.
CTRL+C CTRL+C Copy the selcted text to the Clipboard.
CTRL+X CTRL+X Cut the selected text to the Clipboard.
DEL DEL Delete the selected text.
CTRL+V CTRL+V Paste the Clipboard contents at the insertion point.
ENTER ENTER Commit the change of the property.
TAB TAB Move the focus to the Property list.
ESC ESC Cancel the property change.

Components Pages Reference
Components are the building blocks of every Delphi application, and the basis of the Delphi visual
component library. Each page tab in the Component palette displays a group of icons representing the
components used to design your application interface.

Components can be either visual or non-visual. Each component has specific attributes that enable you to
control your application. These attributes are Properties, Events, and Methods.

Choose one of the following topics for information about its components and their functions.

Standard Page Components

Additional Page Components

Win 95 Common components

Data Access Page Components

Data Controls Page Components

Dialogs Page Components

System Page Components

Visual Basic Controls and Delphi Components
The following is a list of    Visual Basic controls and their corresponding Delphi components.

To see a description of the Delphi component, click on the appropriate component page.

VB control Delphi component Delphi Component Page
Image TImage Additional
Label TLabel Standard
TextBox TEdit Standard
Frame TGroupBox Standard
CommandButtonTButton Standard
CheckBox TCheckBox Standard
OptionButton TRadioButton Standard
ComboBox TComboBox Standard
ListBox TListBox Standard
HScrollBar TScrollBar Standard
VScrollBar TScrollBar Standard
Timer TTimer System
DriveListBox TDriveComboBox System
DirListBox TDirectoryListBox System
FileListBox TFileListBox System
Shape TShape Additional
OleControl TOleContainer System
Grid TStringGrid Additional
CommonDialog TOpenDialog Dialog

TSaveDialog Dialog
TFontDialog Dialog
TColorDialog Dialog
TPrintDialog Dialog
TPrinterSetupDialog Dialog
TFindDialog Dialog
TReplaceDialog Dialog

Gauge TGauge Samples
Graph TChart OCX
MMControl TMediaPlayer Additional
MaskEdBox TMaskEdit Additional
Outline TOutline Additional
SpinButton TSpinButton Samples
SSCommand TBitBtn Additional

Data access and display controls can be found on the Data Access and Data Controls component pages.

Standard Page Components
For complete information about using Delphi components, see the appropriate TComponent name in
Delphi.hlp

The components on the Standard page of the Component palette make the standard Windows control
elements available to your Delphi applications.

TMainMenu Creates menus for your form

TPopUpMenu Create popup menus for your form

TLabel Displays text the user cannot select or manipulate, such as title text

TEdit Displays an editing area where the user can enter or modify a single line of data

TMemo Displays an editing area where the user can enter or modify multiple lines of data

TButton Creates a pushbutton control that users choose to initiate action

TCheckBox Presents a control that a user can toggle between Yes/No or True/False.    You can use
checkboxes to display selections that are not mutually exclusive.    Users can select
more than one checkbox in a group.

TRadioButton Presents a control that a user can toggle between Yes/No or True/False.    You can use
RadioButtons to display selections that are mutually exclusive.    Users can not select
more than one RadioGroup in a group.

TListBox Displays a scrolling list of choices.

TComboBox Displays a list of choices in a combined edit and list box.    Users can edit data in the
edit box, or select data in the list box.

TScrollBar Provides a way to change which portion of a list or form is visible, or to move through a
range by increments.

TGroupBox Provides a container to group related options on a form

TRadioGroup Creates a group box that contains RadioButtons on a form

TPanel Creates a panel that can contain other components on a form.    You can use the
Tpanel to create ToolBars or Status lines.

Additional Page Components
For complete information about using Delphi components, locate the appropriate TComponent name in
Delphi.hlp

The components on the Additional page of the Component palette make specialized Windows control
elements available to your Delphi applications.

TBitButton Creates a button component that can display a bitmap

TSpeedButton Creates a button that can display a glyph, but not a caption.    SpeedButtons are
often grouped in a panel to create a speedbar.

TMaskEdit Similar to an edit box, but provides a way to specify particular formats for data
entry or display.

TStringGrid Creates a grid that you can use to display string data in columns or rows.

TDrawGrid Creates a grid that you can use to display data in columns or rows.

TImage Displays a bitmap, icon or metafile.

TShape Draws geometric shapes, including an ellipse or circle, rectangle or square,
rounded rectangle or rounded square.

TBevel Creates lines or boxes with a three dimensional or chiseled appearance.

TScrollBox Creates a resizeable container that automatically displays scrollbars if necessary.

Win95 Page Components
For complete information about using Delphi components, locate the appropriate TComponent name in
Delphi.hlp

The components on the Win95 page of the Component palette provide access to Win95 user interface
common controls available to your Delphi applications.

TTabControl TTabControl component is a tab set which functions similarly to a TTabSet and has
the appearance of notebook dividers.

TPageControl TPageControl component is a page set which is used to make a multiple page
dialog box.    It displays multiple overlapping pages

TTreeView Displays a hierarchical list of items, such as the headings in a document, the
entries in an index, or the files and directories on a disk.    The control includes
buttons that allow items to be expanded or collapsed.

TListView Displays a list of items in a variety of ways. The ViewStyle property determines
whether items are displayed in columns with column headers and sub-items, or
vertically or horizontally, with small or large icons.

TImageList TImageList component is a container for a group of graphic images.

THeaderControl Contains multiple, movable headers and is similar to a THeader component.

TRichEdit TRichEdit component is a Rich Text Format memo control. As such it includes the
properties of a memo such as HideSelection, HideScrollBars, Lines, ScrollBars,
WantReturn, WantTabs, and WordWrap..

TStatusBar The TStatusBar component is a window, always horizontal and aligned along the
bottom edge of an application frame, that displays status information about the
application.

TTrackBar A TTrackBar component is an optionally-ticked bar control that contains a slider
which marks a current Position.

TProgressBar Tracks the progress of a procedure within an application. As the procedure
progresses, the rectangular TProgressBar gradually fills from left to right with the
system highlight color.

TUpDown The TUpDown component consists of a pair of Up and Down arrow buttons.
Clicking on these buttons increments and decrements a numeric value held in the
Position property.

THotKey The THotKey component is used to set a shortcut property at run time. The user
can enter a key combination, typically consisting of a modifier key (such as Ctrl, Alt,
or Shift) and an accompanying key (such as a character key, an arrow key, a
function key, etc.), into the hot-key control.

Dialogs Page Components
For complete information about using Delphi components, locate the appropriate TComponent name in
Delphi.hlp

The components on the Dialogs page of the Component Palette make the Windows common dialog
boxes available to your Delphi applications. The common dialog boxes provide a consistent interface for
file operations such as opening, saving, and printing files. The following illustration shows the Dialogs
components.

TOpenDialog Makes an Open dialog box available to your application.

TSaveDialog Makes a Save dialog box available to your application.

TFontDialog Makes a Font dialog box available to your application.

TColorDialog Makes a Color dialog box available to your application.

TPrintDialog Displays a Print dialog box that permits the user to select which printer to print
to, which pages to print, how many copies to print, and if the print job should be
collated.

TPrinterSetupDialog Displays a Printer Setup dialog box in your application. Users can use the dialog
box to setup their printer before printing a job.

TFindDialog Provides a Find dialog box to your application.

TReplaceDialog Provides a Replace dialog box your application can use. TReplaceDialog
contains all the capabilities of the TFindDialog component, but it also allows the
user to replace found text with a replacement string.

Data Access Page Components
For complete information about using Delphi components, locate the appropriate TComponent name in
Delphi.hlp

The components on the Data Access page of the Component palette make specialized database access
elements available to your Delphi applications. The following illustration shows the Data Access
components.

TDatasource Acts as a conduit between ttable, tquery, tstoredproc component and data aware
components such as dbgrid.

TTable Provides live access to database tables through the Borland Database Engine. TTable
is the interface between the Borland Database Engine and TDataSource components.

TQuery Enables Delphi applications to issue SQL statements to a database engine--either the
BDE or an SQL server. TQuery provides the interface between an SQL server (or the
BDE) and TDataSource components.

TStoredProc Enables Delphi applications to execute server stored procedures.

TDatabase While not required for database access, provides additional control over factors that are
important for client/server applications.

TSession Provides global control over database connections for an application. Delphi
automatically creates a default TSession component at runtime for applications which
use database controls.

TBatchMove Enables you to perform operations on groups of records or entire tables.

TUpdateSQL Provides a way to use Delphi's cached updates support with read-only datasets. For
example, you could use a TUpdateSQL component with a "canned" query to provide a
way of updating the underlying datasets, essentially giving you the ability to post
updates to a read-only dataset.

TReport Provides an interface to Borland's ReportSmith application. Once you place the
TReport component on a form, you can double-click it to begin running ReportSmith.

Data Controls Page Components
For complete information about using Delphi components, locate the appropriate TComponent name in
Delphi.hlp

The components on the Data Controls page of the Component palette make specialized database control
elements available to your Delphi applications.    The following illustration shows the Data Controls
components.

TDBGrid Accesses the data in a database table or query and displays it in a grid. Your
application can use the data grid to insert, delete, or edit data in the
database, or simply to display it.

TDBNavigator (a database navigator) moves through the data in a database table or query,
and performs operations on the data, such as inserting a blank record or
posting a record.

TDBText Displays text on a form in a data-aware control.

TDBEdit Data-aware edit box with all the capabilities of an ordinary edit box (a TEdit
component).

TDBMemo Displays text for the user and permits the user display and enter data into a
field much like a TDBEdit component. The TDBMemo component permits
multiple lines to be entered or displayed, including text BLOBs (binary large
objects).

TDBImage Displays a graphic image from a BLOB (binary large object) stored in a field
of the current record of a dataset.

TDBListBox Data-aware list box. It allows the user to change the value of the field of the
current record in a dataset by selecting an item from a list.

TDBComboBox Data-aware combo box control. It allows the user to change the value of the
field of the current record in a dataset either by selecting an item from a list
or by typing in the edit box part of the control.

TDBCheckBox Presents an option to the user; the user can check it to select the option, or
uncheck it to deselect the option. A database check box (TDBCheckBox) is
much like an ordinary check box (TCheckBox), except that it is aware of the
data in a particular field of a dataset.

TDBRadioGroup Displays a group of data-aware radio buttons. Only one of the radio buttons
can be selected at a time, so the radio buttons present a set of mutually
exclusive choices.

TDBLookupList    Provides the user with a convenient list of lookup items for filling in fields that
require data from another dataset.

TDBLookupComboBox Provides the user with a convenient drop-down list of lookup items for filling
in fields that require data from another dataset.

TDBCtrlGrid Displays multiple records from a data source. Unlike the TDBGrid
component, which displays each record in a single row, you control the layout
and appearance of each record in a TDBCtrlGrid.

System Page Components
For complete information about using Delphi components, locate the appropriate TComponent name in
Delphi.hlp

The components on the System page of the Component palette make specialized system control
elements available to your Delphi applications. The following illustrations show the System components.

TTimer Causes an OnTimer event to occur whenever a specified period of time passes.

TPaintBox Provides a way for your application to draw on the form in a specified rectangular
area, preventing drawing outside of the boundaries of the paint box.

TFileListBox Lists all the files in the current directory. To display files in a different directory,
change the value of the Directory property.

TDirectoryListBox A list box that is aware of the directory structure of the current drive.

TDriveComboBox A combo box that displays all the drives available when the application runs.

TFilterComboBox A combo box that is used to present the user with a choice of file filters.

TMediaPlayer Controls devices that provide a Media Control Interface (MCI) driver. The
component is a set of buttons (Play, Stop, Eject, and so on) that controls a
multimedia device such as a CD-ROM drive, a MIDI sequencer, or a VCR.

TOleContainer Embeds or links OLE objects in your Delphi 2.0 application.

TDdeClientConv Establishes a DDE conversation with a DDE server application.

TDDEClientItem Defines the item of a DDE conversation.

TDDEServerConv Establishes a DDE conversation with a DDE client application.

TDDEServerItem Defines the item of a DDE conversation

