
Delphi 2.0
Code Migration Notes

Borland International
2/1/96

Delphi 2.0 Code Migration Notes

OVERVIEW

WORKING WITH STRINGS

NEW STRING TYPES

SETTING STRING LENGTH

DYNAMICALLY-ALLOCATED STRINGS

INDEXING STRINGS AS ARRAYS

NULL-TERMINATED STRINGS

NULL-TERMINATED STRINGS AS BUFFERS

PCHARS AS STRINGS

NEW CHARACTER TYPES

VARIABLE SIZES

RECORD ALIGNMENT

32-BIT MATH

THE TDATETIME TYPE

NEW DATA TYPES

OTHER LANGUAGE CHANGES

UNIT FINALIZATION SECTION

ASSEMBLY LANGUAGE

CALLING CONVENTIONS

DYNAMIC LINK LIBRARIES (DLLS)

THIRD-PARTY COMPONENTS

WINDOWS OPERATING SYSTEM CHANGES

32-BIT ADDRESS SPACE

32-BIT RESOURCES

VBX CONTROLS

CHANGES TO THE WINDOWS API FUNCTIONS

OBSOLETE WINDOWS 3.X API FUNCTIONS

WIN32 API COMPATIBILITY FUNCTIONS

16 AND 32-BIT CONCURRENT PROJECTS

2 Borland International

Delphi 2.0 Code Migration Notes

Overview
This document describes some of the issues related to migrating 16 bit Delphi 1.0 applications to
the new 32 bit version of Delphi 2.0. Although Borland has made every effort to ensure that your
code is compatible between versions, there are certain situations that will require code changes in
order to move be fully compatible with 32 bit data structures or other changes in the 32 bit
Windows operating systems. This document will also provide additional information on
optimizing your project for a 32-bit environment and maintaining code which is compatible
between both the 16 bit version of Delphi 1.0 and the new 32-bit version of Delphi 2.0.

Working with Strings
In response to customer demand for a more flexible string, Borland has introduced some new
string types that support the creation of virtually unlimited size strings. Delphi 2.0 also introduces
new character types to fully support localization of applications via the Unicode double byte
format. By far the most common issues likely to arise as you migrate to Delphi 2.0 are those
dealing with the use and manipulation of Strings.

New String Types
Listed below are the string types supported in Delphi 2.0:

· AnsiString (also referred to as "long string" or "huge string") is the new default string type
for Object Pascal. It is comprised of AnsiChar characters and allows for lengths of up to
2 Gigabytes, the operating system limit. It is also compatible with null-terminated
strings. This string is always dynamically allocated and automatically garbage collected.

· ShortString is synonymous with the standard String type in Delphi 1.0. It's capacity is
limited to 255 characters.

· PAnsiChar is a pointer to a null-terminated AnsiChar string.
· PWideChar is a pointer to a null-terminated WideChar string for Unicode, double byte

strings.
· PChar is a pointer to a null-terminated Char string, which is fully compatible with C-style

strings used in Windows API functions. This type hasn’t changed from version 1.0 and
is currently defined as PAnsiChar.

By default, strings defined in Delphi 2.0 are long strings, that is of the AnsiString type. So if you
define a string, as shown below,

var

S: String; // S is an AnsiString

the compiler assumes that you are creating an AnsiString. Alternatively, you can cause variables
declared as Strings to instead be of type ShortString using the $H compiler directive. When the
value of the $H compiler directive is negative, String variables are ShortStrings, and when the
value of the directive is positive (the default), String variables are AnsiStrings. The code below
demonstrates this behavior.

var

{$H-}
S1: String; // S1 is a ShortString
{$H+}
S2: String; // S2 is an AnsiString

3 Borland International

Delphi 2.0 Code Migration Notes

The exception to the $H rule is that a String declared with an explicit size (limited to a maximum
of 255 characters) is always a ShortString:

var

S: String[63]; // A ShortString of up to 63 characters

Note: The $H directive operates on a unit-by-unit basis. Be careful of passing strings declared in
units with $H+ to functions and procedures defined in units with $H- and vice-versa.

Setting String Length
In Delphi 1.0 you could set the length of a String by assigning a value to the 0 byte as shown
below:

S[0] := 23; { sets the length byte of a short string }

This was possible because the maximum length of a short string (255) could be stored in the
leading byte. A different physical structure is used to store long strings in the 32 bit version of
Delphi 2.0, and therefore the length is stored differently. Therefore, you should call the new
SetLength standard procedure to set the length of a string. SetLength is defined as:

procedure SetLength(var S: String; NewLength: Integer};

SetLength can be used with short or long strings in Delphi 2.0. If you wish to maintain one set of
source code for 16-bit Delphi 1.0 projects and 32-bit Delphi 2.0 projects, you can define a
SetLength function as follows for 16-bit Delphi 1.0 projects.

{$IFDEF WINDOWS}
{ for Delphi 1.0 16 bit projects }
procedure SetLength(var S: String; NewLength: Integer};
begin

S[0] := Char(NewLength);

end;
{$ENDIF}

Dynamically-allocated Strings
In Delphi 1.0 it is possible to use the PString type with the NewStr and DisposeStr standard
procedures to implement dynamically-allocated strings. Since long strings are automatically
allocated dynamically from the heap, there is no need to use that technique. Change your use of
PString to String, and remove the calls to NewStr and DisposeStr.

Indexing Strings as Arrays
Sometimes you want to access a certain character in a string by indexing the string as an array.
For example, the following line of code sets the fifth character in the string to ‘A’:

S[5] := 'A';

This type of operation is still perfectly legitimate with long strings, but there is one caveat. Since
long strings are dynamically allocated, you must ensure that the length of the string is greater
than or equal to the character element you attempt to index. For example, the following code is
invalid:

4 Borland International

Delphi 2.0 Code Migration Notes

var

S: String

begin

S[5] := 'A'; // Space for S has not yet been allocated!!

end;

whereas the following code is quite valid:

var

S: String

begin

S := 'Hello'; // allocates enough room for the string

S[5] := 'A';

end;

as is this code:

var

S: String

begin

SetLength(S, 5); // allocate 5 characters for S

S[5] := 'A';

end;

Null-terminated Strings
When calling Windows 3.1 API functions in Delphi 1.0, programmers had to be aware of the
difference between the Pascal String type and the C-style null-terminated strings used in
Windows. In Delphi 2.0, the long strings now make it much easier to call Windows API
functions. Long strings are both heap-allocated and guaranteed to be null-terminated. For these
reasons, you can simply typecast a long string variable when you need to use it as a null-
terminated PChar in a Windows API function call. For example, imagine you had a procedure
Foo defined as follows:

procedure Foo(P: PChar);

In Delphi 1.0, you would typically call this function like this:

var

 S: String; { Pascal short string }
 P: PChar; { null terminated string }
begin

 S := 'Hello world'; { initialize S }
 P := AllocMem(255); { allocate P }
 StrPCopy(P, S); { copy S to P }
 Foo(P); { call Foo with P }
 FreeMem(P, 255); { dispose P }

5 Borland International

Delphi 2.0 Code Migration Notes

end;

Using Delphi 2.0, you could call Foo using a long string variable with the following syntax:

var

S: String; { a long string is null terminated }

begin

S := 'Hello World';

Foo(PChar(S)); { fully compatiple with PChar type}

end;

This means that you can optimize your Delphi 2.0 code by removing unnecessary temporary
buffers to hold null-terminated strings.

Null-terminated Strings as Buffers
A common use for PChar variables is as a buffer which is passed to an API function which fills
the buffer string with information. A classic example of this is the GetWindowsDirectory API
function, which is defined in the Win32 API as follows:

function GetWindowsDirectory(lpBuffer: PChar; uSize: UINT): UINT;

If your goal is to store the Windows directory in a string variable, a common shortcut under
Delphi 1.0 is to pass the address of element one of the string as shown below:

var

S: String;

begin

GetWindowsDirectory(@S[1], 254); { 254 = room for null }

S[0] := Chr(StrLen(@S[1])); { adjust length }

end;

This technique will not work with Delphi 2.0 long strings for two reasons. First, as mentioned
earlier, you must give the string an initial length before any space is allocated. Second, since a
long string is already a pointer to heap space, using the @ operator would effectively pass a
pointer to a pointer to a character – definitely not what you intended! With long strings, this
technique is streamlined by casting the string to a PChar:

var

S: String;

begin

SetLength(S, MAX_PATH + 1); { allocate space }

GetWindowsDirectory(PChar(S), MAX_PATH);

Set Length(S, StrLen(PChar(S))); { adjust length }

end;

6 Borland International

Delphi 2.0 Code Migration Notes

PChars as Strings
Since long strings can be used as PChars, it’s only fair that the reverse should hold true. Null-
terminated strings are assignment-compatible to long strings, so what requires a call to StrPCopy
in Delphi 1.0:

var

S: String;
P: PChar;

begin

P := StrNew('Object Pascal');
S := StrPas(P);
StrDispose(P);

end;

can now be accomplished with a simple assignment using long strings:

var

S: String;
P: PChar;

begin

 P := StrNew('Object Pascal');
 S := P;
 StrDispose(P);

end;

Similarly, you can also pass null-terminated strings to functions and procedures expecting String
parameters. For example, consider procedure Bar defined as:

procedure Bar(S: String);

You can call Bar using a PChar as follows:

var

P: PChar;

begin

P := StrNew('Hello');
Bar(P);
StrDispose(P);

end;

Delphi 2.0 also offers a standard procedure called SetString which allows you to copy only a
portion of a PChar into a String variable. SetString has an advantage in that it works with both
long and short strings. The definition of SetString is:

procedure SetString(var S: String: Buffer: PChar; Len:

Integer);

7 Borland International

Delphi 2.0 Code Migration Notes

New Character Types
Strings, of course, are made up of characters. So there are new character types introduced to
support Unicode or wide string types. In addition to the Char type, Delphi 2.0 adds two new
character types to the Object Pascal language: AnsiChar and WideChar.

The AnsiChar type is the same as Delphi 1.0's Char type. It is a one-byte character that can
contain any one of 256 different characters.

WideChar represents a character which is two-bytes in size. WideChar exists for compatibility
with the Unicode character standard adopted by the Win32 API to support localization. Because
of it's two-byte size, a WideChar can contain any one of 65,536 possible characters, which is
enough for even the largest alphabets.

Currently, the Char and AnsiChar types are one-in-the-same. However, you should never depend
on the size of a Char being a certain length in your code – always use SizeOf to determine its
actual size.

Variable Sizes
Another issue which may arise as you migrate code to Delphi 2.0 is the fact that some types
change size (and therefore range) moving from 16 to 32-bits. The following table illustrates
these types:

Type 16-bit size 32-bit size
Integer 2-byte 4-byte
Cardinal 2-byte 4-byte
String 256-byte 4-byte

For the most part, these new variable sizes will have no effect on your applications. In those
areas were you do depend on type sizes, make sure to use the SizeOf() function. Also, if you’ve
written any of these types to binary files or blobs in Delphi 1.0, you will need to take into account
the change in size as you read the data back in with Delphi 2.0.

Record Alignment
Also different is the fact that records are aligned on 32-bit boundaries in Delphi 2.0. This is
illustrated by the following record:

type

TX = record
B: Byte;
L: Longint;

end;

With the default compiler settings, under Delphi 1.0 SizeOf(TX) returns 5, whereas under Delphi
2.0 SizeOf(TX) returns 8. This is not normally an issue, however, it can be an issue if you don’t
use SizeOf to determine the size of the record in your code or if you have records written to a
binary file.

8 Borland International

Delphi 2.0 Code Migration Notes

32-bit Math
A much more subtle issue regarding variable size is that the Delphi 2.0 compiler automatically
performs optimized 32-bit math on all operands in an expression, whereas Delphi 1.0 used 16-bit
math. Consider the following Object Pascal code:

var

L: longint;
w1, w2: word;

begin

w1 := $FFFE;
w2 := 5;
L := w1 + w2;

end;

Under Delphi 1.0, the value of L at the end of this routine is 3 because the calculation of w1 + w2
is stored as a 16-bit value, and the operation causes the result to wrap. Under Delphi 2.0, the
value of L at the end of this routine is $10003 because the w1 + w2 calculation is performed
using 32-bit math. The repercussions of the new functionality is that if you use and depend on
the compiler’s range checking logic to catch errors such as these in Delphi 1.0, then you will
need to use some other method for finding those errors in Delphi 2.0 as a range check error will
not occur.

The TDateTime Type
In order to maintain compatibility with OLE and the Win32 API, the “zero” value of a
TDateTime variable has changed. Date values start at 00/00/0000 under Delphi 1.0 but at
12/30/1899 under Delphi 2.0. This will not effect dates stored in a database field, but it will
effect binary dates that you have stored in a binary file or blob.

New Data Types
Delphi 2.0 introduces several new data types including Variant and Currency types. While usage
of these types is not required as you migrate your applications to Delphi 2.0, you may wish to
take advantage of their power. See the online help or printed documentation for more
information.

Other Language Changes
Delphi 2.0 introduces several language changes that you may need to be aware of.

Unit Finalization Section
You can include an optional finalization section in a unit. Finalization is the counterpart of
initialization, and takes place when the application shuts down. You can think of the finalization
section as “exit code” for a unit. The finalization section corresponds to calls to ExitProc and
AddExitProc in Delphi 1.0.

The finalization begins with the reserved word finalization. The finalization section must appear
after the initialization section, but before the final end statement.

9 Borland International

Delphi 2.0 Code Migration Notes

Once execution enters an initialization section of a unit, the corresponding finalization section is
guaranteed to execute when the application shuts down. Finalization sections must handle
partially-initialized data properly, just as class destructors must.

Finalization sections execute in the opposite order that units were initialized. For example, if
your application initializes units A, B, and C, in that order, it will finalize them in the order C, B,
and A.

The outline for a unit therefore looks like this:

unit UnitName;
interface
{ uses clause; optional }
...
implementation
{ uses clause; optional }
...
initialization { optional }

...
finalization { optional }

...
end.

Assembly Language
Since assembly language is highly dependent on the platform for which it was written, 16-bit
built-in assembly language in Delphi 1.0 applications will not work in the new 32-bit Delphi 2.0.
You will need to re-write such routines using 32-bit assembly language.

Certain interrupts may or may not be supported under Win32. In some cases, Win32 API
functions and procedures take the place of interrupts. If your application makes use of interrupts,
you will need to reference the Win32 documentation to see if it is still available.

Additionally, inline hexadecimal code is no longer supported under Delphi 2.0. If you have any
routines which use inline code, they should be replaced with 32-bit assembly language routines.

Calling Conventions
Delphi 1.0 has the capability to use either the cdecl or pascal calling convention for parameter
passing and stack clean-up for function and procedure calls. The default calling convention for
Delphi 1.0 is pascal.

Delphi 2.0 introduces directives which represent two new calling conventions: register and
stdcall. The register calling convention is the default for Delphi 2.0, offering faster performance.
This method dictates that the first three 32-bit parameters be passed in the eax, edx, and ecx
registers respectively. Remaining parameters use the pascal calling convention. The stdcall
calling convention is a mixture of pascal and cdecl in that the parameters are passed using cdecl
convention but the stack is cleaned-up using the pascal convention.

Note: Whereas functions and procedures in the 16-bit Windows API use the pascal calling
convention, Win32 API functions and procedures use the stdcall convention. Consequently, if
you have any callback functions in your code, those will also use the stdcall calling convention.

10 Borland International

Delphi 2.0 Code Migration Notes

Dynamic Link Libraries (DLLs)
The creation and use of DLLs works very much the same in Delphi 2.0 as 1.0, although there are
a few minor differences. Some of these issues are illustrated in the list below:

· Because of Win32’s flat memory model, the export directive (which was necessary for
callback and DLL functions in Delphi 1.0) is not necessary under Delphi 2.0. It is simply
ignored by the compiler.

· The preferred way to export functions in a Win32 DLL is by name (as opposed to by
ordinal). To optimize loading of your functions, use the resident directive with each
function or procedure in the exports clause.

· Exported names are case-sensitive. Therefore, you must use proper case when importing
functions by name and when calling GetProcAddress.

· When you import a function or procedure and specify the library name after the external
directive, the file extension can be included. If no extension is specified, “.dll” is
assumed.

· Under Windows 3.x, a DLL in memory only has one data segment which is shared by all
instances of the DLL. Therefore, if applications A and B both load DLL C, changes
made to global variables in DLL C from application A would be visible to application B,
and vice-versa. Under Win32, each DLLs receives its own data segment, so changes
made to global DLL data from one program are not visible from another program.

Third-Party Components
Delphi 2.0 compiled units (.dcu files) differ from those of Delphi 1.0. For this reason, if your
Delphi 1.0 projects make use of any third-party components, you will need to recompile the
source code for the units containing those components before they can be used in Delphi 2.0. If
you do not have the source code to a particular third party component, you should contact your
vendor for a 32-bit version of the component.

Windows Operating System Changes
There are several areas where changes in the 32 bit architecture of Windows can impact code
written in Delphi. These include changes resulting from the 32-bit memory model, changes in
resource formats, unsupported features and changes to the Windows API itself.

32-Bit Address Space
Win32 provides a 4 Gigabyte flat address space for your application. What “flat” means is that
all segment registers hold the same value, and the definition of a pointer is an offset into that 4
GB space. Because of this, any code in your Delphi 1.0 applications which depend on the
concept of a pointer consisting of selector and offset must be rewritten to accommodate the new
architecture.

The following elements of the Delphi 1.0 runtime library are 16-bit pointer-specific, and are not
in the Delphi 2.0 runtime library: DSeg, SSeg, CSeg, Seg, Ofs, and SPtr.

Because of the way Win32 uses a hard disk paging file to simulate RAM-on-demand, the Delphi
1.0 MemAvail and MaxAvail functions are no longer useful for gauging available memory. If
you need to obtain this information in Delphi 2.0, you should use the GetHeapStatus Win32 API
function which is defined as follows:

function GetHeapStatus: THeapStatus;

11 Borland International

Delphi 2.0 Code Migration Notes

The THeapStatus record is designed to provide information (in bytes) on the status of the heap
for your process. This record is defined as:

type
 THeapStatus = record
 TotalAddrSpace: Cardinal;
 TotalUncommitted: Cardinal;
 TotalCommitted: Cardinal;
 TotalAllocated: Cardinal;
 TotalFree: Cardinal;
 FreeSmall: Cardinal;
 FreeBig: Cardinal;
 Unused: Cardinal;
 Overhead: Cardinal;
 HeapErrorCode: Cardinal;
 end;
Again, since the nature of Win32 is such that the amount of "free" memory has little meaning,
most users will find the TotalAllocated field (which indicates how much heap memory has been
allocated by the current process) most useful for debugging purposes.

32-bit Resources
If you have any resources (.res or .dcr file) which you link into your application or use with a
component, you will have to create 32-bit versions of these files before they can be used with
Delphi 2.0. Typically, this is a simple matter of using the included Image Editor or a separate
resource editor such as Resource Workshop to save the resource file in a 32-bit compatible
format.

VBX controls
Microsoft does not support the older 16-bit VBX controls in 32-bit applications on Windows 95
and Windows NT, so they are therefore not supported in Delphi 2.0. OLE controls (OCXs)
effectively replace VBX controls on 32-bit platforms. If you need to migrate a Delphi 1.0
application that uses VBX controls, you should contact your VBX vendor to get an equivalent
32-bit OCX control.

Changes to the Windows API functions
Some Windows APIs or features have changed from Windows 3.1 to Win32. Some 16-bit API
functions no longer exist in Win32, some functions are obsolete but continue to exist for
compatibility’s sake, and some accept different parameters or return different types or values.
The following sections provide you with a list of these such functions. For complete
information, refer to the Win32 documentation.

Obsolete Windows 3.x API functions

Win 3.x Function Win32 replacement
OpenComm CreateFile
CloseComm CloseHandle
FlushComm PurgeComm
GetCommError ClearCommError

12 Borland International

Delphi 2.0 Code Migration Notes

ReadComm ReadFile
WriteComm WriteFile
UngetCommChar N/A
DlgDirSelect DlgDirSelectEx
DlgDirSelectComboBox DlgDirSelectComboBoxEx
GetBitmapDimension GetBitmapDimensionEx
SetBitmapDimension SetBitmapDimensionEx
GetBrushOrg GetBrushOrgEx
GetAspectRatioFilter GetAspectRatioFilterEx
GetTextExtent GetTextExtentPoint
GetViewportExt GetViewportExtEx
GetViewportOrg GetViewportOrgEx
GetWindowExt GetWindowExtEx
GetWindowOrg GetWindowOrgEx
OffsetViewportOrg OffsetViewportOrgEx
OffsetWindowOrg OffsetWindowOrgEx
ScaleViewportExt ScaleViewportExtEx
ScaleWindowExt ScaleWindowExtEx
SetViewportExt SetViewportExtEx
SetViewportOrg SetViewportOrgEx
SetWindowExt SetWindowExtEx
SetWindowOrg SetWindowOrgEx
GetMetafileBits GetMetafileBitsEx
SetMetafileBits SetMetafileBitsEx
GetCurrentPosition GetCurrentPositionEx
MoveTo MoveToEx
DeviceCapabilities DeviceCapabilitiesEx
DeviceMode DeviceModeEx
ExtDeviceMode ExtDeviceModeEx
FreeSelector N/A
AllocSelector N/A
ChangeSelector N/A
GetCodeInfo N/A
GetCurrentPDB GetCommandLine and/or

GetEnvironmentStrings
GlobalDOSAlloc N/A
GlobalDOSFree N/A
SwitchStackBack N/A
SwitchStackTo N/A
GetEnvironment (Win32 file I/O functions)
SetEnvironment (Win32 file I/O functions)
ValidateCodeSegments N/A
ValidateFreeSpaces N/A
GetInstanceData N/A
GetKBCodePage N/A
GetModuleUsage N/A
Yield WaitMessage and/or Sleep
AccessResource N/A
AllocResource N/A
SetResourceHandler N/A

13 Borland International

Delphi 2.0 Code Migration Notes

AllocDSToCSAlias N/A
GetCodeHandle N/A
LockData N/A
UnlockData N/A
GlobalNotify N/A
GlobalPageLock VirtualLock
CreatePQ N/A
MinPQ N/A
ExtractPQ N/A
InsertPQ N/A
SizePQ N/A
DeletePQ N/A
OpenJob N/A
StartSpoolPage N/A
EndSpoolPage N/A
WriteSpool N/A
CloseJob N/A
WriteDialog N/A
DeleteSpoolPage N/A

Win32 API compatibility functions

Win 3.x Function Win32 replacement
DefineHandleTable N/A
MakeProcInstance N/A
FreeProcInstance N/A
GetFreeSpace GlobalMemoryStatus
GlobalCompact N/A
GlobalFix N/A
GlobalUnfix N/A
GlobalWire N/A
GlobalUnwire N/A
LocalCompact N/A
LocalShrink N/A
LockSegment N/A
UnlockSegment N/A
SetSwapAreaSize N/A

16 and 32-bit Concurrent Projects
This section is intended to give you some guidelines as to developing project which will compile
under 16-bit Delphi 1.0 or the new 32-bit version of Delphi 2.0. While you can follow the
directions outlined in this paper for source-code compatibility, here are some further pointers to
help you along:

· The WINDOWS conditional is defined by the compiler under Delphi 1.0, while the WIN32
conditional is defined under Delphi 2.0. You can use these defines to perform
conditional compilation with the {$IFDEF WINDOWS} or {$IFDEF WIN32}
directives.

· Avoid the use of any component or feature in Delphi 2.0 not supported under Windows 3.1
or Delphi 1.0 if you want to recompile with Delphi 1.0 for a 16-bit application. For
example, you should avoide the use of the Win95 components and features such as multi-

14 Borland International

Delphi 2.0 Code Migration Notes

threading which are not available on Windows 3.1. The easiest way to ensure
compatibility with projects between Delphi 1.0 and Delphi 2.0 is to develop in Delphi 1.0
and recompile with Delphi 2.0 for optimized 32-bit performance.

· Be wary of differences between the APIs. If you need to use an API procedure or function
which is implemented differently on the different platforms, make use of the WINDOWS
and WIN32 conditional defines.

· Version 2.0 components often have more or different properties than their 1.0 versions.
When version 2.0 components are saved out to a .dfm file, these properties are written as
well. While it’s often possible to “ignore” the errors that occur when loading projects
with these properties under Delphi 1.0, it’s often a more favorable solution to maintain
two separate sets of .dfm files for each platform.

15 Borland International

	Overview
	Working with Strings
	New String Types
	Setting String Length
	Dynamically-allocated Strings
	Indexing Strings as Arrays
	S[5] := 'A';

	Null-terminated Strings
	Null-terminated Strings as Buffers
	PChars as Strings
	New Character Types

	Variable Sizes
	Record Alignment
	TX = record

	32-bit Math
	The TDateTime Type
	New Data Types

	Other Language Changes
	Unit Finalization Section
	Assembly Language
	Calling Conventions
	Dynamic Link Libraries (DLLs)

	Third-Party Components
	Windows Operating System Changes
	32-Bit Address Space
	32-bit Resources
	VBX controls
	Changes to the Windows API functions
	Obsolete Windows 3.x API functions
	Win32 API compatibility functions

	16 and 32-bit Concurrent Projects

