
Oracle Application Server 4.0 White Paper:
Product Overview

An Oracle White Paper

September 1998

2

Product Overview

INTRODUCTION

Customers in every industry today are web-enabling their applications and using intranets and the
Internet to perform business functions critical to the success of their enterprises. This trend has created
many new challenges in the area of application development and deployment.

Oracle’s 1996 introduction of the network computing initiative (also known as Internet computing)
created a company-wide focus on building the scalable, reliable, manageable and secure server-side
technology needed for these web-enabled solutions. At the core of the network computing initiative is
a new breed of software technology called an application server.

In 1997, Oracle pioneered the market for application servers with Web Application Server 3.0. The
new version of this product, now known as Oracle Application Server (OAS) 4.0, continues to lead
the market by offering new features and functions unmatched in the industry. OAS 4.0 supports
multiple application programming models (Web, CORBA, Enterprise Java Beans) and languages
(Java, Perl, C, PL/SQL, COBOL and LiveHTML), allowing it to unify the capabilities of multiple
middleware products into a single offering that can be installed and managed from a common user-
friendly interface.

This paper provides an overview of the OAS 4.0 product, beginning with a description of how the
growth of the Internet and the limits of simple web servers have led to the demand for application
servers. The capabilities of OAS 4.0 are described, along with the types of applications that will
benefit from the use of this product. An overview of how applications developed and deployed on
OAS 4.0 achieve enterprise-level scalability, reliability, manageability and security is also provided.
Development tools that programmers can use to write OAS 4.0 applications are listed in the appendix
to this product overview.

Oracle tools, applications and Enterprise Manager now use OAS as their middle-tier platform. A
closer look at how Oracle product divisions will use OAS 4.0 is available in the paper “Integration
Platform for Oracle Products with the Internet.”

IMPACT OF THE INTERNET ON MIDDLEWARE CONVERGENCE

In recent years, the widespread adoption and use of several Internet technologies has pushed
client/server applications from the two-tier to the three-tier model, and created challenges not solved
by standard web servers.

Internet Technologies and Associated Challenges

THE WORLD WIDE WEB

The power of the web derives first and foremost from the core capability of URLs and easy-to-use
browsers. With a simple click of the mouse, users can access content stored in HTML pages in the

3

form of text, video, graphics and sound. The HTTP protocol running over TCP/IP allows users to
access HTML pages stored on any server connected to the web, anywhere in the world.

BROWSERS AS UNIVERSAL CLIENTS

There is a high cost to build different applications to run on multiple, heterogeneous client platforms
(e.g., Windows, Macintosh, UNIX, browser). It is also labor-intensive to deploy, and update
applications across thousands of client PCs. When the Internet first exploded on the scene in the
early 90s, IT managers and developers immediately seized on the idea of using the universal
browser interface as a way around the development and deployment expense of PC-based clients.
These benefits are driving many customers to web-enable applications that will never be deployed
on the Internet.

JAVA AS THE LANGUAGE FOR NETWORK COMPUTING

The arrival of Java marked a watershed for Internet computing. The “write once, run anywhere”
slogan for Java applications is analogous to the “write once, view anywhere” HTML slogan for
information stored on the Web. Being inherently OS independent, Java applications can be written
once and run anywhere that has a Java Virtual Machine.

Realizing the folly of recreating the deployment issues of fat clients, developers have resisted coding
business logic on the client. Instead, client-side Java is used sparingly to enhance the “presentation”
side of solutions. Forms for data input include applets (or Java “Beans”) which improve the user
interface experience. Browsers can download Java code from servers and run it, allowing new
applications and data to be distributed to clients on an as-needed basis. These applications are
platform independent and can be downloaded and managed from a central location.

The result is that users running browsers—on any type of client platform—are now just a point-and-
click away from the rich content available on HTML pages, as well as the new features and
capabilities implemented in Java Beans and applets (see below for details). As an added bonus, many
customers have found that enterprise applications can be extended to a wider audience of distributed
users as browser-based clients operate over wide-area networks instead of the local area networks
required in traditional two-tier client-server applications.

ASSOCIATED CHALLENGES

This Internet technology has had a tremendous impact on the number of users and the number of
requests that can arrive at a server at any given instant in time. Internet servers can be accessed 24
hours a day by millions of users anywhere in the world. At the same time, the number of end users
accessing internal, web-enabled corporate applications often skyrockets as well. For example, an
Oracle internal human resources application that was once accessed by no more than 100 people can
now be accessed by 30,000 people—the number of Oracle employees. This kind of demand presents
several challenges to standard web servers because:

• Scalability is critical when the number of end users and the number of requests being made to a
server are unpredictable and subject to fluctuations.

• Reliability must be addressed when access to an application is available 24 hours a day.
• Transactions involving business critical information between browser-based clients and web

servers must be guaranteed to complete fully, or not at all.
• Proprietary security schemes used in two-tier client server applications to protect sensitive data

must be replaced by new, public key-based encryption mechanisms, such as SSL.
• IT managers must have a mechanism that can intercede between incoming requests and requested

resources to enforce corporate access policies. For interoperability with other web servers, the
solution must be standards-based and support the use of digital certificates.

4

Distributed Component Technologies and Associated Challenges

Two additional middleware technologies are often included in truly mission-critical web-based
solutions. Both provide valuable capabilities but also have serious limitations. The first is CORBA, an
industry standard for distributed component solutions, defined by a the Object Management Group
(OMG), a standards body consisting of more than 800 member companies (vendors and enterprise
customers).

While dramatically different from the operation of PCs as clients in two-tier client-server applications,
the use of browsers and web servers retains the semblance of clients as “requesters” that depend on a
central server in order to perform meaningful work. The introduction of CORBA completely
obliterates this paradigm.

CORBA AS THE INFRASTRUCTURE FOR NETWORK COMPUTING

For many years the goal of MIS departments has been to speed software development by assembling
complete solutions from reusable software components. The architects of IT solutions dream of being
able to host these components, which may be built in-house or purchased from vendors, on distributed
servers and clients. This flexibility of partitioning would maximize performance and reliability.

The OMG has dedicated the last eight years to making this dream a reality. The OMG’s CORBA
standards specify how software components written in various languages can be “wrapped” in a
uniform way. The wrapper defines a set of methods (roughly equivalent to function calls in traditional
programs) that are visible to other components. These components, which may be on the same server
or distributed across a network, are hosted on object request brokers (ORBs) that communicate using
the standard Internet Inter-ORB Protocol (IIOP).

CORBA 2.0-compliant ORBs, and the remote procedure call (RPC) mechanisms they are based on,
mask the underlying communications technologies between clients and servers, allowing components
to make calls to other components located anywhere on the network as if they were local. This is key
for network computing, where clients are broken up from servers and both exist as objects and
components1 that can freely interact with each other.

JAVA BEANS AS THE COMPONENT MODEL FOR NETWORK COMPUTING

A surprising truth is that, despite years of effort, CORBA has not defined a standard component
model accepted by the market, and without this, a true market for reusable components cannot reach
critical mass. In a less-than-amazing coincidence, the recent “Enterprise Java Bean” (EJB) component
model has been warmly embraced by vendors as diverse as Oracle, IBM, Sun and Netscape.

What is an EJB? Similar to a Java Bean—a Java program that has been packaged as a component for
use within a browser—an EJB is a Java program that has been packaged for use on a server. But
instead of accessing Java classes that enable a user interface (the primary use of Java Beans), an EJB
accesses Java classes that provide network services such as security, directory and transactions.

1 In this document, the terms “objects” and “components” are used somewhat interchangeably. More
accurately, it is generally agreed that a component consists of one or more objects. Objects tend to be very
small-grained (perform one small task) whereas components are much larger grained and hence more
useful.

2 See Paul Allen and Stuart Frost,Component-Based Development for Enterprise Systems, Cambridge UK:
Press Syndicate of the University of Cambridge, 1998

5

While many perceive CORBA and EJBs as competing standards, they are actually synergistic.
CORBA provides the infrastructure for EJBs, and EJBs are the component model for CORBA.
Clients as network objects require support for Java, a CORBA-compliant ORB and IIOP. Server
components as network objects will require support for EJBs. Standard web servers do not begin to
meet these requirements.

ASSOCIATED CHALLENGES

While the value of ORB and EJB functionality has been clear, the challenges of using this technology
have been equally apparent:

• ORBs lack the scalability or reliability demanded by enterprise systems.
• Traditional ORB vendors are small, with extremely limited service and support.
• ORBs pre-date the web and therefore must be paired with HTTP listeners for web-based

applications. The result is two platforms with two installations and two management consoles.

Transaction Processing Technologies and Associated Challenges

The transaction processing monitor (TP monitor) is the second middleware technology often found in
business-critical solutions. Like ORBs, TP monitors provide valuable capabilities mitigated by glaring
weaknesses.

TRANSACTION PROCESSING MONITORS AND SCALABLE SOLUTIONS

Scalability, reliability and manageability are the hallmarks of TP monitors. Before TP monitors
existed, an operating system had to set up a unique and separate execution environment for incoming
requests for an application, and the application itself. Execution environments typically consist of
memory, CPU cycles, and communication and database connections. These constitute the system
resources required for request and application processing.

As online transaction-processing applications began to emerge, the number of incoming requests
soared. The system resources available to process these requests were quickly exhausted. TP monitors
were created to allow the same system resources allocated to one request for an application to be
shared concurrently by multiple requests. At the same time, the application logic executed in response
to a request is shared as well. This enables hundreds of requests to be processed simultaneously using
the same amount of system resource previously used to execute a single request. Resource sharing is
at the heart of application scalability.

TP monitors work with databases to provide transaction integrity. Users performing a logical
transaction are guaranteed that either all the steps complete successfully, or the transaction does not
complete at all. Another aspect of reliability is fault tolerance, which guarantees that if a failure occurs
in the execution environment, the TP monitor restarts what failed in a way that is transparent to the
end user and does not affect transaction integrity.

TP monitors have a management interface that allows system mangers to configure, monitor and
control the overall processing environment. System managers use the interface to specify things like
the maximum number of requests a particular application process can handle, the location of the
database, the priority associated with certain requests, etc. Advanced TP monitors allow maintenance
operations, such as software updates, to be performed while the application is online. This increases
overall application reliability.

ASSOCIATED CHALLENGES

While TP monitors are proven elements of enterprise solutions and are well recognized for their
scalability and reliability, they also have these serious shortcomings:

6

• Because of the lack of open standards in this area, solutions built to a particular platform are
locked into a single platform vendor forever.

• Like ORBs, TP monitors pre-date the web and therefore must be paired with HTTP listeners for
web-based applications. Once again, the result is two platforms with two installations and two
management consoles.

OAS 4.0 Responds to These Challenges

The challenges resulting from widespread use of Internet technologies are not new. Scalability,
reliability, manageability, security, interoperability, and support for distributed transactions are usually
addressed through the use of middleware products such as TP monitors, ORBs, message queuing
products, and security and directory services. Oracle’s strategy is to provide an application server that
offers all of the required middleware functionality needed to respond to these challenges in a single,
distributed product.

Figure 1: Unification of middleware capabilities in Oracle Application Server versions.

The following table provides a very brief summary of the capabilities provided by six different
middleware technologies. OAS 4.0 features that are equivalent to these middleware capabilities are
listed. Many of these features are detailed in a subsequent section of this product overview called
“Scalable, Reliable, Manageable and Secure.”

7

Technology Metaphor What It Does OAS 4.0 Equivalent Features

Web Server Fast Food
Chef

Responds to HTTP requests
by serving up HTML pages.

• Includes an HTTP listener (the web server core)
• Supports multiple other common web servers
• Configurable and programmatic web sessions
• Declarative and programmatic web transactions
• LiveHTML transactions
• SSL for privacy of messages

ORB
(CORBA 2.0
Compliant)

Translator Allows components written in
different languages to
transparently inter-operate
across a network.

• Includes a CORBA 2.0-compliant ORB
• Supports standard IIOP protocol
• JTS transactions (compliant with OMG’s OTS)
• Interoperable with Visibroker 3.2 ORB

TP Monitors Illusionist Using sophisticated resource
management techniques,
hundreds of clients appear to
each have 1-to-1 connections
with a data server. Also
guarantees transactions and
offers scalability, reliability.

• Scales to support large pools of end users
• Multi-threaded cartridges support increase in

processing demand
• Supports two-phase commit transactions
• Leverages OLTP features of Oracle DBMS

when using OCI via PL/SQL and C:
• Multiple users share single connection
• Pooling drops idle connections

Security and
Directory

Card Key
Reader

Intercedes between incoming
requests and requested
resources to enforce access
policies.

• Basic authentication (username/password)
• Domain-based authentication (enable/disable

users from particular domain)

• IP based authentication (enable/disable users
from a particular IP address/node)

• Support for LDAP access to directories, used to
authenticate users with X.509 certificates

• Integration with Oracle database authorization
• Supports ‘virtual paths’ which map URLs to

non-static pages (CGI scripts, components,
transactions)

• Access to virtual paths can be secured via access
control lists

Database
Access

Middleware

Gateway Facilitates access to data
stored in different databases.

• Access to Oracle databases via:
• OCI (Oracle Call Interface) in PL/SQL, C
• Sharing of pooled connections

• Access to Oracle and non-Oracle databases via
ODBC, JDBC, JSQL, X/A

Messaging Postal
Service

Instead of sending requests
directly between clients and
servers, the requests can be
dropped into a mailbox queue,
and delivered as posted (e.g.,
certified, priority, bulk mail)

• A recent, though growing, trend is to integrate
applications using point to point or publish
and subscribe communications. The ability to
integrate applications in this manner will be
supported in future versions of OAS.

8

ORACLE APPLICATION SERVER (OAS) 4.0

Overview

In a single sentence, the goal of OAS 4.0 is to provide a powerful infrastructure for deploying
applications so that developers can focus on solving business problems rather than dealing with the
low-level systems plumbing. As the middle tier of Oracle’s network computing architecture, it is the
core of any network computing solution.

OAS is situated between any client device that communicates over HTTP or IIOP, and any database
that supports the ODBC or JDBC gateways. In addition to the middleware capabilities described in
the previous section, OAS 4.0 supports multiple programming models (Web, CORBA/EJB) and
languages (Java, Perl, C, PL/SQL, LiveHTML and Cobol). Open standards are supported across the
board. When deployed on OAS, applications are automatically scalable, reliable, manageable and
secure. Customers can begin writing simple web-enabled applications and migrate to component-
based service architectures using the same OAS 4.0 infrastructure.

OAS Architectural Overview

Let’s begin with a short overview of OAS’s internal architecture before describing the features and
benefits provided. An OAS solution has three distinct parts (see figure 2):

• HTTP listeners

• OAS

• Application cartridges

For maximum flexibility, scalability and reliability, these parts can be distributed over multiple
hardware platforms.

HTTP LISTENERS

HTTP listeners/servers are excellent at handling requests for static pages and CGI. OAS 4.0, which
bundles its own listener, can also work with non-Oracle listeners such as Apache, Netscape and
Microsoft. All requests, other than those for static pages or CGI, are passed to OAS for handling.

OAS

The application server itself provides resource management when handling requests for applications
deployed as cartridges on the server. It provides a common set of services for managing these
applications, including load balancing, automatic recovery of failed processes, security, directory, and
transaction.

APPLICATION CARTRIDGES

Cartridges are managed objects or components deployed on OAS. Each application cartridge runs
within its own cartridge server process.

9

Figure 2: Oracle Application Server 4.0 Architecture.

OAS is a platform for a variety of environments that play host to business components built using
various programming models. For example, the Perl and LiveHTML environments include an
interpreter for Perl and dynamic HTML scripts, respectively. There is also an environment for
executing business logic written in C.

In keeping with Oracle’s “300% Java” initiative and goal of allowing a single language to serve across
all tiers of a solution (client, application server and database server), OAS provides rich support for
Java in the middle tier. Java environments include the JWeb environment, which furnishes a JVM for
running Java components (JWeb components) accessible from web/HTTP clients. The JCORBA
environment provides a JVM that runs Java components (JCORBA components) accessible from
CORBA/IIOP clients These JCORBA components interface with the underlying CORBA
technologies within OAS. It is important to note that the complexity of CORBA is hidden from the
Java developer, who simply invokes Java classes. Finally, Oracle is enhancing the EJB environment to
fully support the EJB 1.0 specification for running industry-standard EJBs in the next release of OAS.

One special-purpose environment is that provided for PL/SQL. Rather than including an engine for
executing PL/SQL stored procedures, this environment links to PL/SQL stored procedures running on
the database server.

A “cartridge” is Oracle’s historical term for business components, i.e., a package of coded business
logic. This term was invented before the advent of industry-standard component models such as EJBs.
To reduce confusion, this product overview uses the term “component” rather than “cartridge,” unless
absolutely necessary. In figure 2, the cartridges shown are simply the business logic of the application
hosted on OAS, often in the form of components.

Features and Benefits

OAS 4.0 is a comprehensive, open platform for web-based application development and deployment.
As such, it offers the least-cost path to web and component-based applications. This improves time-to-
market, increasing the buyer’s ability to gain a competitive advantage in their market. In addition,
applications deployed on OAS 4.0 have built-in enterprise quality-of-service (scalability, reliability,
manageability and security), which allows greater focus of resources on building and deploying
applications. Other features and benefits include:

Feature: Client-independent application platform (any hardware device running browser
over HTTP, or CORBA object over IIOP).

Benefits: Reduce costs through use of inexpensive hardware, flexibility to choose non-PC
clients without re-writing code, total cost of ownership (TCO) savings by using
browser-based thin clients.

10

Feature: Unified alternative to multiple, point-solution, middleware products.
Benefit: Complete middleware solution, installed and managed as a unified whole. More

cost-effective and less complicated than integrating a collection of piece-parts.

Feature: Single platform for leading development languages/models (Java, Perl, C, PL/SQL,
COBOL, LiveHTML, CORBA objects and EJBs).

Benefits: Leverage existing skills in languages and tools (avoid developer re-training),
language independence avoids lock-in, easy access to benefits of components
while complexity hidden from developers.

Feature: Single platform for data and application integration (OCI, ODBC/JDBC/XA,
PL/SQL Java class wrappers, COBOL cartridge and 3270 terminal emulators).

Benefits: Leverage existing database and applications resources, improving return on
investment in existing technology; a compelling growth path for current users of
two-tier systems.

Feature: Single platform to install and manage.
Benefits: Improve system administrator productivity through reduced complexity and better

ease-of-use. Increase application availability by reducing time to detect,
reconfigure and repair potential problems.

Feature: Choice of hardware, operating system, HTTP listener, toolset, international
language.

Benefits: Reduce costs by leveraging existing technology, minimize lock-in by maximizing
choice.

Feature: Based on open and de facto standards (HTTP, IIOP, Java, OTS, JTS, X/A, ODBC,
JDBC, JSQL, SSL, LDAP).

Benefits: Maximize return on investment in technology, synergy with standards supported by
the software vendors such as IBM, Sun and Netscape.

Common Application Types

OAS is well suited to three main application types: web-based applications, component-based
applications and enterprise application integration. Customers can use OAS to write web applications
that are static, dynamic or interactive in nature. At the same time, they can use OAS to write
component-based applications in Java. Existing enteprise applications can be integrated through OAS
to new applications. All of these application-types can co-exist on a single deployment of OAS.

This is good news for customers who wish to maintain flexibility in choosing development and
deployment platforms for their business logic, without the inconvenience and expense of integrating a
collection of middleware products.

WEB-BASED APPLICATIONS: OVERVIEW

Customers are choosing to deploy applications on the web for a variety of reasons. Most begin by
publishing corporate information on an external web site as a way to advertise and promote their
products. Next, or in parallel, they reduce the manageability costs of fat clients used to access internal
applications by replacing them with browser-based interfaces. After that they may deploy new web-
based applications as a way to provide customer service and support, or as a way to connect with
vendors and suppliers. Finally, some customers are using web-based applications as new ways to
conduct business. Travel planning, online banking, news delivery and e-commerce are some
examples.

11

Web servers do a great job of providing navigation for HTTP requests and serving up HTML pages.
Scripting languages can be used to enhance static HTML pages with dynamically executed content.
Customers can choose from dozens of different tools to develop web applications.

However, web servers and their associated tools do not meet the requirements for enterprise
applications. They are limited in the kinds of services they provide to applications. They do not scale
well, are not robust and do not support end-to-end business transactions.

Once a customer has moved past the early stages of web application deployment, problems with
response time, down time, performance and throughput begin to emerge. Some respond to these
problems by simply replicating web servers and their static content, lock stock and barrel, over
multiple machines. Others rely on loading up in-memory processing as a way of improving
performance. These kinds of techniques provide some relief to the problems described earlier but, in
the end, they are temporary fixes. If used carelessly these workarounds can actually exacerbate the
very problems they are meant to solve.

Problems with response time, down time, performance and throughput are best addressed early in the
development process through the use of a solid infrastructure that supports the requirements of
enterprise. Customers can struggle to build such an infrastructure from multiple middleware products
in a piece-part fashion, or they can avoid becoming system integrators by using OAS.

OAS FOR WEB-BASED APPLICATIONS

OAS offers the least cost path to web-enabled, enterprise-strength applications. Clients can be any
hardware device running a browser that communicates with the application server via HTTP.
Dynamic and static content, as well as business logic can be developed using HTML, scripting, or
procedural languages such as Java. The interactions between the client and server can be simple
request-reply, session or transaction oriented (see the later section entitled “Scalable, Reliable,
Manageable and Secure” for more details). Access to databases can be via Oracle’s OCI or the
ODBC, JDBC and X/A industry standards. These capabilities, along with the enterprise services
described in a subsequent section, provide a solid foundation for web-enabled business-critical
applications.

COMPONENT-BASED APPLICATIONS: OVERVIEW

The Internet has been described as the “killer application” for objects, and is accelerating the move to
component-based computing. Gartner Group states that by 2001, more than three-quarters of new
applications will be built, in part, using pre-existing components, without direct exposure to low-level
procedural middleware APIs (0.7 probability).3

Components are software modules that implement a set of related functions, encapsulate only the
required logic and data for those functions, and publish an interface that allows access to the functions
by other components and programs. The major benefits of component-based applications include:

• Reuse -- Components are written once and used over and over again to assemble new
applications. This improves programmer productivity and results in better quality.

• Flexibility -- Components can be modified without changing the interface or affecting other
components. Instead of re-writing a monolithic application to make incremental changes, only the

3 “Object Transaction Monitors: The Foundation for a Component-Based Enterprise,” Gartner Group
Strategic Analysis Report, 8/97

12

appropriate components need to be touched. This allows applications to be quickly and easily
adapted to changing business environments.

• Extensibility -- Components are easy to extend by adding new logic and data and extending their
interfaces, while offering backward compatibility and smooth migration. New capabilities can be
added to an application while existing ones remain continuously available.

Because components allow software applications to be separated from underlying heterogeneous
platforms, it is possible to think of them as business services that can be deployed and re-used
throughout the enterprise. Business processes can be modeled using components and built into what
are called service-based architectures. These architectures provide an overall design philosophy for
reusable software that addresses the needs of the business, not the technology.4

OAS FOR COMPONENT-BASED APPLICATIONS

Customers moving to components will find OAS 4.0 advantageous in several ways. Programmers can
use the JDeveloper tool (available with the product) to write in Java and package the code as a
business component. That logic is deployed in JWeb, JCORBA or EJB environments. Client objects
communicate with OAS over IIOP and transactions are enabled through OTS (the CORBA object
transaction service) and JTS (the simplified Java classes allowing access to OTS. Components and
web-enabled applications can coexist simultaneously on OAS, making it an ideal platform for
customers investigating component technology while building browser-based interfaces for existing
applications.

ENTERPRISE APPLICATION INTEGRATION

In addition to choosing to deploy web applications, customers are choosing internet and CORBA
technologies for application integration. The demand to integrate applications developed by different
IT organizations is skyrocketing in the US, as a result of the largest wave of mergers and acquisitions
since the turn of the century. In fact, merger activity will be close to $1.75 trillion in 1998, equal to
one-fifth of the US GNP.5 Application integration can also result from business process re-
engineering or the desire to offer end users more functions from new web enabled interfaces.

OAS 4.0 offers a variety of means to integrate existing applications. PL2Java and PL2Bean are tools
that allow existing PL/SQL stored procedures to be wrapped as Java classes, making them accessible
to Java developers using OAS. Also, a COBOL cartridge and 3270 terminal emulators are available
for legacy application integration. In conjunction with the Oracle8 database, transparent and
procedural gateways enable access to legacy data. Transparent gateways provide access to data stored
in flat files and non-Oracle relational databases, including DB2®, Informix® and Sybase/Microsoft
SQL Server®. Procedural gateways provide access to transaction technologies such as IBM’s CICS®
and MQ Series®.

One of the most popular methods of integrating legacy applications with new solutions is through the
use of CORBA-based technologies. As discussed earlier, the CORBA standards allow software
written in various languages to be “wrapped.” The wrapper defines a set of methods (roughly
equivalent to function calls in traditional programs) that are visible to other components. These
components, which may be on the same server or distributed across a network, are hosted on ORBs
that communicate using IIOP.

4 For more information, seeComponent-Based Development for Enterprise Systems

5 “Greenspan Questions Antitrust Efforts,”Wall Street Journal, June 10, 1998

13

The software being wrapped is often a legacy application that is left unchanged; the developer simply
defines interfaces to the long-lived code. Since OAS 4.0 includes a CORBA 2.0-compliant ORB, it
acts as an integration point between wrapped legacy applications and new component solutions. In
addition, by embracing CORBA standards, OAS is able to interoperate with other compliant
platforms. For example, Oracle has extensively tested interoperability with the Visibroker 3.2 ORB.
Oracle is also dedicating resources to test OAS with IBM and other third-party vendor solutions.

SCALABLE, RELIABLE, MANAGEABLE AND SECURE

OAS 4.0 offers built-in enterprise-level quality of service. This allows customers to put greater focus
on actually building and deploying applications, instead of dealing with infrastructure plumbing. The
level of enterprise services in OAS distinguishes it from other products that claim to be platforms for
business-critical application deployment. It will continue to be an area of ongoing differentiation for
OAS.

Distributed Architecture

As discussed earlier, from an architectural perspective, an OAS solution has three distinct parts:
HTTP listeners, the application server itself, and application cartridges (also called business
components). For maximum flexibility, scalability and reliability, these parts can be distributed over
multiple hardware platforms. For more information see the previous section entitled “OAS
Architectural Overview.”

Figure 3: OAS 4.0 sections distributed over multiple systems, with different numbers of CPUs.

DISTRIBUTED ARCHITECTURE FOR SCALABILITY AND RELIABILITY

The OAS architecture allows it to be distributed over a cluster of machines. This distributed
configuration gives system administrators the flexibility to add machines as application demands
increase. Machines can be added to accommodate large numbers of users and high transaction rates.
Applications can be configured to fail over to backup machines for improved reliability.

It is important to note that multiple heterogeneous HTTP listeners can be used in any given
configuration. For instance, a configuration could include one Netscape listener, one Microsoft
listener, and one Oracle listener on different nodes.

14

Scalability

An application’s ability to scale dynamically can be critical for customers. Multi-threaded cartridges
and the new load balancing features in OAS 4.0 allow applications to provide better response time to
end users during peak loads, and better throughput and performance during peak processing times.

MULTI-THREADED CARTRIDGES

One of the new features in OAS 4.0 is the ability to support multi-threaded cartridges. Cartridge
servers can be configured to have multiple instances of a single cartridge. Instances belonging to the
same cartridge server can have multiple threads associated with them to serve multiple requests from
different clients. These threads are shared across instances.

If all cartridge instances are busy servicing current requests, a new instance of that cartridge is
automatically started—provided the maximum number of instances configured by the administrator
has not been exceeded. When the request load drops, OAS shuts down cartridge instances to conserve
system resources, e.g., memory. These features provide dynamic scalability for better throughput and
performance.

Figure 4: Application 1 and 4 in this scenario are configured to have multiple instances.

LOAD BALANCING

Web Application Server 3.0 was one of the first products in the industry to introduce load balancing in
the form of round-robin scheduling. OAS 4.0 uses several new algorithms and techniques to provide
more sophisticated load balancing. Mathematical formulas have been constructed to determine which
cartridge instance should handle each request, making efficient use of all resources available for
running cartridges. There are also two new mechanisms available in OAS 4.0 for load balancing:

• Configurable, weighted load balancing by application

This is the ability to specify the percentage of instances of the application on a given node,
relative to the other nodes in a cluster. This is especially useful when running the application
server in a distributed configuration on nodes with different capacities. For instance, if the
application server is configured to run on three nodes, the administrator can direct a certain

15

percentage of requests to each cartridge, e.g. 30% to node 1, 50% to node 2, and 20% to node
3.

• Dynamic load balancing by system metrics

Here, system load information on each node in the distributed application server installation is
gauged before OAS decides where the next request should be routed. In particular, the swap
space, memory, and CPU utilization on each node in the system is factored into the decision.
The load balancing protocols are designed to allow additional nodes to be added to an OAS
installation without disrupting existing load balancing. The load is appropriately directed to
the new host, based on the system configuration.

Reliability

As more and more business-critical applications are deployed on the web, reliability increases in
importance. The fault-tolerant architecture of OAS 4.0 protects against any single point of failure,
minimizing costly downtime. In addition, OAS 4.0 supports transactions, which are used to guarantee
the reliability and integrity of client interactions involving business-critical information.

PROCESS ISOLATION

Applications written to HTTP server extensions are linked into a single, monolithic process. If one
application in that stack fails, it can end up crashing all the applications that may be running on that
HTTP server. The OAS process architecture is designed to make the system stable and robust. If one
of many applications being serviced by OAS crashes, it does not affect any of the other applications.
This feature was originally introduced in Web Application Server 3.0, and has recently been adopted
by competitive products.

FAULT-TOLERANT ARCHITECTURE

The OAS architecture ensures that there is no single point of failure. Failover and recovery are
possible whether a listener, the application server itself, or the application cartridge fails. An
associated process detects the failure and initiates recovery. In-flight transactions are either fully
completed (committed) or are backed out (rollback). Failure detection is implemented through
heartbeat messages. The frequency of the heartbeats is configurable.

RELIABILITY AND CLIENT-SERVER INTERACTIONS

The architecture of OAS 4.0 lends itself to three basic approaches to application design: request-
response (HTTP/IIOP), sessions (HTTP only) or transactions (HTTP/IIOP). For maximum reliability,
interactions involving business-critical information should be implemented as transactions. Non-
critical and repeatable interactions can be either simple request-replies or sessions.

The Request-Response Model: HTTP

Clients send HTTP requests to HTTP listeners. Requests for CGI scripts and static pages are handled
directly by the HTTP listener, and not OAS. Other requests are passed on to OAS, which manages the
routing of the request to the appropriate application cartridge. Requests for applications are handled
by an available instance of that application cartridge and the result is passed back to the browser. After
the result is returned, the connection between the browser and the web server is dropped, and the
context for the interaction between the browser and server is lost. This is called a “stateless” request.

The Request-Response Model: IIOP

JCORBA components, written in Java and hosted on the underlying CORBA infrastructure of OAS,
are accessible to clients and other JCORBA objects through IIOP. IIOP requests may come from

16

browsers that include an ORB, for instance Netscape Communicator®, which includes Visigenic
VisiBroker for Java.

If a client does not have a built-in ORB, an IIOP connection can still be established. The client’s
initial HTTP request solicits the download into the browser of a Java applet. This applet then
establishes an IIOP connection to OAS, which routes the request to the appropriate JCORBA object.
The connection is persistent until the results are processed and sent back to the client.

HTTP: The Session Model

Web applications can use a session mechanism in OAS 4.0 to maintain a persistent association
between browsers and a particular application cartridge instance. This is useful in particular situations
where a logical interaction between an end user and an application consists of multiple, interrelated
HTTP requests (and responses). For example, if the action taken upon the second request is different
depending upon the results of the first request, context (i.e., state) must be maintained. Alternative
solutions require the state to be passed back to the client, over the network, in the form of a
(potentially large) cookie.

The much better solution offered by OAS is to maintain context on the server. But on a distributed
OAS system consisting of multiple nodes and multiple instances of application cartridges, which
server/cartridge should maintain the context? The solution is to enable the first and subsequent
requests from the same browser to be handled by the same cartridge instance. This means the context
is saved by the cartridge instance and is available locally to the application upon each request from the
client. In this model, the session persists until the application has been idle for a configurable timeout
period or until the client or server breaks the connection.

HTTP and IIOP: The Transaction Model

A transaction is similar to a session in that it usually consists of multiple HTTP requests. However,
unlike sessions, transactions are used to ensure that interactions involving business-critical
information either complete entirely and permanently, or not at all.

The classic transaction example is the transference of funds between a checking account and savings
account in a bank. The transfer actually consists of two discrete steps: withdrawing the money from
checking and then depositing the same amount in savings. If one step succeeds and the other fails,
either the bank or their customer lose money. The desired result is that either both steps succeed and
the transaction is “committed” (the money is transferred), or that the transaction is rolled back (the
transfer fails but the money is not lost). In mainframe and client-server solutions, this capability is old
news. Unfortunately, it has never been news, old or recent, for traditional web servers.

OAS supports both declarative and programmatic transactions. Declarative transactions are “declared”
at runtime through configuration options for cartridge environments. They do not require explicit
programming. These “no code transactions” are simple and easy to use. Programmatic transactions are
written explicitly into the application logic using transactional APIs. These APIs include key words
that describe when a transaction begins and ends, and when it should commit or rollback. The actual
behavior of a transaction can be tailored to meet specific circumstantial criteria when the application is
programmed.

17

The way transactions are implemented in OAS 4.0 depends on the language used to write the
application.

C applications Programmatic Transactions are written using the transaction service API.

Declarative Virtual paths are associated with transaction demarcation
operations (begin, commit, rollback). When a client requests
the virtual path, the transaction automatically executes.

CORBA and EBJ
objects

Programmatic Transactions are written using the Java Transaction Service
API.

Declarative Transaction demarcation is done by setting object attributes
on or off.

LiveHTML Tagged pages Perl scripts embedded in tagged pages are automatically
transactional.

PL/SQL Declarative Using the transaction service for the PL/SQL cartridge,
URLs are associated with transaction operations (begin,
commit, rollback). When a user invokes the URL, the
corresponding operation automatically executes.

Manageability

OAS and applications built for OAS are easy to manage because OAS is a single platform that unifies
multiple single-purpose middleware technologies, allowing them to be managed from a single console.
OAS 4.0 has a new, easy-to-use management interface that improves administrator productivity.
Application availability can be monitored from Oracle’s Enterprise Manager product, as well as from
SNMP-based management applications.

ONE MANAGEMENT ENVIRONMENT

The OAS 4.0 management console has a new user interface and provides all management capabilities
through one comprehensive tool. The interface is Java/HTML-based, easy to use and intuitive, and
enables application developers and system administrators to configure, start/stop, and monitor
listeners, application servers and cartridges. The console also provides mechanisms for configuring
the system for optimal load balancing, performance tuning and enabling/disabling security in
applications.

ENTERPRISE MANAGER INTEGRATION WITH OAS 4.0

The OAS 4.0 console can be launched from Oracle’s Enterprise Manager, allowing operators the
ability to configure, monitor and manage OAS applications from the same console used to monitor
Oracle database products.

SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP)

Oracle SNMP support enables OAS 4.0 applications to be discovered, identified and monitored by
any SNMP-based management application. OAS 4.0 ships with an SNMP MIB that includes
configuration, status and statistical information about OAS components. SNMP traps are generated
when OAS processes unexpected events.

18

Security

OAS 4.0 naturally supports the multiple authentication mechanisms available earlier with Web
Application Server 3.0. These include:

• Basic Authentication– user name and password
• Domain-based Authentication- enable/disable users from a particular domain
• IP-based Authentication- enable/disable users from a particular IP address/node
• Database Authentication- applications can be authenticated based on the database user id and

password

Application and system security available in OAS 4.0 has been significantly enhanced to secure not
only web clients but communications between CORBA objects. Support for X.509 certificates and
storage of certificates in a standard LDAP directory have also been added. Instead of entering and
managing all the certificates of all the potential users for the applications running on OAS, it is now
possible to configure OAS to refer to a shared Lightweight Directory Access Protocol (LDAP)
directory.

New security features include:6

• Secure Sockets Layer v.3 (SSLv3) protection of IIOP traffic from client objects to server objects
or to the embedded OAS 4.0 ORB.

• Support for industry-standard X.509v3 digital certificates.

• A “Wallet Manager” for certificate and trust-point management.

• Identity-based access control using X.509 based certificates stored in an industry-standard LDAP
directory.

SSL AND X.509 CERTIFICATES

To protect client/server communications, OAS 4.0 utilizes Secure Sockets Layer version 3 (SSLv3),
the most widely used Internet security protocol. SSL encrypts data on the network, preventing
attackers from viewing or tampering with HTTP or IIOP data exchanged over the Internet. Moreover,
Oracle’s SSL uses industry-standard X.509v3 certificates for secure connection setup and mutual
client and server authentication. This prevents attackers from masquerading as legitimate users and
gaining unauthorized access to the system.

WALLET MANAGER

To facilitate installation and use of X.509 certificates and protect key material on the server, OAS
includes a Wallet Manager tool. The Wallet Manager allows the server administrator to store
certificates and associated private keys in an encrypted wallet file, decrypting and activating them for
SSL use as needed. Since certificates may be issued by multiple certificate authorities (CAs), the
Wallet Manager allows the administrator to install and manage specific CA trustpoints, specifying
which CAs are trusted to issue client certificates for authentication to OAS.

ACCESS CONTROL AND LDAP

Although authenticating users is critical for security, a system must also control which resources users
can access on the server. Access to OAS 4.0 cartridges is controlled through the use of an LDAP
directory and Access Control Lists (ACLs).

6 The RSA home page has background information on Internet-related security topics

19

Cartridges are associated with virtual paths—similar to URLs—that identify a cartridge instead of a
static HTML page. Each virtual path is associated with a certificate realm. The realm points to an
LDAP directory server that contains certificates of prospective users, as well as an ACL that lists the
groups or individuals entitled to use the cartridge associated with that virtual path.

The following example may help clarify this methodology. When a user requests access to a cartridge
through a virtual path, the user’s certificate is extracted and authenticated using the LDAP directory
specified in the virtual path’s certificate realm. Then the realm’s ACL is checked in order to authorize
or reject the request.

OAS 4.0 has been certified for use with Netscape Directory Server. Certifications for other LDAP-
compliant directory servers are planned.

SUMMARY

The widespread use of Internet technologies by applications running on both public and private
networks has created requirements not met by traditional web servers. These requirements include
scalability, reliability, manageability, security, interoperability, directory and transaction services and
database access. In the past, these requirements were met by cobbling together various single-purpose
middleware products. Today, these requirements are met by a new class of product called an
application server.

OAS 4.0, the first entrant and current market leader, provides the middleware features required by
enterprise applications in a single product that is easy to install and manage. This single platform
supports the industry’s leading development models and languages, which can be used to write
applications for any kind of client, either web browsers or true object-oriented clients. Applications
built on OAS can access both Oracle and non-Oracle databases.

Offering “built-in” enterprise-level quality of service, OAS 4.0 is the least-cost path to both web-
enabled and component-based applications. It is the right choice for Oracle’s tools, applications and
Enterprise Manager products. And it is the right choice for customers who wish to maintain flexibility
in choosing development and deployment platforms for their business logic, without the
inconvenience and expense of integrating a collection of middleware products.

WHY CHOOSE ORACLE?

Oracle is the second largest software company in the world, and the industry’s leading database
vendor. It has proven experience and expertise in industry applications and development tools. The
company’s stature in the industry is enhanced by its financial health and strong third-party
relationships. Oracle works hard to ensure the success of its customers through broad educational
offerings, a large, worldwide consulting organization and 24-hour global support. It is also doing its
part to ensure that customers have viable alternatives to Microsoft by supporting open standards such
as EJBs, and by actively participating in standards bodies such as the OMG.

OAS 4.0 already has thousands of licensed customers around the world. InfoWorld named OAS its
Server Software Product of the Year for 1997. VARBusiness selected OAS as the Product Report’s
#1 Internet Server Software for 1997. OAS also received InfoWorld’s 1997 "Best of the Test Center"
#1 Analyst's Choice Award. This industry recognition highlights the wide support for Oracle’s
compelling vision of web and component-based enterprise computing.

20

Appendix: Language Cartridges and Tools

Oracle offers a range of tools to assist programmers in building applications for OAS 4.0. JDeveloper
is used to write Java for Web, CORBA or EJB cartridges. Oracle Designer can be used to generate
applications for the PL/SQL cartridge. Oracle Developer can be used to generate web-enabled object
code. Other tools mentioned in the following tables are available from third-party partners of Oracle.

Table 1: Developing Content HTML Applications on OAS 4.0

Language Tools Available Benefits

HTML HTML Editor:
Symantec VisualPage
(included with OAS
4.0)

Easy HTML application development

Out-of-box solution

Perl Perl: Standard Perl
Support

Large installed base, easy to use

Java Java IDE:

Oracle JDeveloper
Suite, Oracle
JDeveloper

More customized clients

Easy application development

Wizard technology for common tasks

Presentation and application logic can be more
interactive and sophisticated

LiveHTML
(Server Side
Includes)

HTML Editor:
Symantec VisualPage

Ease of embedding application logic in HTML

Support the scripting paradigm through server side
scripts for including dynamic content within HTML
pages, effectively separating designer from developer.

Access to other applications in Oracle Application
Server using InterCartridge eXchange (ICX), e.g.,
inclusion of client information from a payment cartridge

21

Table 2: Languages and Database Application Models
Database: Oracle Database Server

Language: PL/SQL Application Cartridge: Native access to Oracle Database Server
Benefits: Leverage existing skills to web publish from Oracle database servers

Embed application logic and database access within an application

Scaleable and secure performance solution

Business logic stored in database as stored procedures

Easy toolset for generating HTML

Re-use existing stored procedures with minor changes for HTML display

Supports configurable enterprise transaction service for Web clients

Language: PL2Java: Java access to Oracle Database Server
Benefits: Application logic in both PL/SQL and Java

Reuse existing PL/SQL packages without any modification

Wizard support in AppBuilder for Java

Language: C Application Cartridge - Pro*C and OCI: Access to Oracle Database Server
Benefits: Developer controls application logic and database access

Supports transactional applications through configurable transactions

Supports transactions programmatically through the X/Open TX API

Highest performance mechanism to access database through native Oracle interface

22

Database: Oracle Database Server and any ODBC-Compliant Database

Language: JWeb Application Cartridge: Java JDBC: SQL Access to Databases
Benefits: 100% pure Java applications supported

JDBC access to databases

PL2Java supported for access to PL/SQL stored procedures through Java class wrappers

Application logic in Java

Output HTML using Java web toolkit

Integrated with Oracle JDeveloper

Integrated development and deployment wizards

Support for Java Transaction Service (JTS)

Language: EJB Cartridge, JCORBA, JDBC: SQL Access to Databases
Benefits: Industry-standard distributed component model

CORBA development and deployment platform of choice

Enables CORBA developers access to Oracle

Access to CORBA through Java

Database access using JDBC

Access to transaction services such as JTS/ OTS

Language: Perl Cartridge: Perl Access to Databases
Benefits: Easy access through scripts

Perl DBI access to databases

CGI developers can leverage existing code and add new functionality

Language: ODBC Application Cartridge: SQL Access to Databases
Benefits: Industry standard

Easy to use

Database: Rdb Database Server

Language: Rdb Application Cartridge: Access to Rdb Databases
Benefits: Fastest and easiest way to access Rdb databases

23

Oracle Application Server 4.0 White Paper:

Product Overview

September 1998

Copyright © Oracle Corporation 1998

All Rights Reserved Printed in the U.S.A.

This document is provided for informational purposes

only and the information herein is subject to change

without notice. Please report any errors herein to

Oracle Corporation. Oracle Corporation does not

provide any warranties covering and specifically

disclaims any liability in connection with this document.

Oracle is a registered trademark and Enabling the

Information Age is a trademark or registered trademark

of Oracle Corporation. All other company and product

names mentioned are used for identification purposes

only and may be trademarks of their respective owners.

®

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

+1.650.506.7000

Fax +1.650.506.7200

Copyright © Oracle Corporation 1998

All Rights Reserved

