
VLDB Design & Migration Considerations
Under Oracle8™

An Oracle Technical White Paper

June 1997

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

VLDB Design & Migration Considerations
Under Oracle8

,1752'8&7,21

As databases grow larger, the task of managing and maintaining them increases at least proportionally, if not
exponentially. Activities such as backing up, reorganizing, loading, and purging become more complex and time
consuming as the amount of data increases. Often it becomes impossible to perform these maintenance
operations within the window of time provided by the customer.

Very Large Databases (VLDBs) are approaching terabyte size and soon will exceed into the tens of hundreds of
terabytes and maybe even to one petabyte. Not only does the size increase, so too does the up-time requirements
of the databases. Maintenance tasks must be completed quickly with the impact of scheduled outages minimized.

Many operational and management issues must be considered in designing a very large database under Oracle8 or
migrating from an Oracle7 database. If the database is not designed properly, the customer will not be able to
take full advantage of Oracle8’s new features. This white paper discusses issues related to designing a VLDB
under Oracle8 or migrating from an Oracle7 database.

3$57,7,21,1*�675$7(*,(6�²�',9,'(�$1'�&2148(5

One of the core features of Oracle8 is the ability to physically partition a table and its associated indexes. By
partitioning tables and indexes into smaller components while maintaining the table as a single database entity,
the management and maintenance of data in the table becomes more flexible. The data management now can be
accomplished at the finer-grained, partition level, while queries still can be performed at the table level. For
example, applications do not need to be modified to run against the newly partitioned tables.

The divide-and-conquer principle allows data to be manipulated at the partition level, reducing the amount of
data per operation. In most cases, this standard also allows partition-level operations to be performed in parallel
with the same operations on other partitions of the same table, speeding up the entire operation.

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

%(1(),76�)520�7$%/(�3$57,7,21,1*

The greatest benefits from Oracle8 partitioning is the ability to maintain and administer very large databases.
These gains far outweigh any performance benefits. The following dimensions of scalability

1
 can be found

in Oracle8:

• Higher Availability

• Greater Manageability

• Enhanced Performance

+LJKHU�$YDLODELOLW\

Using intelligent partitioning strategies, Oracle8 can help meet the increasing availability demands of VLDBs.
Oracle8 reduces the amount and duration of scheduled downtime by providing the ability to perform downtime
operations when the database is still open and in use. Refer to the paper, Optimal Use of Oracle8 Partitions, for
further information about this topic. The key to higher availability is partition autonomy, the ability to design
partitions to be independent entities within the table. For example, any operation performed on partition X
should not impact operations on a partition Y in the same table.

*UHDWHU�0DQDJHDELOLW\

Managing a database consists of moving data in and out, backing up, restoring and rearranging data due to
fragmentation or performance bottlenecks. As data volumes increase, the job of data management becomes more
difficult. Oracle8 supports table growth while placing data management at a finer-grain, partition level. In
Oracle7, the unit of data management was the table, while in Oracle8 it is the partition. As the table grows in
Oracle8, the partition need not also grow; instead the number of partitions increases. All of the data management
functions in Oracle7 still exist in Oracle8. But with the ability to act against a partition, a new medium for
parallel processing within a table now is available. Similar rules apply to designing a database for high
availability. The key is data-segment size and to a lesser degree, autonomy.

(QKDQFHG�3HUIRUPDQFH

The strategy for enhanced performance is divide-and-conquer through parallelism. This paradigm inherently
results in performance improvements because most operations performed at the table level in Oracle7, now can
be achieved at the partition level in Oracle8. However, if a database is not designed correctly under Oracle8, the
level of achievable parallelism and resulting performance gains will be limited. The table partitioning strategy
used in Oracle7 may not necessarily be adequate to make optimal use of the Oracle8 features and functionality.

72�3$57,7,21�25�127�72�3$57,7,21

:KHQ�VKRXOG�D�WDEOH�EH�SDUWLWLRQHG"

The following guidelines can be used to determine when a table should be partitioned:

• If migrating from Oracle7 to Oracle8, entities represented as UNION VIEWS should become partitioned
tables under Oracle8. The number of partitions may be different but in most cases, the reason a UNION
VIEW was created in Oracle7 still applies in Oracle8.

• For manageability, the author recommends that tables greater than 2GB should be partitioned. This is not a
strict maximum, but a number to use as a guide.

1 Refer to the Scalability Workshop by Enterprise Scalable Solutions, Center of Excellence.

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

• Tables used to perform parallel Data Manipulation Language (DML) operations MUST be partitioned.
These tables normally are the subject of large-batch jobs.

• Large tables with a definable proportion of read-only records should be partitioned. A typical example
 is historical tables where only the current month of data is updateable and the other 11 months are
read-only.

• Tables within a well-partitioned, parallel server environment that are modified by multiple instances, such
as an intersecting set of tables,2 should be partitioned.

• Tables that need to be accessed with parallel-index scans should be partitioned.

• Tables with data that may need to be off-line in the future, such as historical tables, should be partitioned.

• Tables where data-to-disk affinity is crucial should be partitioned. Data-to-disk affinity is typical in
Massively Parallel Processing (MPP) environments that have a table striped across multiple nodes.
For example, better performance yields are achieved when records A-E reside on a disk local to node 1, F-P
on a disk local to node 2, etc..

+2:�0$1<�3$57,7,216�6+28/'�,�86("

The number of partitions used to define a table is not an arbitrary determination. Various external influences
must be analyzed before making this important design decision, and often these considerations may conflict with
one another. Sometimes a tradeoff must be made between database availability and performance. So, the
designer first must determine what is most important to the customer and build the database to best satisfy the
higher-priority problems.

0DQDJHDELOLW\

'DWD�YROXPH

The easiest way to determine the number of table partitions is to consider the amount of data in the table.
A partition should be small enough to manage, backup, and rebuild if necessary. The management of many
partitions in Oracle8 is negligible compared to Oracle 7.3 union views.

Tip 1: You may want to let the partition size dictate the number of partitions in the table.

%DFNXSV

If using “export” as part of a complete backup strategy, then partitions should be small enough to export to a
single filesystem. Also a table can be exported in parallel by running a separate export against each of the
partitions in the table.

Tip 2: If using “export” as part of the backup strategy, then a partition must be small
enough to fit on the filesystem.

5HDG�RQO\�'DWD

Often the amount of data in a table that regularly changes is relatively small, and the remaining data is static.
Under Oracle7, the entire table had to be backed up, even though only a small portion of the table changed. By
partitioning the read-only data from the read-write data, and placing each partition into its own tablespace, only
the read-write data needs to be backed up regularly under Oracle8. The tablespaces containing read-only data
would, of course, need to be marked READ-ONLY, as in Oracle7, and backed up only once in Oracle8. If

2 Refer to the Scalability Workshop by Enterprise Scalable Solutions, Center of Excellence.

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

backing up the database is a high-priority issue, then partitioning under Oracle8 can be used to reduce the amount
of data needed to back up regularly.

Tip 3: Partition a table to separate read-only from read-write data to reduce the amount of
data to back up.

3DUDOOHO�,QGH[�&UHDWH

The maximum degree of parallelism obtainable during a global index create is dependent upon the number of
partitions in the table. When issuing a “CREATE INDEX” statement, one parallel slave will be assigned to each
table partition. For example, if the table has 10 partitions, then a maximum of 10 slaves will perform the index
build, one per partition. If nine of these 10 table partitions contain no rows, then 10 slaves still will be allocated,
but nine of them will complete quickly and sit in “dequeue wait” until the tenth slave has finished. This data
skew causes nine slaves to be unavailable until the tenth is complete.

When deciding the number of partitions in the table, consider how the indexes will be built and the degree of
parallelism required to build them in a reasonable time. Instead of 10 average-size partitions that would allow a
maximum parallelism of degree 10, use 100 smaller partitions allowing up to a parallel degree of 100.

A workaround exists to achieve a degree of parallelism in the index build greater than the number of partitions in
the table. First, create the empty, partitioned table and create the global index on the table. Set the index as
UNUSABLE, then load the data into the table. After the load is completed the global index can be rebuilt using
the ALTER INDEX REBUILD PARTITION syntax. This statement rebuilds a single partition of the index,
allowing a degree of parallelism to be applied to that partition build.

Tip 4: The maximum degree of parallelism in a standard, global index build is equal to the
number of partitions in the underlying table unless you use the ALTER INDEX REBUILD
PARTITION syntax.

3DUDOOHO�$QDO\]H

The time to analyze a table can be significant in a data warehouse running the cost-based optimizer. Because
partitions in a table can be analyzed independently, a parallel analysis of a table can run by executing multiple
partition analyzes in parallel. The ability to parallel analyze will become automatic in future releases of Oracle8.

5HGXFLQJ�)UDJPHQWDWLRQ

If an application periodically deletes batches of records from a table and causes fragmented indexes, consider
partitioning around this requirement. For example, if the deletes occur “half daily,” then partition by half day to
allow an entire partition to be dropped along with its associated local indexes.

Tip 5: In applications that have large purge requirements, consider partitioning your table
around the purge cycles.

0DQDJLQJ�'DWD�6NHZ

The data skew needs to be considered when determining the number of partitions and their boundaries. The data
skew can cause partition size to vary greatly across the table, creating a few, very large partitions and leaving the
remaining partitions with very little data. Partitions of near-equal size ease table management overhead. If nine
of 10 partitions are empty, the partition ranges should be better defined to spread the data more evenly across all
partitions. Or if several partitions contain more data than the rest, break larger partitions into smaller partitions
so that the partition sizes are more balanced across the entire table. For example, if the months of November,

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

December and January contain more data than the rest of the year because of increased retail trading, break these
monthly partitions into weekly partitions.

Tip 6: Consider the data skew when determining the number of table partitions and their
associated upper bounds.

$YDLODELOLW\

6PDOOHU�SDUWLWLRQV�ORFDO�LQGH[HV

If an application’s most important requirement is availability, the designer must attempt to have tables with
truly autonomous partitions. This can be achieved by minimizing or completely removing the use of global
indexes on a table. Autonomous partitions are those that are not impacted by operations on other partitions in
the same table.

If a global index exists on a table, then dropping or invalidating one table partition will invalidate the entire
global index. At this point, the global index no longer can be used and must be rebuilt. Any data access that
relies on that global index no longer can be used. The data in the other partitions still is available but not via that
global index. Instead, the data is accessible through a full-table scan or via an alternate index if one exists.

The above example is a case where table partitions can greatly impact access to other table partitions, as shown in
the following diagram. For example, dropping table partition 3 causes its local index to be dropped and the
global index to become unavailable. All data access, even if the data is in partitions 1 or 2, will be unable to use
that global index. By using only local indexes, invalidating any one table partition will not impact any other
partition. However, data access via a global index may be faster than a local index, and a tradeoff may need to be
made between availability and performance.

Partitions

Table

Local
Index

Partitions
(Multiple
B*trees)

Global
Index

(Single
B*tree)

Partition 1 Partition 3Partition 2

Figure 1: Impact of global indexes on availability.

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

Tip 7: Minimize the number of global indexes in applications where table availability is a
key requirement.

3HUIRUPDQFH

'HJUHH�RI�SDUDOOHOLVP�GXULQJ�'0/�RSHUDWLRQV�

If the application is utilizing parallel DML functionality, the table running against the DML needs to be
partitioned. The degree of parallelism achievable is equal to the number of partitions in the partitioned table of
the DML operation. When the DML statement is initiated, one parallel slave is assigned to each partition. For
example, a table partitioned 10-way will use a maximum degree of parallelism of 10, even if a higher degree
is specified.

If a DML statement only requires data from one partition, then it will not be parallelized because only one slave
will be allocated. When designing a database, this degree of parallelism is a very important consideration. Often,
batch jobs perform the majority of DML operations in a database. The degree of parallelism achievable by a
batch job greatly influences the execution time of the job. Therefore, it is important to partition tables to support
parallel data manipulation language (PDML).

Batch jobs need to be analyzed to determine which data they process. For example, a table partitioned into 12
monthly partitions may not be sufficient to parallelize batch jobs if the jobs only run against a single month of
data. In this case, partition weekly so the degree of parallelism achievable would be four to five—depending
upon how the month overlap is handled. An alternative solution is to add a second column to the partition key to
create more partitions.

Tip 8: Determine the degree of parallelism required from PDML operations. The maximum
degree of parallelism achievable equals the number of partitions in the table.

7UDQVDFWLRQDO�6NHZ

Another consideration when partitioning a table is the transactional skew, which is the distribution of workload
across the table partitions. If 80 percent of the workload is on 20 percent of the data, then the volume of access
to that data must be examined. Transactional skew can cause unbalanced I/Os, where a small number of disks
support the majority of the workload. When determining how to partition data, ensure that the most frequently
accessed data is partitioned adequately to support the load. To better distribute I/O, break partitions into smaller
ones on separate disks and in different tablespaces or stripe the existing partitions across more disks.

When designing PDML operations, remember the slaves are assigned two partitions assuming a uniform
transaction distribution. If most of the data required by the operation is located in a small number of partitions,
then the operation will not execute as quickly as if the data-access requirements were evenly spread across all
partitions. In this case, dividing the most-active partitions into multiple, smaller ones will balance the workload
more evenly across the parallel slaves, resulting in faster execution time.

Tip 9: Watch for transactional skew that causes the majority of the workload to fall
against a small number of partitions. Break these partitions into multiple ones to gain the
maximum benefits from parallel processing, and put them on different disks if I/O is a
potential bottleneck.

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

2UDFOH��3DUDOOHO�6HUYHU�SDUWLWLRQLQJ

Table partitioning provides greater control over the physical location of data because partitions can be defined on
a specific datafile or disk. For example, take an application partitioning strategy that balances the workload
across the instances by customer surname. An Oracle Parallel Server configuration with three instances could
have surnames between A-E serviced on instance 1, surnames from F-P on instance 2, and surnames from Q-Z
on instance 3.

When considering a table-partitioning strategy try to at least match the instance-partitioning strategy. In this case,
the customer table could be partitioned at least three ways by customer surname: A-E, F-P, Q-Z. Parallel Cache
Management (PCM) lock allocation is simplified by putting each of these partitions in their own tablespace and
assigning minimal locks to those associated datafiles.

The partition layer provides data dependent routing to ensure that datafile access always is local to a particular
Oracle Parallel Server instance (node) because the application partitioning strategy matches the data partition-ing
strategy. This is relevant particularly to PDML operations. The number of partitions need not be limited to three
in the example explained above. The important point is to ensure that one datafile corresponds with one instance,
producing a tidy, easily managed parallel-server configuration.

Tip 10: Under Oracle Parallel Server, attempt to at least match the application partitioning
strategy when considering a table-partitioning strategy.

2Q�/LQH�7UDQVDFWLRQ�3URFHVVLQJ��2/73��,QGH[�/RRNXSV

Tradeoffs often must be made between availability/manageability and performance when making database-design
requirements. If performance is the primary success factor, then global indexes provide an edge over local ones
and global indexes may need to be used.

Tip 11: Global indexes can provide faster lookups to non-unique data than local, non-
prefixed indexes.

3DUDOOHO�,QGH[�6FDQV

Under Oracle7, table accesses would be parallelized only if the operation was a full-table scan; a single b*tree
could not be scanned in parallel. With Oracle8, local indexes are represented as multiple b*trees, and even
though a single scan cannot be parallelized, parallelism can be achieved because more than one b*trees
constitutes the index.

81,21�9,(:6

Application requirements often drive the initial database design. The reasons for building UNION VIEWS under
Oracle7 are the same when partitioning a table in Oracle8. Time-based partitioning strategies also remain the
same in Oracle8, except for the number of partitions. In Oracle8, the number of partitions is based on
maintenance, availability and the performance requirements of the application. Also, since Oracle8 partitions are
part of a single table, the restricted number of tables found in an Oracle7 UNION VIEW (due to the maximum
length of a SQL statement) is not an issue.

Tip 12 : The maximum number of tables in a UNION VIEW due to the SQL statement length
does not exist for Oracle8 partitions.

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

�

*/2%$/�,1'(;(6�$1'�3'0/

Maximize the use of local indexes for maintainability and global indexes for performance. If global indexes are
needed on a table, beware of the following:

1. Global indexes will need to be set UNUSABLE prior to a parallel insert, and rebuilt following it.
A parallel insert cannot be performed into a global index.

2. Global unique indexes will need to be set UNUSABLE prior to parallel update operations, and rebuilt
following them. A parallel update cannot be performed on a global unique index.

3. If a table partition needs to be recovered and a global index exists on the table, the global index will need to
be rebuilt after the recovery because the index must be consistent with all table partitions in the table.

3$57,7,21,1*�)25�25$&/(�3$5$//(/�6(59(5�3(5)250$1&(

$SSOLFDWLRQ�3DUWLWLRQLQJ�DQG�7DEOH�3DUWLWLRQLQJ

When designing a non-READ-ONLY application to run on Oracle Parallel Server, the design should attempt to
achieve some level of partitioning—application, departmental/user, or transactional partitioning. The objective
is to distribute the workload across the instances in the configuration while minimizing the amount of pinging
that occurs. In 90 percent of the cases, pinging will occur due to processes on different instances wanting
access to the same tables. Standard methods are available to reduce the amount of pinging that occurs in
these scenarios.

The pinging can be removed by partitioning intersecting tables using the same method that distributed the
application across the Oracle Parallel Server configuration. For example, an application that handles insurance
claims can process personal liability claims on instance 1 and worker’s compensation claims on instance 2. Both
of these areas insert/update records in the CLAIMS tables, and can be a potential area for pinging. By partition-
ing the CLAIMS table into 20 partitions—10 for personal liability and 10 for worker’s compensation—the
potential for pinging is removed. The table partitioning strategy separates the worker’s compensation data from
the personal liability data corresponding to the load partitioning strategy.

3DUWLWLRQ�WR�,QVWDQFH�0DSSLQJ

When a PDML statement is executed across an Oracle Parallel Server configuration in an MPP environment, the
parallel slaves are allocated to the instances based on the locality of the table’s datafiles. Designing a database in
an MPP environment that needs to support PDML must take the distribution of parallel slaves into account. A
large table partitioned 100-way that will be the subject of a large PDML operation should be distributed across
the MPP nodes to utilize all CPUs. For example, on a 10 node MPP, localize 10 partitions per node. The
datafiles that make up this partition also should be local to that node.

5HDG�2QO\�'DWD

Most tables are a mixture of read-only records and read-write records. In an Oracle Parallel Server environment,
read-only tables require a small number of PCM locks allocated to their underlying datafiles. Separate the read-
only data from the read-write data into different partitions with its own tablespace. The read-only tablespaces
then can be set to READ-ONLY and be allocated a small number of PCM locks, while the read/write data can be
assigned the bulk of the PCM locks. This method will reduce the total number of PCM locks allocated in the
system and therefore provide memory savings.

9/'%�'HVLJQ�	�0LJUDWLRQ�&RQVLGHUDWLRQV�8QGHU�2UDFOH���$Q�2UDFOH�7HFKQLFDO�:KLWH�3DSHU
-XQH�����

��

6800$5<

Designing a very large database for availability and manageability differs slightly from designing it for
performance. The number, size, type, and autonomy of the table and index partitions need to be considered based
on the customer requirements. Compromises may need to be made in situations where availability, performance
and manageability are of equally high priority. Correctly designing a VLDB will ensure that the Oracle8
functionality is used optimally.

2UDFOH�&RUSRUDWLRQ

:RUOG�+HDGTXDUWHUV

����2UDFOH�3DUNZD\

5HGZRRG�6KRUHV��&$������

8�6�$�

:RUOGZLGH�,QTXLULHV�

���������������

)D[����������������

KWWS���ZZZ�RUDFOH�FRP�

&RS\ULJKW���2UDFOH�&RUSRUDWLRQ�����

$OO�5LJKWV�5HVHUYHG

7KLV�GRFXPHQW�LV�SURYLGHG�IRU�LQIRUPDWLRQDO�SXUSRVHV�RQO\ ��DQG�WKH

LQIRUPDWLRQ�KHUHLQ�LV�VXEMHFW�WR�FKDQJH�ZLWKRXW�QRWLFH���3OHDVH

UHSRUW�DQ\�HUURUV�KHUHLQ�WR�2UDFOH�&RUSRUDWLRQ���2UDFOH�&RUSRUDWLRQ

GRHV�QRW�SURYLGH�DQ\�ZDUUDQWLHV�FRYHULQJ�DQG�VSHFLILFDOO\�GLVFODLPV

DQ\�OLDELOLW\�LQ�FRQQHFWLRQ�ZLWK�WKLV�GRFXPHQW�

2UDFOH�DQG�2UDFOH�3DUDOOHO�6HUYHU�DUH�UHJLVWHUHG�WUDGHPDUNV�DQG

(QDEOLQJ�WKH�,QIRUPDWLRQ�$JH��2UDFOH���DQG�2UDFOH��DUH

WUDGHPDUNV�RI�2UDFOH�&RUSRUDWLRQ�

$OO�RWKHU�FRPSDQ\�DQG�SURGXFW�QDPHV�PHQWLRQHG�DUH�XVHG�IRU

LGHQWLILFDWLRQ�SXUSRVHV�RQO\�DQG�PD\�EH�WUDGHPDUNV�RI�WKHLU

UHVSHFWLYH�RZQHUV�

