

Classes: NSAutoreleasePool

r
r

NSAutoreleasePool

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSAutoreleasePool.h

Class Description

The NSAutoreleasePool class is used to implement the Foundation Kit’s autorelease mechanism. An
NSAutoreleasePool object simply contains objects that have received an autorelease message, and when
deallocated sends a release message to each of those objects. An object can be put into the same pool several
times, and receives a release message for each time it was put into the pool. Thus, sending autorelease
instead of release to an object extends the lifetime of that object until the pool itself is released or longer if
the object is retained. This class specification contains information on fine-tuning your application’s
handling of autorelease pools; see “Object Ownership and Automatic Disposal” in the introduction to the
Foundation Kit for general information on using the autorelease mechanism.

You create an NSAutoreleasePool with the usual alloc and init messages, and dispose of it with release (an
exception will be raised if you send autorelease or retain to an autorelease pool). An autorelease pool
should always be released in the same context (invocation of a method or function, or body of a loop) that
it was created. When a thread terminates, it automatically releases all of the autorelease pools associated
with itself.

Autorelease pools can be nested, so you can include them in any function or method. For example, a main()
function may create an autorelease pool and call another function that creates another autorelease pool. O
a single method might have an autorelease pool for an outer loop, and another autorelease pool for an inne
loop. Each thread in a program maintains autorelease pools on a stack; the most recently created (and
unreleased) autorelease pool is the top pool on the stack. The ability to nest autorelease pools is a definite
advantage, but there are side effects when exceptions occur (see "Exceptions and Nested Autorelease
Pools").

NSAutoreleasePools are automatically created and destroyed in applications based on the Application Kit,
so your code normally doesn’t have to worry about them. (The Application Kit creates a pool at the
beginning of the event loop and releases it at the end). There are two cases, though, where you might wish
to create and destroy your own autorelease pools. If you’re writing a program that’s not based on the
Application Kit, such as a UNIX tool, there’s no built-in support for autorelease pools; you must create and
destroy them yourself. Also, if you write a loop that creates many temporary objects, you might wish to
create an NSAutoreleasePool inside the loop to dispose of those objects before the next iteration.

Enabling the autorelease mechanism in a program that’s not based on the Application Kit is easy. Many
programs have a top-level loop where they do most of their work. To enable the autorelease mechanism
1

"
e

t

you create an NSAutoreleasePool at the beginning of this loop and release it at the end. An autorelease
message sent in the body of the loop automatically puts its receiver into this pool.

Your main() function might look like this:

void main()

{

 NSArray *args = [[NSProcessInfo processInfo] arguments];

 unsigned count, limit = [args count];

 for (count = 1; count < limit; count++){

 NSAutoreleasePool *pool =[[NSAutoreleasePool alloc] init];

 NSString *fileContents;

 NSString *fileName;

 fileName = [args objectAtIndex:count];

 fileContents = [[NSString alloc] initWithContentsOfFile:fileName];

 [fileContents autorelease];

 /* Process the file, creating and autoreleasing more objects. */

 [pool release];

 }

 /* Do whatever cleanup is needed. */

 exit (EXIT_SUCCESS);

}

This program processes files passed in on the command line. The for loop processes one file at a time. An
NSAutoreleasePool is created at the beginning of this loop and released at the end. Therefore, any object
sent an autorelease message inside the for loop, such as fileContents, is added to pool, and when pool is
released at the end of the loop those objects are also released.

Similarly, NSAutoreleasePools can be created inside any loop, even in a program based on the Application
Kit, that creates and releases many objects during each iteration.

Implications of Nested Autorelease Pools

It’s common to speak of autorelease pools as being nested because of the enclosure evident in code; for
instance, you can have an autorelease pool in an outer loop that contains an inner loop with its own
autorelease pool. But you can also think of nested autorelease pools as being on a stack, with the "inmost
autorelease pool being on top of the stack. As noted earlier, this is actually how nested autorelease pools ar
implemented: Each thread (NSThread) in a program maintains a stack of autorelease pools. When you
create an autorelease pool, it is pushed onto the top of the current thread’s stack. Autoreleased objects—tha
is, objects which have received an autorelease message or which are added through the addObject: class
method—are always put in the autorelease pool at the top of the stack.
2

Classes: NSAutoreleasePool

e

ll
y

Released autorelease pools, if not on the top of the stack, will cause all (unreleased) autorelease pools abov
them on the stack to be released, along with all their objects. If you neglect to send release to an autorelease
pool when you’re finished with it (something not recommended), it will be released when one of the
autorelease pools in which it nests is released.

This behavior has implications for exceptional conditions. If an exception occurs, and the thread suddenly
transfers out of the current context, the pool associated with that context is released. However, if that pool
is not the top pool on the thread’s stack, all the pools above the released pool are also released (releasing a
their objects in the process). The top autorelease pool on the thread’s stack then becomes the pool previousl
underneath the released pool associated with the exceptional condition. Because of this behavior, exception
handlers do not need to release objects that were sent autorelease. Neither is it necessary or even desireable
for an exception handler to send release to its autorelease pool, unless the handler is re-raising the
exception.

Guaranteeing the Foundation Ownership Policy

By creating an NSAutoreleasePool instead of simply releasing objects, you extend the lifetime of temporary
objects to the lifetime of that pool. After an NSAutoreleasePool is deallocated, you should regard any
object that was autoreleased while that pool was active as “disposed of”, and not send a message to that
object or return it to the invoker of your method.

If you must use a temporary object beyond an autorelease context, you can do so by sending a retain
message to the object within the context and then send it autorelease after the pool has been released as in:

– findMatchingObject:anObject

{

 id match = nil;

 while (match == nil) {

 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

 /* Do a search that creates a lot of temporary objects. */

 match = [self expensiveSearchForObject:anObject];

 if (match != nil) [match retain]; /* Keep match around. */

 [subpool release];

 }

 return [match autorelease]; /* Let match go and return it. */

}

By sending retain to match while subpool is in effect and sending autorelease to it after subpool has been
released, match is effectively moved from subpool to the pool that was previously active. This extends the
lifetime of match and allows it to receive messages outside the loop and be returned to the invoker of
findMatchingObject: .
3

Class Methods

addObject:
+ (void)addObject:(id)anObject

Adds anObject to the active autorelease pool in the current thread, so that it will be sent a release message
when the pool itself is deallocated. The same object may be added several times to the active pool and will
receive a release message for each time it was added. Normally you don’t invoke this method directly—
send autorelease to anObject instead.

See also: – addObject:

Instance Methods

addObject:
– (void)addObject:(id)anObject

Adds anObject to the receiver, so that it will be sent a release message when the receiver is deallocated.
The same object may be added several times to the same pool and will receive a release message for each
time it was added. Normally you don’t invoke this method directly—send autorelease to anObject instead.

See also: + addObject:
4

	NSAutoreleasePool
	Class Description
	Implications of Nested Autorelease Pools
	Guaranteeing the Foundation Ownership Policy

	Class Methods
	addObject:
	+ (void)addObject:(id)anObject

	Instance Methods
	addObject:
	– (void)addObject:(id)anObject

