
1

NSBitmapImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding (from NSImageRep)
NSCopying (from NSImageRep)
NSObject (from NSObject)

Declared In: AppKit/NSImage.h

Class Description

An NSBitmapImageRep is an object that can render an image from bitmap data. The data can be in Tag
Image File Format (TIFF), Windows bitmap format (BMP), or it can be raw image data. If it’s raw data, the
object must be informed about the structure of the image—its size, the number of color components, the
number of bits per sample, and so on—when it’s first initialized. If it’s TIFF or BMP data, the object can
get this information from the various fields included with the data.

Although NSBitmapImageReps are often used indirectly, through instances of the NSImage class, they can
also be used directly—for example to manipulate the bits of an image as you might need to do in a paint
program.

Setting Up an NSBitmapImageRep

You pass bitmap data for an image to a new NSBitmapImageRep when you first initialize it. You can also
create an NSBitmapImageRep from bitmap data that’s read from a specified rectangle of a focused
NSView.

Although the NSBitmapImageRep class inherits NSImageRep methods that set image attributes, these
methods shouldn’t be used. Instead, you should either allow the object to find out about the image from the
fields included with the bitmap data, or use methods defined in this class to supply this information when
the object is initialized.

2

Classes: NSBitmapImageRep

TIFF Compression

TIFF data can be read and rendered after it has been compressed using any one of the four schemes briefly
described below:

LZW Compresses and decompresses without information loss,
achieving compression ratios up to 5:1. It may be somewhat
slower to compress and decompress than the PackBits scheme.

PackBits Compresses and decompresses without information loss, but
may not achieve the same compression ratios as LZW.

JPEG Compresses and decompresses with some information loss, but
can achieve compression ratios anywhere from 10:1 to 100:1.
The ratio is determined by a user-settable factor ranging from
1.0 to 255.0, with higher factors yielding greater compression.
More information is lost with greater compression, but 15:1
compression is safe for publication quality. Some images can be
compressed even more. JPEG compression can be used only for
images that specify at least 4 bits per sample.

CCITTFAX Compresses and decompresses 1 bit gray-scale images using
international fax compression standards CCITT3 and CCITT4.

An NSBitmapImageRep can also produce compressed TIFF data for its image using any of these schemes.

Method Types

Creating an NSBitmapImageRep + imageRepsWithData:
+ imageRepWithData:
– initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:

samplesPerPixel:hasAlpha:isPlanar:colorSpaceName:bytesPerRo
w:bitsPerPixel:

– initWithBitmapHandle:
– initWithData:
– initWithFocusedViewRect:
– initWithIconHandle:

Getting information about the image
– bitsPerPixel
– bytesPerPlane
– bytesPerRow
– isPlanar
– numberOfPlanes
– samplesPerPixel

3

Getting image data – bitmapData
– getBitmapDataPlanes:

Producing a TIFF representation of the image
+ TIFFRepresentationOfImageRepsInArray:
+ TIFFRepresentationOfImageRepsInArray:usingCompression:fact

or:
– TIFFRepresentation
– TIFFRepresentationUsingCompression:factor:

Setting and checking compression types
+ getTIFFCompressionTypes:count:
+ localizedNameForTIFFCompressionType:
– canBeCompressedUsing:
– getCompression:factor:
– setCompression:factor:

Class Methods

getTIFFCompressionTypes:count:
+ (void)getTIFFCompressionTypes:(const NSTIFFCompression **)list count:(int *)numTypes

Returns, by reference, an array of NSTIFFCompressions representing all available compression types that
can be used when writing a TIFF image. The number of elements in list is represented by numTypes. list
belongs to the NSBitmapImageRep class; it shouldn’t be freed or altered.

The following compression types are supported:

Constant Value Usage

NSTIFFCompressionNone 1

NSTIFFCompressionCCITTFAX3 3 1 bps images only

NSTIFFCompressionCCITTFAX4 4 1 bps images only

NSTIFFCompressionLZW 5

NSTIFFCompressionJPEG 6

NSTIFFCompressionNEXT 32766 Input only

NSTIFFCompressionPackBits 32773

NSTIFFCompressionOldJPEG 32865 Input only

Note that not all compression types can be used for all images: NSTIFFCompressionNEXT can be used
only to retrieve image data. Because future releases of OpenStep may include other compression types,

4

Classes: NSBitmapImageRep

always use this method to get the available compression types—for example, when you implement a user
interface for selecting compression types.

See also: + localizedNameForTIFFCompressionType:, – canBeCompressedUsing:

imageRepsWithData:
+ (NSArray *)imageRepsWithData:(NSData *)bitmapData

Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images in
bitmapData. If NSBitmapImageRep is unable to interpret bitmapData, the returned array is empty.
bitmapData can contain data in any supported bitmap format.

imageRepWithData:
+ (id)imageRepWithData:(NSData *)bitmapData

Creates and returns an initialized NSBitmapImageRep corresponding to the first image in bitmapData, or
nil if NSBitmapImageRep is unable to interpret bitmapData. bitmapData can contain data in any supported
bitmap format.

localizedNameForTIFFCompressionType:
+ (NSString *)localizedNameForTIFFCompressionType:(NSTIFFCompression)compression

Returns an autoreleased string containing the localized name for the compression type represented by
compression, or nil if compression is unrecognized. Compression types are listed in the
getTIFFCompressionTypes:count: class method description. When implementing a user interface for
selecting TIFF compression types, use getTIFFCompressionTypes:count: to get the list of supported
compression types, then use this method to get the localized names for each compression type.

See also: + getTIFFCompressionTypes:count:

TIFFRepresentationOfImageRepsInArray:
+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array

Returns a TIFF representation of the images in array, using the compression that’s returned by
getCompression:factor: (if applicable).

If a problem is encountered during generation of the TIFF, TIFFRepresentationOfImageRepsInArray
raises an NSTIFFException or an NSBadBitmapParametersException.

See also: – TIFFRepresentation

5

TIFFRepresentationOfImageRepsInArray:usingCompression:factor:
+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array

usingCompression:(NSTIFFCompression)compression factor:(float)factor

Returns a TIFF representation of the images in array, which are compressed using the specified
compression type and factor. Legal values for compression can be found in NSBitmapImageRep.h, and
are described in “Tiff Compression” in NSBitmapImageRep’s class description. factor provides a hint for
those compression types that implement variable compression ratios; currently only JPEG compression
uses a compression factor. If your compression type doesn’t implement variable compression ratios, or if it
does and you don’t want the image to be compressed, specify a compression factor of 0.0.

If the specified compression isn’t applicable, no compression is used. If a problem is encountered during
generation of the TIFF, TIFFRepresentationOfImageRepsInArray:usingCompression:factor: raises
an NSTIFFException or an NSBadBitmapParametersException.

See also: – TIFFRepresentationUsingCompression:factor:

Instance Methods

bitmapData
– (unsigned char *)bitmapData

Returns a pointer to the bitmap data. If the data is planar, returns a pointer to the first plane.

See also: – getBitmapDataPlanes:

bitsPerPixel
– (int)bitsPerPixel

Returns the number of bits allocated for each pixel in each plane of data. This is normally equal to the
number of bits per sample or, if the data is in meshed configuration, the number of bits per sample times
the number of samples per pixel. It can be explicitly set to another value (in the
initWithBitmapDataPlanes:pixelsWide:pixelsHigh:... method) in case extra memory is allocated for
each pixel. This may be the case, for example, if pixel data is aligned on byte boundaries.

bytesPerPlane
– (int)bytesPerPlane

Returns the number of bytes in each plane or channel of data. This is calculated from the number of bytes
per row and the height of the image.

See also: − bytesPerRow

6

Classes: NSBitmapImageRep

bytesPerRow
– (int)bytesPerRow

Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning the
width of the image) in each data plane. If not explicitly set to another value (in the
initWithBitmapDataPlanes:pixelsWide:pixelsHigh:... method), this will be figured from the width of the
image, the number of bits per sample, and, if the data is in a meshed configuration, the number of samples
per pixel. It can be set to another value to indicate that each row of data is aligned on word or other
boundaries.

See also: − bytesPerPlane

canBeCompressedUsing:
– (BOOL)canBeCompressedUsing:(NSTIFFCompression)compression

Tests whether the receiver can be compressed by compression type. Legal values for compression can be
found in NSBitmapImageRep.h, and are described in “Tiff Compression” in the class description. This
method returns YES if the receiver’s data matches compression; for example, if compression is
NSTIFFCompressionCCITTFAX3, then the data must be one bit-per-sample and one sample-per-pixel. It
returns NO if the data doesn’t match compression or if compression is unsupported.

See also: + getTIFFCompressionTypes:count:

getBitmapDataPlanes:
– (void)getBitmapDataPlanes:(unsigned char **)data

Provides access to bitmap data for the image separated into planes. data should be an array of five character
pointers. If the bitmap data is in planar configuration, each pointer will be initialized to point to one of the
data planes. If there are less than five planes, the remaining pointers will be set to NULL. If the bitmap data
is in meshed configuration, only the first pointer will be initialized; the others will be NULL.

Color components in planar configuration are arranged in the expected order—for example, red before
green before blue for RGB color. All color planes precede the coverage plane.

See also: − data, − isPlanar

getCompression:factor:
– (void)getCompression:(NSTIFFCompression *)compression factor:(float *)factor

Returns by reference the receiver’s compression type and compression factor. Use this method to get
information on the compression type for the source image data. compression represents the compression
type used on the data, and corresponds to one of the values returned by the class method

7

getTIFFCompressionTypes:count:. factor is a value that is specific to the compression type; many types of
compression don’t support varying degrees of compression, and thus ignore factor. JPEG compression
allows a compression factor ranging from 0.0 to 255.0, with 0.0 representing minimal compression.

initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel:

– (id)initWithBitmapDataPlanes:(unsigned char **)planes pixelsWide:(int)width
pixelsHigh:(int)height bitsPerSample:(int)bps samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar colorSpaceName:(NSString
*)colorSpaceName bytesPerRow:(int)rowBytes bitsPerPixel:(int)pixelBits

Initializes the receiver, a newly allocated NSBitmapImageRep object, so that it can render the image
specified in planes and described by the other arguments. If the object can’t be initialized, this method frees
it and returns nil. Otherwise, it returns the object (self).

planes is an array of character pointers, each of which points to a buffer containing raw image data. If the
data is in planar configuration, each buffer holds one component—one plane—of the data. Color planes are
arranged in the standard order—for example, red before green before blue for RGB color. All color planes
precede the coverage plane.

If the data is in meshed configuration (isPlanar is NO), only the first buffer is read.

If planes is NULL or if it’s an array of NULL pointers, this method allocates enough memory to hold the
image described by the other arguments. You can then obtain pointers to this memory (with the
getBitmapDataPlanes: or bitmapData method) and fill in the image data. In this case, the allocated
memory will belong to the object and will be freed when it’s freed.

If planes is not NULL and the array contains at least one data pointer, the object will only reference the
image data; it won’t copy it. The buffers won’t be freed when the object is freed.

Each of the other arguments (besides planes) informs the NSBitmapImageRep object about the image.
They’re explained below:

• width and height specify the size of the image in pixels. The size in each direction must be greater than 0.

• bps (bits per sample) is the number of bits used to specify one pixel in a single component of the data.
All components are assumed to have the same bits per sample.

• spp (samples per pixel) is the number of data components. It includes both color components and the
coverage component (alpha), if present. Meaningful values range from 1 through 5. An image with cyan,
magenta, yellow, and black (CMYK) color components plus a coverage component would have an spp
of 5; a gray-scale image that lacks a coverage component would have an spp of 1.

• alpha should be YES if one of the components counted in the number of samples per pixel (spp) is a
coverage component, and NO if there is no coverage component.

8

Classes: NSBitmapImageRep

• isPlanar should be YES if the data components are laid out in a series of separate “planes” or channels
(“planar configuration”), and NO if component values are interwoven in a single channel (“meshed
configuration”).

For example, in meshed configuration, the red, green, blue, and coverage values for the first pixel of an
image would precede the red, green, blue, and coverage values for the second pixel, and so on. In planar
configuration, red values for all the pixels in the image would precede all green values, which would
precede all blue values, which would precede all coverage values.

• colorSpaceName indicates how data values are to be interpreted. It should be one of the following
enumerated values:

NSCalibratedWhiteColorSpace

NSCalibratedBlackColorSpace

NSCalibratedRGBColorSpace

NSDeviceWhiteColorSpace

NSDeviceBlackColorSpace

NSDeviceRGBColorSpace

NSDeviceCMYKColorSpace

NSNamedColorSpace

NSCustomColorSpace

• rowBytes is the number of bytes that are allocated for each scan line in each plane of data. A scan line is
a single row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits per pixel in each
sample (bps), and, if the data is in a meshed configuration, the number of samples per pixel (spp).
However, if the data for each row is aligned on word or other boundaries, it may have been necessary to
allocate more memory for each row than there is data to fill it. rowBytes lets the object know whether
that’s the case. If rowBytes is 0, the NSBitmapImageRep assumes that there’s no empty space at the end
of a row.

• pixelBits informs the NSBitmapImageRep how many bits are actually allocated per pixel in each plane
of data. If the data is in planar configuration, this normally equals bps (bits per sample). If the data is in
meshed configuration, it normally equals bps times spp (samples per pixel). However, it’s possible for a
pixel specification to be followed by some meaningless bits (empty space), as may happen, for example,
if pixel data is aligned on byte boundaries. NSBitmapImageRep supports only a limited number of
pixelBits values (other than the default): for RGB images with 12 bps, pixelBits may be 16; for RGB
images with 24 bps, pixelBits may be 32. The legal values for pixelBits are system dependent.

If pixelBits is 0, the object will interpret the number of bits per pixel to be the expected value, without
any meaningless bits.

9

� initWithBitmapHandle:
– (id)initWithBitmapHandle:(void *)bitmap

On Microsoft Windows platforms, initWithBitmapHandle: initializes the receiver, a newly allocated
NSBitmapImageRep instance, with the contents of the Windows bitmap indicated by bitmap. If
initWithBitmapHandle: is able to create one or more image representations, it returns self. Otherwise, the
receiver is freed and nil is returned.

initWithData:
– (id)initWithData:(NSData *)bitmapData

Initializes a newly allocated NSBitmapImageRep from the data found in bitmapData. The contents of
bitmapData can be any supported bitmap format. For TIFF data, the NSBitmapImageRep is initialized from
the first header and image data found in bitmapData.

initWithData: returns an initialized NSBitmapImageRep if the initialization was successful, or nil if it was
unable to interpret the contents of bitmapData.

initWithFocusedViewRect:
– (id)initWithFocusedViewRect:(NSRect)rect

Initializes the receiver, a newly allocated NSBitmapImageRep object, with bitmap data read from a
rendered image. The image that’s read is located in the current window and is bounded by the rect rectangle
as specified in the current coordinate system.

This method uses PostScript imaging operators to read the image data into a buffer; the object is then
created from that data. The object is initialized with information about the image obtained from the Window
Server.

If for any reason the new object can’t be initialized, this method frees it and returns nil. Otherwise, it returns
the initialized object (self).

� initWithIconHandle:
– (id)initWithIconHandle:(void *)icon

On Microsoft Windows platforms, initWithIconHandle: initializes the receiver, a newly allocated
NSBitmapImageRep instance, with the contents of the Windows icon indicated by icon. If
initWithIconHandle: is able to create one or more image representations, it returns self. Otherwise, the
receiver is freed and nil is returned.

10

Classes: NSBitmapImageRep

isPlanar
– (BOOL)isPlanar

Returns YES if image data is segregated into a separate plane for each color and coverage component
(planar configuration), and NO if the data is integrated into a single plane (meshed configuration).

See also: − samplesPerPixel

numberOfPlanes
– (int)numberOfPlanes

Returns the number of separate planes that image data is organized into. This is the number of samples per
pixel if the data has a separate plane for each component (isPlanar returns YES) and 1 if the data is meshed
(isPlanar returns NO).

See also: − samplesPerPixel, − hasAlpha (NSImageRep), − bitsPerSample (NSImageRep)

samplesPerPixel
– (int)samplesPerPixel

Returns the number of components in the data. It includes both color components and the coverage
component, if present.

See also: − hasAlpha (NSImageRep), − bitsPerSample (NSImageRep)

setCompression:factor:
– (void)setCompression:(NSTIFFCompression)compression factor:(float)factor

Sets the receiver’s compression type and compression factor. compression is one of the supported
compression types listed in the getTiffCompressionTypes:count: class method description. factor is a
value that is specific to the compression type; many types of compression don’t support varying degrees of
compression, and thus ignore factor. JPEG compression allows a compression factor ranging from 0.0 to
255.0, with 0.0 representing minimal compression.

When an NSBitmapImageRep is created, the instance stores the compression type and factor for the source
data. TIFFRepresentation and TIFFRepresentationOfImageRepsInArray: (class method) try to use the
stored compression type and factor. Use this method to change the compression type and factor.

See also: – canBeCompressedUsing:

11

TIFFRepresentation
– (NSData *)TIFFRepresentation

Returns a TIFF representation of the image, using the compression that’s returned by
getCompression:factor: (if applicable). This method invokes
TIFFRepresentationUsingCompression:factor: using the stored compression type and factor retrieved
from the initial image data or changed using setCompression:factor:. If the stored compression type isn’t
supported for writing TIFF data (for example, NSTIFFCompressionNEXT), the stored compression is
changed to NSTIFFCompressionNone and the compression factor to 0.0 before invoking
TIFFRepresentationUsingCompression:factor:.

If a problem is encountered during generation of the TIFF, TIFFRepresentation raises an
NSTIFFException or an NSBadBitmapParametersException.

See also: + TIFFRepresentationOfImageRepsInArray:

TIFFRepresentationUsingCompression:factor:
– (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp

factor:(float)factor

Returns a TIFF representation of the image, using the specified compression and factor. If the stored
compression type isn’t supported for writing TIFF data (for example, NSTIFFCompressionNEXT), the
stored compression is changed to NSTIFFCompressionNone and the compression factor to 0.0 before the
TIFF representation is generated.

If a problem is encountered during generation of the TIFF, TIFFRepresentation raises an
NSTIFFException or an NSBadBitmapParametersException.

See also: – canBeCompressedUsing:, + TIFFRepresentationOfImageRepsInArray:

