
1

NSControl

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: <AppKit/NSControl.h>

Class Description

NSControl is an abstract superclass that provides three fundamental features for implementing
user-interface devices. First, as a subclass of NSView, NSControl draws, or coordinates the drawing of, the
on-screen representation of the device. Second, it receives and responds to user-generated events within its
bounds by overriding NSResponder’s mouseDown: method and providing a position in the responder
chain. Third, it implements the sendAction:to: method to send an action message to the NSControl’s target
object. Subclasses of NSControl defined in the Application Kit are NSBrowser, NSButton (and its subclass
NSPopUpButton), NSColorWell, NSImageView, NSMatrix (and its subclass NSForm), NSScroller,
NSSlider, NSTableView, and NSTextField. Instances of concrete NSControl subclasses are often referred
to as, simply, controls.

Controls and Cells

Controls are usually associated with one or more cells—instances of a subclass of the abstract class NSCell.
A control’s cell (or cells) usually fit just inside the bounds of the control. Cells are objects that can draw
themselves and respond to events, but they can do so only indirectly, upon instruction from their control,
which acts as a kind of coordinating backdrop.

Controls manage the behavior of their cells. By inheritance from NSView, controls derive the ability for
responding to user actions and rendering their on-screen representation. When users click on a control, it
responds in part by sending trackMouse:inRect:ofView:untilMouseUp: to the cell that was clicked; upon
receiving this message, the cell tracks the mouse and may have the control send the cell’s action message
to its target (either upon mouse-up or continuously, depending on the cell’s attributes). When controls
receive a display request, they, in turn, send their cell (or cells) a drawWithFrame:inView: message to
have the cells draw themselves.

This relationship of control and cell makes two things possible: A control can manage cells of different
types and with different targets and actions (see below); and a single control can manage muliple cells. Most
Application Kit controls, like NSButtons and NSTextFields, manage only a single cell. But some controls,
notably NSMatrix and NSForm, manage multiple cells (usually of the same size and attributes, and
arranged in a regular pattern). Because cells are lighter-weight than controls, in terms of inherited data and
behavior, it is more efficient to use a multi-cell control rather than multiple controls.

2

Classes: NSControl

Many methods of NSControl—particularly methods that set or obtain values and attributes—have
corresponding methods in NSCell. Sending a message to the control causes it to be forwarded to the
control’s cell or (if a multi-cell control) its selected cell. However, many NSControl methods are effective
only in controls with single cells (these are noted in the method descriptions).

An NSControl subclass doesn’t have to use an NSCell subclass to implement itself; NSScroller and
NSColorWell are examples of NSControls that don’t. However, such subclasses have to take care of details
that NSCell would otherwise handle. Specifically, they have to override methods designed to work with a
cell. What’s more, the lack of a cell means you can’t make use of NSMatrix capability for managing
multi-cell arrays such as radio buttons.

Target and Action

Target objects and action methods (or messages) are part of the mechanism by which controls respond to
user actions and enable users to communicate their intentions to an application. A target is an object that a
control uses as the receiver of action messages. The target’s class defines an action method to enable its
instances to respond to these messages, which are sent as users click or otherwise manipulate the control.
NSControl’s sendAction:to: asks the NSApplication object, NSApp, to send an action message to the
control’s target object.

NSControl provides methods for setting and obtaining the target object and the action method. However,
these methods require that an NSControl’s cell (or cells) be cells that inherit from NSActionCell or custom
cells that hold action and target as instance variables and can respond to the NSControl methods.

See the NSActionCell class specification for more on the implementation of target and action behavior,
particularly how action messages with nil targets travel up the responder chain.

Field Validation and Entry Error-Handling

NSControl provides the delegation method control:isValidObject: for validating the contents of cells
embedded in controls (instances of NSTextField and NSMatrix in particular). In validating you check for
values that are permissible as objects, but that are undesirable in a given context, such as a date field in
which dates should never be in the future, or zip codes that are valid for a certain state.

The method control:isValidObject: is invoked when the cursor leaves a cell (that is, the associated control
relinquishes first-responder status) but before the string value of the cell's object is displayed. Return YES
to allow display of the string and NO to reject display and return the cursor to the cell. The following
example evaluates an object (an NSDate) and rejects it if the date is in the future:

- (BOOL)control:(NSControl *)control isValidObject:(id)obj

{

if (control == contactsForm) {

if (![obj isKindOfClass:[NSDate class]]) return NO;

if ([[obj laterDate:[NSDate date]] isEqual:obj]) {

NSRunAlertPanel(@"Date not valid",

@"Reason: date in future", NULL, NULL, NULL);

3

return NO;

}

}

return YES;

}

NSControl also provides delegation methods that are invoked when formatters for a control’s cells cannot
format a string (control:didFailToFormatString:errorDescription:) or reject a partial string entry
(control:didFailToValidatePartialString:errorDescription:). It also provides
control:textView:doCommandBySelector:, which allows delegates the opportunity to detect and respond
to key bindings, such as complete: (name completion).

Changing the NSCell Class

Since NSControl uses objects derived from the NSCell class to implement most of its actual functionality,
you can usually implement a unique user interface device by creating a subclass of NSCell rather than
NSControl. As an example, let’s say you want all your application’s NSSliders to have a type of cell other
than the generic NSSliderCell. First, you create a subclass of NSCell, NSActionCell, or NSSliderCell.
(Let’s call it MyCellSubclass.) Then, you can simply invoke NSSlider’s setCellClass: class method:

[NSSlider setCellClass:[MyCellSubclass class]];

All NSSliders created thereafter will use MyCellSubclass, until you call setCellClass: again.

If you want to create generic NSSliders (ones that use NSSliderCell) in the same application as the
customized NSSliders that use MyCellSubclass, there are two possible approaches. One is to invoke
setCellClass: as above whenever you’re about to create a custom NSSlider, resetting the cell class to
NSSliderCell afterwards. The other approach is to create a custom subclass of NSSlider that automatically
uses MyCellSubclass, as explained below.

Creating New NSControls

If you create a custom NSControl subclass that uses a custom subclass of NSCell, you should override
NSControl’s cellClass method:

+ (Class) cellClass

{

 return [MyCellSubclass class];

}

NSControl’s initWithFrame: method will use the return value of cellClass to allocate and initialize an
NSCell of the correct type.

Override the designated initializer (initWithFrame:) if you create a subclass of NSControl that performs
its own initialization.

4

Classes: NSControl

Method Types

Initializing an NSControl – initWithFrame:

Setting the control’s cell + cellClass
+ setCellClass:
– cell
– setCell:

Enabling and disabling the control – isEnabled
– setEnabled:

Identifying the selected cell – selectedCell
– selectedTag

Setting the control’s value – doubleValue
– setDoubleValue:
– floatValue
– setFloatValue:
– intValue
– setIntValue:
– objectValue
– setObjectValue:
– stringValue
– setStringValue:
– setNeedsDisplay

Interacting with other controls – takeDoubleValueFrom:
– takeFloatValueFrom:
– takeIntValueFrom:
– takeObjectValueFrom:
– takeStringValueFrom:

Formating text – alignment
– setAlignment:
– font
– setFont:
– setFloatingPointFormat:left:right:

Managing the field editor – abortEditing
– currentEditor
– validateEditing

Resizing the control – calcSize
– sizeToFit

5

Displaying a cell – selectCell:
– drawCell:
– drawCellInside:
– updateCell:
– updateCellInside:

Implementing the target/action mechanism
– action
– setAction:
– target
– setTarget:
– isContinuous
– setContinuous:
– sendAction:to:
– sendActionOn:

Getting and setting attributed-string values
– attributedStringValue
– setAttributedStringValue:

Getting and setting tags – tag
– setTag:

Simulating mouse clicks – performClick:sender:

Tracking the mouse – mouseDown:
– ignoresMultiClick
– setIgnoresMultiClick:

Class Methods

cellClass
+ (Class)cellClass

Returns the class of cells used by the receiving class (which must be NSControl or one of its subclasses).
Returns nil if no cell class has been specified for the receiving class or any of its superclasses (up to
NSControl).

See also: – cell, – setCell:

6

Classes: NSControl

setCellClass:
+ (void)setCellClass:(Class)class

Sets the class of cells used by instances of the receiver, which must be the NSControl class or one of its
subclasses.

See also: – cell, –setCell:

Instance Methods

abortEditing
– (BOOL)abortEditing

Terminates and discards any editing of text displayed by the receiving control and removes the field editor’s
delegate. Returns YES if there was a field editor associated with the control, NO otherwise.

See also: – currentEditor, –validateEditing

action
– (SEL)action

Returns the action-message selector of the receiver's cell (the default NSControl behavior), or the default
action-message selector for a control with multiple cells (such as an NSMatrix or an NSForm). For controls
with multiple cells, it's better to get the action-message selector for a particular cell, for instance:

someAction = [[theControl selectedCell] action];

See also: – setAction:, – setTarget:, – target

alignment
– (NSTextAlignment)alignment

Returns the alignment mode of the text in the receiver's cell. The return value can be one of these constants:
NSLeftTextAlignment, NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, or
NSNaturalTextAlignment (the default alignment).

See also: – setAlignment:

7

� attributedStringValue
– (NSAttributedString *)attributedStringValue

Returns the object value of the receiver’s cell (or selected cell) as an attributed string after validating any
editing currently being done. If no cell is associated with the receiver, returns an empty attributed string.

See also: – setAttributedStringValue:

calcSize
– (void)calcSize

Recomputes any internal sizing information for the NSControl, if necessary, by invoking its NSCell’s
calcDrawInfo: method. Most NSControls maintain a flag that informs them if any of their cells have been
modified in such a way that the location or size of the cell should be recomputed. If this happens, calcSize
is automatically invoked whenever the NSControl is displayed; you never need to invoke it yourself.

See also: – calcSize (NSMatrix, NSForm), –sizeToFit

cell
– (id)cell

Returns the receiver’s cell. In NSControls with multiple cells (such as NSMatrix or NSForm), use
selectedCell or a similar method for finding a particular cell.

See also: + cellClass, –setCell:, + setCellClass:

currentEditor
– (NSText *)currentEditor

If the receiving NSControl is being edited—that is, it has an NSText object acting as its field editor, and is
the first responder of its NSWindow—this method returns the NSText editor; otherwise, it returns nil.

See also: – abortEditing, –validateEditing

doubleValue
– (double)doubleValue

Returns the value of the receiver's cell as a double-precision floating point number. If the NSControl
contains many cells (for example, NSMatrix), then the value of the currently selectedCell is returned. If

8

Classes: NSControl

the NSControl is in the process of editing the affected Cell, then validateEditing is invoked before the
value is extracted and returned.

See also: – floatValue, – intValue, –objectValue, –setDoubleValue:, – stringValue

drawCell:
– (void)drawCell:(NSCell *)aCell

If aCell is the cell used to implement this NSControl, then the NSControl is displayed. This method is
provided primarily to support a consistent set of methods between NSControls with single and multiple
cells, since a NSControl with multiple cells needs to be able to draw a single cell at a time.

See also: – selectCell:, –updateCell:, –updateCellInside:

drawCellInside:
– (void)drawCellInside:(NSCell *)aCell

Draws the inside of the receiver’s cell (the area within a bezel or border). If the NSControl is transparent,
the method causes the superview to draw itself. This method invokes NSCell's
drawInteriorWithFrame:inView: method. This method has no effect on NSControls (such as NSMatrix
and NSForm) that have multiple cells.

See also: – selectCell:, –updateCell:, –updateCellInside:

floatValue
– (float)floatValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as a single-precision
floating point number. See doubleValue for more details.

See also: – doubleValue, – intValue, –objectValue, –setFloatValue:, –stringValue

font
– (NSFont *)font

Returns the NSFont used to draw text in the receiver’s cell.

See also: – setFont:

9

ignoresMultiClick
– (BOOL)ignoresMultiClick

Returns whether the receiving NSControl ignores multiple clicks made in rapid succession. See
setIgnoresMultiClick: for details.

initWithFrame:
– (id)initWithFrame:(NSRect)frameRect

Initializes and returns a new NSControl object in frameRect, and creates a cell for it if the cell’s class has
been specified for controls of this type with setCellClass:. Because NSControl is an abstract class,
invocations of this method should appear only in the designated initializers of sublcasses; that is, there
should always be a more specific designated initializer for the subclass, as this initWithFrame: is the
designated initializer for NSControl.

intValue
– (int)intValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as an integer. See
doubleValue for more details.

See also: – floatValue, –doubleValue, –objectValue, –setIntValue:, –stringValue

isContinuous
– (BOOL)isContinuous

Returns whether the control’s NSCell continuously sends its action message to its target during mouse
tracking.

See also: – setContinous:

isEnabled
– (BOOL)isEnabled

Returns whether the receiver reacts to mouse events.

See also: – setEnabled:

10

Classes: NSControl

mouseDown:
– (void)mouseDown:(NSEvent *)theEvent

Invoked when the mouse button is pressed while the cursor is within the bounds of the NSControl. This
method highlights the NSControl’s NSCell and sends it a trackMouse:inRect:ofView:untilMouseUp:
message. Whenever the NSCell finishes tracking the mouse (for example, because the cursor has left the
cell’s bounds), the cell is unhighlighted. If the mouse button is still down and the cursor reenters the bounds,
the cell is again highlighted and a new trackMouse:inRect:ofView:untilMouseUp: message is sent. This
behavior repeats until the mouse button goes up. If it goes up with the cursor in the control, the state of the
control is changed, and the action message is sent to the target. If the mouse button goes up when the cursor
is outside the control, no action message is sent.

See also: – ignoresMultiClick, – trackMouse:inRect:ofView:untilMouseUp:(NSCell)

� objectValue
– (id)objectValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as an Objective-C
object. See doubleValue for more details.

See also: – floatValue, –doubleValue, –intValue, –setObjectValue:, –stringValue

� performClick:
– (void)performClick:sender

Programmatically simulates a mouse click on the receiver’s cell, including the invocation of the action
method in the target object. Raises an exception if the action message cannot be successfully sent.

selectCell:
– (void)selectCell:(NSCell *)aCell

If aCell is a cell of the receiving NSControl and is unselected, this method selects aCell (by setting its state
to YES) and redraws the NSControl.

See also: – selectedCell

11

selectedCell
– (id)selectedCell

Returns the receiver’s selected cell. The default implementation for NSControl simply returns the
associated cell (or nil if no cell has been set). Subclasses of NSControl that manage multiple cells (such as
NSMatrix and NSForm) override this method to return the cell selected by users.

See also: – cell, –setCell:

selectedTag
– (int)selectedTag

Returns the tag integer of the receiver’s selected cell (see selectedCell) or -1 if there is no selected cell.
When you set the tag of an control with a single cell in Interface Builder, it sets the tags of both the control
and the cell with the same value as a convenience.

See also: – setTag:, – tag

sendAction:to:
– (BOOL)sendAction:(SEL)theAction to:(id)theTarget

Sends sendAction:to:from: to NXApp, which in turn sends a message to theTarget to perform theAction,
adding the receiver as the argument to the from: keyword. sendAction:to: is invoked primarily by NSCell's
trackMouse:inRect:ofView:untilMouseUp:.

If theAction is nil, no message is sent. If theTarget is nil, NXApp looks for an object that can respond to
the message by following the responder chain (see the class description for NSActionCell). This method
returns nil if no object that responds to theAction could be found.

See also: – action, – target

sendActionOn:
– (int)sendActionOn:(int)mask

Sets the conditions on which the receiver sends action messages to its target (continuously, mouse up, and
others) and returns a bit mask with which to detect the previous settings. NSControl’s default
implementation simply invokes the sendActionOn: method of its associated cell

See also: – sendAction:to:, – sendActionOn:(NSCell)

12

Classes: NSControl

setAction:
– (void)setAction:(SEL)aSelector

Sets the NSControl’s action method to aSelector. If aSelector is nil, then no action messages will be sent
from the NSControl.

See also: – action, –setTarget:, – target

setAlignment:
– (void)setAlignment:(NSTextAlignment)mode

Sets the alignment of text in the receiver’s cell and, if the cell is being edited, aborts editing and updates the
cell. mode is one of five constants: NSLeftTextAlignment, NSRightTextAlignment,
NSCenterTextAlignment, NSJustifiedTextAlignment, NSNaturalTextAlignment (the default alignment for
the text).

See also: – alignment

� setAttributedStringValue:
– (void)setAttributedStringValue:(NSAttributedString *)object

Sets the value of the receiver’s cell (or selected cell) as an attributed string. If the cell is being edited, it
aborts all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks it for
automatic redisplay (NSActionCell performs its own updating of cells).

See also: – attributedStringValue

setCell:
– (void)setCell:(NSCell *)aCell

Sets the receiver’s cell to aCell. Use this method with great care as it can irrevocably damage the affected
control; specifically, you should only use this method in initializers for subclasses of NSControl.

See also: – cell, –selectedCell

setContinuous:
– (void)setContinuous:(BOOL)flag

Sets whether the receiver’s cell continuously sends its action message to its target as it tracks the mouse.

See also: – isContinuous

13

setDoubleValue:
– (void)setDoubleValue:(double)aDouble

Sets the value of the receiver’s cell (or selected cell) as aDouble (a double-precision floating point number).
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior for automatic redisplay (NSActionCell performs its own updating
of cells).

See also: – doubleValue,– setFloatValue:, –setIntValue:, – setObjectValue:, –setStringValue:

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiving NSControl’s cell—or if there is no associated cell, the NSControl itself—is
active (that is, whether it tracks the mouse and sends its action to its target). If flag is NO, any editing is
aborted. Redraws the entire Control if autodisplay is enabled. Subclasses may want to override this method
to redraw only a portion of the control when the enabled state changes, as do NSButton and NSSlider.

See also: – isEnabled

setFloatValue:
– (void)setFloatValue:(float)aFloat

Sets the value of the receiver’s cell (or selected cell) as aFloat (a single-precision floating point number).
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior for automatic redisplay (NSActionCell performs its own updating
of cells).

See also: – floatValue, – setDoubleValue:, – setIntValue:, – setObjectValue:, –setStringValue:

setFloatingPointFormat:left:right:
– (void)setFloatingPointFormat:(BOOL)autoRange

left:(unsigned)leftDigits
right:(unsigned)rightDigits

Sets the autoranging and floating point number format of the receiver's cell, so that at most leftDigits are
displayed to the left of the decimal point, and rightDigits to the right. See the description of this method in
the NSCell class specification for details. If the cell is being edited, what’s typed is discarded and the cell’s
interior is redrawn.

See also: – setFloatingPointFormat:left:right:(NSCell)

14

Classes: NSControl

setFont:
– (void)setFont:(NSFont *)fontObject

Sets the font used to draw text in the receiver’s cell to fontObject. If the cell is being edited, the text in the
cell is redrawn in the new font and the cell’s editor (the NSText object used globally for editing) is updated
with the new NSFont.

See also: – setFont:

setIgnoresMultiClick:
– (void)setIgnoresMultiClick:(BOOL)flag

Sets whether the receiving NSControl ignores multiple clicks made in rapid succession. By default, controls
treat double-clicks as two distinct clicks, triple-clicks as three distinct clicks, and so on. However, when an
NSControl returning YES to this method receives multiple clicks (within a predetermined interval), each
mouseDown event after the first is passed on to super.

See also: – ignoresMultiClick

setIntValue:
– (void)setIntValue:(int)anInt

Sets the value of the receiver’s cell (or selected cell) as an integer (anInt). If the cell is being edited, it aborts
all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks the cell’s interior
for automatic redisplay (NSActionCell performs its own updating of cells).

See also: – intValue,– setDoubleValue:, –setFloatValue:, –setObjectValue:, –setStringValue:

setNeedsDisplay
– (void)setNeedsDisplay

Marks the receiving NSControl as needing redisplay (assuming automatic display is enabled) after
recalculation of its dimensions.

See also: – setsNeedsDisplay:(NSView)

15

� setObjectValue:
– (void)setObjectValue:(id)object

Sets the value of the receiver’s cell (or selected cell) as an Objective-C object. If the cell is being edited, it
aborts all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks the cell’s
interior for automatic redisplay (NSActionCell performs its own updating of cells).

See also: – objectValue, – setDoubleValue:, – setFloatValue:, – setIntValue:, –setStringValue:

setStringValue:
– (void)setStringValue:(NSString *)aString

Sets the value of the receiver’s cell (or selected cell) as an NSString object (aString). If the cell is being
edited, it aborts all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks
the cell’s interior for automatic redisplay (NSActionCell performs its own updating of cells).

See also: – setDoubleValue:, – setFloatValue:, – setIntValue:, –setObjectValue:, –stringValue

setTag:
– (void)setTag:(int)anInt

Sets the tag of the receiving NSControl to anInt. It doesn’t affect the tag of the receiver’s cell.

See also: – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the target object for the action message of the receiver’s cell; NSCell’s setTarget: is used instead of
any subclass override of this method. If anObject is nil and the control sends an action message, the
application looks for an object that can respond to the message by following the responder chain (see
description of the NSActionCell class for details).

See also: – action, –setAction:, – target, –setTarget:(NSCell)

16

Classes: NSControl

sizeToFit
– (void)sizeToFit

Changes the width and the height of the receiver's frame so that they are the minimum needed to contain its
cell. If you want a multiple-cell custom subclass of NSControl to size itself to fit its cells, you must override
this method.

See also: – calcSize

stringValue
– (NSString *)stringValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as an NSString object.
See doubleValue for details.

See also: – floatValue, –doubleValue, –intValue, –objectValue, –setStringValue:

tag
– (int)tag

Returns the tag identifying the receiving control (not the tag of the receiver’s cell).

See also: – setTag:

takeDoubleValueFrom:
– (void)takeDoubleValueFrom:(id)sender

Sets the double-precision floating-point value of the receiving control's cell (or selected cell) to the value
obtained by sending a doubleValue message to sender. You can use this method to link action messages
between controls. It permits one control or cell (sender) to affect the value of another control (the receiver)
by invoking this method in an action message to the receiver. For example, a text field can be made the
target of a slider. Whenever the slider is moved, it will send a takeDoubleValueFrom: message to the text
field. The text field will then get the slider's floating-point value, turn it into a text string, and display it,
thus tracking the value of the slider.

takeFloatValueFrom:
– (void)takeFloatValueFrom:(id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a floatValue message to
another control or cell (sender). See takeDoubleValueFrom: for more information.

17

takeIntValueFrom:
– (void)takeIntValueFrom:(id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a intValue message to another
control or cell (sender). See takeDoubleValueFrom: for more information.

� takeObjectValueFrom:
– (void)takeObjectValueFrom:(id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a objectValue message to
another control or cell (sender). See takeDoubleValueFrom: for more information.

takeStringValueFrom:
– (void)takeStringValueFrom:(id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a stringValue message to
another control or cell (sender). See takeDoubleValueFrom: for more information.

target
– (id)target

Returns the target object of the receiver’s cell.

See also: – action, –setAction:, –setTarget:

updateCell:
– (void)updateCell:(NSCell *)aCell

Redisplays aCell or marks it for redisplay.

updateCellInside:
– (void)updateCellInside:(NSCell *)aCell

Redisplays the inside of aCell or marks it for redisplay.

18

Classes: NSControl

validateEditing
– (void)validateEditing

Validates the user’s changes to text in a cell of the receiving control. Validation sets the object value of the
cell to the current contents of the cell’s editor (the NSText object used for editing), storing its a simple
NSString or an attributed string object based on the attributes of the editor.

See also: – abortEditing, –currentEditor

Methods Implemented By the Delegate

� control:didFailToFormatString:errorDescription:
– (BOOL)control:(NSControl *)control

didFailToFormatString:(NSString *)string
errorDescription:(NSString *)error

Invoked when the formatter for control’s cell (or selected cell) cannot convert an NSString (string) to an
underlying object. error is a localized user-presentable NSString that explains why the conversion failed.
Evaluate the error or query the user and return YES if string should be accepted as-is, or NO if string should
be rejected.

See also: – getObjectValue:forString:errorDescription:(NSFormatter)

� control:didFailToValidatePartialString:errorDescription:
– (void)control:(NSControl *)control

didFailToValidatePartialString:(NSString *)string
errorDescription:(NSString *)error

Invoked when the formatter for control’s cell (or selected cell) rejects a partial string a user is typing into
the cell. This NSString (string) includes the character that caused the rejection. error is a localized
user-presentable NSString that explains why the validation failed. Evaluate the error or query the user and
return YES if string should be accepted as-is, or NO if string should be rejected.

See also: – isPartialStringValid:newEditingString:errorDescription:(NSFormatter)

� control:isValidObject:
– (BOOL)control:(NSControl *)control isValidObject:(id)object

Invoked when the cursor leaves a cell but before the string value of the cell's object is displayed. Return
YES to allow display of the string and NO to reject display and return the cursor to the cell. This method
gives the delegate the opportunity to validate the contents of control’s cell (or selected cell). In validating,

19

the delegate checks object to determine if it falls within a permissible range, has required attributes, accords
with a given context, and so on. An example of an object subject to such and evaluation is an NSDate object
which should not represent a future date, or a monetary amount (represented by an NSNumber) that exceeds
a predetermined limit.

control:textShouldBeginEditing:
– (BOOL)control:(NSControl *)control textShouldBeginEditing:(NSText *)fieldEditor

Sent directly by control to the delegate when the cursor tries to enter a cell of the control that allows editing
of text (such as a text field or form field). Return YES if the NSControl’s fieldEditor should be allowed to
start editing the text, NO otherwise.

control:textShouldEndEditing:
– (BOOL)control:(NSControl *)control textShouldEndEditing:(NSText *)fieldEditor

Sent directly by control to the delegate when the cursor tries to leave a a cell of the control that allows
editing of text (such as a text field or a form field). Return YES if the control’s fieldEditor should be allowed
to end its edit session, NO otherwise.

� control:textView:doCommandBySelector:
– (BOOL)control:(NSControl *)control

textView:(NSTextView *)textView
doCommandBySelector:(SEL)command

Invoked when users press keys with predefined bindings in control’s cell or selected cell, as communicated
to the control by the cell’s field editor (textView). The delegate returns YES if it handles the key binding,
and NO otherwise. These bindings are usually implemented as methods (command) defined in
NSResponder; examples of such key bindings are arrow keys (for directional movement) and the Escape
key (for name completion). By implementing this method, the delegate can override the default
implementation of command and supply its own behavior.

For example, the default method for completing partially typed pathnames or symbols (usually when users
press the Escape key) is complete:. The default implementation of complete: (in NSResponder) does
nothing. The delegate could evaluate command and, if it’s complete:, get the current string from textView
and then expand it, or display a list of potential completions, or do whatever else is appropriate.

20

Classes: NSControl

controlTextDidBeginEditing:
– (void)controlTextDidBeginEditing:(NSNotification *)aNotification

Sent by the default notification center to the delegate and all observers of the notification when a control
with editable cells (such as a text field, form field, or an NSMatrix) begins editing text. The name of the
notification (aNotification) is always NSControlTextDidBeginEditingNotification. Use the key
@"NSFieldEditor" to obtain the field editor from aNotification’s userInfo dictionary. If the delegate
implements this method, it’s automatically registered to receive this notification.

controlTextDidEndEditing:
– (void)controlTextDidEndEditing:(NSNotification *)aNotification

Sent by the default notification center to the delegate and all observers of the notification when a control
with editable cells (such as a text field, form field, or an NSMatrix) ends editing text. The name of the
notification (aNotification) is always NSControlTextDidEndEditingNotification. Use the key
@"NSFieldEditor" to obtain the field editor from aNotification’s userInfo dictionary. If the delegate
implements this method, it’s automatically registered to receive this notification.

controlTextDidChange:
– (void)controlTextDidChange:(NSNotification *)aNotification

Sent by the default notification center to the delegate when the text in the receiving control (usually a text
field, form, or NSMatrix with editable cells) changes. The name of the notification aNotification is always
NSControlTextDidChangeNotification. Use the key @"NSFieldEditor" to obtain the field editor from
aNotification’s userInfo dictionary. If the delegate implements this method, it’s automatically registered to
receive this notification.

Notifications

NSControl posts the following notifications to interested observers and its delegate.

NSControlTextDidBeginEditingNotification

Notification Object The NSControl posting the notification. The field editor of the edited
cell originally sends a NSTextDidBeginEditingNotification to the
control, which passes it on in this form to its delegate.

User Info

Key Value

@"NSFieldEditor" The edited cell’s field editor

21

See description of controlTextDidBeginEditing:, above, for details.

NSControlTextDidChangeNotification

Notification Object The NSControl posting the notification. The field editor of the edited
cell originally sends a NSTextDidChangeNotification to the
control, which passes it on in this form to its delegate.

User Info

Key Value

@"NSFieldEditor" The edited cell’s field editor

See description of controlTextDidChange:, above, for details.

NSControlTextDidEndEditingNotification

Notification Object The NSControl posting the notification. The field editor of the edited
cell originally sends a NSTextDidEndEditingNotification to the
control, which passes it on in this form to its delegate.

User Info

Key Value

@"NSFieldEditor" The edited cell’s field editor

See description of controlTextDidEndEditing:, above.

