
1

NSPopUpButton

Inherits From: NSButton : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPopUpButton.h

Purpose
An NSPopUpButton object controls a pop-up list or a pull-down list, from which a user can select an item.

Principal Attribute
A list of objects that conform to the NSMenuItem protocol.

Creation
Interface Builder

Commonly Used Methods
– selectedItem Returns the currently selected item.
– indexOfSelectedItem Returns an integer identifying the currently selected item.
– titleOfSelectedItem Returns a string identifying the currently selected item.

Class Description

The NSPopUpButton class defines objects that implement the pop-up and pull-down lists of the OpenStep
graphical user interface. You normally create an NSPopUpButton using Interface Builder.

When configured to display a pop-up list, an NSPopUpButton contains a number of options and displays
as its title the option that was last selected. A pop-up list is often used for selecting items from a small- to
medium-sized set of options (like the zoom factor for a document window). It’s a useful alternative to a
matrix of radio buttons or an NSBrowser when screen space is at a premium; a zoom factor pop-up can
easily fit next to a scroll bar at the bottom of a window, for example.

Class at a Glance

2

Classes: NSPopUpButton

When configured to display a pull-down list, an NSPopUpButton is generally used for selecting commands
in a very specific context. You can think of a pull-down list as a compact form of menu. A pull-down list’s
title isn’t affected by the user’s actions, and a pull-down list always displays a title that identifies the type
of commands it contains. When the commands only make sense in the context of a particular display, a
pull-down list can be used in that display to keep the related actions nearby and to keep them out of the way
when that display isn’t visible. For example, Interface Builder has a set of commands that only apply to the
Classes view of the nib file window. Those commands are contained in a pull-down list in that view.

The items in the pop-up list or pull-down list (referred to simply as a list in this class description) are objects
that conform to the NSMenuItem protocol. Thus, you can send any message defined in that protocol to any
item in the list.

Using an NSPopUpButton

Although the NSPopUpButton class defines an initialization method and methods that set up the list created
by this class, you usually don’t invoke these methods in your program. The typical way to create an
NSPopUpButton is to use Interface Builder. You also define the NSPopUpButton’s target and action, as
well as the targets and actions of each item in the NSPopUpButton’s list, using Interface Builder. The
NSPopUpButton methods you use most often are the methods that tell you which item is selected.

For example, suppose you want to create a pop-up list from which your user may select a language. Your
want your controller object to set an instance variable named language to an enum constant that
corresponds to the value that the user has chosen. You use Interface Builder to create the NSPopUpButton
object, name it (languagePopUp in this example) add items to it, and configure it as a pop-up list. The
actual code you write might look like this:

typedef enum _languageValue {

 English,

 French,

 German

} languageValue;

- (void)setLanguage:(id)sender

{

 NSString *title = [languagePopUp titleOfSelectedItem];

 if ([title isEqualToString:@"English"])

 language = English;

 else if ([title isEqualToString:@"French"])

 language = French;

 else if ([title isEqualToString:@"German"])

 language = German;

}

3

Method Types

Initializing an NSPopUpButton – initWithFrame:pullsDown:

Setting the Type of List – setPullsDown:
– pullsDown
– setAutoenablesItems:
– autoenablesItems

Inserting and Deleting Items – addItemWithTitle:
– addItemsWithTitles:
– insertItemWithTitle:atIndex:
– removeAllItems
– removeItemWithTitle:
– removeItemAtIndex:

Modifying an Item – setFont:
– font

Getting the User’s Selection – selectedItem
– titleOfSelectedItem
– indexOfSelectedItem
– stringValue

Setting the Current Selection – selectItemAtIndex:
– selectItemWithTitle:
– setTitle:

Querying the NSPopUpButton – indexOfItemWithTitle:
– numberOfItems
– itemArray
– itemAtIndex:
– itemTitleAtIndex:
– itemTitles
– itemWithTitle:
– lastItem

Target and Action – setAction
– action
– setTarget:
– target

Setting the State – synchronizeTitleAndSelectedItem

4

Classes: NSPopUpButton

Instance Methods

action
– (SEL)action

Returns the action to be sent to the NSPopUpButton’s target when an item is selected from the list.

See also: – setAction:, – target

addItemWithTitle:
– (void)addItemWithTitle:(NSString *)title

Adds an item named title to the end of the list. This method then calls synchronizeTitleAndSelectedItem
to make sure that the title displayed matches the currently selected item.

See also: – insertItemWithTitle:atIndex:, –removeItemWithTitle:, –setTitle:

addItemsWithTitles:
– (void)addItemsWithTitles:(NSArray *)itemTitles

Adds multiple items to the end of the list. The titles for the new items are taken from the itemTitles array.
Once the items are added, this method uses synchronizeTitleAndSelectedItem to make sure that the title
displayed matches the currently selected item.

See also: – insertItemWithTitle:atIndex:, –removeAllItems, –removeItemWithTitle:

autoenablesItems
– (BOOL)autoenablesItems

Returns whether the NSPopUpButton automatically enables and disables its items every time a user event
occurs. Autoenabling is turned on unless you send the message setAutoenablesItems:NO to the
NSPopUpButton. See the NSMenuActionResponder informal protocol for more information on
autoenabling menu items.

See also: – setAutoenablesItems:

5

font
– (NSFont *)font

Returns the NSFont used for the items’ titles.

See also: – setFont:

indexOfItemWithTitle:
– (int)indexOfItemWithTitle:(NSString *)title

Returns the index of the item whose title matches title or –1 if no match is found.

indexOfSelectedItem
– (int)indexOfSelectedItem

Returns the index of the item last selected by the user or –1 if there’s no selected item.

See also: – selectedItem, – titleOfSelectedItem

initWithFrame:pullsDown:
– (id)initWithFrame:(NSRect)frameRect pullsDown:(BOOL)flag

Initializes a newly allocated NSPopUpButton, giving it the dimensions specified by frameRect. If flag is
YES, the receiver is initialized to operate as a pull-down list; otherwise, it operates as a pop-up list. If you
allocate and initialize an NSPopUpButton in code, you are responsible for releasing it.

See also: – pullsDown, –setPullsDown:

insertItemWithTitle:atIndex:
– (void)insertItemWithTitle:(NSString *)title atIndex:(int)index

Inserts an item with the name title at position index in the list. Index 0 indicates the top item. Once the item
is inserted, this method uses synchronizeTitleAndSelectedItem to make sure that the title displayed
matches the currently selected item.

If an item with the name title already exists in the list, it’s removed and the new one is added. This
essentially moves title to a new position. If you want to move an item, it’s better to invoke
removeItemWithTitle: explicitly and then send this method.

See also: – addItemWithTitle: , – addItemsWithTitles:, – indexOfItemWithTitle: ,
– removeItemWithTitle:

6

Classes: NSPopUpButton

itemArray
– (NSArray *)itemArray

Returns the NSArray that holds the list’s items. The NSPopUpButton’s list is actually an NSArray of
objects conforming to the NSMenuItem protocol. Usually you access the list’s items and modify the list by
sending messages directly to the NSPopUpButton rather than accessing the NSArray.

See also: – itemAtIndex:, – insertItemWithTitle:atIndex:, –removeItemAtIndex:

itemAtIndex:
– (id <NSMenuItem>)itemAtIndex:(int)index

Returns the list item at index. If there is no item at index, this method returns nil.

See also: – itemWithTitle:, – lastItem

itemTitleAtIndex:
– (NSString *)itemTitleAtIndex:(int)index

Returns the title of the item at index. If there is no item at index, this method returns the empty string.

See also: – itemTitles

itemTitles
– (NSArray *)itemTitles

Returns an NSArray object that holds the titles of all of the items in the list. The titles appear in the order
in which the items appear in the list.

See also: – itemTitleAtIndex:, – itemWithTitle:, –numberOfItems

itemWithTitle:
– (id <NSMenuItem>)itemWithTitle:(NSString *)title

Returns the item whose title is title. If there is no item with this title, this method returns nil.

See also: – addItemWithTitle:, –selectItemWithTitle:, – itemAtIndex:, – indexOfItemWithTitle:

7

lastItem
– (id <NSMenuItem>)lastItem

Returns the last item in the list.

See also: – itemAtIndex:

numberOfItems
– (int)numberOfItems

Returns the number of items in the list.

See also: – lastItem

pullsDown
– (BOOL)pullsDown

Returns YES if the receiver is configured as a pull-down list or NO if it’s configured as a pop-up list.

See also: – setPullsDown:

removeAllItems
– (void)removeAllItems

Removes all items in the receiver’s item list. This method then uses synchronizeTitleAndSelectedItem to
refresh the list.

See also: – numberOfItems, –removeItemAtIndex:, –removeItemWithTitle:

removeItemAtIndex:
– (void)removeItemAtIndex:(int)index

Removes the item at index. This method then uses synchronizeTitlesAndSelectedItem to make sure the
title displayed matches the currently selected item.

See also: – insertItemWithTitle:atIndex:, –removeAllItems, –removeItemWithTitle:

8

Classes: NSPopUpButton

removeItemWithTitle:
– (void)removeItemWithTitle:(NSString *)title

Removes the item named title. This method then uses synchronizeTitleAndSelectedItem to refresh the
list.

See also: – addItemWithTitle:, –removeAllItems, –removeItemAtIndex:

selectedItem
– (id <NSMenuItem>)selectedItem

Returns the item last selected by the user (the item that was highlighted when the user released the mouse
button). If there is no selected item, this method returns nil. It is possible for a pop-up list’s selected item
to be its title item.

See also: – stringValue

selectItemAtIndex:
– (void)selectItemAtIndex:(int)index

Selects the item at index and invokes synchronizeTitleAndSelectedItem to make sure the title displayed
matches the currently selected item.

See also: – indexOfSelectedItem

selectItemWithTitle:
– (void)selectItemWithTitle:(NSString *)title

Selects the item named title and invokes synchronizeTitleAndSelectedItem to make sure the title
displayed matches the currently selected item.

See also: – indexOfItemWithTitle:, –addItemWithTitle:, –setTitle:

setAction:
– (void)setAction:(SEL)aSelector

Sets the NSPopUpButton’s action method to aSelector. The action message is sent to the NSPopUpButton’s
target when an item is selected from the list.

See also: – action, –setTarget:

9

setAutoenablesItems:
– (void)setAutoenablesItems:(BOOL)flag

Sets whether the NSPopUpButton automatically enables and disables its items every time a user event
occurs. Autoenabling is turned on unless you specify NO as the value for flag. See the
NSMenuActionResponder informal protocol for more information on autoenabling menu items.

See also: – autoenablesItems

setFont:
– (void)setFont:(NSFont *)fontObject

Sets the font used for the items’ titles to fontObject. The NSPopUpButton redraws itself at this point, but
since it normally won’t be on the screen when it receives this message, this shouldn’t cause any undesirable
side-effects.

See also: – font

setPullsDown:
– (void)setPullsDown:(BOOL)flag

If flag is YES, the receiver is configured as a pull-down list. If flag is NO, the receiver is configured as a
pop-up list.

See also: – initWithFrame:pullsDown:, –pullsDown

setTarget:
– (void)setTarget:(id)anObject

Sets the target for action messages to anObject.

See also: – target, – setAction:

setTitle:
– (void)setTitle:(NSString *)title

Selects the item named title if such an item exists. If the item does not exist, it first adds the item to the end
of the list, then selects it and invokes the method synchronizeTitleAndSelectedItem.

See also: – addItemWithTitle:, –selectItemWithTitle:

10

Classes: NSPopUpButton

stringValue
– (NSString *)stringValue

Returns the title of the selected item by invoking titleOfSelectedItem.

See also: – selectedItem

synchronizeTitleAndSelectedItem
– (void)synchronizeTitleAndSelectedItem

Ensures that the receiver’s title agrees with the title of the selected item (see indexOfSelectedItem). If
there’s no selected item, this method selects the first item in the item list and sets the receiver’s title to
match. This method is useful in subclasses that directly select items in the item matrix or that override
setTitle:. This method has no effect on pull-down lists.

See also: – itemArray

target
– (id)target

Returns the target for action messages.

See also: – action

titleOfSelectedItem
– (NSString *)titleOfSelectedItem

Returns the title of the item last selected by the user or the empty string if there’s no such item.

See also: – indexOfSelectedItem, – stringValue

Notifications

NSPopUpButtonWillPopUpNotification

Posted when the NSPopUpButton receives a mouse-down event; that is, when the user is about to select an
item from the list. The notification contains:

Notification Object the selected NSPopUpButton

Userinfo None

