NSButton

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (from NSResponder)

NSObject (from NSObject)
Declared In: AppKit/NSButton.h

Class Description

NSButton is a subclass of NSControl that intercepts mouse-down events and sends an action message to a

target object when it's clicked or pressed. By virtue of its NSButtonCell, NSButton is a two-state
NSControl—it's either “off” or “on"—and it displays its state depending on the configuration of the
NSButtonCell. NSButton acquires other attributes of NSButtonCell. The state is used as the value, so
NSControl methods likeetIntValue: actually set the state (the methedsState: andstate are provided

as a more conceptually accurate way of setting and getting the state). The NSButton can send its action
continuously and display highlighting in several different ways. What's more, an NSButton can have a key
equivalent that’s eligible for triggering whenever the NSButton’s NSPanel or NSWindow is the key
window.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCell object.
However, while NSMatrix requires you to access the NSButtonCells directly, most of NSButton’s methods
are “covers” for identically declared methods in NSButtonCell. (In other words, the implementation of the
NSButton method invokes the corresponding NSButtonCell method for you, allowing you to be
unconcerned with the NSButtonCell's existence.) The only NSButtonCell methods that don’t have covers
relate to the font used to display the key equivalent, and to specific methods for highlighting or showing the
NSButton’s state (these last are usually set together with NSBusebBisttonType: method).

Creating a Subclass of NSButton

Override the designated initializer (NSViewrstWithFrame: method) if you create a subclass of
NSButton that performs its own initialization. If you want to use a custom NSButtonCell subclass with your
subclass of NSButton, you have to overridesi€ellClass. method, as described in “Creating New
NSControls” in the NSControl class specification.

See the NSButtonCell class specification for more on NSButton’s behavior.



Classes: NSButton

Method Types

Initializing the NSButton factory ~ + cellClass
+ setCellClass:

Setting the button type — setButtonType:

Setting the state — setState:
— state

Setting the repeat interval — getPeriodicDelay:interval:
— setPeriodicDelay:interval:

Setting the titles — alternateTitle
— attributedAlternateTitle
— attributedTitle
— setAlternateTitle:
— setAttributedAlternateTitle
— setAttributedTitle
— setTitle:
— title

Setting the images — alternatelmage
—image
—imagePosition
— setAlternatelmage:
— setlmage:
— setimagePosition:

Modifying graphic attributes — isBordered

—isTransparent

— setBordered:

— setTransparent:
Displaying — highlight:
Setting the key equivalent — keyEquivalent

— keyEquivalentModifierMask
— setKeyEquivalent:
— setKeyEquivalentModifierMask:

Handling events and action messages
— performClick:
— performKeyEquivalent:



Class Methods

cellClass
+ (Class)cellClass
Returnsthe class of cellsused by the receiving class (which must be NSButtonCell or one of its subclasses).

Returns nil if no cell class has been specified for the receiving class or any of its superclasses (up to
NSButtonCell).

setCellClass:
+ (void)setCellClass:(Class)classld

Configures the NSButton class to use instances of classld for its NSCells. classld should be theid of a
subclass of NSButtonCell, obtained by sending the class message to either the NSCell subclass object or to
an instance of that subclass. The default NSCell classis NSButtonCell.

If this method isn't overridden by a subclass of NSButton, then when it's sent to that subclass, NSButton
and any other subclasses of NSButton will use the new NSCell subclass as well. To safely set an NSCell
class for your subclass of NSButton, override this method to store the NSCell class inid. Fiés,

override the designated initializer to replace the NSButton subclass instance’s NSCell with an instance of
the NSCell subclass stored in that stadicSee “Creating New NSControls” in the NSControl class
specification’s class description for more information.

Instance Methods
alternatelmage
— (NSImage *3lter natel mage

Returns the image that appears on the button when it's in its alternate stété,tbere is no alternate
image. Note that some button types don’t display an alternate image. Buttons don't display images by
default.

See also: —image — imagePosition— keyEquivalent, — setButtonType:



Classes: NSButton

alternateTitle
— (NSString *plternateTitle

Returns the string that appears on the button when it's in its alternate state, or the empty string if the button
doesn't display an alternate title. Note that some button types don’t display an alternate title. By default, a
button’s alternate title is “Button”.

See also: — attributedAlternateTitle , — setButtonType; — title

attributedAlternateTitle
— (NSAttributedString *attributedAlter nateTitle

Returns the string that appears on the button when it's in its alternate state as an NSAttributedString, or an
empty attributed string if the button doesn’t display an alternate title. Note that some button types don’t
display an alternate title. By default, a button’s alternate title is “Button”.

Seealso: — setButtonType; — attributedTitle

attributedTitle
— (NSAttributedString *attributedTitle

Returns the string that appears on the button when it's in its normal state as an NSAttributedString, or an
empty attributed string if the button doesn'’t display a title. A button’s title is always displayed if the button
doesn't use its alternate contents for highlighting or displaying the alternate state. By default, a button’s title
is “Button”.

See also: — attributedAlternateTitle , — setButtonType:

getPeriodicDelay:interval:
— (void)getPeriodicDelay: (float *)delay interval: (float *)interval

Returns by reference the delay and interval periods for a continuous blatiagris the amount of time (in
seconds) that the button will pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.

Default delay and interval values are taken from a user’s defaults (60 seconds maximum for each); if the
user hasn'’t specified default valudslay defaults to 0.4 seconds aimterval defaults to 0.075 seconds.

See also: —isContinuous (NSControl)



highlight:
— (voidhighlight:(BOOL)flag

Highlights (or unhighlights) the button accordingliy. Highlighting may involve the button appearing
“pushed in” to the screen, displaying its alternate title or image, or causing the button to appear to be “lit.”
If the current state of the button matcliag, no action is taken.

See also: — setButtonType:

image
— (NSImage *)mage

Returns the image that appears on the button when it’s in its normal statédf threre is no such image.
This image is always displayed on a button that doesn’t change its contents when highlighting or showing
its alternate state. Buttons don'’t display images by default.

See also: —alternatel mage, —setButtonType:

imagePosition
— (NSCelllmagePositioimnagePosition

Returns the position of the button’s image relative to its title. The return value is one of the following (these
are defined ilNSCell.h):

Return Value Meaning

NSNolmage The button doesn’t display an image (this is the default)
NSImageOnly The button displays an image, but not a title
NSImageLeft The image is to the left of the title

NSImageRight The image is to the right of the title

NSImageBelow The image is below the title

NSImageAbove The image is above the title

NSImageOverlaps The image overlaps the title

If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

See also: —setButtonType:, — setlmage; — setTitle:



Classes: NSButton

isBordered
— (BOOL)sBordered

Returns YES if the button has a border, NO otherwise. A button’s border isn’t the single line of most other
controls’ borders; instead, it's a raised bezel. By default, buttons are bordered.

isTransparent
— (BOOL)isTransparent

Returns YES if the button is transparent, NO otherwise. A transparent button never draws itself, but it
receives mouse-down events and tracks the mouse properly.

keyEquivalent
— (NSString *keyEquivalent

Returns the key-equivalent character of the button, or the empty string if one hasn’t been defined. Buttons
don’t have a default key equivalent.

See also: — keyEquivalentFont (NSButtonCell), performK eyEquivalent:

keyEquivalentModifierMask
— (unsigned inReyEquivalentM odifier M ask

Returns the mask indicating the modifier keys that are applied to the button’s key equivalent. Mask bits are
defined inNSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: — keyEquivalent:

performClick:

— (void)performClick: (id)sender
Simulates the user’s clicking the button with the mouse. This method essentially highlights the button,
sends the button’s action message to the target object, and then unhighlights the button. If an exception is

raised while the target object is processing the action message, the button is unhighlighted before the
exception is propagated outmdr formClick:.

See also: — performKeyEquivalent:



performKeyEquivalent:
— (BOOL performK eyEquivalent: (NSEvent *anEvent

If the character imnEvent matches the button’s key equivalent, and the modifier flagsExent match

the key-equivalent modifier maghker formK eyEquivalent: simulates the user clicking the button by
sendingperformClick: to self, and returns YES. Otherwigser formK eyEquivalent: does nothing and
returns NOperformKeyEquivalent: also returns NO in the event that the button is blocked by a modal
panel or the button is disabled.

See also: — keyEquivalentModifierMask

setAlternatelmage:
— (void)setAlter natel mage: (NSImage *)mage

Sets the image that appears on the button when it's in its alternate Btagetand, if necessary, redraws
the contents of the button. Note that some button types don’t display an alternate image.

See also: —setlmage:, —setButtonType:

setAlternateTitle:
— (void)setAlternateTitle:(NSString *aString

Sets the string that appears on the button when it's in its alternate st@tertg. Note that some button
types don't display an alternate title.

Seealso: —setTitle, —setButtonType:, —setFont: (NSButtonCell)

setAttributedAlternateTitle:
— (void)setAttributedAlter nateTitle: (NSAttributedString *aString

Sets the string that appears on the button when it's in its alternate state to the attributegtstgndlote
that some button types don't display an alternate title.

See also: — SetAttributedTitle:, —setButtonType:, —setFont: (NSButtonCell)



Classes: NSButton

\9 setAttributedTitle:
— (void)setAttributedTitle:(NSAttributedString *aString

Sets the string that appears on the button when it's in its normal state to the attributex®striggnd
redraws the button. The title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: — SetAttributedAlternateTitle:, —setButtonType:, —setFont: (NSButtonCell)

setBordered:
— (void)setBordered: (BOOL)flag

Sets whether the button has a bezeled bordiaglis YES, the button displays a border; if NO, the button
doesn’t display a border. A button’s border is not the single line or most other controls’ borders; instead,
it's a raised bezel. This method redraws the buttsetBordered: causes the bordered state to change.

setButtonType:
— (void)setButtonType: (NSButtonTypeaType

Sets how the button highlights while pressed and how it shows itssst&tettonType: redisplays the
button before returning.

The types available are for the most common button types, which are also accessible in Interface Builder.
You can configure different behavior with NSButtonCetEtHighlightsBy: andsetShowsStateBy:
methods.

aType can be one of eight constants:



Button Type
NSMomentaryLight

NSMomentaryPushButton

NSMomentaryChangeButton

NSPushOnPushOffButton

NSONOffButton

NSToggleButton

NSSwitchButton

NSRadioButton

Description

While the button is held down it's shown as “lit.” This type of
button is best for simply triggering actions, as it doesn’t show its
state; it always displays its normal image or title. This option is
called “Momentary Light” in Interface Builder’s Button
Inspector. This is the default button type.

While the button is held down it's shown as “lit,” and also
“pushed in” to the screen if the button is bordered. This type of
button is best for simply triggering actions, as it doesn’t show its
state; it always displays its normal image or title. This option is
called “Momentary Push” in Interface Builder’s Button
Inspector.

While the button is held down, the alternate image and alternate
title are displayed. The normal image or title are displayed when
the button isn’t pressed. This option is called “Momentary
Change” in Interface Builder’s Button Inspector.

The first click both highlights and causes the button to be
“pushed in” if the button is bordered. A second click returns it
to its normal state. This option is called “Push On/Push Off” in
Interface Builder’'s Button Inspector.

The first click highlights the button. A second click returns it to
the normal (unhighlighted) state. This option is called “On/Off”
in Interface Builder’s Button Inspector.

The first click highlights the button, while a second click returns
it to its normal state. Highlighting is performed by changing to
the alternate title or image and showing the button as “pushed
in” if the button is bordered. This option is called “Toggle” in
Interface Builder’s Button Inspector.

This is a variant of NSToggleButton that has no border, with the
default image set to “NSSwitch,” and the alternate image set to
“NSHighlightedSwitch” (these are system bitmaps). This type
of button is available as a separate palette item in Interface
Builder.

Like NSSwitchButton, but the default image is set to
“NSRadioButton” and the alternate image is set to
“NSHighlightedRadioButton” (these are system bitmaps). This
type of button is available as a separate palette item in Interface
Builder.



Classes: NSButton

10

See also: — setAlternatelmage; —setButtonType: (NSButtonCell)- setimage:

setimage:
— (void)setl mage: (NSImage *)mage
Sets the button’s image anlmage, and redraws the button. A button’s image is displayed when the button

is in its normal state, or all the time for a button that doesn’t change its contents when highlighting or
displaying its alternate state.

See also: — setlmagePosition:, —setAlter natel mage:, —setButtonType:

setlimagePosition:
— (void)setl magePosition: (NSCelllmagePositiom@Position

Sets the position of the button’s image relative to its title. SeiendgePosition method description for a
listing of possible values f@Position.

setKeyEquivalent:

— (void)setK eyEquivalent: (NSString *)char Code
Sets the key equivalent character of the button, and redraws the button’s interior if it displays a key
equivalent instead of an image. The key equivalent isn't displayed if the image position is set to

NSNolmage, NSImageOnly or NSImageOverlaps; that is, the button must display both its title and its
“image” (the key equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate imdgthtn set the key equivalent,
then set the image position.

See also: —performKeyEquivalent:, —setAlter natel mage:, —setl mage:, —setl magePosition:,
— setKeyEquivalentFont: (NSButtonCell)

setKeyEquivalentModifierMask:
— (void)setK eyEquivalentM odifier M ask: (unsigned intnask

Sets the mask indicating the modifier keys to be applied to the button’s key equivalent. Mask bits are
defined inNSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: — setKeyEquivalent:



setPeriodicDelay:interval:
— (void)setPeriodicDelay: (float)delay inter val: (float)interval

Sets the message delay and interval for the button. These two values are used if the button is configured (by
asetContinuous. message) to continuously send the action message to the target object while tracking the
mousedelay is the amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target oljgetval is the amount of time (also in seconds)

between those messages.

The maximum value allowed for bodlelay andinterval is 60.0 seconds; if a larger value is supplied, it's
ignored and 60.0 seconds is used.

See also: —setContinuous (NSControl)

setState:
— (void)set State: (int)value

Sets the button’s state ¥alue and, if necessary, redraws the button. O is the normal or “off” state, and any
nonzero number is the alternate or “on” state.

setTitle:
— (void)set Title:(NSString *)aString
Sets the title displayed by the button when in its normal sta@rimg and, if necessary, redraws the

button’s contents. This title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: —satAlternateTitle:, —setButtonType:, —setFont: (NSButtonCell)

setTransparent:

— (void)set Transparent:(BOOL)flag
Sets whether the button is transparent, and redraws the butegnigf NO and the button wasn't already
transparent. A transparent button tracks the mouse and sends its action, but doesn’t draw. A transparent

button is useful for sensitizing an area on the screen so that an action gets sent to a target when the area
receives a mouse click.

11



Classes: NSButton

state
— (int)state

Returns the button’s state: O for normal or “off,” or 1 for alternate or “on.”

title
— (NSString *jitle

Returns the title displayed on the button when it’s in its normal state (this title is always displayed if the
button doesn’t use its alternate contents for highlighting or displaying the alternate state). Returns the empty
string if the button doesn'’t display a title. By default, a button’s title is “Button”.

See also: —alternateTitle, —setButtonType:

12



