
1

� NSLayoutManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSLayoutManager.h

Class Description

An NSLayoutManager coordinates the layout and display of characters held in an NSTextStorage object. It 
maps Unicode character codes to glyphs, sets the glyphs in a series of NSTextContainers, and displays them 
in a series of NSTextViews. In addition to its core function of laying out text, an NSLayoutManager 
coordinates its NSTextViews, provides services to those NSTextViews to support NSRulerViews for 
editing paragraph styles, and handles the layout and display of text attributes not inherent in glyphs (such 
as underline or strikethrough). You can create a subclass of NSLayoutManager to handle additional text 
attributes, whether inherent or not.

Method Types

Creating an instance – init

Setting the text storage – setTextStorage:
– textStorage
– replaceTextStorage:

Setting text containers – textContainers
– addTextContainer:
– insertTextContainer:atIndex:
– removeTextContainerAtIndex:

Invalidating glyphs and layout – invalidateGlyphsForCharacterRange:changeInLength:
actualCharacterRange:

– invalidateLayoutForCharacterRange:isSoft:
actualCharacterRange:

– invalidateDisplayForGlyphRange:
– textContainerChangedGeometry:
– textStorage:edited:range:changeInLength:

invalidatedRange:

Turning background layout on/off – setBackgroundLayoutEnabled:
– backgroundLayoutEnabled



2

Classes: NSLayoutManager

Accessing glyphs – insertGlyph:atGlyphIndex:characterIndex:
– glyphAtIndex:
– glyphAtIndex:isValidIndex:
– replaceGlyphAtIndex:withGlyph:
– getGlyphs:range:
– deleteGlyphsInRange:
– numberOfGlyphs

Mapping characters to glyphs – setCharacterIndex:forGlyphAtIndex:
– characterIndexForGlyphAtIndex:
– characterRangeForGlyphRange:actualGlyphRange:
– glyphRangeForCharacterRange:actualCharacterRange:

Setting glyph attributes – setIntAttribute:value:forGlyphAtIndex:
– intAttribute:forGlyphAtIndex:

Handling layout for text containers – setTextContainer:forGlyphRange:
– glyphRangeForTextContainer:
– textContainerForGlyphAtIndex:effectiveRange:
– usedRectForTextContainer:

Handling line fragment rectangles – setLineFragmentRect:forGlyphRange:usedRect:
– lineFragmentRectForGlyphAtIndex:effectiveRange:
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
– setExtraLineFragmentRect:usedRect:textContainer:
– extraLineFragmentRect
– extraLineFragmentUsedRect
– extraLineFragmentTextContainer
– setDrawsOutsideLineFragment:forGlyphAtIndex:
– drawsOutsideLineFragmentForGlyphAtIndex:

Layout of glyphs – setLocation:forStartOfGlyphRange:
– locationForGlyphAtIndex:
 – rangeOfNominallySpacedGlyphsContainingIndex:
– rectArrayForCharacterRange:

withinSelectedCharacterRange:
inTextContainer:rectCount:

– rectArrayForGlyphRange:withinSelectedGlyphRange:
 inTextContainer:rectCount:

– boundingRectForGlyphRange:inTextContainer:
– glyphRangeForBoundingRect:inTextContainer:
– glyphRangeForBoundingRectWithoutAdditionalLayout:

inTextContainer:
– glyphIndexForPoint:inTextContainer:

fractionOfDistanceThroughGlyph:



3

Display of special glyphs – setNotShownAttribute:forGlyphAtIndex:
– notShownAttributeForGlyphAtIndex:
– setShowsInvisibleCharacters:
– showsInvisibleCharacters
– setShowsControlCharacters:
– showsControlCharacters

Finding unlaid characters/glyphs – getFirstUnlaidCharacterIndex:glyphIndex:

Using screen fonts – setUsesScreenFonts:
– usesScreenFonts
– substituteFontForFont:

Handling rulers – rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
– rulerMarkersForTextView:paragraphStyle:ruler:

Managing the responder chain – layoutManagerOwnsFirstResponderInWindow:
– firstTextView
– textViewForBeginningOfSelection

Drawing – drawBackgroundForGlyphRange:atPoint:
– drawGlyphsForGlyphRange:atPoint:
– drawUnderlineForGlyphRange:underlineType:baselineOffset:

lineFragmentRect:lineFragmentGlyphRange:containerOrigin:
– underlineGlyphRange:underlineType:lineFragmentRect:

lineFragmentGlyphRange:containerOrigin:

Setting the delegate – setDelegate:
– delegate

Instance Methods

� addTextContainer:
– (void)addTextContainer:(NSTextContainer *)aTextContainer

Appends aTextContainer to the series of NSTextContainers where the receiver arranges text. Invalidates 
glyphs and layout as needed, but doesn’t perform glyph generation or layout.

See also: – insertTextContainer:atIndex:, –removeTextContainerAtIndex:, – textContainers, 
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:, 
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:



4

Classes: NSLayoutManager

� backgroundLayoutEnabled
– (BOOL)backgroundLayoutEnabled

Returns YES if the receiver generates glyphs and lays out text when the application’s run loop is idle, NO 
if it only performs glyph generation and layout when necessary.

See also: – setBackgroundLayoutEnabled:

� boundingRectForGlyphRange:inTextContainer:
– (NSRect)boundingRectForGlyphRange:(NSRange)glyphRange 

inTextContainer:(NSTextContainer *)aTextContainer

Returns a single bounding rectangle enclosing all glyphs and other marks drawn in aTextContainer for 
glyphRange, including glyphs that draw outside their line fragment rectangles and text attributes such as 
underlining. This method is useful for determining the area that needs to be redrawn when a range of glyphs 
changes.

Performs glyph generation and layout if needed.

See also: – glyphRangeForTextContainer:, –drawsOutsideLineFragmentForGlyphAtIndex:

� characterIndexForGlyphAtIndex:
– (unsigned int)characterIndexForGlyphAtIndex:(unsigned int)glyphIndex

Returns the index in the NSTextStorage for the first character mapped to the glyph at glyphIndex within the 
receiver. In many cases it’s better to use the range-mapping methods, 
characterRangeForGlyphRange:actualGlyphRange: and 
glyphRangeForCharacterRange:actualCharacterRange:, which provide more comprehensive 
information.

Performs glyph generation if needed.

� characterRangeForGlyphRange:actualGlyphRange:
– (NSRange)characterRangeForGlyphRange:(NSRange)glyphRange 

actualGlyphRange:(NSRange *)actualGlyphRange

Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in glyphRange. 
If actualGlyphRange is non-NULL, expands the requested range as needed so that it identifies all glyphs 
mapped to those characters and returns the new range by reference in actualGlyphRange.



5

Suppose the text store begins with the character “Ö” and the glyph cache contains “O” and “¨”. If you get 
the character range for the glyph range {0, 1} or {1, 1}, actualGlyphRange is returned as {0, 2}, indicating 
that both of the glyphs are mapped to the character “Ö”.

Performs glyph generation if needed.

See also: – characterIndexForGlyphAtIndex:, 
– glyphRangeForCharacterRange:actualCharacterRange:

� delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

� deleteGlyphsInRange:
– (void)deleteGlyphsInRange:(NSRange)glyphRange

Deletes the glyphs in glyphRange.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or 
generation of the glyphs or layout. You should never directly invoke this method. 

See also: – insertGlyph:atGlyphIndex:characterIndex:

� drawBackgroundForGlyphRange:atPoint:
– (void)drawBackgroundForGlyphRange:(NSRange)glyphRange 

atPoint:(NSPoint)containerOrigin

Draws background marks for glyphRange, which must lie completely within a single NSTextContainer. 
containerOrigin indicates the position of the NSTextContainer in the coordinate system of the NSView 
being drawn. This method must be invoked with the graphics focus locked on that NSView.

Background marks are such things as selection highlighting, text background color, and any background 
for marked text. 

Performs glyph generation and layout if needed.

See also: – drawGlyphsForGlyphRange:atPoint:, –glyphRangeForTextContainer:, 
– textContainerOrigin (NSTextView)



6

Classes: NSLayoutManager

� drawGlyphsForGlyphRange:atPoint:
– (void)drawGlyphsForGlyphRange:(NSRange)glyphRange atPoint:(NSPoint)containerOrigin

Draws the glyphs in glyphRange, which must lie completely within a single NSTextContainer. 
containerOrigin indicates the position of the NSTextContainer in the coordinate system of the NSView 
being drawn. This method must be invoked with the graphics focus locked on that NSView.

Performs glyph generation and layout if needed.

See also: – drawBackgroundForGlyphRange:atPoint:, –glyphRangeForTextContainer:, 
– textContainerOrigin (NSTextView)

� drawsOutsideLineFragmentForGlyphAtIndex:
– (BOOL)drawsOutsideLineFragmentForGlyphAtIndex:(unsigned int)glyphIndex

Returns YES if the glyph at glyphIndex exceeds the bounds of the line fragment where it’s laid out, NO 
otherwise. This can happen when text is set at a fixed line height. For example, if the user specifies a fixed 
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

Glyphs that draw outside their line fragment rectangles aren’t considered when calculating enclosing 
rectangles with the 
rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:rectCount: and 
rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: methods. They 
are, however, considered by boundingRectForGlyphRange:inTextContainer:

Performs glyph generation and layout if needed.

� drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:

– (void)drawUnderlineForGlyphRange:(NSRange)glyphRange
underlineType:(int)underlineType
baselineOffset:(float)baselineOffset
lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Draws underlining for the glyphs in glyphRange, which must belong to a single line fragment rectangle (as 
returned by lineFragmentRectForGlyphAtIndex:effectiveRange:). underlineType indicates the style of 
underlining to draw; NSLayoutManager accepts only NSSingleUnderlineStyle, but subclasses can define 
their own underline styles. baselineOffset indicates how far below the text baseline the underline should be 
drawn; it’s usually a positive value. lineRect is the line fragment rectangle containing the glyphs to draw 
underlining for, and lineGlyphRange is the range of all glyphs within that line fragment rectangle. 
containerOrigin is the origin of the line fragment rectangle’s NSTextContainer in its NSTextView.



7

This method is invoked automatically by underlineGlyphRange:...; you should rarely need to invoke it 
directly.

See also: – textContainerForGlyphAtIndex:effectiveRange:, – textContainerOrigin (NSTextView)

� extraLineFragmentRect
– (NSRect)extraLineFragmentRect

Returns the rectangle defining the extra line fragment for the insertion point at the end of a text (either in 
an empty text or after a final paragraph separator). The rectangle is defined in the coordinate system of its 
NSTextContainer. Returns NSZeroRect if there is no such rectangle.

See also: – extraLineFragmentUsedRect, –extraLineFragmentTextContainer, 
– setExtraLineFragmentRect:usedRect:textContainer:

� extraLineFragmentTextContainer
– (NSTextContainer *)extraLineFragmentTextContainer

Returns the NSTextContainer that contains the extra line fragment rectangle, or nil if there is no extra line 
fragment rectangle. This rectangle is used to display the insertion point for the insertion point at the end of 
a text (either in an empty text or after a final paragraph separator).

See also: – extraLineFragmentRect, –extraLineFragmentUsedRect, 
– setExtraLineFragmentRect:usedRect:textContainer:

� extraLineFragmentUsedRect
– (NSRect)extraLineFragmentUsedRect

Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle. The rectangle 
is defined in the coordinate system of its NSTextContainer. Returns NSZeroRect if there is no extra line 
fragment rectangle.

The extra line fragment used rectangle is twice as wide (or tall) as the NSTextContainer’s line fragment 
padding, with the insertion point itself in the middle.

See also: – extraLineFragmentRect, –extraLineFragmentTextConainer, 
– setExtraLineFragmentRect:usedRect:textContainer:



8

Classes: NSLayoutManager

� firstTextView
– (NSTextView *)firstTextView

Returns the first NSTextView in the receiver’s series of text views. This is the object of various NSText 
and NSTextView notifications posted.

� getFirstUnlaidCharacterIndex:glyphIndex:
– (void)getFirstUnlaidCharacterIndex:(unsigned int *)charIndex 

glyphIndex:(unsigned int *)glyphIndex

Returns by reference in charIndex and glyphIndex the indexes for the first character and glyph that have 
invalid layout information. Either parameter may be NULL, in which case the receiver simply ignores it.

� getGlyphs:range:
– (unsigned int)getGlyphs:(NSGlyph *)glyphArray range:(NSRange)glyphRange

Fills glyphArray with displayable glyphs from glyphRange and returns the actual number of glyphs filled 
(which may be smaller than glyphRange’s length if some glyphs aren’t drawn—for example, tab and 
newline characters). Raises an NSRangeException if the range specified exceeds the bounds of the actual 
glyph range for the receiver.

Performs glyph generation if needed.

See also: – glyphAtIndex:, –glyphAtIndex:isValidIndex:, –notShownAttributeForGlyphAtIndex:

� glyphAtIndex:
– (NSGlyph)glyphAtIndex:(unsigned int)glyphIndex

Returns the glyph at glyphIndex. Raises an NSRangeException if glyphIndex is out of bounds.

Performs glyph generation if needed. To avoid an exception with glyphAtIndex: you must first check the 
glyph index against the number of glyphs, which requires generating all glyphs. Another method, 
glyphAtIndex:isValidIndex:, generates glyphs only up to the one requested, so using it can be more 
efficient.

See also: – getGlyphs:range:



9

� glyphAtIndex:isValidIndex:
– (NSGlyph)glyphAtIndex:(unsigned int)glyphIndex isValidIndex:(BOOL *)flag

If glyphIndex is valid, returns the glyph at glyphIndex and sets flag to YES. Otherwise sets flag to NO (in 
which case the return value is meaningless).

Performs glyph generation if needed.

See also: – getGlyphs:range:, –glyphAtIndex:

� glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:
– (unsigned int)glyphIndexForPoint:(NSPoint)aPoint

inTextContainer:(NSTextContainer *)aTextContainer
fractionOfDistanceThroughGlyph:(float *)partialFraction

Returns the index for the glyph nearest aPoint within aTextContainer. aPoint is expressed in 
aTextContainer’s coordinate system. If partialFraction is non-NULL the ratio of the distance into the glyph 
relative to the next glyph (in the appropriate sweep direction) is returned by reference in partialFraction.

Note: NSLayoutManager currently supports only left-to-right sweep.

For purposes such as dragging out a selection or placing the insertion point, a partial percentage less than 
or equal to 0.5 indicates that aPoint should be considered as falling before the glyph index returned; a partial 
percentage greater than 0.5 indicates that it should be considered as falling after the glyph index returned. 
If the nearest glyph doesn’t lie under aPoint at all (for example, if aPoint is beyond the beginning or end of 
a line) this ratio will be 0 or 1.

Suppose the glyph stream contains the glyphs “A” and “b”, with the width of “A” being 13 points. If the 
user clicks at a location 8 points into “A”, partialFraction is 8 ÷ 13, or 0.615. In this case, the point given 
should be considered as falling between “A” and “b” for purposes such as dragging out a selection or 
placing the insertion point.

Performs glyph generation and layout if needed.

� glyphRangeForBoundingRect:inTextContainer:
– (NSRange)glyphRangeForBoundingRect:(NSRect)aRect 

inTextContainer:(NSTextContainer *)aTextContainer

Returns the smallest contiguous range for glyphs that are laid out wholly or partially within aRect in 
aTextContainer. The range returned can include glyphs that don’t fall inside or intersect aRect, though the 
first and last glyphs in the range always do. This method is used to determine which glyphs need to be 
displayed within a given rectangle.



10

Classes: NSLayoutManager

Performs glyph generation and layout if needed.

See also: – glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:

� glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:
– (NSRange)glyphRangeForBoundingRectWithoutAdditionalLayout:(NSRect)bounds 

inTextContainer:(NSTextContainer *)container

Returns the smallest contiguous range for glyphs that are laid out wholly or partially within aRect in 
aTextContainer. The range returned can include glyphs which don’t fall inside or intersect aRect, though 
the first and last glyphs in the range always do.

Unlike glyphRangeForBoundingRect:inTextContainer:, this method doesn’t perform glyph generation 
or layout. Its results, though faster, can be incorrect. This method is primarily for use by NSTextView; you 
should rarely need to use it yourself.

See also: – glyphRangeForBoundingRect:inTextContainer:

� glyphRangeForCharacterRange:actualCharacterRange:
– (NSRange)glyphRangeForCharacterRange:(NSRange)charRange 

actualCharacterRange:(NSRange *)actualCharRange

Returns the range for the glyphs mapped to the characters of the text store in charRange. If 
actualCharRange is non-NULL, expands the requested range as needed so that it identifies all characters 
mapped to those glyphs and returns the new range by reference in actualCharRange.

Suppose the text store contains the characters “n˜” and the glyph cache contains “ñ”. If you get the glyph 
range for the character range {0, 1} or {1, 1}, actualCharRange is returned as {0, 2}, indicating both of the 
characters mapped to the glyph “ñ”. 

Performs glyph generation if needed.

See also: – characterIndexForGlyphAtIndex:, 
– glyphRangeForCharacterRange:actualCharacterRange

� glyphRangeForTextContainer:
– (NSRange)glyphRangeForTextContainer:(NSTextContainer *)aTextContainer

Returns the range for glyphs laid out within aTextContainer.

Performs glyph generation and layout if needed.



11

� init
– (id)init

Initializes the receiver, a newly created NSLayoutManager object. This is the designated initializer for the 
NSLayoutManager class. Returns self.

See also: – addLayoutManager: (NSTextStorage), –addTextContainer:

� insertGlyph:atGlyphIndex:characterIndex:
– (void)insertGlyph:(NSGlyph)aGlyph

atGlyphIndex:(unsigned int)glyphIndex
characterIndex:(unsigned int)charIndex

Inserts aGlyph into the glyph cache at glyphIndex and maps it to the character at charIndex. If the glyph is 
mapped to several characters, charIndex should indicate the first character that it’s mapped to.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or 
generation of the glyphs or layout. You should never directly invoke this method. 

See also: – deleteGlyphsInRange:, –replaceGlyphAtIndex:withGlyph:

� insertTextContainer:atIndex:
– (void)insertTextContainer:(NSTextContainer *)aTextContainer atIndex:(unsigned int)index

Inserts aTextContainer into the series of text containers at index, and invalidates layout for all subsequent 
NSTextContainer’s. Also invalidates glyph information as needed.

See also: – addTextContainer:, –removeTextContainerAtIndex:, – textContainers

� intAttribute:forGlyphAtIndex:
– (int)intAttribute:(int)attributeTag forGlyphAtIndex:(unsigned int)glyphIndex

Returns the value of the attribute identified by attributeTag for the glyph at glyphIndex.

Subclasses that define their own custom attributes must override this method to access their own storage 
for the attribute values. Non-negative tags are reserved by NeXT; you can define your own attributes with 
negative tags and set values using setIntAttribute:value:forGlyphAtIndex:.



12

Classes: NSLayoutManager

� invalidateDisplayForGlyphRange:
– (void)invalidateDisplayForGlyphRange:(NSRange)glyphRange

Marks the glyphs in glyphRange as needing display, as well as the appropriate regions of the NSTextViews 
that display those glyphs (using NSView’s setNeedsDisplayInRect:). You should rarely need to invoke 
this method.

� invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:
– (void)invalidateGlyphsForCharacterRange:(NSRange)charRange

changeInLength:(int)lengthChange
actualCharacterRange:(NSRange *)actualCharRange

Invalidates the cached glyphs for the characters in charRange and adjusts the remaining glyph-to-character 
mapping according to lengthChange, which indicates the number of characters added to or removed from 
the text store. If non-NULL, actualCharRange is set to the range of characters mapped to the glyphs just 
invalidated. This can be larger than the range of characters given due to the effect of context on glyphs and 
layout.

You should rarely need to invoke this method. It only invalidates glyph information, and performs no glyph 
generation or layout. Because invalidating glyphs also invalidates layout, after invoking this method you 
should also invoke invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:, passing 
charRange as the first argument and NO as the flag to the isSoft: keyword.

� invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:
– (void)invalidateLayoutForCharacterRange:(NSRange)charRange

isSoft:(BOOL)flag
actualCharacterRange:(NSRange *)actualCharRange

Invalidates the layout information for the glyphs mapped to the characters in charRange. If flag is YES, 
attempts to save some layout information to avoid recalculation; if flag is NO, saves no layout information. 
You should typically pass NO for flag. If non-NULL, actualCharRange is set to the range of characters 
mapped to the glyphs whose layout information has been invalidated. This can be larger than the range of 
characters given due to the effect of context on glyphs and layout.

This method only invalidates information; it performs no glyph generation or layout. You should rarely 
need to invoke this method.

See also: – invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:



13

� layoutManagerOwnsFirstResponderInWindow:
– (BOOL)layoutManagerOwnsFirstResponderInWindow:(NSWindow *)aWindow

Returns YES if the first responder in aWindow is an NSTextView associated with the receiver, NO 
otherwise.

� lineFragmentRectForGlyphAtIndex:effectiveRange:
– (NSRect)lineFragmentRectForGlyphAtIndex:(unsigned int)glyphIndex 

effectiveRange:(NSRange *)lineFragmentRange

Returns the line fragment rectangle containing the glyph at glyphIndex. The rectangle is defined in the 
coordinate system of its NSTextContainer. If non-NULL, lineFragmentRange is set to contain the range for 
all glyphs in that line fragment.

Performs glyph generation and layout if needed.

See also: – lineFragmentUsedRectForGlyphAtIndex:effectiveRange:, 
– setLineFragmentRect:forGlyphRange:usedRect:

� lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
– (NSRect)lineFragmentUsedRectForGlyphAtIndex:(unsigned int)glyphIndex 

effectiveRange:(NSRange *)lineFragmentRange

Returns the portion of the line fragment rectangle containing glyphAtIndex that actually contains glyphs 
(such as for a partial or wrapped line), plus the line fragment padding defined by the NSTextContainer 
where the glyphs reside. This rectangle is defined in the coordinate system of its NSTextContainer, and is 
based on line calculation only—that is, it isn’t a bounding box for the glyphs in the line fragment.

If non-NULL, lineFragmentRange is set to contain the range for all glyphs in the line fragment.

Performs glyph generation and layout if needed.

See also: – lineFragmentRectForGlyphAtIndex:effectiveRange:, 
– setLineFragmentRect:forGlyphRange:usedRect:

� locationForGlyphAtIndex:
– (NSPoint)locationForGlyphAtIndex:(unsigned int)glyphIndex

Returns the location, in terms of its line fragment rectangle, for the glyph at glyphIndex. The line fragment 
rectangle in turn is defined in the coordinate system of the text container where it resides.



14

Classes: NSLayoutManager

Performs glyph generation and layout if needed.

See also: – lineFragmentRectForGlyphAtIndex:effectiveRange:, 
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:

� notShownAttributeForGlyphAtIndex:
– (BOOL)notShownAttributeForGlyphAtIndex:(unsigned int)glyphIndex

Returns YES if the glyph at glyphIndex isn’t shown (in the sense of the PostScript show operator), NO if it 
is. For example, a tab, newline, or attachment glyph doesn’t get shown; it just affects the layout of following 
glyphs or locates the attachment graphic. Space characters, however, typically are shown as glyphs with a 
displacement, though they leave no visible marks. Raises an NSRangeException if glyphIndex is out of 
bounds.

Performs glyph generation and layout if needed.

See also: – setNotShownAttribute:forGlyphAtIndex:

� numberOfGlyphs
– (unsigned int)numberOfGlyphs

Returns the number of glyphs in the receiver, performing glyph generation if needed to determine this 
number.

� rangeOfNominallySpacedGlyphsContainingIndex:
– (NSRange)rangeOfNominallySpacedGlyphsContainingIndex:(unsigned int)glyphIndex

Returns the range for the glyphs around glyphIndex that can be displayed with a single PostScript show 
operation; in other words, glyphs with no pairwise kerning or other adjustments to spacing. 

Performs glyph generation and layout if needed.



15

� rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount:

– (NSRect *)rectArrayForCharacterRange:(NSRange)charRange
withinSelectedCharacterRange:(NSRange)selCharRange
inTextContainer:(NSTextContainer *)aTextContainer
rectCount:(unsigned int *)rectCount

Returns a C array of rectangles for the glyphs in aTextContainer that correspond to charRange, and by 
reference in rectCount the number of such rectangles. These rectangles can be used to draw the background 
or highlight for the given range of characters. selCharRange indicates selected characters, which can affect 
the size of the rectangles; it must be equal to or contain charRange. To calculate the rectangles for drawing 
the background, use a selected character range whose location is NSNotFound. To calculate the rectangles 
for drawing highlighting for charRange, use a selected character range that contains charRange.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range. 
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate 
enclosing rectangle for each fragment.

The array of rectangles returned is owned by the receiver, and is overwritten by various NSLayoutManager 
methods. You should never free it, and should copy it if you need to keep the values or use them after 
sending other messages to the layout manager.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting. 
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use 
boundingRectForGlyphRange:inTextContainer: to determine the area that contains all drawing 
performed for a range of glyphs.

Performs glyph generation and layout if needed.

See also: – glyphRangeForTextContainer:, –characterRangeForGlyphRange:actualGlyphRange:, 
– drawsOutsideLineFragmentForGlyphAtIndex:

� rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:
rectCount:

– (NSRect *)rectArrayForGlyphRange:(NSRange)glyphRange
withinSelectedGlyphRange:(NSRange)selGlyphRange
inTextContainer:(NSTextContainer *)aTextContainer
rectCount:(unsigned *)rectCount

Returns a C array of rectangles for the glyphs in aTextContainer in glyphRange, and by reference in 
rectCount the number of such rectangles. These rectangles can be used to draw the background or highlight 
for the given range of glyphs. selGlyphRange indicates selected glyphs. To calculate the rectangles for 
drawing the background, use a selected glyph range whose location is NSNotFound. To calculate the 
rectangles for highlighting, use a selected glyph range that contains glyphRange.



16

Classes: NSLayoutManager

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range. 
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate 
enclosing rectangle for each fragment.

The array of rectangles returned is owned by the receiver, and is overwritten by various NSLayoutManager 
methods. You should never free it, and should copy it if you need to keep the values or use them after 
sending other messages to the layout manager.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting. 
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use 
boundingRectForGlyphRange:inTextContainer: to determine the area that contains all drawing 
performed for a range of glyphs.

Performs glyph generation and layout if needed.

See also: – glyphRangeForTextContainer:, –drawsOutsideLineFragmentForGlyphAtIndex:

� removeTextContainerAtIndex:
– (void)removeTextContainerAtIndex:(unsigned int)index

Removes the NSTextContainer at index and invalidates the layout as needed.Also invalidates glyph 
information as needed.

See also: – addTextContainer:, – insertTextContainer:atIndex:, – textContainers, 
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:, 
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:

� replaceGlyphAtIndex:withGlyph:
– (void)replaceGlyphAtIndex:(unsigned int)glyphIndex withGlyph:(NSGlyph)newGlyph

Replaces the glyph at glyphIndex with newGlyph. Doesn’t alter the glyph-to-character mapping or 
invalidate layout information.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or 
generation of the glyphs or layout. You should never directly invoke this method. 

See also: – setCharacterIndex:forGlyphAtIndex:, 
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:, 
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:



17

� replaceTextStorage:
– (void)replaceTextStorage:(NSTextStorage *)newTextStorage

Replaces the NSTextStorage for the group of text-system objects containing the receiver with 
newTextStorage. All NSLayoutManagers sharing the original NSTextStorage then share the new one. This 
method makes all the adjustments necessary to keep these relationships intact, unlike setTextStorage:.

� rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
– (NSView *)rulerAccessoryViewForTextView:(NSTextView *)aTextView

paragraphStyle:(NSParagraphStyle *)paraStyle
ruler:(NSRulerView *)aRulerView
enabled:(BOOL)flag

Returns the accessory NSView for aRulerView. This accessory contains tab wells, text alignment buttons, 
and so on. paraStyle is used to set the state of the controls in the accessory NSView; it must not be nil. If 
flag is YES the accessory view is enabled and accepts mouse and keyboard events; if NO it’s disabled.

This method is invoked automatically by the NSTextView object using the layout manager. You should 
rarely need to invoke it, but you can override it to customize ruler support. If you do this method directly, 
not that it neither installs the ruler accessory view nor sets the markers for the NSRulerView. You must 
install the accessory view into the ruler using NSRulerView’s setAccessoryView: method. To set the 
markers, use rulerMarkersForTextView:paragraphSyle:ruler: to get the markers needed and then send 
setMarkers: to the ruler.

See also: – horizontalRulerView (NSScrollView)

� rulerMarkersForTextView:paragraphStyle:ruler:
– (NSArray *)rulerMarkersForTextView:(NSTextView *)aTextView

paragraphStyle:(NSParagraphStyle *)paraStyle
ruler:(NSRulerView *)aRulerView

Returns the NSRulerMarkers for aRulerView in aTextView, based on paraStyle. These markers represent 
such things as left and right margins, first-line indent, and tab stops. You can set these markers immediately 
with NSRulerView’s setMarkers: method.

This method is invoked automatically by the NSTextView object using the layout manager. You should 
rarely need to invoke it; but you can override it to add new kinds of markers or otherwise customize ruler 
support.

See also: – rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:



18

Classes: NSLayoutManager

� setBackgroundLayoutEnabled:
– (void)setBackgroundLayoutEnabled:(BOOL)flag

Sets according to flag whether the receiver generates glyphs and lays them out when the application’s run 
loop is idle.

See also: – backgroundLayoutEnabled

� setCharacterIndex:forGlyphAtIndex:
– (void)setCharacterIndex:(unsigned int)charIndex forGlyphAtIndex:(unsigned int)glyphIndex

Maps the character at charIndex to the glyph at glyphIndex.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or 
generation of the glyphs or layout. You should never directly invoke this method. 

See also: – characterIndexForGlyphAtIndex:, 
– characterRangeForGlyphRange:actualGlyphRange:, 
– glyphRangeForCharacterRange:actualCharacterRange:

� setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See also: – delegate

� setDrawsOutsideLineFragment:forGlyphAtIndex:
– (void)setDrawsOutsideLineFragment:(BOOL)flag forGlyphAtIndex:(unsigned int)glyphIndex

Sets according to flag whether the glyph at glyphIndex exceeds the bounds of the line fragment where it’s 
laid out. This can happen when text is set at a fixed line height. For example, if the user specifies a fixed 
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

This method is used by the layout mechanism; you should never invoke it directly. 

See also: – drawsOutsideLineFragmentForGlyphAtIndex



19

� setExtraLineFragmentRect:usedRect:textContainer:
– (void)setExtraLineFragmentRect:(NSRect)aRect

usedRect:(NSRect)usedRect
textContainer:(NSTextContainer *)aTextContainer

Sets a line fragment rectangle for displaying an empty last line in a body of text. aRect is the rectangle to 
set, and aTextContainer is the NSTextContainer where the rectangle should be laid out. usedRect indicates 
where the insertion point is drawn.

This method is used by the layout mechanism; you should never invoke it directly. 

See also: – extraLineFragmentRect, –extraLineFragmentUsedRect, – textContainer

� setIntAttribute:value:forGlyphAtIndex:
– (void)setIntAttribute:(int)attributeTag

value:(int)anInt
forGlyphAtIndex:(unsigned int)glyphIndex

Sets a custom attribute value for the glyph at glyphIndex. attributeTag identifies the custom attribute, and 
anInt is its new value.

Subclasses that define their own custom attributes must override this method and provide their own storage 
for the attribute values. Non-negative tags are reserved by NeXT; you can define your own attributes with 
negative tags and set values using this method.

This method doesn’t perform glyph generation or layout. The glyph at glyphIndex must already have been 
generated.

See also: – intAttribute:forGlyphAtIndex:

� setLineFragmentRect:forGlyphRange:usedRect:
– (void)setLineFragmentRect:(NSRect)fragmentRect

forGlyphRange:(NSRange)glyphRange
usedRect:(NSRect)usedRect

Sets to fragmentRect the line fragment rectangle where the glyphs in glyphRange are laid out. The text 
container must be specified first with setTextContainer:forGlyphRange:, and the exact positions of the 
glyphs must be set after the line fragment rectangle with setLocation:forStartOfGlyphRange:. usedRect 
indicates the portion of fragmentRect, in the NSTextContainer’s coordinate system, that actually contains 
glyphs or other marks that are drawn (including the text container’s line fragment padding). usedRect must 
be equal to or contained within fragmentRect.



20

Classes: NSLayoutManager

This method is used by the layout mechanism; you should never invoke it directly. 

See also: – lineFragmentRectForGlyphRange:effectiveRange:, 
– lineFragmentUsedRectForGlyphRange:effectiveRange:

� setLocation:forStartOfGlyphRange:
– (void)setLocation:(NSPoint)aPoint forStartOfGlyphRange:(NSRange)glyphRange

Sets the location where the glyphs in glyphRange are laid out to aPoint, which is expressed relative to the 
origin of the line fragment rectangle for glyphRange. glyphRange defines a series of glyphs that can be 
displayed with a single PostScript show operation (a nominal range). Setting the location for a series of 
glyphs implies that the glyphs preceding it can’t be included in a single show operation.

Before setting the location for a glyph range, you must specify the text container with 
setTextContainer:forGlyphRange: and the line fragment rectangle with 
setLineFragmentRect:forGlyphRange:usedRect:.

This method is used by the layout mechanism; you should never invoke it directly. 

See also: – rangeOfNominallySpacedGlyphsContainingIndex:

� setNotShownAttribute:forGlyphAtIndex:
– (void)setNotShownAttribute:(BOOL)flag forGlyphAtIndex:(unsigned int)glyphIndex

Sets according to flag whether the glyph at glyphIndex is one that isn’t shown. For example, a tab or newline 
character doesn’t leave any marks; it just indicates where following glyphs are laid out. Raises an 
NSRangeException if glyphIndex is out of bounds.

This method is used by the layout mechanism; you should never invoke it directly. 

See also: – notShownAttributeForGlyphAtIndex

� setShowsControlCharacters:
– (void)setShowsControlCharacters:(BOOL)flag

Controls whether the receiver makes control characters visible in layout where possible. If flag is YES, it 
substitutes visible glyphs for control characters if the font and script support it; if flag is NO it doesn’t.

See also: – setShowsInvisibleCharacters:, – showsControlCharacters



21

� setShowsInvisibleCharacters:
– (void)setShowsInvisibleCharacters:(BOOL)flag

Controls whether the receiver makes whitespace and other typically nonvisible characters visible in layout 
where possible. If flag is YES, it substitutes visible glyphs for invisible characters if the font and script 
support it; if flag is NO it doesn’t.

See also: – setShowsControlCharacters:, –showsInvisibleCharacters

� setTextContainer:forGlyphRange:
– (void)setTextContainer:(NSTextContainer *)aTextContainer 

forGlyphRange:(NSRange)glyphRange

Sets to aTextContainer the NSTextContainer where the glyphs in glyphRange are laid out. You specify the 
layout within the container with the setLineFragmentRect:forGlyphRange:usedRect: and 
setLocation:forStartOfGlyphRange: methods.

This method is used by the layout mechanism; you should never invoke it directly. 

See also: – textContainerForGlyphRange:effectiveRange:

� setTextStorage:
– (void)setTextStorage:(NSTextStorage *)textStorage

Sets the receiver’s NSTextStorage to textStorage. This method is invoked automatically when you add an 
NSLayoutManager to an NSTextStorage object; you should never need to invoke it directly, but might want 
to override it. If you want to replace the NSTextStorage for an established group of text-system objects 
containing the receiver, use replaceTextStorage:.

See also: – addLayoutManager: (NSTextStorage)

� setUsesScreenFonts:
–(void)setUsesScreenFonts:(BOOL)flag

Sets according to flag whether the receiver calculates layout and displays text using screen fonts when 
possible.

See also: – usesScreenFonts, – substituteFontForFont:



22

Classes: NSLayoutManager

� showsControlCharacters
– (BOOL)showsControlCharacters

Returns YES if the receiver substitutes visible glyphs for control characters if the font and script support it, 
NO if it doesn’t.

See also: – showsInvisibleCharacters, –setShowsControlCharacters:

� showsInvisibleCharacters
– (BOOL)showsInvisibleCharacters

Returns YES if the receiver substitutes visible glyphs for invisible characters if the font and script support 
it, NO if it doesn’t.

See also: – showsControlCharacters, – setShowsInvisibleCharacters:

� substituteFontForFont:
– (NSFont *)substituteFontForFont:(NSFont *)originalFont

Returns a screen font suitable for use in place of originalFont, or simply returns originalFont if a screen 
font can’t be used or isn’t available. A screen font can be substituted if the receiver is set to use screen fonts 
and if no NSTextView associated with the receiver are scaled or rotated.

See also: – usesScreenFonts

� textContainerChangedGeometry:
– (void)textContainerChangedGeometry:(NSTextContainer *)aTextContainer

Invalidates the layout information, and possibly glyphs, for aTextContainer and all subsequent 
NSTextContainers. This method is invoked automatically by other components of the text system; you 
should rarely need to invoke it directly. Subclasses of NSTextContainer, however, must invoke this method 
any time their size of shape changes (a text container that dynamically adjusts its shape to wrap text around 
placed graphics, for example, must do so when a graphic is added, moved, or removed).

� textContainerChangedTextView:
– (void)textContainerChangedTextView:(NSTextContainer *)aTextContainer

Updates information needed to manage NSTextView objects. This method is invoked automatically by 
other components of the text system; you should rarely need to invoke it directly.



23

� textContainerForGlyphAtIndex:effectiveRange:
– (NSTextContainer *)textContainerForGlyphAtIndex:(unsigned int)glyphIndex 

effectiveRange:(NSRange *)effectiveGlyphRange

Returns the NSTextContainer where the glyph at glyphIndex is laid out. If non-NULL, effectiveGlyphRange 
is set to the range for all glyphs laid out in that text container.

Performs glyph generation and layout if needed.

See also: – setTextContainer:forGlyphAtIndex:

� textContainers
– (NSArray *)textContainers

Returns the receiver’s NSTextContainers.

See also: – addTextContainer:, – insertTextContainer:atIndex:, –removeTextContainerAtIndex:

� textStorage
– (NSTextStorage *)textStorage

Returns the receiver’s NSTextStorage.

See also: – setTextStorage:, –replaceTextStorage:

� textStorage:edited:range:changeInLength:invalidatedRange:
– (void)textStorage:(NSTextStorage *)aTextStorage

edited:(unsigned int)mask
range:(NSRange)range
changeInLength:(int)lengthChange
invalidatedRange:(NSRange)invalidatedCharRange

Invalidates glyph and layout information for a portion of text in aTextStorage. This message is sent from 
NSTextStorage’s processEditing method to indicate that its characters or attributes have been changed. 
This method invalidates glyphs and layout for the affected characters, and performs a soft invalidation of 
the layout information for all subsequent characters. mask specifies the nature of the changes. Its value is 
made by combining these options with the C bitwise OR operator:

Option Meaning

NSTextStorageEditedAttributes Attributes were added, removed, or changed.
NSTextStorageEditedCharacters Characters were added, removed, or replaced.



24

Classes: NSLayoutManager

range indicates the extent of characters resulting from the edits. If the NSTextStorageEditedCharacters bit 
of mask is set, lengthChange gives the number of characters added to or removed from the original range 
(otherwise its value is irrelevant). For example, after replacing “The” with “Several” to produce the string 
“Several files couldn’t be saved”, range is {0, 7} and lengthChange is 4. The receiver uses this information 
to update its character-to-glyph mapping and to update the selection range based on the change.

invalidatedRange represents the range of characters affected after attributes have been fixed. For example, 
deleting a paragraph separator character invalidates the layout information for all characters in the 
paragraphs that precede and follow the separator.

textStorage:edited:range:changeInLength:invalidatedRange: messages are sent in a series to each 
NSLayoutManager associated with the text storage object, so the NSLayoutManagers receiving them 
shouldn’t edit aTextStorage. If one of them does, the range, lengthChange, and invalidatedRange 
arguments will be incorrect for all following NSLayoutManagers that receive the message.

See also: – invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:

� textViewForBeginningOfSelection
– (NSTextView *)textViewForBeginningOfSelection

Returns the NSTextView containing the first glyph in the selection, or nil if there’s no selection or if there 
isn’t enough layout information to determine the text view.

� underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin:

– (void)underlineGlyphRange:(NSRange)glyphRange
underlineType:(int)underlineType
lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Calculates and draws underlining for the glyphs in glyphRange, which must belong to a single line fragment 
rectangle (as returned by lineFragmentRectForGlyphAtIndex:effectiveRange:). underlineType 
indicates the style of underlining to draw; NSLayoutManager accepts only NSSingleUnderlineStyle, but 
subclasses can define their own underline styles. lineRect is the line fragment rectangle containing the 
glyphs to draw underlining for, and lineGlyphRange is the range of all glyphs within that line fragment 
rectangle. containerOrigin is the origin of the line fragment rectangle’s NSTextContainer in its 
NSTextView.

This method determines which glyphs actually need to be underlined based on underlineType. With 
NSSingleUnderlineStyle, for example, leading and trailing whitespace isn’t underlined, but whitespace 
between visible glyphs is. A potential word-underline style would omit underlining on any whitespace. 



25

After determining which glyphs to draw underlining on, this method invokes 
drawUnderlineForGlyphRange:... for each contiguous range of glyphs that requires it.

See also: – textContainerForGlyphAtIndex:effectiveRange:, – textContainerOrigin (NSTextView)

� usedRectForTextContainer:
– (NSSize)usedRectForTextContainer:(NSTextContainer *)aTextContainer

Returns the bounding rectangle for the glyphs laid out in aTextContainer, which tells “how full” it is. This 
rectangle is given in the aTextContainer’s coordinate system. 

See also: – containerSize (NSTextContainer)

� usesScreenFonts
– (BOOL)usesScreenFonts

Returns YES if the receiver calculates layout and displays text using screen fonts when possible, NO 
otherwise.

See also: – setUsesScreenFonts:, –substituteFontForFont:

Methods Implemented By the Delegate

� layoutManager:didCompleteLayoutForTextContainer:atEnd:
– (void)layoutManager:(NSLayoutManager *)aLayoutManager 

didCompleteLayoutForTextContainer:(NSTextContainer *)aTextContainer
atEnd:(BOOL)flag

Informs the delegate that aLayoutManager has finished laying out text in aTextContainer. aTextContainer 
is nil if there aren’t enough containers to hold all the text; the delegate can use this information as a cue to 
add another container. If flag is YES, aLayoutManager is finished laying out its text—this also means that 
aTextContainer is the final text container used by the layout manager. Delegates can use this information 
to show an indicator or background or to enable or disable a button that forces immediate layout of text.

� layoutManagerDidInvalidateLayout:
– (void)layoutManagerDidInvalidateLayout:(NSLayoutManager *)aLayoutManager

Informs the delegate that aLayoutManager has invalidated layout information (not glyph information). This 
method is invoked only when layout was complete and then became invalidated for some reason. Delegates 



26

Classes: NSLayoutManager

can use this information to show an indicator or background layout or to enable a button that forces 
immediate layout of text.


