
Protocol: NSLocking 1

NSLocking

Adopted By: NSConditionLock
NSLock
NSRecursiveLock

Declared In: foundation/NSLock.h

Protocol Description

The NSLocking protocol declares the elementary methods adopted by classes that define
lock objects. A lock object is used to coordinate the actions of multiple threads of execution
within a single application. By using a lock, an application can protect critical sections of
code from being executed simultaneously by separate threads, thus protecting shared data
and other shared resources from corruption.

For example, consider a multithreaded application in which each thread updates a shared
counter. If two threads simultaneously fetch the current value into local storage, increment
it, and then write the value back, the counter will be incremented only once, losing one
thread’s contribution. However, if the code that manipulates the shared data (the critical
section of code) must be locked before being executed, only one thread at a time can
perform the updating operation, and collisions are prevented.

A lock object has two states in regard to the lock it represents: locked or unlocked. You
acquire a lock by sending the object a lock message, thus putting the object in the locked
state. You relinquish a lock by sending an unlock message, and thus putting the object in
the unlocked state. (The NEXTSTEP classes that adopt this protocol define additional ways
to acquire and relinquish locks.)

The lock method as declared in this protocol is blocking. That is, the thread that sends a
lock message is blocked from further execution until the lock is acquired (presumably
because some other thread relinquishes its lock). Classes that adopt this protocol typically
add methods that offer nonblocking alternatives.

 2 Protocol: NSLocking

Three NEXTSTEP classes conform to the NSLocking protocol:

Class Adds these features to the basic protocol

NSLock A nonblocking lock method; the ability to limit the
duration of a locking attempt.

NSConditionLock The ability to postpone entry to a critical section until a
condition is met.

NSRecursiveLock The ability for a single thread to acquire a lock more than
once without deadlocking.

The locking mechanism that these classes use causes a thread to sleep while waiting to
acquire a lock rather than to poll the system constantly. Thus, lock objects can be used to
lock time-consuming operations without causing system performance to degrade. See the
class specifications for these classes for further information on their behavior and usage.

There is some performance cost in acquiring a lock, so it’s best to avoid the overhead if
possible. An application developer has control over whether the application will execute
with multiple threads, so it’s clear when locking is appropriate. A library developer doesn’t
necessarily know whether library code will execute in a multithreaded environment. In this
case, it’s best to test whether the code is executing in a multithreaded environment before
attempting to acquire a lock. The following example illustrates how this is done.

Assume your application uses a Counter object to record various operations. Here’s one
design that let’s the Counter know whether it is multithreaded:

+ (void)initialize

{

 if ([NSThread isMultiThreaded]) {

[self taskNowMultiThreaded:nil];

} else {

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(taskNowMultiThreaded:)

name:NSBecomingMultiThreaded object:nil];

}

}

In the initialize method (which, by definition, is invoked before any Counter objects are
created), the Counter class object first checks whether the application has already become
multithreaded and if so invokes its own taskNowMultiThreaded: method. Otherwise, it
registers as an observer of the NSBecomingMultiThreaded notification so that
taskNowMultiThreaded: will be invoked when the application become multithreaded.

Protocol: NSLocking 3

The taskNowMultiThreaded: method creates a lock object that the threads use to
coordinate their activities:

+ (void)taskNowMultiThreaded:(NSNotification *)event

{

if (!theLock)

theLock = [[NSLock alloc] init];

}

theLock is an instance variable and as such has a value of nil until
taskNowMultiThreaded: is invoked. Since messages sent to nil are permitted and have no
effect, code within Counter that acts on shared data can be written like this:

[theLock lock];

/* operate on shared data */

[theLock unlock];

With this approach, the overhead associated with lock operations is only incurred if the
application is multithreaded. This code, however, raises another issue. What happens if one
of the statements between the lock and unlock messages cause the application to become
multithreaded? Then the unlock message wouldn’t be paired with the preceding lock.

In normal usage, locking and unlocking messages are paired. However, as in the example
above, it might be convenient to unlock a lock object that hasn’t yet been locked. This is
permitted with two restrictions. First, you can send an unpaired unlocking message to a
lock object as long as the object has never before been locked. Second, of the NEXTSTEP
classes that conform to the NSLocking protocol, only NSConditionLock and NSLock
allow an unpaired unlocking message. NSRecursiveLock requires locking and unlocking
messages to be paired.

NEXTSTEP’s locking classes are designed to work in a well-behaved, multithreaded
environment: The protection they offer can be subverted by the use of signal handlers. A
signal handler can interrupt a thread, execute code that affects shared data, and then let the
thread resume without alerting the thread that the application has, in effect, become
multithreaded. For this reason, it’s recommended that you don’t use signal handlers in
multithreaded NEXTSTEP applications.

Instance Methods

lock

– (void)lock

Attempts to acquire a lock. This method blocks a thread’s execution until the lock can be
acquired.

 4 Protocol: NSLocking

An application protects a critical section of code by requiring a thread to acquire a lock
before executing the code. Once the critical section is past, the thread relinquishes the lock
by invoking unlock.

unlock

– (void)unlock

Relinquishes a previously acquired lock.

