
1

� NSRulerView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSRulerView.h

Purpose
An NSRulerView displays a ruler and markers above or to the side of an NSScrollView’s document view. Views
within the NSScrollView can become clients of the ruler view, having it display markers for their elements, and
receiving messages from the ruler view when the user manipulates the markers.

Principal Attributes
• Displays markers that represent elements of the client view
• Displays in arbitrary units
• Provides for an accessory view containing extra controls

Creation
– setHasHorizontalRuler: (NSScrollView)
– setHasVerticalRuler: (NSScrollView)
– initWithScrollView:orientation: Designated initializer.

Commonly Used Methods
– setClientView: Changes the ruler’s client view.
– setMarkers: Sets the markers displayed by the ruler view.
– setAccessoryView: Sets the accessory view.
– trackMarker:withMouseEvent: Allows the user to add a new marker.

Class Description

An NSRulerView resides in an NSScrollView, displaying a labeled ruler and markers for its client, the
document view of the NSScrollView or a subview of the document view. The client view can add and

Class at a Glance

2

Classes: NSRulerView

remove markers representing its contents, such as graphic elements, margins, and text tabs. The
NSRulerView tracks user manipulation of the markers and informs the client view of those actions.
NSRulerView handles both horizontal and vertical rulers, which are tiled in the scroll view above and to
the side of the content view, respectively. NSRulerViews are sometimes called simply ruler views or even
rulers.

A ruler view comprises three regions. First is the ruler area, where the ruler’s baseline, hash marks, and
labels are drawn. The ruler area is largely static, but it scales its hash marks to document view’s coordinate
system, and can display the hash marks in arbitrary units. The second region is the marker area, where ruler
markers (NSRulerMarker objects) representing elements of the client view are displayed. This is a more
dynamic area, changing with the selection and state of the client view. The final region is the accessory view
area, which is by default not present but appears when you add an accessory view to the ruler view. An
accessory view can contain additional controls for manipulating the ruler’s client view, such as alignment
buttons or a set of markers that can be dragged onto the ruler.

A ruler view interacts with its client view in several ways. On appropriating the ruler view, the client view
usually sets it up according to its needs. The client view can also dynamically update the ruler view’s
markers as its layout changes. In its turn, the ruler view informs the client view of actions the user takes on
the ruler markers, allowing the client view to approve or limit the actions and to update its state based on
the results of the actions.

The appearance of a ruler is based on both the document view and the client view. The document view, as
the backdrop within the scroll view, serves as the canvas on which any client views are laid. Because of the
document view’s anchoring role, a ruler always draws its hash marks and labels relative to the document
view’s coordinate system. A vertical ruler also checks whether the document view is flipped and acts
accordingly. However, the ruler view treats subviews of the document view as items laid out within the
coordinate system defined by the document view, and so doesn’t change its hash marks when a client view
other than the document view is moved or scaled. For the client view’s convenience it does, however,
express marker locations in the client view’s coordinate system. A few other operations that ruler views
perform are defined in terms of the ruler’s own coordinate system. The discussion of a feature or method
makes clear which coordinate system applies. For reference, this table summarizes all of the coordinate
systems involved in using ruler views, and the operations based on them:

Coordinate System Used for

Client view Marker locations
Document view Calculating hash marks based on measurement units and scaling,

origin offset for zero marks
Ruler view Temporary rulerlines, component layout
Marker image Image origin (which locates the image relative to the marker location)

Measurement Units

A new ruler view automatically uses the user’s preferred measurement units for drawing hash marks and
labels, as stored in the user defaults system under the key “NSMeasurementUnit”. If your application allows
the user to change his preferred measurement units, you can change them at run time using

3

setMeasurementUnits:, which takes the name of the units to use, such as “Inches” or “Centimeters”, and
causes the ruler view to use that unit definition in spacing its hash marks and labels.

NSRulerView supports the units Inches, Centimeters, Points, and Picas by default. If your application uses
other measurement units, your application should define and register them before creating any ruler views.
To do, use the class method registerUnitWithName:abbreviation:unitsToPointsConversionFactor:
stepUpCycle:stepDownCycle:. Your application can register these wherever it’s most convenient, such as
in the NSApplication delegate method applicationDidFinishLaunching:. This code fragment registers a
new unit called Grummets, with the abbreviation gt:

NSArray *upArray;

NSArray *downArray;

upArray = [NSArray arrayWithObjects:[NSNumber numberWithFloat:2.0], nil];

downArray = [NSArray arrayWithObjects:[NSNumber numberWithFloat:0.5],

 [NSNumber numberWithFloat:0.2], nil];

[NSRulerView registerUnitWithName:@"Grummets"

 abbreviation:NSLocalizedString(@"gt", @"Grummets abbreviation string")

 unitToPointsConversionFactor:100.0

 stepUpCycle:upArray stepDownCycle:downArray];

A Grummet is 100.0 PostScript units (points) in length, so a ruler view using it draws a major hash mark
every 100.0 points when its document view is unscaled. If the document view is scaled, the ruler view
spaces its hash marks accordingly.

The step-up and step-down cycles control how hash marks are drawn for fractions and multiples of units.
NSRulerView attempts to place hash marks so that they’re neither too crowded nor too sparse based on the
current scale of the document view. It does so by drawing smaller hash marks for fractions of units where
possible, and by removing hash marks for whole units where necessary.

The step-down cycle determines the fractional units checked by the ruler view. For example, with the unit
Grummets defined above, the step down cycle is 0.5, then 0.2. With this cycle, the ruler view first checks
to see if there’s room for marks every half Grummet, placing them if there is. Then, it checks every fifth of
the remaining space, or a tenth of a full Grummet, placing further hash marks there if there’s room. Then it
returns to the first step in the cycle to further subdivide the ruler, and so on.

The step-up cycle determines how many full unit marks get dropped when there isn’t room for each one.
The example uses a single-step cycle of 2.0, which means that each second Grommet’s hash mark is
displayed if there isn’t room for every one, then every fourth if there still isn’t room, and so on.

Preparing a Ruler View for Use

Adding a ruler view to a scroll view can be as simple as invoking NSScrollView’s
setHasHorizontalRuler: and setHasVerticalRuler: methods. These create instances of the default ruler
view class, which you can change using the NSScrollView class method setRulerViewClass:. You can
also set ruler views directly on a per-instance basis using setHorizontalRulerView: and

4

Classes: NSRulerView

setVerticalRulerView:. Once you’ve added rulers to a scroll view, you can hide and reveal them using
setRulersVisible:.

Beyond creating the rulers, you need take only a few steps to set them up properly for use by the views
contained within the scroll view: locating the zero marks of the rulers, and reserving room for accessory
views. You normally perform these steps only once, when setting up the NSScrollView with rulers.
However, if you allow the user to reset document attributes such as margins, you should change the zero
mark locations as well. Also, if you reuse the scroll view by swapping in a new document view you may
need to set up the rulers again with different settings.

The first step is to determine where you want the zero marks of the rulers to be located relative to the bounds
origin of the document view. The zero marks are coincident with the bounds origin by default, but you can
change this with the method setOriginOffset:. This method takes an offset specified in the document
view’s coordinate system. If you need to set the origin offset based on a point in a subview of the document
view, such as a text view that’s inset on a page, use convertPoint:fromView: to realize it in the document
view’s coordinate system. This code fragment places the zero marks at the bounds origin of a client view,
which lies somewhere inside the document view:

zero = [docView convertPoint:[clientView bounds].origin fromView:clientView];

[horizRuler setOriginOffset:zero.x - [docView bounds].origin.x];

After placing the zero marks, you should set up your rulers so that they don’t change in size as the user
works within the document view. For example, if two different subviews of the document view use different
accessory views, the ruler view enlarges itself as necessary each time you change the accessory view. Such
changes are at best unsightly and at worst confusing to the user. To avoid this problem, calculate ahead of
time the sizes of the largest accessory view and the largest markers, and set the ruler view’s required
thickness for these elements using setReservedThicknessForAccessoryView: and
setReservedThicknessForMarkers:. For example, if you have two accessory views for the horizontal
ruler, one 16.0 PostScript units high and the other 24.0, invoke setReservedThicknessForAccessoryView:
with an argument of 24.0.

Changing the Client

Once the ruler view is fully set up, the scroll view’s document view, or any subview of the document view,
can become its client by sending it a setClientView: message. This method notifies the prior client that it’s
losing the ruler view using the rulerView:willSetClientView: method, removes all of the ruler view’s
markers, and sets the new client view. A client view normally appropriates the ruler when it becomes first
responder and keeps it until some other view appropriates it. After appropriating the ruler view, the client
needs to set up its layout and markers.

Adjusting the Layout

If the client has a custom accessory view, it sets that using setAccessoryView:. Clients without accessory
views should avoid removing the ruler view’s accessory view when appropriating the ruler, as this can
cause unsightly screen flicker as the ruler is redrawn. It’s better in this case for a client view that has an

5

accessory view to implement rulerView:willSetClientView:, disabling the controls in the accessory view
so that they’re not active when other clients are using the ruler. Then, when the client view with the
accessory view appropriates the ruler, it should set its accessory view again in case another client swapped
the accessory view out, and reenable the controls.

Setting Ruler Markers

Aside from the layout of the ruler view itself, the client can also add markers to indicate the positions of its
graphic elements, such as tabs and margins in text or the bounding boxes of drawn shapes or images. Each
marker is an NSRulerMarker object, which displays a graphic image on the ruler at its given location, and
can be associated with an object that identifies the attribute indicated by the marker. You initialize an
NSRulerMarker using its initWithRulerView:markerLocation:image:imageOrigin: method, which
takes as arguments the NSRulerView where the marker will be displayed, its location on the ruler in the
client view’s coordinate system, the image to display, and the point within the image that lies on the ruler’s
baseline. Once you’ve created the markers, you can use NSRulerView’s addMarker: or setMarkers:
methods to put them on the ruler. This code fragment, for example, sets up markers denoting the left and
right edges of the selected object’s frame rectangle:

NSRulerMarker *leftMarker;

NSRulerMarker *rightMarker;

leftMarker = [[NSRulerMarker alloc] initWithRulerView:horizRuler

 markerLocation:NSMinX([selectedItem frame]) image:leftImage

 imageOrigin:NSMakePoint(0.0, 0.0)];

rightMarker = [[NSRulerMarker alloc] initWithRulerView:horizRuler

 markerLocation:NSMaxX([selectedItem frame]) image:rightImage

 imageOrigin:NSMakePoint(8.0, 0.0)];

[horizRuler setMarkers:[NSArray arrayWithObjects:leftMarker, rightMarker, nil]];

The images used for this example are 8 pixels square, and lie just inside of their relevant positions. The
figure below shows the left and right marker images, enlarged and with gray bounding boxes. Thus, the left
marker’s image must be placed with its lower left corner, or (0.0, 0.0), at the marker location, while the
lower right corner of the right marker, at (8.0, 0.0), is used. The image origin is always expressed in the
coordinate system of the image itself, just as an NSCursor’s hot spot is.

0.0, 0.0 8.0, 0.0

6

Classes: NSRulerView

A new NSRulerMarker allows the user to drag it around on its ruler, but not to remove it. You can change
these defaults by sending it setMovable: and setRemovable: messages. For example, you might make
markers representing tabs in text removable to allow the user to edit the paragraph settings.

Markers bear one additional attribute, which allows you to distinguish among multiple markers, specifically
markers that share the same image. This is the represented object, set with NSRulerMarker’s
setRepresentedObject: method. A represented object can simply be a string identifying a generic attribute,
such as “Left Margin” or “Right Margin”. It can also be an object stored in the client view or in the
selection; for example, the OPENSTEP text system records tab stops as NSTextTab objects, which include
the tab location and its alignment. When the user manipulates a tab marker, the client can simply retrieve
its represented object to get the tab being affected.

Updating the Ruler View

A single client view may contain many selectable items, such as graphic shapes or paragraphs of text with
different ruler settings. When the selection changes, the client must reset the ruler view’s markers based on
the new selection. This kind of updating is fairly straightforward and can be performed as described above
for situations where the client view itself changes.

Another kind of updating is needed when you wish to support dynamic updating of ruler markers as the user
manipulates the elements of the client view. For example, when the user moves a shape, you want the ruler
markers to relocate when the user finishes moving it. Any method that changes relevant attributes of the
selection should update the ruler markers, whether by replacing them wholesale or by checking each one
present and updating its location.

You can even put such updating code within a modal loop that handles dragging items around in the client
view, so that the markers track the position of the selected item. This can be a fairly heavyweight operation
to perform while also handling movement of the selected item, however. In support of a lighter weight
means of showing this information, NSRulerView allows you to draw temporary rulerlines that can be
drawn and erased very quickly. One method, moveRulerlineFromLocation:toLocation:, controls the
drawing of rulerlines. It takes two locations expressed in the NSRulerView’s coordinate system, erasing the
rulerline at the old location and redrawing it at the new. To create a new rulerline, specify –1.0 as the old
location; to erase one completely, specify –1.0 as the new location. Although you’re responsible for keeping
track of the locations to erase and redraw, this isn’t as cumbersome or inefficient as sifting through or
replacing the markers themselves.

User Manipulation of Markers

While a ruler’s client view must perform the work of determining marker locations and placing them on the
ruler, the ruler itself handles all the work of tracking user manipulations of the markers, sending messages
to the client view that inform it of the changes before they begin, as they occur, and after they finish. The
client view can use these messages to update its own state. The following sections describe the individual
processes of moving, removing, and adding markers, along with a special method for handling mouse
events in the ruler area.

7

Moving Markers

When the user presses the mouse button over a ruler marker, NSRulerView sends the marker a
trackMouse:adding: message. If the marker isn’t movable this method does nothing and immediately
returns NO. If it is movable, then it sends the client a series of messages allowing it to determine how the
user can move the marker around on the ruler.

First of these messages is rulerView:shouldMoveMarker:, which allows the client view to prevent an
otherwise movable marker from being moved. Normally, whether a marker can be moved should be set on
the marker itself, but there are situations, such as where items can be locked in place, where this is more
properly tracked by the client view instead. If the client view returns YES, allowing the movement, then it
receives a series of rulerView:willMoveMarker:toLocation: messages as the user drags the marker
around. Each message identifies the marker being moved and its proposed new location in the client view’s
coordinate system. The client view can return an altered location to restrict the marker’s movement, or
update its display to reflect the new location. Finally, when the user releases the mouse button, the client
receives a rulerView:didMoveMarker:, on which it can update its state and clean up any information it
may have used while tracking the marker’s movements.

Removing Markers

Removal of markers is handled by a similar set of messages. However, these are always sent during a
movement operation, as the user must first be dragging a marker within the ruler to be able to drag it off the
ruler. If a marker isn’t set to be removable, the user simply can’t drag it off. If the marker is removable, then
when the user drags the mouse far enough away from the ruler’s baseline, it sends the client view a
rulerView:shouldRemoveMarker: message, allowing the client to approve or veto the removal. No
messages are necessary for new locations, of course, but if the user returns the marker to the ruler then it
resumes sending rulerView:willMoveMarker:toLocation: messages as before. If the user releases the
mouse with the marker dragged away from the ruler, the marker sends the client view a
rulerView:didRemoveMarker: message, so the user can delete the item or attribute represented by the
marker.

Adding Markers

User addition of a marker must be initiated by the application, of course, since there is no marker yet for
the ruler to track. The first step in adding a marker, then, is to create one, using NSRulerMarker’s
initWithRulerView:markerLocation:image:imageOrigin: method. Once the new marker is created, you
instruct the ruler view to handle dragging it onto itself by sending it a trackMarker:withMouseEvent:
message. One means of doing this is to use the mouse event from the client view method
rulerView:handleMouseDown:, as described below under “Handling Mouse Events in the Ruler Area.”
Another is to create a custom view object—which typically resides in the ruler’s accessory view—that
displays prototype markers, and that handles a mouse-down event by creating a new marker for the ruler
and invoking trackMarker:withMouseEvent: with the new marker and that mouse-down event.

Once you’ve initiated the addition process, things proceed in the same manner as for moving a marker. The
ruler view sends the new marker a trackMouse:adding: message, with YES as the second argument to

8

Classes: NSRulerView

indicate that the marker isn’t merely being moved. The marker being added then sends the client view a
rulerView:shouldAddMarker: message, and if the client approves then it repeatedly sends
rulerView:willAddMarker:atLocation: messages as the user moves the marker around on the ruler. The
user can drag the marker away to avoid adding it, or release the mouse button over the ruler, in which case
the client receives a rulerView:didAddMarker: message.

As with moving a marker, you should consider enabling and disabling in a more immediate fashion than by
the client view method if possible. If the user shouldn’t be able to drag a marker from the accessory view,
for example, the view containing the prototype marker should disable itself and indicate this in its
appearance, rather than allowing the user to drag a marker out only to discover that the ruler won’t accept it.

Handling Mouse Events in the Ruler Area

In addition to handling user manipulation of markers, a ruler informs its client view when the user presses
the mouse button while the mouse is inside the ruler area (where hash marks are drawn), by sending it a
rulerView:handleMouseDown: message. This allows the client view to take some special action, such as
adding a new marker to the ruler, as described above. This approach works well when it’s quite clear what
kind of marker will be created. The client view can also use this message as a cue to change its display in
some way; for example to add or remove a guideline that assists the user in laying out and aligning items
in the view.

Method Types

Creating instances – initWithScrollView:orientation:

Altering measurement units + registerUnitWithName:abbreviation:
unitToPointsConversionFactor:
stepUpCycle:stepDownCycle:

– setMeasurementUnits:
– measurementUnits

Setting the client view – setClientView:
– clientView

Setting an accessory view – setAccessoryView:
– accessoryView

Setting the zero mark position – setOriginOffset:
– originOffset

Adding and removing markers – setMarkers:
– markers
– addMarker:
– removeMarker:
– trackMarker:withMouseEvent:

9

Drawing temporary rulerlines – moveRulerlineFromLocation:toLocation:

Drawing – drawHashMarksAndLabelsInRect:
– drawMarkersInRect:
– invalidateHashMarks

Ruler layout – setScrollView:
– scrollView
– setOrientation:
– orientation
– setReservedThicknessForAccessoryView:
– reservedThicknessForAccessoryView
– setReservedThicknessForMarkers:
– reservedThicknessForMarkers
– setRuleThickness:
– ruleThickness
– requiredThickness
– baselineLocation
– isFlipped

Class Methods

� registerUnitWithName:abbreviation:unitToPointsConversionFactor:
stepUpCycle:stepDownCycle:

+ (void)registerUnitWithName:(NSString *)unitName
abbreviation:(NSString *)abbreviation
unitToPointsConversionFactor:(float)conversionFactor
stepUpCycle:(NSArray *)stepUpCycle
stepDownCycle:(NSArray *)stepDownCycle

Registers a new unit of measurement with the NSRulerView class, making it available to all instances of
NSRulerView. unitName is the name of the unit in English, in plural form and capitalized by convention;
“Inches”, for example. The unit name is used as a key to identify the measurement units, and so shouldn’t
be localized. abbreviation is a localized short form of the unit name, such as “in” for Inches.
conversionFactor is the number of PostScript points in the specified unit; there are 72.0 points per inch, for
example. stepUpCycle and stepDownCycle are arrays of NSNumbers that specify how hash marks are
calculated, as explained in the class description under “Preparing a Ruler View for Use.” All numbers in
stepUpCycle should be greater than 1.0, those in stepDownCycle should be less than 1.0.

NSRulerView supports these units by default:

10

Classes: NSRulerView

Unit Name Abbreviation Points/Unit Step-up Cycle Step-down Cycle

Inches in 72.0 2.0 0.5
Centimeters cm 28.35 2.0 0.5, 0.2
Points pt 1.0 10.0 0.5
Picas pc 12.0 10.0 0.5

See also: – setMeasurementUnits:

Instance Methods

� accessoryView
– (NSView *)accessoryView

Returns the receiver’s accessory view, if it has one.

See also: – setAccessoryView:, –reservedThicknessForAccessoryView:

� addMarker:
– (void)addMarker:(NSRulerMarker *)aMarker

Adds aMarker to the receiver, without consulting the client view for approval. Raises
NSInternalInconsistencyException if the receiver has no client view.

See also: – setMarkers:, –removeMarker:, –markers, – trackMarker:withMouseEvent:

� baselineLocation
– (float)baselineLocation

Returns the location of the receiver’s baseline, in its own coordinate system. This is a y position for
horizontal rulers and an x position for vertical ones.

See also: – ruleThickness

� clientView
– (NSView *)clientView

Returns the receiver’s client view, if it has one.

See also: – setClientView:

11

� drawHashMarksAndLabelsInRect:
– (void)drawHashMarksAndLabelsInRect:(NSRect)aRect

Draws the receiver’s hash marks and labels in aRect, which is expressed in the receiver’s coordinate system.
This method is invoked by drawRect:—you should never need to invoke it directly. You can define custom
measurement units using the class method registerUnitWithName:.... Override this method if you want to
customize the appearance of the hash marks themselves.

See also: – invalidateHashMarks, –drawMarkersInRect:

� drawMarkersInRect:
– (void)drawMarkersInRect:(NSRect)aRect

Draws the receiver’s markers in aRect, which is expressed in the receiver’s coordinate system. This method
is invoked by drawRect:; you should never need to invoke it directly, but you might want to override it if
you want to do something different when drawing markers.

See also: – reservedThicknessForMarkers, –drawHashMarksAndLabelsInRect:

� initWithScrollView:orientation:
– (id)initWithScrollView:(NSScrollView *)aScrollView orientation:(NSRulerOrientation)orientation

Initializes a newly allocated NSRulerView to have orientation (NSHorizontalRuler or NSVerticalRuler)
within aScrollView. The new ruler view displays the user’s preferred measurement units, and has no client,
markers, or accessory view. Unlike most subclasses of NSView, no initial frame rectangle is given for
NSRulerView; its containing NSScrollView adjusts its frame rectangle as needed.

This is the designated initializer for the NSRulerView class. Returns self.

� invalidateHashMarks
– (void)invalidateHashMarks

Forces recalculation of the hash mark spacing for the next time the receiver is displayed. You should never
need to invoke this method directly, but might need to override it if you override
drawHashMarksAndLabelsInRect:.

See also: – drawHashMarksAndLabelsInRect:

12

Classes: NSRulerView

� isFlipped
– (BOOL)isFlipped

Returns YES if the NSRulerView’s coordinate system is flipped, NO otherwise. A vertical ruler takes into
account whether the coordinate system of the NSScrollView’s document view—not the receiver’s client
view—is flipped. A horizontal ruler is always flipped.

� markers
– (NSArray *)markers

Returns the receiver’s NSRulerMarkers. The markers aren’t guaranteed to be sorted in any particular order.

See also: – setMarkers:, –addMarker:, –removeMarker:, –markerLocation (NSRulerMarker)

� measurementUnits
– (NSString *)measurementUnits

Returns the full name of the measurement units in effect for the receiver.

See also: – setMeasurementUnits:, + registerUnitWithName:...

� moveRulerlineFromLocation:toLocation:
– (void)moveRulerlineFromLocation:(float)oldLoc toLocation:(float)newLoc

Draws temporary lines in the ruler area. If oldLoc is zero or greater, erases the rulerline at that location; if
newLoc is zero or greater, draws a new rulerline at that location. oldLoc and newLoc are expressed in the
coordinate system of the NSRulerView, not of the client or document view, and are x coordinates for
horizontal rulers and y coordinates for vertical rulers. Use NSView’s convert... methods to convert
coordinates from the client or document view’s coordinate system to that of the NSRulerView.

This method is useful for drawing highlight lines in the ruler to show the position or extent of an object
while it’s being dragged in the client view. The sender is responsible for keeping track of the number and
positions of temporary lines—the NSRulerView only does the drawing.

� orientation
– (NSRulerOrientation)orientation

Returns the orientation of the NSRulerView, either NSHorizontalRuler or NSVerticalRuler.

See also: – setOrientation:

13

� originOffset
– (float)originOffset

Returns the distance from the receiver’s zero hash mark to the bounds origin of the NSScrollView’s
document view (not the receiver’s client view), in the document view’s coordinate system.

See also: – setOriginOffset:

� removeMarker:
– (void)removeMarker:(NSRulerMarker *)aMarker

Removes aMarker from the receiver, without consulting the client view for approval.

See also: – setMarkers:, –addMarker:

� requiredThickness
– (float)requiredThickness

Returns the thickness needed for proper tiling of the receiver within an NSScrollView. This is the height of
a horizontal ruler and the width of a vertical ruler. The required thickness is the sum of the thicknesses of
the ruler area, the marker area, and the accessory view.

See also: – rulerThickness, –reservedThicknessForMarkers, –reservedThicknessForAccessoryView

� reservedThicknessForAccessoryView
– (float)reservedThicknessForAccessoryView

Returns the thickness reserved to contain the receiver’s accessory view, its height or width depending on
the receiver’s orientation. This is automatically enlarged as necessary to the accessory view’s thickness (but
never automatically reduced). To prevent retiling of a ruler view’s scroll view, you should set its maximal
thickness upon creating using setReservedThicknessForAccessoryView:.

� reservedThicknessForMarkers
– (float)reservedThicknessForMarkers

Returns the thickness reserved to contain the images of the receiver’s ruler markers, the height or width
depending on the receiver’s orientation. This is automatically enlarged as necessary to accommodate the

14

Classes: NSRulerView

thickest ruler marker image (but never automatically reduced). To prevent retiling of a ruler view’s scroll
view, you should set its maximal thickness upon creating using setReservedThicknessForMarkers:.

See also: – thicknessRequiredInRulerView (NSRulerMarker)

� ruleThickness
– (float)ruleThickness

Returns the thickness of the receiver’s ruler area (the area where hash marks and labels are drawn), its
height or width depending on the receiver’s orientation.

See also: – setRuleThickness:

� scrollView
– (NSScrollView *)scrollView

Returns the NSScrollView object that contains the receiver.

See also: – setScrollView:, –setHorizontalRuler: (NSScrollView), –setVerticalRuler: (NSScrollView)

� setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Sets the receiver’s accessory view to aView. Raises an NSInternalInconsistencyException if aView is
non-nil and the receiver has no client view.

See also: – accessoryView, –reservedThicknessForAccessoryView

� setClientView:
– (void)setClientView:(NSView *)aView

Sets the receiver’s client view to aView, without retaining it, and removes its ruler markers, after informing
the prior client of the change using rulerView:willSetClientView:. aView must be either the document
view of the NSScrollView that contains the receiver, or a subview of the document view.

See also: – clientView

15

� setMarkers:
– (void)setMarkers:(NSArray *)markers

Sets the receiver’s ruler markers to markers, removing any existing ruler markers and not consulting with
the client view about the new markers. markers can be nil or empty to remove all ruler markers. Raises an
NSInternalInconsistencyException if markers is non-nil and the receiver has no client view.

See also: – addMarker:, –removeMarker:

� setMeasurementUnits:
– (void)setMeasurementUnits:(NSString *)unitName

Sets the measurement units used by the ruler to unitName. unitName must have been registered with the
NSRulerView class object prior to invoking this method. See the description of the class method
registerUnitWithName:... for a list of predefined units.

See also: – measurementUnits

� setOrientation:
– (void)setOrientation:(NSRulerOrientation)orientation

Sets the orientation of the receiver to orientation, which may be NSHorizontalRuler or NSVerticalRuler.
You should never need to invoke this method directly—it’s automatically invoked by the containing
NSScrollView.

See also: – orientation

� setOriginOffset:
– (void)setOriginOffset:(float)offset

Sets the distance to the zero hash mark from the bounds origin of the NSScrollView’s document view (not
of the receiver’s client view), in the document view’s coordinate system. The default offset is 0.0, meaning
that the ruler origin coincides with the bounds origin of the document view.

See also: – originOffset

16

Classes: NSRulerView

� setReservedThicknessForAccessoryView:
– (void)setReservedThicknessForAccessoryView:(float)thickness

Sets the room available for the NSRulerView’s accessory view to thickness. If the ruler is horizontal,
thickness is the height of the accessory view; otherwise, it’s the width. NSRulerViews by default reserve
no space for an accessory view.

An NSRulerView automatically increases the reserved thickness as necessary to that of the accessory view.
When the accessory view is thinner than the reserved space, it’s centered in that space. If you plan to use
several accessory views of different sizes, you should set the reserved thickness beforehand to that of the
thickest accessory view, in order to avoid retiling of the NSScrollView.

See also: – reservedThicknessForAccessoryView, –setAccessoryView:,
– setReservedThicknessForMarkers:

� setReservedThicknessForMarkers:
– (void)setReservedThicknessForMarkers:(float)thickness

Sets the room available for ruler markers to thickness. The default thickness reserved for markers is 15.0
PostScript units for a horizontal ruler and 0.0 PostScript units for a vertical ruler (under the assumption that
vertical rulers rarely contain markers). If you don’t expect to have any markers on the ruler, you can set the
reserved thickness to 0.0.

An NSRulerView automatically increases the reserved thickness as necessary to that of its thickest marker.
If you plan to use markers of varying sizes, you should set the reserved thickness beforehand to that of the
thickest one in order to avoid retiling of the NSScrollView.

See also: – reservedThicknessForMarkers, – setMarkers:,
– setReservedThicknessForAccessoryView:,
– thicknessRequiredInRulerView (NSRulerMarker)

� setRuleThickness:
– (void)setRuleThickness:(float)thickness

Sets to thickness the thickness of the area where ruler hash marks and labels are drawn. This value is the
height of the ruler area for a horizontal ruler or the width of the ruler area for a vertical ruler. Rulers are by
default 16.0 PostScript units thick. You should rarely need to change this layout attribute, but subclasses
might do so to accommodate custom drawing.

See also: – ruleThickness

17

� setScrollView:
– (void)setScrollView:(NSScrollView *)scrollView

Sets the NSScrollView that owns the receiver to scrollView, without retaining it. This method is generally
invoked only by the ruler’s scroll view; you should rarely need to invoke it directly.

See also: – scrollView, – setHorizontalRuler: (NSScrollView), –setVerticalRuler: (NSScrollView)

� trackMarker:withMouseEvent:
– (BOOL)trackMarker:(NSRulerMarker *)aMarker withMouseEvent:(NSEvent *)theEvent

Tracks the mouse to add aMarker based on the initial mouse-down or mouse-dragged event theEvent.
Returns YES if the receiver adds aMarker, NO if it doesn’t. This method works by sending
trackMouse:adding: to aMarker with theEvent and YES as arguments.

An application typically invokes this method in one of two cases. In the simpler case, the client view can
implement rulerView:handleMouseDown: to invoke this method when the user presses the mouse button
in the NSRulerView’s ruler area. This technique is appropriate when it’s clear what kind of marker will be
added by clicking in the ruler area. The second, more general, case involves the application providing a
palette of different kinds of markers that can be dragged onto the ruler, from the ruler’s accessory view or
from some other place. With this technique the palette tracks the mouse until it enters the ruler view, at
which time it hands over control to the ruler view by invoking trackMarker:withMouseEvent:.

See also: – addMarker:, – setMarkers:

Methods Implemented by the NSRulerView’s Client

� rulerView:didAddMarker:
– (void)rulerView:(NSRulerView *)aRulerView didAddMarker:(NSRulerMarker *)aMarker

Informs the client that aRulerView allowed the user to add aMarker. The client can take whatever action it
needs based on this message, such as adding a new tab stop to the selected paragraph or creating a layout
guideline.

See also: – representedObject (NSRulerMarker), –markerLocation (NSRulerMarker)

18

Classes: NSRulerView

� rulerView:didMoveMarker:
– (void)rulerView:(NSRulerView *)aRulerView didMoveMarker:(NSRulerMarker *)aMarker

Informs the client that aRulerView allowed the user to move aMarker. The client can take whatever action
it needs based on this message, such as updating the location of a tab stop in the selected paragraph, moving
a layout guideline, or resizing a graphic element.

See also: – representedObject (NSRulerMarker), –markerLocation (NSRulerMarker)

� rulerView:didRemoveMarker:
– (void)rulerView:(NSRulerView *)aRulerView didRemoveMarker:(NSRulerMarker *)aMarker

Informs the client that aRulerView allowed the user to remove aMarker. The client can take whatever action
it needs based on this message, such as deleting a tab stop from the paragraph style or removing a layout
guideline.

See also: – representedObject (NSRulerMarker)

� rulerView:handleMouseDown:
– (void)rulerView:(NSRulerView *)aRulerView handleMouseDown:(NSEvent *)theEvent

Informs the client that the user has pressed the mouse button while the cursor is in the ruler area of
aRulerView. theEvent is the mouse-down event that triggered the message. The client view can implement
this method to perform an action such as adding a new marker using trackMarker:withMouseEvent: or
adding layout guidelines.

� rulerView:shouldAddMarker:
– (BOOL)rulerView:(NSRulerView *)aRulerView shouldAddMarker:(NSRulerMarker *)aMarker

Requests permission for aRulerView to add aMarker, an NSRulerMarker being dragged onto the ruler by
the user. If the client returns YES then the ruler view accepts the new marker and begins tracking its
movement; if the client returns NO then the ruler view refuses the new marker.

See also: – rulerView:willAddMarker:atLocation:

� rulerView:shouldMoveMarker:
– (BOOL)rulerView:(NSRulerView *)aRulerView shouldMoveMarker:(NSRulerMarker *)aMarker

Requests permission for aRulerView to move aMarker. If the client returns YES then the ruler view allows
the user to move the marker; if the client returns NO then the marker doesn’t move.

19

The user’s ability to move a marker is typically set on the marker itself, using NSRulerMarker’s
setMovable: method. You should use this client view method only when the marker’s movability can vary
depending on a variable condition (for example, if graphic items can be locked down to prevent them from
being inadvertently moved).

See also: – rulerView:willMoveMarker:toLocation:

� rulerView:shouldRemoveMarker:
– (BOOL)rulerView:(NSRulerView *)aRulerView

shouldRemoveMarker:(NSRulerMarker *)aMarker

Requests permission for aRulerView to remove aMarker. If the client returns YES then the ruler view
allows the user to remove the marker; if the client returns NO then the marker is kept pinned to the ruler’s
baseline. This message is sent as many times as needed while the user drags the marker.

The user’s ability to remove a marker is typically set on the marker itself, using NSRulerMarker’s
setRemovable: method. You should use this client view method only when the marker’s removability can
vary while the user drags it (for example, if the user must press the Shift key to remove a marker).

� rulerView:willAddMarker:atLocation:
– (float)rulerView:(NSRulerView *)aRulerView

willAddMarker:(NSRulerMarker *)aMarker
atLocation:(float)location

Informs the client that aRulerView will add the new NSRulerMarker, aMarker. location is the marker’s
tentative new location, expressed in the client view’s coordinate system. The value returned by the client
view is actually used; the client can simply return location unchanged, or adjust it as needed. For example,
it may snap the location to a grid. This message is sent repeatedly to the client as the user drags the marker.

See also: – rulerView:willMoveMarker:toLocation:

� rulerView:willMoveMarker:toLocation:
– (float)rulerView:(NSRulerView *)aRulerView

willMoveMarker:(NSRulerMarker *)aMarker
toLocation:(float)location

Informs the client that aRulerView will move aMarker, an NSRulerMarker already on the ruler view.
location is the marker’s tentative new location, expressed in the client view’s coordinate system. The value
returned by the client view is actually used; the client can simply return location unchanged, or adjust it as

20

Classes: NSRulerView

needed. For example, it may snap the location to a grid. This message is sent repeatedly to the client as the
user drags the marker.

See also: – rulerView:willAddMarker:atLocation:

� rulerView:willSetClientView:
– (void)rulerView:(NSRulerView *)aRulerView

willSetClientView:(NSView *)newClient

Informs the client view that aRulerView is about to be appropriated by newClient. The client view can use
this opportunity to clear any cached information related to the ruler.

