
1

NSImage

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (from NSObject)

Declared In: AppKit/NSImage.h

Class Description 

An NSImage object contains an image that can be composited anywhere without first being drawn in any 
particular view. It manages the image by:

• Reading image data from the application bundle, from an NSPasteboard, or from an NSData object.

• Keeping multiple representations of the same image.

• Choosing the representation that’s appropriate for a particular data type.

• Choosing the representation that’s appropriate for any given display device.

• Caching the representations it uses by rendering them in off-screen windows.

• Optionally retaining the data used to draw the representations, so that they can be reproduced when 
needed.

• Compositing the image from the off-screen cache to where it’s needed on-screen.

• Reproducing the image for the printer so that it matches what’s displayed on-screen, yet is the best 
representation possible for the printed page.

• Automatically using any filtering services installed by the user to convert image data from unsupported 
formats to supported formats. 

Defining an Image

An image can be created from various types of data:

• Encapsulated PostScript code (EPS)

• Bitmap data in Tag Image File Format (TIFF)

• Bitmap data in Windows Bitmap format (BMP)

• Untagged (raw) bitmap data 



2

Classes: NSImage

• Other image data supported by an NSImageRep subclass registered with the NSImage class

• Data that can be filtered to a supported type by a user-installed filter service

If data is placed in a file (for example, in an application bundle), the NSImage object can access the data 
whenever it’s needed to create the image. If data is read from an NSData object, the NSImage object may 
need to store the data itself.

Images can also be defined by the program, in two ways:

• By drawing the image in an off-screen window maintained by the NSImage object. In this case, the 
NSImage maintains only the cached image.

• By defining a method that can be used to draw the image when needed. This allows the NSImage to 
delegate responsibility for producing the image to some other object.

Image Representations

An NSImage object can keep more than one representation of an image. Multiple representations permit the 
image to be customized for the display device. For example, different hand-tuned TIFF images can be 
provided for monochrome and color screens, and an EPS representation or a custom method might be used 
for printing. All representations are versions of the same image.

An NSImage returns an NSArray of its representations in response to a representations message. Each 
representation is a kind of NSImageRep object:

NSEPSImageRep An image that can be recreated from EPS data that’s either 
stored by the object or at a known location in the file system.

NSBitmapImageRep An image that can be recreated from bitmap or TIFF data.

NSCustomImageRep An image that can be redrawn by a method defined in the 
application.

NSCachedImageRep An image that has been rendered in an off-screen cache from 
data or instructions that are no longer available. The image in the 
cache provides the only data from which the image can be 
reproduced.

You can define other NSImageRep subclasses for objects that render images from other types of source 
data. To make these new subclasses available to an NSImage object, they need to be added to the 
NSImageRep class registry by invoking the registerImageRepClass: class method. NSImage determines 
the data types that each subclass can support by invoking its imageUnfilteredFileTypes and 
imageUnfilteredPasteboardTypes methods.



3

Choosing Representations

The NSImage object will choose the representation that best matches the rendering device. By default, the 
choice is made according to the following set of ordered rules. Each rule is applied in turn until the choice 
of representation is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale representation for a monochrome 
device.

2. Choose a representation with a resolution that matches the resolution of the device, or if no 
representation matches, choose the one with the highest resolution.

By default, any image representation with a resolution that’s an integer multiple of the device 
resolution is considered to match. If more than one representation matches, the NSImage will choose 
the one that’s closest to the device resolution. However, you can force resolution matches to be exact 
by passing NO to the setMatchesOnMultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution, over EPS 
representations, which don’t. However, you can use the setUsesEPSOnResolutionMismatch: 
method to have the NSImage choose an EPS representation in case a resolution match isn’t possible.

3. If all else fails, choose the representation with a specified bits per sample that matches the depth of 
the device. If no representation matches, choose the one with the highest bits per sample.

By passing NO to the setPrefersColorMatch: method, you can have the NSImage try for a resolution 
match before a color match. This essentially inverts the first and second rules above.

If these rules fail to narrow the choice to a single representation—for example, if the NSImage has two color 
TIFF representations with the same resolution and depth—the one that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NSImage object chooses the representation that’s best for the 
destination display device, as outlined above. It renders the representation in an off-screen window on the 
same device, then composites it from this cache to the desired location. Subsequent requests to composite 
the image use the same cache. Representations aren’t cached until they’re needed for compositing.

When printing, the NSImage tries not to use the cached image. Instead, it attempts to render on the printer—
using the appropriate image data, or a delegated method—the best version of the image that it can. Only as 
a last resort will it image the cached bitmap.

Image Size

Before an NSImage can be used, the size of the image must be set, in units of the base coordinate system. 
If a representation is smaller or larger than the specified size, it can be scaled to fit.



4

Classes: NSImage

If the size of the image hasn’t already been set when the NSImage is provided with a representation, the 
size will be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The 
TIFF fields “ImageLength” and “ImageWidth” are used to determine the size of an NSBitmapImageRep.

Coordinate Systems

Images have the horizontal orientation of the base coordinate system; they can’t be rotated or horizontally 
flipped. When composited, an image maintains this orientation, no matter what coordinate system it’s 
composited to. (The destination coordinate system is used only to determine the location of a composited 
image, not its size or orientation.) Images can be flipped in the vertical direction by using setFlipped:.

It’s possible to refer to portions of an image when compositing by specifying a rectangle in the image’s 
coordinate system, which is identical to the base coordinate system, except that the origin is at the lower 
left corner of the image.

Named Images

An NSImage object can be identified either by its id or by a name. Assigning an NSImage a name adds it 
to a table kept by the class object; each name in the database identifies one and only one instance of the 
class. When you ask for an NSImage object by name (with the imageNamed: method), the class object 
returns the one from its database, which also includes all the system bitmaps provided by the Application 
Kit. If there’s no object in the database for the specified name, the class object tries to create one by 
checking for a system bitmap of the same name, checking the name of the application’s own image, and 
then checking for the image in the application’s main bundle.

If a file matches the name, an NSImage is created from the data stored there. You can therefore create 
NSImage objects simply by including EPS, BMP, or TIFF data for them within the executable file, or in 
files inside the application’s file package.

Image Filtering Services

NSImage is designed to automatically take advantage of user-installed filter services for converting 
unsupported image file types to supported image file types. The class method imageFileTypes returns an 
array of all file types from which NSImage can create an instance of itself. This list includes all file types 
supported by registered subclasses of NSImageRep, and those types that can be converted to supported file 
types through a user-installed filter service.

Adopted Protocols 

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:



5

Method Types 

 Initializing a new NSImage instance
– initByReferencingFile:
– initWithBitmapHandle:
– initWithContentsOfFile:
– initWithData:
– initWithIconHandle:
– initWithPasteboard:
– initWithSize:

Setting the size of the image – setSize:
– size

Referring to images by name + imageNamed:
– setName:
– name

Specifying the image – addRepresentation:
– addRepresentations:
– lockFocus
– lockFocusOnRepresentation:
– unlockFocus

Using the image – compositeToPoint:operation:
– compositeToPoint:fromRect:operation:
– dissolveToPoint:fraction:
– dissolveToPoint:fromRect:fraction:

Choosing which image representation to use
– setPrefersColorMatch:
– prefersColorMatch
– setUsesEPSOnResolutionMismatch:
– usesEPSOnResolutionMismatch
– setMatchesOnMultipleResolution:
– matchesOnMultipleResolution

Getting the representations – bestRepresentationForDevice:
– representations
– removeRepresentation:

Determining how the image is stored
– setCachedSeparately:
– isCachedSeparately
– setDataRetained:
– isDataRetained
– setCacheDepthMatchesImageDepth:
– cacheDepthMatchesImageDepth



6

Classes: NSImage

Determining how the image is drawn
– isValid
– setScalesWhenResized:
– scalesWhenResized
– setBackgroundColor:
– backgroundColor
– setFlipped:
– isFlipped
– drawRepresentation:inRect:
– recache

Assigning a delegate – setDelegate:
– delegate

Producing TIFF data for the image – TIFFRepresentation
– TIFFRepresentationUsingCompression:factor:

Managing NSImageRep subclasses + imageUnfilteredFileTypes
+ imageUnfilteredPasteboardTypes

Testing image data sources + canInitWithPasteboard:
+ imageFileTypes
+ imagePasteboardTypes

Class Methods 

canInitWithPasteboard:
+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard 

Tests whether the receiver can create an instance of itself from the data represented by pasteboard. Returns 
YES if the receiver’s list of registered NSImageReps includes a class that can handle the data represented 
by pasteboard. 

NSImage uses the NSImageRep class method imageUnfilteredPasteboardTypes to find a class that can 
handle the data in pasteboard. When creating a subclass of NSImageRep that accepts image data from a 
non-default pasteboard type, override the imageUnfilteredPasteboardTypes method to notify NSImage 
of the pasteboard types your class supports. 

See also:  + imagePasteboardTypes



7

imageFileTypes
+ (NSArray *)imageFileTypes 

Returns an array of strings representing those file types for which a registered NSImageRep exists. This list 
includes all file types supported by registered subclasses of NSImageRep, plus those types that can be 
converted to supported file types through a user-installed filter service. The array returned by this method 
may be passed directly to the NSOpenPanel’s runModalForTypes: method.

File types are identified by extension. By default, the list returned by this method contains “tiff”, “tif”, 
“bmp”, and “eps”.

When creating a subclass of NSImageRep that accepts image data from non-default file types, override 
NSImageRep’s imageUnfilteredFileTypes method to notify NSImage of the file types your class supports. 

See also:  + imageUnfilteredFileTypes

imageNamed:
+ (id)imageNamed:(NSString *)name 

Returns the NSImage instance associated with name. The returned object can be:

• One that’s been assigned a name with the setName: method
• One of the named system bitmaps provided by the Application Kit

If there’s no known NSImage with name, this method tries to create one by searching for image data in the 
application’s executable file and in the main bundle (see NSBundle’s class description for a description of 
how the bundle’s contents are searched). If a file contains data for more than one image, a separate 
representation is created for each. If an image representation can’t be found for name, no object is created 
and nil is returned.

The preferred way to name an image is to ask for a name without the extension, but to include the extension 
for a file name.

One particularly useful image is referenced by the string “NSApplicationIcon”. If you supply this string to 
imageNamed:, the returned image will be the application’s own icon. Icons for other applications can be 
obtained through the use of methods declared in the NSWorkspace class.

The image returned by this method should not be freed, unless it’s certain that no other objects reference it.

See also: − setName:, − name, – iconForFile: (NSWorkspace), + imageFileTypes



8

Classes: NSImage

imagePasteboardTypes
+ (NSArray *)imagePasteboardTypes 

Returns a null-terminated list of pasteboard types for which a registered NSImageRep exists. This list 
includes all pasteboard types supported by registered subclasses of NSImageRep, and those that can be 
converted to supported pasteboard types through a user-installed filter service.

By default, the list returned by this method contains “NSPostScriptPboardType” and 
“NSTIFFPboardType”.

When creating a subclass of NSImageRep that accepts image data from non-default pasteboard types, 
override NSImageRep’s imageUnfilteredPasteboardTypes method to notify NSImage of the pasteboard 
types your class supports. 

See also: + imageUnfilteredPasteboardTypes

imageUnfilteredFileTypes
+ (NSArray *)imageUnfilteredFileTypes 

Returns a null-terminated array of strings representing those file types for which a registered NSImageRep 
exists. This list consists of all file types supported by registered subclasses of NSImageRep, and doesn’t 
include those types that can be converted to supported file types through a user-installed filter service. The 
array returned by this method may be passed directly to the NSOpenPanel’s runModalForTypes: method.

See also: + imageFileTypes

imageUnfilteredPasteboardTypes
+ (NSArray *)imageUnfilteredPasteboardTypes 

Returns a null-terminated list of pasteboard types for which a registered NSImageRep exists. This list 
consists of all pasteboard types supported by registered subclasses of NSImageRep, and doesn’t include 
those that can be converted to supported pasteboard types through a user-installed filter service.

See also: + imagePasteboardTypes

Instance Methods

addRepresentation:
– (void)addRepresentation:(NSImageRep *)imageRep 

Adds imageRep to the receiver’s list of representations. After invoking this method, you may need to 
explicitly set features of the new representation, such as size, number of colors, and so on. This is true in 



9

particular if the NSImage has multiple image representations to choose from. See NSImageRep and its 
subclasses for the methods you use to complete initialization.

Any representation that’s added by this method is retained by the NSImage. Note that representations can’t 
be shared among NSImages. 

See also: – representations, – removeRepresentation:

addRepresentations:
– (void)addRepresentations:(NSArray *)imageReps 

Adds each of the representations in imageReps to the receiver’s list of representations. After invoking this 
method, you may need to explicitly set features of the new representations, such as size, number of colors, 
and so on. This is true in particular if the NSImage has multiple image representations to choose from. See 
NSImageRep and its subclasses for the methods you use to complete initialization.

Representations added by this method are retained by the NSImage. Note that representations can’t be 
shared among NSImages. 

See also: – representations, – removeRepresentation:

backgroundColor
– (NSColor *)backgroundColor 

Returns the background color of the rectangle where the image is cached. If no background color has been 
specified, NSColor’s clearColor is returned, indicating a transparent background.

The background color will be visible when the image is composited only if the image doesn’t completely 
cover all the pixels within the area specified for its size.

bestRepresentationForDevice:
– (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription 

Returns the best representation for the device described by deviceDescription. If deviceDescription is nil, 
the current device is assumed. “Choosing Representations” in the class introduction outlines the process 
NSImage goes through in order to determine the “best” representation for a given device. For a list of 
dictionary keys and values appropriate to display and print devices, see NSGraphics.h. 

See also: – representations, – prefersColorMatch



10

Classes: NSImage

cacheDepthMatchesImageDepth
– (BOOL)cacheDepthMatchesImageDepth 

Returns NO if the application’s default depth limit applies to the off-screen windows where the NSImage’s 
representations are cached. If window depths are instead determined by the specifications of the 
representations, cacheDepthMatchesImageDepth returns YES.

compositeToPoint:fromRect:operation:
– (void)compositeToPoint:(NSPoint)aPoint fromRect:(NSRect)aRect 

operation:(NSCompositingOperation)op 

Composites the portion of the image enclosed by the aRect rectangle to the location specified by aPoint in 
the current coordinate system. aRect must be a valid (non-null) rectangle. The aPoint argument is the same 
as for compositeToPoint:operation:. op should be one of the compositing operations as defined in 
dpsOpenStep.h.

The source rectangle is specified relative to a coordinate system that has its origin at the lower left corner 
of the image, but is otherwise the same as the base coordinate system. 

This method doesn’t check to be sure that the rectangle encloses only portions of the image. Therefore, it 
can conceivably composite areas that don’t properly belong to the image, if the aRect rectangle happens to 
include them. If this turns out to be a problem, you can prevent it from happening by having the NSImage 
cache its representations in their own individual windows (with the setCachedSeparately: method). In this 
case, the window’s clipping path will prevent anything but the image from being composited.

Compositing part of an image is as efficient as compositing the whole image, but printing just part of an 
image is not. When printing, it’s necessary to draw the whole image and rely on a clipping path to be sure 
that only the desired portion appears.

See also: – dissolveToPoint:fromRect:fraction:

compositeToPoint:operation:
– (void)compositeToPoint:(NSPoint)aPoint operation:(NSCompositingOperation)op 

Composites the image to the location specified by aPoint using the specified compositing operation, op.

aPoint is specified in the current coordinate system—the coordinate system of the currently focused 
NSView—and designates where the lower left corner of the image will appear. The image will have the 
orientation of the base coordinate system, regardless of the destination coordinates. op should be one of the 
compositing operations as defined in dpsOpenStep.h.

The image is composited from its off-screen window cache. Since the cache isn’t created until the image 
representation is first used, this method may need to render the image before compositing.



11

When printing, the compositing methods do not composite, but attempt to render the same image on the 
page that compositing would render on the screen, choosing the best available representation for the printer. 
The op argument is ignored.

See also: – dissolveToPoint:fraction:

delegate
– (id)delegate 

Returns the delegate of the NSImage object, or nil if no delegate has been set.

dissolveToPoint:fraction:
– (void)dissolveToPoint:(NSPoint)aPoint fraction:(float)aFloat 

Composites the image to the location specified by aPoint, just as compositeToPoint:operation: does, but 
uses the dissolve operator rather than composite. aFloat is a fraction between 0.0 and 1.0 that specifies how 
much of the resulting composite will come from the NSImage. If the source image contains alpha, this 
operation may promote the destination NSWindow to contain alpha.

To slowly dissolve one image into another, this method (or dissolveToPoint:fromRect:fraction:) needs 
to be invoked repeatedly with an ever-increasing aFloat. Since aFloat refers to the fraction of the source 
image that’s combined with the original destination (not the destination image after some of the source has 
been dissolved into it), the destination image should be replaced with the original destination before each 
invocation. This is best done in a buffered window before the results of the composite are flushed to the 
screen. 

When printing, this method is identical to compositeToPoint:operation:. The delta argument is ignored.

dissolveToPoint:fromRect:fraction:
– (void)dissolveToPoint:(NSPoint)aPoint fromRect:(NSRect)aRect fraction:(float)aFloat 

Composites the aRect portion of the image to the location specified by aPoint, just as 
compositeToPoint:fromRect:operation: does, but uses the dissolve operator rather than composite. 
aFloat is a fraction between 0.0 and 1.0 that specifies how much of the resulting composite will come from 
the NSImage. If the source image contains alpha, this operation may promote the destination NSWindow.

When printing, this method is identical to compositeToPoint:fromRect:operation:. The aFloat argument 
is ignored.



12

Classes: NSImage

drawRepresentation:inRect:
– (BOOL)drawRepresentation:(NSImageRep *)imageRep inRect:(NSRect)rect 

Fills the specified rectangle with the background color, then sends the imageRep a drawInRect: message 
to draw itself inside the rectangle (if the NSImage is scalable), or a drawAtPoint: message to draw itself 
at the location of the rectangle (if the NSImage is not scalable). The rectangle is located in the current 
window and is specified in the current coordinate system. This method returns the value returned by the 
drawInRect: or drawAtPoint: method, which indicates whether or not the representation was successfully 
drawn.

This method shouldn’t be called directly; the NSImage uses it to cache and print its representations. By 
overriding it in a subclass, you can change how representations appear in the cache, and thus how they’ll 
appear when composited. For example, your version of the method could scale or rotate the coordinate 
system, then send a message to super to perform this version.

If the background color is fully transparent and the image isn’t being cached by the NSImage, the rectangle 
won’t be filled before the representation draws.

initByReferencingFile:
– (id)initByReferencingFile:(NSString *)filename 

Initializes the receiver, a newly allocated NSImage instance, for the file filename. This method initializes 
lazily: the NSImage doesn’t actually open filename or create image representations from its data until an 
application attempts to composite or requests information about the NSImage.

filename may be a full or relative pathname, and should include an extension that identifies the data type in 
the file. The mechanism that actually creates the image representation for filename will look for an 
NSImageRep subclass that handles that data type from among those registered with NSImage. By default, 
the files handled are those with the extensions “tiff”, “tif”, “bmp”, and “eps”. 

After finishing the initialization, this method returns self. However, if the new instance can’t be initialized, 
it’s freed and nil is returned. Since this method doesn’t actually create image representations for the data, 
your application should do error checking before attempting to use the image; one way to do so is by 
invoking the isValid method to check whether the image can be drawn.

This method invokes setDataRetained:YES, thus enabling it to hold onto its file name. Note that if an 
image created with this method is archived, only the file name will be saved.

� initWithBitmapHandle:
– (id)initWithBitmapHandle:(void *)bitmap 

On Microsoft Windows platforms, initWithBitmapHandle: initializes the receiver, a newly allocated 
NSImage instance, with the contents of the Windows bitmap indicated by bitmap. If 



13

initWithBitmapHandle: is able to create one or more image representations, it returns self. Otherwise, the 
receiver is freed and nil is returned.

initWithContentsOfFile:
– (id)initWithContentsOfFile:(NSString *)filename 

Initializes the receiver, a newly allocated NSImage instance, with the contents of the file filename. Unlike 
initByReferencingFile:, this method opens filename and creates one or more image representations from 
its data.

filename may be a full or relative pathname, and should include an extension that identifies the data type in 
the file. initWithContentsOfFile: will look for an NSImageRep subclass that handles that data type from 
among those registered with NSImage. By default, the files handled are those with the extensions “tiff”, 
“tif”, “bmp”, and “eps”. 

After finishing the initialization, this method returns self. However, if at least one image representation 
can’t be created from the contents of the specified file, the receiver is freed and nil is returned.

initWithData:
– (id)initWithData:(NSData *)data 

Initializes the receiver, a newly allocated NSImage instance, with the contents of the data object data. If 
initWithData: is able to create one or more image representations, it returns self. Otherwise, the receiver 
is freed and nil is returned.

� initWithIconHandle:
– (id)initWithIconHandle:(void *)icon 

On Microsoft Windows platforms, initWithIconHandle: initializes the receiver, a newly allocated 
NSImage instance, with the contents of the Windows icon indicated by icon. If initWithIconHandle: is 
able to create one or more image representations, it returns self. Otherwise, the receiver is freed and nil is 
returned.

initWithPasteboard:
– (id)initWithPasteboard:(NSPasteboard *)pasteboard 

Initializes and returns the receiver, a newly allocated NSImage instance, from pasteboard. pasteboard 
should contain a type returned by one of the registered NSImageRep’s imageUnfilteredPasteboardTypes 
methods; the default types supported are NSPostscriptPboardType (NSEPSImageRep) and 



14

Classes: NSImage

NSTIFFPboardType (NSBitmapImageRep). If pasteboard contains an NSFilenamesPboardType, the file 
name should have an extension returned by one of the registered NSImageRep’s 
imageUnfilteredFileTypes methods; the default types supported are “tiff”, “tif”, “bmp”, (all in 
NSBitmapImageRep) and “eps” (NSEPSImageRep). 

If initWithPasteboard: is able to create one or more image representations, it returns self. Otherwise, the 
receiver is freed and nil is returned.

initWithSize:
– (id)initWithSize:(NSSize)aSize 

Initializes the receiver, a newly allocated NSImage instance, to aSize and returns self. The size should be 
specified in units of the base coordinate system. Although you can initialize the receiver without specifying 
a size by passing a size of (0.0, 0.0) to initWithSize:, the receiver’s size must be set before the NSImage 
can be used.

See also: – setSize:

isCachedSeparately
– (BOOL)isCachedSeparately 

Returns YES if each representation of the image is cached separately in an off-screen window of its own, 
and NO if they can be cached in off-screen windows together with other images. A return of NO doesn’t 
mean that the windows are, in fact, shared, just that they can be. The default is NO.

isDataRetained
– (BOOL)isDataRetained 

Returns YES if the NSImage retains the data needed to render the image, and NO if it doesn’t. The default 
is NO, except for images created with initByReferencingFile:, which should hold onto their file names. If 
the data is available in a file that won’t be moved or deleted, or if responsibility for drawing the image is 
delegated to another object with a custom method, there’s no reason for the NSImage to retain the data. 
However, if the NSImage reads image data from a file created with initWithContentsOfFile:, you may 
want to have it keep the data itself; for example, to render the same image on another device at a different 
resolution.



15

isFlipped
– (BOOL)isFlipped 

Returns YES if a vertically flipped coordinate system is used when locating the image, and NO if it isn’t. 
The default is NO.

isValid
– (BOOL)isValid 

Returns YES if a representation for the receiver can drawn in the cache, and NO if it can’t; for example, 
because the file from which it was initialized is non-existent, or the data in that file is invalid. 

If no representations exist for the receiver, isValid first creates a cache with the default depth.

See also: – initByReferencingFile:

lockFocus
– (void)lockFocus 

Prepares for drawing of the best representation of the NSImage for the current device by making the 
off-screen window where the representation will be cached the current window and a coordinate system 
specific to the area where the image will be drawn the current coordinate system. If the receiver has no 
representations, lockFocus first creates one with the default depth. See “Choosing Representations” in the 
class description for information on how the “best” representation is chosen.

A successful lockFocus message must be balanced by a subsequent unlockFocus message to the same 
NSImage. These messages bracket the code that draws the image.

If lockFocus is unable to focus on the representation, it raises an NSImageCacheException.

See also: – bestRepresentationForDevice:, – isValid, – prefersColorMatch, – representations

lockFocusOnRepresentation:
– (void)lockFocusOnRepresentation:(NSImageRep *)imageRepresentation 

Prepares for drawing of the imageRepresentation representation by making the off-screen window where 
it will be cached the current window and a coordinate system specific to the area where the image will be 
drawn the current coordinate system. If imageRepresentation is nil, lockFocusOnRepresentation: acts 
like lockFocus, setting focus to the best representation for the NSImage. Otherwise, imageRepresentation 
must be one of the representations in the NSImage.

A successful lockFocusOnRepresentation: message must be balanced by a subsequent unlockFocus 
message to the same NSImage. These messages bracket the code that draws the image.



16

Classes: NSImage

If lockFocusOnRepresentation: is unable to focus on the representation, it raises an 
NSImageCacheException.

See also: – isValid

matchesOnMultipleResolution
– (BOOL)matchesOnMultipleResolution 

Returns YES if the resolution of the device and the resolution specified for the image are considered to 
match if one is an integer multiple of the other, and NO if device and image resolutions are considered to 
match only if they are exactly the same. The default is YES.

name
– (NSString *)name 

Returns the name assigned to the receiver, or nil if no name has been assigned.

prefersColorMatch
– (BOOL)prefersColorMatch 

Returns YES if, when selecting the representation it will use, the NSImage first looks for one that matches 
the color capability of the rendering device (choosing a gray-scale representation for a monochrome device 
and a color representation for a color device), then if necessary narrows the selection by looking for one 
that matches the resolution of the device. If the return is NO, the NSImage first looks for a representation 
that matches the resolution of the device, then tries to match the representation to the color capability of the 
device. The default is YES.

recache
– (void)recache 

Invalidates the off-screen caches of all representations and frees them. The next time any representation is 
composited, it will first be asked to redraw itself in the cache. NSCachedImageReps aren’t destroyed by 
this method.

If an image is likely not to be used again, it’s a good idea to free its caches, since that will reduce that 
amount of memory consumed by your program and therefore improve performance.



17

removeRepresentation:
– (void)removeRepresentation:(NSImageRep *)imageRep 

Removes and releases the imageRep representation from the NSImage’s list of representations.

See also: – representations

representations
– (NSArray *)representations 

Returns an array containing all of the representations of the receiver.

scalesWhenResized
– (BOOL)scalesWhenResized 

Returns YES if image representations are scaled to fit the size specified for the NSImage. If representations 
are not scalable, this method returns NO. The default is NO.

Representations created from data that specifies a size (for example, the “ImageLength” and “ImageWidth” 
fields of a TIFF representation or the bounding box of an EPS representation) will have the size the data 
specifies, which may differ from the size of the NSImage.

See also: – setSize:

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor 

Sets the background color of the image. The default is NSColor’s clearColor, indicating a transparent 
background. The background color will be visible only for representations that don’t completely cover all 
the pixels within the image when drawing. This method doesn’t cause the receiver to recache itself.

See also: – recache

setCacheDepthMatchesImageDepth:
– (void)setCacheDepthMatchesImageDepth:(BOOL)flag 

Sets whether the application’s default depth limit applies to the off-screen windows where the NSImage’s 
representations are cached. If flag is NO (the default), window depths are instead determined by the 
specifications of the representations. This method doesn’t cause the receiver to recache itself.

See also: – lockFocus, – recache



18

Classes: NSImage

setCachedSeparately:
– (void)setCachedSeparately:(BOOL)flag 

Sets whether each image representation will be cached in its own off-screen window or in a window shared 
with other images. If flag is YES, each representation is guaranteed to be in a separate window. If flag is 
NO (the default), a representation can be cached together with other images, though in practice it might not 
be.

If an NSImage is to be resized frequently, it’s more efficient to cache its representations separately.

This method doesn’t invalidate any existing caches.

See also: – recache

setDataRetained:
– (void)setDataRetained:(BOOL)flag 

Sets whether the NSImage retains the data needed to render the image. The default is NO. If the data is 
available in a file that won’t be moved or deleted, or if responsibility for drawing the image is delegated to 
another object with a custom method, there’s no reason for the NSImage to retain the data. However, if the 
NSImage reads image data from a file that could change, you may want to have it keep the data itself. 
Generally, this is useful to redraw the image to a device of different resolution. 

If an image representation is created using initByReferencingFile:, the only data retained is the name of 
the source file. 

setDelegate:
– (void)setDelegate:(id)anObject 

Makes anObject the delegate of the receiver.

setFlipped:
– (void)setFlipped:(BOOL)flag 

Determines whether the polarity of the y-axis is inverted when drawing an image. If flag is YES, the image 
will have its coordinate origin in the upper left corner and the positive y-axis will extend downward. This 
method affects only the coordinate system used to draw the image; it doesn’t affect the coordinate system 
for specifying portions of the image for methods like compositeToPoint:fromRect:operation: or 
dissolveToPoint:fromRect:fraction:.This method doesn’t cause the receiver to recache itself.

See also: – recache



19

setMatchesOnMultipleResolution:
– (void)setMatchesOnMultipleResolution:(BOOL)flag 

Sets whether image representations with resolutions that are integral multiples of the resolution of the 
device are considered to match the device. The default is YES.

setName:
– (BOOL)setName:(NSString *)aString

Registers the receiver under the name specified by aString, provided that no other NSImage is registered 
using that name. If the receiver is already registered under another name, setName: first unregisters the 
prior name. setName: returns YES unless another NSImage is registered using the name specified by 
aString, in which case setName: simply returns NO.

See also: + imageNamed:

setPrefersColorMatch:
– (void)setPrefersColorMatch:(BOOL)flag 

Sets whether color matches are preferred over resolution matches when determining which representation to use. If 
flag is YES, the NSImage first tries to match the representation to the color capability of the rendering 
device (choosing a color representation for a color device and a gray-scale representation for a monochrome 
device), and then if necessary narrows the selection by trying to match the resolution of the representation 
to the resolution of the device. If flag is NO, the NsImage first tries to match the representation to the 
resolution of the device, and then tries to match it to the color capability of the device. The default is YES.

setScalesWhenResized:
– (void)setScalesWhenResized:(BOOL)flag

Sets whether representations with sizes that differ from the size of the NSImage will be scaled to fit. If flag 
is YES, representations are scaled to fit. The default is NO.

Generally, representations that are created through NSImage methods (such as initByReferencingFile:) 
have the same size as the NSImage. However, a representation that’s added with either 
addRepresentation: or addRepresentations: may have a different size, and representations created from 
data that specifies a size (for example, the “ImageLength” and “ImageWidth” fields of a TIFF 
representation or the bounding box of an EPS representation) will have the size specified. 

This method doesn’t cause the receiving NSImage to recache itself when it is next composited. 

See also: – setSize:



20

Classes: NSImage

setSize:
– (void)setSize:(NSSize)aSize

Sets the width and height of the image. The size referred to by aSize should be in units of the base coordinate 
system. 

The size of an NSImage must be set before it can be used. You can change the size of an NSImage after it 
has been used, but changing it invalidates all its caches and frees them. When the image is next composited, 
the selected representation will draw itself in an off-screen window to recreate the cache.

If the size of the image hasn’t already been set when the NSImage is provided with a representation, the 
size will be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The 
TIFF fields “ImageLength” and “ImageWidth” are used to determine the size of an NSBitmapImageRep.

See also: – initWithSize: , – setScalesWhenResized:

setUsesEPSOnResolutionMismatch:
– (void)setUsesEPSOnResolutionMismatch:(BOOL)flag

Sets whether EPS representations are preferred when there are no representations that match the resolution 
of the device. The default is NO.

See also: – setMatchesOnMultipleResolution:

size
– (NSSize)size 

Returns the size of the image. If no size has been set, and no size can be determined from any of the 
NSImage’s representations, the returned NSSize will have a width and height of 0.0.

TIFFRepresentation
– (NSData *)TIFFRepresentation

Returns a data object containing TIFF for all representations, using their default compressions.



21

TIFFRepresentationUsingCompression:factor:
– (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp 

factor:(float)aFloat 

Returns a data object containing TIFF for all representations, using the specified compression type and 
compression factor. Legal values for comp can be found in NSBitmapImageRep.h, and are described in 
“Tiff Compression” in NSBitmapImageRep’s class description. aFloat provides a hint for those 
compression types that implement variable compression ratios; currently only JPEG compression uses a 
compression factor.

If the specified compression isn’t applicable, no compression is used. If a problem is encountered during 
generation of the TIFF, TIFFRepresentationUsingCompression:factor: raises an exception.

See also: – TIFFRepresentationUsingCompression:factor: (NSBitmapImageRep)

unlockFocus
– (void)unlockFocus 

Balances a previous lockFocus or lockFocusOnRepresentation: message. All successful lockFocus and 
lockFocusOnRepresentation: messages (those that don’t raise an NSImageCacheException) must be 
followed by a subsequent unlockFocus message. Those that raise should never be followed by 
unlockFocus.

usesEPSOnResolutionMismatch
– (BOOL)usesEPSOnResolutionMismatch 

Returns whether EPS representations are preferred when there are no representations that match the 
resolution of the device. The default is NO.

See also: – matchesOnMultipleResolution:

Methods Implemented by the Delegate

imageDidNotDraw:inRect:
– (NSImage *)imageDidNotDraw:(id)sender inRect:(NSRect)aRect

Implemented by the delegate to respond to a message sent by the sender (an NSImage) when the sender 
was unable, for whatever reason, to composite or lock focus on its image. The delegate can:

• return another NSImage to draw in the sender’s place,

• draw the image itself and return nil, or



22

Classes: NSImage

• simply return nil to indicate that sender should give up the attempt at drawing the image.


