
1

��NSAttributedString Class Cluster Additions

Class Cluster Description

NSAttributedString objects manage character strings and associated sets of attributes (for example, font and
kerning) that apply to individual characters or ranges of characters in the string. An association of characters
and their attributes is called an attributed string. The cluster’s two public classes, NSAttributedString and
NSMutableAttributedString, declare the programmatic interface for read-only attributed strings and
modifiable attributed strings, respectively. The Foundation Kit defines the basic functionality for attributed
strings, while the remainder is defined here in the Application Kit. The Application Kit also uses a subclass
of NSMutableAttributedString, called NSTextStorage, to provide the storage for NeXT’s extended
text-handling system.

Note: NSAttributedString is not a subclass of NSString. It contains a string object to which it applies
attributes. This protects users of attributed strings from ambiguities caused by the semantic
differences between simple and attributed string. For example, equality can’t be simply defined
between an NSString and an attributed string.

Because of the nature of class clusters, attributed string objects are not actual instances of the
NSAttributedString or NSMutableAttributedString classes, but are instances of one of their private concrete
subclasses. Although an attributed string object’s class is private, its interface is public, as declared by these
abstract superclasses, NSAttributedString and NSMutableAttributedString. The attributed string classes
adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert an attributed
string from one type to the other.

You create an NSAttributedString object from scratch by using one of initWithString:,
initWithString:attributes:, or initWithAttributedString:. These methods initialize an attributed string
with data you provide. You can also create an attributed string from RTF data using
initWithRTF:documentAttributes:, initWithRTFD:documentAttributes:,
initWithRTFDFileWrapper:documentAttributes:, or initWithPath:documentAttributes:. See “RTF
Document Attributes” for more details on reading RTF.

An attributed string provides basic access to its contents with the string and
attributesAtIndex:effectiveRange: methods, which yield characters and attributes, respectively. These
two primitive methods are used by the other access methods to retrieve attributes individually by name, by
functional group (font or ruler attributes, for example), and so on.

Feature Overview

NSAttributedString and NSMutableAttributedString add a number of features to the basic content storage
of NSString:

• Association of arbitrary, programmer-defined attributes with ranges of characters

2

Classes: NSAttributedString Class Cluster Additions

• Preservation of attribute-to-character mapping after changes (NSMutableAttributedString)
• Support for RTF, including file attachments and graphics
• Drawing in NSView objects (note that the Application Kit adds drawing methods to NSString as well)
• Linguistic unit (word) and line calculation

An attributed string identifies attributes by name, storing their values as opaque ids in an NSDictionary. For
example, the text font is stored as an NSFont object under the name given by NSFontAttributeName. You
can associate any object value, by any name, with a given range of characters in the attributed string. The
basic attributes defined by NSAttributedString are described below under “Accessing Attributes.”

A mutable attributed string keeps track of the attribute mapping as characters are added to and deleted from
it and as attributes are changed. It allows you to group batches of edits with the beginEditing and
endEditing methods, and to consolidate changes to the attribute-to-character mapping with the fix...
methods. See “Changing a Mutable Attributed String” below for more information.

An attributed string can be created from rich text (RTF) or rich text with attachments (RTFD), and can write
its contents as RTF or RTFD data. Three initialization methods, initWithRTF:documentAttributes:,
initWithRTFD:documentAttributes:, and initWithRTFDFileWrapper:documentAttributes:,
interpret rich text data. The methods for writing rich text are RTFFromRange:documentAttributes: and
RTFDFromRange:documentAttributes:, which return rich text data for any legal range within the
attributed string, and RTFDFileWrapperFromRange:documentAttributes:, which returns the attributed
string as an NSFileWrapper. NSAttributedString provides limited support for some document-level
attributes, as described below under “RTF Document Attributes.” Additional support for rich text is
provided by other text-handling classes such as NSTextView.

You can draw an attributed string in a focused NSView by invoking either the drawAtPoint: or
drawInRect: method. Note that the Application Kit defines drawing methods for NSString as well,
allowing any string object to draw itself. These methods, drawAtPoint:withAttributes: and
drawInRect:withAttributes:, are described in the NSString Additions class specification.

An attributed string supports the typical behavior of editors in selecting a word on a double-click with the
doubleClickAtIndex: method, and finds word breaks with nextWordFromIndex:forward:. It also
calculates line breaks with the lineBreakBeforeIndex:withinRange: method.

Accessing Attributes

An attributed string identifies attributes by name, storing an id value under the attriute name in an
NSDictionary, which is in turn associated with an NSRange that indicates the characters to which the
dictionary’s attributes apply. You can assign any attribute name/value pair you wish to a range of
characters, in addition to these standard attributes:

3

Attribute Identifier Value Class Default Value

NSFontAttributeName NSFont Helvetica 12-point
NSForegroundColorAttributeName NSColor black
NSBackgroundColorAttributeName NSColor none (no background drawn)
NSUnderlineStyleAttributeName NSNumber, as an int none (no underline)
NSSuperscriptAttributeName NSNumber, as an int 0
NSBaselineOffsetAttributeName NSNumber, as a float 0.0
NSKernAttributeName NSNumber, as a float 0.0
NSLigatureAttributeName NSNumber, as an int 1 (standard ligatures)
NSParagraphStyleAttributeName NSParagraphStyle (as returned by NSParagraphStyle’s

defaultParagraphStyle method)
NSAttachmentAttributeName NSTextAttachment none (no attachment)

The identifiers listed are actually global NSString variables containing the attribute names. The value class
is what users of an attributed string should expect the attribute values to be presented as. The default values
are what they should assume if no attribute value has been explicitly set for the requested character range.

The natures of several attributes aren’t obvious from name alone:

• The underline attribute has only one value defined, NSSingleUnderlineStyle. All characters with this
attribute value should be drawn with a single line just below the baseline.

• The superscript attribute indicates an abstract level for both super- and subscripts. The user of the
attributed string can interpret this as desired, adjusting the baseline by the same or a different amount for
each level, changing the font size, or both.

• The baseline offset attribute is a literal distance by which the characters should be shifted above the
baseline (for positive offsets) or below (for negative offsets).

• The kerning attribute indicates how much the following character should be shifted from its default offset
as defined by the current character’s font; a positive kern indicates a shift farther along and a negative
kern indicates a shift closer to the current character.

• The ligature attribute determines what kinds of ligatures should be used when displaying the string. A
value of 0 indicates that only ligatures essential for proper rendering of text should be used, 1 indicates
that standard ligatures should be used, and 2 indicates that all available ligatures should be used. Which
ligatures are standard depends on the script and possibly the font. Arabic text, for example, requires
ligatures for many character sequences, but has a rich set of additional ligatures that combine characters.
English text has no essential ligatures, and typically has only two standard ligatures, those for “fi” and
“fl”—all others being considered more advanced or fancy.

With an immutable attributed string, you assign all attributes on creating the string using methods such as
initWithRTF:documentAttributes:, which interprets attributes from the RTF data,
initWithString:attributes:, which explicitly takes an NSDictionary of name/value pairs, or
initWithString:, which assigns no attributes. See “Changing a Mutable Attributed String” below for
information on assigning attributes with a mutable attributed string.

4

Classes: NSAttributedString Class Cluster Additions

To retrieve attribute values from either type of attributed string, use any of these methods:

– attributesAtIndex:effectiveRange:
– attributesAtIndex:longestEffectiveRange:inRange:
– attribute:atIndex:effectiveRange:
– attribute:atIndex:longestEffectiveRange:inRange:
– fontAttributesInRange:
– rulerAttributesInRange:

The first two methods return all attributes at a given index, the attribute:... methods return the value of a
single named attribute, and fontAttributesInRange: and rulerAttributesInRange: return attributes
defined to apply only to characters or to whole paragraphs, respectively (see the individual method
descriptions for more information).

The first four methods also return by reference the effective range and the longest effective range of the
attributes. These ranges allow you to determine the extent of attributes. Conceptually, each character in an
attributed string has its own collection of attributes; however, it’s often useful to know when the attributes
and values are the same over a series of characters. This allows a routine to progress through an attributed
string in chunks larger than a single character. In retrieving the effective range, an attributed string simply
looks up information in its attribute mapping, essentially the dictionary of attributes that apply at the index
requested. In retrieving the longest effective range, the attributed string continues checking characters past
this basic range as long as the attribute values are the same. This extra comparison increases the execution
time for these methods but guarantees a precise maximal range for the attributes requested.The code
fragment below progresses through an attributed string in chunks based on the effective range. The
fictitious analyzer object here counts the number of characters in each font. The while loop progresses as
long as the effective range retrieved doesn’t include the end of the attributed string, retrieving the font in
effect just past the latest retrieved range. For each font attribute retrieved, analyzer is asked to tally the
number of characters in the effective range. In this example, it’s possible that consecutive invocations of
attribute:atIndex:effectiveRange: will return the same value.

NSAttributedString *attrStr;
unsigned int length;
NSRange effectiveRange;
id attributeValue;

length = [attrStr length];

effectiveRange = NSMakeRange(0, 0);

while (NSMaxRange(effectiveRange) < length) {
 attributeValue = [attrStr attribute:NSFontAttributeName
 atIndex:NSMaxRange(effectiveRange) effectiveRange:&effectiveRange];
 [analyzer tallyCharacterRange:effectiveRange font:attributeValue];
}

In contrast, the next code fragment progresses through the attributed string according to the maximum
effective range for each font. In this case, analyzer counts font changes, which may not be represented by
merely retrieving effective ranges. In this case the while loop is predicated on the length of the limiting

5

range, which begins as the entire length of the attributed string and is whittled down as the loop progresses.
After analyzer records the font change, the limit range is adjusted to account for the longest effective range
retrieved.

NSAttributedString *attrStr;
NSRange limitRange;
NSRange effectiveRange;
id attributeValue;

limitRange = NSMakeRange(0, [attrStr length]);

while (limitRange.length > 0) {

 attributeValue = [attrStr attribute:NSFontAttributeName

 atIndex:limitRange.location longestEffectiveRange:&effectiveRange

 inRange:limitRange];

 [analyzer recordFontChange:attributeValue];

 limitRange = NSMakeRange(NSMaxRange(effectiveRange),

 NSMaxRange(limitRange) - NSMaxRange(effectiveRange));

}

Note that the second code fragment is more complex. Because of this, and because
attribute:atIndex:longestEffectiveRange:inRange: is somewhat slower than
attribute:atIndex:effectiveRange:, you should typically use it only when absolutely necessary for the
work you’re performing. In most cases working by effective range is enough.

Changing a Mutable Attributed String

NSMutableAttributedString declares a number of methods for changing both characters and attributes, such
as the primitive replaceCharactersInRange:withString: and setAttributes:range:, or the more
convenient methods addAttribute:value:range:, applyFontTraits:range:, setAlignment:range:, and so
on. All of the methods for changing a mutable attributed string properly update the mapping between
characters and attributes, but after a change some inconsistencies can develop. Here are some examples of
attribute consistency requirements:

• Paragraph styles must apply to entire paragraphs.

• Scripts may only be assigned fonts that support them. For example, Kanji and Arabic characters can’t be
assigned the Times-Roman font, and must be reassigned fonts that support these scripts.

• Deleting attachment characters from the string requires the corresponding attachment objects to be
released. Similarly, removing attachment objects requires the corresponding attachment characters to be
removed from the string.

• A code editing application that displays all language keywords in boldface can automatically assign this
attriute as the user changes the font or edits the text.

6

Classes: NSAttributedString Class Cluster Additions

NSMutableAttributedString defines methods to fix these inconsistencies as changes are made. This allows
the attributes to be cleaned up at a low level, hiding potential problems from higher levels and providing
for very clean update of display as attributes change. There are six methods for fixing attributes:

– fixAttributesInRange:
– fixAttachmentAttributeInRange:
– fixFontAttributeInRange:
– fixParagraphStyleAttributeInRange:
– beginEditing
– endEditing

The first method, fixAttributesInRange:, invokes the other three fix... methods to clean up deleted
attachment references, font attributes, and paragraph attributes, respectively. The individual method
descriptions explain what cleanup entails for each case.

The beginEditing and endEditing methods are provided for subclasses of NSMutableAttributedString to
override. Their default implementations do nothing. These methods allow instances of a subclass to record
or buffer groups of changes and clean themselves up on receiving an endEditing message. endEditing also
allows the receiver to notify any observers that it has been changed. NSTextStorage’s implementation of
endEditing, for example, fixes changed attributes and then notifies its NSLayoutManagers that they need
to re-lay and redisplay their text.

RTF Document Attributes

Attributed strings keep attribute information for their text only, while RTF allows for more general
attributes of a document, especially regarding paper size and layout. To support higher-level objects that
use attributed strings, the methods that work with RTF also read and write some RTF directives for
document attributes, stored in an NSDictionary under these keys:

Attribute Key Value Class

PaperSize NSValue, as an NSSize
LeftMargin NSNumber, as a float
RightMargin NSNumber, as a float
TopMargin NSNumber, as a float
BottomMargin NSNumber, as a float

The init methods, such as initWithRTF:documentAttributes:, return by reference a dictionary containing
the attributes read from the RTF data, which your application can then use to set up its page layout.
Similarly, RTF extraction methods such as RTFFromRange:documentAttributes:, accept a dictionary
containing those attributes and writes them into the RTF data, thus preserving the page layout information.

Attachments

Attachments, such as embedded images or files, are represented in an attributed string by both a special
character and an attribute. The character is identified by the global name NSAttachmentCharacter, and

7

indicates the presence of an attachment at its location in the string. The attribute, identified in the string by
the attribute name NSAttachmentAttributeName, is an NSTextAttachment object. An NSTextAttachment
contains the data for the attachment itself, as well as an image to display when the string is drawn. You can
use NSAttributedString’s attributedStringWithAttachment: class method to construct an attachment
string, which you can then add to a mutable attributed string using appendAttributedString: or
insertAttributedString:atIndex:.

8

Classes: NSAttributedString Class Cluster Additions

��NSAttributedString Additions

Inherits From: NSObject

Declared In: AppKit/NSAttributedString.h
AppKit/NSStringDrawing.h
AppKit/NSTextAttachment.h

Class Description

The Application Kit extends the Foundation Kit’s NSAttributedString class by adding:

• Support for RTF, with or without attachments
• Graphic attributes, including font and ruler attributes
• Methods for drawing attributed strings
• Methods for calculating significant linguistic units

Method Types

Creating an NSAttributedString – initWithRTF:documentAttributes:
– initWithRTFD:documentAttributes:
– initWithRTFDFileWrapper:documentAttributes:
– initWithPath:documentAttributes:
+ attributedStringWithAttachment:

Retrieving attribute information – fontAttributesInRange:
– rulerAttributesInRange:
– containsAttachments

Calculating linguistic units – doubleClickAtIndex:
– lineBreakBeforeIndex:withinRange:
– nextWordFromIndex:forward:

Drawing the string – drawAtPoint:
– drawInRect:
– size

Generating RTF data – RTFFromRange:documentAttributes:
– RTFDFileWrapperFromRange:documentAttributes:
– RTFDFromRange:documentAttributes:

9

Class Methods

� attributedStringWithAttachment:
+ (NSAttributedString *)attributedStringWithAttachment:(NSTextAttachment *)attachment

Returns an NSAttributedString object containing only the attachment marker character
(NSAttachmentCharacter), which is assigned an attribute whose name is NSTextAttachmentName and
whose value is attachment. Use this method, along with appendAttributedString: or
insertAttributedString:atIndex:, to add an attachment to an attributed string.

Instance Methods

� containsAttachments
– (BOOL)containsAttachments

Returns YES if the receiver contains any attachment attributes, NO otherwise. This method checks only for
attachment attributes, not for NSAttachmentCharacter.

� doubleClickAtIndex:
– (NSRange)doubleClickAtIndex:(unsigned int)index

Returns the range of characters that form a word (or other linguistic unit) surrounding index, taking
language characteristics into account. Raises an NSRangeException if index lies beyond the end of the
receiver’s characters.

See also: – nextWordFromIndex:forward:

� drawAtPoint:
– (void)drawAtPoint:(NSPoint)point

Draws the receiver with its font and other display attributes at point in the currently focused NSView. Text
is drawn in such a way that the upper left corner of its bounding box lies at point, regardless of the line
sweep direction or whether the NSView is flipped.

Don’t invoke this method while no NSView is focused.

See also: – lockFocus (NSView), –size, –drawInRect:

10

Classes: NSAttributedString Class Cluster Additions

� drawInRect:
– (void)drawInRect:(NSRect)rect

Draws the receiver with its font and other display attributes within rect in the currently focused NSView,
clipping the drawing to this rectangle. Text is drawn within rect according to its line sweep direction; for
example, Arabic text will begin at the right edge and potentially be clipped on the left.

Don’t invoke this method while no NSView is focused.

See also: – lockFocus (NSView), –drawAtPoint:

� fontAttributesInRange:
– (NSDictionary *)fontAttributesInRange:(NSRange)aRange

Returns the font attributes in effect for the character at aRange.location. Font attributes are all those listed
under “Accessing Attributes” in the class cluster description except NSParagraphStyleAttributeName and
NSAttachmentAttributeName. Use this method to obtain font attributes that are to be copied or pasted with
“copy font” operations. Raises an NSRangeException if any part of aRange lies beyond the end of the
receiver’s characters.

See also: – rulerAttributesInRange:

� initWithPath:documentAttributes:
– (id)initWithPath:(NSString *)path documentAttributes:(NSDictionary **)docAttributes

Initializes a new NSAttributedString from RTF or RTFD data contained in the file at path. Also returns by
reference in docAttributes a dictionary containing document-level attributes, as listed in the class cluster
description under “RTF Document Attributes.” docAttributes may be NULL, in which case no document
attributes are returned. Returns self, or nil if rtfData can’t be decoded.

� initWithRTF:documentAttributes:
– (id)initWithRTF:(NSData *)rtfData documentAttributes:(NSDictionary **)docAttributes

Initializes a new NSAttributedString by decoding the stream of RTF commands and data contained in
rtfData. Also returns by reference in docAttributes a dictionary containing document-level attributes, as
listed in the class cluster description under “RTF Document Attributes.” docAttributes may be NULL, in
which case no document attributes are returned. Returns self, or nil if rtfData can’t be decoded.

11

� initWithRTFD:documentAttributes:
– (id)initWithRTFD:(NSData *)rtfdData documentAttributes:(NSDictionary **)docAttributes

Initializes a new NSAttributedString by decoding the stream of RTFD commands and data contained in
rtfdData. Also returns by reference in docAttributes a dictionary containing document-level attributes, as
listed in the class cluster description under “RTF Document Attributes.” docAttributes may be NULL, in
which case no document attributes are returned. Returns self, or nil if rtfData can’t be decoded.

� initWithRTFDFileWrapper:documentAttributes:
– (id)initWithRTFDFileWrapper:(NSFileWrapper *)wrapper

documentAttributes:(NSDictionary **)docAttributes

Initializes a new NSAttributedString from wrapper an NSFileWrapper object containing an RTFD
document. Also returns by reference in docAttributes a dictionary containing document-level attributes, as
listed in the class cluster description under “RTF Document Attributes.” docAttributes may be NULL, in
which case no document attributes are returned. Returns self, or nil if wrapper can’t be interpreted as an
RTFD document.

� lineBreakBeforeIndex:withinRange:
– (unsigned int)lineBreakBeforeIndex:(unsigned int)index withinRange:(NSRange)aRange

Returns the index of the closest character before index and within aRange that can be placed on a new line
when laying out text. In other words, finds the appropriate line break when the character at index won’t fit
on the same line as the character at the beginning of aRange. Returns NSNotFound if no line break is
possible before index.

Raises an NSRangeException if index or any part of aRange lies beyond the end of the receiver’s characters.

See also: – nextWordFromIndex:forward:

� nextWordFromIndex:forward:
– (unsigned int)nextWordFromIndex:(unsigned int)index forward:(BOOL)flag

Returns the index of the first character of the word after or before index. If flag is YES, this is the first
character after index that begins a word; if flag is NO, it’s the first character before index that begins a word,
whether index is located within a word or not. If index lies at either end of the string and the search direction
would progress past that end, it’s returned unchanged. This method is intended for moving the insertion
point during editing, not for linguistic analysis or parsing of text.

Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

See also: – lineBreakBeforeIndex:withinRange:

12

Classes: NSAttributedString Class Cluster Additions

� RTFDFileWrapperFromRange:documentAttributes:
– (NSFileWrapper *)RTFDFileWrapperFromRagne:(NSRange)aRange

documentAttributes:(NSDictionary *)docAttributes

Returns an NSFileWrapper object that contains an RTFD document corresponding to the characters and
attributes within aRange. The file wrapper also includes the document-level attributes in docAttributes, as
explained in the class cluster description under “RTF Document Attributes.” If there are no document-level
attributes, docAttributes can be nil. Raises an NSRangeException if any part of aRange lies beyond the end
of the receiver’s characters.

You can save the file wrapper using NSFileWrapper’s writeToFile:atomically:updateFilenames:
method.

See also: – RTFDFromRange:documentAttributes:, –RTFFromRange:documentAttributes:

� RTFDFromRange:documentAttributes:
– (NSData *)RTFDFromRange:(NSRange)aRange

documentAttributes:(NSDictionary *)docAttributes

Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes
within aRange. Also writes the document-level attributes in docAttributes, as explained in the class cluster
description under “RTF Document Attributes.” If there are no document-level attributes, docAttributes can
be nil. Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setData:forType: method, with a second argument of NSRTFDPboardType.

See also: – RTFFromRange:documentAttributes:,
– RTFDFileWrapperFromRange:documentAttributes:

� RTFFromRange:documentAttributes:
– (NSData *)RTFFromRange:(NSRange)aRange

documentAttributes:(NSDictionary *)docAttributes

Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
aRange, omitting all attachment attributes. Also writes the document-level attributes in docAttributes, as
explained in the class cluster description under “RTF Document Attributes.” If there are no document-level
attributes, docAttributes can be nil. Raises an NSRangeException if any part of aRange lies beyond the end
of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setData:forType: method, with a second argument of NSRTFPboardType.

13

Although this method strips attachments, it leaves the attachment characters in the text itself. NSText’s
RTFFromRange: method, on the other hand, does strip attachment characters when extracting RTF.

See also: – RTFDFromRange:documentAttributes:,
– RTFDFileWrapperFromRange:documentAttributes:

� rulerAttributesInRange:
– (NSDictionary *)rulerAttributesInRange:(NSRange)aRange

Returns the ruler (paragraph) attributes in effect for the characters within aRange. The only ruler attribute
currently defined is that named by NSParagraphStyleAttributeName. Use this method to obtain attributes
that are to be copied or pasted with “copy ruler” operations. Raises an NSRangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See also: – fontAttributesInRange:

� size
– (NSSize)size

Returns the bounding box of the marks that the receiver draws.

See also: – drawAtPoint:, –drawInRect:

14

Classes: NSAttributedString Class Cluster Additions

��NSMutableAttributedString

Inherits From: NSAttributedString : NSObject

Declared In: AppKit/NSAttributedString.h
AppKit/NSStringDrawing.h
AppKit/NSTextAttachment.h

Class Description

Additions to the NSMutableAttributedString class primarily involve setting graphical attributes, such as
font, super- or subscripting, and alignment, and making these attributes consistent after changes. See the
class cluster description for more information.

Method Types

Changing attributes – applyFontTraits:range:
– setAlignment:range:
– subscriptRange:
– superscriptRange:
– unscriptRange:

Updating attachment contents – updateAttachmentsFromPath:

Fixing attributes after changes – fixAttributesInRange:
– fixAttachmentAttributeInRange:
– fixFontAttributeInRange:
– fixParagraphAttributeInRange:

Instance Methods

� applyFontTraits:range:
– (void)applyFontTraits:(NSFontTraitMask)mask range:(NSRange)aRange

Apply the font attributes specified by mask to the characters in aRange. See the NSFontManager class
specification for a description of the font traits available. Raises an NSRangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See also: – setAlignment:range:, – setAttributes:range:

15

� fixAttachmentAttributeInRange:
– (void)fixAttachmentAttributeInRange:(NSRange)aRange

Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters other
than NSAttachmentCharacter. Raises an NSRangeException if any part of aRange lies beyond the end of
the receiver’s characters.

See also: – fixFontAttributeInRange:, – fixParagraphStyleAttributeInRange:,
– fixAttributesInRange:

� fixAttributesInRange:
– (void)fixAttributesInRange:(NSRange)aRange

Invokes the other fix... methods, allowing you to clean up an attributed string with a single message. Raises
an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – fixAttachmentAttributeInRange:, – fixFontAttributeInRange:,
– fixParagraphStyleAttributeInRange:

� fixFontAttributeInRange:
– (void)fixFontAttributeInRange:(NSRange)aRange

Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their scripts
and otherwise correcting font attribute assignments. For example, Kanji characters in assigned a Latin font
are reassigned an appropriate Kanji font. Raises an NSRangeException if any part of aRange lies beyond
the end of the receiver’s characters.

See also: – fixParagraphStyleAttributeInRange:, – fixAttachmentAttributeInRange:,
– fixAttributesInRange:

� fixParagraphStyleAttributeInRange:
– (void)fixParagraphStyleAttributeInRange:(NSRange)aRange

Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in each
paragraph to all characters of the paragraph. This method extends the range as needed to cover the last
paragraph partially contained. A paragraph is delimited by any of these characters, the longest possible
sequence being preferred to any shorter:

U+000D (\r or CR) U+2028 (Unicode line separator)
U+000A (\n or LF) U+2029 (Unicode paragraph separator)
\r\n, in that order (also known as CRLF)

16

Classes: NSAttributedString Class Cluster Additions

Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – fixFontAttributeInRange:, – fixAttachmentAttributeInRange:, – fixAttributesInRange:

� setAlignment:range:
– (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)aRange

Sets the alignment characteristic of the paragraph style attribute for the characters in aRange to alignment.
When attribute fixing takes place, this change will only affect paragraphs whose first character was
included in aRange. Raises an NSRangeException if any part of aRange lies beyond the end of the
receiver’s characters.

See also: – addAttributes:range:, – applyFontTraits:range:, – fixParagraphStyleAttributeInRange:

� subscriptRange:
– (void)subscriptRange:(NSRange)aRange

Decrements the value of the superscript attribute for characters in aRange by 1. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – superscriptRange:, – unscriptRange:

� superscriptRange:
– (void)superscriptRange:(NSRange)aRange

Increments the value of the superscript attribute for characters in aRange by 1. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – subscriptRange:, – unscriptRange:

� unscriptRange:
– (void)unscriptRange:(NSRange)aRange

Removes the superscript attribute from the characters in aRange. Raises an NSRangeException if any part
of aRange lies beyond the end of the receiver’s characters.

See also: – subscriptRange:, – superscriptRange:

17

� updateAttachmentsFromPath:
– (void)updateAttachmentsFromPath:(NSString *)path

Updates all attachments based on files contained in the RTFD file package at path.

See also: – updateFromPath: (NSFileWrapper)

