Classes: NSBundle

NSBundle

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSBundle.h

Class at a Glance

Purpose

An NSBundle represents a location in the file system that groups code and resources that can be used in a
program. NSBundles locate program resources, dynamically load executable code, and assist in localization. You
build a bundle in Project Builder using one of these project types: Application, Framework, Loadable Bundle,
Palette.

Principal Attribute
« Directory path

Creation

—initwithPath: (designated initializer)

+ mainBundle Returns the NSBundle for the application wrapper.

+ bundleForClass: Returns the NSBundle in which the class is implemented.
+ bundleWithPath: Returns the NSBundle at a location in the file system.

Commonly Used Methods

—localizedStringForKey:value:table: ~ Returns a localized version of a string.

— pathForResource:of Type: Returns the path for the specified resource.

— principalClass Returns the principal class, dynamically loading code if needed.

Class Description

An NSBundle is an object that corresponds to a directory where related resources—including executable
code—are stored. The directory, in essence, “bundles” a set of resources used by an application into
convenient chunks, and the NSBundle object makes those resources available to the application. NSBundle

can find requested resources in the directory and can dynamically load executable code. Gunedterm
refers both to the object and to the directory it represents.

Bundles are useful in a variety of contexts. Since bundles combine executable code with the resources used
by that code, they facilitate installation and localization. NSBundles are also used to locate specific
resources, to obtain localized strings, to load code dynamically, and to determine which classes are loaded.

Each resource in a bundle usually resides in its own file. Bundled resources include such things as:

» Executable code

* Images—TIFF or EPS images used by an application’s user interface

* Sounds

 Localized character strings

» Nib files—Interface Builder files describing user-interface objects and their relationships

The Project Builder application defines four types of projects that build bundlesEeckagesA file
package is a directory that the Workspace Manager presents to users as if it were a simple file; the contents
of the directory are hidden. The four types of Project Builder bundles are:

» Application. The application wrapper is a bundle that contains the resources needed to launch the
application, including the application executable. This bundle is also known as the main bundle. Its
extension is “.app”.

« Framework. A framework is a directory containing a dynamic shared library and all the resources that
go with that library, such as header files, images, and documentation. Its extension is “.framework”.

« Loadable Bundle Like an application, a loadable bundle usually contains executable code and
associated resources. Loadable bundles differ from applications and frameworks because they must be
explicitly loaded into a running application. (See “Loadable Bundles,” below for more information.) The
extension of a loadable bundle is conventionally “.bundle” but can be something else (for example,
“.preference”).

« Palette A palette is a type of loadable bundle specialized for Interface Builder. It contains custom
user-interface objects and compiled code that are loaded into an Interface Builder palette.

For all types of bundles, the executable-code file of a bundle (of which there can be only one) is in the
immediate bundle directory and takes the same name as the bundle, minus the extension. Bundles also
encode (as a property list) the important attributes of the bundle, such as the main nib file name, executable
name, document extensions, and so forth. You can access these attributes with NSBiofitionary

method, which returns the file’s contents as an NSDictionary.

You shouldn’t attempt to create an NSBundle subclass since the designated initithZghPath: ,
might substitute another NSBundle fasif.

The Main Bundle

Every application has at least one bundle—#itgn bundle—which is the “.app” directory where its
executable file is located. This file is loaded into memory when the application is launched. It includes at

Classes: NSBundle

least thamain() function and other code necessary to start up the application. You obtain an NSBundle
object corresponding to the main bundle with the class metlainBundle.

Framework Bundles

Frameworks are bundles that package dynamic shared libraries along with the nib files, images, and other
resources that support the executable code and with the header files and documentation that describe the
associated APIs. As long as your applications are dynamically linked with frameworks, you should have
little need to do anything explicitly with those frameworks thereatfter; in a running application, the
framework code is automatically loaded, as needed. You can however, get an NSBundle object associated
with a framework by invoking the class methmahdleForClass: specifying, as the argument, a class that's
defined in the framework.

Loadable Bundles and Dynamic Loading

An application can be organized into any number of other bundles in addition to the main bundle and the
bundles of linked-in framewaorks. Although these loadable bundles usually reside inside the application file
package, they can be located anywhere in the file system. Each loadable-bundle directory—by convention,
with a “.bundle” extension—is represented in the application by a separate NSBundle object. Through this
object the application can dynamically load the code and resources in the bundle when it needs them. For
example, an application for managing PostScript printers may have a bundle full of PostScript code to be
downloaded to printers.

The executable code files in loadable bundles hold class (and category) definitions that the NSBundle object
can dynamically load while the application runs. When asked for a certain class (through the invocation of
classNamed:or principalClass), the NSBundle loads the object file that contains the class definition (if

it's not already loaded) and returns the class object; it also loads other classes and categories that are stored
in the file.

The major advantage of bundles is application extensibility. A set of bundled classes often supports a small
collection of objects that can be integrated into the larger object network already in place. (NEXTSTEP
Preferences is one example of this.) The linkage is established through an instanperfigad class

This object might have methods to return other objects that the application can talk to, but typically all
messages from the application to the subnetwork are funneled through the one instance.

Since each bundle can have only one executable file, that file should be kept free of localizable content.
Anything that needs to be localized should be segregated into separate resource files and stored in
localized-resource subdirectories.

Note: ToO create a loadable bundle—a bundle with dynamically loadable code—without using Project
Builder, use théd(1) -bundle flag on thecc command line.

Localized Resources

If an application is to be used in more than one part of the world, its resources may need to be customized,
or “localized,” for language, country, or cultural region. An application may need, for example, to have
separate Japanese, English, French, Hindu, and Swedish versions of the character strings that label menu
commands.

Resource files specific to a particular language are grouped together in a subdirectory of the bundle
directory. The subdirectory has the name of the language (in English) followed by j& &kpeasion (for
“language project”). The application mentioned above, for example, wouldapseese.lproj
English.lproj, French.lproj, Hindi.lproj , andSwedish.lproj subdirectories. Each “.Iproj” subdirectory in

a bundle has the same set of files; all versions of a resource file must have the same nareloT$nd,

in French.lproj should be the French counterpart to the Swdd#ln.sndin Swedish.lproj, and so on. If

a resource doesn’t need to be localized at all, it's stored in the bundle directory itself, not in the “.Iproj”
subdirectories.

The user determines which set of localized resources will actually be used by the application. NSBundle
objects rely on the language preferences set by the user in the Preferences application. Preferences lets users
order a list of available languages so that the most preferred language is first, the second most preferred
language is second, and so on.

When an NSBundle is asked for a resource file, it provides the path to the resource that best matches the
user’s language preferences. For details, see the descriptathledérResource:of Type:inDirectory and
pathForResource:ofType:.

Application Kit Additions to NSBundle

The Application Kit defines three categories of NSBundle: one for locating image resources, one for loading
nib files, and one for accessing context help. The methods in these categories become part of the NSBundle
class only for those applications that use the Application Kit. For details, see the NSBundleAdditions
specification in the Application Kit reference documentation.

Viethod Types

Initializing an NSBundle — initwithPath:

Getting an NSBundle + bundleForClass:
+ bundleWithPath:
+ mainBundle
+ allBundles
+ allFrameworks

Getting a bundled class — classNamed:
— principalClass

Classes: NSBundle

Finding a resource + pathForResource:of Type:inDirectory:
— pathForResource:of Type:
— pathForResource:of Type:inDirectory:
— pathsForResourcesOfType:inDirectory:

— resourcePath
Getting the bundle directory — bundlePath
Getting bundle information — infoDictionary
Managing localized resources — localizedStringForKey:value:table:
Loading a bundle’s code —load

Class Methods

\9 allBundles
+ (NSArray *)@allBundles

Returns an array of all the application’s non-framework bundles. This includes the main bundle and all
bundles that have been dynamically created but doesn’t contain any bundles that represent frameworks.

\9 allFrameworks
+ (NSArray *)allFrameworks

Returns an array of all of the application’s bundles that represent frameworks. This includes frameworks
which are linked into an application when the application is built and bundles for frameworks which have
been dynamically created.

bundleForClass:
+ (NSBundle *pundleForClassi(ClassaClass

Returns the NSBundle that dynamically load€dass(a loadable bundle), the NSBundle for the
framework in whichaClassis defined, or the main bundle objeca@lasswas not dynamically loaded or
is not defined in a framework.

See also: + mainBundle, + bundleWithPath:

bundleWithPath:
+ (NSBundle *pundleWithPath: (NSString *)path

Returns an NSBundle that corresponds to the specified dirgetthrgr nil if pathdoes not identify an
accessible bundle directory. This method allocates and initializes the returned object if it doesn’t already
exist.

See also: + mainBundle, + bundleForClass:

mainBundle
+ (NSBundle *mainBundle

Returns an NSBundle that corresponds to the directory where the application executable is Iniated or
this executable is not located in a accessible bundle directory. This method allocates and initializes the
returned NSBundle if it doesn't already exist.

In general, the main bundle corresponds to an application file package or application wrapper: a directory
that bears the name of the application and is marked by a “.app” extension.

See also: + bundleForClass; + bundleWithPath:

pathForResource:of Type:inDirectory:

+ (NSString *pathForResource(NSString *name
of Type:(NSString *extension
inDirectory: (NSString *pundlePath

Returns the full pathname for the resource identifiegdnye having the specified file naragtensionand
residing in the directorpundlePathreturnsnil if no matching resource file exists in the bundle. The
argumenbundlePathmust be a valid bundle directory. The argunexténsiorcan be an empty string or
nil; in either case the pathname returned is the first one encounterednvémegardless of the extension.
If bundlePathis specified, the method searches in this order:

bundlePatiResourceshame.extension
bundlePatiiResourcestlanguage.lprojxiame.extension
bundlePatiiname.extension
bundlePatl<language.lprojsflame.extension

The order of language directories searched corresponds to the user’s preferences.

See also: —localizedStringForKey:value:table:, —pathForResource:ofType;
— pathForResource:of Type:inDirectory:, —pathsForResourcesOfType:inDirectory:

Classes: NSBundle

nstance Methods

bundlePath
— (NSString *pundlePath

Returns the full pathname of the receiver’s bundle directory.

classNamed:
— (ClassglassNamed(NSString *tlassName

Returns the class namelhssNamelf the bundle’s executable code is not yet loaded, this method
dynamically loads it into memory. The method returihsf classNameésn’t one of the classes associated

with the receiver or if there is an error in loading the executable code containing the class implementation.
Classes (and categories) are loaded from just one file within the bundle directory; this code file has the same
name as the directory, but without the extension (“.bundle,” “.app,” “.framework”). As a side-effect of code
loading, the receiver posts NSBundleNotification for each class and category loaded; see “Notifications,”
below for details.

The following example loads a bundle’s executable code containing the class “FaxWatcher.”

- (void)loadBundle:(id)sender
{

Class exampleClass;
id newlnstance;
NSString *str = @"/me/Projects/BundleExample/BundleExample.bundle”;
NSBundle *bundleToLoad = [NSBundle bundleWithPath:str];
if (exampleClass = [bundleToLoad classNamed: @"FaxWatcher”]) {
newlnstance = [[exampleClass alloc] init];
/I [newInstance doSomething];

}
}

See also: — principalClass, —load

\9 infoDictionary
— (NSDictionary *)nfoDictionary

Returns a dictionary that contains information about the receiver. This information is extracted from the
property list (nfo.plist) associated with the bundle. The returned dictionary is emptyliffaglist can

be found. Common keys for accessing the values of the dictionary are NSExecutable, NSExtensions,
NSlcon, NSMainNibFile, and NSPrincipalClass.

See also: —principalClass

initWithPath:
— (id)initWithPath: (NSString *fullPath

Returns an NSBundle corresponding to the diredidhyath This method initializes and returns a new
instance only if there is no existing NSBundle associatedfwlifrath, in which case it deallocatsslfand
returns the existing objedullPath must be a full pathname for a directorys; if it contains any symbolic links,
they must be resolvable. If the directory doesn’t exist or the user doesn’t have access to it, this method
returnsnil.

It's not necessary to allocate and initialize an instance for the main bundle; us@nBendle class
method to get this instance. You can also uséuhneleWithPath: class method to obtain a bundle
identified by its directory path.

See also: + bundleForClass:

\9 load
— (BOOL)oad

Dynamically loads the bundle’s executable code into a running program, if the code has not already been
loaded. A bundle attempts to load its code—if it has any—only once. Returns YES if the method
successfully loaded the bundle’s code or if the code had already been loaded. Returns NO if the method
failed to load the code.

Note: You don’t need to load a bundle’s executable code to search the bundle’s resources.

See also: — classNamed; —principalClass

localizedStringForKey:value:table:

— (NSString *)ocalizedStringForKey:(NSString *key
value:(NSString *Vvalue
table:(NSString *YableName

Returns a localized version of the string designatekklpin tabletableNameThe argumentableName
specifies the receiver’s string table to searctadieNamas nil or is an empty string, the method attempts
to use the table ihocalizable.strings The valueargument specifies the value to returkeifis nil or if a
localized string fokeycan't be found in the table. V&lueis nil or an empty string, and a localized string
is not found in the table, the method retuteg If keyandvalueare botmil, the method returns the empty
string.

Note: Using the user default NSShowNonLocalizedStrings, you can alter the behavior of
localizedStringForKey:value:table: to log a message when the method can't find a localized string.
If you set this default to YES (in the global domain or in the application’s domain), then when the

Classes: NSBundle

method can't find a localized string in the table, it logs a message to the console and cdtalizes
before returning it.

The following example cycles through a static array of keys when a button is clicked, gets the value for each
key from a strings table name@dittons.strings, and sets the button title with the returned value.

- (void)changeTitle:(id)sender
{
static int keylndex = 0;
NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];

NSString *locString = [thisBundle
localizedStringForKey:assortedKeys[keylndex++]
value:@"" table:@"Buttons"];

[sender setTitle:locString];

if (keylndex == MAXSTRINGS) keylndex=0;

}

See also: — pathForResource:ofType; —pathForResource:of Type:inDirectory:,
— pathsForResourcesOfType:inDirectory:, +pathForResource:of Type:inDirectory:

pathForResource:ofType:
— (NSString *pathForResource(NSString *hameofType:(NSString *)extension

Returns the full pathname for the resource identifieddoyeand having the specified fisxtensionlf the
extensiorargument isil or an empty string (@""), the resource sought is identifieddme with no

extension. The method first looks for a hon-localized resource in the immediate bundle directory; if the
resource is not there, it looks for the resource in the language-specific “.Iproj” directory (the local language
is determined by user defaults).

The following code fragment gets the path to a localized sound, creates an Sound instance from it, and plays
the sound.

NSString *soundPath;

Sound *thisSound,;

NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];

if (soundPath = [thisBundle pathForResource:@"Hello" of Type: @"snd"]) {
thisSound = [[[Sound alloc] initFromSoundfile:soundPath] autorelease];
[thisSound play];

}

See also: —localizedStringForKey:value:table:, — pathForResource:of Type:inDirectory:,
— pathsForResourcesOfType:inDirectory; + pathForResource:of Type:inDirectory:

pathForResource:of Type:inDirectory:

— (NSString *pathForResource(NSString *name
of Type:(NSString *extension
inDirectory: (NSString *pbundlePath

Returns the full pathname for the resource identifieinye having the specified file naregtensionand
residing in the directorpundlePathreturnsnil if no matching resource file exists in the bundle. The
argumenbundlePathmust be a valid bundle directorymit. The argumengxtensiorcan be an empty
string ornil; in either case the pathname returned is the first one encounteredmithregardless of the
extension. lbundlePaths specified, the method searches in this order:

<main bundle pathiResourcedbundlePatihameextension

<main bundle pathiResourcedbundlePatllanguage.lprojtnameextension
<main bundle pathbundlePatimameextension

<main bundle pathbundlePati<language.lprojtnameextension

The order of language directories searched corresponds to the user’s preferenodteMathis nil, the
same search order as described above is followed, imimatePath

See also: —localizedStringForKey:value:table:, — pathForResource:ofType;
— pathsForResourcesOfType:inDirectory;, + pathForResource:of Type:inDirectory:

pathsForResourcesOfType:inDirectory:

— (NSArray *pathsForResourcesOfTypelNSString *extension
inDirectory: (NSString *pbundlePath

Returns an array containing pathnames for all bundle resources having the specified Bl¢ersimeand
residing in the directorpundlePathreturns an empty array if no matching resource files are found. This
method provides a means for dynamically discovering bundle resources. The atgumd&Ratmust be

a valid bundle directory aril. Theextensiorargument can be an empty stringir if you specify either

of these forextensionhowever, all bundle resources are returned. Although there is no guaranteed search
order, all of the following directories will be searched:

<main bundle pathiResourcedbundlePatinameextension

<main bundle pathiResourcedbundlePatllanguage.lprojtnameextension
<main bundle pathbundlePatimameextension

<main bundle pathibundlePatl<language.lprojfnameextension

The language directories searched corresponds to the user’s preferdnaadiePathis nil, the same
search order as described above is followed, nbousdlePath

See also: —localizedStringForKey:value:table:, — pathForResource:ofType;
— pathForResource:of Type:inDirectory:, + pathForResource:ofType:inDirectory:

Classes: NSBundle

principalClass
— (ClassprincipalClass

Returns the NSBundle’s principal class after ensuring that the code containing the definition of that class is
dynamically loaded. If the NSBundle encounters errors in loading or if it can’t find the executable code file
in the bundle directory, it returmd . The principal class typically controls all the other classes in the bundle;

it should mediate between those classes and classes external to the bundle. Classes (and categories) are
loaded from just one file within the bundle directory. NSBundle obtains the name of the code file to load
from the dictionary returned fromfoDictionary, using “NSExecutable” as the key. The NSBundle
determines its principal class in one of two ways:

* It first looks in its own information dictionary, which extracts the information encoded in the bundle’s
property list (nfo.plist). NSBundle obtains the principal class from the dictionary using the key
NSPrincipalClass. For non-loadable bundles (applications and framewaorks), if the principal class is not
specified in the property list, the method returihs

* If the principal class is not specified in the information dictionary, NSBundle identifies the first class
loaded as the principal class. When several classes are linked into a dynamically loadable file, the default
principal class is the first one listed on li&eommand line. In the following example, Reporter would
be the principal class:

Id -0 myBundle -r Reporter.o NotePad.o QueryList.o

Note: The order of classes in Project Builder’s project browser is the order in which they will be linked. To
designate the principal class, Control-drag the file containing its implementation to the top of the list.

As a side-effect of code loading, the receiver posts NSBundleDidLoadNotification after each class and
category is loaded; see “Naotifications,” below for details.

The following method obtains a bundle by specifying its patimdleWithPath:), then loads the bundle
with principalClass and uses the returned class object to allocate and initialize an instance of that class.

- (void)loadBundle:(id)sender
{
Class exampleClass;
id newlnstance;
NSString *path = @"/tmp/Projects/BundleExample/BundleExample.bundle”;
NSBundle *bundleToLoad = [NSBundle bundleWithPath:path];
if (exampleClass = [bundleToLoad principalClass]) {
newlnstance = [[exampleClass alloc] init];
[newlInstance doSomething];
}
}

See also: — classNamed; —infoDictionary, —load

11

resourcePath
— (NSString *yesourcePath

Returns the full pathname of the receiving bundle’s subdirectory containing resources.

See also: —bundlePath

\otifi cations
The following notification is declared and posted by NSBundle.

NSBundleDidLoadNotification
Notification Object The NSBundle that dynamically loads classes
userinfo Dictionary

Key Value

NSLoadedClasses An NSArray containing the names (as NSStrings) of each class
that was loaded

NSBundle posts NSBundleDidLoadNotification to notify observers which classes have been dynamically
loaded. When a request is made to an NSBundle for a classNlamed:or principalClass), the bundle
dynamically loads the executable code file that contain the class implementation and all other class
definitions contained in the file. After the module is loaded, the NSBundle posts a notification with a
userinfo dictionary containing all classes that were loaded.

In a typical use of this notification, an object might want to enumeratesétinfo NSArray to check if
each loaded class conformed to a certain protocol (say, a protocol for a plug-and-play tool set); if a class
does conform, the object would create an instance of that class and add the instance to another NSArray.

	NSBundle
	Purpose
	An NSBundle represents a location in the file syst...
	Principal Attribute

	• Directory path
	Creation
	–�initWithPath: (designated initializer)
	+�mainBundle Returns the NSBundle for the applicat...
	+�bundleForClass: Returns the NSBundle in which th...
	+�bundleWithPath: Returns the NSBundle at a locati...
	Commonly Used Methods

	–�localizedStringForKey:value:table: Returns a loc...
	–�pathForResource:ofType: Returns the path for the...
	–�principalClass Returns the principal class, dyna...

	Class Description
	The Main Bundle
	Framework Bundles
	Loadable Bundles and Dynamic Loading
	Localized Resources
	Application Kit Additions to NSBundle

	Method Types
	p allBundles
	+ (NSArray *)allBundles

	p allFrameworks
	+ (NSArray *)allFrameworks

	bundleForClass:
	+�(NSBundle *)bundleForClass:(Class)aClass

	bundleWithPath:
	+�(NSBundle *)bundleWithPath:(NSString *)path

	mainBundle
	+�(NSBundle *)mainBundle

	pathForResource:ofType:inDirectory:
	+�(NSString *)pathForResource:(NSString *)name ofT...

	bundlePath
	– (NSString *)bundlePath

	classNamed:
	– (Class)classNamed:(NSString *)className

	p infoDictionary
	–�(NSDictionary *)infoDictionary

	initWithPath:
	– (id)initWithPath:(NSString *)fullPath

	p load
	– (BOOL)load

	localizedStringForKey:value:table:
	– (NSString *)localizedStringForKey:(NSString *)ke...

	pathForResource:ofType:
	– (NSString *)pathForResource:(NSString *)name ofT...

	pathForResource:ofType:inDirectory:
	–�(NSString *)pathForResource:(NSString *)name ofT...

	pathsForResourcesOfType:inDirectory:
	–�(NSArray *)pathsForResourcesOfType:(NSString *)e...

	principalClass
	– (Class)principalClass

	resourcePath
	–�(NSString *)resourcePath

	NSBundleDidLoadNotification
	Key Value

