Classes: NSNumber

NSNumber

Inherits From: NSValue : NSObject

Conforms To: NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Declared In: Foundation/NSValue.h

Class at a Glance

Purpose
An NSNumber object serves as an object wrapper for C numeric data items, allowing them to be stored in

collections such as NSArray and NSDictionary objects.

Creation

+ numberWitfype Returns an initialized NSNumber of the specified type.
Commonly Used Methods

—typévalue Returns the value of an NSNumber as a specific numeric type.
— compare: Compares two NSNumbers.

_lass Description

NSNumber is a subclass of NSValue that offers a value as any C scalar (numeric) type. It defines a set of
methods specifically for setting and accessing the value as a signed or uokamnskort, int, long int,

long long int, float, ordouble, or as a BOOL. It also defineg@ampare: method to determine the ordering

of two NSNumber objects.

An NSNumber records the numeric type it's created with, and uses the C rules for numeric conversion when
comparing NSNumbers of different numeric types and when returning values as C numeric types. See any
standard C reference for information on type conversion.



Viethod Types

Creating an NSNumber + numberWithBool:
+ numberWithChar:
+ numberWithDouble:
+ numberWithFloat:
+ numberWithint:
+ numberWithLong:
+ numberWithLongLong:
+ numberWithShort:
+ numberWithUnsignedChar:
+ numberWithUnsignedInt:
+ numberWithUnsignedLong:
+ numberWithUnsignedLongLong:
+ numberWithUnsignedShort:
— initWithBool:
— initWithChar:
— initWithDouble:
— initWithFloat:
— initWithint:
— initWithLong:
— initWithLongLong:
— initWithShort:
— initWithUnsignedChar:
— initWithUnsignedint:
— initWithUnsignedLong:
— initWithUnsignedLongLong:
— initWithUnsignedShort:

Accessing humeric values — boolValue
— charValue
— descriptionWithLocale:
— doubleValue
— floatValue
— intValue
— longLongValue
— longValue
— shortValue
— stringValue
— unsignedCharValue
— unsignedintValue
— unsignedLongLongValue
— unsignedLongValue
— unsignedShortValue



Classes: NSNumber

Comparing NSNumbers — compare:

Class Methods

numberWithBool:
+ (NSNumber *humberWithBool: (BOOL)value

Creates and returns an NSNumber contaimaige treating it as a BOOL.

numberWithChar:
+ (NSNumber *humberWithChar: (char)yalue

Creates and returns an NSNumber contaimalge treating it as a signeshar.

numberWithDouble:
+ (NSNumber *humberWithDouble: (doubleyalue

Creates and returns an NSNumber contaimaige treating it as @ouble.

numberWithFloat:
+ (NSNumber *humberWithFloat: (float)value

Creates and returns an NSNumber contaimalge treating it as #8oat.

numberWithint:
+ (NSNumber *humberWithint: (int)value

Creates and returns an NSNumber contaimalge treating it as a signeut.

numberWithLong:
+ (NSNumber *humberWithLong: (long intivalue

Creates and returns an NSNumber contaimaige treating it as a signddng int.



numberWithLongLong:
+ (NSNumber *humberWithLongLong: (long long intyalue

Creates and returns an NSNumber contaimalge treating it as a signddng long int.

numberWithShort:
+ (NSNumber *humberWithShort: (short intyalue

Creates and returns an NSNumber contaimalge treating it as a signeshort int.

numberWithUnsignedChar:
+ (NSNumber *humberWithUnsignedChar: (unsigned chavgalue

Creates and returns an NSNumber contairalge treating it as annsigned char

numberWithUnsignedint:
+ (NSNumber *humberWithUnsignedint: (unsigned inyalue

Creates and returns an NSNumber contaimalge treating it as annsigned int

numberWithUnsignedLong:
+ (NSNumber *humberWithUnsignedLong:(unsigned long intjalue

Creates and returns an NSNumber contaimaige treating it as annsigned long int

numberWithUnsignedLongLong:
+ (NSNumber *humberWithUnsignedLongLong:(unsigned long long intalue

Creates and returns an NSNumber contaimalge treating it as annsigned long long int

numberWithUnsignedShort:
+ (NSNumber *humberWithUnsignedShort:(unsigned short intalue

Creates and returns an NSNumber contaimaige treating it as annsigned short int



Classes: NSNumber

nstance Methods
boolValue
— (BOOL)oolValue
Returns the receiver’s value as a BOOL, converting it as necessary.

Note: The value returned by this method isn’t guaranteed to be one of YES or NO. A zero value always
means NO or false, but any nonzero value should be interpreted as YES or true.

charValue
— (chargharValue

Returns the receiver’'s value as a char, converting it as necessary.

compare:
— (NSComparisonResutdmpare:(NSNumber *aNumber

Returns NSOrderedAscending ifaNumbeis value is greater than the receiver’'s, NSOrderedSame if
they’re equal, and NSOrderedDescendirgNtimbeis value is less than the receiver’s.

compare: follows the standard C rules for type conversion. For example, if you compare an
NSNumber that has an integer value with an NSNumber that has a floating point value, the integer
value is converted to a float for comparison.

descriptionWithLocale:
— (NSString *fescriptionWithLocale: (NSDictionary *aLocale

Returns an NSString that represents the contents of the reakivealespecifies options used for
formatting the description; use if you don’t want the description formatted.

To obtain the string representation, this method invokes NSStiiyf\dthFormat:locale: method,
supplying the format based on the type the NSNumber was created with:



Data Type Format Specification

char %i
double %0.169
float %0.7g
int %i
long %li
long long %li
short %hi
unsigned char %u
unsigned int %u
unsigned long %lu
unsigned long long %lu
unsigned short %hu

See also: —stringValue

doubleValue
— (doubledloubleValue

Returns the receiver’s value as a double, converting it as necessary.

floatValue
— (floatfloatValue

Returns the receiver’s value as a float, converting it as necessary.

initWithBool:
— (id)initWithBool: (BOOL)value

Initializes a newly allocated NSNumber to contea@tue treated as a BOOL.

initWithChar:
— (id)initwithChar: (charyalue

Initializes a newly allocated NSNumber to contediue treated as a signetiar.



Classes: NSNumber

initWithDouble:
— (id)initwithDouble: (doubleyalue

Initializes a newly allocated NSNumber to conteatue treated as double.

initWithFloat:
— (id)initwithFloat: (floatvalue

Initializes a newly allocated NSNumber to conteétue treated as Hoat.

initWithInt:
— (id)initWithint: (int)value

Initializes a newly allocated NSNumber to contaditug treated as a signénat.

initWithLong:
— (id)initwithLong: (long intivalue

Initializes a newly allocated NSNumber to conte@tue treated as a signdahg int.

initWithLongLong:
— (id)initWwithLongLong: (long long intyalue

Initializes a newly allocated NSNumber to contadtug treated as a signéahg long int.

initWithShort:
— (id)initwithShort: (short intyalue

Initializes a newly allocated NSNumber to conteatue treated as a signatiort int.

initWithUnsignedChar:
— (id)initWithUnsignedChar: (unsigned chavglue

Initializes a newly allocated NSNumber to conte@tue treated as annsigned char



initWithUnsignedint:
— (id)initWithUnsignedint: (unsigned intyalue

Initializes a newly allocated NSNumber to contaatue treated as annsigned int

initWithUnsignedLong:
— (id)initwithUnsignedLong: (unsigned long intjalue

Initializes a newly allocated NSNumber to contediue treated as amnsigned long int

initWithUnsignedLongLong:
— (id)initWwithUnsignedLongLong: (unsigned long long ingplue

Initializes a newly allocated NSNumber to conte@tue treated as annsigned long long int

initWithUnsignedShort:
— (id)initwithUnsignedShort: (unsigned short intalue

Initializes a newly allocated NSNumber to conteétue treated as annsigned short int

intValue
— (int)intValue

Returns the receiver’s value as an int, converting it as necessary.

isEqual:

@protocol NSObiject
— (BOOL)isequal:(id)anObject

Returns YES if the receiver aatObjectare equal, otherwise returns NO. An NSNumber is equal to
anObijectif they have the samids or if they're both NSNumbers with equivalent values (as determined
using thecompare: method).



Classes: NSNumber

longLongValue
— (long long intlongLongValue

Returns the receiver’s value as a long long int, converting it as necessary.

longValue
— (long intJongValue

Returns the receiver’s value as a long int, converting it as necessary.

shortValue
— (short intshortValue

Returns the receiver’s value as a short int, converting it as necessary.

stringValue
— (NSString *¥»tringValue

Returns the receiver’s value as a human-readable NSString, by indalsagptionWithLocale: where
locale isnil.

unsignedCharValue
— (unsigned chaunsignedCharValue

Returns the receiver’s value as an unsigned char, converting it as necessary.

unsignedintValue
— (unsigned ingnsignedintValue

Returns the receiver’s value as an unsigned int, converting it as necessary.

unsignedLongLongValue
— (unsigned long long inipsignedLongLongValue

Returns the receiver’s value as an unsigned long long int, converting it as necessary.



unsignedLongValue
— (unsigned long intihsignedLongValue

Returns the receiver’s value as an unsigned long int, converting it as necessary.

unsignedShortValue
— (unsigned short inthsignedShortValue

Returns the receiver’s value as an unsigned short int, converting it as necessary.



	NSNumber
	Purpose
	An NSNumber object serves as an object wrapper for...
	Creation
	+�numberWithType: Returns an initialized NSNumber ...
	Commonly Used Methods

	–�typeValue Returns the value of an NSNumber as a ...
	–�compare: Compares two NSNumbers.

	numberWithBool:
	+�(NSNumber�*)numberWithBool:(BOOL)value

	numberWithChar:
	+�(NSNumber�*)numberWithChar:(char)value

	numberWithDouble:
	+�(NSNumber�*)numberWithDouble:(double)value

	numberWithFloat:
	+�(NSNumber�*)numberWithFloat:(float)value

	numberWithInt:
	+�(NSNumber�*)numberWithInt:(int)value

	numberWithLong:
	+�(NSNumber�*)numberWithLong:(long�int)value

	numberWithLongLong:
	+�(NSNumber�*)numberWithLongLong:(long�long�int)va...

	numberWithShort:
	+�(NSNumber�*)numberWithShort:(short�int)value

	numberWithUnsignedChar:
	+�(NSNumber�*)numberWithUnsignedChar:(unsigned�cha...

	numberWithUnsignedInt:
	+�(NSNumber�*)numberWithUnsignedInt:(unsigned�int)...

	numberWithUnsignedLong:
	+�(NSNumber�*)numberWithUnsignedLong:(unsigned�lon...

	numberWithUnsignedLongLong:
	+�(NSNumber�*)numberWithUnsignedLongLong:(unsigned...

	numberWithUnsignedShort:
	+�(NSNumber�*)numberWithUnsignedShort:(unsigned�sh...

	boolValue
	–�(BOOL)boolValue

	charValue
	–�(char)charValue

	compare:
	–�(NSComparisonResult)compare:(NSNumber�*)aNumber

	descriptionWithLocale:
	–�(NSString *)descriptionWithLocale:(NSDictionary�...
	Data Type Format Specification


	doubleValue
	–�(double)doubleValue

	floatValue
	–�(float)floatValue

	initWithBool:
	–�(id)initWithBool:(BOOL)value

	initWithChar:
	–�(id)initWithChar:(char)value

	initWithDouble:
	–�(id)initWithDouble:(double)value

	initWithFloat:
	–�(id)initWithFloat:(float)value

	initWithInt:
	–�(id)initWithInt:(int)value

	initWithLong:
	–�(id)initWithLong:(long�int)value

	initWithLongLong:
	–�(id)initWithLongLong:(long�long�int)value

	initWithShort:
	–�(id)initWithShort:(short�int)value

	initWithUnsignedChar:
	–�(id)initWithUnsignedChar:(unsigned�char)value

	initWithUnsignedInt:
	–�(id)initWithUnsignedInt:(unsigned�int)value

	initWithUnsignedLong:
	–�(id)initWithUnsignedLong:(unsigned�long�int)valu...

	initWithUnsignedLongLong:
	–�(id)initWithUnsignedLongLong:(unsigned�long�long...

	initWithUnsignedShort:
	–�(id)initWithUnsignedShort:(unsigned�short�int)va...

	intValue
	–�(int)intValue

	isEqual:
	@protocol NSObject
	–�(BOOL)isEqual:(id)anObject

	longLongValue
	–�(long�long�int)longLongValue

	longValue
	–�(long�int)longValue

	shortValue
	–�(short�int)shortValue

	stringValue
	–�(NSString�*)stringValue

	unsignedCharValue
	–�(unsigned�char)unsignedCharValue

	unsignedIntValue
	–�(unsigned�int)unsignedIntValue

	unsignedLongLongValue
	–�(unsigned�long�long�int)unsignedLongLongValue

	unsignedLongValue
	–�(unsigned�long�int)unsignedLongValue

	unsignedShortValue
	–�(unsigned�short�int)unsignedShortValue



