
1

NSCell

Inherits From: NSObject

Conforms To: NSCoding (NSObject),
NSCopying (NSObject),
NSObject (NSObject)

Declared In: AppKit/NSCell.h

Class Description

The NSCell class provides a mechanism for displaying text or images in an NSView without the overhead
of a full NSView subclass. In particular, it provides much of the functionality of the NSText class by
providing access to a shared NSText object used by all instances of NSCell in an application. NSCells are
also extremely useful for placing text or images at various locations in a custom subclass of NSView.

NSCell is used heavily by most of the NSControl classes to implement their internal workings. For
example, NSSlider uses an NSSliderCell, NSTextField uses an NSTextFieldCell, and NSBrowser uses an
NSBrowserCell. Sending a message to the NSControl is often simpler than dealing directly with the
corresponding NSCell. For instance, NSControls typically invoke updateCell: (causing the cell to be
displayed) after changing a cell attribute; whereas if you directly call the corresponding method of the
NSCell, the NSCell might not automatically display itself again.

Some subclasses of NSControl (notably NSMatrix) group NSCells in an arrangement where they act
together in some cooperative manner. Thus, with an NSMatrix, you can implement a uniformly sized group
of radio buttons without needing an NSView for each button (and without needing an NSText object as the
field editor for the text on each button).

The NSCell class provides primitives for displaying text or an image, editing text, setting and getting object
values, maintaining state, highlighting, and tracking the mouse. NSCell’s method
trackMouse:inRect:ofView:untilMouseUp: implements the mechanism that sends action messages to
target objects. However, NSCell implements target/action features abstractly, deferring the details of
implementation to NSActionCell and its subclasses.

Object Values and Formatters

Every NSCell that displays text has a value associated with it. The NSCell stores that value as an object of
potentially any type, displays it as an NSString, and returns it as a primary value or string object, according
to what’s requested (intValue, floatValue, stringValue, and so on). Formatters are objects associated with
NSCells (through setFormatter:) that translate a cell’s object value to its it textual representation and that
convert what users type into the underlying object. NSCells have built-in formatters to handle common

2

Classes: NSCell

string and numeric (int, float, double) translations. In addition, you can specify date and numeric types
more precisely with setEntryType: and specify floating-point format characteristics with
setFloatingPointFormat:left:right:. You can also implement your own formatters to provide specialized
object translation; see the NSFormatter specification for more information.

The text that an NSCell displays and stores can be an attributed string. Several methods help to set and get
attributed-string values, including setAttributedStringValue: and setImportsGraphics:.

Represented Objects

Represented objects are objects that an NSCell "stands for." (They’re not to be confused with an NSCell’s
object value, which is the value of the cell.) By setting a represented object for an NSCell (using
setRepresentedObject:) you make an association between the NSCell and that object. For instance, you
could have a pop-up list, each cell of which lists a color as its title; when the user selects a cell, the
represented NSColor object is displayed in a color well.

Subclassing NSCell

The initImageCell: method is the designated initializer for NSCells that display images. The initTextCell:
method is the designated initializer for NSCells that display text. Override one or both of these methods if
you implement a subclass of NSCell that performs its own initialization. If you need to use target and action
behavior, you may prefer to subclass NSActionCell or one of its subclasses, which provide the default
implementation of this behavior.

If you want to implement your own mouse-tracking or mouse-up behavior, consider overriding
startTrackingAt:inView:, continueTracking:at:inView:, and stopTracking:at:inView:mouseIsUp:. If
you want to implement your own drawing, override drawWithFrame:inView: or
drawInteriorWithFrame:inView:.

For more information on how NSCell is used, see the NSControl class specification.

Method Types

Initializing an NSCell – initImageCell:
– initTextCell:

3

Setting and getting cell values – setObjectValue:
– objectValue
– hasValidObjectValue
– setIntValue:
– intValue
– setStringValue:
– stringValue
– setDoubleValue:
– doubleValue
– setFloatValue:
– floatValue

Setting and getting cell attributes – setCellAttribute:to:
– cellAttribute:
– setType:
– type
– setState:
– state
– setEnabled:
– isEnabled
– setBezeled:
– isBezeled
– setBordered:
– isBordered
– isOpaque

Modifying textual attributes of cells – setEditable:
– isEditable
– setSelectable:
– isSelectable
– setScrollable:
– isScrollable
– setAlignment:
– alignment
– setFont:
– font
– setWraps:
– wraps
– setAttributedStringValue:
– attributedStringValue
– setAllowsEditingTextAttributes:
– allowsEditingTextAttributes
– setImportsGraphics:
– importsGraphics
– setUpFieldEditorAttributes:

4

Classes: NSCell

Setting the target and action – setAction:
– action
– setTarget:
– target
– setContinuous:
– isContinuous
– sendActionOn:

Setting and getting an image – setImage:
– image

Assigning a tag – setTag:
– tag

Formatting and validating data – setFormatter:
– formatter
– setEntryType:
– entryType
– isEntryAcceptable:
– setFloatingPointFormat:left:right:

Managing menus for cells + defaultMenu
– setMenu:
– menu
– menuForEvent:inRect:ofView:

Comparing cells – compare:

Making cells respond to keyboard events
– acceptsFirstResponder
– setShowsFirstResponder:
– showsFirstResponder
– setTitleWithMnemonic:
– mnemonic
– setMnemonicLocation:
– mnemonicLocation
– performClick:

Deriving values from other cells – takeObjectValueFrom:
– takeIntValueFrom:
– takeStringValueFrom:
– takeDoubleValueFrom:
– takeFloatValueFrom:

Representing an object with a cell – setRepresentedObject:
– representedObject

5

Tracking the mouse – trackMouse:inRect:ofView:untilMouseUp:
– startTrackingAt:inView:
– continueTracking:at:inView:
– stopTracking:at:inView:mouseIsUp:
– mouseDownFlags
+ perfersTrackingUntilMouseUp
– getPeriodicDelay:interval:

Managing the cursor – resetCursorRect:inView:

Handling keyboard alternatives – keyEquivalent

Determining cell sizes – calcDrawInfo:
– cellSize
– cellSizeForBounds:
– drawingRectForBounds:
– imageRectForBounds:
– titleRectForBounds:

Drawing and highlighting cells – drawWithFrame:inView:
– drawInteriorWithFrame:inView:
– controlView
– highlight:withFrame:inView:
– isHighlighted

Editing and selecting cell text – editWithFrame:inView:editor:delegate:event:
– selectWithFrame:inView:editor:delegate:start:length:
– endEditing:

Class Methods

� defaultMenu
+ (NSMenu *)defaultMenu

Returns the default menu for instances of the receiver. The default implementation returns nil.

See also: – menu, – setMenu:

prefersTrackingUntilMouseUp
+ (BOOL)prefersTrackingUntilMouseUp

The default implementation returns NO, so tracking stops when the mouse leaves the NSCell; subclasses
may override.

See also: – trackMouse:inRect:ofView:untilMouseUp:

6

Classes: NSCell

Instance Methods

� acceptsFirstResponder
– (BOOL)acceptsFirstResponder

The default implementation returns YES if the cell is enabled; subclasses can override.

See also: – performClick:, – setShowsFirstResponder:, –setTitleWithMnemonic:

action
– (SEL)action

Implemented by NSActionCell and its subclasses to return the selector of the cell’s action method. The
default implementation returns a null selector.

See also: – setAction:, – setTarget:, – target

alignment
– (NSTextAlignment)alignment

Returns the alignment of text in the cell: NSLeftTextAlignment, NSRightTextAlignment,
NSCenterTextAlignment, NSJustifiedTextAlignment, or NSNaturalTextAlignment.

See also: – setAlignment:

� allowsEditingTextAttributes
– (BOOL)allowsEditingTextAttributes

Returns whether the receiver allows the editing of textual attributes.

See also: – setAllowsEditingTextAttributes:

� attributedStringValue
– (NSAttributedString *)attributedStringValue

Returns the value of the receiver as an attributed string, using the cell’s formatter object (if one exists) to
create the attributed string. The textual attributes are determined by the default paragraph style, the
receiver’s font and alignment, and whether the receiver is enabled and scrollable.

See also: – setAttributedStringValue:

7

calcDrawInfo:
– (void)calcDrawInfo:(NSRect)aRect

Implemented by subclasses to recalculate drawing sizes with reference to aRect. Objects (such as
NSConrols) that manage NSCells generally maintain a flag that informs them if any of their cells has been
modified in such a way that the location or size of the cell should be recomputed. If so, NSControl’s
calcSize method is automatically invoked prior to the display of the NSCell, and that method invokes the
NSCell’s calcDrawInfo: method. The default implementation does nothing.

See also: – cellSize, –drawingRectForBounds:

cellAttribute:
– (int)cellAttribute:(NSCellAttribute)aParameter

Depending on aParameter, returns a setting for a cell attribute, such as the receiver’s state, and whether it’s
disabled, editable, or highlighted.

See also: – setCellAttribute:

cellSize
– (NSSize)cellSize

Returns the minimum size needed to display the NSCell, taking account of the size of the image or text
within a certain offset determined by border type. If the receiving cell is neither of image or text type, an
extremely large size is returned; if the receiving cell is of image type, and no image has been set, an
extremely small size is returned.

See also: – drawingRectForBounds:

cellSizeForBounds:
– (NSSize)cellSizeForBounds:(NSRect)aRect

Returns the minimum size needed to display the NSCell, taking account of the size of the image or text
within an offset determined by border type. If the receiving cell is of text type, the text is resized to fit within
aRect (as much as aRect is within the bounds of the cell). If the receiving cell is neither of image or text
type, an extremely large size is returned; if the receiving cell is of image type, and no image has been set,
an extremely small size is returned.

See also: – drawingRectForBounds:

8

Classes: NSCell

compare:
– (NSComparisonResult)compare:(id)otherCell

Compares the string values of this cell and otherCell (which must be a kind of NSCell), disregarding case.
Raises NSBadComparisonException if otherCell is not of the NSCell class or if one of the cells being
compared is not a text-type cell.

continueTracking:at:inView:
– (BOOL)continueTracking:(NSPoint)lastPoint

at:(NSPoint)currentPoint
inView:(NSView *)controlView

Returns whether mouse-tracking should continue in the receiving cell based on lastPoint and currentPoint
within controlView (currentPoint is the current location of the mouse while lastPoint is either the initial
location of the mouse or the previous currentPoint). This method is invoked in
trackMouse:inRect:ofView:untilMouseIsUp:. The default implementation returns YES if the cell is set
to continuously send action messages to its target when the mouse is down or is being dragged. Subclasses
can override this method to provide more sophisticated tracking behavior.

See also: – startTrackingAt:inView:, – stopTracking:at:inView:mouseIsUp:

controlView
– (NSView *)controlView

Implemented by subclasses to return the NSView last drawn in (normally an NSControl). The default
implementation returns nil.

See also: – drawWithFrame:inView:

doubleValue
– (double)doubleValue

Returns the NSCell’s value as a double. If the receiver is not a text-type cell or the cell value is not
scannable, the method returns zero.

drawInteriorWithFrame:inView:
– (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Draws the "inside" of the receiving cell; this includes the image or text within the NSCell’s frame in
controlView (usually the cell’s NSControl) but excludes the border. cellFrame is the frame of the NSCell

9

or (in some cases) a portion of it. Text-type NSCells display their contents in a rectangle slightly inset from
cellFrame using a global NSText object; image-type NSCells display their contents centered within
cellFrame. If the proper attributes are set, it also displays the dotted-line rectangle to indicate first responder
and highlights the cell. This method is invoked from NSControl’s drawCellInside: to visually update the
what the NSCell displays when its contents change. This drawing is minimal, and becomes more complex
in objects such as NSButtonCell and NSSliderCell.

Subclasses often override this method to provide more sophisticated drawing of cell contents. Because
drawWithFrame:inView: invokes drawInteriorWithFrame:inView: after it draws the NSCell’s border,
don’t invoke drawWithFrame:inView: in your override implementation.

See also: – isHighlighted, – setShowsFirstResponder:

drawWithFrame:inView:
– (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Draws the receiver’s regular or bezeled border (if those attributes are set) and then draws the interior of the
cell by invoking drawInteriorWithFrame:inView:.

drawingRectForBounds:
– (NSRect)drawingRectForBounds:(NSRect)theRect

Returns the rectangle within which the cell draws itself; this rectangle is slightly inset from aRect on all
sides to take the border into account.

See also: – calcSize

editWithFrame:inView:editor:delegate:event:
– (void)editWithFrame:(NSRect)aRect

inView:(NSView *)controlView
editor:(NSText *)textObj
delegate:(id)anObject
event:(NSEvent *)theEvent

Begins editing of the receiver’s text by using the field editor textObj; usually invoked in response to a
mouse-down event. aRect must be the rectangle used for displaying the NSCell. theEvent is the
NSMouseDown event. anObject is made the delegate of textObj, and so will receive various NSText
delegation and notification messages.

If the receiver isn’t a text-type NSCell, no editing is performed. Otherwise, textObj is sized to aRect and its
superview is set to aView, so that it exactly covers the NSCell. Then it’s activated and editing begins. It’s

10

Classes: NSCell

the responsibility of the delegate to end the editing when responding to textShouldEndEditing:; in doing
this, it should remove any data from textObj and invoke endEditing:.

See also: – endEditing:, –selectWithFrame:inView:editor:delegate:start:length:

endEditing:
– (void)endEditing:(NSText *)textObj

Ends any editing of text occurring in the receiver begun with
editWithFrame:inView:editor:delegate:event: and
selectWithFrame:inView:editor:delegate:start:length:. Usually this method is invoked by the delegate
of the field editor specified in one of these methods when that delegate’s textShouldEndEditing: method
is invoked.

entryType
– (int)entryType

Returns the type of data the user can type into the receiver. If the receiver is not a text-type cell, or if no
type has been set, NSAnyType is returned. See setEntryType: for a list of type constants.

See also: – isEntryAcceptable:

floatValue
– (float)floatValue

Returns the NSCell’s value as a double. If the receiver is not a text-type cell or the cell value is not
scannable, the method returns zero.

font
– (NSFont *)font

Returns the font used to display text in the receiving cell or nil if the receiver is not a text-type cell.

See also: – setFont:

11

� formatter
– (id)formatter

Returns the formatter object (a kind of NSFormatter) associated with the cell. This object handles
translation of the cell’s contents between it’s on-screen representation and its object value.

See also: – setFormatter:

getPeriodicDelay:interval:
– (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Returns initial delay and repeat values for continuous sending of action messages to target objects.
Subclasses can override to supply their own delay and interval values.

See also: – isContinuous, – setContinuous:

� hasValidObjectValue
– (BOOL)hasValidObjectValue

Returns whether the object associated with the receiver has a valid object value. A valid object value is one
that the receiver’s formatter can "understand." Objects that are "invalid" have been rejected by the
formatter, but accepted by the delegate of the receiver’s NSControl (in
control:didFailToFormatString:errorDescription:).

See also: – objectValue, – setObjectValue:

highlight:withFrame:inView:
– (void)highlight:(BOOL)flag

withFrame:(NSRect)cellFrame
inView:(NSView *)controlView

If the receiver’s highlight status is different from flag, sets that status to flag and, if flag is YES, highlights
the rectangle cellFrame in the NSControl (controlView).

Note that NSCell’s highlighting does not appear when highlighted cells are printed (although instances of
NSTextFieldCell, NSButtonCell, and others can print themselves highlighted). Generally, you cannot
depend on highlighting being printed because implementations of this method may choose (or not choose)
to use transparency.

See also: – drawWithFrame:inView:, – isHighlighted

12

Classes: NSCell

image
– (NSImage *)image

Returns the image displayed by the receiver or nil if the receiver is not an image-type cell.

See also: – setImage:

imageRectForBounds:
– (NSRect)imageRectForBounds:(NSRect)theRect

Returns the rectangle that the cell’s image is drawn in, which is slightly offset from theRect.

See also: – cellSizeForBounds:, –drawingRectForBounds:

� importsGraphics
– (BOOL)importsGraphics

Sets whether the text of the receiver (if a text-type cell) is of Rich Text Format (RTF) and thus can import
graphics.

See also: – setImportsGraphics:

initImageCell:
– (id)initImageCell:(NSImage *)anImage

Returns an NSCell object initialized with anImage and set to have the cell’s default menu. If anImage is
nil, no image is set.

initTextCell:
– (id)initTextCell:(NSString *)aString

Returns an NSCell object initialized with aString and set to have the cell’s default menu. If no field editor
(a shared NSText object) has been created for all NSCells, one is created.

intValue
– (int)intValue

Returns the receiver’s value as an int. If the receiver is not a text-type cell or the cell value is not scannable,
the method returns zero.

13

isBezeled
– (BOOL)isBezeled

Returns whether the receiving cell has a bezeled border.

See also: – setBezeled:

isBordered
– (BOOL)isBordered

Returns whether the receiving cell has a plain border.

See also: – setBordered:

isContinuous
– (BOOL)isContinuous

Returns whether the receiving cell sends its action message continuously on mouse down.

See also: – setContinuous:

isEditable
– (BOOL)isEditable

Returns whether the receiving cell is editable.

See also: – setEditable:

isEnabled
– (BOOL)isEnabled

Returns whether the receiving cell responds to mouse events.

See also: – setEnabled:

14

Classes: NSCell

isEntryAcceptable:
– (BOOL)isEntryAcceptable:(NSString *)aString

Returns whether a string representing a numeric or date value (aString) is formatted in a way suitable to
the entry type.

See also: – entryType, –setEntryType:

isHighlighted
– (BOOL)isHighlighted

Returns whether the receiving cell is highlighted.

See also: – setHighlighted:

isOpaque
– (BOOL)isOpaque

Returns whether the receiving cell is opaque (non-transparent).

isScrollable
– (BOOL)isScrollable

Returns whether the receiving cell scrolls typed text that exceeds the cell’s bounds.

See also: – setScrollable:

isSelectable
– (BOOL)isSelectable

Returns whether the text of the receiving cell can be selected.

See also: – setSelectable:

keyEquivalent
– (NSString *)keyEquivalent

Implemented by subclasses to return a key equivalent to clicking the cell. The default implementation
returns an empty string object.

15

� menu
– (NSMenu *)menu

Returns the menu with commands contextually related to the cell or nil if no menu is associated.

See also: – setMenu:

� menuForEvent:inRect:ofView:
– (NSMenu *)menuForEvent:(NSEvent *)anEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)aView

Returns the NSMenu associated with the receiver through the setMenu: method and related to anEvent
when the mouse is detected within cellFrame. It is usually invoked by the NSControl (aView) managing
the receiver. The default implementation simply invokes NSCell’s menu method and will return nil if no
menu has been set. Subclasses can override to customize the returned menu according to the event received
and the area in which the mouse event occurs.

� mnemonic
– (NSString *)mnemonic

Returns the character in the cell title that appears underlined for use as a mnemonic. If there is no mnemonic
character, returns an empty string.

See also: – setTitleWithMnemonic:

� mnemonicLocation
– (unsigned int)mnemonicLocation

Returns the position of the underlined character in the cell title used as a mnemonic. If there is no mnemonic
character, returns NSNotFound.

See also: – setMnemonicLocation:

16

Classes: NSCell

mouseDownFlags
– (int)mouseDownFlags

Returns the modifier flags for the last (left) mouse-down event or zero if tracking hasn’t occured yet for the
cell or if no modifier keys accompanied the mouse-down event.

See also: – modifierFlags (NSEvent)

� objectValue
– (id)objectValue

Returns the NSCell’s value as an Objective-C object if a valid object has been associated with the receiver;
otherwise, returns nil. To be valid, the cell must have a formatter capable of converting the object to and
from its textual representation.

� performClick:
– (void)performClick:(id)sender

Programmatically simulates a mouse click on the receiver, including the invocation of the action method in
the target object. Raises an exception if the action message cannot be successfully sent.

representedObject
– (id)representedObject

Returns the object the receiving cell represents. For example, you could have a pop-up list of color names,
and the represented objects could be the appropriate NSColor objects.

See also: – setRepresentedObject:

resetCursorRect:inView:
– (void)resetCursorRect:(NSRect)cellFrame inView:(NSView *)controlView

Sets the receiver to show the I-beam cursor within cellFrame while it tracks the mouse . The receiver must
be an enabled and selectable (or editable) text-type cell. controlView is the NSControl that manages the cell.

17

selectWithFrame:inView:editor:delegate:start:length:
– (void)selectWithFrame:(NSRect)aRect

inView:(NSView *)controlView
editor:(NSText *)textObj
delegate:(id)anObject
start:(int)selStart
length:(int)selLength

Uses the field editor textObj to select text in a range marked by selStart and selLength, which will be
highlighted and selected as though the user had dragged the cursor over it. This method is similar to
editWithFrame:inView:editor:delegate:event:, except that it can be invoked in any situation, not only on
a mouse-down event. aRect is the rectangle in which the selection should occur, controlView is the
NSControl managing the receiver, and anObject is the delegate of the field editor. Returns without doing
anything if controlView, textObj, or the receiver are nil, or if the receiver as no font set for it.

sendActionOn:
– (int)sendActionOn:(int)mask

Sets the conditions on which the receiver sends action messages to its target and returns a bit mask with
which to detect the previous settings. mask is set with one or more of these bit masks:

NSLeftMouseUpMask Don’t send action message on (left) mouse up.
NSLeftMouseDownMaskSend action message on (left) mouse
down.
NSLeftMouseDraggedMaskSend action message when (left)
mouse is dragged.
NSPeriodicMaskSend action message continuously.

You can send setContinuous: method to turn on the flag corresponding to NSPeriodicMask or
NSLeftMouseDraggedMask, whichever is appropriate to the given subclass of NSCell.

See also: – action

setAction:
– (void)setAction:(SEL)aSelector

In NSCell, raises NSInternalInconsistencyException. However, NSActionCell overrides this method to set
the action method as part of the implementation of the target/action mechanism.

See also: – action, –setTarget:, – target

18

Classes: NSCell

setAlignment:
– (void)setAlignment:(NSTextAlignment)mode

Sets the alignment of text in the receiver. mode is one of five constants: NSLeftTextAlignment,
NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, NSNaturalTextAlignment
(the default alignment for the text).

See also: – alignment, –setWrap:

� setAllowsEditingTextAttributes:
– (void)setAllowsEditingTextAttributes:(BOOL)flag

Sets whether the textual attributes of the receiver can be modified. If flag is NO, the receiver cannot import
graphics (that is, it does not support RTFD text).

See also: – allowsEditingTextAttributes, – setImportsGraphics:

� setAttributedStringValue:
– (void)setAttributedStringValue:(NSAttributedString *)attribStr

Sets the value of the receiver to the attributed string attribStr. If a formatter is set for the receiver, but the
formatter does not understand the attributed string, it marks attribStr as an invalid object. If the receiver is
not a text-type cell, it’s converted to one. The following example sets the text in a cell to 14 points, red, in
the system font.

 NSColor *txtColor = [NSColor redColor];

 NSFont *txtFont = [NSFont boldSystemFontOfSize:14];

 NSDictionary *txtDict = [NSDictionary dictionaryWithObjectsAndKeys:txtFont,

 NSFontAttributeName, txtColor, NSForegroundColorAttributeName, nil];

 NSAttributedString *attrStr = [[[NSAttributedString alloc]

 initWithString:@"Hello!" attributes:txtDict] autorelease];

 [[attrStrTextField cell] setAttributedStringValue:attrStr];

 [attrStrTextField updateCell:[attrStrTextField cell]];

See also: – attributedStingValue, –hasInvalidObject

setBezeled:
– (void)setBezeled:(BOOL)flag

Sets whether the receiver draws itself with a bezeled border. The setBezeled: and setBordered: methods
are mutually exclusive (that is, a border can be only plain or bezeled).

See also: – isBezeled

19

setBordered:
– (void)setBordered:(BOOL)flag

Sets whether the receiver draws itself outlined with a plain border. The setBezeled: and setBordered:
methods are mutually exclusive (that is, a border can be only plain or bezeled).

See also: – isBordered

setCellAttribute:to:
– (void)setCellAttribute:(NSCellAttribute)aParameter to:(int)value

Sets a cell attribute identified by aParameter—such as the receiver’s state, and whether it’s disabled,
editable, or highlighted—to value.

See also: – cellAttribute

setContinuous:
– (void)setContinuous:(BOOL)flag

Sets whether the receiver continuously sends its action message to its target while it tracks the mouse. In
practice, the continuous setting has meaning only for instances of NSActionCell and its subclasses, which
implement the target/action mechanism. Some NSControl subclasses, notably NSMatrix, send a default
action to a default target when a cell doesn’t provide a target or action.

See also: – isContinuous; – sendActionOn:

setDoubleValue:
– (void)setDoubleValue:(double)aDouble

Sets the value of the receiving cell to an object representing a double. Does nothing if the receiver is not a
text-type cell.

See also: – doubleValue

20

Classes: NSCell

setEditable:
– (void)setEditable:(BOOL)flag

Sets whether the receiver’s text is both editable and selectable. If flag is NO, and the cell’s text was not
selectable before editing was last enabled (that is, before this message was last sent with an argument of
YES), then the receiver’s text is set to be unselectable.

See also: – isEditable, – setSelectable:

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled or disabled. The text of disabled cells is changed to gray. If a cell is
disabled, it cannot be highlighted, does not support mouse tracking (and thus cannot participate in
target/action functionality), and cannot be edited. However, you can still alter many attributes of a disabled
cell programmatically (setState:, for instance, will still work).

See also: – isEnabled

setEntryType:
– (void)setEntryType:(int)aType

Sets how numeric data are formatted in the receiver and places restrictions on acceptable input. aType can
be one of the following constants:

Constant Restrictions and Other Information

NSIntType Must be between INT_MIN and INT_MAX
NSPositiveIntType Must be between 1 and INT_MAX
NSFloatType Must be between -FLT_MAX and FLT_MAX
NSPositiveFloatType Must be between FLT_MIN and FLT_MAX
NSDoubleType Must be between -DBL_MAX and DBL_MAX
NSPositiveDoubleType Must be between DBL_MAX and DBL_MAX
NSAnyType Any value is allowed.

If the receiver isn’t a text-type cell, this method converts it to one; in the process, it makes its title "Cell"
and sets its font to the user’s system font at 12 points.

You can check whether formatted strings conform to the entry types of cells with the isEntryAcceptable:
method. NSControl subclasses also use isEntryAcceptable: to validate what users have typed in editable
cells. You can control the format of values accepted and displayed in cells by creating a custom subclass of
NSFormatter and associating an instance of that class with cells (through setFormatter:). In custom

21

NSCell subclasses, you can also override isEntryAcceptable: to check for the validity of data entered into
cells.

See also: – entryType

setFloatingPointFormat:left:right:
– (void)setFloatingPointFormat:(BOOL)autoRange

left:(unsigned)leftDigits
right:(unsigned)rightDigits

Sets whether floating-point numbers are autoranged in the receiver, and sets the sizes of the fields to the left
and right of the decimal point. If autoRange is NO, leftDigits specifies the maximum number of digits to
the left of the decimal point, and rightDigits specifies the number of digits to the right (the fractional digit
places will be padded with zeros to fill this width). However, if a number is too large to fit its integer part
in leftDigits digits, as many places as are needed on the left are effectively removed from rightDigits when
the number is displayed.

If autoRange is YES, leftDigits and rightDigits are simply added to form a maximum total field width for
the receiver (plus 1 for the decimal point). The fractional part will be padded with zeros on the right to fill
this width, or truncated as much as possible (up to removing the decimal point and displaying the number
as an integer). The integer portion of a number is never truncated—that is, it is displayed in full no matter
what the field width limit is.

The following example sets a cell used to display dollar amounts up to 99,999.99:

 [[currencyDollarsField cell] setEntryType:NSFloatType];

 [[currencyDollarsField cell] setFloatingPointFormat:NO left:5 right:2];

See also: – setEntryType:

setFloatValue:
– (void)setFloatValue:(float)aFloat

Sets the value of the receiving cell to an object representing a float. Does nothing if the receiver is not a
text-type cell.

See also: – floatValue

22

Classes: NSCell

setFont:
– (void)setFont:(NSFont *)fontObj

Sets the font to be used when the receiver displays text. If the receiver is not a text-type cell, the method
converts it to that type. If fontObj is nil and the receiver is a text-type cell, the font currently held by the
receiver is autoreleased.

See also: – font

� setFormatter:
– (void)setFormatter:(NSFormatter *)newFormatter

Sets the formatter object used to format the textual representation of the receiver’s object value and to
validate cell input and convert it to that object value. If the new formatter cannot interpret the receiver’s
current object value, that value is converted to a string object. This method retains new formatters and
releases replaced ones. If newFormatter is nil, the receiver is disassociated from the current formatter.

See also: – formatter

setImage:
– (void)setImage:(NSImage *)image

Sets the image to be displayed by the receiver. If the receiver is not an image-type cell, the method converts
it to that type. If image is nil and the receiver is an image-type cell, the image currently held by the receiver
is autoreleased.

See also: – image

� setImportsGraphics:
– (void)setImportsGraphics:(BOOL)flag

Sets whether the receiver can import images into its text (that is, whether it supports RTFD text). If flag is
YES, the receiver is also set to allow editing of text attributes (setAllowsEditingTextAttributes:).

See also: – importsGraphics

23

setIntValue:
– (void)setIntValue:(int)anInt

Sets the value of the receiving cell to an object representing an int. Does nothing if the receiver is not a
text-type cell.

See also: – intValue

� setMenu:
– (void)setMenu:(NSMenu *)aMenu

Associates a menu with the cell that has commands contextually related to the cell (a pop-up menu on
Windows). The associated menu is retained. If aMenu is nil, any association with a previous menu is
removed.

See also: – menu

� setMnemonicLocation:
– (void)setMnemonicLocation:(unsigned int)location

Sets the character of the cell title identified by location that is to be underlined. This character identifies the
access key on Windows by which users can access the cell. location must be between 0 and 254.

See also: – mnemonicLocation

� setObjectValue:
– (void)setObjectValue:(id)object

Sets the receiver’s object value to object.

See also: – objectValue, – setRepresentedObject:

setRepresentedObject:
– (void)setRepresentedObject:(id)anObject

Sets the object represented by the receiver, for example, an NSColor object for a cell with a title of "Blue."

See also: – setObjectValue:, – representedObject

24

Classes: NSCell

setScrollable:
– (void)setScrollable:(BOOL)flag

Sets whether excess text in the receiver is scrolled past the cell’s bounds. If flag is YES, wrapping is turned
off. When the scrollable attribute is turned on, the alignment of text in the cell is changed to left alignment.

See also: – isScrollable

setSelectable:
– (void)setSelectable:(BOOL)flag

Sets whether text in the receiver can be selected; always makes the receiver’s text uneditable.

See also: – isSelectable, – setEditable:

� setShowsFirstResponder:
– (void)setShowsFirstResponder:(BOOL)flag

Sets whether the receiver displays a dotted-line outline when it assumes first responder status.

See also: – showsFirstResponder

setState:
– (void)setState:(int)value

Sets the state of the receiver to 1 (YES) if value is positive and 0 (NO) if value is non-positive.

See also: – state

setStringValue:
– (void)setStringValue:(NSString *)aString

Sets the value of the receiving cell to an NSString object. If no formatter is assigned to the receiver or if the
formatter cannot "translate" aString to an underlying object, the receiver is flagged as having an invalid
object. If the receiver is not a text-type cell, this method converts it to one before setting the object value.

See also: – stringValue

25

setTag:
– (void)setTag:(int)anInt

Implemented by NSActionCell to set the receiver’s tag integer. NSCell’s implementation raises
NSInternalInconsistencyException.

See also: – tag

� setTitleWithMnemonic:
– (void)setTitleWithMnemonic:(NSString *)aString

Sets the title of a cell with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the "c" in "Receive" to be underlined:

[aCell setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – mnemonic, – setMnemonicLocation:

setTarget:
– (void)setTarget:(id)anObject

Implemented by NSActionCell to set the receiver’s target object receiving the action message. NSCell’s
implementation raises NSInternalInconsistencyException.

See also: – target

setType:
– (void)setType:(int)aType

If the type of the receiving cell is different from aType, sets it to aType, which must one of NSTextTypeCell,
NSImageTypeCell, or NSNullCellType. If aType is NSTextTypeCell, converts the receiver to a cell of that
type, giving it a default title and setting the font to the system font at the default size. If aType is
NSImageTypeCell, sets a nil image.

See also: – type

26

Classes: NSCell

setUpFieldEditorAttributes:
– (NSText *)setUpFieldEditorAttributes:(NSText *)textObj

Sets textual and background attributes of the receiver, depending on certain attributes. If the receiver is
disabled, sets the text color to dark gray; otherwise sets it to the default color. If the receiver has a bezeled
border, sets the background to the default color for text backgrounds; otherwise, sets it to the color of the
receiver’s NSControl.

setWraps:
– (void)setWraps:(BOOL)flag

Sets whether text in the receiver wraps when its length exceeds the frame of the cell. If flag is YES, then it
also sets the receiver to be non-scrollable.

See also: – wraps

showsFirstResponder
– (BOOL)showsFirstResponder

Returns whether the receiver displays a dotted-line outline when it assumes first responder status.

See also: – setShowsFirstResponder:

startTrackingAt:inView:
– (BOOL)startTrackingAt:(NSPoint)startPoint inView:(NSView *)controlView

NSCell’s implementation of trackMouse:inRect:ofView:untilMouseIsUp: invokes this method when
tracking begins. startPoint is the point the mouse is currently at and controlView is the NSControl managing
the receiver. NSCell’s default implementation returns YES if the receiver is set to respond continuously or
when the mouse is dragged. Subclasses override this method to implement special mouse-tracking behavior
at the beginning of mouse tracking, for example, displaying a special cursor.

See also: – continueTracking:at:inView:, – stopTracking:at:inView:mouseIsUp:

state
– (int)state

Returns the state of the receiver, either 1 (YES) or 0 (NO).

See also: – setState:

27

stopTracking:at:inView:mouseIsUp:
– (void)stopTracking:(NSPoint)lastPoint

at:(NSPoint)stopPoint
inView:(NSView *)controlView
mouseIsUp:(BOOL)flag

NSCell’s implementation of trackMouse:inRect:ofView:untilMouseIsUp: invokes this method when the
mouse has left the bounds of the receiver or the mouse goes up (in which case flag is YES). lastPoint is the
point the mouse was at and stopPoint is its current point. controlView is the NSControl managing the
receiver. NSCell’s default implementation does nothing. Subclasses often override this method to provide
customized tracking behavior. The following example increments the state of a tri-state cell when the
mouse is clicked.

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint

inView:(NSView *)controlView mouseIsUp:(BOOL)flag

{

 if (flag == YES) {

 [self setTriState:([self triState]+1)];

 }

}

See also: – startTracking:at:inView:, – stopTracking:at:inView:mouseIsUp:

stringValue
– (NSString *)stringValue

Returns the receiver’s value as an NSString as converted by the receiver’s formatter, if one exists. If no
formatter exists and the value is an NSString, returns the value as an plain, attributed or localized formatted
string. If the value is not an NSString or can’t be converted to one, returns an empty string.

See also: – setStringValue:

tag
– (int)tag

Implemented by NSActionCell to return the receiver’s tag integer. NSCell’s implementation returns -1.

See also: – setTag:

28

Classes: NSCell

takeDoubleValueFrom:
– (void)takeDoubleValueFrom:(id)sender

Sets the receiver’s own value as a double using the double value of sender.

See also: – setDoubleValue:

takeFloatValueFrom:
– (void)takeFloatValueFrom:(id)sender

Sets the receiver’s own value as a float using the float value of sender.

See also: – setFloatValue:

takeIntValueFrom:
– (void)takeIntValueFrom:(id)sender

Sets the receiver’s own value as an int using the int value of sender. The following example shows this
method being used to write the value taken from a slider (sender) to a text field cell:

- (void)sliderMoved:(id)sender

{

 [[valueField cell] takeIntValueFrom:[sender cell]];

 [valueField display];

}

See also: – setIntValue:

takeObjectValueFrom:
– (void)takeObjectValueFrom:(id)sender

Sets the receiver’s own value as an object using the object value of sender.

See also: – setObjectValue:

takeStringValueFrom:
– (void)takeStringValueFrom:(id)sender

Sets the receiver’s own value as a string object using the NSString value of sender.

See also: – setStringValue:

29

target
– (id)target

Implemented by NSActionCell to return the target object to which the receiver’s action message is sent.
NSCell’s implementation returns nil.

See also: – setTarget:

titleRectForBounds:
– (NSRect)titleRectForBounds:(NSRect)theRect

If the receiver is a text-type cell, resizes the drawing rectangle for the title (theRect) inward by a small offset
to accommodate the cell border. If the receiver is not a text-type cell, the method does nothing.

See also: – imageRectForBounds:

trackMouse:inRect:ofView:untilMouseUp:
– (BOOL)trackMouse:(NSEvent *)theEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)controlView
untilMouseUp:(BOOL)flag

Invoked by an NSControl to initiate the tracking behavior of one of its NSCells. It’s generally not overriden
since the default implementation invokes other NSCell methods that can be overriden to handle specific
events in a dragging session. Returns YES if the mouse goes up within cellFrame, NO otherwise. The
argument theEvent is typically the mouse event received by the initiating NSControl, usually identified by
controlView. The flag argument indicates whether tracking should continue until the mouse button goes up;
if flag is NO, tracking ends when the mouse is dragged after the initial mouse down.

This method first invokes startTrackingAt:inView:. If that method returns YES, then as mouse-dragged
events are intercepted, continueTracking:at:inView: is invoked, and, finally, when the mouse leaves the
bounds or if the mouse button goes up, stopTracking:at:inView:mouseIsUp: is invoked (if cellFrame is
NULL, then the bounds are considered infinitely large). You usually override one or more of these methods
to respond to specific mouse events.

type
– (int)type

Returns the type of the receiver, one of NSTextTypeCell, NSImageTypeCell, or NSNullCellType.

See also: – setType:

30

Classes: NSCell

wraps
– (BOOL)wraps

Returns whether text of the receiver wraps when it exceeds the borders of the cell.

See also: – setWraps:

