

Classes: NSNotificationCenter

NSNotificationCenter

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotification.h

Class at a Glance
Purpose
NSNotificationCenter provides a way for objects that don’t know about each other to communicate. It receives
NSNotification objects and broadcasts them to all interested objects.

Principal Attributes
A table of objects that want to receive notifications, the notifications they want to receive, and about which
objects.

Creation
Each task has a default notification center. You typically don’t create your own.

Commonly Used Methods
+ defaultCenter Accesses the default notification center.
– addObserver:selector:name:object: Registers an object to receive a notification.
– postNotificationName:object: Creates and posts a notification.
– removeObserver: Specifies that an object no longer wants to receive

notifications.

Class Description

An NSNotificationCenter object (or simply, notification center) is essentially a notification dispatch table.
It notifies all observers of notifications meeting specific criteria. This information is encapsulated in
NSNotification objects, also known as notifications. Client objects register themselves as observers of
specific notifications posted by other objects. When an event occurs, an object posts an appropriate
notification to the notification center. (See the NSNotification class specification for more on notifications.)
1

le

The notification center dispatches a message to each registered observer, passing the notification as the so
argument. It is possible for the posting object and the observing object to be the same.

Each task has a default notification center that you access with the defaultCenter class method.

Registering to Receive Notifications

An object registers itself to receive a notification by sending the addObserver:selector:name:object:
method, specifying the message the notification should send, the name of the notification it wants to receive,
and about which object. However, the observer need not specify both the name and the object. If it specifies
only the object, it will receive all notifications containing that object. If the object specifies only a
notification name, it will receive that notification every time it’s posted, regardless of the object associated
with it.

It is possible for an observer to register to receive more than one message for the same notification. In such
a case, the observer will receive all messages it is registered to receive for the notification, but the order in
which it receives them cannot be determined.

Creating and Posting Notifications

Normally, you create an instance of NSNotification and post it using postNotification:. The methods
postNotificationName:object: and postNotificationName:object:userInfo: are convenient ways to post
notifications without having to create an NSNotification first.

Example

As an example of using the notification center, suppose your program can perform a number of conversions
on text (for instance, RTF to ASCII). You have defined a class of objects that perform those conversions,
Converter. Converter objects might be added or removed during program execution. Your program has a
client object that wants to be notified when converters are added or removed, allowing the application to
reflect the available services in a pop-up list. The client object would register itself as an observer by
sending the following messages to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(objectAddedToConverterList:)

 name:@"ConverterAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(objectRemovedFromConverterList:)

 name:@"ConverterRemoved" object:nil];

When a user installs or removes a Converter, the Converter sends one of the following messages to the
notification center:

[[NSNotificationCenter defaultCenter]

 postNotificationName:@"ConverterAdded" object:self];
2

Classes: NSNotificationCenter

or

[[NSNotificationCenter defaultCenter]

 postNotificationName:@"ConverterRemoved" object:self];

The notification center identifies all observers who are interested in the “ConverterAdded” or
“ConverterRemoved” notifications by invoking the method they specified in the selector argument of
addObserver:selector:name:object:. In the case of our example observer, the selectors are
objectAddedToConverterList: and objectRemovedFromConverterList:. Assume the Converter class has
an instance method converterName that returns the name of the Converter object. Then the
objectAddedToConverterList: method might have the following implementation:

- (void)objectAddedToConverterList:(NSNotification *)notification

{

 Converter *addedConverter = [notification object];

 // Add this to our popup (it will only be added if not there)...

 [myPopUpButton addItem:[addedConverter converterName]];

}

The Converters don’t need to know anything about the pop-up list or any other aspect of the user interface
to your program.

If there are other objects of interest to the observer, place them in the notification’s optional dictionary or
use postNotificationName:object:userInfo:.

Method Types

Accessing the default center + defaultCenter

Adding and removing observers – addObserver:selector:name:object:
– removeObserver:
– removeObserver:name:object:

Posting notifications – postNotification:
– postNotificationName:object:
– postNotificationName:object:userInfo:

Class Methods

defaultCenter
+ (NSNotificationCenter *)defaultCenter

Returns the current task’s notification center, which is used for system notifications.
3

Instance Methods

addObserver:selector:name:object:
– (void)addObserver:(id)anObserver

selector:(SEL)aSelector
name:(NSString *)notificationName
object:(id)anObject

Registers anObserver to receive notifications with the name notificationName and/or containing anObject.
When a notification of name notificationName containing the object anObject is posted, anObserver
receives an aSelector message with this notification as the argument. The method for the selector specified
in aSelector must have one and only one argument. If notificationName is nil , the notification center notifies
the observer of all notifications with an object matching anObject. If anObject is nil , the notification center
notifies the object of all notifications with the name notificationName.

The notification center does not retain anObserver or anObject. Therefore, you should always send
removeObserver: or removeObserver:name:object: to the notification center before releasing these
objects.

postNotification:
– (void)postNotification:(NSNotification *)notification

Posts notification to the notification center. You can create notification with the NSNotification class method
notificationWithName:object: or notificationWithName:object:userInfo: . An exception is raised if
notification is nil .

See also: – postNotificationName:object:, – postNotificationName:object:userInfo:

postNotificationName:object:
– (void)postNotificationName:(NSString *)notificationName

object:(id)anObject

Creates a notification with the name notificationName, associates it with the object anObject, and posts it to
the notification center. anObject is typically the object that is posting the notification. It may be nil .

This method invokes postNotificationName:object:userInfo: with a userInfo: argument of nil .

See also: – postNotification:
4

Classes: NSNotificationCenter

postNotificationName:object:userInfo:
– (void)postNotificationName:(NSString *)notificationName

object:(id)anObject
userInfo:(NSDictionary *)userInfo

Creates a notification with the name notificationName, associates it with the object anObject and dictionary
userInfo, and posts it to the notification center. This method is the preferred method for posting notifications.
anObject is typically the object that is posting the notification. It may be nil . userInfo also may be nil .

See also: – postNotificationName:object:

removeObserver:
– (void)removeObserver:(id)anObserver

Removes anObserver from all notification associations in the notification center. Be sure to invoke this
method (or removeObserver:name:object:) before releasing anObserver or any object specified in
addObserver:selector:name:object:.

removeObserver:name:object:
– (void)removeObserver:(id)anObserver

name:(NSString *)notificationName
object:(id)anObject

Removes anObserver as the observer of notifications with the name notificationName and object anObject
from the notification center. Be sure to invoke this method (or removeObserver:) before deallocating the
observer object or any object specified in addObserver:selector:name:object:.

If anObserver is nil , all objects are removed as observers of notificationName containing anObject. (Recall
that the object that a notification contains is usually the object that posted the notification.) If
notificationName is nil , anObserver is removed as an observer of all notifications containing anObject. If
anObject is nil , anObserver is removed as an observer of notificationName containing any object. For
example, if you wanted all objects to stop observing notifications containing the object aWindow, you
would sent this message:

[[NSNotificationCenter defaultCenter] removeObserver:nil name:nil object:aWindow];
5

6

	NSNotificationCenter
	Purpose
	NSNotificationCenter provides a way for objects th...
	Principal Attributes

	A table of objects that want to receive notificati...
	Creation

	Each task has a default notification center. You t...
	Commonly Used Methods
	+�defaultCenter Accesses the default notification ...
	–�addObserver:selector:name:object: Registers an o...
	–�postNotificationName:object: Creates and posts a...
	–�removeObserver: Specifies that an object no long...

	Registering to Receive Notifications
	Creating and Posting Notifications
	Example
	defaultCenter
	+�(NSNotificationCenter *)defaultCenter

	addObserver:selector:name:object:
	–�(void)addObserver:(id)anObserver selector:(SEL)a...

	postNotification:
	–�(void)postNotification:(NSNotification *)notific...

	postNotificationName:object:
	–�(void)postNotificationName:(NSString *)notificat...

	postNotificationName:object:userInfo:
	–�(void)postNotificationName:(NSString *)notificat...

	removeObserver:
	–�(void)removeObserver:(id)anObserver

	removeObserver:name:object:
	–�(void)removeObserver:(id)anObserver name:(NSStri...

