
1

NSMenuItem

Adopted By: NSMenuItem

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSMenuItem.h

Protocol Description

The NSMenuItem protocol declares methods that are used to manipulate command items in menus. With
some implementations of the OpenStep specification (including NeXT’s OPENSTEP), you cannot replace
the NSMenuItem class with a different class which conforms to the NSMenuItem protocol. You may,
however, subclass the NSMenuItem class if necessary.

See the NSMenu and NSMenuItem class specifications for more information on menus.

Keyboard Equivalents

An object conforming to the NSMenuItem protocol can be assigned a keyboard eqivalent, so that when the
user types it the menu item’s action is sent. The keyboard eqivalent is defined in two parts. First is the basic
key equivalent, which must be a Unicode character that can be generated by a single key press without
modifier keys (Shift excepted). It is also possible to use a sequence of Unicode characters so long as the
user’s key mapping is able to generate the sequence with a single key press. The basic key equivalent is set
using setKeyEquivalent: and returned by keyEquivalent. The second part defines the modifier keys that
must also be pressed. This is set using setKeyEquivalentModifierMask: and returned by
keyEquivalentModifierMask. The modifier mask by default includes NSCommandKeyMask, and may
also include the masks for the Shift, Alternate, or other modifier keys. Specifying keyboard equivalents in
two parts allows you to define a modified keyboard equivalent without having to know which character is
generated by the basic key plus the modifier. For example, you can define the keyboard equivalent
Command-Alt-f without having to know which character is generated by typing Alt-f.

Certain methods in the NSMenuItem protocol can override assigned keyboard equivalents with those the
user has specified in the defaults system. The setUsesUserKeyEquivalents: protocol method turns this
behavior on or off, and usesUserKeyEquivalents returns its status. To determine the user-defined key
equivalent for an NSMenuItem object, invoke the userKeyEquivalent instance method. If user-defined
key equivalents are active and an NSMenuItem object has a user-defined key equivalent, its keyEquivalent
method returns the user-defined key equivalent and not the one set using setKeyEquivalent:.

2

Classes: NSMenuItem

Mnemonics

On certain platforms, currently including Microsoft Windows, an object conforming to the NSMenuItem
protocol can also be assigned a mnemonic. Mnemonics can be assigned on other platforms as well,
however, they won’t have any effect. Mnemonics are represented by an underlined character in the title of
a menu item. The mnemonic can be any character that can be generated by a single key press without
modifier keys (Shift excepted). When the menu is active, the user can type the underlined character in the
menu item in order to activate that menu item. On Microsoft Windows a user activates the menu by pressing
the Alternate key. A particular mnemonic character should only be used once within the set of menu items
contained either in the same menu as the menu item or in the application’s main menu.

Method Types

Setting the target and action – setTarget:
– target
– setAction:
– action

Setting the title – setTitle:
– title

Setting the tag – setTag:
– tag

Enabling a menu item – setEnabled:
– isEnabled

Checking for a submenu – hasSubmenu

Managing key equivalents – setKeyEquivalent:
– keyEquivalent
– setKeyEquivalentModifierMask:
– keyEquivalentModifierMask

Managing mnemonics – setMnemonicLocation:
– mnemonicLocation
– setTitleWithMnemonic:
– mnemonic

Managing user key equivalents + setUsesUserKeyEquivalents:
+ usesUserKeyEquivalents
– userKeyEquivalent

Representing an object – setRepresentedObject:
– representedObject

3

Class Methods

setUsesUserKeyEquivalents:
+ (void)setUsesUserKeyEquivalents:(BOOL)flag

If flag is YES, menu items conform to user preferences for key equivalents; otherwise, the key equivalents
originally assigned to the menu items are used.

See also: + usesUserKeyEquivalents, – userKeyEquivalent

usesUserKeyEquivalents
+ (BOOL)usesUserKeyEquivalents

Returns YES if menu items conform to user preferences for key equivalents; otherwise, returns NO.

See also: + setUsesUserKeyEquivalents:, – userKeyEquivalent

Instance Methods

action
– (SEL)action

Returns the receiver’s action method.

See also: – target, – setAction:

hasSubmenu
– (BOOL)hasSubmenu

Returns YES if the receiver has a submenu, NO if it doesn’t.

See also: – setSubmenu:forItem:(NSMenu)

isEnabled
– (BOOL)isEnabled

Returns YES if the receiver is enabled, NO if not.

See also: – setEnabled:

4

Classes: NSMenuItem

keyEquivalent
– (NSString *)keyEquivalent

Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined. Use
keyEquivalentModifierMask to determine the modifier mask for the key equivalent.

See also: – userKeyEquivalent, – mnemonic, – setKeyEquivalent:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the receiver’s keyboard equivalent modifier mask.

See also: – setKeyEquivalentModifierMask:

� mnemonic
– (NSString *)mnemonic

Returns the character in the menu item title that appears underlined for use as a mnemonic. If there is no
mnemonic character, returns an empty string.

See also: – setTitleWithMnemonic:

� mnemonicLocation
– (unsigned)mnemonicLocation

Returns the position of the underlined character in the menu item title used as a mnemonic. The position is
the zero based index of that character in the title string. If the receiver has no mnemonic character, returns
NSNotFound.

See also: – setMnemonicLocation:

� representedObject
– (id)representedObject

Returns the object that the receiving menu item represents. For example, you might have a menu list the
names of views that are swapped into the same panel. The represented objects would be the appropriate
NSView objects. The user would then be able to swtich back and forth between the different views that are
displayed by selecting the various menu items.

See also: – tag, – setRepresentedObject:

5

setAction:
– (void)setAction:(SEL)aSelector

Sets the receiver’s action method to aSelector.

See also: – setTarget:, – action

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled based on flag. If a menu item is disabled, it’s keyboard equivalent and
mnemonic are also disabled. See the NSMenuActionResponder informal protocol specification for cautions
regarding this method.

See also: – isEnabled

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)aString

Sets the receiver’s unmodified key equivalent to aString. Use setKeyEquivalentModifierMask: to set the
appropriate mask for the modifier keys for the key equivalent.

See also: – setMnemonicLocation:, – keyEquivalent

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Alternate keys)
to those in mask. mask is an integer bit field containing any of these modifier key masks, combined using
the C bitwise OR operator:

NSShiftKeyMask
NSAlternateKeyMask
NSCommandKeyMask

On Mach, you should always set NSCommandKeyMask in mask; on Microsoft Windows, this is not
required.

NSShiftKeyMask is relevant only for function keys; that is, for key events whose modifier flags include
NSFunctionKeyMask. For all other key events NSShiftKeyMask is ignored and characters typed while the
Shift key is pressed are interpreted as the shifted versions of those characters; for example,
Command-Shift-‘c’ is interpreted as Command-‘C’.

6

Classes: NSMenuItem

See the NSEvent class specification for more information about modifier mask values.

See also: – keyEquivalentModifierMask

� setMnemonicLocation:
– (void)setMnemonicLocation:(unsigned)location

Sets the character of the menu item title at location that is to be underlined. location must be between 0 and
254. This character identifies the access key on Windows by which users can access the menu item.

See also: – mnemonicLocation

� setRepresentedObject:
– (void)setRepresentedObject:(id)anObject

Sets the object represented by the receiver to anObject. By setting a represented object for a menu item you
make an association between the menu item and that object. The represented object functions as a more
specific form of tag that allows you to associate any object, not just an int, with the items in a menu.

For example, an NSView object might be associated with a menu item—when the user selects the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the
display of multiple views in the same panel.

See also: – setTag:, – representedObject

setTag:
– (void)setTag:(unsigned int)anInt

Sets the receiver’s tag to anInt.

See also: – setRepresentedObject:, – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the receiver’s target to anObject.

See also: – setAction:, – target

7

setTitle:
– (void)setTitle:(NSString *)aString

Sets the receiver’s title to aString.

See also: – title

� setTitleWithMnemonic:
– (void)setTitleWithMnemonic:(NSString *)aString

Sets the title of a menu item with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the ‘c’ in ‘Receive’ to be underlined:

[aMenuItem setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – mnemonic, – setMnemonicLocation:

tag
– (unsigned int)tag

Returns the receiver’s tag.

See also: – representedObject, – setTag:

target
– (id)target

Returns the receiver’s target.

See also: – action, – setTarget:

title
– (NSString *)title

Returns the receiver’s title.

See also: – setTitle:

8

Classes: NSMenuItem

userKeyEquivalent
– (NSString *)userKeyEquivalent

Returns the user-assigned key equivalent for the receiver.

See also: – keyEquivalent

