Classes:

@ NSArray Class Cluster

lass Cluster Description

The NSArray class clusters manage arrays of objects. The cluster’s two public classes, NSArray and
NSMutableArray, declare the programmatic interface for static and dynamic arrays, respectively.

The objects you create using these classes are referregrtayss Because of the nature of class clusters,
arrays are not actual instances of the NSArray or NSMutableArray classes but of one of their private
subclasses. Although an array’s class is private, its interface is public, as declared by these abstract
superclasses, NSArray and NSMutableArray.

Generally, you instantiate an array by sending one adrfag... messages to either the NSArray or
NSMutableArray class object. These methods return an array containing the elements you pass in as
arguments. (Note that arrays can't contalr) In general, objects that you add to an array aren’t copied;
rather, each object receivesetain message before i is added to the array. When an object is removed
from an array, it's sent@leasemessage.

The NSArray class adopts the NSCopying and NSMutableCopying protocols, making it convenient to
convert an array of one type to the other.

@ NSArray

Inherits From: NSObiject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class at a Glance

Purpose
An NSArray stores an immutable array of objects.

Principal Attributes
< A count of the number of objects in the array.
» The set of objects contained in the array.

Creation

+ array Returns an empty array.

+ arrayWithArray: Returns an array containing the elements from another array.
+ arrayWithContentsOfFile: Returns an array initialized from the contents of a file.

+ arrayWithObject: Returns an array containing a single object.

+ arrayWithObjects: Returns an array containing multiple objects.

+ arrayWithObjects:count: Returns an array containing a specified number of objects.
Commonly Used Methods

— count; Returns the number of objects currently in the array.

— objectAtindex: Returns the object located at the specified index.

Primitive Methods
— count
— objectAtindex:

Classes:

lass Description

NSArray declares the programmatic interface to an object that manages an unchanging array of objects.
NSArray’s two primitive methods-eeunt andobjectAtindex: —provide the basis for all other methods in

its interface. Theount method returns the number of elements in the astagctAtindex: gives you

access to the array elements by index, with index values starting at O.

The method®bjectEnumerator andreverseObjectEnumeratoralso grant sequential access to the
elements of the array, differing only in the direction of travel through the elements. These methods are
provided so that arrays can be traversed in a manner similar to that used for objects of other collection
classes such as NSDictionary. SeedhjectEnumerator method description for a code exerpt that shows
how to use these methods to access the elements of an array.

NSArray provides methods for querying the elements of the amdlsxOfODbject: searches the array for

the object that matches its argument. To determine whether the search is successful, each element of the
array is sent aisEqual: message, as declared in the NSObject protocol. Another method,
indexOfObjectldenticalTo:, is provided for the less common case of determining whether a specific object

is present in the arrandexOfObjectldenticalTo: tests each element in the array to see whethigr its

matches that of the argument.

NSArray’smakeObjectsPerform:andmakeObjectsPerform:withObject: methods let you send messages

to all objects in the array. To act on the array as a whole, a variety of other methods are defined. You can
create a sorted version of the arragrfedArrayUsingSelector:and

sortedArrayUsingFunction:context:), extract a subset of the arragbarrayWithRange:), or

concatenate the elements of an array of NSStrings into a single stiimggnentsJoinedByString). In

addition, you can compare two arrays usingiskgualToArray: andfirstObjectCommonWithArray:

methods. Finally, you can create new arrays that contain the objects in an existing array and one or more
additional objects witlarrayByAddingObject: andarrayByAddingObjectsFromArray: .

Adopted Pr otocols

NSCoding — encodeWithCoder:
— initwithCoder:
NSCopying — copyWithZone:

NSMutableCopying — mutableCopyWithZone:

Viethod Types

Creating an array + allocWithZone
+ array
+ arrayWithArray:
+ arrayWithContentsOfFile:
+ arrayWithObject:
+ arrayWithObjects:
+ arrayWithObjects:count:
— initWithArray:
— initWithContentsOfFile:
— initWithObjects:
— initWithObjects:count:

Querying the array — containsObiject:
— count
— getObjects:
— getObjects:range:
— indexOfObject:
— indexOfObject:.inRange:
— indexOfObjectldenticalTo:
— indexOfObjectldenticalTo:inRange:
— lastObject
— objectAtindex:
— objectEnumerator
— reverseObjectEnumerator

Sending messages to elements — makeObijectsPerform:
— makeObjectsPerform:withObject:
— makeObjectsPerformSelector:
— makeObjectsPerformSelector:withObject:

Comparing arrays — firstObjectCommonWithArray:
— isequalToArray:
Deriving new arrays — arrayByAddingObiject:

— arrayByAddingObjectsFromArray:

— sortedArrayHint

— sortedArrayUsingFunction:context:

— sortedArrayUsingFunction:context:hint:
— sortedArrayUsingSelector:

— subarrayWithRange:

Working with string elements — componentsJoinedByString:
— pathsMatchingExtensions:

Classes:

Creating a description of the array — description
— descriptionWithLocale:
— descriptionWithLocale:indent:
— writeToFile:atomically:

_lass Methods
allocWithZone:
+ (id)allocWithZone:(NSZone *yone

Creates and returns an uninitialized array in the specified zone. If the receiver is the NSArray class object,
an instance of an immutable private subclass is returned; otherwise, an object of the receiver’s class is
returned.

Typically, you create temporary arrays usingatray... class methods, not tlalocWithZone: andinit...
methods. Note that it's your responsibility to free objects created witilltdodVithZone: method.

array
+ (id)array
Creates and returns an empty array. This method is used by mutable subclasses of NSArray.

See also: + arrayWithObject: , + arrayWithObjects:

\9 arrayWithArray:
+ (id)arrayWithArray:(NSArray *anArray
Creates and returns an array containing the objeetsArray

Seealso: + arrayWithObjects: , — initWithObjects:

arrayWithContentsOfFile:

+ (id)arrayWithContentsOfFile: (NSString *aPath
Creates and returns an array containing the contents of the file spec#iRdthyThe file identified by
aPathmust contain a string representation produced bwtheToFile:atomically: method. In addition,

the array representation must contain only property list objects (NSString, NSData, NSArray, or
NSDictionary objects).

Returnsnil if the file can’t be opened or if the contents of the file can't be parsed into an array.

arrayWithObject:
+ (id)arrayWithObject: (id)anObject
Creates and returns an array containing the single eleméiject

See also: + array, + arrayWithObjects:

arrayWithObjects:
+ (id)arrayWithObijects: (id)firstObj, ...

Creates and returns an array containing the objects in the argument list. The argument list is a
comma-separated list of objects ending with

This code example creates an array containing three different types of elements (asBathiagists):

NSArray *myArray;

NSData *someData = [NSData dataWithContentsOfFile:aPath];
NSValue *aValue = [NSNumber numberWithint:5];

NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:someData, aValue, aString, nil];

See also: + array, + arrayWithObject:

\9 arrayWithObjects:count:
+ (id)arrayWithObijects: (id *) objectscount:(unsignedyount
Creates and returns an array contairtiogntobjects fronobjects

See also: —getObjects; —getObjects:range:

nstance Methods
arrayByAddingObiject:
— (NSArray *jarrayByAddingObiject: (id)anObject

Returns a new array that is a copy of the receiveravi®bjectadded to the end. SineaObjectis added
to the array, it receivesratain message. l&nObijectis nil, an NSinvalidArgumentException is raised.

See also: —addObject: (NSMutableArray)

Classes:

arrayByAddingObjectsFromArray:
— (NSArray *arrayByAddingObjectsFromArray: (NSArray *)otherArray
Returns a new array that is a copy of the receiver with the objects contaitieerifrrayadded to the end.

See also: —addObjectsFromArray: (NSMutableArray)

componentsJoinedByString:
— (NSString *romponentsJoinedByString{NSString *separator

Constructs and returns an NSString that is the result of interpesragatorbetween the elements of the
receiver’s array. For example, this code excerpt cangé@extObjecto display the path
/NextDeveloper/Examplegassumingstreamexists):

NSArray *pathArray = [NSArray arrayWithObjects: @"NextDeveloper",
@"Examples", nil];

NSLog("The path is /%@.\n",
[pathArray componentsJoinedByString:@"/"]);

[myTextObject readText:stream];

Each element of the receiver’s array must be an NSString or an error occurs. If the receiver has no elements,
an NSString representing an empty string is returned.

See also: —componentsSeparatedByString(NSString)

containsObject:
— (BOOL)ontainsObject;(id)anObject

Returns YES ianObjectis present in the array. This method determines whether an object is prsent in the
array by sending asEqual: message to each of the array’s objects (and pams@bjectas the parameter
to eachisEqual: message).

See also: —indexOfObject:, —indexOfObjectldenticalTo:, —isEqual: (NSObject)

count
— (unsigned infount

Returns the number of objects currently in the array.

See also: —objectAtindex:

description

@protocol NSObject
— (NSString *ylescription

Returns a string that represents the contents of the receiver, formatted as a property list.

See also: — descriptionWithLocale:, — descriptionWithLocale:indent:

descriptionWithLocale:
— (NSString *fescriptionWithLocale: (NSDictionary *Jocale

Returns a string that represents the contents of the receiver, formatted as a propecsldispecifies
options used for formatting each of the receiver’s elements (where recognized);spdgifyu don’'t want
the elements formatted.

For a description of hovocaleis applied to each element in the receiving array, see
descriptionWithLocale:indent:.

See also: — description, — descriptionWithLocale:indent:

descriptionWithLocale:indent:

— (NSString *plescriptionWithLocale: (NSDictionary *Jocaleindent:(unsigned intevel
Returns a string that represents the contents of the receiver, formatted as a propecgldispecifies
options used for formatting each of the receiver’s elements; spéicifyyou don’t want the elements

formatted levelallows you to specify a level of indent, to make the output more readaldevedéd O to
use four spaces to indent, or 1 to indent the output with a tab character.

The returned NSString contains the string representations of each of the receiver’s elements, in order, from
first to last. To obtain the string representation of a given eledesuriptionWithLocale:indent:
proceeds as follows:

« If the element is an NSString, it is used as is.

* If the element responds tiescriptionWithLocale:indent:, that method is invoked to obtain the
element’s string representation.

« If the element responds descriptionWithLocale:, that method is invoked to obtain the element’s string
representation.

« If none of the above conditions are met, the element’s string representation is obtained by invoking its
description method.

See also: — description, — descriptionWithLocale:

Classes:

firstObjectCommonWithArray:
— (id)firstObjectCommonWithArray: (NSArray *)otherArray

Returns the first object contained in the receiver that's equal to an olpdueiArray If no such object is
found, this method returmsl. This method usesEqual: to check for object equality.

See also: — containsObject;, —isEqual: (NSObject)

getObjects:
— (void)getObjects{(id *)aBuffer
Copies the objects contained in the receivexBaffer

See also: + arrayWithObjects:count:

getObjects:range:
— (void)getObjects{(id *)aBufferrange:(NSRangegRange

Copies the objects contained in the receiver that fall within the specified raaigefter

See also: + arrayWithObjects:count:

hash
@protocol NSObiject
— (unsigned intash

Returns an unsigned integer that can be used as a table address in a hash table structure. Huasim array,
returns the number of elements in the array. If two arrays are equal (as determinesEnudilemethod),
they will have the same hash value.

See also: —isEqual: (NSObject)

indexOfObject:
— (unsigned inthdexOfObject: (id)anObject

Searches the receiver fanObjectand returns the lowest index whose corresponding array value is equal
to anObject Objects are considered equal if they have the ghiordf isEqual: returns YES. If none of the
objects in the receiver are equahttObjectindexOfObject: returns NSNotFound.

See also: — containsObject;, —indexOfObjectldenticalTo:, —isEqual: (NSObject)

indexOfObject:inRange:

— (unsignedpdexOfObject: (id)anObjectinRange:(NSRangegRange
Searches the specified range within the receivarf@bjectand returns the lowest index whose
corresponding array value is equaht@bject Objects are considered equal if they have the shmeif

isEqual: returns YES. If none of the objects in the specified range are equedbjectindexOfObject:
returns NSNotFound.

See also: — containsObject;, —indexOfObjectldenticalTo:, —isEqual: (NSObject)

indexOfObjectldenticalTo:
— (unsigned inthdexOfObjectldenticalTo: (id)anObject

Searches the receiver fanObject(testing for equality by comparing objeds) and returns the lowest
index whose corresponding array value is equah@bject If none of the objects in the receiver are equal
to anObjectindexOfObject: returns NSNotFound.

See also: — containsObject;, —indexOfObject:, —isEqual: (NSObject)

indexOfObjectldenticalTo:inRange:
— (unsignedphdexOfObjectldenticalTo: (id)anObjectinRange:(NSRangedRange

Searches the specified range within the receivarfObject(testing for equality by comparing objeds)
and returns the lowest index whose corresponding array value is egu@ltject If none of the objects
in the specified range are equahttObjectindexOfObject: returns NSNotFound.

See also: — containsObject;, —indexOfObject:, —isEqual: (NSObject)

initWithArray:
— (id)initwithArray: (NSArray *)anArray

Initializes a newly allocated array by placing in it the objects containaday. Each object irarray
receives aetain message as it's added to the array. After an immutable array has been initialized in this
way, it can't be modified. Returmself.

See also: + arrayWithObject: , —initWithObjects:

Classes:

initWithContentsOfFile:
— (id)initWithContentsOfFile: (NSString *)aPath

Initializes a newly allocated array with the contents of the file specifiaPath The file identified by
aPathmust contain a string representation produced bwtheToFile:atomically: method. In addition,
the array representation must contain only property list objects (NSString, NSData, NSArray, or
NSDictionary objects).

Returnsselfif the receiver is successfully initialized, it if the file can’t be opened or if the contents of
the file can't be parsed into an array.

See also: —writeToFile:atomically:

initWithObjects:
— (id)initWithObjects: (id)firstObj; ...
Initializes a newly allocated array by placing in it the objects in the argument list. This list is a

comma-separated list of objects ending withObjects are retained as they're added to the array. After an
immutable array has been initialized in this way, it can’'t be modified. Retelins

See also: —initWithObjects:count: , + arrayWithObjects: , —initWithArray:

initWithObjects:count:
— (id)initwithObjects: (id *) objectscount:(unsigned intyount
Initializes a newly allocated array by placing icduntobjects from th@bjectsarray. Each object in the

objectsarray receives @tain message as it's added to the array. After an immutable array has been
initialized in this way, it can’t be modified. Retursedf,

See also: — initWithODbjects: , + arrayWithObjects: , —initWithArray:

iIsEqual:
@protocol NSObject
— (BOOL)isequal:(id)anObject

Returns YES if the receiver aatObjectare equal; otherwise returns NO. A YES return value indicates
that the receiver ar@hObjectare both instances of classes that inherit from NSArray and that they both
contain the same objects (as determined bysthgualToArray: method).

See also: —isEqualToArray:

11

isEqualToArray:
— (BOOL)isequalToArray: (NSArray *)otherArray

Compares the receiving arraydtherArray If the contents obtherArrayare equal to the contents of the
receiver, this method returns YES. If not, it returns NO.

Two arrays have equal contents if they each hold the same number of objects and objects at a given index
in each array satisfy theEqual: test.

See also: —isEqual: (NSObject)

lastObject
— (id)lastObject
Returns the object in the array with the highest index value. If the array is &siject returnsnil.

See also: —removelastObject

makeObjectsPerform:
— (void)makeObijectsPerform(SEL)aSelector

Sends thaSelectomessage to each object in the array in reverse order (starting with the last object and
continuing backwards through the array to the first object)aBe¢éectomethod must be one that takes no
arguments. It shouldn’t have the side effect of modifying the receiving array. The messages are sent using
theperform: method declared in the NSObiject protocol.

Seealso: —makeObjectsPerform:withObject:, — perform: (NSObject)

\9 makeObjectsPerformSelector:
— (voidmakeObjectsPerformSelector{SEL))aSelector

Same asnakeObjectsPerform:..

\9 makeObjectsPerformSelector:withObject:
— (void)makeObjectsPerformSelector{SEL JaSelectowithObject: (id)anObject

Same asnakeObjectsPerform:withObject:.

Classes:

makeObjectsPerform:withObject:
— (void)makeObjectsPerform;(SEL)aSelectomwithObject: (id)anObject

Sends thaSelectomessage to each object in the array in reverse order (starting with the last object and
continuing backwards through the array to the first object). The message is sent each am@hyétias

an argument, so tha&Selectomethod must be one that takes a single argument ofdtypbeaSelector
method shouldn't, as a side effect, modify the receiving array. The messages are sent using the
perform:with: method declared in the NSObject protocol.

See also: —makeObjectsPerform:,— perform:withObject: (NSObject)

objectAtindex:
— (id)objectAtindex: (unsigned inthdex

Returns the object locatediatlex If indexis beyond the end of the array (that isndexis greater than or
equal to the value returned bgunt), an NSRangeException is raised.

See also: —count

objectEnumerator
— (NSEnumerator tbjectEnumerator

Returns an enumerator object that lets you access each object in the array, in order, starting with the element
atindex 0, as in:

NSEnumerator *enumerator = [myArray objectEnumerator];

id anObject;

while ((anObject = [enumerator nextObject])) {
/* code to act on each element as it is returned */

}

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify the array during
enumeration.

See also: —reverseObjectEnumerator,— nextObject (NSEnumerator)

\9 pathsMatchingExtensions:
— (NSArray *pathsMatchingExtensions(NSArray *YfilterTypes

Returns a new array that contains those string objects in the receiver that have a filename extension (as
determined by NSStringjgathExtension method) that matches one of the extensioffitenTypes
filterTypesshould be an array of NSStrings, each of which identifies a filename extension to be matched

13

(such as “tiff” or “eps”). Filenames that don’t have an extension aren't included in the result. This method
can be used to identify those files with a particular extension (or set of extensions) within a directory.

reverseObjectEnumerator
— (NSEnumerator teverseObjectEnumerator

Returns an enumerator object that lets you access each object in the array, in order, from the element at the
highest index down to the element at index 0. Your code shouldn’t modify the array during enumeration.

See also: — ObjectEnumerator, — nextObject (NSEnumerator)

sortedArrayHint
— (NSData *sortedArrayHint

Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied to
sortedArrayUsingFunction:context:hint: .

sortedArrayUsingFunction:context:
— (NSArray *sortedArrayUsingFunction: (int(*)(id, id, void *))comparatorcontext:(void *)context

Returns a new array that lists the receiver’'s elements in ascending order as defined by the comparison
functioncomparator The new array contains references to the receiver’s elements, not copies of them. The
retain count is incremented for each element in the receiving array.

The comparison function is used to compare two elements at a time and should return
NSOrderedAscending if the first element is smaller than the second, NSOrderedDescending if the first
element is larger than the second, and NSOrderedSame if the elements are equal. Each time the comparison
function is called, it's passantextas its third argument. This allows the comparison to be based on some
outside parameter, such as whether character sorting is case-sensitive or case-insensitive.

GivenanArray (an array of NSNumber objects) and a comparison function of this type:

int intSort(id num1, id num2, void *context)
{
int vl = [numl intValue];
int v2 = [num2 intValue];
if (vl <v2)
return NSOrderedAscending;
else if (v1 > v2)
return NSOrderedDescending;
else
return NSOrderedSame,;

Classes:

}
A sorted version ofinArrayis created in this way:

NSArray *sortedArray;
sortedArray = [anArray sortedArrayUsingFunction:intSort
context:NULL];

See also: — sortedArrayUsingSelector:

sortedArrayUsingFunction:context:hint:
— (NSArray *sortedArrayUsingFunction:(int (*)(id, id, void *))comparecontext:(void *)context
hint: (NSData *hint

Similar tosortedArrayUsingFunction:context:, except that it uses the suppligidt to speed the sorting
process. To obtain an appropriatat, usesortedArrayHint . When you know that the array is nearly
sorted, this method is faster theortedArrayUsingFunction:context:.

sortedArrayUsingSelector:
— (NSArray *psortedArrayUsingSelector(SEL)comparator

Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by the selecbmmparator The new array contains references to the receiver’s elements,
not copies of them. The retain count is incremented for each element in the receiving array.

Thecomparatormessage is sent to each object in the array, and has as its single argument another object
in the array. The comparator method is used to compare two elements at a time and should return
NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if the receiver is
larger than the argument, and NSOrderedSame if they are equal.

For example, an array of NSStrings can be sorted by usimgimgare: method declared in the NSString
class. AssumingnArray exists, a sorted version of the array can be created in this way:

NSArray *sortedArray = [anArray sortedArrayUsingSelector:@selector(compare:)];

See also: —sortedArrayUsingFunction:context:

subarrayWithRange:
— (NSArray *subarrayWithRange:(NSRangejange

Returns a new array containing the receiver’s elements that fall within the limits speciied®yf range
isn’t within the receiver’s range of elements, an NSRangeException is raised. Each object reetives a
message as it's added to the array.

15

For example, the following code example creates an array containing the elements found in the first half of
wholeArray(assuming thawholeArrayexists).

NSArray *halfArray;
NSRange theRange;

theRange.location = 0;
theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRange];

writeToFile:atomically:

— (BOOL)writeToFile: (NSString *pathatomically: (BOOL)flag
Writes the contents of the receiver to the file specifigubltly If the receiver’s contents are all property list
objects (NSString, NSData, NSArray, or NSDictionary objects), the file written by this method can be used

to initialize a new array with the class mettawcayWithContentsOfFile: or the instance method
initWithContentsOfFile: .

If flagis YES, the array is written to an auxiliary file, and then the auxiliary file is renarpathtdf flag
is NO, the array is written directly path The YES option guarantees tipath, if it exists at all, won't be
corrupted even if the system should crash during writing.

If pathcontains a tilde (~) character, you must expand it stiihgByExpandingTildelnPath: before
invoking this method.

This method returns YES if the file is written successfully, and NO otherwise.

See also: —initWithContentsOfFile:

Classes:

@ NSMutableArray

Inherits From: NSArray : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSArray)
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class at a Glance

Purpose
An NSMutableArray stores a modifiable array of objects.

Principal Attributes
< A count of the number of objects in the array.
» The set of objects contained in the array.

Creation
+ arrayWithCapacity: Arempty array with enough allocated memory to hold a specified
number of objects

Commonly Used Methods

— insertObject:atindex: Inserts an object atspecifiedndex.
— removeODbject: Removes all occurrences of an object.
— removeODbjectAtindex: Removes the object at a given index.

— replaceObjectAtindex:withObject: Replaces the object at a given index.

Primitive Methods

— addObiject:

— replaceObjectAtindex:withObject:
— removeLastObject

17

lass Description

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array
of objects. This class adds insertion and deletion operations to the basic array-handling behavior inherited
from NSArray.

NSMutableArray methods are conceptually based on these three primitive methods:

addObject:
replaceObjectAtindex:withObiject:
removelLastObject

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the
array and removing an object based on its identity or position in the array.

When an object is removed from a mutable array, it receiveea@semessage. If there are no further
references to the object, the object is deallocated. Note that if your program keeps a reference to such an
object, the reference will become invalid unless you remember to send the abjairt message before

it's removed from the array. For example, if anObject isn't retained before removing it from the array, the
third statement below could result in a run-time error:

id anObject = [[anArray objectAtindex:0] retain];
[anArray removeObjectAtindex:0];
[anObject someMessage];

A Note for Those Creating Subclasses of NSMutableArray

Although conceptually the NSMutableArray class has three primitive methods, two others also access the
array’'s data directly. These methods are:

insertObject:atindex:
removeObjectAtindex:

These methods could be implemented using the primitives listed above but doing so would incur
unnecessary overhead. For instance, objects would reetdireandreleasemessages as they were shifted
to accommodate the insertion or deletion of an element.

Viethod Types

Creating an NSMutableArray + arrayWithCapacity:
— initWithCapacity:

Classes:

Adding and replacing objects — addObject:
— addObjectsFromArray:
— insertObject:atindex:
— replaceObjectAtindex:withObject:
— replaceObjectsInRange:withObjectsFromArray:
— replaceObjectsInRange:withObjectsFromArray:range:
— setArray:

Removing objects — removeAllObjects
— removelLastObject
— removeObject:
— removeObject:inRange:
— removeObjectAtIndex:
— removeObjectldenticalTo:
— removeObjectldenticalTo:inRange:
— removeObjectsFromindices:numindices:
— removeObjectsinArray:
— removeObjectsinRange:

Rearranging objects — sortUsingFunction:context:
— sortUsingSelector:

_lass Methods
arrayWithCapacity:
+ (id)arrayWithCapacity: (unsigned infhumlitems

Creates and returns an NSMutableArray, giving it enough allocated memory twhdlémsbjects.
NSMutableArrays expand as needednsmlitemssimply establishes the object’s initial capacity.

See also: —initWithCapacity:

nstance Methods
addObject:
— (void)addObject:(id)anObject

InsertsanObjectat the end of the receiver. The object receivetadn message as it's added to the array.
If anObijectis nil, an NSinvalidArgumentException is raised.

See also: —addObjectsFromArray: , —removeObject;, —setArray:

addObjectsFromArray:
— (void)addObjectsFromArray: (NSArray *)otherArray

Adds the objects containedatherArrayto the end of the receiver’s array of objects.

See also: SetArray:, —removeObject:

initWithCapacity:
— (id)initWithCapacity: (unsigned influmltems

Initializes a newly allocated array, giving it enough memory to holdltemsobjects. Mutable arrays
expand as needed, somltemssimply establishes the object’s initial capacity. Retgais

See also: —arrayWithCapacity:

insertObject:atindex:
— (void)insertObject: (id)anObjectatindex: (unsigned intpdex

InsertsanObjectinto the receiver ahdex If indexis already occupied, the objectsratexand beyond are
shifted down one slot to make rooimdexcannot be greater than the number of elements in the array.
anObjectreceives aetain message as it's added to the array. This method raises an
NSinvalidArgumentException &nObjectis nil and raises an NSRangeExceptiomdfexis greater than
the number of elements in the array.

Note that NSArrays are not like C arrays. That is, even though you do an “initWithCapacity:,” the specified
capacity is regarded as a “hint”; the actual size of the array is still 0. Because of this, you can only insert
new objects in ascending order—with no gaps. Once you add two objects, the array's size is 2, SO you can
add objects at indexes 0, 1, or 2. Index 3 is illegal and out of bounds; if you try to add an object at index 3
(when the size of the array is 2), NSMutableArray raises an exception.

See also: —removeObjectAtindex:

removeAllObjects
— (voidyemoveAllObjects

Empties the receiver of all its elements. Each removed object is dedsemessage.

See also: —removeObject;, —removelLastObject —removeObjectAtindex:,
—removeObjectldenticalTo:

Classes:

removelLastObject
— (voidyemoveLastObject

Removes the object with the highest-valued index in the array and semneledsemessage.
removelLastObjectraises an NSRangeException if there are no objects in the array.

See also: —removeAllObjects, —removeObject;, —removeObjectAtindex:,
—removeObjectldenticalTo:

removeObiject:
— (voidyemoveObject:(id)anObject
Removes all occurrencesariObjectin the array. This method usedexOfObject: to locate matches and

then removes them by usingmoveObjectAtindex:. Thus, matches are determined on the basis of an
object’s response to theEqual: message.

See also: —removeAllObjects, —removelLastObject —removeObjectAtindex:,
—removeObjectldenticalTo:, —removeObjectsinArray:

removeObject:.inRange:
— (void)removeObiject:(id)anObjectinRange:(NSRangeadRange

Removes all occurrencesariObjectwithin the specified range in the array. Matches are determined on the
basis of an object’s response to igtequal: message and by compariils.

See also: —removeAllObjects, —removelLastObject —removeObjectAtindex:,
—removeObjectldenticalTo:, —removeObjectsinArray:

removeObjectAtindex:
— (voidyemoveObijectAtindex:(unsigned inpdex

Removes the object mtdexand moves all elements beyandexup one slot to fill the gap. The removed
object receives eeleasemessage. This method raises an NSRangeExcepimateKis beyond the end of
the array.

See also: — insertObjectAtindex:, —removeAllObjects, —removelLastObject —removeObject;,
—removeObjectldenticalTo:, — removeObjectsFromindices:numindices:

21

removeObjectldenticalTo:
— (voidyemoveObijectldenticalTo:(id)anObject

Removes all occurrences aiObjectin the array. This method uses thdexOfObjectldenticalTo:
method to locate matches and then removes them by resnayeObjectAtindex:. Thus, matches are
determined on the basis of an objei’s

See also: —removeAllObjects, —removelLastObject —removeObject;, —removeObjectAtindex:

removeObjectldenticalTo:inRange:
— (void)removeObijectldenticalTo:(id)JanObjectinRange:(NSRangeaRange

Removes all occurrences ariObjectwithin the specified range in the array. Matches are determined by
comparing objeds.

See also: —removeAllObjects, —removelLastObject —removeObject;, —removeObjectAtindex:

removeObjectsFromindices:numindices:
— (voidyemoveObjectsFromindices(unsigned int *Indicesnumindices:(unsigned ingount

This method is similar teemoveObjectAtindex:, but allows you to efficiently remove multiple objects
with a single operatiorcountindicates the number of objects to be removed, vildizespoints to the

first in a list of indexes. Note that if you sort the list of indexes in ascending order, you will improve the
speed of this operation.

This method does not distribute and therefore should be used sparingly.

See also: —insertObjectAtindex: , —removeObjectAtindex:, — removeObjectsinRange:

removeObjectsinArray:
— (voidyemoveObijectsinArray: (NSArray *)otherArray

This methods similar toremoveObject:, but allows you to efficiently remove large sets of objects with a
single operation. It assumes that all elemem#hiarArray—which are the objects to be removed—respond
to hashandisEqual:.

This method does not distribute and therefore should be used sparingly.

See also: —removeAllObjects, —removeObjectidenticalTo:

Classes:

removeObjectsinRange:
— (void)removeObjectsinRange:(NSRang@Range

Removes each of the objects within the specified range in the receiverammgObjectAtindex:.

replaceObjectAtindex:withObject:
— (voidyeplaceObjectAtindex:(unsigned inihdexwithObject: (id)anObject

Replaces the object mtdexwith anObject anObjectreceives aetain message as it's added to the array,
and the previous object imdexreceives aeleasemessage. This method raises an
NSInvalidArgumentException &nObjectis nil and raises an NSRangeExceptiomdfexis beyond the
end of the array.

See also: —insertObjectAtindex: , —removeObjectAtindex:

replaceObjectsinRange:withObjectsFromArray:

— (void)replaceObjectsinRange:(NSRang@Range
withObjectsFromArray:(NSArray *) otherArray

Replaces the objects in the receiver specifiedRgngewith all of the objects frorotherArray If
otherArrayhas fewer objects than are specifie@Bangethe extra objects in the receiver are removed. If
otherArrayhas more objects than are specifie@Bangethe extra objects fromtherArrayare inserted
into the receiver.

See also: —insertObject:atindex:, —removeObjectAtindex:, —replaceObjectAtindex:withObject:

replaceObjectsinRange:withObjectsFromArray:range:

— (void)replaceObjectsinRange:(NSRang@Range
withObjectsFromArray:(NSArray *) otherArrayrange:(NSRangedtherRange

Replaces the objects in the receiver specifiedRgngewith the objects imtherArrayspecified by
otherRangeaRangeandotherRangealon't have to be equal;aRangds greater thantherRanggthe extra
objects in the receiver are removeahthierRangés greater thaaRangethe extra objects fromtherArray
are inserted into the receiver.

See also: —insertObject:atindex:, —removeObjectAtindex:, —replaceObjectAtindex:withObject:

23

setArray:
— (void)setArray: (NSArray *)otherArray

Sets the receiver’s elements to thosetherArray Shortens the receiver, if necessary, so that it contains no
more than the number of element®therArray Replaces existing elements in the receiver with the
elements irotherArray releasing those objects that are being replaced and retaining those objects that are
replacing them. Finally, if there are more elementgherArraythan there are in the receiver, the additional
items are then added (arefain is sent to each object as it is added to the receiver).

See also: —addObjectsFromArray:, — replaceObjectAtindex:withObject:

sortUsingFunction:context:
— (void)sortUsingFunction:(int (*)(id, id, void *))comparecontext:(void *)context

Sorts the receiver’s elements in ascending order as defined by the comparison ¢onggiare The

comparison function is used to compare two elements at a time and should return NSOrderedAscending if
the first element is smaller than the second, NSOrderedDescending if the first element is larger than the
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it's
passedontextas its third argument. This allows the comparison to be based on some outside parameter,
such as whether character sorting is case-sensitive or case-insensitive.

See also: —sortUsingSelector; — sortedArrayUsingFunction:context: (NSArray)

sortUsingSelector:
— (void)sortUsingSelector(SEL)comparator

Sorts the receiver’s elements in ascending order, as determined by the comparison method specified by the
selectorcomparator Thecomparatormessage is sent to each object in the array, and has as its single
argument another object in the array. The comparator method is used to compare two elements at a time and
should return NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if
the receiver is larger than the argument, and NSOrderedSame if they are equal.

See also: —sortUsingFunction:context:, — sortedArrayUsingSelector:(NSArray)

	c NSArray Class Cluster
	i NSArray
	An NSArray stores an immutable array of objects.
	• A count of the number of objects in the array.
	• The set of objects contained in the array.
	+�array Returns an empty array.
	+�arrayWithArray: Returns an array containing the ...
	+�arrayWithContentsOfFile: Returns an array initia...
	+�arrayWithObject: Returns an array containing a s...
	+�arrayWithObjects: Returns an array containing mu...
	+�arrayWithObjects:count: Returns an array contain...
	–�count: Returns the number of objects currently i...
	–�objectAtIndex: Returns the object located at the...
	–�count
	–�objectAtIndex:

	allocWithZone:
	+ (id)allocWithZone:(NSZone *)zone

	array
	+�(id)array

	p arrayWithArray:
	+ (id)arrayWithArray:(NSArray *)anArray

	arrayWithContentsOfFile:
	+ (id)arrayWithContentsOfFile:(NSString *)aPath

	arrayWithObject:
	+�(id)arrayWithObject:(id)anObject

	arrayWithObjects:
	+�(id)arrayWithObjects:(id)firstObj, ...

	p arrayWithObjects:count:
	+�(id)arrayWithObjects:(id *)objects count:(unsign...

	arrayByAddingObject:
	–�(NSArray�*)arrayByAddingObject:(id)anObject

	arrayByAddingObjectsFromArray:
	–�(NSArray�*)arrayByAddingObjectsFromArray:(NSArra...

	componentsJoinedByString:
	–�(NSString�*)componentsJoinedByString:(NSString�*...

	containsObject:
	–�(BOOL)containsObject:(id)anObject

	count
	–�(unsigned int)count

	description
	@protocol NSObject
	–�(NSString�*)description

	descriptionWithLocale:
	–�(NSString�*)descriptionWithLocale:(NSDictionary�...

	descriptionWithLocale:indent:
	–�(NSString�*)descriptionWithLocale:(NSDictionary�...

	firstObjectCommonWithArray:
	–�(id)firstObjectCommonWithArray:(NSArray�*)otherA...

	getObjects:
	–�(void)getObjects:(id *)aBuffer

	getObjects:range:
	–�(void)getObjects:(id *)aBuffer range:(NSRange)aR...

	hash
	@protocol NSObject
	–�(unsigned int)hash

	indexOfObject:
	–�(unsigned int)indexOfObject:(id)anObject

	indexOfObject:inRange:
	–�(unsigned)indexOfObject:(id)anObject inRange:(NS...

	indexOfObjectIdenticalTo:
	–�(unsigned�int)indexOfObjectIdenticalTo:(id)anObj...

	indexOfObjectIdenticalTo:inRange:
	–�(unsigned)indexOfObjectIdenticalTo:(id)anObject ...

	initWithArray:
	–�(id)initWithArray:(NSArray�*)anArray

	initWithContentsOfFile:
	–�(id)initWithContentsOfFile:(NSString *)aPath

	initWithObjects:
	–�(id)initWithObjects:(id)firstObj, ...

	initWithObjects:count:
	–�(id)initWithObjects:(id�*)objects count:(unsigne...

	isEqual:
	@protocol NSObject
	–�(BOOL)isEqual:(id)anObject

	isEqualToArray:
	–�(BOOL)isEqualToArray:(NSArray�*)otherArray

	lastObject
	–�(id)lastObject

	makeObjectsPerform:
	–�(void)makeObjectsPerform:(SEL)aSelector

	p makeObjectsPerformSelector:
	–�(void)makeObjectsPerformSelector:(SEL)aSelector

	p makeObjectsPerformSelector:withObject:
	–�(void)makeObjectsPerformSelector:(SEL)aSelector ...

	makeObjectsPerform:withObject:
	–�(void)makeObjectsPerform:(SEL)aSelector withObje...

	objectAtIndex:
	–�(id)objectAtIndex:(unsigned�int)index

	objectEnumerator
	–�(NSEnumerator *)objectEnumerator

	p pathsMatchingExtensions:
	–�(NSArray *)pathsMatchingExtensions:(NSArray *)fi...

	reverseObjectEnumerator
	–�(NSEnumerator *)reverseObjectEnumerator

	sortedArrayHint
	–�(NSData *)sortedArrayHint

	sortedArrayUsingFunction:context:
	–�(NSArray�*)sortedArrayUsingFunction:(int(*)(id,�...

	sortedArrayUsingFunction:context:hint:
	–�(NSArray *)sortedArrayUsingFunction:(int (*)(id,...

	sortedArrayUsingSelector:
	–�(NSArray�*)sortedArrayUsingSelector:(SEL)compara...

	subarrayWithRange:
	–�(NSArray�*)subarrayWithRange:(NSRange)range

	writeToFile:atomically:
	–�(BOOL)writeToFile:(NSString *)path atomically:(B...

	i NSMutableArray
	An NSMutableArray stores a modifiable array of obj...
	• A count of the number of objects in the array.
	• The set of objects contained in the array.
	+ arrayWithCapacity: An empty array with enough al...
	–�insertObject:atIndex: Inserts an object at a spe...
	–�removeObject: Removes all occurrences of an obje...
	–�removeObjectAtIndex: Removes the object at a giv...
	–�replaceObjectAtIndex:withObject: Replaces the ob...
	–�addObject:
	–�replaceObjectAtIndex:withObject:

	–�removeLastObject
	A Note for Those Creating Subclasses of NSMutableA...
	arrayWithCapacity:
	+�(id)arrayWithCapacity:(unsigned�int)numItems

	addObject:
	–�(void)addObject:(id)anObject

	addObjectsFromArray:
	–�(void)addObjectsFromArray:(NSArray�*)otherArray

	initWithCapacity:
	–�(id)initWithCapacity:(unsigned�int)numItems

	insertObject:atIndex:
	–�(void)insertObject:(id)anObject atIndex:(unsigne...

	removeAllObjects
	–�(void)removeAllObjects

	removeLastObject
	–�(void)removeLastObject

	removeObject:
	–�(void)removeObject:(id)anObject

	removeObject:inRange:
	–�(void)removeObject:(id)anObject inRange:(NSRange...

	removeObjectAtIndex:
	–�(void)removeObjectAtIndex:(unsigned�int)index

	removeObjectIdenticalTo:
	–�(void)removeObjectIdenticalTo:(id)anObject

	removeObjectIdenticalTo:inRange:
	–�(void)removeObjectIdenticalTo:(id)anObject inRan...

	removeObjectsFromIndices:numIndices:
	–�(void)removeObjectsFromIndices:(unsigned�int *)i...

	removeObjectsInArray:
	–�(void)removeObjectsInArray:(NSArray�*)otherArray...

	removeObjectsInRange:
	–�(void)removeObjectsInRange:(NSRange)aRange

	replaceObjectAtIndex:withObject:
	–�(void)replaceObjectAtIndex:(unsigned�int)index w...

	replaceObjectsInRange:withObjectsFromArray:
	–�(void)replaceObjectsInRange:(NSRange)aRange with...

	replaceObjectsInRange:withObjectsFromArray:range:
	–�(void)replaceObjectsInRange:(NSRange)aRange with...

	setArray:
	–�(void)setArray:(NSArray�*)otherArray

	sortUsingFunction:context:
	–�(void)sortUsingFunction:(int�(*)(id,�id,�void�*)...

	sortUsingSelector:
	–�(void)sortUsingSelector:(SEL)comparator

