
1

� NSTextStorage

Inherits From: NSMutableAttributedString : NSAttributedString : NSObject

Conforms To: NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: AppKit/NSTextStorage.h

Class Description

NSTextStorage is a semi-concrete subclass of NSMutableAttributedString that manages a set of client 
NSLayoutManagers, notifying of them of any changes to its characters or attributes so that they can re-lay 
and redisplay the text as needed. NSTextStorage defines the fundamental storage mechanism of NeXT’s 
extended text-handling system.

Like an abstract class of a class cluster, allocating and initializing an NSTextStorage actually produces an 
instance of a private subclass. You can use any of NSAttributedString and NSMutableAttributedString’s 
initialization methods to create an NSTextStorage object. Following this, you add NSLayoutManagers to it 
using addLayoutManager:.

The behavior of an NSTextStorage object is best illustrated by following the methods it invokes while being 
changed. There are three stages to editing a text storage object programmatically. The first stage is to send 
it a beginEditing message to announce a group of changes. In the second stage, you send it some editing 
messages, such as deleteCharactersInRange: and addAttributes:range:, to effect the changes in 
characters or attributes. Each time you send such a method, the text storage object invokes 
edited:range:changeInLength: to record the range of its characters affected since it received the 
beginEditing message. For the third stage, when you’re done changing the text storage object, you send it 
an endEditing message. This causes it to invoke its own processEditing method, fixing attributes within 
the recorded range of changed characters. After fixing its attributes, the text storage object sends a message 
to each NSLayoutManager indicating the range in the text storage object that has changed, along with the 
nature of those changes. The NSLayoutManagers in turn use this information to re-lay their glyphs and 
redisplay if necessary. NSTextStorage also keeps a delegate and sends it messages before and after 
processing edits.

Creating a Subclass of NSTextStorage

As indicated above, NSTextStorage isn’t a fully concrete class. It defines the storage for its 
NSLayoutManagers and implements all of the methods described in this specification, but doesn’t provide 
the primitive attributed string methods to subclasses. A subclass must define the storage for its attributed 
string, typically as an instance variable of type NSMutableAttributedString, override init and define its own 



2

Classes: NSTextStorage

initialization methods, and implement the primitive methods of both NSAttributedString and 
NSMutableAttributedString. For the record, these methods are:

– string
– attributesAtIndex:effectiveRange:
– replaceCharactersInRange:withString:
– setAttributes:range:

Beyond these requirements, if a subclass overrides or adds any methods that change its characters or 
attributes directly (not using the primitive methods or making extra changes after invoking the primitives), 
those methods must invoke edited:range:changeInLength: after performing the change in order to keep 
the change-tracking information up to date. See the description of this method for more information.

Method Types

Managing NSLayoutManagers – addLayoutManager:
– removeLayoutManager:
– layoutManagers

Handling text edited messages – edited:range:changeInLength:
– endEditing
– processEditing

Determining the nature of changes – editedMask

Determining the extent of changes – editedRange
– changeInLength

Setting the delegate – setDelegate:
– delegate

Instance Methods

� addLayoutManager:
– (void)addLayoutManager:(NSLayoutManager *)aLayoutManager

Adds aLayoutManager to the receiver’s set of NSLayoutManagers.

See also: – removeLayoutManager:, – layoutManagers



3

� changeInLength
– (int)changeInLength

Returns the difference between the current length of the edited range and its length before editing began 
(that is, before the receiver was sent the first beginEditing message or a single 
edited:range:changeInLength: message). This difference is accumulated with each invocation of 
edited:range:changeInLength:, until a final endEditing message processes the changes.

The receiver’s delegate and layout managers can use this information to determine the nature of edits in 
their respective notification methods.

See also: – editedRange, –editedMask

� delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

� edited:range:changeInLength:
– (void)edited:(unsigned)mask

range:(NSRange)oldRange
changeInLength:(int)lengthChange

Tracks changes made to the receiver, allowing the NSTextStorage to record the full extent of changes made 
between a pair of beginEditing and endEditing messages. If invoked outside of such a pair, this method 
immediately invokes processEditing. NSTextStorage invokes this method automatically each time it 
makes a change to its attributed string. Subclasses that override or add methods that alter their attributed 
strings directly should invoke this method after making those changes. The information accumulated with 
this method is then used in an invocation of processEditing to report the affected portion of the receiver.

mask specifies the nature of the changes. Its value is made by combining these options with the C bitwise 
OR operator:

Option Meaning

NSTextStorageEditedAttributes Attributes were added, removed, or changed.

NSTextStorageEditedCharacters Characters were added, removed, or replaced.

oldRange indicates the extent of characters affected before the change took place. If the 
NSTextStorageEditedCharacters bit of mask is set, lengthChange gives the number of characters added to 
or removed from oldRange (otherwise its value is irrelevant). For example, when replacing “The” with 
“Several” in the string “The files couldn’t be saved”, oldRange is {0, 3} and lengthChange is 4.



4

Classes: NSTextStorage

Note: The methods for querying changes, editedRange and changeInLength, indicate the extent of 
characters affected after the change. This method expects the characters before the change because 
that information is readily available as the argument to whatever method performs the change (such 
as replaceCharactersInRange:withString:).

� editedMask
– (unsigned int)editedMask

Returns the kinds of edits pending for the receiver, as a mask containing either or both of 
NSTextStorageEditedAttributes and NSTextStorageEditedCharacters. Use the C bitwise AND operator to 
test the mask; testing for equality will fail if additional mask flags are added later. The receiver’s delegate 
and layout managers can use this information to determine the nature of edits in their respective notification 
methods.

See also: – editedRange, –changeInLength

� editedRange
– (NSRange)editedRange

Returns the range of the receiver to which pending changes have been made, whether of characters or of 
attributes. The receiver’s delegate and layout managers can use this information to determine the nature of 
edits in their respective notification methods.

See also: – changeInLength, –editedMask

� endEditing
– (void)endEditing

Clears the last recorded invocation of beginEditing, and if there are no more, invokes processEditing to 
clean up after changes and notify the delegate and layout managers of the edits.

� layoutManagers
– (NSArray *)layoutManagers

Returns the receiver’s NSLayoutManagers.

See also: – addLayoutManager:, –removeLayoutManager:



5

� processEditing
– (void)processEditing

Cleans up changes made to the receiver and notifies its delegate and layout managers of changes. This 
method is automatically invoked in response to an endEditing or edited:range:changeInLength: 
message. You should never need to invoke it directly.

This method begins by posting an NSTextStorageWillProcessEditingNotification to the default notification 
center (which results in the delegate receiving a textStorageWillProcessEditing: message). It then 
invokes the inherited fixAttributesAfterEditingRange: method to fix up attributes after a batch of editing 
changes. After this, it posts an NSTextStorageDidProcessEditingNotification to the default notification 
center (which results in the delegate receiving a textStorageDidProcessEditing: message). Finally, it 
sends a textStorage:edited:range:changeInLength:invalidatedRange: message to each of the receiver’s 
NSLayoutManagers using the argument values provided.

� removeLayoutManager:
– (void)removeLayoutManager:(NSLayoutManager *)aLayoutManager

Removes aLayoutManager from the receiver’s set of NSLayoutManagers.

See also: – addLayoutManager:, – layoutManagers

� setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject.

See also: – delegate

Methods Implemented By the Delegate

� textStorageDidProcessEditing:
– (void)textStorageDidProcessEditing:(NSNotification *)aNotification

Informs the delegate that an NSTextStorage object has finished processing edits. The text storage object is 
available by sending object to aNotification, which is always an 
NSTextStorageDidProcessEditingNotification. The delegate can use this notification to verify the final 
state of the text storage object; it can’t change the text storage object’s characters without leaving it in an 
inconsistent state, but if necessary it can change attributes. Note that even in this case it’s possible to put a 
text storage object into an inconsistent state—for example by changing the font of a range to one that 
doesn’t support the characters in that range (such as using a Latin font for Kanji text).



6

Classes: NSTextStorage

� textStorageWillProcessEditing:
– (void)textStorageWillProcessEditing:(NSNotification *)aNotification

Informs the delegate that an NSTextStorage object is about to process edits. The text storage object is 
available by sending object to aNotification, which is always an 
NSTextStorageWillProcessEditingNotification. The delegate can use this notification to verify the changed 
state of the text storage object, and to make changes to the text storage object’s characters or attributes to 
enforce whatever constraints it establishes (which doesn’t result in this message being sent again, however). 
For example, a code editor application might add a delegate that checks after edits to make sure that all 
programming language keywords are set in boldface.

Notifications

NSTextStorageDidProcessEditingNotification

Posted after the NSTextStorage finishes processing edits in processEditing. Observers other than the 
delegate shouldn’t make further changes to the NSTextStorage. The notification contains:

Notification Object The NSTextStorage that processed edits.

Userinfo None

NSTextStorageWillProcessEditingNotification

Posted before the NSTextStorage finishes processing edits in processEditing. Observers other than the 
delegate shouldn’t make further changes to the NSTextStorage. The notification contains:

Notification Object The NSTextStorage about to process edits.

Userinfo None


