
1

� NSTextContainer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSTextContainer.h

Class Description

An NSTextContainer defines a region where text is laid out. An NSLayoutManager uses NSTextContainers
to determine where to break lines, lay out portions of text, and so on. NSTextContainer defines rectangular
regions, but you can create subclasses that define regions of other shapes, such as circular regions, regions
with holes in them, or regions that flow alongside graphics.

You normally use an NSTextView to display the text laid out within an NSTextContainer. An NSTextView
can have only one NSTextContainer; however, since the two are separate objects, you can replace an
NSTextView’s container to change the layout of the text it displays. You can also display an
NSTextContainer’s text in any NSView by locking the graphics focus on it and using NSLayoutManager’s
drawBackgroundForGlyphRange:atPoint: and drawGlyphsForGlyphRange:atPoint: methods. If you
have no need of actually displaying the text—if you’re only calculating line breaks or number of lines or
pages, for example—you can use an NSTextContainer without an NSTextView.

Region, Bounding Rectangle, and Inset

An NSTextContainer’s region is defined within a bounding rectangle whose coordinate system starts at
(0, 0) in the top left corner. The size of this rectangle is returned by the containerSize method and set using
setContainerSize:. You can define a container’s region so that it’s always the same shape, such as a circle
whose diameter is the narrower of the bounding rectangle’s dimensions, or you can define the region
relative to the bounding rectangle, such as an oval region that fits inside the bounding rectangle (and that’s
a circle when the bounding rectangle is square). Regardless of a text container’s shape, its NSTextView
always clips drawing to its bounding rectangle.

A subclass of NSTextContainer defines its region by overriding three methods. The first,
isSimpleRectangularTextContainer, indicates whether the region is currently a nonrotated rectangle, thus
allowing the NSLayoutManager to optimize layout of text (since custom NSTextContainers typically
define more complex regions, your implementation of this method will probably return NO). The second
method, containsPoint:, is used for testing mouse events and determines whether or not a given point lies
in the region. The third method is used for the actual layout of text, defining the region in terms of rectangles
available to lay text in; this process is described in “Calculating Text Layout.”

2

Classes: NSTextContainer

An NSTextContainer usually covers its NSTextView exactly, but can be inset within the view frame with
NSTextView’s setTextContainerInset: method. The NSTextContainer’s bounding rectangle from the
inset position then establishes the limits of the NSTextContainer’s region. The inset also helps to determine
the size of the bounding rectangle when the NSTextContainer tracks the height or width of its NSTextView,
as described in “Tracking the Size of the NSTextView.”

Calculating Text Layout

An NSLayoutManager lays text within an NSTextContainer in lines of glyphs, running either horizontally
or vertically. The layout of these lines within an NSTextContainer is determined by its shape. For example,
if the NSTextContainer is narrower in some parts than in others, the lines in those parts must be shortened;
if there are holes in the region, some lines must be fragmented; if there’s a gap across the entire region, the
lines that would overlap it have to be shifted to compensate. This is illustrated in the figure below.

Note: The text system currently supports only horizontal text layout.

The NSLayoutManager proposes a rectangle for a given line, and then asks the NSTextContainer to adjust
the rectangle to fit. The proposed rectangle usually spans the NSTextContainer’s bounding rectangle, but it
can be narrower or wider, and it can also lie partially or completely outside the bounding rectangle. The
method that an NSLayoutManager sends the container to adjust the proposed rectangle is
lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:, which
returns the largest rectangle available for the proposed rectangle, based on the direction text is laid out. It
also returns a rectangle containing any remaining space, such as that left on the other side of a hole or gap
in the NSTextContainer.

Text is laid out along lines that run either horizontally or vertically, and in either direction. This type of
movement is called the sweep direction and is expressed by the NSLineSweepDirection type. The direction
in which the lines progress is then called the line movement direction and is expressed by the
NSLineMovementDirection type. Each affects the adjustment of a line fragment rectangle in a different
way: The rectangle can be moved or shortened along the sweep direction and shifted (but not resized) in the
line movement direction.

3

NSLineSweepDirection values NSLineMovementDirection values

NSLineSweepLeft NSLineMovesLeft
NSLineSweepRight NSLineMovesRight
NSLineSweepDown NSLineMovesDown
NSLineSweepUp NSLineMovesUp

NSLineDoesntMove

For the three examples above, the sweep direction is NSLineSweepRight and the line movement direction
is NSLineMovesDown. In the first example, the proposed rectangle spans the region’s bounding rectangle
and is shortened by the text container to fit inside the hourglass shape with no remainder.

In the second example, the proposed rectangle crosses a hole, so the text container must return a shorter
rectangle (the white rectangle on the left) along with a remainder (the white rectangle on the right). The next
rectangle proposed by the NSLayoutManager will then be this remainder rectangle, and will be returned
unchanged by the text container.

In the third example, a gap crosses the entire NSTextContainer. Here the text container shifts the proposed
rectangle down until it lies completely within the container’s region. If the line movement direction here
were NSLineDoesntMove, the NSTextContainer would have to return NSZeroRect indicating that the line
simply doesn’t fit. In such a case it’s up to the NSLayoutManager to propose a different rectangle or to
move on to a different container. When a text container shifts a line fragment rectangle, the layout manager
takes this into account for subsequent lines.

The NSLayoutManager makes one final adjustment when it actually fits text into the rectangle. This
adjustment is a small amount fixed by the NSTextContainer, called the line fragment padding, which
defines the portion on each end of the line fragment rectangle left blank. Text is inset within the line
fragment rectangle by this amount (the rectangle itself is unaffected). Padding allows for small-scale
adjustment of the NSTextContainer’s region at the edges and around any holes, and keeps text from
abutting any other graphics displayed near the region. You can change the padding from its default value
with the setLineFragmentPadding: method, or override the default in your subclass. Note that line
fragment padding isn’t a suitable means for expressing margins; you should set the NSTextView’s position
and size for document margins or the paragraph margin attributes for text margins.

Tracking the Size of the NSTextView

Normally, if you resize an NSTextView its NSTextContainer doesn’t change in size. You can, however, set
an NSTextContainer to track the size of its NSTextView and adjust its own size to match whenever the
NSTextView’s size changes. The setHeightTracksTextView: and setWidthTracksTextView: methods
allow you to control this tracking for either dimension.

When an NSTextContainer adjusts its size to match that of its NSTextView, it takes into account the inset
specified by the NSTextView so that the bounding rectangle is inset from every edge possible. In other
words, an NSTextContainer that tracks the size of its NSTextView is always smaller than the NSTextView
(in the appropriate dimension) by twice the inset. Suppose an NSTextContainer is set to track width and its
NSTextView gives it an inset of (10, 10). Now, if the NSTextView’s width is changed to 138, the

4

Classes: NSTextContainer

NSTextContainer’s top left corner is set to lie at (10, 10) and its width is set to 118, so that its right edge is
10 points from the NSTextView’s right edge. Its height remains the same.

Whether it tracks the size of its NSTextView or not, an NSTextContainer doesn’t grow or shrink as text is
added or deleted; instead, the NSLayoutManager resizes the NSTextView based on the portion of the
NSTextContainer actually filled with text. To allow an NSTextView to be resized in this manner, use
NSTextView’s setVerticallyResizable: or setHorizontallyResizable: methods as needed, set the text
container not to track the size of its text view, and set the text container’s size in the appropriate dimension
large enough to accommodate a great amount of text—about 1e7 (this incurs no cost whatever in processing
or storage). For more information on automatic size adjustment, see “The OPENSTEP Text Handling
System.”

Note that an NSTextView can be resized based on its NSTextContainer, and an NSTextContainer can resize
itself based on its NSTextView. If you set both objects up to resize automatically in the same dimension,
your application can get trapped in an infinite loop. When text is added to the NSTextContainer, the
NSTextView is resized to fit the area actually used for text; this causes the NSTextContainer to resize itself
and relay its text, which causes the NSTextView to resize itself again, and so on ad infinitum. Each type of
size tracking has its proper uses; be sure to use only one for either dimension.

Method Types

Creating an instance – initWithContainerSize:

Managing text components – setLayoutManager:
– layoutManager
– replaceLayoutManager:
– setTextView:
– textView

Controlling size – setContainerSize:
– containerSize
– setWidthTracksTextView:
– widthTracksTextView
– setHeightTracksTextView:
– heightTracksTextView

Setting line fragment padding – setLineFragmentPadding:
– lineFragmentPadding

Calculating text layout – lineFragmentRectForProposedRect:sweepDirection:
movementDirection:remainingRect:

– isSimpleRectangularTextContainer

Mouse hit testing – containsPoint:

5

Instance Methods

� containerSize
– (NSSize)containerSize

Returns the size of the receiver’s bounding rectangle, regardless of the size of its region.

See also: – textContainerInset (NSTextView), –setContainerSize:

� containsPoint:
– (BOOL)containsPoint:(NSPoint)aPoint

Overridden by subclasses to returns YES if aPoint lies within the receiver’s region or on the region’s
edge—not simply within its bounding rectangle—NO otherwise. For example, if the receiver defines a
donut shape and aPoint lies in the hole, this method returns NO. This method can be used for hit testing of
mouse events.

NSTextContainer’s implementation merely checks that aPoint lies within its bounding rectangle.

� heightTracksTextView
– (BOOL)heightTracksTextView

Returns YES if the receiver adjusts the height of its bounding rectangle when its NSTextView is resized,
NO otherwise. The height is adjusted to the height of the NSTextView minus twice the inset height (as
given by NSTextView’s textContainerInset method).

See the class description for more information on size tracking.

See also: – widthTracksTextView, –setHeightTracksTextView:

� initWithContainerSize:
– (id)initWithContainerSize:(NSSize)aSize

Initializes the receiver, a newly allocated NSTextContainer, with aSize as the size of its bounding rectangle.
The new NSTextContainer must be added to an NSLayoutManager before it can be used; it must also have
an NSTextView set for text to be displayed. This method is the designated initializer for the
NSTextContainer class. Returns self.

See also: – addTextContainer: (NSLayoutManager), –setTextView:

6

Classes: NSTextContainer

� isSimpleRectangularTextContainer
– (BOOL)isSimpleRectangularTextContainer

Overridden by subclasses to return YES if the receiver’s region is a rectangle with no holes or gaps and
whose edges are parallel to the NSTextView’s coordinate system axes; returns NO otherwise. An
NSTextContainer whose shape changes can return YES if its region is currently a simple rectangle, but
when its shape does change it must send textContainerChangedGeometry: to its NSLayoutManager so
the layout can be recalculated.

NSTextContainer’s implementation of this method returns YES.

� layoutManager
– (NSLayoutManager *)layoutManager

Returns the receiver’s NSLayoutManager.

See also: – setLayoutManager:, –replaceLayoutManager:

� lineFragmentPadding
– (float)lineFragmentPadding

Returns the amount (in points) by which text is inset within line fragment rectangles.

See also: – lineFragmentRectForProposedRect:sweepDirection:movementDirection:
remainingRect:, –setLineFragmentPadding:

� lineFragmentRectForProposedRect:sweepDirection:movementDirection:
remainingRect:

– (NSRect)lineFragmentRectForProposedRect:(NSRect)proposedRect
sweepDirection:(NSLineSweepDirection)sweepDirection
movementDirection:(NSLineMovementDirection)movementDirection
remainingRect:(NSRect *)remainingRect

Overridden by subclasses to calculate and return the longest rectangle available for proposedRect for
displaying text, or NSZeroRect if there is none according to the receiver’s region definition.The receiver
should examine proposedRect to see that it intersects its bounding rectangle, and should return a modified
rectangle based on sweepDirection and movementDirection, whose possible values are listed in the class
description. If sweepDirection is NSLineSweepRight, for example, the receiver uses this information to
trim the right end of proposedRect as needed rather than the left end.

If proposedRect doesn’t completely overlap the region along the axis of movementDirection and
movementDirection isn’t NSLineDoesntMove, this method can either shift the rectangle in that direction as

7

much as needed so that it does completely overlap, or return NSZeroRect to indicate that the proposed
rectangle simply doesn’t fit.

Upon returning, remainingRect contains the unused, possibly shifted, portion of proposedRect that’s
available for further text, or NSZeroRect if there is no remainder.

See the class description for more information on overriding this method.

� replaceLayoutManager:
– (void)replaceLayoutManager:(NSLayoutManager *)aLayoutManager

Replaces the NSLayoutManager for the group of text-system objects containing the receiver with
aLayoutManager. All NSTextContainers and NSTextViews sharing the original NSLayoutManager then
share the new one. This method makes all the adjustments necessary to keep these relationships intact,
unlike setLayoutManager:.

See also: – layoutManager

� setContainerSize:
– (void)setContainerSize:(NSSize)aSize

Sets the size of the receiver’s bounding rectangle to aSize and sends textContainerChangedGeometry: to
the NSLayoutManager.

See also: – setTextContainerInset: (NSTextView), –containerSize

� setHeightTracksTextView:
– (void)setHeightTracksTextView:(BOOL)flag

Controls whether the receiver adjusts the height of its bounding rectangle when its NSTextView is resized.
If flag is YES, the receiver follows changes to the height of its text view; if flag is NO, it doesn’t.

See the class description for more information on size tracking.

See also: – setContainerSize:, –setWidthTracksTextView:, –heightTracksTextView

� setLayoutManager:
– (void)setLayoutManager:(NSLayoutManager *)aLayoutManager

Sets the receiver’s NSLayoutManager to aLayoutManager. This method is invoked automatically when
you add an NSTextContainer to an NSLayoutManager; you should never need to invoke it directly, but

8

Classes: NSTextContainer

might want to override it. If you want to replace the NSLayoutManager for an established group of
text-system objects, use replaceLayoutManager:.

See also: – addTextContainer: (NSLayoutManager), –layoutManager

� setLineFragmentPadding:
– (void)setLineFragmentPadding:(float)aFloat

Sets the amount (in points) by which text is inset within line fragment rectangles to aFloat. Also sends
textContainerChangedGeometry: to the receiver’s NSLayoutManager to inform it of the change.

See also: – lineFragmentRectForProposedRect:sweepDirection:movementDirection:
remainingRect:, – lineFragmentPadding

� setTextView:
– (void)setTextView:(NSTextView *)aTextView

Sets the receiver’s NSTextView to aTextView and sends setTextContainer: to aTextView to complete the
association of the text container and text view. Since you usually specify an NSTextContainer when you
create an NSTextView, you should rarely need to invoke this method. An NSTextContainer doesn’t need
an NSTextView to calculate line fragment rectangles, but must have one to display text.

You can use this method to disconnect an NSTextView from a group of text-system objects by sending this
message to its text container and passing nil as aTextView.

See also: – initFrame:textContainer: (NSTextView), –replaceTextContainer: (NSTextView)

� setWidthTracksTextView:
– (void)setWidthTracksTextView:(BOOL)flag

Controls whether the receiver adjusts the width of its bounding rectangle when its NSTextView is resized.
If flag is YES, the receiver follows changes to the width of its text view; if flag is NO, it doesn’t.

See the class description for more information on size tracking.

See also: – setContainerSize:, –setHeightTracksTextView:, –widthTracksTextView

9

� textView
– (NSTextView *)textView

Returns the receiver’s NSTextView, or nil if it has none.

See also: – setTextView:

� widthTracksTextView
– (BOOL)widthTracksTextView

Returns YES if the receiver adjusts the width of its bounding rectangle when its NSTextView is resized,
NO otherwise. The width is adjusted to the width of the NSTextView minus twice the inset width (as given
by NSTextView’s textContainerInset method).

See the class description for more information on size tracking.

See also: – heightTracksTextView, –setWidthTracksTextView:

