

Classes:

s,
s

t

c NSData Class Cluster

Class Cluster Description

NSData objects provide an object-oriented wrapper for byte buffers. This enables simple allocated buffers
(that is, data with no embedded pointers) to take on the behavior of Foundation Kit objects. NSData is
typically used for data storage. It is also useful in Distributed Objects applications, where data contained in
NSData objects can be copied or moved between applications.

NSData objects can be used to wrap data of any size. When the data size is more than a few memory page
NSData uses virtual memory management. NSData can also be used to wrap pre-existing data, regardles
of how the data was allocated. NSData contains no information about the data itself (such as its type); the
responsibility for deciding how to use the data lies with the client. In particular, it will not handle byte-order
swapping when distributed between big-endian and little-endian machines. For typed data, use NSValue.

NSData provides an operating system-independent way to benefit from copy-on-write memory. The
copy-on-write technique means that when data is copied through a virtual memory copy, an actual copy of
the data is not made until there is an attempt to modify it.

The cluster’s two public classes, NSData and NSMutableData, declare the programmatic interface for static
and dynamic NSData objects, respectively.

The objects you create using these classes are referred to as data objects. Because of the nature of class
clusters, data objects are not actual instances of the NSData or NSMutableData classes but instead are
instances of one of their private subclasses. Although a data object’s class is private, its interface is public,
as declared by these abstract superclasses, NSData and NSMutableData.

Generally, you instantiate a data object by sending one of the data... messages to either the NSData or
NSMutableData class object. These methods return a data object containing the bytes you pass in as
arguments. If you use one of the data... methods whose name does not include “NoCopy” (such as
dataWithBytes:length:), the bytes to be contained by the data object are copied as part of the instantiation
process, and the data object then contains the copied bytes. When you subsequently release a data objec
that has been instantiated in this manner, the bytes contained by the data object—those that were copied
during instantiation—are automatically freed. If you instantiate a data object with one of the methods
whose name includes “NoCopy,” however, (such as dataWithBytesNoCopy:length:) the bytes are not
copied and are freed when the data object is released.

The NSData classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to
convert between efficient, read-only data objects and mutable data objects.
1

i NSData

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSData.h
Foundation/NSSerialization.h
2

Classes:

Class at a Glance
Purpose
An NSData object stores immutable data in the form of bytes.

Principal Attributes
• A count of the number of bytes in the data object.
• The sequence of bytes contained in the data object.

Creation
+ data Returns an empty data object.
+ dataWithBytes:length: Returns a data object that contains a copy of the specified bytes.
+ dataWithBytesNoCopy:length: Returns a data object that contains the specified bytes (without

copying them).
+ dataWithContentsOfFile: Returns a data object initialized with the contents of a file.
+ dataWithContentsOfMappedFile: Returns a data object initialized with the contents of a mapped file.
+ dataWithData: Returns a data object initialized with the contents of another data

object.

Commonly Used Methods
– bytes Returns a pointer to the data object’s contents.
– getBytes: Copies the data object’s contents into a buffer.
– length Returns the number of bytes contained by the data object.

Primitive Methods
– bytes
– length

Class Description

The NSData class declares the programmatic interface to an object that contains immutable data in the form
of bytes. NSData’s two primitive methods—bytes and length—provide the basis for all of the other
methods in the interface. The bytes method returns a pointer to the bytes contained in the data object. length
returns the number of bytes contained in the data object.

NSData provides access methods for copying bytes from a data object into a specified buffer. getBytes
copies all of the bytes into a buffer, whereas getBytes:length: copies bytes into a buffer of a given length.
getBytes:range: copies a range of bytes from a starting point within the bytes themselves. You can also
obtain a data object that contains a subset of the bytes in another data object by using the
3

subdataWithRange: method. Or, you can use the description method to return an NSString representation
of the bytes in a data object.

For determining if two data objects are equal, NSData provides the isEqualToData: method, which does a
byte-for-byte comparison.

The writeToFile:atomically: method enables you to write the contents of a data object to a file.

Adopted Pr otocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:

NSMutableCopying – mutableCopyWithZone:

Method Types

Creating data objects + allocWithZone:
+ data
+ dataWithBytes:length:
+ dataWithBytesNoCopy:length:
+ dataWithContentsOfFile:
+ dataWithContentsOfMappedFile
+ dataWithData:
+ dataWithStream:
– initWithBytes:length:
– initWithBytesNoCopy:length:
– initWithContentsOfFile:
– initWithContentsOfMappedFile:
– initWithData:
– initWithStream:

Accessing data – bytes
– description
– getBytes:
– getBytes:length:
– getBytes:range:
– subdataWithRange:
4

Classes:

Deserializing data – deserializeAlignedBytesLengthAtCursor:
– deserializeBytes:length:atCursor:
– deserializeDataAt:ofObjCType:atCursor:context:
– deserializeIntAtCursor:
– deserializeIntAtIndex:
– deserializeInts:count:atCursor:
– deserializeInts:count:atIndex:

Testing data – isEqualToData:
– length

Storing data – writeToFile:atomically:

Class Methods

allocWithZone
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the NSData class
object, an instance of an appropriate immutable subclass is returned; otherwise, an object of the receiver’s
class is returned.

Typically, you create temporary data objects using the data... class methods, not the alloc... and init...
methods.

data
+ (id)data

Creates and returns an empty data object. This method is declared primarily for the use of mutable
subclasses of NSData.

dataWithBytes:length:
+ (id)dataWithBytes:(const void *)bytes length:(unsigned int)length

Creates and returns a data object containing length bytes copied from the buffer bytes.

See also: + dataWithBytesNoCopy:length:
5

dataWithBytesNoCopy:length:
+ (id)dataWithBytesNoCopy:(void *)bytes length:(unsigned int)length

Creates and returns a data object that holds length bytes from the buffer bytes.

See also: + dataWithBytes:length:

dataWithContentsOfFile:
+ (id)dataWithContentsOfFile:(NSString *)path

Creates and returns a data object by reading every byte from the file specified by path.

The following code example creates a data object myData initialized with the contents of myFile.txt . The
path must be absolute.

 NSString *thePath = @"/u/smith/myFile.txt";

 NSData *myData = [NSData dataWithContentsOfFile:thePath];

See also: + dataWithContentsOfMappedFile:

dataWithContentsOfMappedFile:
+ (id)dataWithContentsOfMappedFile:(NSString *)path

Creates and returns a data object from the mapped file specified by path. Because of file mapping
restrictions, this method should only be used if the file is guaranteed to exist for the duration of the data
object’s existence. It is generally safer to use the dataWithContentsOfFile: method.

This methods assumes that mapped files are available from the underlying operating system. A mapped file
uses virtual memory techniques to avoid copying pages of the file into memory until they are actually
needed.

See also: + dataWithContentsOfFile:

p dataWithData:
+ (id)dataWithData: (NSData *)aData

Creates and returns a data object containing the contents of another data object, aData.
6

Classes:

dataWithStream:
+ (id)dataWithStream:(NXStream *)stream

Creates and returns a data object containing the contents of stream.

See also: – initWithStream:

Instance Methods

bytes
– (const void *)bytes

Returns a pointer to the data object’s contents. This method returns read-only access to the data.

See also: – description, – getBytes:, – getBytes:length:, – getBytes:range:

description
@protocol NSObject
– (NSString *)description

Returns an NSString object that contains a hexadecimal representation of the receiver’s contents in the
property list format for NSData objects.

See also: – bytes, – getBytes:, – getBytes:length:, – getBytes:range:

deserializeAlignedBytesLengthAtCursor:
– (unsigned int)deserializeAlignedBytesLengthAtCursor:(unsigned *)cursor

Reads a sequence of bytes from the receiver beginning at location cursor and returns them formatted as an
unsigned integer. On return, cursor is set to the location just past the bytes that were read.

Use this method to read an integer that was serialized using the serializeAlignedBytesLength: method of
NSMutableData. This method ignores any filler bytes that were serialized by the
serializeAlignedBytesLength: method.

See also: – deserializeIntAtCursor:, – deserializeIntAtIndex:
7

deserializeBytes:length:atCursor:
– (void)deserializeBytes:(void *)buffer

length:(unsigned int)bytes
atCursor: (unsigned int*)cursor

Reads a sequence of bytes from the receiver beginning at location cursor and places them in buffer. The
bytes parameter specifies the number of bytes to be read. On return, cursor is set to the location just beyond
the bytes that were read.

See also: – getBytes:range:

deserializeDataAt:ofObjCType:atCursor:context:
– (void)deserializeDataAt:(void *)data

ofObjCType: (const char *)type
atCursor: (unsigned int*)cursor
context:(id <NSObjCTypeSerializationCallBack>)callback

Reads a sequence of bytes from the receiver beginning at location cursor and places them in data. The bytes
are formatted according to the Objective-C type code given in type. If type specifies an object, callback is
used to deserialize the object; in such a case, callback must itself be an object that conforms to the
NSObjCTypeSerializationCallBack protocol. If type does not specify an object, callback can be nil .

For information on on creating an Objective-C type code suitable for type, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

deserializeIntAtCursor:
– (int)deserializeIntAtCursor: (unsigned int*)cursor

Reads a sequence of bytes from the receiver beginning at location cursor and returns them as an integer
value. On return, cursor is set to the location just past the bytes that were read.

See also: – deserializeIntAtIndex:, – serializeInt: (NSMutableData)

deserializeIntAtIndex:
– (int)deserializeIntAtIndex:(unsigned int)index

Reads a sequence of bytes from the receiver starting at index and returns them as an integer value.

See also: – getBytes:range:, – serializeInt: (NSMutableData)
8

Classes:
deserializeInts:count:atCursor:
– (void)deserializeInts:(int *) intBuffer

count:(unsigned int)numInts
atCursor: (unsigned int*)cursor

Reads numInts integers as a sequence of bytes from the receiver and copies them into intBuffer. The bytes
are read from the receiver beginning at location cursor. On return, cursor is set to the location just past the
integers that were read.

See also: – getBytes:range:, – deserializeIntAtCursor:, – serializeInts:count: (NSMutableData)

deserializeInts:count:atIndex:
– (void)deserializeInts:(int *) intBuffer

count:(unsigned int)numInts
atIndex:(unsigned int)index

Reads numInts integers as a sequence of bytes from the receiver and copies them into intBuffer. The bytes
are read from the receiver starting at index.

See also: – getBytes:range:, – deserializeIntAtIndex:, – serializeInts:count: (NSMutableData)

getBytes:
– (void)getBytes:(void *)buffer

Copies a data object’s contents into buffer.

For example, the following code excerpt initializes a data object myData with the NSString myString. It
then uses getBytes: to copy the contents of myData into aBuffer.

unsigned char aBuffer[20];

NSString *myString = @"Test string.";

NSData *myData = [NSData

 dataWithBytes:[myString cString]

 length:[myString cStringLength]];

[myData getBytes:aBuffer];

See also: – bytes:, – description, – getBytes:length:, – getBytes:range:
9

ct,
getBytes:length:
– (void)getBytes:(void *)buffer length:(unsigned int)length

Copies up to length bytes from the start of the receiver into buffer.

See also: – bytes:, – description, – getBytes:, – getBytes:range:

getBytes:range:
– (void)getBytes:(void *)buffer range:(NSRange)range

Copies the receiver’s contents into buffer, from range that is within the bytes in the object. If range isn’t
within the receiver’s range of bytes, an NSRangeException is raised.

See also: – bytes:, – description, – getBytes:, – getBytes:length:

hash
@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For a data obje
hash returns the length of the data object. If two data objects are equal (as determined by the isEqual:
method), they have the same hash value.

See also: – isEqual:

initWithBytes:length:
– (id)initWithBytes: (const void *)bytes length:(unsigned int)length

Initializes a newly allocated data object by adding to it length bytes of data copied from the buffer bytes.
Returns self.

See also: + dataWithBytes:length:, – initWithBytesNoCopy:length:

initWithBytesNoCopy:length:
– (id)initWithBytesNoCopy: (void *)bytes length:(unsigned int)length

Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes. Returns
self.

See also: + dataWithBytes:length:, – initWithBytes:length:
10

Classes:
initWithContentsOfFile:
– (id)initWithContentsOfFile: (NSString *)path

Initializes a newly allocated data object by reading into it the data from the file specified by path. Returns
self.

See also: + dataWithContentsOfFile:, – initWithContentsOfMappedFile:

initWithContentsOfMappedFile:
– (id)initWithContentsOfMappedFile: (NSString *)path

Initializes a newly allocated data object by reading into it the mapped file specified by path. Returns self.

See also: + dataWithContentsOfMappedFile:, – initWithContentsOfFile:

initWithData:
– (id)initWithData: (NSData *)data

Initializes a newly allocated data object by placing in it the contents of another data object, data. Returns
self.

initWithStream:
– (id)initWithStream: (NXStream *)stream

Initializes a newly allocated data object by placing in it the contents of stream. Returns self.

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates
that the receiver and anObject are both instances of classes that inherit from NSData and that both contain
the same data (as determined by the isEqualToData: method).

See also: – isEqualToData:
11

isEqualToData:
– (BOOL)isEqualToData:(NSData *)otherData

Compares the receiving data object to otherData. If the contents of otherData are equal to the contents of
the receiver, this method returns YES. If not, it returns NO. Two data objects are equal if they hold the same
number of bytes, and if the bytes at the same position in the objects are the same.

See also: – isEqual:

length
– (unsigned int)length

Returns the number of bytes contained in the receiver.

subdataWithRange:
– (NSData *)subdataWithRange:(NSRange)range

Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by range.
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

For example, the following code excerpt initializes a data object, data2, to contain a sub-range of data1:

NSString *myString = @"ABCDEFG";

NSRange range = {2, 4};

NSData *data1, *data2;

data1 = [NSData dataWithBytes:[myString cString]

 length:[myString cStringLength]];

data2 = [data1 subdataWithRange:range];

The result of this excerpt is that data2 contains “CDEF”.

writeToFile:atomically:
– (BOOL)writeToFile: (NSString *)path atomically:(BOOL)flag

Writes the bytes in the receiver to the file specified by path. If flag is YES, the data is written to a backup
file and then, assuming no errors occur, the backup file is renamed to the specified file name. Otherwise, the
data is written directly to the specified file.

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath: before
invoking this method.
12

Classes:
YES is returned if the operation succeeded, otherwise NO is returned.
13

i NSMutableData

Inherits From: NSData : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSData)
NSObject (NSObject)

Declared In: Foundation/NSData.h
Foundation/NSSerialization.h

Class at a Glance
Purpose
An NSMutableData object stores mutable data in the form of bytes.

Principal Attributes
• A count of the number of bytes in the mutable data object.
• The sequence of bytes contained in the mutable data object.

Creation
+ dataWithCapacity: Returns an NSMutableData with enough allocated memory to hold a

specified number of bytes.
+ dataWithLength: Returns an NSMutableData that contains a specified number of

zero-filled bytes.

Commonly Used Methods
– mutableBytes A pointer to the bytes in the NSMutableData object.
– replaceBytesInRange:withBytes: Replaces a range of bytes in the NSMutableData object.

Primitive Methods
– mutableBytes
– setLength:
14

Classes:

Class Description

The NSMutableData class declares the programmatic interface to an object that contains modifiable data in
the form of bytes. NSMutableData’s two primitive methods—mutableBytes and setLength:—provide the
basis for all of the other methods in its interface. The mutableBytes method returns a pointer for writing
into the bytes contained in the mutable data object. setLength: allows you to truncate or extend the length
of a mutable data object.

increaseLengthBy: also allows you to change the length of a mutable data object.

The appendBytes:length: and appendData: methods let you append bytes or the contents of another data
object to a mutable data object. You can replace a range of bytes in a mutable data object with zeros (using
the resetBytesInRange: method), or with different bytes (using the replaceBytesInRange:withBytes:
method).

Method Types

Creating an NSMutableData + allocWithZone:
+ dataWithCapacity:
+ dataWithLength:
– initWithCapacity:
– initWithLength:

Adjusting capacity – increaseLengthBy:
– setLength:

Accessing data – mutableBytes

Adding data – appendBytes:length:
– appendData:

Serializing data – serializeAlignedBytesLength:
– serializeDataAt:ofObjCType:context:
– serializeInt:
– serializeInt:atIndex:
– serializeInts:count:
– serializeInts:count:atIndex:

Modifying data – replaceBytesInRange:withBytes:
– resetBytesInRange:
– setData:
15

s
Class Methods

allocWithZone
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the NSMutableData
class object, an instance of an appropriate subclass is returned; otherwise, an object of the receiver’s clas
is returned.

Typically, you create objects using the data... class methods, not the alloc... and init... methods. Note that
it’s your responsibility to release objects created with the alloc... methods.

dataWithCapacity:
+ (id)dataWithCapacity: (unsigned int)aNumItems

Creates and returns an NSMutableData object, initially allocating enough memory to hold aNumItems
objects. Mutable data objects allocate additional memory as needed, so aNumItems simply establishes the
object’s initial capacity.

Note: dataWithCapacity: doesn’t necessarily allocate its memory at the time of method invocation. When
it does allocate its memory, though, it initially allocates the specified amount.

See also: – dataWithLength: , – initWithCapacity: , – initWithLength:

dataWithLength:
+ (id)dataWithLength: (unsigned int)length

Creates an autoreleased, mutable data object of length bytes, filled with zeros.

See also: – dataWithCapacity: , – initWithCapacity: , – initWithLength:

Instance Methods

appendBytes:length:
– (void)appendBytes:(const void *)bytes length:(unsigned int)length

Appends length bytes to the receiver from the buffer bytes.

This excerpt copies the bytes in data2 into aBuffer, and then appends aBuffer to data1.

NSMutableData *data1, *data2;

NSString *firstString = @"ABCD";

NSString *secondString = @"EFGH";
16

Classes:
unsigned char *aBuffer;

unsigned len;

data1 = [NSMutableData

 dataWithBytes:[firstString cString]

 length:[firstString cStringLength]];

data2 = [NSMutableData

 dataWithBytes:[secondString cString]

 length:[secondString cStringLength]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[data1 appendBytes:aBuffer length:len];

 The final value of data1 is the series of ASCII characters “ABCDEFGH”.

See also: – appendData:

appendData:
– (void)appendData:(NSData *)otherData

Appends the contents of a data object otherData to the receiver.

See also: – appendBytes:length:

increaseLengthBy:
– (void)increaseLengthBy:(unsigned int)extraLength

Increases the length of the receiver by extraLength. The additional bytes are all set to zero.

See also: – setLength:

initWithCapacity:
– (id)initWithCapacity: (unsigned int)capacity

Initializes a newly allocated mutable data object, giving it enough memory to hold capacity bytes. Sets the
length of the data object to 0. Returns self.

See also: – dataWithCapacity:, – initWithLength:
17

initWithLength:
– (id)initWithLength: (unsigned int)length

Initializes a newly allocated mutable data object, giving it enough memory to hold length bytes. Fills the
object with zeros up to length. Returns self.

See also: – dataWithCapacity: , – dataWithLength:, – initWithCapacity:

mutableBytes
– (void *)mutableBytes

Returns a pointer to the receiver’s data.

In the following code example, mutableBytes is used to return a pointer to the bytes in data2. The bytes in
data2 are then overwritten with the contents of data1.

NSMutableData *data1, *data2;

NSString *myString = @"string for data1";

NSString *yourString = @"string for data2";

unsigned char *firstBuffer, secondBuffer[20];

/* initialize data1, data2, and secondBuffer... */

data1 = [NSMutableData dataWithBytes:[myString cString]

 length:[myString length]];

data2 = [NSMutableData dataWithBytes:[yourString cString]

 length:[yourString length]];

[data2 getBytes:secondBuffer];

NSLog(@"data2 before: \"%s\"\n", (char *)secondBuffer);

firstBuffer = [data2 mutableBytes];

[data1 getBytes:firstBuffer];

NSLog(@"data1: \"%s\"\n", (char *)firstBuffer);

[data2 getBytes:secondBuffer];

NSLog(@"data2 after: \"%s\"\n", (char *)secondBuffer);

This is the output from the above code example:

Oct 3 15:59:51 [1113] data2 before: "string for data2"

Oct 3 15:59:51 [1113] data1: "string for data1"

Oct 3 15:59:51 [1113] data2 after: "string for data1"
18

Classes:
replaceBytesInRange:withBytes:
– (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes

Specifies a range within the contents of a mutable data object to be replaced by bytes. If the location of
range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The receiver is resized to
accomodate the new bytes, if necessary.

In the following code excerpt, a range of bytes in data1 is replaced by the bytes in data2.

NSMutableData *data1, *data2;

NSString *myString = @"Liz and John";

NSString *yourString = @"Larry";

unsigned len;

unsigned char *aBuffer;

NSRange range = {8, [yourString cStringLength]};

data1 = [NSMutableData

 dataWithBytes:[myString cString]

 length:[myString cStringLength]];

data2 = [NSMutableData

 dataWithBytes:[yourString cString]

 length:[yourString cStringLength]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[data1 replaceBytesInRange:range withBytes:aBuffer];

The contents of data1 changes from “Liz and John” to “Liz and Larry.”

See also: – resetBytesInRange:

resetBytesInRange:
– (void)resetBytesInRange:(NSRange)range

Specifies a range within the contents of a mutable data object to be replaced by zeros. If the location of
range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The receiver is resized to
accomodate the new bytes, if necessary.

See also: – replaceBytesInRange:withBytes:
19

serializeAlignedBytesLength:
– (void)serializeAlignedBytesLength:(unsigned int)length

Appends the bytes of length to the end of the receiver. This method may add extra filler bytes to increase
the efficiency of deserializing subsequent data. Use of this method is optional; you can invoke serializeInt:
instead. However, if you use this method, you should match its use by invoking
deserializeAlignedBytesLengthAtCursor: to read the bytes of length later.

serializeDataAt:ofObjCType:context:
– (void)serializeDataAt:(const void *)data

ofObjCType: (const char *)type
context:(id <NSObjCTypeSerializationCallBack>)callback

Appends a sequence of bytes, specified by data, to the receiver. The bytes are formatted according to the
Objective-C type code given in type. If type specifies an object, callback is used to serialize the object
pointed to by data; in such a case, callback must itself be an object that conforms to the
NSObjCTypeSerializationCallBack protocol. If type does not specify an object, callback can be nil .

For informationon on creating an Objective-C type code suitable for type, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – deserializeDataAt:ofObjCType:atCursor:context: (NSData)

serializeInt:
– (void)serializeInt:(int)value

Appends the bytes of value to the end of the receiver.

See also: – serializeAlignedBytesLength:

serializeInt:atIndex:
– (void)serializeInt:(int)value atIndex:(unsigned int)index

Replaces the bytes of an integer at location index in the receiver with the bytes of value.

See also: – replaceBytesInRange:withBytes:
20

Classes:
serializeInts:count:
– (void)serializeInts:(int *) intBuffer count:(unsigned int)numInts

Appends the bytes of numInts integers in intBuffer to the receiver.

See also: – serializeInt:

serializeInts:count:atIndex:
– (void)serializeInts:(int *) intBuffer

count:(unsigned int)numInts
atIndex:(unsigned int)index

Replaces the bytes of numInts integers currently in the receiver with numInts integers in intBuffer.

See also: – replaceBytesInRange:withBytes:

p setData:
– (void)setData:(NSData *)aData

Uses replaceBytesInRange:withBytes: to replace the entire contents of the receiver with the contents of
aData.

setLength:
– (void)setLength:(unsigned int)length

Extends or truncates a mutable data object to length. If the mutable data object is extended, the additional
bytes are filled with zero.

See also: – increaseLengthBy:
21

22

	c NSData Class Cluster
	i NSData
	An NSData object stores immutable data in the form...
	• A count of the number of bytes in the data objec...
	• The sequence of bytes contained in the data obje...
	+�data Returns an empty data object.
	+ dataWithBytes:length: Returns a data object that...
	+�dataWithBytesNoCopy:length: Returns a data objec...
	+�dataWithContentsOfFile: Returns a data object in...
	+ dataWithContentsOfMappedFile: Returns a data obj...
	+ dataWithData: Returns a data object initialized ...
	–�bytes Returns a pointer to the data object’s con...
	–�getBytes: Copies the data object’s contents into...
	–�length Returns the number of bytes contained by ...

	–�bytes
	–�length
	allocWithZone
	+ (id)allocWithZone:(NSZone *)zone

	data
	+ (id)data

	dataWithBytes:length:
	+ (id)dataWithBytes:(const void *)bytes length:(un...

	dataWithBytesNoCopy:length:
	+ (id)dataWithBytesNoCopy:(void *)bytes length:(un...

	dataWithContentsOfFile:
	+ (id)dataWithContentsOfFile:(NSString *)path

	dataWithContentsOfMappedFile:
	+ (id)dataWithContentsOfMappedFile:(NSString *)pat...

	p dataWithData:
	+ (id)dataWithData:(NSData *)aData

	dataWithStream:
	+ (id)dataWithStream:(NXStream *)stream

	bytes
	–�(const void *)bytes

	description
	@protocol NSObject
	– (NSString *)description

	deserializeAlignedBytesLengthAtCursor:
	– (unsigned int)deserializeAlignedBytesLengthAtCur...

	deserializeBytes:length:atCursor:
	– (void)deserializeBytes:(void *)buffer length:(un...

	deserializeDataAt:ofObjCType:atCursor:context:
	– (void)deserializeDataAt:(void *)data ofObjCType:...

	deserializeIntAtCursor:
	– (int)deserializeIntAtCursor:(unsigned int*)curso...

	deserializeIntAtIndex:
	– (int)deserializeIntAtIndex:(unsigned int)index

	deserializeInts:count:atCursor:
	– (void)deserializeInts:(int *)intBuffer count:(un...

	deserializeInts:count:atIndex:
	–�(void)deserializeInts:(int *)intBuffer count:(un...

	getBytes:
	–�(void)getBytes:(void *)buffer

	getBytes:length:
	–�(void)getBytes:(void *)buffer length:(unsigned i...

	getBytes:range:
	–�(void)getBytes:(void *)buffer range:(NSRange)ran...

	hash
	@protocol NSObject
	–�(unsigned int)hash

	initWithBytes:length:
	–�(id)initWithBytes:(const void *)bytes length:(un...

	initWithBytesNoCopy:length:
	–�(id)initWithBytesNoCopy:(void *)bytes length:(un...

	initWithContentsOfFile:
	–�(id)initWithContentsOfFile:(NSString *)path

	initWithContentsOfMappedFile:
	–�(id)initWithContentsOfMappedFile:(NSString *)pat...

	initWithData:
	–�(id)initWithData:(NSData *)data

	initWithStream:
	–�(id)initWithStream:(NXStream *)stream

	isEqual:
	@protocol NSObject
	–�(BOOL)isEqual:(id)anObject

	isEqualToData:
	–�(BOOL)isEqualToData:(NSData *)otherData

	length
	–�(unsigned int)length

	subdataWithRange:
	–�(NSData *)subdataWithRange:(NSRange)range

	writeToFile:atomically:
	–�(BOOL)writeToFile:(NSString *)path atomically:(B...

	i NSMutableData
	An NSMutableData object stores mutable data in the...
	• A count of the number of bytes in the mutable da...
	• The sequence of bytes contained in the mutable d...
	+ dataWithCapacity: Returns an NSMutableData with ...
	+ dataWithLength: Returns an NSMutableData that co...
	–�mutableBytes A pointer to the bytes in the NSMut...
	–�replaceBytesInRange:withBytes: Replaces a range ...

	–�mutableBytes
	–�setLength:
	allocWithZone
	+ (id)allocWithZone:(NSZone *)zone

	dataWithCapacity:
	+ (id)dataWithCapacity:(unsigned int)aNumItems

	dataWithLength:
	+ (id)dataWithLength:(unsigned int)length

	appendBytes:length:
	–�(void)appendBytes:(const void *)bytes length:(un...

	appendData:
	–�(void)appendData:(NSData *)otherData

	increaseLengthBy:
	–�(void)increaseLengthBy:(unsigned int)extraLength...

	initWithCapacity:
	–�(id)initWithCapacity:(unsigned int)capacity

	initWithLength:
	–�(id)initWithLength:(unsigned int)length

	mutableBytes
	–�(void *)mutableBytes

	replaceBytesInRange:withBytes:
	–�(void)replaceBytesInRange:(NSRange)range withByt...

	resetBytesInRange:
	–�(void)resetBytesInRange:(NSRange)range

	serializeAlignedBytesLength:
	–�(void)serializeAlignedBytesLength:(unsigned int)...

	serializeDataAt:ofObjCType:context:
	–�(void)serializeDataAt:(const void *)data ofObjCT...

	serializeInt:
	–�(void)serializeInt:(int)value

	serializeInt:atIndex:
	–�(void)serializeInt:(int)value atIndex:(unsigned ...

	serializeInts:count:
	–�(void)serializeInts:(int *)intBuffer count:(unsi...

	serializeInts:count:atIndex:
	–�(void)serializeInts:(int *)intBuffer count:(unsi...

	p setData:
	–�(void)setData:(NSData *)aData

	setLength:
	–�(void)setLength:(unsigned int)length

