NSButtonCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding (from NSCell)
NSCopying (from NSCell)
NSObject (from NSObject)

Declared In: AppKit/NSButtonCell.h

Class Description

NSButtonCell is a subclass of NSActionCell used to implement the user interfaces of push buttons,

switches, and radio buttons. It can also be used for any other region of a view that's designed to send a
message to a target when clicked. The NSButton subclass of NSControl uses a single NSButtonCell. To
create groups of switches or radio buttons, use an NSMatrix holding a set of NSButtonCells.

An NSButtonCell is a two-state cell; it's either “off” or “on,” and can be configured to display the two states
differently, with a separate title and/or image for either state. The two states are more often referred to as
“normal” and “alternate.” An NSButtonCell's state is also used as its value, so NSCell methods that set the
value éetIntValue: and so on) actually set the NSButtonCell's state to “on” if the value provided is
non-zero (or non-null for strings), and to “off” if the value is zero or null. Similarly, methods that retrieve
the value return 1 for the “on” or alternate stateifigValue returns an NSString containing a single
character “1”), or O for the “off” or normal statgringValue returns an NSString containing a single
character “0”). You can also use NSCeté&sState: andstate methods to set or retrieve the state directly.
After changing the state, sendiagplay message to show the NSButtonCell’s new appearance. (NSButton
does this automatically.)

An NSButtonCell sends its action message to its target once if its view is clicked and it gets the mouse-down
event, but can also send the action message continuously as long as the mouse is held down with the cursor
inside the NSButtonCell. The NSButtonCell can show that it's being pressed by highlighting in several
ways—for example, a bordered NSButtonCell can appear pushed into the screen, or the image or title can
change to an alternate form while the NSButtonCell is pressed.

An NSButtonCell can also have a key equivalent (like a menu item). If the NSButtonCell is displayed in
the key window, the NSButtonCell gets the first chance to receive events related to key equivalents. This
feature is used quite often in modal panels that have an “OK” button. An NSButtonCell can either display
a graphical image representing the key equivalent, or you can mark the keyboard “mnemonic” character in
the NSButtonCell’s title usingetTitlewWithM nemonic:, setAlter nateTitleWithM nemonic:, or

setAlter nateM nemonicL ocation:.

For more information on NSButtonCell's behavior, see the NSButton and NSMatrix class specifications.



Classes: NSButtonCell

Exceptions

In itsimplementation of the compar e: method (declared in NSCell), NSButtonCell raises an
NSBadComparisonException if the other Cell argument is not of the NSButtonCell class.

Method Types

Setting the titles — alternateMnemonic
— alternateMnemonicLocation
— alternateTitle
— attributedAlternateTitle
— attributedTitle
— setAlternateMnemonicLocation:
— setAlternateTitle:
— setAlternateTitleWithMnemonic:
— setAttributedAlternateTitle:
— setAttributedTitle:
— setFont:
— setTitle:
— setTitleWithMnemonic:
— title

Setting the images — alternatelmage
—imagePosition
— setAlternatelmage:
— setimagePosition:

Setting the repeat interval — getPeriodicDelay:interval:
— setPeriodicDelay:interval:
Setting the key equivalent — keyEquivalent
— keyEquivalentFont

— keyEquivalentModifierMask

— setKeyEquivalent:

— setKeyEquivalentModifierMask:
— setKeyEquivalentFont:

— setKeyEquivalentFont:size:

Modifying graphic attributes — imageDimsWhenDisabled
—isOpaque
— isTransparent
— setimageDimsWhenDisabled:
— setTransparent:



Displaying — highlightsBy
— setHighlightsBy:
— setShowsStateBy:
— setButtonType:
— showsStateBYy:

Simulating a click — performClick:

Instance Methods

alternatelmage
— (NSImage *3lter natel mage

Returns the image that appears on the button when it’s in its alternate stété,tbere is no alternate
image. Note that some button types don't display an alternate image. Buttons don't display images by
default.

See also: —image(NSCdl), — imagePosition— keyEquivalent, — setButtonType:

alternateMnemonic
— (NSString *plter nateM nemonic

Returns the character in the alternate title (the title displayed on the button cell when it's in its alternate
state) that's marked as the “keyboard mnemonic.” If the alternate title doesn’t have a keyboard mnemonic,
the empty string is returned.

See also: — alternateMnemonicLocation — mnemonic(NSCell), setAlternateTitleWithMnemonic:

alternateMnemonicLocation
— (unsignedlter nateM nemonicL ocation

Returns an unsigned integer indicating the character in the alternate title (the title displayed on the button
cell when it's in its alternate state) that's marked as the “keyboard mnemonic.” If the alternate title doesn’t
have a keyboard mnemonic, NSNotFound is returned.

See also: — alternateMnemonic — mnemonicLocation(NSCell), setAlternateTitleWithMnemonic:



Classes: NSButtonCell

®

alternateObjectValue
— (id)alter nateObjectValue

alternateTitle
— (NSString *plternateTitle

Returns the string that appears on the button when it’s in its alternate state, or the empty string if the button
doesn'’t display an alternate title. Note that some button types don'’t display an alternate title. By default, a
button’s alternate title is “Button”.

See also: — alternateMnemonig — attributedAlternateTitle , — setButtonType; —title

attributedAlternateTitle
— (NSAttributedString *attributedAlter nateTitle

Returns the string that appears on the button when it's in its alternate state as an NSAttributedString, or an
empty attributed string if the button doesn’t display an alternate title. Note that some button types don't
display an alternate title. By default, a button’s alternate title is “Button”.

See also: — alternateMnemonic — attributedTitle , — setButtonType:

attributedTitle

— (NSAttributedString *attributedTitle
Returns the string that appears on the button when it's in its normal state as an NSAttributedString, or an
empty attributed string if the button doesn’t display a title. A button’s title is always displayed if the button

doesn’t use its alternate contents for highlighting or displaying the alternate state. By default, a button’s title
is “Button”.

See also: — attributedAlternateTitle , — mnemonic(NSCell), — setButtonType:

getPeriodicDelay:interval:
— (void)getPeriodicDelay: (float *)delay interval: (float *)interval
Returns by reference the delay and interval periods for a continuous blatagns the amount of time (in

seconds) that the button will pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.



Default delay and interval values are taken from a user’s defaults (60 seconds maximum for each); if the
user hasn't specified default valudslay defaults to 0.4 seconds aimterval defaults to 0.075 seconds.

See also: —isContinuous (NSCell)

highlightsBy
— (int)highlightsBy

Returns the logical OR of flags that indicate the way the button cell highlights when it receives a
mouse-down event. SeetHighlightsBy: for the list of flags.

See also: —showStateBy

imageDimsWhenDisabled
— (BOOL)imageDimswWhenDisabled

Returns whether the button cell’'s image and text appear “dim” when the button cell is disabled. By default,
all button types except NSSwitchButton and NSRadioButton do dim when disabled. When
NSSwitchButtons and NSRadioButtons are disabled, only the associated text dims.

See also: — setButtonType:

imagePosition
— (NSCelllmagePositioithagePosition

Returns the position of the button’s image relative to its title. The return value is one of the following (these
are defined ilNSCell.h):

Return Value Meaning

NSNolmage The button doesn’t display an image (this is the default)
NSImageOnly The button displays an image, but not a title
NSImageLeft The image is to the left of the title

NSImageRight The image is to the right of the title

NSImageBelow The image is below the title

NSImageAbove The image is above the title

NSImageOverlaps The image overlaps the title



Classes: NSButtonCell

If thetitleisabove, below, or overlapping theimage, or if thereisnoimage, thetext ishorizontally centered
within the button.

See also: —satButtonType:, — setimage:(NSCdll), — setTitle:

isOpaque
— (BOOL)sOpaque

Returns YES if the button cell draws over every pixel in its frame, NO if not. The button cell is opaque only
if it isn’t transparent and if it has a border.

See also: —isTransparent

isTransparent
— (BOOL)isTransparent

Returns YES if the button is transparent, NO otherwise. A transparent button never draws itself, but it
receives mouse-down events and tracks the mouse properly.

See also: — isOpaque

keyEquivalent
— (NSString *keyEquivalent

Returns the key-equivalent character of the button, or the empty string if one hasn’t been defined. Buttons
don’t have a default key equivalent.

See also: — keyEquivalentFont, —performKeyEquivalent:

keyEquivalentFont
— (NSFont *keyEquivalentFont

Returns the font used to draw the key equivalentilafthe button cell doesn’t have a key equivalent. The
default font is the same as that used to draw the title.

See also: — setFont:



keyEquivalentModifierMask
— (unsigned inReyEquivalentM odifier M ask

Returns the mask indicating the modifier keys that are applied to the button’s key equivalent. Mask bits are
defined inNSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: — keyEquivalent:

performClick:

— (void)erformClick:(id)sender
Simulates the user’s clicking the button with the mouse. This method essentially highlights the button,
sends the button’s action message to the target object, and then unhighlights the button. If an exception is

raised while the target object is processing the action message, the button is unhighlighted before the
exception is propagated outmdr formClick:.

setAlternatelmage:
— (void)setAlter natel mage: (NSImage *)mage

Sets the image that appears on the button when it's in its alternate stagetand, if necessary, redraws
the contents of the button. Note that some button types don't display an alternate image.

See also: —sSetlmage: (NSCell), —setButtonType:

setAlternateMnemonicLocation:
— (void)setAlter nateM nemonicL ocation: (unsignedjocation

Sets the character in the alternate title (the title displayed on the button cell when it's in its alternate state)
that's to be marked as the “keyboard mnemonic.” The character specifiechtign will be underlined;

location can be any integer from 0 to 254. If you don’t want the alternate title to have a keyboard mnemonic,
specify a location of NSNotFound.

setAlter nateM nemonicL ocation: doesn’t cause the button cell to be redisplayed.

See also;: — setAlternateTitleWithMnemonic:



Classes: NSButtonCell

setAlternateTitle:
— (void)setAlternateTitle:(NSString *aString

Sets the title that's displayed on the button when it's in its alternate s&gitw. Note that some button
types don't display an alternate title.

See also: — setAlternateMnemonicLocation; — setAlternateTitleWithMnemonic:, —setTitle:,
—satButtonType:, —setFont:

setAlternateTitleWithMnemonic:
— (void)setAlter nateTitleWithM nemonic: (NSString *)aString

Sets the title that is displayed on the button cell when it's in its alternate st@terig, taking into account
the fact that an embedded “&” character is not a literal but instead marks the alternate state’s “keyboard
mnemonic.” The character in the title that immediately follows the “&” character will be underlined.

If necessarysetAlter nateTitleWithM nemonic: redraws the button cell. Note that some button types don’t
display an alternate title.

See also: — setAlternateMnemonicLocation; — setTitleWithMnemonic:

setAttributedAlternateTitle:
— (void)setAttributedAlter nateTitle: (NSAttributedString *aString

Sets the string that appears on the button when it's in its alternate state to the attributegtstgndlote
that some button types don't display an alternate title.

See also: — setAlternateMnemonicLocation; — setAlternateTitleWithMnemonic:,
—setAttributedTitle:, —setButtonType:, —setFont:

setAttributedTitle:
— (void)setAttributedTitle:(NSAttributedString *aString
Sets the string that appears on the button when it's in its normal state to the attributeBstriggnd

redraws the button. The title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: —satAttributedAlternateTitle:, —setButtonType:, —setFont:, — setMnemonicLocation:
(NSCd)



setButtonType:
— (void)setButtonType: (NSButtonTypeaType

Sets how the button highlights while pressed and how it shows itssst&ettonType: redisplays the
button before returning.

The types available are for the most common button types, which are also accessible in Interface Builder;
you can configure different behavior with thetHighlightsBy: andsetShowsStateBy: methods.

aType can be one of eight constants:



Classes: NSButtonCell

10

Button Type
NSMomentaryLight

NSMomentaryPushButton

NSMomentaryChangeButton

NSPushOnPushOffButton

NSONOffButton

NSToggleButton

NSSwitchButton

NSRadioButton

Description

While the button is held down it's shown as “lit.” This type of
button is best for simply triggering actions, as it doesn’t show its
state; it always displays its normal image or title. This option is
called “Momentary Light” in Interface Builder’s Button
Inspector. This is the default button type.

While the button is held down it's shown as “lit,” and also
“pushed in” to the screen if the button is bordered. This type of
button is best for simply triggering actions, as it doesn’t show its
state; it always displays its normal image or title. This option is
called “Momentary Push” in Interface Builder’s Button
Inspector.

While the button is held down, the alternate image and alternate
title are displayed. The normal image and title are displayed
when the button isn’t pressed. This option is called “Momentary
Change” in Interface Builder’s Button Inspector.

The first click both highlights and causes the button to be
“pushed in” if the button is bordered. A second click returns it
to its normal state. This option is called “Push On/Push Off” in
Interface Builder’'s Button Inspector.

The first click highlights the button. A second click returns it to
the normal (unhighlighted) state. This option is called “On/Off”
in Interface Builder’s Button Inspector.

The first click highlights the button, while a second click returns
it to its normal state. Highlighting is performed by changing to
the alternate title or image and showing the button as “pushed
in” if the button is bordered. This option is called “Toggle” in
Interface Builder’s Button Inspector.

This is a variant of NSToggleButton that has no border, with the
default image set to “NSSwitch,” and the alternate image set to
“NSHighlightedSwitch” (these are system bitmaps). This type
of button is available as a separate palette item in Interface
Builder.

Like NSSwitchButton, but the default image is set to
“NSRadioButton” and the alternate image is set to
“NSHighlightedRadioButton” (these are system bitmaps). This
type of button is available as a separate palette item in Interface
Builder.



See also: — setAlternatelmage; —setButtonType:, — setimage:(NSCell)

setFont:
— (void)setFont: (NSFont *fontObj

Sets the font used to display the title and alternate title. Does nothing if the button cell has no title or
alternate title.

If the button cell has a key equivalent, its font is not changed, but the key equivalent’s font size is changed
to match the new title font.

See also: — Font (NSCell), —setK eyEquivalentFont:, —setK eyEquivalentFont:size:

setHighlightsBYy:
— (void)setHighlightsBy: (int)aType

Sets the way the button cell highlights itself while presa@gpe can be the logical OR of one or more of
the following constants:

NSNoCellMask The button cell doesn’t change. This flag is ignored if any others
are set iraType.

NSPushInCellMask The button cell “pushes in” when pressed if it has a border. This
is the default behavior.

NSContentsCellMask The button cell displays its alternate icon and/or title.

NSChangeGrayCellMask The button cell swaps the “control color” (NSColor’'s

controlColor) and white pixels on the its background and icon.

NSChangeBackgroundCellMask Same as NSChangeGrayCellMask, but only background pixels
are changed.

If both NSChangeGrayCellMask and NSChangeBackgroundCellMask are specified, both are recorded, but
which behavior is used depends on the button cell’'s image. If the button has no image, or if the image has
no alpha (transparency) data, NSChangeGrayCellMask is used. If the image does have alpha data,
NSChangeBackgroundCellMask is used; this allows the color swap of the background to show through the
image’s transparent pixels.

See also: — SetShowsStateBy:

11



Classes: NSButtonCell

12

$ setimageDimsWhenDisabled:

— (void)setl mageDimsWhenDisabled: (BOOL)flag

Sets whether the button cell’'s image and text appear “dim” when the button cell is disabled. By default, all
button types except NSSwitchButton and NSRadioButton do dim when disabled. When NSSwitchButtons
and NSRadioButtons are disabled, only the associated text associated dims. The default setting for this
condition is reasserted whenever you inveitButtonType:, so be sure to specify the button cell's type
before you invokesetl mageDimsWhenDisabled:.

setlmagePosition:
— (void)setl magePosition: (NSCelllmagePositiom@Position

Sets the position of the button’s image relative to its title. SeiendgePosition method description for a
listing of possible values f@Position.

setKeyEquivalent:

— (void)setK eyEquivalent: (NSString *)aKeyEquivalent
Sets the key equivalent character of the button, and redraws the button’s inside if it displays a key equivalent
instead of an image. The key equivalent isn’t displayed if the image position is set to NSNolmage,

NSImageOnly or NSImageOverlaps; that is, the button must display both its title and its “image” (the key
equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate imdgthtn set the key equivalent,
then set the image position.

See also: —performKeyEquivalent:, —setAlter natel mage:, —setimage: (NSCell), —setl magePosition:,
— setKeyEquivalentFont:

setKeyEquivalentFont:
— (void)setK eyEquivalentFont: (NSFont *fontObj

Sets the font used to draw the key equivalent, and redisplays the button cell if necessary. Does nothing if
the button cell doesn’t have a key equivalent associated with it. The default font is the same as that used to
draw the title.

See also: — setFont:



setKeyEquivalentFont:size:
— (void)setK eyEquivalentFont: (NSString *fontName size: (float)fontSze

Sets by name and size the font used to draw the key equivalent, and redisplays the button cell if necessary.
Does nothing if the button cell doesn’t have a key equivalent associated with it. The default font is the same
as that used to draw the title.

See also: — setFont:

setKeyEquivalentModifierMask:
— (void)setK eyEquivalentM odifier M ask: (unsigned intnask
Sets the mask indicating the modifier keys to be applied to the button’s key equivalent. Mask bits are

defined inNSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: — setKeyEquivalent:

setPeriodicDelay:interval:

— (void)setPeriodicDelay: (float)delay inter val: (float)interval
Sets the message delay and interval for the button. These two values are used if the button is configured (by
asetContinuous. message) to continuously send the action message to the target object while tracking the
mousedelay is the amount of time (in seconds) that a continuous button will pause before starting to

periodically send action messages to the target oljgetval is the amount of time (also in seconds)
between those messages.

The maximum value allowed for bodlelay andinterval is 60.0 seconds; if a larger value is supplied, it's
ignored and 60.0 seconds is used.

See also: —setContinuous (NSCell)

13



Classes: NSButtonCell

setShowsStateBy:
— (void)set ShowsStateBYy: (int)aType

Sets the way the button cell indicates its alternate stBype should be the logical OR of one or more of
the following constants:

NSNoCellMask The button cell doesn’t change. This mask is ignored if any
others are set iaType. This is the default.

NSContentsCellMask The button cell displays its alternate icon and/or title.

NSChangeGrayCellMask The button cell swaps the “control color” (NSColor’'s

controlColor) and white pixels on its background and icon.

NSChangeBackgroundCellMask Same as NSChangeGrayCellMask, but only the background
pixels are changed.

If both NSChangeGrayCellMask and NSChangeBackgroundCellMask are specified, both are recorded, but
the actual behavior depends on the button cell’s image. If the button has no image, or if the image has no
alpha (transparency) data, NSChangeGrayCellMask is used. If the image exists and has alpha data,
NSChangeBackgroundCellMask is used; this allows the color swap of the background to show through the
image’s transparent pixels.

See also: — setHighlightsBy:

setTitle:
— (void)set Title:(NSString *)aString
Sets the title displayed by the button cell when in its normal staf@riog and, if necessary, redraws the

button’s contents. This title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: —satAlternateTitle:, —setButtonType:, —setFont:, — setTitleWithMnemonic:

\9 setTitleWithMnemonic:
— (void)setTitleWithM nemonic: (NSString *pString
Sets the title displayed on the button cell when it’s in its normal stafrtag, taking into account the fact
that an embedded “&” character is not a literal but instead marks the normal state’s “keyboard mnemonic.”

If necessarysetTitleWithM nemonic: redraws the button cell. This title is always shown on buttons that
don’t use their alternate contents when highlighting or displaying their alternate state.

See also: — setAlternateTitleWithMnemonic:, — setMnemonicLocation:(NSCell),
— setTitleWithMnemonic: (NSCell)

14



setTransparent:
— (void)set Transparent:(BOOL)flag

Sets whether the button is transparent, and redraws the butegnigf NO and the button wasn't already
transparent. A transparent button tracks the mouse and sends its action, but doesn’t draw. A transparent
button is useful for sensitizing an area on the screen so that an action gets sent to a target when the area
receives a mouse click.

showsStateBy
— (int)showsStateBy

Returns the logical OR of flags that indicate the way the button cell shows its alternate state. See
setShowsStateBy: for the list of flags.

See also: —highlightsBy

title
— (NSString *jitle

Returns the title displayed on the button when it’s in its normal state (this title is always displayed if the
button doesn’t use its alternate contents for highlighting or displaying the alternate state). Returns the empty
string if the button doesn't display a title. By default, a button’s title is “Button”.

See also: —alternateTitle, — mnemonic — mnemonicLocation —setButtonType:

15



