
1

NSMenu 

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSMenu.h 

Class Description

This class defines an object that manages an application’s menus. An NSMenu object displays a list of items 
that a user can choose from. When an item is clicked, it may either issue a command directly or bring up 
another menu (a submenu) that offers further choices. An NSMenu object’s choices are implemented with 
NSMenuItem objects. Each menu item can be configured either to send its action message to a target or to 
open a submenu.

It’s typically more convenient to use Interface Builder to construct your application’s menus—see Interface 
Builder’s Help for more information about using this application. NSMenu and NSMenuItem provide you 
with additional flexibility to dynamically contruct or modify your application’s menus at run time.

Exactly one NSMenu created by the application is designated as the main menu for the application (with 
NSApplication’s setMainMenu: method). Depending on the user interface of the host system, the main 
menu displays itself as a free standing window with a title bar and a list of menu items, as a menu bar with 
no title, or in some other form. The form a menu takes in the user interface may limit which methods in the 
class’s interface actually have an effect; for example, on Microsoft Windows submenus can’t be detached. 
In all cases, however, methods return values that reflect their actual state or ability (isTornOff always 
returns NO on Microsoft Windows, for example).

A free standing main menu is displayed on top of all other windows whenever the application is active, and 
can be moved by the user by dragging its title bar. When a submenu is opened, it appears attached to the 
right of its supermenu with a title bar, allowing the user to drag it away from its supermenu so that it remains 
on the screen. A detached submenu displays a close button to allow the user to dismiss it (the main menu, 
of course, never displays a close button). If the user moves a menu window while a submenu is attached, 
the submenu follows its supermenu. If a menu window lies partly off-screen, when the user tracks the 
mouse pointer to the edge of the screen, by holding down the mouse button and dragging the mouse pointer, 
the menu temporarily shifts onto the screen (along with any attached super- or submenus), allowing the user 
to access all of its items.

Where the main menu appears as a menu bar, it doesn’t display a title, nor do its submenus. The submenus 
of a menu bar are typical drop-down menus, and submenus of these appear to the right or left, depending 
on the available screen space. Submenus of a menu bar typically can’t be detached by the user.



2

Classes: NSMenu

NSMenu supports the assignment of keyboard equivalents to its menu items. On Microsoft Windows, the 
class also supports the assignment of mnemonics to menu items. Any menu item, except those that open 
submenus, can have a key equivalent, but whether they should depends on the host system’s user interface 
guidelines. Unlike keyboard equivalents, mnemonics only function when their menu is active, and they can 
be assigned to menu items which open submenus.

See the NSMenuItem protocol, NSMenuItem class, and NSMenuActionResponder protocol specifications 
for more information.

Method Types

Controlling allocation zones + menuZone
+ setMenuZone:

Creating an NSMenu – initWithTitle:

Setting up menu commands – addItemWithTitle:action:keyEquivalent:
– insertItemWithTitle:action:keyEquivalent:atIndex:
– removeItem:
– itemArray

Finding menu items – itemWithTag:
– itemWithTitle:

Managing submenus – setSubmenu:forItem:
– submenuAction:
– attachedMenu
– isAttached
– isTornOff
– locationForSubmenu:
– supermenu

Enabling and disabling menu items – autoenablesItems
– setAutoEnablesItems:
– update

Handling keyboard equivalents – performKeyEquivalent:

Updating menu layout – menuChangedMessagesEnabled
– setMenuChangedMessagesEnabled:
– sizeToFit

Displaying context-sensitive help – helpRequested:



3

Class Methods

menuZone
+ (NSZone *)menuZone

Returns the zone from which NSMenus should be allocated, creating it if necessary.

setMenuZone:
+ (void)setMenuZone:(NSZone *)zone

Sets the zone from which NSMenus should be allocated to zone.

Instance Methods

addItemWithTitle:action:keyEquivalent:
– (id <NSMenuItem>)addItemWithTitle:(NSString *)aString 

action:(SEL)aSelector 
keyEquivalent:(NSString *)keyEquiv

Adds a new item with title aString, action aSelector, and key equivalent keyEquiv to the end of the menu. 
Returns the new menu item.

attachedMenu
– (NSMenu *)attachedMenu

Returns the menu currently attached to the receiver or nil if there’s no such object.

autoenablesItems
– (BOOL)autoenablesItems

Returns whether the receiver automatically enables and disables its menu items based on the 
NSMenuActionResponder informal protocol. By default NSMenus do autoenable their menu items. See 
that protocol specification for more information.

See also: – setAutoenablesItems:



4

Classes: NSMenu

� helpRequested:
– (void)helpRequested:(NSEvent *)event

Overridden by subclasses to implement specialized context-sensitive help behavior by causing the Help 
manager to display the help associated with the receiver. Never invoke this method directly.

See also: – showContextHelpForObject:locationHint: (NSHelpManager)

initWithTitle:
– (id)initWithTitle:(NSString *)aTitle

Initializes and returns a new menu using aTitle for its title. This method is the designated initializer for the 
class. Returns self.

insertItemWithTitle:action:keyEquivalent:atIndex:
– (id <NSMenuItem>)insertItemWithTitle:(NSString *)aString 

action:(SEL)aSelector 
keyEquivalent:(NSString *)keyEquiv 
atIndex:(unsigned int)index

Adds a new item at index having the title aString, action aSelector, and key equivalent keyEquiv. Returns 
the new menu item.

isAttached
– (BOOL)isAttached

Returns YES if the receiver is currently attached to another menu, NO otherwise. This method always 
returns NO on Microsoft Windows.

isTornOff
– (BOOL)isTornOff

Returns NO if the receiver is off-screen or attached to another menu (or if it’s the main menu), YES 
otherwise. This method always returns NO on Microsoft Windows.



5

itemArray
– (NSArray *)itemArray

Returns the receiver’s menu items.

ItemWithTag:
– (id <NSMenuItem>)itemWithTag:(int)aTag

Returns the first menu item in the receiver that has aTag as its tag.

itemWithTitle:
– (id <NSMenuItem>)itemWithTitle:(NSString *)aString

Returns the first menu item in the receiver that has aString as its title.

locationForSubmenu:
– (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu

On Mach, returns the screen coordinates where aSubmenu will be displayed when it’s opened as a submenu 
of the receiver (regardless of its current location). On Microsoft Windows, the coordinates that are reutrned 
are not meaningful.

� menuChangedMessagesEnabled
– (BOOL)menuChangedMessagesEnabled

Returns YES if messages are being sent to the application’s windows upon each change to the menu, NO 
otherwise.

See also: – setMenuChangedMessagesEnabled:

performKeyEquivalent:
– (BOOL)performKeyEquivalent:(NSEvent *)theEvent

Searches for a menu item in the receiver, or on Microsoft Windows in any of its submenus as well, whose 
key equivalent exactly matches the character, or character sequence, of the keyboard event theEvent and 
whose modifier flags match the key-equivalent modifier mask in theEvent, and causes that item to send its 
action message.



6

Classes: NSMenu

removeItem:
– (void)removeItem:(id <NSMenuItem>)anItem

Removes anItem from the receiver.

setAutoenablesItems:
– (void)setAutoenablesItems:(BOOL)flag

Controls whether the receiver automatically enables and disables its menu items based on the 
NSMenuActionResponder informal protocol. If flag is YES, menu items are automatically enabled and 
disabled. If flag is NO, menu items are not automatically enabled or disabled. See the 
NSMenuActionResponder protocol specification for more information.

See also: – autoenablesItems

� setMenuChangedMessagesEnabled:
– (void)setMenuChangedMessagesEnabled:(BOOL)flag

Controls whether the receiver sends messages to the application’s windows upon each menu change. To 
avoid the “flickering” effect of many successive menu changes, invoke this method with NO as flag, make 
changes to the menu, and invoke the method again with YES as flag. This has the effect of batching changes 
and having them applied all at once.

See also: – menuChangedMessagesEnabled

setSubmenu:forItem: 
– (void)setSubmenu:(NSMenu *)aMenu forItem:(id <NSMenuItem>)anItem

Makes aMenu a submenu controlled by anItem, automatically setting anItem’s action to submenuAction:.

setTitle:
– (NSString *)setTitle:(NSString *)aString

Sets the receiver’s title to aString.

See also: – title



7

sizeToFit
– (void)sizeToFit

Resizes the receiver to exactly fit its items. On Microsoft Windows, this method has no effect.

submenuAction:
– (void)submenuAction:(id)sender

This is the action method assigned to menu items that open submenus. Never invoke this method directly.

supermenu
– (NSMenu *)supermenu

Returns the receiver’s supermenu or nil if it has none.

title
– (NSString *)title

Returns the receiver’s title.

See also: – setTitle:

update
– (void)update

Enables or disables the receiver’s menu items based on the NSMenuActionResponder informal protocol 
and sizes the menu to fit its current menu items if necessary. See the NSMenuActionResponder protocol 
specification for more information.


