NSWindow

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSWindow.h

Class at a Glance

Purpose

An NSWindow manages an on-screen window, coordinating the display and event handling for itsNSViews.
Interface Builder alows you to create and set up NSWindows, but there are many things you may wish to do
programmatically aswell.

Principal Attributes
« Manages a view hierarchy » Uses a delegate
« Distributes events to view objects ¢ Provides a field editor to view objects

Creation
Interface Builder
— initwithContentRect:styleMask:backing:defer: Designated initializer.

Commonly Used Methods

— makeKeyAndOrderFront: Move the NSWindow to the front and makes it the key window.

— makeFirstResponder: Sets the first responder in the NSWindow.

— fieldEditor:forObject: Returns the shared text object for the NSWindow.

— setContentView: Sets the root-level NSView in the NSWindow.

— representedFilename Returns the filename whose contents the NSWindow presents.

— setDocumentEdited: Sets whether the NSWindow’s represented file needs to be saved.
— setTitle: Sets the title of the NSWindow.

— setTitleWithRepresentedFilename: Sets the title of the NSWindow in a readable format for filenames.

Classes: NSWindow

Class Description

The NSWindow class defines objects that manage and coordinate the windows that an application displays

on the screen. A single NSWindow object correspondsto at most one on-screen window. The two principal
functions of NSWindow are to provide an areain which NSViews can be placed, and to accept and

distribute, to the appropriate NSViews, events that the user instigates through actions on the mouse and
keyboard. Note that the term window sometimes refers to the Application Kit object and sometimes to the
Window Server’s PostScript window device; which meaning is intended is made clear in context. The
Application Kit also defines an abstract subclass of NSWindow—NSPanel—that adds behavior more
appropriate for auxiliary windows.

You typically set windows up using Interface Builder, which allows you to position them, set up many of
their visual and behavioral attributes, and lay out views on them. The programmatic work you do with
windows more often involves bringing them on and off the screen; changing dynamic attributes such as the
window'’s title; running modal windows to restrict user input; and assigning a delegate that can monitor
certain of its actions, such as closing and resizing.

Window Anatomy

An NSWindow is defined by ftame rectangle that encloses the entire window, including its title bar,

border, and other peripheral elements (such as the resize bar on OPENSTEP for Mach) cantiifty a
rectangle that encloses just its content area. Both rectangles are specified in the screen coordinate system
and restricted to integer values. The frame rectangle establishes the NSWitahavetor dinate system.

This coordinate system is always aligned with and measured in the same increments as the screen
coordinate system (in other words, the base coordinate system can’t be rotated or scaled). The origin of the
base coordinate system is the bottom left corner of the NSWindow’s frame rectangle.

You create an NSWindow programmatically through one oirtit@/ithContentRect:... methods by

specifying, among other attributes, the size and location of its content rectangle. The frame rectangle is
derived from the dimensions of the content rectangle. Various sections below describe other attributes you
can specify at initialization and afterward.

When it's created, an NSWindow automatically creates two NSViews: An ofragueview that fills the

frame rectangle and draws the border, title bar, other peripheral elements, and background, and a
transparentontent view that fills the content rectangle. The frame view and its peripheral elements are
private objects that your application can’t access directly. The content view is the “highest” accessible
NSView in the NSWindow; you can replace the default content view with an NSView of your own creation
using thesetContentView: method. The NSWindow determines the placement of the content view; you
can't position it using NSView’setFrame... methods, but must use NSWindow’s placement methods,
described below under “Windows on the Screen.”

You add other NSViews to the NSWindow as subviews of the content view, or as subviews of any of the
content view’s subviews, and so on, through NSViesddSubview: method. This tree of NSViews is

called the NSWindow'siew hierarchy. When an NSWindow is told to display itself, it does so by sending
display... messages to the top-level NSView in its view hierarchy. Because displaying is carried out in a

determined order, the content view (which is drawn first) may be wholly or partially obscured by its
subviews, and these subviews may be obscured by their subviews (and so on).

Window Styles

The peripheral elements that an NSWindow displays define its style. Though you can’t access and
manipulate them directly, you can determine at initialization whether an NSWindow has them by providing
a style mask to thaitWithContentRect: styleM ask:backing: defer: method. There are four possible style
elements, specifiable by combining their mask values using the C bitwise OR operator:

Element Mask Value

A title bar NSTitledWindowMask

A close button NSClosableWindowMask

A miniaturize button NSMiniaturizableWindowMask
A resize bar, border, or box NSResizableWindowMask

You can also specify NSBorderlessWindowMask, in which case none of these accoutrements is used.

Windows on the Screen

NSWindows can be placed on the screen in three dimensions. Besides horizontal and vertical placement,
NSWindows are ordered back-to-front in several distevels, which group windows of similar type and
purpose so that the more “important” ones appear above those less so. Placing an NSWindow on the screen
is accomplished with thestFrame:display: method and its variantsgtFrameOrigin: and

setFrameT opL eftPoint:. Ordering takes place in two wagstL evel: puts an NSWindow into a group,

such as that for standard windows, floating windows (for example, palettes and some inspector panels),
menus, and so onrder Window:relativeT o: orders an NSWindow within its level above or below

another. Convenience methods for ordering inclndikeK eyAndOrder Front:, order Front: and

orderBack:, as well a®rderOut:, which removes an NSWindow from the screen. iBiésible method

tells whether an NSWindow is on-screen or off. You can also set a window to order out automatically when
its application isn't active usingegtHidesOnDeactivate:.

NSWindow offers several means of constraining and adjusting window placesibhinSize: and

setMaxSize: limit the user’s ability to resize the NSWindow (you can still set it to any size
programmatically). SimilarlysetAspectRatio: keeps a window’s width and height at the same proportions

as the user resizes it, agglResizel ncrements. makes the window resize in discrete amounts larger than

a single pixelconstrainFrameRect T oScreen: adjusts a proposed frame rectangle so that it lies on the
screen in such a way that the user can move and resize a window. Note that any NSWindow with a title bar
automatically constrains itself to the screeascadeT opL eftFromPoint: shifts the top left point by an

amount that allows one NSWindow to be placed relative to another so that both their title bars are visible.
Finally, thecenter method places an NSWindow in the most prominent location on the screen, one suitable
for important messages and attention panels.

Classes: NSWindow

Closely related to window ordering isthe idea of opening or closing an NSWindow. Normally, opening is
accomplished simply by ordering the NSWindow above or below another that's on-screen. Closing a
window involves explicit use of the either ttlese method, which simply removes the NSWindow from

the screen, goerformClose:, which highlights the close button as though the user clicked it. Closing an
NSWindow involves at least ordering it out, but adds the possibility of disposing of it altogether. The
setReleasedWhenClosed: method sets whether an NSWindow releases itself when sent a close message.
An NSWindow's delegate is also notified when it's about to close, as described under “Notifications and
the NSWindow’s Delegate.”

Miniaturizable windows can be removed from the screen and replaced by a smaller counterpart, whether a
freestanding miniwindow or, on Microsoft Windows, a button in the task bamitieturize: and
deminiaturize: methods reduce and reconstitute an NSWindowpanfdr mMiniaturize: simulates the

user clicking on the NSWindow’s miniaturize button. You can also set the image and title displayed in a
freestanding miniwindow by sendisgtM iniwindowl mage: andsetMiniwindowTitle: messages to the
NSWindow object.

An NSWindow can store its placement in the user defaults system, so that it appears in the same location
the next time the user starts the application. SBlveFrameUsingName: method stores the frame

rectangle, andetFrameUsingName: sets it from the value in user defaults. You can also use the
setFrameAutosaveName: method to have an NSWindow save the frame rectangle any time it changes. To
expunge a frame rectangle from the defaults system, use the class neatbeeFrameUsingName:.

Titles and Represented Files

A titled NSWindow can display an arbitrary title or one derived from a filensetigtle: puts an arbitrary
string on the title basetTitleWithRepresentedFilename: formats a filename in the title bar in a readable
format (which varies with the platform), and associates the NSWindow with that file. You can set the
associated file without changing the title ussatRepresentedFilename:. You can use the association
between the NSWindow and the file in any way you see fit. One convenience offered by NSWindow is
marking the file as being edited, so that you can prompt the user to save it on closing the window. The
method for marking this isstDocumentEdited:. When the window closes, its delegate can check it with
isDocumentEdited to see whether the document needs to be saved.

Most OPENSTEP applications include a submenu that displays the titles of windows, calliéctitive

menu. This submenu automatically lists windows that have a title bar and are resizable, and that can become
the main window (as described under “Event Handling”). When you change an NSWindow's title, this
change is also automatically reflected in the Window menu. You can exclude a window that would
otherwise be listed by sending iseiExcludedFromWindowsM enu: message.

Window Device Attributes

Nearly every NSWindow has a corresponding PostScript window device in the Window Server. The
window device holds the NSWindow’s drawn image, and has two attributes determined by the Window
Server and five attributes that the NSWindow controls. The Window Server assigns the window device a

unique identifier (within an application). Thisis the window number, and it's returned by the

windowNumber method. Each window also has a PostScript graphics state that most NSViews share for
drawing (NSViews can create their own as well). §state method returns its identifier. The five

attributes under direct NSWindow control are:

« Where the drawn image is stored, called the winddacking

* When the window device is created

» Whether the window device persists when the window is off-screen
* How much memory is used for each pixel (also calledigpth limit)

» Whether the depth limit changes with the screen capacity

A window device’s backing is set when the NSWindow is initialized, and can be one of three types. A
buffered window device renders all drawing into a display buffer and then flushes it to the screen. This
produces very smooth display, but can require significant amounts of memory. Buffered windows are best
for displaying material that must be redrawn often, such as texetaidsed window device also uses a

buffer, but draws directly to the screen where possible and to the buffer for any portions that are obscured.
A nonretained window device has no buffer at all, and must redraw portions as they’re exposed. Further,
this redrawing is suspended when the NSWindow's display mechanism is preempted. For example, if the
user drags a window across a nonretained window, the nonretained window is “erased” and isn’'t redrawn
until the user releases the mouse. Both retained and nonretained windows are also subject to a flashing
effect as individual drawing operations are performed, but their results do get to the screen more quickly
than those of buffered windows. You can change the backing type between buffered and retained after
initialization using thesetBacking: method.

The last argument imitWithContentRect: styleM ask:backing:defer: specifies whether the NSWindow
creates its window device immediately, or only when it's ordered on-screen. Deferring creation of the
window device can offer some performance gain for windows that aren’t displayed immediately, as it
reduces the amount of work that needs to be performed up front. This is particularly useful when creation
of the NSWindow itself can’t be deferred or when an NSWindow is needed for purposes other than
displaying content. Submenus with key equivalents, for example, must exist for the key equivalents to
work, but may never actually be displayed.

Memory can also be saved by destroying the window device when the NSWindow is ordered off-screen.
ThesetOneShot: method controls this behavior. One-shot window devices exist only when their
NSWindows are ordered on-screen.

Like the display hardware, a window device’s buffer has a depth, or a limit to the memory allotted each
pixel. Buffered and retained windows start out with a default window depth of 2 bits per pixel, and this
depth grows to the window device’s limit as the NSWindow draws richer images (more shades of gray,
more colors). A window device’s depth is set usingsdtBepthLimit: method, which takes as an
argument a window depth limit creating using MfeBestDepth() function.

If an NSWindow draws color into its buffer and there’s a color screen available, the Window Server
automatically promotes the window’s depth (up to its limit). This happens whether or not the window is
actually on a color screen; similarly, if the user drags a window that displays color from a color to a
monochrome screen, it remains at its richer depth. In both cases, the window’s depth is greater than the

Classes: NSWindow

screen can properly display. Keeping a window’s depth at its richest preserves the displayed image, but may
produce undesired results such as dithering on a more limited screen, and does causes slight performance
reduction when the window buffer is deeper than the screen requires. You can set an NSWindow to keep
its depth at the limit of the screen it's on with seeDynamicDepthLimit: method. When it's moved to a

new screen, a window with a dynamic depth limit is redrawn into the newly adjust buffer. Making a
window’s depth limit dynamic overrides the limit set ussatpepthLimit:, and removing the dynamic

limit reverts the static limit to the default.

Window Display and Updating

Display of an NSWindow begins with the drawing performed by its view objects, which accumulates in the
window’s display buffer or appears immediately on the screen. NSWindows, like NSViews, can be
displayed unconditionally or merely marked as needing display, usimijstiiay and

setViewsNeedDisplay: methods, respectively. displayl fNeeded message causes the NSWindow’s

views to display only if they’ve been marked as needing display. Normally, any time an NSView is marked
as needing display the NSWindow makes note of this fact and automatically displays itself shortly after.
This automatic display is typically performed on each pass through the event loop, but can be turned off
using thesetAutodisplay: method. If you turn off autodisplay for an NSWindow, you’re then responsible
for displaying it whenever necessary.

A relating mechanism is that of updating. On each pass through the event loop, the application object
invokes itsupdateWindows method, which sends aipdate message to each NSWindow. Subclasses of
NSWindow can override this method to examine the state of the application and change their own state or
appearance accordingly—enabling or disabling menus, buttons, and other controls based on the object
that's selected, for example.

In addition to display on the screen, an NSWindow can print itself in its entirety, just as an NSView does.
Theprint: method runs the application’s print panel and causes the NSWindow's frame view to print itself.
Thefax: anddataWithEPSInsdeRect: methods behave similarly. See the NSView class specification for
more information on printing.

Event Handling

As described in the NSResponder class specification, most events coming into an application make their
way to a NSWindow in aendEvent: message. A key event is directed at the key window, while a mouse
event is directed at whatever window lies under the cursor. If an event affects the NSWindow directly—
resizing or moving it, for example—it performs the appropriate operation itself and sends messages to its
delegate informing it of its intentions, thus allowing your application to intercede. The window sends other
events up its responder chain from the appropriate starting point: the first responder for a key event, the
view under the cursor for a mouse event. These events are then typically handled by some view object in
the window. See the NSView and NSEvent class specifications for more information on how to intercept
and handle events.

The following sections describe aspects of events not directly related to handling individual events. These
include changing the key and main windows, which is often handled by views that receive mouse events,
but which you must sometimes perform explicitly, such as when opening a new window; changing thefirst
responder by keyboard rather than mouse actions; sharing asingle text object for lightweight editing tasks;
and running amodal event loop around an entire window rather than a single view object.

Changing the Key and Main Windows

Windows aready on screen automatically change their status as the key or main window according to the

user’s actions with the mouse and to how the view clicked handles the mouse event. You can also change
the key and main windows programmatically by sending the relevant window ohjake eyWindow

or makeMainWindow message. This is particularly useful to do when creating a new window. Since this
operation is often combined with ordering the window to the front of the screen, NSWindow defines a
convenience methodjakeK eyAndOrder Front:, that performs both operations.

Not all windows are suitable for acting as the key or main window. For example, a window that merely
displays information, and contains no objects that need to respond to events or action messages, can
completely forgo ever becoming the key window. Similarly, a window that acts as a floating palette of items
that are only dragged out by mouse actions never needs to be the key window. Such a window can be
defined as a subclass of NSWindow that overrides the methnBecomeK eyWindow and

canBecomeM ainWindow to return NO instead of the default of YES. This prevents it from ever becoming
the key or main window. Though NSWindow defines these methods, typically only subclasses of NSPanel
refuse to accept key or main window status.

Keyboard Interface Control

A window’s first responder is often a view object selected by the user clicking on it. For text fields and other
view objects (mainly subclasses of NSControl), an NSWindow also allows the user to select the first
responder with the keyboard using the Tab and Shift keys. NSView defines the methods for setting up and
examining the loop of objects that the user can select in this manner. A view that’s the first responder is
called thekey view, and the views that can become the key view in a window are linked together in the
window's key view loop. You normally set up the key view loop using Interface Builder, establishing
connections between timextK eyView outlets of views in the window, and setting the window’s
initial Fir ssResponder outlet to the view that you want selected when the window is first placed on-screen.

In addition to the key view loop, a window can have a default button cell, which uses the Return (or Enter)
key as its key equivalersetDefaultButtonCell: establishes this button cell; you can also set it in Interface
Builder by setting a button cell’s key equivalent to ‘\r’. The default button cell draws itself as a focal
element for keyboard interface control, unless another button cell is focused on. In this case it temporarily
draws itself as normal and disables its key equivalent. Another default key established by NSWindow is the
Escape key, which immediately aborts a modal loop (described below under “Modal Windows”).

See the NSResponder class specification for more information on keyboard interface control.

Classes: NSWindow

The Field Editor

Each NSWindow keeps a text object that's shared for light editing tasks. This object, the winddw’s

editor, is inserted into the view hierarchy when an object needs to edit some text, and removed when the
object is finished.The field editor is used by NSTextFields and other controls, for example, to edit the text
that they display. ThigeldEditor:for Object: method returns an NSWindow'’s field editor, after asking the
delegate for a substitute usimindowWillRetur nFieldEditor:toObject:. You can override the

NSWindow method in subclasses or provide a delegate to substitute a different class of text object than the
default of NSTextView, thereby customizing text-editing in your application.

Modal Windows

You can write a modal event loop for a view object to focus events on that object, such as for tracking the
mouse. This normally requires you to write your own event loop for the operation in question. You can also
make a whole window or panel run in modal fashion, using the application’s normal event loop machinery
but restricting input to the modal window or panel. This is particularly useful for windows and panels that
require the user’s attention before an action can proceed: Error messages and warnings are usually
presented in modal panels, and operations that require input, such a printing or saving a document, also use
modal windows or panels.

OPENSTEP defines two mechanisms for operating a modal window or panel. The first, and simpler, is to
invoke NSApplication’s unM odal For Window: method, which monopolizes events for the NSWindow
specified until one of the method®pM odal, abortM odal, or stopM odalWithCode: is invoked,

typically by a button’s action methaslopM odal ends the modal status of the window or panel from within

the event loop. It doesn’t work if invoked from a method invoked by a timer or by a distributed object, since
those mechanisms operate outside of the event loop. To terminate the modal loop in these situations, you
can usebortModal. stopM odal is typically invoked when the user clicks the OK button (or equivalent),
abortM odal when the user clicks the Cancel button (or presses the Escape key). These two methods are
equivalent tastopM odalWithCode: with the appropriate argument. See the method descriptions in the
NSApplication class specification for more information.

The second mechanism for operating a modal window or panel, catledhbsession, allows the

application to perform a long operation while still bringing events to the window or panel. This is
particularly useful for panels that allow the user to cancel or modify an operation. To begin a modal session,
invoke NSApplication’deginM odal SessionFor Window: method, which sets the window up for the

session and returns an identifier used for other session-controlling methods. At this point, the application
can run in a loop that performs the operation, on each pass seadiigdal Session: to the application

object so that pending events can be dispatched to the modal window. This method returns a code indicating
whether the operation should continue, stop, or abort, which is typically established by the methods
described above founM odalFor Window:. After the loop concludes, you can order the window

off-screen and invoke NSApplicatiortfadM odal Session: method to restore the normal event loop. The
method descriptions in the NSApplication class specification include example code illustrating modal
sessions.

The normal behavior of amodal window or session isto exclude all other windows and panels from

receiving events. This behavior is appropriate for most non-modal windows and panels, but for those that

serve as general auxiliary controls, such as menus and the Font Panel, it's overly restrictive. The user must
be able to use menu key equivalents (such as for Cut and Paste) and change the font of text in the modal
window, and this requires non-modal panels to receiver events. The means for doing this is for the
NSWindow subclass to override thver kswhenM odal method to return YES. Windows that do so can

receive mouse and keyboard events even when a modal window is present. If a subclass needs to work when
a modal window is present, it should usually be a subclass of NSPanel, not of NSWindow.

Modal windows and sessions provide different levels of control to the application and the user. Modal
windows restrict all action to the window itself and any methods invoked from the window. Modal sessions
allow the application to continue an operation while accepting input only through the modal session
window. Beyond this, you can use distributed objects to perform background operations in a separate
thread, while allowing the user to perform other actions with any part of the application. The background
thread can communicate with the main thread, allowing the application to display the status of the operation
in a non-modal panel, perhaps include controls to stop or affect the operations as it occurs. Note that because
the Application Kit isn’t thread-safe, the background thread should communicate with a designated object
in the main thread that in turn interacts with the Application Kit.

Notifications and the NSWindow’s Delegate

NSWindow offers observersarich set of notifications, which it broadcasts on such occurrences as gaining

or losing key or main window status, miniaturizing, moving or resizing, becoming exposed, and closing.

Each notification is matched to a delegate method, so an NSWindow’s delegate is automatically registered
for all notifications that it has methods for. NSWindow also offers its delegate a few other methods, such
aswindowShouldClose:, which requests approval to cloggndowWillResize:toSize:, which allows the
delegate to constrain the NSWindow’s size, wmtowWillIRetur nFieldEditor :toObject:, which gives

the delegate a chance to modify the field editor or substitute a different editor. See the individual
notification and delegate method descriptions at the end of this specification for more information.

Other Features

NSWindow defines a number of methods to assist its view objects in certain operations that may extend in
scope beyond a single view or even outside the window containing them. First of these operations is image
dragging. Although most dragging operations are initiated by and occur between view objects, NSWindow
also defines an image-dragging methardhgl mage: at: offset: event: pasteboar d: sour ce:slideBack:. An
NSWindow can also serve as the destination for dragging operations, registering the types it accepts with
register For DraggedTypes. andunregister For DraggedTypes. See the descriptions of these same

methods in the NSView class specification for more information.

NSViews also handle definition of cursor rectangles—areas where the cursor image changes when the
mouse enters them. NSWindow can disable and reenable all of its cursor rectangles with the
disableCur sor Rects andenableCur sor Rects methods. You can determine whether they’re enabled using

Classes: NSWindow

areCur sor RectsEnabled. To reset the cursor rectangles for a particular NSView, invoke the
invalidateCur sor RectsFor View: method, and to reset them al, use resetCur sor Rects.

Finally, to support transitory drawing by NSViews, NSWindow declares methods that temporarily cachea

portion of its raster image so that it can be restored later. This feature is useful for situations where highly

dynamic drawing must be done over the otherwise static image of the window. For example, in adrawing

program where the user drags lines and other shapes directly onto a canvas, it's more efficient to restore the
window’s cached image and draw anew over that than to have all of the view objects send PostScript
instructions to the Window Server. For more information, see “Transitory Drawing” in the NSView class
specification, and the individual method descriptionsachel magel nRect:, restoreCachedl mage, and
discardCachedlmage in this class specification.

Method Types

Creating instances — initWithContentRect:styleMask:backing:defer:
— initWithContentRect:styleMask:backing:defer:screen:

Calculating layout + contentRectForFrameRect:styleMask:
+ frameRectForContentRect:styleMask:
+ minFrameWidthWithTitle:styleMask:

Converting coordinates — convertBaseToScreen:
— convertScreenToBase:
Moving and resizing — setFrame:display:
— frame

— setFrameOrigin:

— setFrameTopLeftPoint:

— setContentSize:

— cascadeTopLeftFromPoint:
— center

—resizeFlags

Constraining window size — maxSize
— minSize
— setMaxSize:
— setMinSize:
— setAspectRatio:
— aspectRatio
— setResizelncrements:
—resizelncrements
— constrainFrameRect:toScreen:

10

Saving the frameto user defaults

Ordering windows

Making key and main windows

Display and drawing

Flushing graphics

+ removeFrameUsingName:
— saveFrameUsingName:
— setFrameUsingName:

— setFrameAutosaveName:

— frameAutosaveName
— setFrameFromString:
— stringWithSavedFrame

— orderBack:

— orderFront:
— orderFrontRegardless
— orderOut:
— orderWindow:relativeTo:
—setLevel:
—level
—isVisible

— becomeKeyWindow
— canBecomeKeyWindow
—isKeyWindow
— makeKeyAndOrderFront:
— makeKeyWindow
— resignKeyWindow
— becomeMainWindow
— canBecomeMainWindow
— isMainWindow
— makeMainWindow
— resignMainWindow

— display
— displaylfNeeded
— setViewsNeedDisplay:
— viewsNeedDisplay
— useOptimizedDrawing:
— setAutodisplay:
— isAutodisplay
— update

— flushwindow
— flushwindowlfNeeded
— enableFlushWindow
— disableFlushWindow
— isFlushWindowDisabled

11

Classes: NSWindow

Bracketing temporary drawing — cachelmagelnRect:
— restoreCachedlmage
— discardCachedlmage

Window Server information — windowNumber
— gState
— deviceDescription
— setBackingType:
— backingType
— setOneShot:
—isOneShot
+ defaultDepthLimit
— setDepthLimit:
— depthLimit
— setDynamicDepthLimit:
— hasDynamicDepthLimit
— canStoreColor

Screen information — deepestScreen
—screen

Working with the responder chain — makeFirstResponder:
— firstResponder

Event handling — currentEvent
— nextEventMatchingMask:
— nextEventMatchingMask:untilDate:inMode:dequeue:
— discardEventsMatchingMask:beforeEvent:
— postEvent:atStart:
—sendEvent:
— tryToPerform:with:
— keyDown:
— mouseLocationOutsideOfEventStream
— setAcceptsMouseMovedEvents:
— acceptsMouseMovedEvents

Working with the field editor — fieldEditor:forObject:
— endEditingFor:
Keyboard interface control — setlnitialFirstResponder:

— initialFirstResponder

— selectKeyViewFollowingView:
— selectKeyViewPrecedingView:
— selectNextKeyView:

— selectPreviousKeyView:

— keyViewSelectionDirection

12

Setting the title and filename — setTitle:
— setTitleWithRepresentedFilename:
— title
— setRepresentedFilename:
— representedFilename

Marking a window edited — setDocumentEdited:
—isDocumentEdited

Closing the window — close
— performClose:
— setReleasedWhenClosed:
— isReleasedWhenClosed

Miniaturizing and miniwindows — miniaturize:
— performMiniaturize:
— deminiaturize:
— isMiniaturized
— setMiniwindowlmage:
— miniwindowlmage
— setMiniwindowTitle:
— miniwindowTitle

Working with menus + menuChanged:

Working with the Windows menu - setExcludedFromWindowsMenu:
— isExcludedFromWindowsMenu

Working with cursor rectangles — areCursorRectsEnabled
— enableCursorRects
— disableCursorRects
— discardCursorRects
— invalidateCursorRectsForView:
—resetCursorRects

Dragging — draglmage:at:offset:event:pasteboard:source:slideBack:

— registerForDraggedTypes:
— unregisterDraggedTypes

Controlling behavior — setHidesOnDeactivate:
— hidesOnDeactivate
— worksWhenModal
Setting the content view — setContentView:
— contentView
Setting background color — setBackgroundColor:

— backgroundColor
Getting the style mask — styleMask

13

Classes: NSWindow

Working with Services —validRequestorForSendType:returnType:
Printing and faxing — print;

— dataWithEPSInsideRect:

— fax:

Getting the Microsoft Windows handle
—windowHandle

Setting the delegate — setDelegate:
— delegate

Class Methods

14

contentRectForFrameRect:styleMask:
+ (NSRectontentRectFor FrameRect: (NSRectjrameRect styleM ask: (unsigned ingStyle

Returns the content rectangle used by an NSWindow with a frame rectafrgheaitect and a style mask
of aStyle. BothframeRect and the returned content rectangle are expressed in screen coordinates. See the
initWithContentRect: styleM ask:backing:defer: method description for a list of style mask values.

See also: + frameRectFor ContentRect:styleM ask:

defaultDepthLimit
+ (NSWindowDepthjefaultDepthL imit

Returns the default depth limit for instances of NSWindow. This is the smaller of:

» The depth of the deepest display device available to the Window Server
» The depth set for the application by the NSWindowDepthLimit parameter

The value returned can be examined with the Application Kit funcht8®anar FromDepth(),
NSColor SpaceFromDepth(), NSBitsPer SampleFromDepth(), NSBitsPer Pixel FromDepth().

See also: —setDepthLimit:, —setDynamicDepthLimit:, —canStoreColor

frameRectForContentRect:styleMask:
+ (NSRectjrameRectFor ContentRect: (NSRectrontentRect styleM ask: (unsigned inStyle

Returns the frame rectangle used by an NSWindow with a content rectacaiteotfRect and a style mask
of ayle. BothcontentRect and the returned frame rectangle are expressed in screen coordinates. See the
initWithContentRect: styleM ask:backing:defer: method description for a list of style mask values.

See also: + contentRectFor ContentRect: styleM ask:

\9 menuChanged:
+ (voidymenuChanged: (NSMenu *)aMenu

On Microsoft Windows, locates all objectsinheriting from NSWindow that use aMenu and causes them to
update their state and redisplay the menu. On Mach, this method does nothing.

See also: —menu (NSResponder)

minFrameWidthWithTitle:styleMask:
+ (float)minFrameWidthWithTitle:(NSString *@Title styleM ask: (unsigned inStyle

Returns the minimum width that an NSWindow’s frame rectangle must have for it to displagTatl ef
givenaStyle as its style mask. See timetWithContentRect:styleM ask: backing:defer: method
description for a list of acceptable style mask values.

removeFrameUsingName:
+ (void)removeFrameUsingName: (NSString *name

Removes the frame data stored undene from the application’s user defaults.

See also: —setFrameUsingName:, —setFrameAutosaveName:

Instance Methods
acceptsMouseMovedEvents
— (BOOL)acceptsM ouseM ovedEvents

Returns YES if the receiver accepts and distributes mouse-moved events, NO if it doesn’t. NSWindows by
default don’t accept mouse-moved events.

See also: — setAcceptsM ouseM ovedEvents:

areCursorRectsEnabled
— (BOOL)areCur sor RectsEnabled

Returns YES if the receiver’s cursor rectangles are enabled, NO if they're not.

See also: —satCursor RectsEnabled:, —addCur sor Rect: cursor: (NSView)

15

Classes: NSWindow

16

aspectRatio
— (NSSizeaspectRatio

Returns the receiver’s size aspect ratio. The size of the receiver’s frame rectangle is constrained to integral
multiples of this ratio when the user resizes it. You can set an NSWindow’s size to any ratio
programmatically.

See also: —resizel ncrements, —setAspectRatio:, —setFrame:display:

backgroundColor
— (NSColor *phackgroundColor

Returns the color of the receiver’'s background.

See also: — setBackgroundColor:

backingType
— (NSBackingStoreTypbpckingType
Returns the receiver’s backing store type as one of the following constants:

NSBackingStoreBuffered
NSBackingStoreRetained
NSBackingStoreNonretained

See also: — setBackingType:

becomeKeyWindow
— (void)becomeK eyWindow

Invoked automatically to inform the receiver that it has become the key window; never invoke this method
directly. This method reestablishes the receiver’s first responder, BmmodseK eyWindow to that object
if it responds, and posts an NSWindowDidBecomeKeyNotification to the default notification center.

See also: —makeK eyWindow, —makeK eyAndOrder Front:, —becomeM ainWindow

becomeMainWindow
— (void)becomeM ainWindow

Invoked automatically to inform the receiver that it has become the main window; never invoke this method
directly. This method posts an NSWindowDidBecomeMainNotification to the default notification center.

See also: —makeMainWindow, —becomeK eyWindow

cachelmagelnRect:
— (void)cachel magel nRect: (NSRectaRect

Stores the receiver’s raster image fralRect, which is expressed in the receiver’s base coordinate system.

This allows the receiver to perform temporary drawing, such as a band around the selection as the user drags
the mouse, and to quickly restore the previous image by invokshgr eCachedl mage and
flushWindowlfNeeded. The next time the window displays, it discards its cached image rectangles. You
can also explicitly usdiscardCachedlmage to free the memory occupied by cached image rectangles.

See also: —display

canBecomeKeyWindow
— (BOOL)canBecomeK eyWindow

Returns YES if the receiver is able to be the key window, and NO if it can’t. Attempts to make the receiver
the key window are abandoned if this method returns NO. NSWindow’s implementation returns YES if the
receiver has a title bar or a resize bar/border, NO otherwise.

See also: —isKeyWindow, —makeK eyWindow

canBecomeMainWindow
— (BOOL)canBecomeM ainWindow

Returns YES if the receiver is able to be the main window, and NO if it can’t. Attempts to make the receiver
the main window are abandoned if this method returns NO. NSWindow’s implementation returns YES if
the receiver is visible, ot an NSPanel, and has a title bar or a resize bar/border. Otherwise it returns NO.

See also;: —isMainWindow, —makeM ainWindow

17

Classes: NSWindow

18

canStoreColor
— (BOOL)canStoreColor

Returns YES if the receiver has a depth limit that allows it to store color values, and NO if it doesn't.

See also: —depthLimit, —shouldDrawColor (NSView)

cascadeTopLeftFromPoint:
— (NSPointyascadeT opL eftFromPoint: (NSPointjopLeftPoint

Returns a point shifted frotopLeftPoint that can be used to place the receiver in a cascade relative to
another NSWindow positioned tapLeftPoint, so that the title bars of both NSWindows are fully visible.
Both points are expressed in screen coordinates.

See also: — setFrameT opL eftPoint:

center

— (void)center
Sets the receiver’s location to the center of the screen: The receiver is placed dead-center horizontally and
somewhat above center vertically. Such a placement is considered to carry a certain visual immediacy and

importance. This method doesn't put the receiver on-screen, howevarakig€ eyAndOrder Front: to
do that.

You typically use this method to place a NSWindow—most likely an attention panel—where the user can’t
miss it. This method is invoked automatically when an NSPanel is placed on the screen by NSApplication’s
runModalFor Window: method.

close
— (void)close

Removes the receiver from the screen. If the receiver is set to be released when it's closed (the default), a
release message is sent to the object after the current event is completed.

This method doesn’t result in any notification that the receiver is closipgy fis mClose: and closing
due to user action do. UperformClose: if you want to be sure that observers and the delegate will be
notified of the receiver’s closing.

See also: — setReleasedWhenClosed:

constrainFrameRect:toScreen:
— (NSRectyonstrainFrameRect: (NSRectjrameRect toScr een: (NSScreen *aScreen

Modifies and returnframeRect so that its top edge lies acreen. If the receiver is resizable, the

rectangle’s height is adjusted to bring the bottom edge onto the screen as well. The rectangle’s width and
horizontal location are unaffected. You shouldn’t need to invoke this method yourself; it's invoked
automatically (and the modified frame is used to locate and set the size of the receiver) whenever a titled
NSWindow is placed on-screen and whenever its size is changed.

Subclasses can override this method to prevent their instances from being constrained, or to constrain them
differently.

contentView
— (id)contentView

Returns the receivers’s content view, the highest accessible NSView object in the receiver’s view hierarchy.

See also: —setContentView:

convertBaseToScreen:
— (NSPointgonvertBaseT oScreen: (NSPointaPoint

ConvertsaPoint from the receiver’'s base coordinate system to the screen coordinate system. Returns the
converted point.

See also: —convertScreenToBase:, —convertPoint:toView: (NSView)

convertScreenToBase:
— (NSPointronvertScreenToBase: (NSPointaPoint

ConvertsaPoint from the screen coordinate system to the receiver’s base coordinate system. Returns the
converted point.

See also: —convertBaseT oScreen:, —convertPoint:fromView: (NSView)

currentEvent
— (NSEvent *rurrentEvent

Returns the event currently being processed by the application, by invoking NSApg@EstEvent
method.

19

Classes: NSWindow

20

dataWithEPSInsideRect:
— (NSData *gataWithEPSInsideRect: (NSRectaRect

Returns EPS data that draws the region of the receiver \aeit (which is expressed in the receiver’s

base coordinate system). This data can be placed on an NSPasteboard, written to a file, or used to create an

NSImage object.
See also: —dataWithEPSInsideRect: (NSView), —writeEPSI nsideRect:toPasteboard: (NSView)

deepestScreen
— (NSScreen fjeepestScreen

Returns the deepest screen that the receiver is on (it may be split over several screkiisheoreceiver
is off-screen.

See also: —Sscreen

defaultButtonCell:
— (NSButtonCell *glefaultButtonCell

Returns the button cell that performs as if clicked when the NSWindow receives a Return (or Enter) key
event. This cell draws itself as if it were the focal element for keyboard interface control, unless another
button cell is focused on, in which case the default button cell temporarily draws itself as normal and
disables its key equivalent.

The window receives a Return key event if no responder in its responder chain claims it, or if the user
presses the Control key along with the Return key.

See also: — satDefaultButtonCell:, —disableK eyEquivalentFor DefaultButtonCell,
— enableK eyEquivalentFor DefaultButtonCell

delegate
— (id)delegate
Returns the receiver's delegate ndrif it doesn’t have one.

See also: — SetDelegate:

deminiaturize:
— (void)deminiaturize: (id)sender

Deminiaturizes the receiver. You rarely need to invoke this method; it's invoked automatically when an
NSWindow is deminiaturized by the user.

See also: —miniaturize:, —styleMask

depthLimit
— (NSWindowDepthdepthL imit

Returns the depth limit of the receiver. The value returned can be examined with the Application Kit
functionsNSPlanar FromDepth(), NSColor SpaceFromDepth(), NSBitsPer SampleFromDepth(),
NSBitsPer PixelFromDepth().

See also: + defaultDepthLimit, —setDepthL imit:, —setDynamicDepthLimit:

deviceDescription

— (NSDictionary *deviceDescription
Returns a dictionary containing information about the receiver’s resolution, color depth, and so on. This
information is useful for tuning images and colors to the window’s display capabilities. The contents of the
dictionary are:

Dictionary Key Value

NSDeviceResolution An NSValue containing an NSSize that describe the receiver’s raster

resolution in dots per inch (dpi).

NSDeviceColorSpaceName An NSString giving the name of the receiver’s color space.
See the Application Kit Types and Constants for a list of possible
values.

NSDeviceBitsPerSample An NSNumber containing an integer that gives the bit depth of
the receiver’s raster image (2-bit, 8-bit, etc.).

NSDevicelsScreen “YES”, indicating that the receiver displays on the screen.

NSDeviceSize An NSValue containing an NSSize that gives the size of the receiver’'s
frame rectangle.

See also: —deviceDescription (NSScreen), bestRepresentationFor Device: (NSImage),
— color UsingColor SpaceName: (NSColor)

21

Classes: NSWindow

disableCursorRects
— (void)disableCur sor Rects

Disables all cursor rectangle management within the receiver. Use this method when you need to do some
special cursor manipulation and you don’t want the Application Kit interfering.

See also: — enableCur sor Rects

disableFlushWindow
— (void)disableFlushWindow

Disables thélushWindow method for the receiver. If the receiver is buffered, this prevents drawing from
being automatically flushed by NSViewdssplay... methods from the receiver’s backing store to the
screen. This permits several NSViews to be displayed before the results are shown to the user.

Flushing should be disabled only temporarily, while the NSWindow’s display is being updated. Each
disableFlushWindow message must be paired with a subsecggreil eFlushWindow message.
Invocations of these methods can be nested; flushing isn’t reenabled until the last (unnested)
reenableFlushWindow message is sent.

disableKeyEquivalentForDefaultButtonCell
— (void)disableK eyEquivalentFor DefaultButtonCell

Disables the default button cell's key equivalent, so that it doesn’t perform a click when the user presses
Return (or Enter). See the method descriptiordébaultButtonCell for more information.

See also: —enableK eyEquivalentFor DefaultButtonCell

discardCachedimage
— (void)discardCachedlmage

Discards all of the receiver's cached image rectangles. An NSWindow automatically discards its cached
image rectangles when it displays.

See also: —cachel magel nRect:, —restoreCachedl mage, —display

22

discardCursorRects
— (void)discardCur sor Rects

Invalidates all cursor rectangles in the receiver. This method is invokesiddZur sor Rects to clear out
existing cursor rectangles before resetting them. You shouldn’t invoke it in the code you write, but might
want to override it to change its behavior.

See also: —resetCursorRects

discardEventsMatchingMask:beforeEvent:
— (void)discar dEventsM atchingM ask: (unsigned intnask befor eEvent: (NSEvent *JastEvent

Forwards the message to the NSApplication object.

display
— (void)display

Passes display message down the receiver’s view hierarchy, thus redrawing all NSViews within the
receiver, including the frame view which draws the border, title bar, and other peripheral elements.

You rarely need to invoke this method. NSWindows normally record which of their NSViews need display
and display them automatically on each pass through the event loop.

See also: —display (NSView), —displaylfNeeded, —isAutodisplay

displaylfNeeded

— (void)displayl fNeeded
Passes displayl fNeeded message down the receiver’s view hierarchy, thus redrawing all NSViews that
need to be displayed, including the frame view which draws the border, title bar, and other peripheral

elements. This method is useful when you want to modify some number of NSViews, and then display only
the ones that were modified.

You rarely need to invoke this method. NSWindows normally record which of their NSViews need display
and display them automatically on each pass through the event loop.

See also: —display, —displaylfNeeded (NSView), —setNeedsDisplay: (NSView), —isAutodisplay

23

Classes: NSWindow

draglmage:at:offset:event:pasteboard:source:slideBack:

— (void)dragl mage: (NSImage *pnlmage
at:(NSPointpPoint
offset: (NSSizejnitial Offset
event: (NSEvent *theEvent
pasteboard: (NSPasteboard ppoard
sour ce: (id)sourceObject
dideBack:(BOOL)flag

Begins a dragging session. This method is essentially the same as NSView’s method of the same name,
except thadPoint is given in the NSWindow's base coordinate system. This method should be invoked
only from within an NSView's implementation of theouseDown: method. See the description of this
method in the NSView class specification for more information.

enableCursorRects
— (void)enableCur sor Rects

Reenables cursor rectangle management within the receiver ditabkeCur sor Rects message.

enableFlushWindow
— (void)enableFlushWindow

Reenables thBushWindow method for the receiver after it was disabled through a previous
disableFlushWindow message.

enableKeyEquivalentForDefaultButtonCell
— (void)enableK eyEquivalentFor DefaultButtonCell

Reenables the default button cell’s key equivalent, so that it performs a click when the user presses Return
(or Enter). See the method descriptiondefaultButtonCell for more information.

See also: — disableK eyEquivalentFor DefaultButtonCell

endEditingFor:
— (void)endEditingFor : (id)anObject

Forces the field editor, whicdnObject is assumed to be using, to give up its first responder status, and
prepares it for its next assignment. If the field editor is the first responder, it's made to resign that status
even if itsresignFir stResponder method returns NO. This forces the field editor to send a

24

textDidEndEditing: message to its delegate. The field editor isthen removed from the view hierarchy, its
delegateis set to nil, and it's emptied of any text it may contain.

This method is typically invoked by the object using the field editor when it’s finished. Other objects
normally change the first responder by simply usirakeFir stResponder :, which allows a field editor or

other object to retain its first responder status if, for example, the user has entered an invalid value.
endEditingFor: should be used only as a last resort if the field editor refuses to resign first responder status.
Even in this case, you should always allow the field editor a chance to validate its text and take whatever
other action it needs first. You can do this by first trying to make the NSWindow the first responder:

if ([myWndow nekeFirst Responder: myW ndow]) {
* All fields are now valid; it's safe to use fieldEditor:forObject:
* to claim the field editor. */

}

else {
* Force first responder to resign. */
[myWindow endEditingFor:nil];

}

See also: —fieldEditor:for Object:, —windowWillRetur nFieldEditor:toObject:

fax:
— (void)fax: (id)sender

Runs the Fax panel, and if the user chooses an option other than canceling, prints the receiver (its frame
view and all subviews) to a fax modem.

See also: —print:

fieldEditor:forObject:
— (NSText *¥ieldEditor:(BOOL)createFlag for Obj ect: (id)anObject

Returns the receiver’s field editor, creating it if needed acedkeFlag is YES. Returnsil if createFlag

is NO and the field editor doesn’t exiahObject is used to allow the receiver’s delegate to substitute
another object in place of the field editor, as described below. The field editor may be in use by some view
object, so be sure to properly dissociate it from that object before actually using it yourself (the appropriate
way to do this is illustrated in the descriptionentiEditingFor:). Once you retrieve the field editor, you

can insert it into the view hierarchy and set a delegate to interpret text events, have it perform whatever
editing is needed. Then, when it sendexdaDidEndEditing: message to the delegate, you can get its text

to display or store, and remove the field editor usmdEditingFor:.

The field editor is provided as a convenience and can be used however your application sees fit. Typically,
the field editor is used by simple text-bearing objects—for example, an NSTextField object uses its
window’s field editor to display and manipulate text. The field editor can be shared by any number of

25

Classes: NSWindow

objects and so its state may be constantly changing. Therefore, it shouldn’t be used to display text that
demands sophisticated layout (for this you should create a dedicated NSText object).

A freshly created NSWindow doesn’t have a field editor. After a field editor has been created for an
NSWindow, thecreateFlag argument is ignored. By passing NO ¢oeateFlag and testing the return
value, however, you can predicate an action on the existence of the field editor.

The receiver’s delegate can substitute a custom editor in place of the NSWindow’s field editor by
implementingvindowWillRetur nFieldEditor :toObject:. The receiver sends this message to its delegate
with itself andanObject as the arguments, and if the return value ismibthe NSWindow returns that
object instead of its field editor. However, note the following:

« If the NSWindow’s delegate is identicalanObject, windowWillRetur nFieldEditor :toObj ect:
isn’t sent.

e The object returned by the delegate method, though it may become first respondemt deesme the
NSWindow's field editor. Other objects continue to use the NSWindow's established field editor.

firstResponder
— (NSResponder firstResponder
Returns the receiver’s first responder.

See also: —makeFirstResponder:, —acceptskir tResponder (NSResponder)

flushwindow
— (void)flushWindow

Flushes the receiver’s off-screen buffer to the screen, if the receiver is buffered and flushing is enabled.
Does nothing for other display devices, such as a printer. This method is automatically invoked by
NSWindow’'s and NSView'slisplay... methods.

See also: —flushWindowlfNeeded, —display... (NSView), —disableFlushWindow,
—enableFlushWindow

flushWindowlfNeeded
— (void)flushWindow! fNeeded

Flushes the receiver’s off-screen buffer to the screen, if flushing is enabled and if thush&gindow
message had no effect because flushing was disabled. To avoid unnecessary flushing, use this method rather
thanflushWindow to flush an NSWindow after flushing has been reenabled.

See also: —flushWindow, —disableFlushwindow, —enableFlushWindow

26

frame
— (NSRectjrame

Returns the receiver’s frame rectangle. The frame rectangle is always reckoned in the screen coordinate
system.

See also: — Screen, —deepestScreen

frameAutosaveName
— (NSString *frameAutosaveName

Returns the name used to automatically save the receiver’s frame rectangle data in the defaults system, as
set througlsetFrameAutosaveName.. If the receiver has an autosave name, its frame data is written
whenever the frame rectangle changes.

See also: — setFrameUsingName:

gState
— (int)gState

Returns the PostScript graphics state object associated with the receiver. This graphics state is used by
default for all NSViews in the receiver’s view hierarchy, but individual NSViews can be made to use their
own with the NSView methodllocateGState.

hasDynamicDepthLimit
— (BOOL)hasDynamicDepthLimit
Returns YES if the receiver’s depth limit can change to match the depth of the screen it's on, NO if it can't.

See also: — setDynamicDepthLimit:

hidesOnDeactivate
— (BOOL)hidesOnDeactivate

Returns YES if the receiver is removed from the screen when its application is deactivated, and NO if it
remains on-screen.

See also: —setHidesOnDeactivate:

27

Classes: NSWindow

28

\9 initialFirstResponder

— (NSView *)initial Fir stResponder
Returns the NSView that's made first responder the first time the receiver is placed on-screen.

See also: —setlnitialFirstResponder:, —setNextK eyView:

initWithContentRect:styleMask:backing:defer:

— (id)initWithContentRect: (NSRectfontentRect
styleM ask: (unsigned intjtyleMask
backing:(NSBackingStore Typé&ackingType
defer:(BOOL)flag

Initializes the receiver, a newly allocated NSWindow object, and redelfn¥ his method is the designated
initializer for the NSWindow class.

contentRect specifies the location and size of the NSWindow’s content area in screen coordinates. Note that
the Window Server limits window position coordinates16,000 and sizes to 10,000.

styleMask specifies the receiver’s style. It can either be NSBorderlessWindowMask, or it can contain any
of the following options, combined using the C bitwise OR operator:

Option Meaning

NSTitledWindowMask The NSWindow displays a title bar.
NSClosableWindowMask The NSWindow displays a close button.
NSMiniaturizableWindowMask The NSWindow displays a miniaturize button.
NSResizableWindowMask The NSWindow displays a resize bar or border.

Borderless windows display none of the usual peripheral elements, and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include NSTitledWindowMask if it includes any of the others.

backingType specifies how the drawing done in the receiver is buffered by the object’s window device:

NSBackingStoreBuffered
NSBackingStoreRetained
NSBackingStoreNonretained

flag determines whether the Window Server creates a window device for the new object immediately. If
flagis YES, it defers creating the window until the receiver is ordered on-screen. All display messages sent
to the NSWindow or its NSViews are postponed until the window is created, just before it's moved
on-screen. Deferring the creation of the window improves launch time and minimizes the virtual memory
load on the Server.

The new NSWindow creates an instance of NSView to beits default content view. Y ou can replace it with
your own object by using the setContentView: method.

See also: —orderFront:, —setTitle;, —setOneShot:,
—initWithContentRect: styleM ask: backing: defer : screen:

initWithContentRect:styleMask:backing:defer:screen:

— (id)initWithContentRect: (NSRectfontentRect
styleM ask: (unsigned intjtyleMask
backing:(NSBackingStore Typ&)fferingType
defer:(BOOL)flag
screen: (NSScreen *3Screen

Initializes a newly allocated NSWindow object and ret@ahls This method is equivalent to
initWithContentRect: styleM ask: backing: defer : screen:, except that the content rectangle is specified
relative to the lower left corner afScreen.

If aScreenisnil, the content rectangle is interpreted relative to the lower left corner of the main screen. The
main screen is the one that contains the current key window, or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

See also: —orderFront:, —setTitle:, —setOneShot:, —initWithContentRect:styleM ask:backing:defer :

invalidateCursorRectsForView:
— (void)invalidateCur sor RectsFor View: (NSView *)aView

Marks as invalid the cursor rectanglesgfew, an NSView in the receiver’s view hierarchy, so that they'll
be set up again when the receiver becomes key (or immediately if the receiver is key).

See also: —resetCursor Rects, —resetCur sor Rects (NSView)

isAutodisplay
— (BOOL)isAutodisplay

Returns YES if the receiver automatically displays its views that are marked as needing it, NO if it doesn't.
Automatic display typically occurs on each pass through the event loop.

See also: —setAutodisplay:, —displayl fNeeded, —setNeedsDisplay: (NSView)

29

Classes: NSWindow

30

isDocumentEdited
— (BOOL)isDocumentEdited

Returns YES or NO according to the argument supplied with thest@sicumentEdited: message.

isExcludedFromWindowsMenu
— (BOOL)isExcludedFromWindowsM enu

Returns YES if the receiver's title is omitted from the application’s Windows menu, and NO if it is listed.

See also: —setExcludedFromWindowsM enu:

isFlushwWindowDisabled
— (BOOL)isFlushWindowDisabled

Returns YES if the receiver’s flushing ability has been disabled; otherwise returns NO.

See also: — disableFlushWindow, —enableFlushWindow

isKeyWindow
— (BOOL)isKeyWindow
Returns YES if the receiver is the key window for the application, and NO if it isn't.

See also: —isMainWindow, —makeK eyWindow

iIsMainWindow
— (BOOL)isMainWindow
Returns YES if the receiver is the main window for the application, and NO if it isn't.

See also: —isKeyWindow, —makeM ainWindow

isMiniaturized
— (BOOL)isMiniaturized

Returns YES if the receiver has been miniaturized, NO if it hasn’t. A miniaturized window is removed from
the screen and replaced by a miniwindow, icon, or button that represents it, catlaahtegpart (the
particular form depends on the platform).

See also; —miniaturize:

isOneShot
— (BOOL)isOneShot

Returns YES if the PostScript window device that the receiver manages is freed when it's removed from
the screen list, and NO if not. The default is NO.

See also: — setOneShot:

isReleasedWhenClosed
— (BOOL)isReleasedWhenClosed

Returns YES if the receiver is automatically released after being closed, NO if it's simply removed from
the screen. The default for NSWindow is YES; the default for NSPanel is NO.

See also: — setReleasedWhenClosed:

isVisible
— (BOOL)isVisible
Returns YES if the receiver is on-screen (even if it's obscured by other windows).

See also: —VvisibleRect (NSView)

keyDown:
— (void)keyDown: (NSEvent *theEvent

Handles a keyboard event that may need to be interpreted as changing the key view or triggering a
mnemonic.

See also: —selectNextKeyView:, —nextKeyView (NSView), —performMnemonic: (NSView)

31

Classes: NSWindow

32

\9 keyViewSelectionDirection

— (NSSelectionDirectiokeyViewSelectionDir ection

Returns the direction that the receiver is currently using to change the key view, one of:

Value Meaning

NSDirectSelection The receiver isn't traversing the key view loop.
NSSelectingNext The receiver is proceeding to the next valid key view.
NSSelectingPrevious The receiver is proceeding to the previous valid key view.

See also: —selectNextKeyView:, —selectPreviousK eyView:

level
— (int)level

Returns the level of the receiver as set usabigevel:. See that method description for a list of possible
values.

makeFirstResponder:
— (BOOL)makeFirstResponder :(NSResponder JResponder

Attempts to makaResponder the first responder for the receiveraResponder isn't already the first
responder, this method first sendsesignFirstResponder message to the object that is. If that object
refuses to resign, it remains the first responder and this method immediately returns NO. If it returns YES,
this methods sendstecomeFirstResponder message taResponder. If aResponder accepts first

responder status, this method returns YES. If it refuses, this method returns NO, and the NSWindow
becomes first responder.

The Application Kit uses this method to alter the first responder in response to mouse-down events; you can
also use it to explicitly set the first responder from within your progaResponder is typically an NSView
in the receiver’s view hierarchy.

See also: —becomeFirstResponder (NSResponder), resignFirstResponder (NSResponder)

makeKeyAndOrderFront:
— (void)makeK eyAndOr der Front: (id)sender

Moves the receiver to the front of the screen list, within its level, and makes it the key window.

See also; —orderFront:, —orderBack:, —order Out:, —orderWindow:relativeT o;, —setlevd:

makeKeyWindow
— (void)makeK eyWindow
Makes the receiver the key window.

See also: —makeMainWindow, —becomeK eyWindow, —isK eyWindow

makeMainWindow
— (voidmakeMainWindow

Makes the receiver the main window.

See also: —makeKeyWindow, —becomeM ainWindow, —isMainWindow

maxSize
— (NSSizeinaxSize

Returns the maximum size to which the receiver’s frame can be sized either by the user or by the
setFrame... methods other thasetFrame:display:.

See also: —setMaxSize:, —minSize, —aspectRatio, —resizel ncrements

miniaturize:
— (void)miniaturize: (id)sender
Removes the receiver from the screen list and displays its counterpart in the appropriate location.

See also: —deminiaturize:

miniwindowlmage
— (NSImage *miniwindowl mage
Returns the image that's displayed in the receiver’'s miniwindow.

See also: —setMiniwindowl mage:, —miniwindowTitle

33

Classes: NSWindow

34

miniwindowTitle
— (NSString *miniwindowTitle
Returns the title that's displayed in the receiver’'s miniwindow.

See also: —setMiniwindowTitle:, —miniwindowl mage

minSize
— (NSSizeininSize

Returns the minimum size to which the receiver’s frame can be sized either by the user satbyadhee...
methods other thasetFrame:display:.

Seealso: —satMinSize:, —maxSize, —aspectRatio, —resizel ncrements

mouselLocationOutsideOfEventStream
— (NSPointjnousel ocationOutsideOfEvent Stream

Returns the current location of the mouse reckoned in the receiver’s base coordinate system, regardless of
the current event being handled or of any events pending.

See also: —currentEvent (NSApplication)

nextEventMatchingMask:
— (NSEvent *hextEventM atchingM ask: (unsigned intnask

Invokes NSApplication’siextEventM atchingM ask:untilDate:inM ode:dequeue: method, usingnask as
the first argument, with an unlimited expiration, a mode of NSEventTrackingRunLoopMode, and a
dequeue flag of YES. See the method description in the NSApplication class specification for more
information.

nextEventMatchingMask:untilDate:inMode:dequeue:

— (NSEvent *hextEventM atchingM ask: (unsigned intinask
untilDate:(NSDate *expirationDate
inM ode: (NSString *Ymode
dequeue:(BOOL)flag

Forwards the message to the global NSApplication object, NSApp. See the method description in the
NSApplication class specification for more information.

orderBack:
— (void)or der Back: (id)sender

Moves the receiver to the back of its level in the screen list, without changing either the key window or the
main window.

See also: —orderFront:, —orderOut:, —order Window:rdativeT o:, —makeK eyAndOrder Front:,
—level

orderFront:
— (void)or der Front: (id)sender

Moves the receiver to the front of its level in the screen list, without changing either the key window or the
main window.

See also: —orderBack:, —orderOut:, —orderWindow:reativeT 0;, —makeK eyAndOrder Front:,
—level

orderFrontRegardless
— (void)order FrontRegar dless

Moves the receiver to the front of its level, even if its application isn't active, but without changing either
the key window or the main window. Normally an NSWindow can’t be moved in front of the key window
unless the NSWindow and the key window are in the same application. You should rarely need to invoke
this method,; it's designed to be used when applications are cooperating in such a way that an active
application (with the key window) is using another application to display data.

See also: —orderFront:, —levd

orderQut:
— (void)or der Out: (id)sender

Takes the receiver out of the screen list. If the receiver is the key or main window, the NSWindow
immediately below it is made key or main in its place.

See also; —orderFront:, —orderBack:, —order Window:reativeT o;

35

Classes: NSWindow

36

orderWindow:relativeTo:
— (void)or der Window: (NSWindowOrderingModg) ace r elativeT o: (int)other WindowNumber

Repositions the receiver’s window device in the Window Server’s screen fikicéfis NSWindowOut,

the receiver is removed from the screen list@thdr\WindowNumber is ignored. If it's NSWindowAbove

the receiver is ordered immediately above the window whose window nunablesr M/indowNumber.
Similarly, if place is NSWindowBelow is placed immediately below the window represented by
otherWindowNumber . If other WindowNumber is O, the receiver is placed above or below all other windows
in its level.

See also: —orderFront:, —orderBack:, —orderOut:, —makeK eyAndOrderFront:, —levd,
—windowNumber

performClose:
— (void)performClose: (id)sender

Simulates the user clicking the close button by momentarily highlighting the button and then closing the
receiver. If the receiver’s delegate or the receiver itself implemaéntowShouldClose:, then that

message is sent with the NSWindow as the argument (only one such message is sent; if both the delegate
and the NSWindow implement the method, only the delegate will receive the message). If the method
returns NO, the NSWindow isn’t closed.

If the receiver doesn’t have a close button or can’t be closed (for example, if the delegate replies NO to a
windowShouldClose: message), then this method céllSBeep().

See also: —close, —styleM ask, —performClick: (NSButton), -performMiniaturize:

performMiniaturize:
— (void)performMiniaturize: (id)sender

Simulates the user clicking the miniaturize button by momentarily highlighting the button then
miniaturizing the receiver. If the receiver doesn’t have a miniaturize button or can’t be miniaturized for
some reason, then this method chlfBeep().

See also: —close, —styleM ask, —performClick: (NSButton), -performClose:

postEvent:atStart:
— (void)postEvent: (NSEvent *anEvent atStart: (BOOL)flag

Forwards the message to the global NSApplication object, NSApp.

print:
— (void)print:(id)sender

Runs the Print panel, and if the user chooses an option other than canceling, prints the receiver (its frame
view and all subviews).

See also: —fax:

registerForDraggedTypes:
— (void)register For DraggedTypes. (NSArray *)pboardTypes

RegistergpboardTypes as the pasteboard types that the receiver will accept as the destination of an
image-dragging session.

Note: Registering an NSWindow for dragged types automatically makes it a candidate destination object
for a dragging session. As such, it must properly implement some or all of the
NSDraggingDestination protocol methods. As a convenience, NSWindow provides default
implementations of these methods. See the NSDraggingDestination protocol specification for
details.

See also: — unregister DraggedTypes

representedFilename
— (NSString *Y epresentedFilename

Returns the name of the file that the receiver represents.

See also: — setRepresentedFilename:

resetCursorRects
— (void)resetCur sor Rects

Invokesdiscar dCur sor Rects to clear the receiver’s cursor rectangles, then sessdsCur sor Rects to
every NSView in the receiver’s view hierarchy.

This method is typically invoked by the NSApplication object when it detects that the key window's cursor
rectangles are invalid. In program code, it's more efficient to inuokalidateCur sor RectsFor View:.

37

Classes: NSWindow

38

resignKeyWindow
— (void)resignK eyWindow
Never invoke this method; it's invoked automatically when the NSWindow resigns key window status. This

method sendsesignK eyWindow to the receiver’s first responder, semdadowDidResignK ey: to the
receiver’'s delegate, and posts an NSWindowDidResignKeyNotification to the default notification center.

See also: —becomeK eyWindow, —resignMainWindow

resignMainWindow
— (voidresignMainWindow
Never invoke this method; it's invoked automatically when the NSWindow resigns main window status.

This method sendsindowDidResignM ain: to the receiver’'s delegate and posts an
NSWindowDidResignMainNotification to the default notification center.

See also: —becomeMainWindow, —resignKeyWindow

resizeFlags
— (int)resizeFlags

Valid only while the receiver is being resized, this method returns the flags field of the event record for the
mouse-down event that initiated the resizing session. The integer encodes, as a mask, which of the modifier
keys was held down when the event occurred. The flags are listed in the NSEvenhwdisss Flags

method description. You can use this method to constrain the direction or amount of resizing. Because of
its limited validity, this method should only be invoked from within an implementation of the delegate
methodwindowWillResize:toSize:.

resizelncrements

— (NSSizejesizel ncrements
Returns the receiver’s resizing increments, which restrict the user’s ability to resize it so that its width and
height alter by integral multiples ofcrements.width andincrements.height when the user resizes it. These

amounts are whole number values, 1.0 or greater. You can set an NSWindow’s size to any value
programmatically.

See also: — SetResizel ncrements:, —setAspectRatio:, —setFrame:display:

restoreCachedlimage
— (void)restor eCachedl mage

Splices the receiver’s cached image rectangles, if any, back into its raster image (and buffer if it has one)
undoing the effect of any drawing performed within those areas since they were established using

cachel magel nRect:. You must invokdlushWindowl fNeeded after this method to guarantee proper
redisplay. An NSWindow automatically discards its cached image rectangles when it displays.

See also: —discardCachedl mage, —display

saveFrameUsingName:

— (void)saveFrameUsingName: (NSString *hame
Saves the receiver’s frame rectangle in the user-defaults system. With the companion method
setFrameUsingName:, you can save and reset an NSWindow’s frame over various launchings of an

application. The default is owned by the application and stored under the name “NSWindowdfneine
See the NSUserDefaults class specification for more information.

See also: —satFrameUsingName:, —stringWithSavedFrame

screen
— (NSScreen *creen

Returns the screen that the receiver is on. If the receiver is partly on one screen and partly on another, the

screen where most of it lies is the one returned.

See also; —bestScreen

selectKeyViewFollowingView:
— (void)selectK eyViewFollowingView: (NSView *)aView

SendmextValidKeyView: to aView, and if that message returns an NSView, invokes
makeFirstResponder: with the returned NSView.

See also: — selectKeyViewPrecedingView:

39

Classes: NSWindow

40

®

selectKeyViewPrecedingView:
— (void)selectK eyViewPrecedingView: (NSView *)aView

SendgreviousValidK eyView: to aView, and if that message returns an NSView, invokes
makeFirstResponder: with the returned NSView.

See also: — selectKeyViewFollowingView:

selectNextKeyView:
— (void)selectNextK eyView: (id)sender

Searches for a candidate key view and, if it finds one, involekeFir stResponder: to establish it as the
first responder. The candidate is one of (in order):

e The current first responder’s next valid key view, as returned by NSViext¥ alidK eyView: method.

« The object designated as the receiver’s initial first responder (setimgtial Fir stResponder:), if it
returns YES to aacceptsFirstResponder message.

» Otherwise, the initial first responder’s next valid key view, which may end up biing

See also: —sdectPreviousKeyView:, —selectK eyViewFollowingView:

selectPreviousKeyView:
— (void)selectPreviousK eyView: (id)sender

Searches for a candidate key view and, if it finds one, involekeFir stResponder: to establish it as the
first responder. The candidate is one of (in order):

» The current first responder’s previous valid key view, as returned by NSView's
previousValidK eyView: method.

» The object designated as the receiver’s initial first responder (setimgtial Fir stResponder:), if it
returns YES to aacceptsFirstResponder message.

¢ Otherwise, the initial first responder’s previous valid key view, which may end uptiiging

See also: —selectNextKeyView:, —sdlectK eyViewPrecedingView:

sendEvent:
— (void)sendEvent: (NSEvent *theEvent

Dispatches mouse and keyboard events sent to the receiver by the NSApplication object. Never invoke this
method directly.

setAcceptsMouseMovedEvents:
— (void)setAcceptsM ouseM ovedEvents: (BOOL)flag

Controls whether the receiver accepts mouse-moved events and distributes them to its resgtagders. If
YES it does accept themfliag is NO it doesn’t. NSWindows by default don’t accept mouse-moved events.

See also: — acceptsM ouseM ovedEvents

setAspectRatio:
— (void)setAspectRatio: (NSSizejatio

Sets the receiver’s size aspect raticatoo, constraining the size of its frame rectangle to integral multiples
of this size when the user resizes it. You can set an NSWindow'’s size to any ratio programmatically.

See also: — SetResizel ncrements:, —aspectRatio, —setFrame:display:

setAutodisplay:
— (void)setAutodisplay: (BOOL)flag

Controls whether the receiver automatically displays its views that are marked as neediag it ¥YES,
views are automatically displayed as needed, typically on each pass through the everfidgap.NiO,
the receiver or its views must be explicitly displayed.

See also: —isAutodisplay, —displaylfNeeded, —displayl fNeeded (NSView)

setBackgroundColor:
— (void)setBackgroundColor: (NSColor *)aColor

Sets the color of the receiver’s background@olor.

See also: —backgroundColor

setBackingType:
— (void)setBackingType: (NSBackingStore TypéackingType
Sets the receiver’s backing store typédokingType, which may be one of the following constants:

NSBackingStoreBuffered
NSBackingStoreRetained

41

Classes: NSWindow

42

This method can only be used to switch a buffered NSWindow to retained or vice versa; you can’'t change
the backing type to or from nonretained after initializing an NSWindow (a PostScript error is generated if
you attempt to do so).

See also: —backingType, —initWithContentRect:...

setContentSize:
— (void)setContentSize:(NSSizepSze

Sets the size of the receiver’s content viewdiae, which is expressed in the receiver’'s base coordinate
system. This in turn alters the size of the NSWindow itself. Note that the Window Server limits window
sizes to 10,000; if necessary, be sure to la8ite as needed relative to the frame rectangle.

See also: —setFrame:display:, + contentRectFor FrameRect: styleM ask:,
+ frameRectFor ContentRect: styleM ask

setContentView:
— (void)setContentView: (NSView *)aView

MakesaView the receiver’s content view; the previous content view is removed from the receiver’s view
hierarchy and releaseaView is resized to fit precisely within the content area of the NSWindow. You can
modify the content view’s coordinate system through its bounds rectangle, but can't alter its frame rectangle
(that is, its size or location) directly.

This method causes the old content view to be released; if you plan to reuse it, be sure to retain it before
sending this message and to release it as appropriate when adding it to another NSWindow or NSView.

See also: —contentView, —setContentSize:

setDefaultButtonCell:
— (void)setDefaultButtonCell:(NSButtonCell *pButtonCell

MakesaButtonCell’s key equivalent that for the Return (or Enter) key, so that when the user presses return
that button performs as if clicked. See the method descriptiaiefaultButtonCell for more information.

See also: —disableK eyEquivalentFor DefaultButtonCell,
— enableK eyEquivalentFor DefaultButtonCell

setDelegate:
— (void)setDelegate: (id)anObject
MakesanObject the receiver’s delegate, without retaining it. An NSWindow's delegate is inserted into the

responder chain after the NSWindow itself, and is informed of various actions by the NSWindow through
delegation messages.

See also: —delegate, —tryToPerform:with:, —sendAction:to:from: (NSApplication)

setDepthLimit:
— (void)setDepthL imit: (NSWindowDepth)imit
Sets the depth limit of the receiverltmit, which can be creating using tN&BestDepth() function. A

value of 0 indicates the receiver’s default depth limit; this can be useful for reverting an NSWindow to its
initial depth.

See also: —depthLimit, + defaultDepthLimit, —setDynamicDepthLimit:

setDocumentEdited:
— (void)setDocumentEdited: (BOOL)flag

Records whether the receiver’'s document has been edited but not saved. NSWindows are by default in “not
edited” status.

You should invoke this method with an argument of YES every time the NSWindow’s document changes
in such a way that it needs to be saved and with an argument of NO every time it gets saved. Then, before
closing the NSWindow you can usBocumentEdited to determine whether to allow the user a chance to
save the document.

setDynamicDepthLimit:
— (void)setDynamicDepthLimit: (BOOL)flag

Sets whether the receiver changes its depth to match the depth of the screen that it's on, or the deepest when
it spans multiple screens.flag is YES, the depth limit depends on which screen the receiver isftay If

is NO, the receiver uses either its preset depth limit or the default depth limit. A different, and nondynamic,
depth limit can be set with trsetDepthLimit: method.

See also: —hasDynamicDepthLimit, + defaultDepthLimit

43

Classes: NSWindow

44

setExcludedFromWindowsMenu:
— (void)setExcludedFromWindowsM enu: (BOOL)flag

Controls whether the receiver's title is omitted from the application’s Windows medhag i YES it's
omitted; ifflag is NO, it’s listed when it or its miniwindow is on-screen. The default is NO.

See also: —isExcludedFromWindowsM enu

setFrame:display:
— (void)setFrame: (NSRectjrameRect display: (BOOL)flag
Sets the origin and size of the receiver’s frame rectangle accordiagméirect, thereby setting its position

and size on-screen, and invokiesplay if flag is YES. Note that the Window Server limits window position
coordinates t&16,000 and sizes to 10,000.

See also: —frame, —setFrameFromSiring:, —setFrameOrigin:, —setFrameT opL eftPoint:,
—setFrameUsingName:

setFrameAutosaveName:
— (BOOL)setFrameAutosaveName: (NSString *)hame

Sets the name used to automatically save the receiver’s frame rectangle in the defaults sgstentfto

name isn't the empty string (@), the receiver’s frame is saved as a user default (as described in
saveFrameUsingName:) each time the frame changes. Returns YES if the name is set successfully, NO if
it's being used as an autosave name by another NSWindow in the application (in which case the receiver’'s
old name remains in effect).

See also: —setFrameUsingName:, +removeFrameUsingName:, —stringWithSavedFrame,
—setFrameFromString:

setFrameFromString:

— (void)setFrameFromsString: (NSString *)aString
Sets the receiver’s frame rectangle from the string represena&iong, a representation previously
creating usingtringWithSavedFrame. The frame is constrained according to the receiver's minimum and

maximum size settings. This method causesralowWillResize:toSize: message to be sent to the
delegate.

See also: —stringWithSavedFrame

setFrameOrigin:
— (void)setFrameOrigin: (NSPointpPoint

Positions the lower left corner of the receiver’'s frame rectangleant in screen coordinates. Note that
the Window Server limits window position coordinates1®,000.

See also: —setFrame:display:, —setFrameT opL eftPoint:

setFrameTopLeftPoint:
— (void)setFrameT opL eftPoint: (NSPointaPoint
Positions the top left corner of the receiver’s frame rectanglieaitt in screen coordinates. Note that the

Window Server limits window position coordinatesttts,000; if necessary, adjuoint relative to the
window’s lower left corner to account for this.

See also: — cascadeT opL eftFromPaint:, —setFrame:display:, —setFrameOrigin:

setFrameUsingName:
— (BOOL)setFrameUsingName: (NSString *hame
Sets the receiver’s frame rectangle by reading the rectangle data stame® fnom the defaults system.
The frame is constrained according to the receiver's minimum and maximum size settings. This method

causes avindowWillResize:toSize: message to be sent to the delegate. Returns &8 is read and
the frame is set successfully; otherwise returns NO.

See also: —setFrameAutosaveName:, +removeFrameUsingName:, —stringWithSavedFrame,
— setFrameFromsString:

setHidesOnDeactivate:
— (void)setHidesOnDeactivate: (BOOL)flag
Determines whether the receiver is removed from the screen when the application is infletine YES,
the receiver is hidden (taken out of the screen list) when the application stops being the active application.

If flag is NO, the receiver stays on-screen. The default for NSWindow is NO; the default for NSPanel is
YES.

See also: —hidesOnDeactivate:

45

Classes: NSWindow

46

\9 setInitialFirstResponder:

— (void)setInitial Fir stResponder : (NSView *)aView

SetsaView as the NSView that's made first responder (also called the key view) the first time the receiver
is placed on-screen.

See also: —initialFirstResponder

setlLevel:
— (void)setL evel: (int)newlLevel

Sets the receiver’s window leveltewLevel. Some useful predefined values are:

Level Comment

NSNormalWindowLevel The default level for NSWindow objects

NSFloatingWindowLevel Useful for floating palettes.

NSDockWindowLevel Reserved for the application dock (not used on Microsoft
Windows).

NSSubmenuWindowLevel Reserved for submenus (not used on Microsoft Windows).

NSMainMenuWindowLevel Reserved for the application’s main menu (not used on

Microsoft Windows).

Each level in the list groups windows within it above those in all preceding groups. Floating windows, for
example, appear above all normal level windows. When a window enters a new level it's ordered above all
of its peers in that level.

See also: —level, —orderWindow:reativeT o;, —order Front:, —order Back:

setMaxSize:
— (void)setM axSize: (NSSizepSze

Sets the maximum size to which the receiver’'s frame can be sia8ikéoThe maximum size constraint
is enforced for resizing by the user as well as fosghferame... methodsother than setFrame:display:.
Note that the Window Server limits window sizes to 10,000.

See also: —maxSize, —setMinSize:, —setAspectRatio:, —setResizel ncr ements:

setMiniwindowImage:
— (void)setMiniwindowl mage: (NSImage *animage
Sets the image displayed by the receiver's miniwindoantoage.

See also: —miniwindowl mage, —isMiniaturized

setMiniwindowTitle:

— (void)setMiniwindowTitle:(NSString *aString
Sets the title of the receiver’'s miniaturized counterpaaSidng and redisplays it. A miniwindow’s title
normally reflects that of its full-size counterpart, abbreviated to fit if necessary. Although this method

allows you to set the miniwindow’s title explicitly, changing the full-size NSWindow's title (through
setTitle: or setTitleWithRepresentedFilename:) automatically changes the miniwindow’s title as well.

See also: —miniwindowTitle

setMinSize:
— (void)setMinSize: (NSSizepSze

Returns the minimum size to which the receiver’s frame can be sia8@dd¢oThe minimum size constraint
is enforced for resizing by the user as well as fosttierame... methods other thaset Frame:display:.

See also: —MinSize, —setMaxSize:, —setAspectRatio:, —setResizel ncrements.

setOneShot:

— (void)setOneShot: (BOOL)flag
Sets whether the PostScript window device that the receiver manages should be freed when it's removed
from the screen list (and another one created if it's returned to the screen). This can result in memory
savings and performance improvement for NWindows that don’t take long to display. It's particularly

appropriate for NSWindows that the user might use once or twice but not display continually. The default
is NO.

See also: —isOneShot

47

Classes: NSWindow

setReleasedWhenClosed:
— (void)setReleasedWhenClosed: (BOOL)flag

Determines the receiver’s behavior when it receiveese message. lfiag is NO, the receiver is merely
hidden (taken out of the screen list)fl#ig is YES, the receiver is hidden and then released. The default for
NSWindow is YES; the default for NSPanel is NO.

Another strategy for releasing an NSWindow is to have its delegate autorelease it on receiving a
windowShouldClose: message.

See also; —close, —isReleasedWhenClosed

setRepresentedFilename:
— (void)setRepresentedFilename; (NSString *)path
Sets the name of the file that the receiver represeptgho

See also: —representedFilename;, —set TitleWithRepr esentedFilename:

setResizelncrements:
— (void)setResizel ncr ements: (NSSizehncrements

Restricts the user’s ability to resize the window so that its width and height alter by multiples of
increments.width andincrements.height as the user resizes it. These amounts should be whole numbers, 1.0
or greater. You can set an NSWindow's size to any ratio programmatically.

See also: —resizel ncrements, —setAspectRatio:, —setFrame:display:

setTitle:
— (void)set Title:(NSString *)aString

Sets the string that appears in the receiver’s title bar (if it has ca®tjitag and displays the title. Also sets
the title of the receiver’'s miniwindow.

Seealso: —title, —setTitleWithRepresentedFilename:, —setMiniwindowTitle:

setTitleWithRepresentedFilename:
— (void)set TitleWithRepr esentedFilename: (NSString *)path

Setspath as the receiver’s title, formatting it as a file system path, and repatidas the receiver’s
associated filename usisgtRepr esentedFilename:. The title format varies with the platform. On

48

Mach-based systems, the file nameis displayed first, followed by an em dash and the path for the directory
containing the file. The em dash is offset by two spaces on either side. For example:

MyFile — /Net/server/group/home
This method also sets the title of the receiver’s miniwindow.

See also: —title, —setTitle:, —setMiniwindowTitle:, —setRepresentedFilename:

setViewsNeedDisplay:
— (void)setViewsNeedDisplay:(BOOL)flag

Records the receiver’s display statudldfy is YES, the receiver records itself as needing displdhadis
NO the receiver records its NSViews as not needing display. You should rarely need to invoke this method;
NSView's setNeedsDisplay: and similar methods invoke it automatically.

See also: —VviewsNeedDisplay

stringWithSavedFrame
— (NSString *stringWithSavedFrame

Returns a string that represents the receiver’s frame rectangle in a format that can be used with a later
setFrameUsingName: message.

styleMask
— (unsigned inttyleM ask

Returns the receiver’s style mask, indicating what kinds of control items it displays. See the description for
the style mask in thimitWithContentRect: styleM ask:backing: defer: method description. An
NSWindow’s style is set when the object is initialized. Once set, it can’t be changed.

title

— (NSString *}itle
Returns the string that appears in the title bar of the receiver.
See also: —Title, —setTitleWithRepresentedFilename;

49

Classes: NSWindow

tryToPerform:with:
— (BOOL)tryToPerform:(SEL)anAction with: (id)anObject

Overrides NSResponder’s implementation to add the receiver’s delegate to the series of objects requested
to performanAction. Returns YES if a receiver fanAction is found; otherwise returns NO.

See also: —tryToPerform:with: (NSResponder)

unregisterDraggedTypes
— (void)unregister Dragged Types
Unregisters the receiver as a possible destination for dragging operations.

See also: —register For DraggedTypes:

update

— (void)update
The default implementation of this method does nothing more than post an
NSWindowDidUpdateNotification to the default notification center. A subclass can override this method

to perform specialized operations, but should sengpdate message teuper just before returning. For
example, the NSMenu class implements this method to disable and enable menu commands.

An NSWindow is automatically sent apdate message on every pass through the event loop and before
it's ordered on-screen. You can manually cause an update message to be sent to all visible NSWindows
through NSApplication’sipdateWindows method.

See also: —satWindowsNeedUpdate: (NSApplication), -updateWindows (NSApplication)

useOptimizedDrawing:

— (void)useOptimizedDrawing: (BOOL)flag
Informs the receiver whether to optimize focusing and drawing when displaying its NSViews. The
optimizations may prevent sibling subviews from being displayed in the correct order—which matters only

if the subviews overlap. You should alwaysftag to YES if there are no overlapping subviews within the
NSWindow. The default is NO.

50

validRequestorForSendType:returnType:
— (id)validRequestor For SendType: (NSString *)sendType returnType: (NSString *)eturnType

Searches for an object that responds to a Services request by providing sspdTgbe and accepting
output ofreturnType. Returns that object, @il if none is found.

Messages to perform this method are initiated by the Services menu. It's part of the mechanism that passes
validRequestor For SendType:andReturnType: messages up the responder chain. See the Services
documentation ifProgramming Topics for more information.

This method works by forwarding the message to the receiver’s delegate if it responds (and provided it isn’t
an NSResponder with its own next responder). If the delegate doesn’t respond to the messagendlr returns
when sent it, this method forwards the message to the NSApplication object. If the NSApplication object
returnsnil, this method also returmél. Otherwise this method returns the object returned by the delegate

or NSApplication object.

See also: —validRequestor For SendTypereturnType: (NSResponder and NSApplication)

viewsNeedDisplay
— (BOOL)viewsNeedDisplay
Returns YES if any of the receiver's NSView’s need to be displayed, NO otherwise.

See also: — setViewsNeedDisplay:

windowHandle
— (void *)windowHandle

Returns a Microsoft Windows HWND handle as a pointeqotd. This value can be cast directly to
HWND. This method exists only on Microsoft Windows; don’t attempt to invoke it on Mach.

windowNumber
— (intjwindowNumber

Returns the window number of the receiver’'s PostScript window device. Each window device in an
application is given a unique window number—note that this isn’t the same as the global window number
assigned by the Window Server. This number can be used to identify the window device with the
orderWindow:relativeT o: method and in the Application Kit functiohsSWindowList() and
NSConvertWindowNumber ToGlobal ().

If the receiver doesn’t have a window device, the value returned will be equal to or less than 0.

See also: —initWithContentRect: styleM ask:backing: defer:, —setOneShot:

51

Classes: NSWindow

worksWhenModal
— (BOOL)wor kswhenM odal

Returns YES if the receiver is able to receive keyboard and mouse events even when some other window
is being run modally, NO otherwise. NSWindow's implementation of this method returns NO. Only
subclasses of NSPanel should override this default.

See also: —setWorksWhenModal: (NSPanel)

Methods Implemented By the Delegate

52

windowDidBecomeKey:
— (void)windowDidBecomeK ey: (NSNotification *)aNotification
Sent by the default notification center immediately after an NSWindow has beconadl&gfycation is

always NSWindowDidBecomeKeyNotification. You can retrieve the NSWindow object in question by
sendingobj ect to aNatification.

windowDidBecomeMain:
— (voidwindowDidBecomeM ain: (NSNotification *)aNotification
Sent by the default notification center immediately after an NSWindow has becomelMatifiication is

always NSWindowDidBecomeMainNotification. You can retrieve the NSWindow object in question by
sendingobj ect to aNotification.

windowDidChangeScreen:
— (void)windowDidChangeScr een: (NSNotification *)aNotification
Sent by the default notification center immediately after an NSWindow has changed adotidication

is always NSWindowDidChangeScreenNotification. You can retrieve the NSWindow object in question by
sendingobj ect to aNotification.

windowDidDeminiaturize:
— (void)windowDidDeminiaturize: (NSNotification *)aNotification
Sent by the default notification center immediately after an NSWindow has been deminiaturized.

aNatification is always NSWindowDidDeminiaturizeNotification. You can retrieve the NSWindow object
in question by sendingbj ect to aNoatification.

windowDidExpose:
— (void)windowDidExpose: (NSNotification *)aNotification
Sent by the default notification center immediately after an NSWindow has been exgdmditation is

always NSWindowDidExposeNotification. You can retrieve the NSWindow object in question by sending
object to aNotification.

windowDidMiniaturize:
— (voidwindowDidMiniaturize:(NSNotification *)JaNotification
Sent by the default notification center immediately after an NSWindow has been miniaturized.

aNotification is always NSWindowDidMiniaturizeNotification. You can retrieve the NSWindow object in
guestion by sendingbject to aNotification.

windowDidMove:
— (void)windowDidM ove: (NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has been @idotfiication is
always NSWindowDidMoveNoatification. You can retrieve the NSWindow object in question by sending
object to aNotification.

windowDidResignKey:
— (void)windowDidResignK ey: (NSNotification *)aNatification
Sent by the default notification center immediately after an NSWindow has resigned its status as key

window. aNotification is always NSWindowDidResignKeyNotification. You can retrieve the NSWindow
object in question by sendirudpject to aNotification.

windowDidResignMain:
— (void)windowDidResignM ain: (NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has resigned its status as main
window.aNoatification is always NSWindowDidResignMainNaotification. You can retrieve the NSWindow
object in question by sendirdpject to aNotification.

53

Classes: NSWindow

windowDidResize:
— (void)windowDidResize: (NSNotification *)aNotification
Sent by the default notification center immediately after an NSWindow has been raNaéttation is

always NSWindowDidResizeNotification. You can retrieve the NSWindow object in question by sending
object to aNotification.

windowDidUpdate:
— (voidwindowDidUpdate: (NSNotification *)aNotification
Sent by the default notification center immediately after an NSWindow receivgslare message.

aNatification is always NSWindowDidUpdateNotification. You can retrieve the NSWindow object in
guestion by sendingbject to aNotification.

windowShouldClose:
— (BOOL)windowShouldClose: (id)sender

Invoked just before the usgar theperfor mClose: method) closesender. The delegate can return NO to
preventsender from closing.

windowWillClose:
— (void)windowWillClose: (NSNotification *)aNotification

Sent by the default notification center immediately before an NSWindow ctddatfication is always
NSWindowWillCloseNotification. You can retrieve the NSWindow object in question by seoliact
to aNotification.

\9 windowWillMiniaturize:
— (void)windowWi llMiniaturize:(NSNotification *)aNotification

Sent by the default notification center immediately before an NSWindow is miniatuadsetication is
always NSWindowWillMiniaturizeNotification. You can retrieve the NSWindow object in question by
sendingobj ect to aNotification.

54

\9 windowWillMove:
— (void)windowWillM ove: (NSNotification *)aNotification

Sent by the default notification center immediately before an NSWindow is meiNeiication is always
NSWindowWillMoveNoatification. You can retrieve the NSWindow object in question by senbjrgt
to aNotification.

\9 windowWillResize:toSize:
— (NSSizeyvindowWillResize:(NSWindow *)sender toSize: (NSSizeproposedFrameSze

Invokedsender is being resized (whether by the user or through one sétReame... methods other than
setFrame:display:). proposedFrameSze contains the size (in screen coordinates) thaseer will be
resized to. To reset the size, simply retsamder directly from this method. The NSWindow’s minimum
and maximum size constraints have already been applied when this method is invoked.

While the user is resizing an NSWindow, the delegate is sent a seweasdofvWillResize:toSize:
messages as the NSWindow's outline is dragged. The NSWindow’s outline is displayed at the constrained
size as set by this method.

windowWillReturnFieldEditor:toObject:
— (id)windowWillRetur nFieldEditor : (NSWindow *)sender toObject: (id)anObject

Invoked whersender’s field editor is requested @anObject. If the delegate’s implementation of this
method returns an object other thdh the NSWindow substitutes it for the field editor and returns it to
anObject.

See also: —fieldEditor:for Object

Notifications
NSWindowDidBecomeKeyNotification
Posted whenever the NSWindow becomes the key window. The notification contains:
Notification Object The NSWindow that has become key

Userinfo None

55

Classes: NSWindow

56

NSWindowDidBecomeMainNotification

Posted whenever the NSWindow becomes the main window. The notification contains:
Notification Object The NSWindow that has become main

Userinfo None

NSWindowDidChangeScreenNotification

Posted whenever a portion of the NSWindow’s frame moves onto or off of a screen. The notification
contains:

Notification Object The NSWindow that has changed screen

Userinfo None

NSWindowDidDeminiaturizeNotification
Posted whenever the NSWindow is deminiaturized. The notification contains:
Notification Object The NSWindow that has deminiaturized

Userinfo None

NSWindowDidExposeNotification

Posted whenever a portion of a nonretained NSWindow is exposed, whether by being ordered above other
windows or by other widows being removed from above it. The notification contains:

Notification Object The NSWindow that has been exposed
Userinfo

Key Value

NSExposedRect The rectangle that has been exposed

NSWindowDidMiniaturizeNotification

Posted whenever the NSWindow is miniaturized. The notification contains:
Notification Object The NSWindow that has miniaturized

Userinfo None

NSWindowDidMoveNotification
Posted whenever the NSWindow is moved. The notification contains:
Notification Object The NSWindow that has moved

Userinfo None

NSWindowDidResignKeyNotification
Posted whenever the NSWindow resignsits status as key window. The notification contains:
Notification Object The NSWindow that has resigned its key window status

Userinfo None

NSWindowDidResignMainNotification
Posted whenever the NSWindow resigns its status as main window. The notification contains:
Notification Object The NSWindow that has resigned its main window status

Userinfo None

NSWindowDidResizeNotification
Posted whenever the NSWindow's size changes. The natification contains:
Notification Object The NSWindow whose size has changed

Userinfo None

NSWindowDidUpdateNotification
Posted whenever the NSWindow receivesijptiate message. The notification contains:
Notification Object The NSWindow that received tlhypdate message

Userinfo None

57

Classes: NSWindow

NSWindowWillCloseNotification

Posted whenever the NSWindow is about to close. The notification contains:
Notification Object The NSWindow that'’s closing

Userinfo None

$ NSwindowWillMiniaturizeNotification
Posted whenever the NSWindow is about to miniaturize. The notification contains:
Notification Object The NSWindow that’'s miniaturizing

Userinfo None

$ NSwindowWwillMoveNotification
Posted whenever the NSWindow is about to move. The notification contains:
Notification Object The NSWindow that's moving

Userinfo None

58

