
Protocol: NSCopying 1

NSCopying

Adopted By: <<various>>

Declared In: foundation/NSObject.h

Protocol Description

A class whose instances provide functional copies of themselves must adopt the
NSCopying protocol. The exact meaning of “copy” can vary from class to class, but a copy
must be a functionally independent object, identical to the original at the time the copy was
made. Where the concept “immutable vs. mutable” applies to an object, this protocol
produces immutable copies; see the NSMutableCopying protocol for details on making
mutable copies.

In most cases, to produce a copy that’s independent of the original, a deep copy must be
made. A deep copy is one in which every instance variable of the receiver is duplicated, not
simply referenced in the copy. If the receiver’s instance variables themselves have instance
variables, those too must be duplicated, and so on. A deep copy is thus a completely
separate object from the original; changes to it don’t affect the original, and changes to the
original don’t affect it. Further, for an immutable copy no part at any level may be changed,
making a copy a “snapshot” of the original object.

Making a complete deep copy isn’t always needed. Some objects can reasonably share
instance variables among themselves—for example a static string object that gets replaced
but not modified. In such cases your class can implement NSCopying more cheaply than
it might otherwise need to.

The copied instance returned by the methods in this protocol are not autoreleased.

 2 Protocol: NSCopying

Instance Methods

copy

– copy

Invokes copyWithZone: with the same memory zone as the receiver. Subclasses should
implement their own versions of copyWithZone:, not copy, to define class-specific
copying.

See also: – mutableCopy (NSMutableCopying protocol)

copyWithZone:

– (id)copyWithZone:(NSZone *)zone

Returns a new instance that’s a copy of the receiver. Memory for the new instance is
allocated from zone. The copy returned is immutable if the consideration “immutable vs.
mutable” applies to the receiving object; otherwise the exact nature of the copy is
determined by the class. The returned copy is not autoreleased.

Making an immutable copy usually involves making immutable copies of all of the
receiver’s instance variables. Thus, many new objects may be made in the process of
copying one object.

See also: – mutableCopyWithZone: (NSMutableCopying protocol)

