

Classes:

:

s

c NSString Class Cluster

Class Cluster Description

NSString objects represent character strings in OpenStep frameworks. Representing strings as objects
allows you to use strings wherever you use other objects. It also provides the benefits of encapsulation, so
that string objects can use whatever encoding and storage is needed for efficiency while simply appearing
as arrays of characters. The cluster’s two public classes, NSString and NSMutableString, declare the
programmatic interface for noneditable and editable strings, respectively.

Note: An immutable string is a text string that is defined when it is created and subsequently cannot be
changed. An immutable string is implemented as array of Unicode characters (in other words, a text
string). To create and manage an immutable string, use the NSString class. To construct and manage
a string that can be changed after it has been created, use NSMutableString.

The objects you create using NSString and NSMutableStringare referred to as string objects (or, when no
confusion will result, merely as strings). The term C string refers to the standard char * type. Because of
the nature of class clusters, string objects aren’t actual instances of the NSString or NSMutableString
classes but of one of their private subclasses. Although a string object’s class is private, its interface is
public, as declared by these abstract superclasses, NSString and NSMutableString. (See “Class Clusters”
in the introduction to the Foundation Kit for more information on class clusters and on creating subclasses
within a cluster.) The string classes adopt the NSCopying and NSMutableCopying protocols, making it
convenient to convert a string of one type to the other.

A string object presents itself as an array of Unicode characters (Unicode is a registered trademark of
Unicode, Inc.). You can determine how many characters it contains with the length method and can retrieve
a specific character with the characterAtIndex: method. These two “primitive” methods provide basic
access to a string object. Most use of strings, however, is at a higher level, with the strings being treated as
single entities: You compare strings against one another, search them for substrings, combine them into new
strings, and so on. If you need to access string objects character-by-character, you must understand the
Unicode character encoding, specifically issues related to composed character sequences. For details see

The Unicode Standard: Worldwide Character Encoding, Version 1.0, Volumes 1 and 2. The Unicode
Consortium. Addison-Wesley. ISBN 0–201–56788–1 (Volume 1) and 0–201–60845–6 (Volume 2).

Version 2.0, also published by Addison-Wesley, is forthcoming. ISBN 0–201–48345–9.

Creating and Converting String Objects

NSString provides several means for creating instances, most based around the various character encoding
it supports. Although string objects always present their own contents as Unicode characters, they can
convert their contents to and from many other encodings, such as 7-bit ASCII, ISO Latin 1, EUC, and
Shift-JIS. The availableStringEncodings class method returns the encodings supported. You can specify
1

n

an encoding explicitly when converting a C string to or from a string object, or use the default C string
encoding, which varies from platform to platform and is returned by the defaultCStringEncoding class
method.

The simplest way to create a string object in source code is to use either the stringWithCString: class
method or the initWithCString: instance method. Each takes a standard null-terminated C string in the
default C string encoding and produces a string object. As a convenience, the Objective-C language also
supports the @"..." construct to create a string object constant from 7-bit ASCII encoding:

NSString *temp = @"/tmp/scratch";

Such an object is created at compile time and exists throughout your program’s execution. The compiler
makes such object constants unique on a per-module basis, and they’re never deallocated (though you ca
retain and release them as you do any other object).

To get a C string from a string object, use the cString message. This returns a char * in the system’s default
string encoding, or raises an exception if it can’t convert its contents to that encoding. The C string you
receive is owned by a temporary object, though, so it will become invalid when automatic deallocation takes
place (see “Object Ownership and Automatic Disposal” in the introduction to the Foundation Kit for further
information). If you want to get a permanent C string, you must create a buffer and use one of the
getCString:... methods to fill it. You can find out how large the buffer needs to be with the cStringLength
method.

Similar methods allow you to create string objects from characters in the Unicode encoding or an arbitrary
encoding, and to extract data in these encodings. initWithData:encoding: and dataUsingEncoding:
perform these conversions from and to NSData objects. You can also read a string directly from a file in the
Unicode or default C string encoding using the stringWithContentsOfFile: class method, and write a
string using writeToFile:atomically: .

Finally, two types of method allow you to build a string from existing string objects.
localizedStringWithFormat: and its siblings use a format string as a template into which the values you
provide (string and other objects, numerics values, and so on) are inserted. The methods
stringByAppendingString: and stringByAppendingFormat: create a new string by adding one string
after another, in the second case using a format string.

In format strings, a ‘%’ character announces a placeholder for a value, with the characters that follow
determining the kind of value expected and how to format it. For example, a format string of “%d houses”
expects an integer value to be substituted for the format expression “%d”. NSString supports the format
characters defined for the ANSI C function printf() , plus ‘@’ for any object. If the object responds to the
descriptionWithLocale: message, NSString sends that message to retrieve the text representation,
otherwise, it sends a description message.

Note: Many compilers perform typecasting of arguments to printf() , so that printing an integer into a %f
(floating-point) placeholder works as expected. This typecasting doesn’t occur with NSString’s
formatted methods, so be sure to cast your values explicitly.

Value formatting is affected by the user’s current locale, which is an NSDictionary specifying number, date,
and other kinds of formats. NSString uses only the locale’s definition for the decimal separator (given by
2

Classes:

d

or

the key named NSDecimalSeparator). If you use a method that doesn’t specify a locale, the string assumes
the default locale. See “Locales” in the “Other Features” section of the Foundation Kit documentation for
more information on locales.

This table summarizes the most common means of creating and converting string objects:

Source Creation Method Extraction Method

Default C string encoding stringWithCString: getCString: (or cString)

In code @"..." compiler construct

Unicode encoding stringWithCharacters:length: getCharacters:length:

Arbitrary encoding initWithData:encoding: dataUsingEncoding:

File contents stringWithContentsOfFile: writeToFile:atomically:

Format string localizedStringWithFormat: initWithFormat:locale:

Existing strings stringByAppendingString: stringByAppendingFormat:

Working with String Objects

The string classes provide methods for finding characters and substrings within strings and for comparing
one string to another. These methods conform to the Unicode standard for determining whether two
character sequences are equivalent. The string classes provide comparison methods that handle compose
character sequences properly, though you do have the option of specifying a literal search when efficiency
is important and you can guarantee some canonical form for composed character sequences.

The search and comparison methods each come in three variants. The simplest version of each searches
compares entire strings. Other variants allow you to alter the way comparison of composed character
sequences is performed and to specify a specific range of characters within a string to be searched or
compared. You can specify these options (not all options are available for every method):

Search Option Effect

NSCaseInsensitiveSearch Ignores case distinctions among characters.

NSLiteralSearch Performs a byte-for-byte comparison. Differing literal sequences (such
as composed character sequences) that would otherwise be considered
equivalent are considered not to match. Using this option can speed
some operations dramatically.

NSBackwardsSearch Performs searching from the end of the range toward the beginning.

NSAnchoredSearch Performs searching only on characters at the beginning or end of the
range. No match at the beginning or end means nothing is found, even if
a matching sequence of characters occurs elsewhere in the string.
3

ns
Note: Search and comparison are currently performed as if the NSLiteralSearch option were specified. As
the Unicode encoding becomes more widely used, and the need for more flexible comparison
increases, the default behavior will be changed accordingly.

Substrings are only found if completely contained within the specified range. If you specify a range for a
search or comparison method and don’t request NSLiteralSearch, the range must not break composed
character sequences on either end; if it does you could get an incorrect result. (See the method description
for rangeOfComposedCharacterSequenceAtIndex: for a code sample that adjusts a range to lie on
character sequence boundaries.)

The basic search and comparison methods are these:

rangeOfString: compare:
rangeOfString:options: compare:options:
rangeOfStrings:options:range: compare:options:range:

rangeOfCharacterFromSet:
rangeOfCharacterFromSet:options:
rangeOfCharacterFromSet:options:range:

The rangeOfString:... methods search for a substring within the receiver. The
rangeOfCharacterFromSet:... methods search for individual characters from a supplied set of characters.
The compare:... methods return the lexical ordering of the receiver and the supplied string. Several other
methods allow you to determine whether two strings are equal or whether one is the prefix or suffix of
another, but they don’t have variants that allow you to specify search options or ranges.

In addition to searching and comparing strings, you can combine and divide them in various ways. The
simplest way to put two strings together is to append one to the other. The stringByAppendingString:
method returns a string object formed from the receiver and the argument supplied. You can also combine
several strings according to a template with the initWithFormat: , stringWithFormat: and
stringByAppendingFormat: methods. See ““Creating and Converting String Objects”” for more
information.

You can extract substrings from the beginning or end of a string to a particular index, or from a specific
range, with the substringToIndex:, substringFromIndex:, and substringWithRange: methods. You can
also split a string into substrings (based on a separator string) with the componentsSeparatedByString:
method.

Most of the NSString classes’ remaining methods are for conveniences such as changing case, quickly
extracting numeric values, and working with encodings. There’s also a set of methods for treating strings
as file system paths, described below in ““Manipulating Paths”.” An additional class cluster, NSScanner,
allows you to scan a string object for numeric and string values. Both the NSString and the NSScanner class
clusters use the NSCharacterSet class cluster for search operations. See the appropriate class specificatio
for more information.
4

Classes:

Manipulating Paths

In addition to all the basic methods for working with character strings merely as strings, NSString also
provides a rich set of methods for manipulating strings as file system paths. A string can extract a path’s
directory, file name, and extension, expand a tilde expression (such as “~me”) or create one for the user’s
home directory, and clean up paths containing symbolic links, redundant slashes, and references to “.”
(current directory) and “..” (parent directory). These methods are listed under “Working with paths” in the
“MethodTypes“”” section.

NSString represents paths generically with ‘/’ as the path separator and ‘.’ as the extension separator.
Methods that accept strings as path arguments convert these generic representations to the proper
system-specific form as needed. On systems with an implicit root directory, absolute paths begin with a path
separator or with a tilde expression (“~/...” or “~user/...”). On systems that require explicit expression of
root directories for different devices, such as Microsoft Windows 95, absolute paths begin with the name of
the device (for example, “C:/Documents/Paper.doc” to represent the actual path
“C:\Documents\Paper.doc”). Where a device must be specified, you can do that yourself—introducing a
system dependency—or allow the string object to add a default device.
5

i NSString

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSString.h
Foundation/NSPathUtilities.h

Class Description

The NSString class declares the programmatic interface for an object that manages immutable strings. (An
immutable string is a text string that is defined when it is created and subsequently cannot be changed. An
immutable string is implemented as array of Unicode characters (in other words, a text string). To create
and manage a string that can be changed after it has been created, use NSMutableString.)

The NSString class has two primitive methods—length and characterAtIndex:—that provide the basis for
all other methods in its interface. The length method returns the total number of Unicode characters in the
string. characterAtIndex: gives access to each character in the string by index, with index values starting
at 0.

NSString declares methods for finding and comparing strings. It also declares methods for reading numeric
values from strings, for combining strings in various ways, and for converting a string to different forms
(such as encoding and case changes). General use of these methods is presented in the class cluster
description under ““Working with String Objects”.”

Adopted Pr otocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:

NSMutableCopying – mutableCopyWithZone:
6

Classes:

Method Types

Creating temporary strings + stringWithCString:
+ stringWithCString:length:
+ stringWithFormat:
+ localizedStringWithFormat:
+ stringWithContentsOfFile:
+ stringWithCharacters:length:
+ string
+ stringWithString:

Initializing newly allocated strings – initWithCharactersNoCopy:length:freeWhenDone:
– initWithCharacters:length:
– initWithCStringNoCopy:length:freeWhenDone:
– initWithCString:length:
– initWithCString:
– initWithString:
– initWithFormat:
– initWithFormat:arguments:
– initWithFormat:locale:
– initWithFormat:locale:arguments:
– initWithData:encoding:
– initWithContentsOfFile:
– init

Getting a string’s length – length

Accessing characters – characterAtIndex:
– getCharacters:
– getCharacters:range:

Combining strings – stringByAppendingFormat:
– stringByAppendingString:

Dividing strings – componentsSeparatedByString:
– substringFromIndex:
– substringWithRange:
– substringToIndex:

Finding characters and substrings – rangeOfCharacterFromSet:
– rangeOfCharacterFromSet:options:
– rangeOfCharacterFromSet:options:range:
– rangeOfString:
– rangeOfString:options:
– rangeOfString:options:range:

Determining line ranges – getLineStart:end:contentsEnd:forRange:
– lineRangeForRange:
7

Determining composed character sequences
– rangeOfComposedCharacterSequenceAtIndex:

Converting string contents into a property list
– propertyList
– propertyListFromStringsFileFormat

Identifying and comparing strings
– caseInsensitiveCompare:
– compare:
– compare:options:
– compare:options:range:
– hasPrefix:
– hasSuffix:
– isEqualToString:
– hash

Getting a shared prefix – commonPrefixWithString:options:

Changing case – capitalizedString
– lowercaseString
– uppercaseString

Getting C strings – cString
– lossyCString
– cStringLength
– getCString:
– getCString:maxLength:
– getCString:maxLength:range:remainingRange:

Getting numeric values – doubleValue
– floatValue
– intValue

Working with encodings + availableStringEncodings
+ defaultCStringEncoding
+ localizedNameOfStringEncoding:
– canBeConvertedToEncoding:
– dataUsingEncoding:
– dataUsingEncoding:allowLossyConversion:
– description
– fastestEncoding
– smallestEncoding
8

Classes:

Working with paths + pathWithComponents:
– pathComponents
– completePathIntoString:caseSensitive:

matchesIntoArray:filterTypes:
– fileSystemRepresentation
– getFileSystemRepresentation:maxLength:
– isAbsolutePath
– lastPathComponent
– pathExtension
– stringByAbbreviatingWithTildeInPath
– stringByAppendingPathComponent:
– stringByAppendingPathExtension:
– stringByDeletingLastPathComponent
– stringByDeletingPathExtension
– stringByExpandingTildeInPath
– stringByResolvingSymlinksInPath
– stringByStandardizingPath
– stringsByAppendingPaths:

Writing to a file – writeToFile:atomically:

Class Methods

availableStringEncodings
+ (const NSStringEncoding *)availableStringEncodings

Returns a zero-terminated list of the encodings that string objects support in the application’s environment.
Among the more commonly used are:

NSASCIIStringEncoding
NSNEXTSTEPStringEncoding
NSUnicodeStringEncoding
NSISOLatin1StringEncoding
NSISOLatin2StringEncoding
NSSymbolStringEncoding

See the “Types and Constants” section of the Foundation Kit documentation for a complete list and
descriptions of supported encodings.

See also: + localizedNameOfStringEncoding:
9

s

defaultCStringEncoding
+ (NSStringEncoding)defaultCStringEncoding

Returns the C string encoding assumed for any method accepting a C string as an argument (these method
use CString in the keywords for such arguments; for example, stringWithCString:). The default C string
encoding is determined from system information, and can’t be changed programmatically for an individual
process. See the description of NSStringEncoding in the “Types and Constants” section for a full list of
supported encodings.

localizedNameOfStringEncoding:
+ (NSString *)localizedNameOfStringEncoding:(NSStringEncoding)encoding

Returns a human-readable string giving the name of encoding in the current locale’s language. See
“Locales” in the “Other Features” section of the Foundation Kit documentation for more information on
locales.

localizedStringWithFormat:
+ (NSString *)localizedStringWithFormat: (NSString *)format, ...

Returns a string created by using format as a template into which the following argument values are
substituted according to the formatting information of the current locale. For example, this code excerpt
creates a string from another string and an int :

NSString *myString = [NSString localizedStringWithFormat:@"%@: %d\n",

 @"Cost", 32];

The resulting string has the value “Cost: 32\n”.

See ““Creating and Converting String Objects”” in the class cluster description for more information.

p pathWithComponents:
+ (NSString *)pathWithComponents:(NSArray *)components

Returns a string built from the strings in components, by concatenating them with a path separator between
each pair. To create an absolute path, use a slash mark “/” as the first component. To include a trailing path
divider, use an empty string as the last component. This method doesn’t clean up the path created; use
stringByStandardizingPath to resolve empty components, references to the parent directory, and so on.

On systems that require an explicit root device for an absolute path, this method add a default device
specifier (such as “C:” on Windows systems).

See also: – pathComponents
10

Classes:

p string
+ (id)string

Returns an empty string.

See also: – init

stringWithCharacters:length:
+ (id)stringWithCharacters: (const unichar *)chars length:(unsigned int)length

Returns a string containing length characters taken from chars, which may not be NULL. This method
doesn’t stop short at a zero character.

See also: – initWithCharacters:length:

stringWithContentsOfFile:
+ (id)stringWithContentsOfFile: (NSString *)path

Returns a string created by reading characters from the file named by path. If the contents begin with a
byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters; otherwise interprets
the contents as characters in the default C string encoding. Returns nil if the file can’t be opened.

See also: – initWithContentsOfFile: , + defaultCStringEncoding

stringWithCString:
+ (id)stringWithCString: (const char *)cString

Returns a string containing derived from the characters in cString, which must end with a zero character and
which may not be NULL. cString should contain characters in the default C string encoding. If the argument
passed to stringWithCString is not a NULL-terminated C string, the results are undefined.

See also: – initWithCString: , + defaultCStringEncoding

stringWithCString:length:
+ (id)stringWithCString: (const char *)cString length:(unsigned int)length

Returns a string containing characters derived from cString, which may not be NULL. cString should
contain characters in the default C string encoding. This method converts length * sizeof(char) bytes from
cString, and doesn’t stop short at a zero character.

See also: – initWithCString:length: , + defaultCStringEncoding
11

e
stringWithFormat:
+ (id)stringWithFormat: (NSString *)format, ...

Returns a string created in the manner of localizedStringWithFormat: , but using the default locale to
format numbers. See ““Creating and Converting String Objects”” in the class cluster description for more
information.

See also: – initWithFormat:

p stringWithString:
+ (id)stringWithString: (NSString *)aString

Returns a string created by copying the characters from aString.

See also: – initWithString:

Instance Methods

canBeConvertedToEncoding:
– (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding

Returns YES if the receiver can be converted to encoding without loss of information. Returns NO if
characters would have to be changed or deleted in the process of changing encodings.

If you plan to actually convert a string, the dataUsingEncoding:... methods simply return nil on failure, so
you can avoid the overhead of invoking this method yourself by simply trying to convert the string.

See also: – dataUsingEncoding:allowLossyConversion:

capitalizedString
– (NSString *)capitalizedString

Returns a string with the first character from each word in the receiver changed to its corresponding
uppercase value, and all remaining characters set to their corresponding lowercase values. A “word” here
is any sequence of characters delimited by spaces, tabs, or line terminators (listed under
getLineStart:end:contentsEnd:forRange:). Other common word delimiters such as hyphens and other
punctuation aren’t considered, so this method may not generally produce the desired results for multi-word
strings.

Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as th
originals. See lowercaseString for an example.

See also: – lowercaseString, – uppercaseString
12

Classes:
caseInsensitiveCompare:
– (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString

This convenience method invokes compare:options: with NSCaseInsensitiveSearch as the only option.

characterAtIndex:
– (unichar)characterAtIndex: (unsigned int)index

Returns the character at the array position given by index. Raises an NSRangeException if index lies beyond
the end of the string.

See also: – getCharacters:, – getCharacters:range:

commonPrefixWithString:options:
– (NSString *)commonPrefixWithString: (NSString *)aString

options:(unsigned int)mask

Returns a string containing characters that the receiver and aString have in common, starting from the
beginning of each up to the first characters that aren’t equivalent. The returned string is based on the
characters of the receiver. For example, if the receiver is “Ma¨dchen” and aString is “Mädchenschule”, the
string returned is “Ma¨dchen”, not “Mädchen”. The following search options may be specified in mask by
combining them with the C bitwise OR operator:

NSCaseInsensitiveSearch
NSLiteralSearch

See ““Working with String Objects”” in the class cluster description for details on these options.

See also: – hasPrefix

compare:
– (NSComparisonResult)compare:(NSString *)aString

Invokes compare:options: with no options.

See also: – compare:options:range:, – caseInsensitiveCompare:, – isEqualToString:
13

compare:options:
– (NSComparisonResult)compare:(NSString *)aString options:(unsigned int)mask

Invokes compare:options:range: with mask as the options and the receiver’s full extent as the range.

See also: – caseInsensitiveCompare:, – isEqualToString:

compare:options:range:
– (NSComparisonResult)compare:(NSString *)aString

options:(unsigned int)mask
range:(NSRange)aRange

Returns NSOrderedAscending if the substring of the receiver given by aRange precedes aString in lexical
ordering, NSOrderedSame if the substring of the receiver and aString are equivalent in lexical value, and
NSOrderedDescending if the substring of the receiver follows aString. You can specify the following
options in mask by combining them with the C bitwise OR operator:

NSCaseInsensitiveSearch
NSLiteralSearch

See ““Working with String Objects”” in the class cluster description for details on these options.

Raises an NSRangeException if any part of aRange lies beyond the end of the string.

See also: – caseInsensitiveCompare:, – isEqualToString:

completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
– (unsigned int)completePathIntoString:(NSString **)outputName

caseSensitive:(BOOL)flag
matchesIntoArray: (NSArray **)outputArray
filterTypes:(NSArray *)filterTypes

Attempts to perform file- name completion on the receiver, interpreting it as a path in the file system and
returning by reference in outputName the longest path that matches the receiver. Considers case if flag is
YES. If outputArray is non-NULL, returns all matching file names in an NSArray given by outputArray. If
an array of strings is provided in filterTypes, considers only paths whose extensions (not including the
extension separator) match one of those strings.

Returns 0 if no matches are found and 1 if exactly one match is found. In the case of multiple matches,
returns the actual number of matching paths if outputArray is provided, or simply a positive value if
outputArray is NULL. Hence, you can check for the existence of matches without retrieving by passing
NULL as outputArray
14

Classes:

componentsSeparatedByString:
– (NSArray *)componentsSeparatedByString:(NSString *)separator

Returns an NSArray containing substrings from the receiver that have been divided by separator. The
substrings in the array appear in the order they did in the receiver. If the string begins or ends with the
separator, the first or last substring, respectively, is empty. For example, this code excerpt:

NSString *list = @"wrenches, hammers, saws";

NSArray *listItems = [list componentsSeparatedByString:@", "];

produces an array with these contents:

Index Substring

0 wrenches

1 hammers

2 saws

If list begins with a comma and space—for example, “, wrenches, hammers, saws”—the array has these
contents:

Index Substring

0 (empty string)

1 wrenches

2 hammers

3 saws

If list has no separators—for example, “wrenches”—the array contains the string itself, in this case
“wrenches”.

See also: – componentsJoinedByString: (NSArray class cluster), – pathComponents

cString
– (const char *)cString

Returns a representation of the receiver as a C string in the default C string encoding. The returned C string
will be automatically freed just as a returned object would be released; your code should copy the C string
or use getCString: if it needs to store the C string outside of the autorelease context in which the C string
is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or
15

dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of
information.

See also: – getCString:, – canBeConvertedToEncoding:, + defaultCStringEncoding, – cStringLength,
– getCharacters:

cStringLength
– (unsigned int)cStringLength

Returns the length in char-sized units of the receiver’s C string representation in the default C string
encoding.

Raises 0 if the receiver can’t be represented in the default C string encoding without loss of information.
You can also use canBeConvertedToEncoding: to check whether a string can be losslessly converted to
the default C string encoding. If it can’t, use lossyCString to get a C string representation with some loss
of information, then check its length explicitly using the ANSI function strlen().

See also: – cString, – canBeConvertedToEncoding:, + defaultCStringEncoding, – length

dataUsingEncoding:
– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Invokes dataUsingEncoding:allowLossyConversion: with NO as the argument for allowing lossy
conversion.

dataUsingEncoding:allowLossyConversion:
– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

allowLossyConversion:(BOOL)flag

Returns an NSData object containing a representation of the receiver in encoding. Returns nil if flag is NO
and the receiver can’t be converted without losing some information (such as accents or case). If flag is YES
and the receiver can’t be converted without losing some information, some characters may be removed or
altered in conversion. For example, in converting a character from NSUnicodeStringEncoding to
NSASCIIStringEncoding, the character ‘Á’ becomes ‘A’, losing the accent.

The result of this method, when lossless conversion is made, is the default “plain text” format for encoding
and is the recommended way to save or transmit a string object.

See also: – canBeConvertedToEncoding:
16

Classes:
description
@protocol NSObject
– (NSString *)description

Returns self.

doubleValue
– (double)doubleValue

Returns the floating-point value of the receiver’s text as a double, skipping whitespace at the beginning of
the string. Returns HUGE_VAL or –HUGE_VAL on overflow, 0.0 on underflow. Also returns 0.0 if the
receiver doesn’t begin with a valid text representation of a floating-point number.

This method uses formatting information stored in the default locale; use an NSScanner for localized
scanning of numeric values from a string.

See also: – intValue, – floatValue, – scanDouble: (NSScanner)

fastestEncoding
– (NSStringEncoding)fastestEncoding

Returns the fastest encoding to which the receiver may be converted without loss of information. “Fastest”
applies to retrieval of characters from the string. This encoding may not be space efficient.

See also: – smallestEncoding, – getCharacters:range:

fileSystemRepresentation
– (const char *)fileSystemRepresentation

Returns a file system specific representation of the receiver, as described for
getFileSystemRepresentation:maxLength:. The returned C string will be automatically freed just as a
returned object would be released; your code should copy the representation or use
getFileSystemRepresentation:maxLength: if it needs to store the representation outside of the
autorelease context in which the representation is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the file system’s
encoding.
17

.

floatValue
– (float)floatValue

Returns the floating-point value of the receiver’s text as a float, skipping whitespace at the beginning of the
string. Returns HUGE_VAL or –HUGE_VAL on overflow, 0.0 on underflow. Also returns 0.0 if the receiver
doesn’t begin with a valid text representation of a floating-point number.

This method uses formatting information stored in the default locale; use an NSScanner for localized
scanning of numeric values from a string.

See also: – doubleValue, – intValue, – scanFloat: (NSScanner)

getCharacters:
– (void)getCharacters:(unichar *)buffer

Invokes getCharacters:range: with buffer and the entire extent of the receiver as the range. buffer must be
large enough to contain all the characters in the string.

See also: – length

getCharacters:range:
– (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

Copies characters from aRange in the receiver into buffer, which must be large enough to contain them.
Does not add a zero character. Raises an NSRangeException if any part of aRange lies beyond the end of
the string.

The abstract implementation of this method uses characterAtIndex: repeatedly, correctly extracting the
characters, though very inefficiently. Subclasses should override it to provide a fast implementation.

getCString:
– (void)getCString:(char *)buffer

Invokes getCString:maxLength:range:remainingRange: with NSMaximumStringLength as the
maximum length, the receiver’s entire extent as the range, and NULL for the remaining range. buffer must
be large enough to contain the resulting C string plus a terminating zero character (which this method adds)

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or
18

Classes:
dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of
information.

See also: – cStringLength, – canBeConvertedToEncoding:, + defaultCStringEncoding,
– getCharacters:

getCString:maxLength:
– (void)getCString:(char *)buffer maxLength:(unsigned int)maxLength

Invokes getCString:maxLength:range:remainingRange: with maxLength as the maximum length in
char-sized units, the receiver’s entire extent as the range, and NULL for the remaining range. buffer must
be large enough to contain maxLength chars plus a terminating zero char (which this method adds).

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or
dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of
information.

See also: – cStringLength, – canBeConvertedToEncoding:, + defaultCStringEncoding,
– getCharacters:

getCString:maxLength:range:remainingRange:
– (void)getCString:(char *)buffer

maxLength:(unsigned int)maxLength
range:(NSRange)aRange
remainingRange:(NSRange *)leftoverRange

Converts the receiver’s characters to the default C string encoding and stores them in buffer. buffer must be
large enough to contain maxLength chars plus a terminating zero char (which this method adds). Copies
and converts as many character as possible from aRange, and stores the range of those not converted in the
NSRange given by leftoverRange (if it’s non-NULL). Raises an NSRangeException if any part of aRange
lies beyond the end of the string.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or
dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of
information.

See also: – cStringLength, – canBeConvertedToEncoding:, + defaultCStringEncoding,
– getCharacters:
19

getFileSystemRepresentation:maxLength:
– (BOOL)getFileSystemRepresentation:(char *)buffer maxLength:(unsigned int)maxLength

Interprets the receiver as a system-independent path, filling buffer with a C string in a format and encoding
suitable for use with file system calls. This is done by replacing the abstract path and extension separator
characters (‘/’ and ‘.’ respectively) with their equivalents for the operating system. For example, on
Microsoft Windows 95 the receiver “C:/Working/Sample.tiff” is returned as the C string
“C:\Working\Sample.tiff”.

buffer must be large enough to contain maxLength chars plus a terminating zero char (which this method
adds). Returns YES if buffer is successfully filled with a file system representation, NO if not (for example,
if maxLength would be exceeded). Also returns NO if the receiver can’t be represented in the file system’s
encoding.

If the system-specific path or extension separator appear in the abstract representation, the characters
they’re converted to depend on the system (unless they’re identical to the abstract separators). On Windows
95, for example, a ‘\’ character is converted to ‘/’.

See also: – fileSystemRepresentation

p getLineStart:end:contentsEnd:forRange:
+ (void)getLineStart:(unsigned int *)startIndex

end:(unsigned int *)lineEndIndex
contentsEnd:(unsigned int *)contentsEndIndex
forRange:(NSRange)aRange

Returns by reference the indexes of the smallest range of lines containing aRange. A line is delimited by
any of these characters, the longest possible sequence being preferred to any shorter:

U+000D (\r or CR) U+2028 (Unicode line separator)

U+000A (\n or LF) U+2029 (Unicode paragraph separator)

\r\n , in that order (also known as CRLF)

When this method returns, startIndex contains the index of the first character of the line, which is at or
before the location of aRange; lineEndIndex contains the index of the first character past the line terminator;
and contentsEndIndex contains the index of the first character of the line terminator itself. You may pass a
NULL pointer for any of these arguments, in which case the work to compute the value isn’t performed.

You can use the results of this method to construct ranges for lines by using the start index as the range’s
location and the difference between the end index and the start index as the range’s length.

See also: – lineRangeForRange:, – substringFromRange:
20

Classes:
hash
– (unsigned int)hash

Returns an unsigned integer that can be used as a hash table address. If two string objects are equal (as
determined by the isEqualToString: method), they must have the same hash value. The abstract
implementation of this method fulfills this requirement, so subclasses of NSString shouldn’t override it.

hasPrefix:
– (BOOL)hasPrefix:(NSString *)aString

Returns YES if aString matches the beginning characters of the receiver, NO otherwise. Returns NO if
aString is the null string. This method is a convenience for comparing strings using the NSAnchoredSearch
option. See ““Working with String Objects”” in the class cluster description for more information.

See also: – hasSuffix:, – compare:options:range:

hasSuffix:
– (BOOL)hasSuffix:(NSString *)aString

Returns YES if aString matches the ending characters of the receiver, NO otherwise. Returns NO if aString
is the null string. This method is a convenience for comparing strings using the NSAnchoredSearch and
NSBackwardsSearch options. See ““Working with String Objects”” in the class cluster description for more
information.

See also: – hasPrefix:, – compare:options:range:

init
– (id)init

Initializes the receiver, a newly allocated NSString, to contain no characters. Returns self.

See also: + string

initWithCharacters:length:
– (id)initWithCharacters: (const unichar *)characters length:(unsigned int)length

Initializes the receiver, a newly allocated NSString, by copying length characters from characters, which
may not be NULL. This method doesn’t stop short at a zero character. Returns self.

See also: – stringWithCharacters:length:
21

initWithCharactersNoCopy:length:freeWhenDone:
– (id)initWithCharactersNoCopy: (unichar *)characters

length:(unsigned int)length
freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString, to contain length characters from characters, which may
not be NULL. This method doesn’t stop short at a zero character. The receiver becomes the owner of
characters; if flag is YES the receiver will free the memory when it no longer needs them, but if flag is NO
it won’t. Returns self.

See also: + stringWithCharacters:length:

initWithContentsOfFile:
– (id)initWithContentsOfFile: (NSString *)path

Initializes the receiver, a newly allocated NSString, by reading characters from the file named by path. If
the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode
characters; otherwise interprets the contents as characters in the default C string encoding. Returns self, or
nil if the file can’t be opened.

See also: + stringWithContentsOfFile: , + defaultCStringEncoding

initWithCString:
– (id)initWithCString: (const char *)cString

Initializes the receiver, a newly allocated NSString, by converting the characters in cString from the default
C string encoding into the Unicode character encoding. cString must be a zero-terminated C string in the
default C string encoding, and may not be NULL. Returns self.

Note: To create an immutable string from an immutable CString buffer, do not attempt to use this method.
Instead, use initWithCStringNoCopy .

See also: – stringWithCString: , -initWithCStringNoCopy ,+ defaultCStringEncoding

initWithCString:length:
– (id)initWithCString: (const char *)cString length:(unsigned int)length

Initializes the receiver, a newly allocated NSString, by converting the characters of cString from the default
C string encoding into the Unicode character encoding. This method converts length * sizeof(char) bytes
22

Classes:
from cString, and doesn’t stop short at a zero character. cString must contain bytes in the default C string
encoding, and may not be NULL. Returns self.

See also: + stringWithCString:length: , + defaultCStringEncoding

initWithCStringNoCopy:length:freeWhenDone:
– (id)initWithCStringNoCopy: (char *)cString

length:(unsigned int)length
freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString, by converting the characters of cString from the default
C string encoding into the Unicode character encoding. This method converts length * sizeof(char) bytes
from cString, and doesn’t stop short at a zero character. cString must be contain characters in the default C
string encoding, and may not be NULL. The receiver becomes the owner of cString; if flag is YES it will
free the memory when it no longer needs it, but if flag is NO it won’t. Returns self.

Note: You can use this method to create an immutable string from an immutable (const char*) C-string
buffer. If you receive a warning message, you can disregard it; its purpose is simply to warn you that
the C string passed as the method’s first argument may be modified. If you make certain that the
freeWhenDone argument to initWithStringNoCopy is NO, the C string passed as the method’s first
argument cannot be modified, so you can safely use initWithStringNoCopy to create an immutable
string from an immutable (const char*) C-string buffer.

See also: + stringWithCString:length: , + defaultCStringEncoding

initWithData:encoding:
– (id)initWithData: (NSData *)data encoding:(NSStringEncoding)encoding

Initializes the receiver, a newly allocated NSString, by converting the bytes in data into Unicode characters.
data must be an NSData object containing bytes in encoding and in the default plain text format (that is,
pure content with no attribute or other markup) for that encoding. Returns self.

initWithFormat:
– (id)initWithFormat: (NSString *)format, ...

Invokes initWithFormat:locale:arguments: with nil as the locale.

See also: + stringWithFormat:
23

initWithFormat:arguments:
– (id)initWithFormat: (NSString *)format arguments:(va_list)argList

Invokes initWithFormat:locale:arguments: with nil as the locale.

See also: + stringWithFormat:

initWithFormat:locale:
– (id)initWithFormat: (NSString *)format

locale:(NSDictionary *)dictionary, ...

Invokes initWithFormat:locale:arguments: with dictionary as the locale.

See also: + localizedStringWithFormat:

initWithFormat:locale:arguments:
– (id)initWithFormat: (NSString *)format

locale:(NSDictionary *)dictionary
arguments:(va_list)argList

Initializes a newly allocated string object, using format as a template into which the following argument
values are substituted according to the formatting information of the current locale. For example, this code
excerpt creates a string from myArgs, which is derived from a string object with the value “Cost:” and an
int with the value 32:

va_list myArgs;

NSDictionary *myLocale; /* Assume this exists. */

NSString *myString = [[NSString alloc] initWithFormat:@"%@: %d\n",

 locale:[[NSUserDefaults standardUserDefaults] dictionaryRepresentation]

 arguments:myArgs];

(Note the message construct for retrieving the user’s locale.). The resulting string has the value “Cost:
32\n”.

See ““Creating and Converting String Objects”” in the class cluster description for more information.
Returns self.

See also: – initWithFormat:arguments:
24

Classes:

t

initWithString:
– (id)initWithString: (NSString *)aString

Initializes the receiver, a newly allocated NSString, by copying the characters from aString. Returns self.

See also: + stringWithString:

intValue
– (int)intValue

Returns the integer value of the string’s text, assuming a decimal representation and skipping whitespace a
the beginning of the string. Returns INT_MAX or INT_MIN on overflow. Returns 0 if the receiver doesn’t
begin with a valid decimal text representation of a number.

This method uses formatting information stored in the default locale; use an NSScanner for localized
scanning of numeric values from a string.

See also: – doubleValue, – floatValue, – scanInt: (NSScanner)

p isAbsolutePath
– (BOOL)isAbsolutePath

Interprets the receiver as a path, returning YES if it represents an absolute path, NO if it represents a relative
path. See ““Manipulating Paths”” in the class description for more information on paths.

isEqualToString:
– (BOOL)isEqualToString:(NSString *)aString

Returns YES if aString is equivalent to the receiver (if they have the same id or if they compare as
NSOrderedSame), NO otherwise. When you know both objects are strings, this method is a faster way to
check equality than isEqual:.

See also: – compare:options:range:

lastPathComponent
– (NSString *)lastPathComponent

Returns the last path component of the receiver. The following table illustrates the effect of
lastPathComponent on a variety of different paths:
25

Receiver’s String Value String Returned

“/tmp/scratch.tiff” “scratch.tiff”

“/tmp/scratch” “scratch”

“/tmp/” “tmp”

“scratch” “scratch”

“/ ” “ ” (an empty string)

length
– (unsigned int)length

Returns the number of Unicode characters in the receiver. This includes the individual characters of
composed character sequences, so you can’t use this method to determine if a string will be visible when
printed, or how long it will appear.

See also: – cStringLength, – sizeWithAttributes: (NSString Additions in the Application Kit)

p lineRangeForRange:
+ (NSRange)lineRangeForRange:(NSRange)aRange

Returns the smallest range of lines containing aRange, including the characters that terminate the line.

See also: – getLineStart:end:contentsEnd:forRange:, – substringFromRange:

lossyCString
– (const char *)lossyCString

Returns a representation of the receiver as a C string in the default C string encoding, possibly losing
information in converting to that encoding (and not raising an exception as cString does). The returned C
string will be automatically freed just as a returned object would be released; your code should copy the C
string or use getCString: if it needs to store the C string outside of the autorelease context in which the C
string is created.

See also: – getCString:, – canBeConvertedToEncoding, + defaultCStringEncoding, – cStringLength,
– getCharacters:
26

Classes:

lowercaseString
– (NSString *)lowercaseString

Returns a string with each character from the receiver changed to its corresponding lowercase value. Case
transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. The result of this statement:

lcString = [myString lowercaseString];

might not be equal to this:

lcString = [[myString uppercaseString] lowercaseString];

For example, the uppercase form of “ß” in German is “SS”, so converting “eßen” to uppercase then
lowercase produces this sequence of strings:

“eßen”
“ESSEN”
“essen”

See also: – capitalizedString, – uppercaseString

p pathComponents
– (NSArray *)pathComponents

Interprets the receiver as a path, returning an array of strings containing, in order, each path component of
the receiver. The strings in the array appear in the order they did in the receiver. If the string begins or ends
with the path separator then the first or last component, respectively, is empty. Empty components (caused
by consecutive path separators) are deleted. For example, this code excerpt:

NSString *path = @"tmp/scratch";

NSArray *pathComponents = [path componentsSeparatedByString:@"/"];

produces an array with these contents:

Index Path Component

0 tmp

1 scratch

If the receiver begins with a slash—for example, “/tmp/scratch”—the array has these contents:

Index Path Component

0 “/”

1 “tmp”

2 “scratch”
27

ar

t
If the receiver has no separators—for example, “scratch”—the array contains the string itself, in this case
“scratch”.

See also: + pathWithComponents:, – stringByStandardizingPath:, – componentsSeparatedByString:

pathExtension
– (NSString *)pathExtension

Interprets the receiver as a path, returning the receiver’s extension, if any (not including the extension
divider). The following table illustrates the effect of pathExtension on a variety of different paths:

Receiver’s String Value String Returned

“/tmp/scratch.tiff” “tiff”

“/tmp/scratch” “” (an empty string)

“/tmp/” “” (an empty string)

“/tmp/scratch..tiff” “tiff”

propertyList
– (id)propertyList

Parses the receiver as a text representation of a property list, returning an NSString, NSData, NSArray, or
NSDictionary object according to the topmost element. Arrays are delimited by parentheses, with
individual elements separated by commas and optional spaces. Dictionaries are delimited by curly braces,
with key-value pairs separated by semicolons, the key and value separated by an equals sign. Strings appe
as plain text if they contain no whitespace, or enclosed in straight quotation marks if they do. Data items
are delimited by angle brackets and encoded as hexadecimal digits. Here’s a short example of a text-forma
property list:

{

 Title = "Star Wars";

 Director = "Lucas, George";

 Cast = (

 "Hamill, Mark",

 "Fisher, Carrie",

 "Ford, Harrison"

);

 "Thumbnail Image" = <040b7479 70656473 (many more sets of digits) 8484074e>

}

See also: – propertyListFromStringsFileFormat , + stringWithContentsOfFile:
28

Classes:
propertyListFromStringsFileFormat
– (NSDictionary *)propertyListFromStringsFileFormat

Returns a dictionary object initialized with the keys and values found in the receiver. The receiver must
contain text in the format used for .strings files. In this format, keys and values are separated by an equals
sign, and each key-value pair is terminated with a semicolon. The value is optional, however; if not present,
the equals sign is also omitted. The keys and values themselves are always strings enclosed in straight
quotation marks. Comments may be included, delimited by /* and */ as for ANSI C comments. Here’s a
short example of a strings file:

/* Question in confirmation panel for quitting. */

"Confirm Quit" = "Are you sure you want to quit?";

/* Message when user tries to close unsaved document */

"Close or Save" = "Save changes before closing?";

/* Word for Cancel */

"Cancel";

See also: – propertyList , + stringWithContentsOfFile:

rangeOfCharacterFromSet:
– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

Invokes rangeOfCharacterFromSet:options: with no options.

rangeOfCharacterFromSet:options:
– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

options:(unsigned int)mask

Invokes rangeOfCharacterFromSet:options:range: with mask for the options and the entire extent of the
receiver for the range.

rangeOfCharacterFromSet:options:range:
– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

options:(unsigned int)mask
range:(NSRange)aRange

Returns the range in the receiver of the first character found from aSet. The search is restricted to characters
in the receiver within aRange. The following options may be specified in mask by combining them with the
C bitwise OR operator:
29

NSCaseInsensitiveSearch
NSLiteralSearch
NSBackwardsSearch

See ““Working with String Objects”” in the class cluster description for details on these options. Raises an
NSRangeException if any part of aRange lies beyond the end of the string.

Since precomposed characters in aSet can match composed characters sequences in the receiver, the length
of the returned range can be greater than one. For example, if you search for “ü” in the string “stru¨del”, the
returned range is {3,2}.

rangeOfComposedCharacterSequenceAtIndex:
– (NSRange)rangeOfComposedCharacterSequenceAtIndex:(unsigned int)anIndex

Returns the range in the receiver of the composed character sequence located at anIndex. The composed
character sequence includes the first base character found at or before anIndex, and its length includes the
base character and all non-base characters following the base character.

Raises an NSRangeException if anIndex lies beyond the end of the string.

If you want to write a method to adjust an arbitrary range so that it includes the composed character
sequences on its boundaries, you can create a method such as this:

- (NSRange)adjustRange:(NSRange)aRange

{

 unsigned int index, endIndex;

 NSRange newRange, endRange;

 index = aRange.location;

 newRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

 index = aRange.location + aRange.length;

 endRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

 endIndex = endRange.location + endRange.length;

 newRange.length = endIndex - newRange.location;

 return newRange;

}

adjustRange: begins by correcting the location for the beginning of aRange, storing it in newRange. It then
works at the end of aRange, correcting the location and storing it in endIndex. Finally, it sets the length of
newRange to the difference between endIndex and the new range’s location.
30

Classes:

rangeOfString:
– (NSRange)rangeOfString:(NSString *)aString

Invokes rangeOfString:options: with no options.

rangeOfString:options:
– (NSRange)rangeOfString:(NSString *)aString options:(unsigned int)mask

Invokes rangeOfString:options:range: with the options specified by mask and the entire extent of the
receiver as the range.

rangeOfString:options:range:
– (NSRange)rangeOfString:(NSString *)subString

options:(unsigned int)mask
range:(NSRange)aRange

Returns an NSRange giving the location and length of the first occurrence of subString within aRange in
the receiver. If subString isn’t found, the length of the returned NSRange is zero. The length of the returned
range and that of subString may differ if equivalent composed character sequences are matched. The
following options may be specified in mask by combining them with the C bitwise OR operator:

NSCaseInsensitiveSearch
NSLiteralSearch
NSBackwardsSearch
NSAnchoredSearch

See ““Working with String Objects”” in the class cluster description for details on these options. Raises an
NSRangeException if any part of aRange lies beyond the end of the string. Returns a range of
{NSNotFound, 0} if subString is the null string.

smallestEncoding
– (NSStringEncoding)smallestEncoding

Returns the smallest encoding to which the receiver can be converted without loss of information. This
encoding may not be the fastest for accessing characters, but is very space-efficient. This method itself may
take some time to execute.

See also: – fastestEncoding, – getCharacters:range:
31

stringByAbbreviatingWithTildeInPath
– (NSString *)stringByAbbreviatingWithTildeInPath

Returns a string representing the receiver as a path, with a tilde, “~”, substituted for the full path to the
current user’s home directory, or “~user” for a user other than the current user. Returns the receiver
unaltered if it doesn’t begin with the user’s home directory.

See also: – stringByExpandingTildeInPath

stringByAppendingFormat:
– (NSString *)stringByAppendingFormat: (NSString *)format, ...

Returns a string made by appending to the receiver a string constructed from format and following
arguments in the manner of stringWithFormat: .

See also: – stringByAppendingString:

stringByAppendingPathComponent:
– (NSString *)stringByAppendingPathComponent:(NSString *)aString

Returns a string made by appending aString, preceded by if necessary by a path separator. The following
table illustrates the effect of this method on a variety of different paths, assuming that aString is supplied
as “scratch.tiff”:

Receiver’s String Value Resulting String

“/tmp” “/tmp/scratch.tiff”

“/tmp/” “/tmp/scratch.tiff”

“/” “/scratch.tiff”

“” (an empty string) “scratch.tiff”

See also: – stringsByAppendingPaths:, – stringByAppendingPathExtension:,
– stringByDeletingLastPathComponent

stringByAppendingPathExtension:
– (NSString *)stringByAppendingPathExtension:(NSString *)string

Returns a string made by appending to the receiver an extension separator followed by aString. The
following table illustrates the effect of this method on a variety of different paths, assuming that aString is
supplied as @“tiff”:
32

Classes:
Receiver’s String Value Resulting String

“/tmp/scratch.old” “/tmp/scratch.old.tiff”

“/tmp/scratch.” “/tmp/scratch..tiff”

“/tmp/” “/tmp/.tiff”

“scratch” “scratch.tiff”

See also: – stringByAppendingPathComponent:, – stringByDeletingPathExtension

stringByAppendingString:
– (NSString *)stringByAppendingString: (NSString *)aString

Returns a string object made by appending aString to the receiver. This code excerpt, for example:

NSString *errorTag = @"Error: ";

NSString *errorString = @"premature end of file.";

NSString *errorMessage = [errorTag

 stringByAppendingString:errorString];

produces the string “Error: premature end of file.”.

See also: – stringByAppendingFormat:

stringByDeletingLastPathComponent
– (NSString *)stringByDeletingLastPathComponent

Returns a string made by deleting the last path component from the receiver, along with any final path
separator. If the receiver represents the root path, however, it’s returned unaltered. The following table
illustrates the effect of this method on a variety of different paths:

Receiver’s String Value Resulting String

“/tmp/scratch.tiff” “/tmp”

“/tmp/lock/” “/tmp”

“/tmp/” “/”

“/tmp” “/”

“/” “/”

“scratch.tiff” “” (an empty string)

See also: – stringByDeletingPathExtension, – stringByAppendingPathComponent:
33

stringByDeletingPathExtension
– (NSString *)stringByDeletingPathExtension

Returns a string made by deleting the extension (if any, and only the last) from the receiver. Strips any
trailing path separator before checking for an extension. If the receiver represents the root path, however,
it’s returned unaltered. The following table illustrates the effect of this method on a variety of different
paths:

Receiver’s String Value Resulting String

“/tmp/scratch.tiff” “/tmp/scratch”

“/tmp/” “/tmp”

“scratch.bundle/” “scratch”

“scratch..tiff” “scratch.”

“.tiff” “” (an empty string)

“/” “/”

See also: – pathExtension, – stringByDeletingLastPathComponent

stringByExpandingTildeInPath
– (NSString *)stringByExpandingTildeInPath

Returns a string made by expanding the initial component, if it begins with “~” or “~user”, to its full path
value. Returns the receiver unaltered if that component can’t be expanded.

See also: – stringByAbbreviatingWithTildeInPath

stringByResolvingSymlinksInPath
– (NSString *)stringByResolvingSymlinksInPath

On Microsoft Windows: Returns self.

On UNIX platforms: Expands an initial tilde expression in the receiving path, then resolves all symbolic
links and references to current or parent directories if possible, returning a standardized path. If the original
path is absolute, all symbolic links are guaranteed to be removed; if it’s a relative path, symbolic links that
can’t be resolved are left unresolved in the returned string. Returns self if an error occurs.

Note: If the name of the receiving path begins with /private, the stringByResolvingSymlinksInPath
method strips off the /private designator, provided the result is the name of an existing file.

See also: – stringByStandardizingPath, – stringByExpandingTildeInPath
34

Classes:

stringByStandardizingPath
– (NSString *)stringByStandardizingPath

Returns a string representing the receiving path, with extraneous path components removed. If
stringByStandardizingPath detects symbolic links in a path name, the
stringByResolvingSymlinksInPath method is called to resolve them. If an invalid path name is
provided, stringByStandardizingPath may attempt to resolve it by calling
stringByResolvingSymlinksInPath, and the results are undefined. If any other kind error is
encountered (such as a path component not existing), self is returned.

The changes that this method can make in the provided string are:

• An initial tilde expression is expanded using stringByExpandingTildeInPath .

• Empty components and references to the current directory (that is, the sequences “//” and “/./”) are
reduced to single path separators.

• In absolute paths only, references to the parent directory (that is, the component “..”) are resolved to the
real parent directory if possible using stringByResolvingSymlinksInPath, which consults the file
system to resolve each potential symbolic link.

• In relative paths, because symbolic links can’t be resolved, references to the parent directory are left in
place.

• On Mach, an initial component of “/private” is removed from the path if the result still indicates an
existing file or directory (checked by consulting the file system).

See also: – stringByExpandingTildeInPath , – stringByResolvingSymlinksInPath

stringsByAppendingPaths:
– (NSArray *)stringsByAppendingPaths:(NSArray *)paths

Returns an array of strings made by separately appending each string in paths to the receiver, preceded by
if necessary by a path separator. See stringByAppendingPathComponent: for an individual example.

substringFromIndex:
– (NSString *)substringFromIndex:(unsigned int)anIndex

Returns a string object containing the characters of the receiver from the one at anIndex to the end. Raises
an NSRangeException if anIndex lies beyond the end of the string.

See also: – substringWithRange:, – substringToIndex:
35

e
substringWithRange:
– (NSString *)substringWithRange:(NSRange)aRange

Returns a string object containing the characters of the receiver that lie within aRange. Raises an
NSRangeException if any part of aRange lies beyond the end of the string.

See also: – substringFromIndex:, – substringToIndex:

substringToIndex:
– (NSString *)substringToIndex:(unsigned int)anIndex

Returns a string object containing the characters of the receiver up to, but not including, the one at anIndex.
Raises an NSRangeException if anIndex lies beyond the end of the string.

See also: – substringFromIndex:, – substringWithRange:

uppercaseString
– (NSString *)uppercaseString

Returns a string with each character from the receiver changed to its corresponding uppercase value. Cas
transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. See lowercaseString for an example.

See also: – capitalizedString, – lowercaseString

writeToFile:atomically:
– (BOOL)writeToFile: (NSString *)path atomically:(BOOL)flag

Writes the string’s characters to the file named by path, returning YES on success and NO on failure. If flag
is YES, attempts to write the file safely so that an existing file named by path is not overwritten, nor does a
new file at path actually get created, unless the write is successful. The string is written in the default C
string encoding if possible (that is, if no information would be lost), in the Unicode encoding otherwise.

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath: before
invoking this method.

See also: + defaultCStringEncoding
36

Classes:

i NSMutableString

Inherits From: NSString : NSObject

Conforms To: NSCoding (NSString)
NSCopying (NSString)
NSMutableCopying (NSString)
NSObject (NSObject)

Declared In: Foundation/NSString.h

Class Description

The NSMutableString class declares the programmatic interface to an object that manages a mutable
string—that is, a string whose contents can be edited. To construct and manage an immutable string—or a
string that cannot be changed after it has been created—use an object of the NSString class.

An immutable string is implemented as array of Unicode characters (in other words, as a text string). The
NSMutableString class adds one primitive method—replaceCharactersInRange:withString:—to the
basic string-handling behavior inherited from NSString. All other methods that modify a string work
through this method. For example, insertString:atIndex: simply replaces the characters in a range of zero
length, while deleteCharactersInRange: replaces the characters in a given range with no characters.

Method Types

Creating temporary strings + stringWithCapacity:

Initializing an NSMutableString
– initWithCapacity:

Modifying a string – appendFormat:
– appendString:
– deleteCharactersInRange:
– insertString:atIndex:
– replaceCharactersInRange:withString:
– setString:
37

Class Methods

stringWithCapacity:
+ (NSMutableString *)stringWithCapacity: (unsigned int)capacity

Returns an empty mutable string, using capacity as a hint for how much initial storage to reserve.

Instance Methods

appendFormat:
– (void)appendFormat:(NSString *)format, ...

Adds a constructed string to the receiver. Creates the new string by using NSString’s stringWithFormat:
method with the arguments listed.

See also: – appendString:

appendString:
– (void)appendString:(NSString *)aString

Adds the characters of aString to end of the receiver.

See also: – appendFormat:

deleteCharactersInRange:
– (void)deleteCharactersInRange:(NSRange)aRange

Removes the characters in aRange from the receiver. Raises an NSRangeException if any part of aRange
lies beyond the end of the string.

initWithCapacity:
– (id)initWithCapacity: (unsigned int)capacity

Initializes a newly allocated NSMutableString, using capacity as a hint for how much memory to allocate.
Returns self.
38

Classes:
insertString:atIndex:
– (void)insertString: (NSString *)aString atIndex:(unsigned int)anIndex

Inserts the characters of aString into the receiver, so that the new characters begin at anIndex and the
existing characters from anIndex to the end are shifted by the length of aString. Raises an
NSRangeException if anIndex lies beyond the end of the string.

replaceCharactersInRange:withString:
– (void)replaceCharactersInRange:(NSRange)aRange

withString: (NSString *)aString

Replaces the characters from aRange with those in aString. Raises an NSRangeException if any part of
aRange lies beyond the end of the string.

setString:
– (void)setString:(NSString *)aString

Replaces the characters of the receiver with those in aString.
39

40

	c NSString Class Cluster
	Creating and Converting String Objects
	Source Creation Method Extraction Method

	Working with String Objects
	Search Option Effect

	Manipulating Paths
	i NSString
	Method Types
	availableStringEncodings
	+�(const�NSStringEncoding�*)availableStringEncodin...

	defaultCStringEncoding
	+�(NSStringEncoding)defaultCStringEncoding

	localizedNameOfStringEncoding:
	+�(NSString�*)localizedNameOfStringEncoding:(NSStr...

	localizedStringWithFormat:
	+�(NSString�*)localizedStringWithFormat:(NSString�...

	p pathWithComponents:
	+�(NSString�*)pathWithComponents:(NSArray�*)compon...

	p string
	+�(id)string

	stringWithCharacters:length:
	+�(id)stringWithCharacters:(const unichar�*)chars ...

	stringWithContentsOfFile:
	+�(id)stringWithContentsOfFile:(NSString�*)path

	stringWithCString:
	+�(id)stringWithCString:(const char�*)cString

	stringWithCString:length:
	+�(id)stringWithCString:(const char�*)cString leng...

	stringWithFormat:
	+�(id)stringWithFormat:(NSString�*)format, ...

	p stringWithString:
	+�(id)stringWithString:(NSString�*)aString

	canBeConvertedToEncoding:
	–�(BOOL)canBeConvertedToEncoding:(NSStringEncoding...

	capitalizedString
	–�(NSString�*)capitalizedString

	caseInsensitiveCompare:
	–�(NSComparisonResult)caseInsensitiveCompare:(NSSt...

	characterAtIndex:
	–�(unichar)characterAtIndex:(unsigned�int)index

	commonPrefixWithString:options:
	–�(NSString�*)commonPrefixWithString:(NSString�*)a...

	compare:
	–�(NSComparisonResult)compare:(NSString�*)aString

	compare:options:
	–�(NSComparisonResult)compare:(NSString�*)aString ...

	compare:options:range:
	–�(NSComparisonResult)compare:(NSString�*)aString ...

	completePathIntoString:caseSensitive:matchesIntoAr...
	–�(unsigned�int)completePathIntoString:(NSString�*...

	componentsSeparatedByString:
	–�(NSArray�*)componentsSeparatedByString:(NSString...
	Index Substring
	Index Substring

	cString
	–�(const char�*)cString

	cStringLength
	–�(unsigned�int)cStringLength

	dataUsingEncoding:
	–�(NSData�*)dataUsingEncoding:(NSStringEncoding)en...

	dataUsingEncoding:allowLossyConversion:
	–�(NSData�*)dataUsingEncoding:(NSStringEncoding)en...

	description
	@protocol NSObject
	–�(NSString�*)description

	doubleValue
	–�(double)doubleValue

	fastestEncoding
	–�(NSStringEncoding)fastestEncoding

	fileSystemRepresentation
	–�(const�char�*)fileSystemRepresentation

	floatValue
	–�(float)floatValue

	getCharacters:
	–�(void)getCharacters:(unichar�*)buffer

	getCharacters:range:
	–�(void)getCharacters:(unichar�*)buffer range:(NSR...

	getCString:
	–�(void)getCString:(char�*)buffer

	getCString:maxLength:
	–�(void)getCString:(char�*)buffer maxLength:(unsig...

	getCString:maxLength:range:remainingRange:
	–�(void)getCString:(char�*)buffer maxLength:(unsig...

	getFileSystemRepresentation:maxLength:
	–�(BOOL)getFileSystemRepresentation:(char�*)buffer...

	p getLineStart:end:contentsEnd:forRange:
	+�(void)getLineStart:(unsigned�int�*)startIndex en...

	hash
	–�(unsigned�int)hash

	hasPrefix:
	–�(BOOL)hasPrefix:(NSString�*)aString

	hasSuffix:
	–�(BOOL)hasSuffix:(NSString�*)aString

	init
	–�(id)init

	initWithCharacters:length:
	–�(id)initWithCharacters:(const unichar�*)characte...

	initWithCharactersNoCopy:length:freeWhenDone:
	–�(id)initWithCharactersNoCopy:(unichar�*)characte...

	initWithContentsOfFile:
	–�(id)initWithContentsOfFile:(NSString�*)path

	initWithCString:
	–�(id)initWithCString:(const char�*)cString

	initWithCString:length:
	–�(id)initWithCString:(const char�*)cString length...

	initWithCStringNoCopy:length:freeWhenDone:
	–�(id)initWithCStringNoCopy:(char�*)cString length...

	initWithData:encoding:
	–�(id)initWithData:(NSData�*)data encoding:(NSStri...

	initWithFormat:
	–�(id)initWithFormat:(NSString�*)format, ...

	initWithFormat:arguments:
	–�(id)initWithFormat:(NSString�*)format arguments:...

	initWithFormat:locale:
	–�(id)initWithFormat:(NSString�*)format locale:(NS...

	initWithFormat:locale:arguments:
	–�(id)initWithFormat:(NSString�*)format locale:(NS...

	initWithString:
	–�(id)initWithString:(NSString�*)aString

	intValue
	–�(int)intValue

	p isAbsolutePath
	–�(BOOL)isAbsolutePath

	isEqualToString:
	–�(BOOL)isEqualToString:(NSString�*)aString

	lastPathComponent
	–�(NSString *)lastPathComponent
	Receiver’s String Value String Returned

	length
	–�(unsigned int)length

	p lineRangeForRange:
	+�(NSRange)lineRangeForRange:(NSRange)aRange

	lossyCString
	–�(const char�*)lossyCString

	lowercaseString
	–�(NSString�*)lowercaseString

	p pathComponents
	–�(NSArray�*)pathComponents
	Index Path Component
	Index Path Component

	pathExtension
	–�(NSString *)pathExtension
	Receiver’s String Value String Returned

	propertyList
	– (id)propertyList

	propertyListFromStringsFileFormat
	– (NSDictionary *)propertyListFromStringsFileForma...

	rangeOfCharacterFromSet:
	–�(NSRange)rangeOfCharacterFromSet:(NSCharacterSet...

	rangeOfCharacterFromSet:options:
	–�(NSRange)rangeOfCharacterFromSet:(NSCharacterSet...

	rangeOfCharacterFromSet:options:range:
	–�(NSRange)rangeOfCharacterFromSet:(NSCharacterSet...

	rangeOfComposedCharacterSequenceAtIndex:
	–�(NSRange)rangeOfComposedCharacterSequenceAtIndex...

	rangeOfString:
	–�(NSRange)rangeOfString:(NSString�*)aString

	rangeOfString:options:
	–�(NSRange)rangeOfString:(NSString�*)aString optio...

	rangeOfString:options:range:
	–�(NSRange)rangeOfString:(NSString�*)subString opt...

	smallestEncoding
	–�(NSStringEncoding)smallestEncoding

	stringByAbbreviatingWithTildeInPath
	–�(NSString *)stringByAbbreviatingWithTildeInPath

	stringByAppendingFormat:
	–�(NSString�*)stringByAppendingFormat:(NSString�*)...

	stringByAppendingPathComponent:
	–�(NSString�*)stringByAppendingPathComponent:(NSSt...
	Receiver’s String Value Resulting String

	stringByAppendingPathExtension:
	–�(NSString�*)stringByAppendingPathExtension:(NSSt...
	Receiver’s String Value Resulting String

	stringByAppendingString:
	–�(NSString�*)stringByAppendingString:(NSString�*)...

	stringByDeletingLastPathComponent
	–�(NSString�*)stringByDeletingLastPathComponent
	Receiver’s String Value Resulting String

	stringByDeletingPathExtension
	–�(NSString�*)stringByDeletingPathExtension
	Receiver’s String Value Resulting String

	stringByExpandingTildeInPath
	–�(NSString�*)stringByExpandingTildeInPath

	stringByResolvingSymlinksInPath
	–�(NSString�*)stringByResolvingSymlinksInPath

	stringByStandardizingPath
	–�(NSString *)stringByStandardizingPath

	stringsByAppendingPaths:
	–�(NSArray�*)stringsByAppendingPaths:(NSArray�*)pa...

	substringFromIndex:
	–�(NSString�*)substringFromIndex:(unsigned�int)anI...

	substringWithRange:
	–�(NSString�*)substringWithRange:(NSRange)aRange

	substringToIndex:
	–�(NSString�*)substringToIndex:(unsigned�int)anInd...

	uppercaseString
	–�(NSString�*)uppercaseString

	writeToFile:atomically:
	–�(BOOL)writeToFile:(NSString *)path atomically:(B...

	i NSMutableString
	stringWithCapacity:
	+�(NSMutableString�*)stringWithCapacity:(unsigned�...

	Instance Methods
	appendFormat:
	–�(void)appendFormat:(NSString�*)format, ...

	appendString:
	–�(void)appendString:(NSString *)aString

	deleteCharactersInRange:
	–�(void)deleteCharactersInRange:(NSRange)aRange

	initWithCapacity:
	– (id)initWithCapacity:(unsigned�int)capacity

	insertString:atIndex:
	–�(void)insertString:(NSString *)aString atIndex:(...

	replaceCharactersInRange:withString:
	– (void)replaceCharactersInRange:(NSRange)aRange w...

	setString:
	–�(void)setString:(NSString *)aString

