
1

NSPanel

Inherits From: NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPanel.h

Class Description

A panel is a special kind of window, typically serving an auxiliary function in an application. NSPanel adds 
a few special behaviors to NSWindow in support of the role panels play:

• Panels are by default not released when they’re closed, since they’re usually lightweight and often 
reused.

• On-screen panels, except for attention panels, are removed from the screen when the application isn’t 
active, and are restored when the application again becomes active. This reduces screen clutter.

• Panels can become the key window, but not the main window.

• If a panel is the key window and has a close button, it closes itself when the user presses the Escape key.

In addition to these automatic behaviors, NSPanel allows you to configure certain other behaviors common 
to some kinds of panels:

• A panel can be precluded from becoming the key window unless the user clicks in a view that responds 
to typing. This prevents key window from shifting to the panel unnecessarily. The 
setBecomesKeyOnlyIfNeeded: method controls this behavior.

• Palettes and similar panels can be made to float above standard windows and other panels. This prevents 
them from being covered and keeps them readily available to the user. The setFloatingPanel: method 
controls this behavior.

• A panel can be made to receive mouse and keyboard events even when another window or panel is being 
run modally or run in a modal session. This permits actions in the panel to affect the modal window or 
panel. The setWorksWhenModal: method controls this behavior. See “Modal Windows” in the 
NSWindow class specification for more information on modal windows and panels.



2

Classes: NSPanel

Method Types

Configuring panel behavior – setFloatingPanel:
– isFloatingPanel
– setBecomesKeyOnlyIfNeeded:
– becomesKeyOnlyIfNeeded
– setWorksWhenModal:
– worksWhenModal

Instance Methods

becomesKeyOnlyIfNeeded
– (BOOL)becomesKeyOnlyIfNeeded

Returns YES if the receiver becomes the key window only when the user clicks a view object that needs to 
be first responder to receive event and action messages; for example if it edits text or otherwise accepts 
keyboard input. Returns NO if it becomes the key window whenever clicked. NSPanel by default returns 
NO, indicating that panels become key as other windows do.

See also: – setBecomesKeyOnlyIfNeeded:, –needsPanelToBecomeKey (NSView)

isFloatingPanel
– (BOOL)isFloatingPanel

Returns YES if the receiver is set to float above normal windows, NO otherwise. A floating panel’s window 
level is NSFloatingWindowLevel. NSPanels by default returns NO, indicating that they inhabit the normal 
window level.

See also: – setFloatingPanel:, – level (NSWindow)

setBecomesKeyOnlyIfNeeded:
– (void)setBecomesKeyOnlyIfNeeded:(BOOL)flag

Controls whether the receiver only becomes the key window when the user clicks a view object that edits 
text or otherwise accepts keyboard input. If flag is YES, the receiver only becomes the key window when 
keyboard input is needed; if flag is NO, it becomes the key window whenever clicked. This behavior is by 
default not set. You should consider setting it only if most controls in the NSPanel aren’t text fields, and if 
the choices that can be made by entering text can also be made in another way (such as by clicking an item 
in a pick list).

See also: – becomesKeyOnlyIfNeeded, –needsPanelToBecomeKey (NSView)



3

setFloatingPanel:
– (void)setFloatingPanel:(BOOL)flag

Controls whether the receiver floats above normal windows. If flag is YES, sets the receiver’s window level 
to NSFloatingWindowLevel; if flag is NO, sets the receiver’s window level to NSNormalWindowLevel. 
The default is NO. It’s appropriate for an NSPanel to float above other windows only if all of the following 
conditions are true:

• It’s small enough not to obscure whatever’s behind it.

• It’s oriented more to the mouse than to the keyboard—that is, if it doesn’t become the key window or 
becomes so only when needed.

• It needs to remain visible while the user works in the application’s normal windows; for example, if the 
user must frequently move the cursor back and forth between a normal window and the panel (such as a 
tool palette), or if the panel gives information relevant to the user’s actions in a normal window.

• It hides when the application is deactivated (the default behavior for panels).

See also: – isFloatingPanel, – setWindowLevel: (NSWindow)

setWorksWhenModal:
– (void)setWorksWhenModal:(BOOL)flag

Controls whether the receiver receives keyboard and mouse events even when some other window is being 
run modally. If flag is YES, the application object sends events to the receiver even during a modal loop or 
session; if flag is NO, the receiver gets no events while a modal loop or session is running. See “Modal 
Windows” in the NSWindow class specification for more information on modal windows and panels.

See also: – worksWhenModal, –runModalForWindow: (NSApplication), 
– runModalSession: (NSApplication)

worksWhenModal
– (BOOL)worksWhenModal

Returns YES if the receiver is able to receive keyboard and mouse events even when some other window 
is being run modally, NO otherwise. NSPanels by default returns NO, indicating their ineligibility for 
events during a modal loop or session. See “Modal Windows” in the NSWindow class specification for 
more information on modal windows and panels.

See also: – setWorksWhenModal:, –runModalForWindow: (NSApplication), 
– runModalSession: (NSApplication)


