NSCell

Inherits From: NSObject

Conforms To: NSCoding (NSObject),
NSCopying (NSObject),
NSObject (NSObject)

Declared In: AppKit/NSCell.h

Class Description

The NSCell class provides a mechanism for displaying text or imagesin an NSView without the overhead
of afull NSView subclass. In particular, it provides much of the functionality of the NSText class by
providing access to a shared NSText object used by all instances of NSCell in an application. NSCells are
also extremely useful for placing text or images at various locationsin a custom subclass of NSView.

NSCell is used heavily by most of the NSControl classes to implement their internal workings. For
example, NSSlider uses an NSSliderCell, NSTextField uses an NSTextFieldCell, and NSBrowser uses an
NSBrowserCell. Sending a message to the NSControl is often smpler than dealing directly with the
corresponding NSCell. For instance, NSControls typically invoke updateCell: (causing the cell to be
displayed) after changing a cell attribute; whereas if you directly call the corresponding method of the
NSCell, the NSCell might not automatically display itself again.

Some subclasses of NSControl (notably NSMatrix) group NSCellsin an arrangement where they act
together in some cooperative manner. Thus, with an NSMatrix, you can implement auniformly sized group
of radio buttons without needing an NSView for each button (and without needing an NSText object asthe
field editor for the text on each button).

The NSCell class provides primitivesfor displaying text or an image, editing text, setting and getting object
values, maintaining state, highlighting, and tracking the mouse. NSCell's method
trackMouse:inRect: of View:untilM ouseUp: implements the mechanism that sends action messages to
target objects. However, NSCell implements target/action features abstractly, deferring the details of
implementation to NSActionCell and its subclasses.

Object Values and Formatters

Every NSCell that displays text has a value associated with it. The NSCell stores that value as an object of
potentially any type, displays it as an NSString, and returns it as a primary value or string object, according
to what's requestedntValue, floatValue, stringValue, and so on). Formatters are objects associated with
NSCells (througlsetFor matter:) that translate a cell’s object value to its it textual representation and that
convert what users type into the underlying object. NSCells have built-in formatters to handle common

Classes: NSCell

string and numeric (int, float, double) trandations. In addition, you can specify date and numeric types
more precisaly with setEntryType: and specify floating-point format characteristics with
setFloatingPointFor mat:left:right:. You can also implement your own formattersto provide specialized
object tranglation; see the NSFormatter specification for more information.

Thetext that an NSCell displays and stores can be an attributed string. Several methods help to set and get
attributed-string values, including setAttributedStringValue: and setl mportsGraphics..

Represented Objects

Represented objects are objects that an NSCell "stands for." (They’re not to be confused with an NSCell’s
object value, whiclis the value of the cell.) By setting a represented object for an NSCell (using
setRepresentedObject:) you make an association between the NSCell and that object. For instance, you
could have a pop-up list, each cell of which lists a color as its title; when the user selects a cell, the
represented NSColor object is displayed in a color well.

Subclassing NSCell

TheinitimageCell: method is the designated initializer for NSCells that display imagesnithextCell:

method is the designated initializer for NSCells that display text. Override one or both of these methods if
you implement a subclass of NSCell that performs its own initialization. If you need to use target and action
behavior, you may prefer to subclass NSActionCell or one of its subclasses, which provide the default
implementation of this behavior.

If you want to implement your own mouse-tracking or mouse-up behavior, consider overriding
gtartTrackingAt:inView:, continueTracking: at:inView:, andstopTracking: at:inView:mousel sUp:. If
you want to implement your own drawing, overrdfewWithFrame:inView: or
drawlnteriorWithFrameinView:.

For more information on how NSCell is used, see the NSControl class specification.

Method Types

Initializing an NSCell — initimagecCell:
—initTextCell:

Setting and getting cell values — setObjectValue:
— objectValue
— hasValidObjectValue
— setIntValue:
—intValue
— setStringValue:
— stringValue
— setDoubleValue:
— doubleValue
— setFloatValue:
— floatvalue

Setting and getting cell attributes ~ — setCellAttribute:to:
— cellAttribute:
—setType:
—type
— setState:

— state

— setEnabled:
— isEnabled

— setBezeled:
— isBezeled

— setBordered:
— isBordered
—isOpaque

Modifying textual attributes of cells — setEditable:
— isEditable
— setSelectable:
— isSelectable
— setScrollable:
—isScrollable
— setAlignment:
—alignment
— setFont:
— font
— setWraps:
—wraps
— setAttributedStringValue:
— attributedStringValue
— setAllowsEditingTextAttributes:
— allowsEditingTextAttributes
— setlmportsGraphics:
— importsGraphics
— setUpFieldEditorAttributes:

Classes: NSCell

Setting the target and action — setAction:
—action
— setTarget:
— target
— setContinuous:
—isContinuous
— sendActionOn:

Setting and getting an image — setimage:
—image

Assigning a tag —setTag:
—tag

Formatting and validating data — setFormatter:
— formatter
— setEntryType:
—entryType
— isEntryAcceptable:
— setFloatingPointFormat:left:right:

Managing menus for cells + defaultMenu
— setMenu:
—menu
— menuForEvent:inRect:ofView:

Comparing cells — compare:

Making cells respond to keyboard events
— acceptsFirstResponder
— setShowsFirstResponder:
— showsFirstResponder
— setTitleWithMnemonic:
— mnemonic
— setMnemonicLocation:
— mnemonicLocation
— performClick:

Deriving values from other cells — takeObjectValueFrom:
— takelntValueFrom:
— takeStringValueFrom:
— takeDoubleValueFrom:
— takeFloatValueFrom:

Representing an object with a cell - setRepresentedObject:
—representedObject

Tracking the mouse — trackMouse:inRect:ofView:untilMouseUp:
— startTrackingAt:inView:
— continueTracking:at:inView:
— stopTracking:at:inView:mouselsUp:
— mouseDownFlags
+ perfersTrackingUntilMouseUp
— getPeriodicDelay:interval:

Managing the cursor — resetCursorRect:inView:
Handling keyboard alternatives — keyEquivalent
Determining cell sizes — calcDrawlnfo:

— cellSize

— cellSizeForBounds:

— drawingRectForBounds:
— imageRectForBounds:
— titleRectForBounds:

Drawing and highlighting cells — drawWithFrame:inView:
— drawlInteriorWithFrame:inView:
— controlView
— highlight:withFrame:inView:
—isHighlighted

Editing and selecting cell text — editWithFrame:inView:editor:delegate:event:
— selectWithFrame:inView:editor:delegate:start:length:
— endEditing:

Class Methods
\9 defaultMenu
+ (NSMenu *gefaultM enu
Returns the default menu for instances of the receiver. The default implementationniéturns

See also: —menu, —setMenu:

prefersTrackingUntilMouseUp
+ (BOOL)prefersTrackingUntilM ouseUp

The default implementation returns NO, so tracking stops when the mouse leaves the NSCell; subclasses
may override.

See also: —trackM ouse:inRect:of View:untilM ouseUp:

Classes: NSCell

Instance Methods
\9 acceptsFirstResponder
— (BOOL)acceptsFirstResponder
The default implementation returns YES if the cell is enabled; subclasses can override.

See also: —performClick:, —setShowsFirstResponder:, —setTitleWithMnemonic:

action
— (SEL)ction

Implemented by NSActionCell and its subclasses to return the selector of the cell’'s action method. The
default implementation returns a null selector.

Seealso: —setAction:, —setTarget:, —target

alighment
— (NSTextAlignmen@lignment

Returns the alignment of text in the cell: NSLeftTextAlignment, NSRightTextAlignment,
NSCenterTextAlignment, NSJustifiedTextAlignment, or NSNaturalTextAlignment.

See also: — SetAlignment:

\9 allowsEditingTextAttributes
— (BOOL)llowsEditingT extAttributes

Returns whether the receiver allows the editing of textual attributes.

See also: — setAllowsEditingT extAttributes:

\9 attributedStringValue
— (NSAttributedString *attributedStringValue

Returns the value of the receiver as an attributed string, using the cell's formatter object (if one exists) to
create the attributed string. The textual attributes are determined by the default paragraph style, the
receiver’s font and alignment, and whether the receiver is enabled and scrollable.

See also: —SetAttributedStringValue:

calcDrawlInfo:
— (void)calcDr awl nfo: (NSRectaRect

Implemented by subclasses to recalculate drawing sizes with referaiReettoObjects (such as

NSConrols) that manage NSCells generally maintain a flag that informs them if any of their cells has been
modified in such a way that the location or size of the cell should be recomputed. If so, NSControl's
calcSize method is automatically invoked prior to the display of the NSCell, and that method invokes the
NSCell'scalcDrawlnfo: method. The default implementation does nothing.

See also: — CellSize, —drawingRectFor Bounds:

cellAttribute:
— (int)cell Attribute: (NSCellAttribute pParameter

Depending omParameter, returns a setting for a cell attribute, such as the receiver’s state, and whether it’s
disabled, editable, or highlighted.

See also: —setCellAttribute

cellSize

— (NSSizegelSize
Returns the minimum size needed to display the NSCell, taking account of the size of the image or text
within a certain offset determined by border type. If the receiving cell is neither of image or text type, an

extremely large size is returned; if the receiving cell is of image type, and no image has been set, an
extremely small size is returned.

See also: —drawingRectFor Bounds:

cellSizeForBounds:
— (NSSizedellSizeFor Bounds: (NSRectaRect

Returns the minimum size needed to display the NSCell, taking account of the size of the image or text
within an offset determined by border type. If the receiving cell is of text type, the text is resized to fit within
aRect (as much aaRect is within the bounds of the cell). If the receiving cell is neither of image or text
type, an extremely large size is returned; if the receiving cell is of image type, and no image has been set,
an extremely small size is returned.

See also: — drawingRectFor Bounds:

Classes: NSCell

compare:
— (NSComparisonResutmpar e:(id)other Cell
Compares the string values of this cell atiter Cell (which must be a kind of NSCell), disregarding case.

Raises NSBadComparisonExceptionttier Cell is not of the NSCell class or if one of the cells being
compared is not a text-type cell.

continueTracking:at:inView:

— (BOOL)ontinueTracking: (NSPoint)astPoint
at:(NSPointgurrentPoint
inView:(NSView *)control View

Returns whether mouse-tracking should continue in the receiving cell balsstPomt andcurrentPoint

within controlView (currentPoint is the current location of the mouse whdstPoint is either the initial

location of the mouse or the previausrentPoint). This method is invoked in
trackMouse:inRect: of View: untilM ousel sUp:. The default implementation returns YES if the cell is set

to continuously send action messages to its target when the mouse is down or is being dragged. Subclasses
can override this method to provide more sophisticated tracking behavior.

See also: —startTrackingAt:inView:, —gopTracking:at:inView: mousel sUp:

controlView
— (NSView *)controlView

Implemented by subclasses to return the NSView last drawn in (normally an NSControl). The default
implementation returnsil.

See also; —drawWithFrameinView:

doubleValue
— (doublejloubleValue

Returns the NSCell’s value aslauble. If the receiver is not a text-type cell or the cell value is not
scannable, the method returns zero.

drawlInteriorWithFrame:inView:
— (void)drawlnterior WithFrame: (NSRectgellFrame inView: (NSView *)control View

Draws the "inside" of the receiving cell; this includes the image or text within the NSCell’'s frame in
controlView (usually the cell’'s NSControl) but excludes the borddiFrame is the frame of the NSCell

or (in some cases) aportion of it. Text-type NSCellsdisplay their contentsin arectangle dightly inset from
cellFrame using a global NSText object; image-type NSCells display their contents centered within

cellFrame. If the proper attributesare set, it also displaysthe dotted-line rectangleto indicatefirst responder

and highlights the cell. This method is invoked from NSContdriavCelllnside: to visually update the

what the NSCell displays when its contents change. This drawing is minimal, and becomes more complex
in objects such as NSButtonCell and NSSliderCell.

Subclasses often override this method to provide more sophisticated drawing of cell contents. Because
drawWithFrameinView: invokesdrawl nteriorWithFrame:inView: after it draws the NSCell's border,
don’t invokedrawWithFrame:inView: in your override implementation.

See also: —isHighlighted, —setShowsFir stResponder:

drawWithFrame:inView:
— (voiddrawWithFrame: (NSRectellFrameinView: (NSView *)control View

Draws the receiver’s regular or bezeled border (if those attributes are set) and then draws the interior of the
cell by invokingdrawl nteriorWithFrame:inView:.

drawingRectForBounds:
— (NSRect)irawingRectFor Bounds: (NSRect)heRect

Returns the rectangle within which the cell draws itself; this rectangle is slightly insedfRemtron all
sides to take the border into account.

See also: —calcSize

editWithFrame:inView:editor:delegate:event:

— (void)editWithFrame: (NSRectaRect
inView:(NSView *)controlView
editor:(NSText *)XextObj
delegate: (id)anObject
event: (NSEvent *}heEvent

Begins editing of the receiver’s text by using the field editor textObj; usually invoked in response to a
mouse-down evenaRect must be the rectangle used for displaying the NStekvent is the
NSMouseDown evenanObject is made the delegate tektObj, and so will receive various NSText
delegation and notification messages.

If the receiver isn't a text-type NSCell, no editing is performed. Otherteig@bj is sized t@Rect and its
superview is set taView, so that it exactly covers the NSCell. Then it's activated and editing begins. It's

Classes: NSCell

10

the responsibility of the delegate to end the editing when responding to text ShouldEndEditing:; in doing
this, it should remove any data from textObj and invoke endEditing:.

See also: —endEditing:, —sdectWithFrame:inView:editor:delegate start:length:

endEditing:
— (void)endEditing: (NSText *)textObj

Ends any editing of text occurring in the receiver begun with
editWithFrame:iinView:editor:delegate:event: and
selectWithFrameinView:editor:delegate: start:length:. Usually this method is invoked by the delegate
of the field editor specified in one of these methods when that delegt&souldEndEditing: method

is invoked.

entryType
— (int)entryType

Returns the type of data the user can type into the receiver. If the receiver is not a text-type cell, or if no
type has been set, NSAnyType is returned.ssgemntryType: for a list of type constants.

See also: —isEntryAcceptable:

floatValue
— (float¥loatValue

Returns the NSCell's value aslauble. If the receiver is not a text-type cell or the cell value is not
scannable, the method returns zero.

font
— (NSFont *jont

Returns the font used to display text in the receiving celllaf the receiver is not a text-type cell.

See also: —SetFont:

\9 formatter
— (id)for matter

Returns the formatter object (a kind of NSFormatter) associated with the cell. This object handles
translation of the cell’'s contents between it's on-screen representation and its object value.

See also: —setFormatter:

getPeriodicDelay:interval:
— (void)getPeriodicDelay: (float *)delay interval: (float *)interval

Returns initial delay and repeat values for continuous sending of action messages to target objects.
Subclasses can override to supply their own delay and interval values.

See also: —isContinuous, —setContinuous:

\9 hasValidObjectValue
— (BOOLasValidObjectValue
Returns whether the object associated with the receiver has a valid object value. A valid object value is one
that the receiver’s formatter can "understand." Objects that are "invalid" have been rejected by the

formatter, but accepted by the delegate of the receiver’'s NSControl (in
control:didFail ToFormatString:error Description:).

See also: —objectValue, —setObjectValue

highlight:withFrame:inView:

— (voidhighlight:(BOOL)flag
withFrame:(NSRectgellFrame
inView:(NSView *)control View

If the receiver’s highlight status is different frdiag, sets that status ttag and, ifflag is YES, highlights
the rectangleellFrame in the NSControldontrol View).

Note that NSCell's highlighting does not appear when highlighted cells are printed (although instances of
NSTextFieldCell, NSButtonCell, and others can print themselves highlighted). Generally, you cannot
depend on highlighting being printed because implementations of this method may choose (or not choose)
to use transparency.

See also: —drawWithFrameinView:, —isHighlighted

11

Classes: NSCell

12

image
— (NSImage *)mage
Returns the image displayed by the receiver or nil if the receiver is not an image-type cell.

See also: — Setlmage:

imageRectForBounds:
— (NSRectimageRectFor Bounds: (NSRect)heRect

Returns the rectangle that the cell’s image is drawn in, which is slightly offsettieRect.

See also: — cellSizeForBounds:, —drawingRectFor Bounds:

importsGraphics
— (BOOL)mportsGraphics

Sets whether the text of the receiver (if a text-type cell) is of Rich Text Format (RTF) and thus can import
graphics.

See also: —setlmportsGraphics:

initimageCell:
— (id)initimageCell:(NSImage *pnlmage

Returns an NSCell object initialized witinl mage and set to have the cell's default menwanifmage is
nil, no image is set.

initTextCell:
— (id)initTextCell: (NSString *)aString

Returns an NSCell object initialized wiisiring and set to have the cell’s default menu. If no field editor
(a shared NSText object) has been created for all NSCells, one is created.

intValue
— (int)intValue

Returns the receiver’s value asian If the receiver is not a text-type cell or the cell value is not scannable,
the method returns zero.

isBezeled
— (BOOL)sBezeled

Returns whether the receiving cell has a bezeled border.

See also;: — setBezeled:

isBordered
— (BOOL)sBordered

Returns whether the receiving cell has a plain border.

See also: —setBordered:

isContinuous
— (BOOL)sContinuous

Returns whether the receiving cell sends its action message continuously on mouse down.

See also: —setContinuous:;

isEditable
— (BOOL)sEditable

Returns whether the receiving cell is editable.

See also: — SetEditable:

isEnabled
— (BOOL)sEnabled

Returns whether the receiving cell responds to mouse events.

See also; —setEnabled:

Classes: NSCell

iIsEntryAcceptable:
— (BOOL)sEntryAcceptable: (NSString *)aString

Returns whether a string representing a numeric or date e&ang) is formatted in a way suitable to
the entry type.

See also: —entryType, —setEntryType:

isHighlighted

— (BOOL)sHighlighted
Returns whether the receiving cell is highlighted.
See also: —setHighlighted:

isOpaque
— (BOOL)sOpaque

Returns whether the receiving cell is opaque (non-transparent).

isScrollable
— (BOOL)sScrollable

Returns whether the receiving cell scrolls typed text that exceeds the cell’s bounds.

See also: —setScrollable

isSelectable
— (BOOL)sSelectable

Returns whether the text of the receiving cell can be selected.

See also; —setSelectable:

keyEquivalent
— (NSString *keyEquivalent

Implemented by subclasses to return a key equivalent to clicking the cell. The default implementation
returns an empty string object.

14

14

menu
— (NSMenu *menu

Returns the menu with commands contextually related to the agllibno menu is associated.

See also: —SetMenu:

menuForEvent:inRect:ofView:

— (NSMenu *menuFor Event:(NSEvent *anEvent
inRect: (NSRectellFrame
of View:(NSView *)aView

Returns the NSMenu associated with the receiver througiettkleenu: method and related smEvent

when the mouse is detected witleghl Frame. It is usually invoked by the NSContra\(iew) managing

the receiver. The default implementation simply invokes NSQakisu method and will returnil if no

menu has been set. Subclasses can override to customize the returned menu according to the event received
and the area in which the mouse event occurs.

mnemonic
— (NSString *)mnemonic

Returns the character in the cell title that appears underlined for use as a mnemonic. If there is no mnemonic
character, returns an empty string.

See also: —<satTitleWithM nemonic:

mnemonicLocation
— (unsigned inthnemonicL ocation

Returns the position of the underlined character in the cell title used as a mnemonic. If there is no mnemonic
character, returns NSNotFound.

See also: —setMnemonicL ocation:

15

Classes: NSCell

16

mouseDownFlags
— (int)mouseDownFlags

Returns the modifier flags for the last (left) mouse-down event or zero if tracking hasn’t occured yet for the
cell or if no modifier keys accompanied the mouse-down event.

See also: —modifier Flags (NSEvent)

\9 objectValue

— (id)objectValue

Returns the NSCell's value as an Objective-C object if a valid object has been associated with the receiver;
otherwise, returngil. To be valid, the cell must have a formatter capable of converting the object to and
from its textual representation.

\9 performClick:

— (void)performClick: (id)sender

Programmatically simulates a mouse click on the receiver, including the invocation of the action method in
the target object. Raises an exception if the action message cannot be successfully sent.

representedObject
— (id)r epresentedObj ect

Returns the object the receiving cell represents. For example, you could have a pop-up list of color names,
and the represented objects could be the appropriate NSColor objects.

See also: — SetRepresentedObj ect:

resetCursorRect:inView:
— (void) esetCur sor Rect: (NSRectyel IFrame inView: (NSView *)control View

Sets the receiver to show the I-beam cursor widifrrame while it tracks the mouse . The receiver must
be an enabled and selectable (or editable) text-typeaattol View is the NSControl that manages the cell.

selectWithFrame:inView:editor:delegate:start:length:

— (void)selectWithFrame: (NSRectaRect
inView:(NSView *)control View
editor:(NSText *}extObj
delegate: (id)anObject
gart:(int)sel Sart
length: (int)sel Length

Uses the field editaextObj to select text in a range markeddsySart andsel Length, which will be
highlighted and selected as though the user had dragged the cursor over it. This method is similar to
editWithFrame:inView:editor:delegate:event:, except that it can be invoked in any situation, not only on
a mouse-down everdRect is the rectangle in which the selection should ocmntrolView is the
NSControl managing the receiver, aarDbject is the delegate of the field editor. Returns without doing
anything ifcontrolView, textObj, or the receiver amail, or if the receiver as no font set for it.

sendActionOn:
— (int)sendActionOn: (int)mask

Sets the conditions on which the receiver sends action messages to its target and returns a bit mask with
which to detect the previous settingmsk is set with one or more of these bit masks:

NSLeftMouseUpMask Don’t send action message on (left) mouse up.
NSLeftMouseDownMaskSend action message on (left) mouse
down.

NSLeftMouseDraggedMaskSend action message when (left)
mouse is dragged.
NSPeriodicMaskSend action message continuously.

You can sendetContinuous. method to turn on the flag corresponding to NSPeriodicMask or
NSLeftMouseDraggedMask, whichever is appropriate to the given subclass of NSCell.

See also: —action

setAction:
— (void)setAction: (SEL)aSelector

In NSCell, raises NSinternallinconsistencyException. However, NSActionCell overrides this method to set
the action method as part of the implementation of the target/action mechanism.

See also: —action, —setTarget:, —target

17

Classes: NSCell

setAlignment:
— (void)setAlignment: (NSTextAlignmentjnode

Sets the alignment of text in the receiveode is one of five constants: NSLeftTextAlignment,
NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, NSNaturalTextAlignment
(the default alignment for the text).

See also: —alignment, —setWrap:

\9 setAllowsEditing TextAttributes:
— (void)setAllowsEditingTextAttributes: (BOOL)flag

Sets whether the textual attributes of the receiver can be modifiled, i NO, the receiver cannot import
graphics (that is, it does not support RTFD text).

See also: —allowsEditingT extAttributes, —setlmportsGraphics:

\9 setAttributedStringValue:
— (void)setAttributedStringValue: (NSAttributedString *attribStr

Sets the value of the receiver to the attributed satimghSr. If a formatter is set for the receiver, but the
formatter does not understand the attributed string, it naitkbStr as an invalid object. If the receiver is
not a text-type cell, it's converted to one. The following example sets the text in a cell to 14 points, red, in
the system font.
NSCol or *txt Col or = [NSCol or redCol or];
NSFont *txtFont = [NSFont bol dSystenfont O Si ze: 14] ;
NSDi ctionary *txtDict = [NSDi ctionary dictionaryWthCbj ect sAndKeys: t xt Font,
NSFont At t ri but eNane, txt Col or, NSForegroundCol orAttri buteNane, nil];
NSAttributedString *attrStr = [[[NSAttributedString all oc]
initWthString: @Hello!" attributes:txtDict] autorel ease];
[[attrStrTextField cell] setAttributedStringValue:attrStr];
[attrStrTextField updateCel |l :[attrStrTextField cell]];

See also: — attributedStingValue, —hasl nvalidObj ect

setBezeled:
— (void)setBezeled: (BOOL)flag

Sets whether the receiver draws itself with a bezeled bordeseiBezeled: andsetBordered: methods
are mutually exclusive (that is, a border can be only plain or bezeled).

See also: —isBezeled

18

setBordered:
— (void)setBorder ed: (BOOL)flag

Sets whether the receiver draws itself outlined with a plain bordeiselBezeled: andsetBor der ed:
methods are mutually exclusive (that is, a border can be only plain or bezeled).

See also: —isBordered

setCellAttribute:to:
— (void)setCellAttribute: (NSCellAttribute pParameter to:(int)value

Sets a cell attributielentified byaParameter—such as the receiver’s state, and whether it's disabled,
editable, or highlighted—taalue.

See also: —cellAttribute

setContinuous:
— (void)setContinuous: (BOOL)flag

Sets whether the receiver continuously sends its action message to its target while it tracks the mouse. In
practice, the continuous setting has meaning only for instances of NSActionCell and its subclasses, which
implement the target/action mechanism. Some NSControl subclasses, notably NSMatrix, send a default
action to a default target when a cell doesn’t provide a target or action.

See also: —isContinuous; —sendActionOn:

setDoubleValue:
— (void)setDoubleValue: (doublepDouble

Sets the value of the receiving cell to an object representingkde. Does nothing if the receiver is not a
text-type cell.

See also: —doubleValue

19

Classes: NSCell

20

setEditable:
— (void)setEditable: (BOOL)flag
Sets whether the receiver’s text is both editable and selectatbig i NO, and the cell’s text was not

selectable before editing was last enabled (that is, before this message was last sent with an argument of
YES), then the receiver’s text is set to be unselectable.

See also: —isEditable, —setSelectable:

setEnabled:
— (void)setEnabled: (BOOL)flag

Sets whether the receiver is enabled or disabled. The text of disabled cells is changed to gray. If a cell is
disabled, it cannot be highlighted, does not support mouse tracking (and thus cannot participate in
target/action functionality), and cannot be edited. However, you can still alter many attributes of a disabled
cell programmaticallysetState:, for instance, will still work).

See also; —isEnabled

setEntryType:
— (void)setEntryType: (int)aType

Sets how numeric data are formatted in the receiver and places restrictions on acceptaale/heman
be one of the following constants:

Constant Restrictions and Other Information

NSIntType Must be between INT_MIN and INT_MAX
NSPositivelntType Must be between 1 and INT_MAX
NSFloatType Must be between -FLT_MAX and FLT_MAX
NSPositiveFloatType Must be between FLT_MIN and FLT_MAX
NSDoubleType Must be between -DBL_MAX and DBL_MAX
NSPositiveDoubleType Must be between DBL_MAX and DBL_MAX
NSAnyType Any value is allowed.

If the receiver isn’t a text-type cell, this method converts it to one; in the process, it makes its title "Cell"
and sets its font to the user’s system font at 12 points.

You can check whether formatted strings conform to the entry types of cells wigkrikheyAcceptable:

method. NSControl subclasses alsoiggatryAcceptable: to validate what users have typed in editable

cells. You can control the format of values accepted and displayed in cells by creating a custom subclass of
NSFormatter and associating an instance of that class with cells (trsabghmatter:). In custom

NSCell subclasses, you can also override isEntryAcceptable: to check for the validity of data entered into
cells.

See also: —entryType

setFloatingPointFormat:left:right:

— (void)setFloatingPointFor mat: (BOOL)autoRange
left: (unsigned)eftDigits
right:(unsignedjightDigits
Sets whether floating-point numbers are autoranged in the receiver, and sets the sizes of the fields to the left
and right of the decimal point. éiuttoRange is NO, |eftDigits specifies the maximum number of digits to
the left of the decimal point, amcghtDigits specifies the number of digits to the right (the fractional digit
places will be padded with zeros to fill this width). However, if a number is too large to fit its integer part
in leftDigits digits, as many places as are needed on the left are effectively removedyhthrigits when
the number is displayed.

If autoRange is YES, leftDigits andrightDigits are simply added to form a maximum total field width for

the receiver (plus 1 for the decimal point). The fractional part will be padded with zeros on the right to fill
this width, or truncated as much as possible (up to removing the decimal point and displaying the number
as an integer). The integer portion of a number is never truncated—that is, it is displayed in full no matter
what the field width limit is.

The following example sets a cell used to display dollar amounts up to 99,999.99:

[[currencyDol | arsField cell] setEntryType: NSFl oat Type] ;
[[currencyDol | arsField cell] setFloatingPointFormat: NO left:5 right:2];

See also: —SetEntryType:

setFloatValue:
— (void)setFloatValue: (float)aFloat

Sets the value of the receiving cell to an object representlogtaDoes nothing if the receiver is not a
text-type cell.

See also: —floatValue

21

Classes: NSCell

setFont:
— (void)setFont: (NSFont *fontObj

Sets the font to be used when the receiver displays text. If the receiver is not a text-type cell, the method
converts it to that type. fontObj is nil and the receiver is a text-type cell, the font currently held by the
receiver is autoreleased.

See also: —font

\9 setFormatter:
— (void)setFor matter:(NSFormatter *hewFormatter

Sets the formatter object used to format the textual representation of the receiver’s object value and to
validate cell input and convert it to that object value. If the new formatter cannot interpret the receiver’s
current object value, that value is converted to a string object. This method retains new formatters and
releases replaced onesnévFormatter is nil, the receiver is disassociated from the current formatter.

See also: —formatter

setlmage:
— (void)setl mage: (NSImage *)mage

Sets the image to be displayed by the receiver. If the receiver is not an image-type cell, the method converts
it to that type. limageisnil and the receiver is an image-type cell, the image currently held by the receiver
is autoreleased.

See also: —image

\9 setimportsGraphics:
— (void)setl mportsGraphics: (BOOL)flag

Sets whether the receiver can import images into its text (that is, whether it supports RTFD text). If flag is
YES, the receiver is also set to allow editing of text attribisé (| owsEditingT extAttributes:).

See also: —importsGraphics

22

setintValue:
— (void)setI ntValue: (int)anint

Sets the value of the receiving cell to an object representiing.dboes nothing if the receiver is not a
text-type cell.

See also: —intValue

setMenu:
— (void)setM enu: (NSMenu *aMenu

Associates a menu with the cell that has commands contextually related to the cell (a pop-up menu on
Windows). The associated menu is retained. If aMen isny association with a previous menu is
removed.

See also: —menu

setMnemonicLocation:
— (void)setM nemonicL ocation: (unsigned intpcation

Sets the character of the cell title identified diation that is to be underlined. This character identifies the
access key on Windows by which users can access thiocatiion must be between 0 and 254.

See also: —mnemonicL ocation

setObjectValue:
— (void)setObjectValue: (id)object
Sets the receiver’s object valuedigect.

See also: —objectValue, —setRepresentedObj ect:

setRepresentedObject:

— (void)setRepr esentedObj ect: (id)anObject
Sets the object represented by the receiver, for example, an NSColor object for a cell with a title of "Blue."
Seealso: —setObjectValue:, —representedObj ect

23

Classes: NSCell

24

setScrollable:
— (void)setScrollable: (BOOL)flag

Sets whether excess text in the receiver is scrolled past the cell’'s bounds. If flag is YES, wrapping is turned
off. When the scrollable attribute is turned on, the alignment of text in the cell is changed to left alignment.

See also: —isScrollable

setSelectable:
— (void)set Selectable: (BOOL)flag

Sets whether text in the receiver can be selected; always makes the receiver’s text uneditable.
See also: —isSelectable, —setEditable:

setShowsFirstResponder:
— (void)set ShowsFirstResponder : (BOOL)flag

Sets whether the receiver displays a dotted-line outline when it assumes first responder status.

See also: — showsFirstResponder

setState:
— (void)set State: (int)value
Sets the state of the receiver to 1 (YESkIe is positive and 0 (NO) Walue is non-positive.

See also: —state

setStringValue:
— (void)setStringValue: (NSString *pSiring

Sets the value of the receiving cell to an NSString object. If no formatter is assigned to the receiver or if the
formatter cannot "translatelString to an underlying object, the receiver is flagged as having an invalid
object. If the receiver is not a text-type cell, this method converts it to one before setting the object value.

Seealso: —stringValue

setTag:
— (void)set T ag: (int)anint

Implemented by NSActionCell to set the receiver’s tag integer. NSCell’'s implementation raises
NSinternalinconsistencyException.

See also: —tag

setTitleWithMnemonic:
— (void)set TitlewithM nemonic: (NSString *aString

Sets the title of a cell with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the "c" in "Receive" to be underlined:

[aCel |l setTitleWthMienonic: NSLocal i zedStri ng(@ Reé&cei ve")];

See also: —mnemonic, —setM nemonicL ocation:

setTarget:
— (void)set T ar get: (id)anObject

Implemented by NSActionCell to set the receiver’s target object receiving the action message. NSCell's
implementation raises NSinternallnconsistencyException.

See also: —target

setType:
— (void}set Type: (int)aType

If the type of the receiving cell is different fraiype, sets it taType, which must one of NSTextTypeCell,
NSImageTypeCell, or NSNullCellType.affype is NSTextTypeCell, converts the receiver to a cell of that
type, giving it a default title and setting the font to the system font at the default sibgpdfis
NSImageTypeCell, setsral image.

See also: —type

25

Classes: NSCell

26

setUpFieldEditorAttributes:
— (NSText *petUpFieldEditor Attributes: (NSText *)extObj

Sets textual and background attributes of the receiver, depending on certain attributes. If the receiver is
disabled, sets the text color to dark gray; otherwise sets it to the default color. If the receiver has a bezeled
border, sets the background to the default color for text backgrounds; otherwise, sets it to the color of the
receiver’'s NSControl.

setWraps:
— (void)setWraps.(BOOL)flag

Sets whether text in the receiver wraps when its length exceeds the frame of the cell. If flag is YES, then it
also sets the receiver to be non-scrollable.

See also: —Wraps

showsFirstResponder
— (BOOL)showsFirstResponder

Returns whether the receiver displays a dotted-line outline when it assumes first responder status.

See also: — satShowsFirstResponder:

startTrackingAt:inView:
— (BOOLgtartTrackingAt: (NSPointgtartPoint inView: (NSView *)control View

NSCell’'s implementation afrackM ouse:inRect:of View:untilM ousel sUp: invokes this method when

tracking beginsstartPoint is the point the mouse is currently at aodtrolView is the NSControl managing

the receiver. NSCell's default implementation returns YES if the receiver is set to respond continuously or
when the mouse is dragged. Subclasses override this method to implement special mouse-tracking behavior
at the beginning of mouse tracking, for example, displaying a special cursor.

See also: —continueTracking:at:inView:, —stopTracking:at:inView:mousel sUp:

state

— (int)state
Returns the state of the receiver, either 1 (YES) or 0 (NO).
See also: —setState;

stopTracking:at:inView:mouselsUp:

— (void)stopTracking: (NSPoint)astPoint
at:(NSPointstopPoint
inView:(NSView *)control View
mousel sUp: (BOOL)flag

NSCell’'s implementation af ackM ouse:inRect: of View:untilM ousel sUp: invokes this method when the
mouse has left the bounds of the receiver or the mouse goes up (in whithgiaseES).lastPoint is the

point the mouse was at aspPoint is its current point.controlView is the NSControl managing the

receiver. NSCell's default implementation does nothing. Subclasses often override this method to provide
customized tracking behavior. The following example increments the state of a tri-state cell when the
mouse is clicked.

- (voi d)stopTracki ng: (NSPoi nt) | ast Poi nt at: (NSPoi nt) st opPoi nt
i nVi ew. (NSVi ew *) control Vi ew nousel sUp: (BOOL) fl ag

if (flag == YES) {
[self setTriState:([self triState]+1)];

}
}

Seealso: —startTracking:at:inView:, —stopTracking:at:inView:mousel sUp:

stringValue
— (NSString *stringValue

Returns the receiver’s value as an NSString as converted by the receiver’s formatter, if one exists. If no
formatter exists and the value is an NSString, returns the value as an plain, attributed or localized formatted
string. If the value is not an NSString or can’t be converted to one, returns an empty string.

See also: —setStringValue:

tag
— (intitag
Implemented by NSActionCell to return the receiver’s tag integer. NSCell's implementation returns -1.

See also: —setTag:

27

Classes: NSCell

takeDoubleValueFrom:
— (void)akeDoubleValueFrom: (id)sender

Sets the receiver's own value adauble using thedouble value ofsender.

See also; —setDoubleValue

takeFloatValueFrom:
— (void)YtakeFloatValueFrom:(id)sender

Sets the receiver's own value af@at using thefloat value ofsender.

See also: — setFloatValue:

takelntValueFrom:
— (void)}takel ntValueFrom:(id)sender

Sets the receiver’s own value asiahusing theint value ofsender. The following example shows this
method being used to write the value taken from a slsgadér) to a text field cell:

- (void)sliderMved: (id)sender
{

[[val ueField cell] takelntValueFrom[sender cell]];
[val ueFi el d display];

}
See also: —setIntValue:

takeObjectValueFrom:
— (void)takeObjectValueFrom: (id)sender

Sets the receiver’'s own value as an object using the object vaeraerf.

See also: —setObjectValue

takeStringValueFrom:
— (void)takeStringValueFrom: (id)sender

Sets the receiver’'s own value as a string object using the NSString vatneaf

See also: —setStringValue:

28

target

— (id)tar get
Implemented by NSActionCell to return the target object to which the receiver’s action message is sent.
NSCell's implementation returmsl.

See also: —setTarget:

titleRectForBounds:
— (NSRectitleRectFor Bounds: (NSRect)heRect

If the receiver is a text-type cell, resizes the drawing rectangle for théhiRegt) inward by a small offset
to accommodate the cell border. If the receiver is not a text-type cell, the method does nothing.

See also: —imageRectFor Bounds:

trackMouse:inRect:ofView:untilMouseUp:

— (BOOL)XrackM ouse: (NSEvent *yheEvent
inRect: (NSRectyellFrame
of View: (NSView *)control View
untilMouseUp:(BOOL)flag

Invoked by an NSControl to initiate the tracking behavior of one of its NSCells. It's generally not overriden
since the default implementation invokes other NSCell methods that can be overriden to handle specific
events in a dragging session. Returns YES if the mouse goes upagitRitame, NO otherwise. The
argumentheEvent is typically the mouse event received by the initiating NSControl, usually identified by
controlView. Theflag argument indicates whether tracking should continue until the mouse button goes up;
if flag is NO, tracking ends when the mouse is dragged after the initial mouse down.

This method first invokestartTrackingAt:inView:. If that method returns YES, then as mouse-dragged
events are interceptechntinueTracking:at:inView: is invoked, and, finally, when the mouse leaves the
bounds or if the mouse button goes upp$racking:at:inView:mousel sUp: is invoked (ifcellFrame is

NULL, then the bounds are considered infinitely large). You usually override one or more of these methods
to respond to specific mouse events.

type

— (inttype
Returns the type of the receiver, one of NSTextTypeCell, NSImageTypeCell, or NSNullCellType.
See also: —satType:

29

Classes: NSCell

wraps
— (BOOL)wraps
Returns whether text of the receiver wraps when it exceeds the borders of the cell.

See also: —satWraps.

30

