Classes:

& NSSet Class Cluster

lass Cluster Description

The NSSet, NSMutableSet, and NSCountedSet classes declare the programmatic interface for objects that
store unordered sets of objects.

Because of the nature of class clusters, the objects you create with the NSSet class cluster are not actual
instances of NSSet or NSMutableSet. Rather, the instances belong to one of their private subclasses. (For
convenience, we use the tesatto refer to any one of these instances without specifying its exact class
membership.) Although a set’s class is private, its interface is public, as declared by the abstract
superclasses NSSet and NSMutableSet.Note that NSCountedSet is not part of the class cluster; it is a
concrete subclass of NSMutableSet.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries when
it's created, and thereafter the entries can’t be modified. NSMutableSet, on the other hand, declares a
programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows the addition and
deletion of entries at any time, automatically allocating memory as needed.

Use sets as an alternative to arrays when the order of elements isn’t important and performance in testing
whether an object is contained in theiset consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respond to the NSObject protocol metlastisndisEqual:. See the NSObject
protocol for more information.

Note: If mutable objects are stored in a set, eithehtsh method of the objects shouldn’t depend on the
internal state of the mutable objects or the mutable objects shouldn’t be modified while they're in the
set (note that it can be difficult to know whether or not a given object is in a collection).

Objects added to a set are not copied; rather, each object reqetais message before it's added to a set.

Generally, you create a temporary set by sending one séthemethods to the NSSet class object. These
methods return an NSSet object containing the elements (if any) you pass in as argumsetmdthed

is a “convenience” method to create an empty mutable set. Newly created instances of NSSet created by
invoking theallocWithZone: method can be populated with objects using any ahthe methods.

The set classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert a
set of one type to the other.

@ NSSet

Inherits From: NSObiject

Conforms To: NSCoding
NSCopying
NSMutableCopying

NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class at a Glance

Purpose
An NSSet object stores an immutable set of objects.

Principal Attributes
¢ The objects that make up the set.

Creation

+ set Returns an empty set.

+ setWithArray: Returns a set containing a number of objects from an array.
+ setWithObject: Returns a set containing a single object.

+ setWithObjects: Returns a set containing a number of objects.

+ setWithObjects:count: Returns a set containing a specified number of objects.

+ setWithSet: Returns a set containing a number of objects from another set.
Commonly Used Methods

— allObjects Returns an array containing the set's member objects.

— count Returns the number of objects in the set.

— containsObject: Indicates whether a given object is present in the set.
Primitive Methods

— count

— member:

— objectEnumerator

Classes:

lass Description

The NSSet class declares the programmatic interface to an object that manages an immutable set of objects.
NSSet provides support for the mathematical concepsef A set, both in its mathematical sense and in

the implementation of NSSet, is anorderedcollection of distinct elements. The NSMutableSet and
NSCountedSet classes are provided for sets whose contents may be altered.

NSSet provides methods for querying the elements of thalkaibjects returns an array containing the
objects in a seanyObject returns some object in the sebunt returns the number of objects currently in
the setmember: returns the object in the set that is equal to a specified object. Additionally, the
intersectsSet:tests for set intersectioisEqualToSet: tests for set equality, amsBubsetOfSettests for
one set being a subset of another.

TheobjectEnumerator method provides for traversing elements of the set one by one.

NSSet'smakeObjectsPerform: andmakeObjectsPerform:withObject: methods provides for sending
messages to individual objects in the set.

Exceptions

NSSet implements thencodeWithCoder: method, which raises NSinternallnconsistencyException if the
number of objects enumerated for encoding turns out to be unequal to the number of objects in the set.

Adopted Pr otocols

NSCoding — encodeWithCoder:
— initWithCoder:
NSCopying — copyWithZone:

NSMutableCopying — mutableCopyWithZone:

Viethod Types

Creating a set + allocWithZone:
+ set
+ setWithArray:
+ setWithObiject:
+ setWithObjects:
— initWithArray:
— initWithObjects:
— initWithObjects:count:
— initWithSet:
— initWithSet:.copyltems:

Counting entries — count

Accessing the members — allObjects
— anyObject
— containsObject:
— makeObjectsPerform:
— makeObijectsPerform:withObiject:
— member:
— objectEnumerator

Comparing sets — isSubsetOfSet:
— intersectsSet:
— isEqualToSet:
Describing a set — description

— descriptionWithLocale:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *yone

Creates and returns an uninitialized set in the specified zone. If the receiver is the NSSet class object, an
instance of an immutable private subclass is returned; otherwise, an object of the receiver’s class is returned.

Typically, you create temporary sets usinggbe..class methods, not tldlocWithZone: andinit...
methods. Note that it's your responsibility to free objects created witilltdodVithZone: method.

Seealso: + sef + setWithObject:, + setWithObjects:, + setWithArray:

Classes:

set
+ (id)set

Creates and returns an empty set. This method is declared primarily for the use of mutable subclasses of
NSSet.

Seealso: + setWithArray: , + setWithObject:, + setWithObjects:

setWithArray:
+ (id)setWithArray: (NSArray *)anArray

Creates and returns a set containing those objects contained within themamraay

See also: + set + setWithObject:, + setWithObjects:

setWithObject:
+ (id)setWithObject: (id)anObject

Creates and returns a set containing a single mear@hject anObjectreceives aetain message after
being added to the set.

See also: + setWithArray: , + set + setWithObjects:

setWithObjects:
+ (id)setWithObjects:(id)anObject, ...

Creates and returns a set containing the objects in the argument list. The argument list is a comma-separated
list of objects ending withil.

As an example, the following code excerpt creates a set containing three different types of elements
(assumingPathexits):

NSSet *mySet;

NSData *someData = [NSData dataWithContentsOfFile:aPath];
NSValue *aValue = [NSNumber numberWithInt:5];

NSString *aString = @"a string”;

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

Seealso: + setWithArray: , + set + setWithObject:

\9 setWithObjects:count:
+ (id)setWithObjects:(id *) objectscount:(unsigned injount

Creates and returns a set contairgogntobjects from the list of objects specifieddiyjects

\9 setWithSet:
+ (id)setWithArray: (NSSet *pSet

Creates and returns a set containing those objects contained withingBetset

nstance Methods

allObjects
— (NSArray *allObjects

Returns an array containing the receiver's members, or an empty array if the receiver has no members. The
order of the objects in the array isn’t defined.

anyObject
— (id)anyObject
Returns one of the objects in the set (essentially chosen at randoih)f tre set contains no objects.

See also: —allObjects, —objectEnumerator

containsObject:
— (BOOL)ontainsObject:(id)anObject
Returns YES ifanObjectis present in the set, NO otherwise.

See also: —member:

count
— (unsigned infount

Returns the number of members in the set.

Classes:

description
— (NSString *Ylescription
Returns a string object that represents the contents of the receiver, formatted as a property list.

See also: —descriptionWithLocale:

descriptionWithLocale:
— (NSString *fescriptionWithLocale: (NSDictionary *)Jocale

Returns a string object that represents the contents of the receiver, formatted as a projoedielist.
specifies options used for formatting each of the receiver’'s members, each of which is sent
descriptionWithLocale: with locale passed along as the sole parameter. (If the receiver's members do not
respond talescriptionWithLocale:, this method send$escription instead.) If you do not want the
receiver's members to be formatted, spenifyfor locale

See also: —description

hash
@protocol NSObject
— (unsigned inbash

Returns an unsigned integer that can be used as a table address in a hash table structuréasbr a set,
returns the number of members in the set. If two sets are equal (as determineidbyuthle method),
they will have the same hash value.

See also: —isEqual:

initWithArray:
— (id)initwithArray: (NSArray *)array
Initializes a newly allocated set with the objects that are contaireedaiyy This method steps through

array, adding members to the new set as it goes. Each object recedt@is anessage as it is added to the
set. Returnself.

See also: —InitWithObjects: , —initWithObjects:count: , — initWithSet:, — initWithSet:copyltems:,
+setWithArray:

initWithObjects:
— (id)initwithObjects: (id)anObject...
Initializes a newly allocated set with members taken from the specified disjeats initWithObjects:

takes a comma-separated list of objects terminateul biach object receivesratain message as it is
added to the set. Returself.

Seealso: —initWithArray: , —initWithObjects:count: , — initWithSet:, — initWithSet:copyltems:,
+setWithObjects:

initWithObjects:count:
— (id)initwithObjects: (id *) objectscount:(unsigned3ount

Initializes a newly allocated set witlountmembers. This method steps throughabiectsarray, creating
members in the new set as it goes. Each object receig&girmmessage as it is added to the set. Returns
self.

See also: —initWithArray: , —initWithObjects: , — initWithSet:, — initWithSet:copyltems:

initWithSet:
— (id)initwithSet: (NSSet *ptherSet

Initializes a newly allocated set by placing in it the objects containettiénSetEach object is retained as
it is added to the receiver. Retuswf.

Seealso: —initWithArray: , —initWithObjects: , —initWithObjects:count: , — initWithSet:copyltems:

initWithSet:copyltems:

— (id)initwithSet: (NSSet *ptherSetopyltems;(BOOL)flag
Initializes a newly allocated set andfli#g is NO, places in it the objects containeaiherSetlf flagis
YES, the members afttherSetare copied, and the copies are added to the receiver. (Note that
copyWithZone: is invoked in making these copies. Thus, the receiver's new member objects may be

immutable, even though their counterpartstimerSetvere mutable. Also, members must conform to the
NSCopying protocol)

This method returnself.

See also: —initWithArray: , —initWithObjects: , —initWithObjects:count: , — initWithSet:

Classes:

intersectsSet:
— (BOOL)intersectsSet{NSSet *ptherSet

Returns YES if at least one object in the receiver is also preseatheir5et NO otherwise.

Seealso: —isEqualToSet; —isSubsetOfSet:

iIsEqual:

@protocol NSObject
— (BOOL)sEqual:(id)anObject

Returns YES if the receiver aattObjectare equal; otherwise returns NO. A YES return value indicates
that the receiver arehObjectboth inherit from NSSet armbntain the same contents (as determined by the
isEqualToSet: method).

See also: —isEqualToSet:

isEqualToSet:
— (BOOL)isequalToSet(NSSet *ptherSet

Compares the receiving setdtherSetIf the contents oftherSetare equal to the contents of the receiver,
this method returns YES. If not, it returns NO.

Two sets have equal contents if they each have the same number of members and if each member of one set
is present in the other.

Seealso: —intersectsSet; —isEqual: (NSObject protocol), isSubsetOfSet:

isSubsetOfSet:
— (BOOL)isSubsetOfSetNSSet *ptherSet

Returns YES if every object in the receiver is also presastharSetNO otherwise.

See also: —intersectsSet; —isEqualToSet:

makeObjectsPerform:
— (void)makeObijectsPerform(SEL)aSelector

SendsaSelectotto each object in the set. TASelectomethod must be one that takes no arguments. It
shouldn’t have the side effect of modifying this set. The messages are sent uperiptineSelector:
method declared in the NSObject protocol.

Seealso: —makeObjectsPerform:withObject:

\9 makeObjectsPerformSelector:
— (void)makeObjectsPerformSelector{(SEL)aSelector

Same asnakeObjectsPerform..

\9 makeObjectsPerformSelector:withObject:
— (void)ymakeObjectsPerformSelector{SEL)aSelectomwithObject: (id)anObject

Same asnakeObjectsPerform:withObject:.

makeObjectsPerform:withObject:
— (void)makeObjectsPerform;(SEL)aSelectomwithObject: (id)anObject

SendsaSelectorto each object in the set. The message is sent each timan@itiectas the argument, so
theaSelectomethod must be one that takes a single argument oidypheaSelectomethod shouldn't,
as a side effect, modify this set. The messages are sent uspagftnenSelector:withObject: method
declared in the NSObiject protocol.

See also: —makeObjectsPerform:

member:
— (id)ymember:(id)anObject

If anObjectis present in the set (as determinedsiigual:), the object in the set is returned. Otherwise,
member: returnsnil.

See also: —containsObject:

Classes:

objectEnumerator
— (NSEnumerator tbjectEnumerator

Returns an enumerator object that lets you access each object in the set:
NSEnumerator *enumerator = [mySet objectEnumerator];

id value;

while ((value = [enumerator nextObject])) {
/* code that acts on the set’s values */

}

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the set during
enumeration. If you intend to modify the set, useall@bjects method to create a “snapshot” of the set’s
members. Enumerate the snapshot, but make your modifications to the original set.

See also: — nextObject (NSEnumerator)

11

@ NSMutableSet

Inherits From: NSSet : NSObject
Conforms To: NSCoding
NSCopying

NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class at a Glance

Purpose
An NSMutableSet object stores a modifiable set of objects.

Principal Attributes
¢ The objects that make up the set.

Creation
+ setWithCapacity: Returns An empty set with enough allocated memory to hold a
specified number of objects.

Commonly Used Methods

— addObiject: Adds an object to the set, if it isn’t already a member.
— removeObiject: Removes an object from the set.

Primitive Methods

— addObiject:

— removeObiject:

Class Description

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSMutableSet provides support for the mathematical concepéibfAaset, both in its
mathematical sense, and in the NSMutableSet implementationyi®eteredcollection of distinct

Classes:

elements. The NSCountedSet class, which is a concrete subclass of NSMutableSet, supports mutable sets
that can contain multiple instances of the same element. The NSSet class supports creating and managing
immutable sets.

Objects are added to an NSMutableSet witHObiject:, which adds a single object to the set;
addObjectsFromArray: , which adds all objects from a specified array to the set; ouwitinSet:, which
adds all the objects from another set.

Objects are removed from an NSMutableSet using any of the meftted®ectSet; minusSet;
removeAllObjects, orremoveObject.

viethod Types

Creating an NSMutableSet + allocWithZone:
+ setWithCapacity:
— initWithCapacity:

Adding and removing entries — addObject:
— removeObject:
— removeAllObjects
— addObjectsFromArray:

Combining and recombining sets — unionSet:
— minusSet:
— intersectSet:
— setSet:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *yone

Creates and returns an uninitialized mutable set in the specified zone. If the receiver is the NSMutableSet
class object, an instance of a mutable private subclass is returned; otherwise, an object of the receiver’s class
is returned.

Typically, you create temporary sets usinggbe..class methods, not tldlocWithZone: andinit...
methods.

See also: + initWithCapacity: , + set(NSSet);+ setWithObjects:count: (NSSet)

13

setWithCapacity:
+ (id)setWithCapacity:(unsignedjumitems

Creates and returns a mutable set, giving it enough allocated memory noimdiemsnembers. Mutable
sets allocate additional memory as neededusoltemssimply establishes the object’s initial capacity.

Seealso: —initWithCapacity: , + set(NSSet), +setWithObjects:count: (NSSet)

nstance Methods
addObject:
— (voidladdObject:(id)anObject

Adds the specified object to the receiver if it is not already a meert@bjectis sent aetain message as
it is added to the receiver.dahObjectis already present in the set, this method has no effect on either the
set or oranObject

See also: —addObjectsFromArray: , —unionSet:

addObjectsFromArray:
— (voidladdObjectsFromArray: (NSArray *)anArray

Adds each object containedanArrayto the receiver, if that object is not already a member. The new
membelis retained. If a given element of the array is already present in the set, this method has no effect
on either the set or on the array element.

See also: —addObject:, —unionSet:

initWithCapacity:
— (id)initwithCapacity: (unsignedjumlitems

Initializes a newly allocated mutable set, giving it enough allocated memory tadmltemanembers.
Mutable sets allocate additional memory as needetlsdtemssimply establishes the object’s initial
capacity. Returnself.

See also: + setWithCapacity:

Classes:

intersectSet:
— (void)intersectSet(NSSet *ptherSet

Removes from the receiver each object that isn't a memimthefSet Each object that's removed from
the receiver is sentraleasemessage.

See also: —removeObject:, —removeAllObjects, — minusSet:

minusSet:
— (void)minusSet(NSSet *ptherSet

Removes from the receiver each object containethierSethat is also present in the receiver. Each object
that's successfully removed from the receiver is sealeasemessage. If any memberatherSeisn'’t
present in the receiving set, this method has no effect on either the receiver ootber®eimember.

See also: —removeObject;, —removeAllObjects, — intersectSet:

removeAllObjects
— (voidyemoveAllObjects

Empties the set of all of its members. Each member is seldasemessage.

See also: —removeObject;, — minusSet; —intersectSet:

removeObiject:
— (voidyemoveObiject:(id)anObject

RemovesanObjectfrom the set. The removed object is serdleasemessage if it was a member of the
receiver.

See also: —removeAllObjects, — minusSet; —intersectSet:

\9 setSet:
— (void)setSet(NSSet *ptherSet

Empties the receiver, then adds each object contairmbernSeto the receiver The new member is sent a
retain message as it is added to the receiver.

15

unionSet:
— (voidunionSet(NSSet *ptherSet

Adds each object containedatherSeto the receiver, if that object is not already a member. The new
member is senti@tain message as it is added to the receiver. If any membéhefSeis already present
in the receiver, this method has no effect on either the receiver or othéh8emember.

See also: —addObiject:, —addObjectsFromArray:

	c NSSet Class Cluster
	i NSSet
	An NSSet object stores an immutable set of objects...
	• The objects that make up the set.
	+�set Returns an empty set.
	+�setWithArray: Returns a set containing a number ...
	+ setWithObject: Returns a set containing a single...
	+�setWithObjects: Returns a set containing a numbe...
	+�setWithObjects:count: Returns a set containing a...
	+�setWithSet: Returns a set containing a number of...
	– allObjects Returns an array containing the set’s...
	– count Returns the number of objects in the set.
	– containsObject: Indicates whether a given object...

	– count
	– member:
	– objectEnumerator
	Exceptions
	allocWithZone:
	+ (id)allocWithZone:(NSZone *)zone

	set
	+ (id)set

	setWithArray:
	+ (id)setWithArray:(NSArray *)anArray

	setWithObject:
	+ (id)setWithObject:(id)anObject

	setWithObjects:
	+ (id)setWithObjects:(id)anObject, ...

	p setWithObjects:count:
	+ (id)setWithObjects:(id *)objects count:(unsigned...

	p setWithSet:
	+ (id)setWithArray:(NSSet *)aSet

	allObjects
	–�(NSArray *)allObjects

	anyObject
	– (id)anyObject

	containsObject:
	–�(BOOL)containsObject:(id)anObject

	count
	–�(unsigned int)count

	description
	– (NSString *)description

	descriptionWithLocale:
	– (NSString *)descriptionWithLocale:(NSDictionary ...

	hash
	@protocol NSObject
	–�(unsigned int)hash

	initWithArray:
	– (id)initWithArray:(NSArray *)array

	initWithObjects:
	–�(id)initWithObjects:(id)anObject...

	initWithObjects:count:
	–�(id)initWithObjects:(id *)objects count:(unsigne...

	initWithSet:
	–�(id)initWithSet:(NSSet *)otherSet

	initWithSet:copyItems:
	–�(id)initWithSet:(NSSet *)otherSet copyItems:(BOO...

	intersectsSet:
	– (BOOL)intersectsSet:(NSSet *)otherSet

	isEqual:
	@protocol NSObject
	–�(BOOL)isEqual:(id)anObject

	isEqualToSet:
	–�(BOOL)isEqualToSet:(NSSet *)otherSet

	isSubsetOfSet:
	– (BOOL)isSubsetOfSet:(NSSet *)otherSet

	makeObjectsPerform:
	–�(void)makeObjectsPerform:(SEL)aSelector

	p makeObjectsPerformSelector:
	–�(void)makeObjectsPerformSelector:(SEL)aSelector

	p makeObjectsPerformSelector:withObject:
	–�(void)makeObjectsPerformSelector:(SEL)aSelector ...

	makeObjectsPerform:withObject:
	–�(void)makeObjectsPerform:(SEL)aSelector withObje...

	member:
	–�(id)member:(id)anObject

	objectEnumerator
	–�(NSEnumerator *)objectEnumerator

	i NSMutableSet
	An NSMutableSet object stores a modifiable set of ...
	• The objects that make up the set.
	+�setWithCapacity: Returns An empty set with enoug...
	– addObject: Adds an object to the set, if it isn’...
	– removeObject: Removes an object from the set.
	– addObject:
	– removeObject:

	allocWithZone:
	+ (id)allocWithZone:(NSZone *)zone

	setWithCapacity:
	+ (id)setWithCapacity:(unsigned)numItems

	addObject:
	–�(void)addObject:(id)anObject

	addObjectsFromArray:
	– (void)addObjectsFromArray:(NSArray *)anArray

	initWithCapacity:
	–�(id)initWithCapacity:(unsigned)numItems

	intersectSet:
	–�(void)intersectSet:(NSSet *)otherSet

	minusSet:
	–�(void)minusSet:(NSSet *)otherSet

	removeAllObjects
	–�(void)removeAllObjects

	removeObject:
	–�(void)removeObject:(id)anObject

	p setSet:
	– (void)setSet:(NSSet *)otherSet

	unionSet:
	– (void)unionSet:(NSSet *)otherSet

