
1

� NSTextView

Inherits From: NSText : NSView : NSResponder : NSObject

Conforms To: NSTextInput
NSChangeSpelling (NSText)
NSIgnoreMisspelledWords (NSText)
NSCoding (NSResponder) —Note: NSTextView doesn’t implement this protocol
NSObject (NSObject)

Declared In: AppKit/NSTextView.h

Purpose
NSTextView is the front-end component of NeXT’s extended text system. It displays and manipulates text laid
out in an area defined by an NSTextContainer, and adds many features to those defined by its superclass, NSText.

Principal Attributes
• Supports rich text and graphics • Supports input management and key bindings
• Works with the Font Panel and menu • Works with rulers
• Provides delegation and notification • Works with the Services facility
• Works with the pasteboard • Works with spell-checking services

Creation
Interface Builder
– initWithFrame: Creates an NSTextView along with all its supporting objects.
– initWithFrame:textContainer: Designated initializer.

Commonly Used Methods
The methods most commonly used with NSTextView objects are declared in NSText, the superclass. These
methods provide access to the other major components of the text system:
– textStorage Returns the associated NSTextStorage object.
– textContainer Returns the associated NSTextContainer object.
– layoutManager Returns the associated NSLayoutManager object.

Class at a Glance

2

Classes: NSTextView

Class Description

NSTextView is the front-end class to NeXT’s extended text-handling system. It draws the text managed by
the back-end components and handles user events to select and modify its text. NSTextView is the principal
means to obtain a text object that caters to almost all needs for displaying and managing text at the user
interface level. While NSTextView is a subclass of NSText—which declares the most general OpenStep
interface to the text system—NSTextView adds several major features over and above the capabilities of
NSText.

One of the design goals of NSTextView is to provide a comprehensive set of text-handling features so that
you should rarely need to create a subclass. In its standard incarnation, NSTextView creates the requisite
group of objects that support the text handling system—NSTextContainer, NSLayoutManager, and
NSTextStorage objects. Refer to “The OPENSTEP Text System” for a comprehensive overview of the
components of the text system. Here are the major features that NSTextView adds to those of NSText:

Rulers. NSTextView works with the NSRulerView class to let users control paragraph formatting,
in addition to using commands in the Format Text menu provided by Interface Builder.

Input management and key binding. Certain key combinations are bound to specific NSTextView
methods so that the user can move the insertion point, for example, without using the mouse.

Marked text attributes. NSTextView defines a set of text attributes that support special display
characteristics during input management. Marked text attributes only affect visual aspects of text—
color, underline, and so on—they don’t include any attributes that would change the layout of text.

File and graphic attachments. The extended text system provides programmatic access to text
attachments as instances of NSTextAttachment, through the NSTextView and NSTextStorage
classes.

Delegate messages and notifications. NSTextView adds several delegate messages and
notifications to those used by NSText. The delegate and observers of an NSTextView can receive
any of the messages or notifications declared by both classes.

Creating NSTextView Objects

The easiest way to add an NSTextView to your application is through Interface Builder. Interface Builder’s
Data Views palette supplies a specially configured NSScrollView object that contains an NSTextView
object as its document view. This NSTextView is configured to work with the NSScrollView and other
user-interface controls such as a ruler, the Font menu, the Edit menu, and so on.

Interface Builder also offers other objects—of the NSTextField and NSForm classes—that make use of
NSTextView objects for their text-editing facilities. In fact, all NSTextFields and NSForms within the same
window share the same NSTextView object (known as the field editor), thus reducing the memory demands
of an application. If your application requires stand-alone or grouped text fields that support editing (and
all the other facilities provided by the NSTextView class), these are the classes to use.

3

You can also create NSTextView objects programmatically, using either of the methods
initWithFrame:textContainer: (the designated initializer), or initWithFrame:. The initWithFrame:
method is the simplest way to obtain an NSTextView object—it creates all the other components of the
text-handling system for you and releases them when you’re done. If you use
initWithFrame:textContainer:, you must construct (and release) the other components yourself. See the
“The OPENSTEP Text System” for more information.

Configuring Editing Behavior

Like NSText, NSTextView allows you to grant or deny the user the ability to select or edit its text, using
the setSelectable: and setEditable: methods. These methods only affect what the user can do; you can still
make changes to the NSTextView programmatically. An editable text view can behave as a normal text
editor, accepting Tab and Return characters, or as a field editor, interpreting tabs and returns as cues to end
editing. The setFieldEditor: method controls this behavior. NSTextView also implements the distinction
between plain and rich text defined by NSText with its setRichText: and setImportsGraphics: methods.
See the NSText class specification for more information on these various distinctions.

Attachments

While NSText leaves open the nature of imported graphics and other attachments, NSTextView explicitly
uses NSTextAttachment objects, which contain NSFileWrappers that represent the attached files.
NSTextView declares several delegate methods that let you handle user actions on an attachment’s image
or icon. textView:clickedOnCell:inRect: and textView:doubleClickedOnCell:inRect: let the delegate
take action on mouse clicks, and textView:draggedCell:inRect:event: lets the delegate initiate a dragging
session for the attachment. See the NSTextAttachment, NSTextAttachmentCell, and NSFileWrapper class
and protocol specifications for more information on working with attachments.

Input Management

NSTextView uses an input manager to turn basic character information into text and commands. It passes
uninterpreted keyboard input to the input manager, which examines the characters generated and sends
messages to the NSTextView based on those characters. If the typed characters are interpreted as text to
input, the input manager sends the text view an insertText: message. If they’re interpreted as commands
to perform, such as moving the insertion point or deleting text, the input manager sends the text view a
doCommandBySelector: message. Many of the standard commands are described in the NSResponder
class specification. NSTextView also gives its delegate a chance to handle a command by sending it a
textView:doCommandBySelector: message. If the delegate implements this method and returns YES, the
text view does nothing further; otherwise it tries to perform the command itself.

See the NSInputManager class and NSTextInput protocol specifications for more information.

4

Classes: NSTextView

Using the Font Panel and Ruler

NSTextView is designed to work with the Application Kit’s font conversion system, defined by the
NSFontPanel and NSFontManager classes. By default, an NSTextView keeps the Font Panel updated with
the first font in its selection, or of its typing attributes (defined below). It also changes the font in response
to messages from the Font Panel and Font menu. Such changes apply to the selected text or typing attributes
for a rich text view, or to all the text in a plain text view. You can turn this behavior off using the
setUsesFontPanel: method. Doing so is recommended for a text view that serves as a field editor, for
example. Making an NSTextView not use the font conversion system renders some of its other methods
unusable, as these methods require access to font information to work. See the description of
setUsesFontPanel: for these side effects.

NSTextView also defines a comprehensive interface for manipulating paragraph attributes, using the
NSRulerView class. If an NSTextView is enclosed in an NSScrollView, it can display a ruler view, which
displays margin and tab markers that the user can manipulate to adjust their settings, as well as other
controls for setting alignment, paragraph spacing, and so on. setRulerVisible: and the inherited
toggleRuler: control whether the ruler view is displayed. The NSTextView serves as the ruler view’s client,
as described in the NSRulerView class specification. Similar to the Font Panel, NSTextView can be set not
to use a ruler with the setUsesRuler: method. This has side effects similar to those of setUsesFontPanel:.

Examining and Setting the Selection

Most of the time the selection is determined by the user through mouse or keyboard operations. You can
get the range of characters currently selected using the selectedRange method. This is the single most
commonly used method for examining the selection. You can also set the selection programmatically using
setSelectedRange:. NSTextView indicates its selection by applying a special set of attributes to it.
selectedTextAttributes returns these attributes, and setSelectedTextAttributes: sets them.

While changing the selection in response to user input, an NSTextView invokes its
setSelectedRange:affinity:stillSelecting: method. The first argument is of course the range to select. The
second, called the selection affinity, determines which glyph the insertion point displays near when the two
glyphs aren’t adjacent. It’s typically used where lines wrap to place the insertion point at the end of one line
or the beginning of the following line. You can get the selection affinity in effect using the selectionAffinity
method. The last argument indicates whether the selection is still in the process of changing; the delegate
and any observers aren’t notified of the change in the selection until the method is invoked with NO for this
argument. An additional factor affecting selection behavior is the selection granularity: whether characters,
words, or whole paragraphs are being selected. This is usually determined by number of initial clicks; for
example, a double-click initiates word-level selection. NSTextView decides how much to change the
selection during input tracking using its selectionRangeForProposedRange:granularity: method, as
described below under “Subclass Responsibilities.”

An additional aspect of selection, actually related to input management, is the range of marked text. As the
input manager interprets keyboard input, it can mark incomplete input in a special way. markedRange
returns the range of any marked text, and markedTextAttributes returns the attributes used to highlight
the marked text. You can change these attributes using setMarkedTextAttributes:

5

Setting Text Attributes

NSTextView allows you to change the attributes of its text programmatically through various methods,
most inherited from the superclass, NSText. NSTextView adds its own methods for setting the attributes of
text that the user types, for setting the baseline offset of text as an absolute value, and for adjusting kerning
and use of ligatures. Most of the methods for changing attributes are defined as action methods, and apply
to the selected text or typing attributes for a rich text view, or to all of the text in a plain text view.

An NSTextView maintains a set of typing attributes (font, size, color, and so on) that it applies to newly
entered text, whether typed by the user or pasted as plain text. It automatically sets the typing attributes to
the attributes of the first character immediately preceding the insertion point, of the first character of a
paragraph if the insertion point is at the beginning of a paragraph, or of the first character of a selection. The
user can change the typing attributes by choosing menu commands and using utilities such as the Font
Panel. You can also set the typing attributes programmatically using setTypingAttributes:, though you
should rarely find need to do so unless creating a subclass.

NSText defines the action methods superscript:, subscript:, and unscript:, which raise and lower the
baseline of text by predefined increments. NSTextView gives you much finer control over the baseline
offset of text by defining the raiseBaseline: and lowerBaseline: action methods, which raise or lower text
by one point each time they’re invoked.

Kerning

NSTextView provides convenient action methods for adjusting the spacing between characters. By default,
an NSTextView object uses standard kerning (as provided by the data in a font’s AFM file). A
turnOffKerning: message causes this kerning information to be ignored and the selected text to be
displayed using nominal widths. The loosenKerning: and tightenKerning: methods adjust kerning values
over the selected text and useStandardKerning: reestablishes the default kerning values.

Kerning information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over kerning than the methods of this class provide, you should operate on
the NSTextStorage object directly through methods defined by its superclass, NSMutableAttributedString.
See the NSAttributedString Class Cluster Additions specification for information on setting attributes.

Ligatures

NSTextView’s support for ligatures provides the minimum required ligatures for a given font and script.
The required ligatures for a specific font and script are determined by the mechanisms that generate glyphs
for a specific language. Some scripts may well have no ligatures at all—English text, as an example, doesn’t
require ligatures, although certain ligatures such as “fi” and “fl” are desirable and are used if they’re
available. Other scripts, such as Arabic, demand that certain ligatures must be available even if a
turnOffLigatures: message is sent to the NSTextView. Other scripts and fonts have standard ligatures that
are used if they’re available. The useAllLigatures: method extends ligature support to include all possible
ligatures available in each font for a given script.

6

Classes: NSTextView

Ligature information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over ligature use than the methods of this class provide, you should operate
on the NSTextStorage object directly through methods defined by its superclass,
NSMutableAttributedString. See the NSAttributedString Class Cluster Additions specification for
information on setting attributes.

Using Multiple NSTextViews

A single NSLayoutManager can be assigned any number of NSTextContainers, in whose NSTextViews it
lays out text sequentially. In such a configuration, many of the attributes accessed through the NSTextView
interface are actually shared by all of these text views. Among these attributes are:

• The selection
• The delegate (see “Other Delegate Messages and Notifications” below for details)
• Selectability
• Editability
• Whether they act as a field editor
• Whether they display plain or rich text
• Whether they import graphics
• Whether the ruler is visible
• Whether they use the Font Panel
• Whether they use the ruler

Setting any of these attributes causes all associated NSTextView’s to share the new value.

With multiple NSTextViews, only one is the first responder at any time. NSLayoutManager defines these
methods for determining and appropriately setting the first responder:

– layoutManagerOwnsFirstResponderInWindow:
– firstTextView
– textViewForBeginningOfSelection

See their descriptions in the NSLayoutManager class specification for more information.

Other Delegate Messages and Notifications

An NSTextView object can have a delegate that it informs of certain actions or pending changes to the state
of the text. Several of the delegate methods have already been mentioned; here are all of the messages that
a delegate can receive:

textView:willChangeSelectionFromCharacterRange:toCharacterRange:
textViewDidChangeSelection:

textShouldBeginEditing:
textDidBeginEditing:
textView:shouldChangeTextInRange:replacementString:

7

textDidChange:
textShouldEndEditing:
textDidEndEditing:

textView:doCommandBySelector:

textView:clickedCell:inRect:
textView:doubleClickedCell:inRect:
textView:draggedCell:inRect:event:

Those whose names begin with “text” rather than “textView” are declared by NSText and described in the
NSText class specification. See “Methods Implemented By the Delegate” at the end of this class description
for more details. The delegate can be any object you choose, and one delegate can control multiple
NSTextView objects (or multiple series of connected NSTextView objects).

All NSTextView objects attached to the same NSLayoutManager share the same delegate: Setting the
delegate of one such NSTextView sets the delegate for all the others. Delegate messages pass the id of the
sender as an argument. For multiple NSTextViews attached to the same NSLayoutManager, the id is that
of the notifying text view, the first NSTextView for the shared NSLayoutManager. As the name implies,
this NSTextView is also responsible for posting notifications at the appropriate times.

The notifications posted by NSTextView are:

NSTextViewDidChangeSelectionNotification

NSTextDidBeginEditingNotification
NSTextDidEndEditingNotification
NSTextDidChangeNotification

NSTextViewWillChangeNotifyingTextViewNotification

Of these, the last is crucially import for observers to register for. If a new NSTextView is added at the
beginning of a series of connected NSTextViews, it becomes the new notifying text view. It doesn’t have
access to which objects are observing its group of text objects, so it posts an
NSTextViewWillChangeNotifyingTextViewNotification, which allows all those observers to unregister
themselves from the old notifying text view and reregister themselves with the new one. See the description
for this notification at the end of this specification for more information.

Subclass Responsibilities

NSTextView expects subclasses to abide by certain rules of behavior, and provides many methods to help
subclasses do so. Some of these methods are meant to be overridden to add information and behavior into
the basic infrastructure. Some are meant to be invoked as part of that infrastructure when the subclass
defines its own behavior. The following sections describe the major areas where a subclass has obligations
or where it can expect help in implementing its new features.

8

Classes: NSTextView

Updating State

NSTextView automatically updates the Font Panel and ruler as its selection changes. If you add any new
font or paragraph attributes to your subclass of NSTextView, you’ll need to override the methods that
perform this updating to account for the added information. updateFontPanel makes the Font Panel
display the font of the first character in the selection; you might override it to update the display of an
accessory view in the Font Panel. Similarly, updateRuler causes the ruler to display the paragraph
attributes for the first paragraph in the selection. You can also override this to customize display of items
in the ruler. Be sure to invoke super’s implementation to have the basic updating performed as well.

Custom Import Types

NSTextView supports the dragging of files and colors into its text. If you customize the ability of your
subclass to handle dragging operations for new types of data, you should override the
acceptableDragTypes method to reflect those types. Your implementation should invoke super’s
implementation, add to the array returned any types your subclass also supports, and return that array. If
your subclass’s ability to accept your custom dragging types varies over time, you can override
updateDragTypeRegistration to register or unregister the custom types according to the text view’s
current status. By default this method enables dragging of all acceptable types if the receiver is editable and
a rich text view.

Altering Selection Behavior

Your subclass of NSTextView can customize the way selections are made for the various granularities
described in “Examining and Setting the Selection.” While tracking user changes to the selection, whether
by the mouse or keyboard, an NSTextView repeatedly invokes
selectionRangeForProposedRange:granularity: to determine what range to actually select. When
finished tracking changes, it sends the delegate a
textView:willChangeSelectionFromCharacterRange:toCharacterRange:. message By overriding the
NSTextView method or implementing the delegate method, you can alter the way the selection is extended
or reduced. For example, in a code editor you can provide a delegate that extends a double click on a brace
or parenthesis character to its matching delimiter.

Note: These mechanisms aren’t meant for changing language word definitions (such as what’s selected on
a double click). This detail of selection is handled at a lower (and currently private) level of the text
system.

Preparing to Change Text

If you create a subclass of NSTextView to add new capabilities that will modify the text in response to user
actions, you may need to modify the range selected by the user before actually applying the change. For
example, if the user is making a change to the ruler, the change must apply to whole paragraphs, so the
selection may have to be extended to paragraph boundaries. Three methods calculate the range to which
certain kinds of change should apply. rangeForUserTextChange returns the range to which any change to
characters themselves—insertions and deletions—should apply.

9

rangeForUserCharacterAttributeChange returns the range to which a character attribute change, such
as a new font or color, should apply. Finally, rangeForUserParagraphAttributeChange returns the range
for a paragraph-level change, such as a new or moved tab stop, or indent. These methods all return a range
whose location is NSNotFound if a change isn’t possible; you should check the returned range and abandon
the change in this case.

Notifying About Changes to the Text

In actually making changes to the text, you must ensure that the changes are properly performed and
recorded by different parts of the text system. You do this by bracketing each batch of potential changes
with shouldChangeTextInRange:replacementString: and didChangeText messages. These methods
ensure that the appropriate delegate messages are sent and notifications posted. The first method asks the
delegate for permission to begin editing with a textShouldBeginEditing: message. If the delegate returns
NO, shouldChangeTextInRange:replacementString: in turn returns NO, in which case your subclass
should disallow the change. If the delegate returns YES, the text view posts an
NSTextDidBeginEditingNotification, and shouldChangeTextInRange:replacementString: in turn
returns YES. In this case you can make your changes to the text, and follow up by invoking
didChangeText. This method concludes the changes by posting an NSTextDidChangeNotification, which
results in the delegate receiving a textDidChange: message.

The textShouldBeginEditing: and textDidBeginEditing: messages are sent only once during an editing
session. More precisely, they’re sent upon the first user input since the NSTextView became the first
responder. Thereafter, these messages—and the NSTextDidBeginEditingNotification—are skipped in the
sequence. textView:shouldChangeTextInRange:replacementString:, however, must be invoked for
each individual change.

Smart Insert and Delete

NSTextView defines several methods to aid in “smart” insertion and deletion of text, so that spacing and
punctuation is preserved after a change. Smart insertion and deletion typically applies when the user has
selected whole words or other significant units of text. A smart deletion of a word before a comma, for
example, also deletes the space that would otherwise be left before the comma (though not placing it on the
pasteboard in a Cut operation). A smart insertion of a word between another word and a comma adds a space
between the two words to protect that boundary. NSTextView automatically uses smart insertion and
deletion by default; you can turn this behavior off using setSmartInsertDeleteEnabled:. Doing so causes
only the selected text to be deleted, and inserted text to be added with no addition of white space.

If your subclass of NSTextView defines any methods that insert or delete text, you can make them smart
by taking advantage of two NSTextView methods. smartDeleteRangeForProposedRange: expands a
proposed deletion range to include any whitespace that should also be deleted. If you need to save the text
deleted, though, it’s typically best to save only the text from the original range. For smart insertion,
smartInsertForString:replacingRange:beforeString:afterString: returns by reference two strings that
you can insert before and after a given string to preserve spacing and punctuation. See the method
descriptions for more information.

10

Classes: NSTextView

Adopted Protocols

NSTextInput – conversationIdentifier
– doCommandBySelector:
– getMarkedText:selectedRange:
– hasMarkedText
– insertText:
– setMarkedText:selectedRange:
– unmarkText

Method Types

Creating an instance – initWithFrame:textContainer:
– initWithFrame:

Registering Services information + registerForServices

Accessing related text-system objects
– setTextContainer:
– replaceTextContainer:
– textContainer
– setTextContainerInset:
– textContainerInset
– textContainerOrigin
– invalidateTextContainerOrigin
– layoutManager
– textStorage

Setting graphic attributes – setBackgroundColor:
– backgroundColor
– setDrawsBackground:
– drawsBackground

Controlling display – setNeedsDisplayInRect:avoidAdditionalLayout:
– shouldDrawInsertionPoint
– drawInsertionPointInRect:color:turnedOn:
– setConstrainedFrameSize:

11

Setting behavioral attributes – setEditable:
– isEditable
– setSelectable:
– isSelectable
– setFieldEditor:
– isFieldEditor
– setRichText:
– isRichText
– setImportsGraphics:
– importsGraphics

Using the Font Panel and menu – setUsesFontPanel:
– usesFontPanel

Using the ruler – setUsesRuler:
– usesRuler
– setRulerVisible:
– isRulerVisible

Managing the selection – setSelectedRange:
– selectedRange
– setSelectedRange:affinity:stillSelecting:
– selectionAffinity
– setSelectionGranularity:
– selectionGranularity
– setInsertionPointColor:
– insertionPointColor
– updateInsertionPointStateAndRestartTimer:
– setSelectedTextAttributes:
– selectedTextAttributes
– markedRange
– setMarkedTextAttributes:
– markedTextAttributes

Setting text attributes – setAlignment:range:
– setTypingAttributes:
– typingAttributes
– useStandardKerning:
– lowerBaseline:
– raiseBaseline:
– turnOffKerning:
– loosenKerning:
– tightenKerning:
– useStandardLigatures:
– turnOffLigatures:
– useAllLigatures:

12

Classes: NSTextView

Other action methods – pasteAsPlainText:
– pasteAsRichText:

Methods that subclasses should use or override
– updateFontPanel
– updateRuler
– acceptableDragTypes
– updateDragTypeRegistration
– selectionRangeForProposedRange:granularity:
– rangeForUserCharacterAttributeChange
– rangeForUserParagraphAttributeChange
– rangeForUserTextChange
– shouldChangeTextInRange:replacementString:
– didChangeText
– setSmartInsertDeleteEnabled:
– smartInsertDeleteEnabled
– smartDeleteRangeForProposedRange:
– smartInsertForString:replacingRange:beforeString:afterString:

Changing first responder status – resignFirstResponder
– becomeFirstResponder

Working with the spelling checker – spellCheckerDocumentTag

NSRulerView client methods – rulerView:didMoveMarker:
– rulerView:didRemoveMarker:
– rulerView:didAddMarker:
– rulerView:shouldMoveMarker:
– rulerView:shouldAddMarker:
– rulerView:willMoveMarker:toLocation:
– rulerView:shouldRemoveMarker:
– rulerView:willAddMarker:atLocation:
– rulerView:handleMouseDown:

Assigning a delegate – setDelegate:
– delegate

Class Methods

� registerForServices
+ (void)registerForServices

Registers send and return types for the Services facility. This method is invoked automatically; you should
never need to invoke it directly.

13

Instance Methods

� acceptableDragTypes
– (NSArray *)acceptableDragTypes

Returns the data types that the receiver accepts as the destination view of a dragging operation. These types
are automatically registered as necessary by the NSTextView. Subclasses should override this method as
necessary to add their own types to those returned by NSTextView’s implementation. They must then also
override the appropriate methods of the NSDraggingDestination protocol to support import of those types.
See that protocol’s specification for more information.

See also: – updateTextViewDragTypeRegistration

� backgroundColor
– (NSColor *)backgroundColor

Returns the receiver’s background color.

See also: – drawsBackground, –setBackgroundColor:

� becomeFirstResponder
– (BOOL)becomeFirstResponder

Informs the receiver that it’s becoming the first responder. If the previous first responder was not an
NSTextView on the same NSLayoutManager as the receiving NSTextView, this method draws the
selection and updates the insertion point if necessary. Returns YES.

Use NSWindow’s makeFirstResponder:, not this method, to make an NSTextView the first responder.
Never invoke this method directly.

See also: – resignFirstResponder

� delegate
– (id)delegate

Returns the delegate used by the receiver (and by all other NSTextViews sharing the receiver’s
NSLayoutManager), or nil if there is none.

See also: – setDelegate:

14

Classes: NSTextView

� didChangeText
– (void)didChangeText

Invoked automatically at the end of a series of changes, this method posts an
NSTextDidChangeNotification to the default notification center, which also results in the delegate
receiving an NSText-delegate textDidChange: message. Subclasses implementing methods that change
their text should invoke this method at the end of those methods. See the class description for more
information.

See also: – shouldChangeTextInRange:replacementString:

� drawInsertionPointInRect:color:turnedOn:
– (void)drawInsertionPointInRect:(NSRect)aRect

color:(NSColor *)aColor
turnedOn:(BOOL)flag

If flag is YES, draws the insertion point in aRect using aColor. If flag is NO, this method erases the
insertion point. The PostScript focus must be locked on the receiver when this method is invoked.

See also: – insertionPointColor, –shouldDrawInsertionPoint, –backgroundColor,
– lockFocus (NSView)

� drawsBackground
– (BOOL)drawsBackground

Returns YES if the receiver draws its background, NO if it doesn’t.

See also: – backgroundColor, –setDrawsBackground:

� encodeWithCoder:
@protocol NSCoding
– (void)encodeWithCoder:(NSCoder *)encoder

Raises an NSInternalInconsistencyException. NSTextView doesn’t support coding.

� importsGraphics
– (BOOL)importsGraphics

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to import files by
dragging, NO if they don’t.

15

A text view that accepts dragged files is also a rich text view.

See also: – isRichText, – textStorage, + attributedStringWithAttachment: (NSAttributedString),
– insertAttributedString:atIndex: (NSMutableAttributedString), –setImportsGraphics:

� initWithCoder:
@protocol NSCoding
– (id)initWithCoder:(NSCoder *)decoder

Raises an NSInternalInconsistencyException. NSTextView doesn’t support coding.

� initWithFrame:
– (id)initWithFrame:(NSRect)frameRect

Initializes a newly allocated NSTextView object with frameRect as its frame rectangle. This method creates
the entire collection of objects associated with an NSTextView—its NSTextContainer, NSLayoutManager,
and NSTextStorage—and invokes initWithFrame:textContainer:. Returns self.

This method creates the text web in such a manner that the NSTextView object is the principal owner of
the objects in the web. See “The OPENSTEP Text System” for a detailed description of ownership issues.

� initWithFrame:textContainer:
– (id)initWithFrame:(NSRect)frameRect textContainer:(NSTextContainer *)aTextContainer

Initializes a newly allocated NSTextView object with frameRect as its frame rectangle and aTextContainer
as its text container. This method is the designated initializer for NSTextView objects. Returns self.

Unlike initWithFrame:, which builds up an entire group of text-handling objects, you use this method after
you’ve created the other components of the text handling system—an NSTextStorage object, an
NSLayoutManager object, and an NSTextContainer object. Assembling the components in this fashion
means that the NSTextStorage, not the NSTextView, is the principal owner of the component objects. See
“The OPENSTEP Text System” for a detailed description of ownership issues.

See also: – initWithFrame:

16

Classes: NSTextView

� insertText:
– (void)insertText:(NSString *)aString

Inserts aString into the receiver’s text at the insertion point if there is one, otherwise replacing the selection.
The inserted text is assigned the current typing attributes, as explained in the class description under
“Setting Text Attributes.”

This method is the means by which typed text enters an NSTextView. See the NSInputManager class and
NSTextInput protocol specifications for more information.

See also: – typingAttributes

� insertionPointColor
– (NSColor *)insertionPointColor

Returns the color used to draw the insertion point.

See also: – drawInsertionPointInRect:color:turnedOn:, – shouldDrawInsertionPoint,
– setInsertionPointColor:

� invalidateTextContainerOrigin
– (NSColor *)invalidateTextContainerOrigin

Informs the receiver that it needs to recalculate the origin of its text container, usually because it’s been
resized or the contents of the text container have changed. This method is invoked automatically; you
should never need to invoke it directly.

See also: – textContainer, – textContainerOrigin

� isEditable
– (BOOL)isEditable

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to edit text, NO if
they don’t. If a text view is editable, it’s also selectable.

See also: – isSelectable, – setEditable:

17

� isFieldEditor
– (BOOL)isFieldEditor

Returns YES if the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and
Return (Enter) as cues to end editing, and possibly to change the first responder; no if they accept them as
text input. See the NSWindow class specification for more information on field editors. By default,
NSTextViews don’t behave as field editors.

See also: – setFieldEditor:

� isRichText
– (BOOL)isRichText

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to apply attributes
to specific ranges of the text, NO if they don’t.

See also: – importsGraphics, – textStorage, – setRichText:

� isRulerVisible
– (BOOL)isRulerVisible

Returns YES if the scroll view enclosing the text views sharing the receiver’s NSLayoutManager shows its
ruler, NO otherwise.

See also: – usesRuler, –setRulerVisible:, – toggleRuler: (NSText)

� isSelectable
– (BOOL)isSelectable

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to select text, NO if
they don’t.

See also: – isEditable, – setSelectable:

18

Classes: NSTextView

� layoutManager
– (NSLayoutManager *)layoutManager

Returns the NSLayoutManager that lays out text for the receiver’s text container, or nil if there’s no such
object (which is the case when a text view isn’t linked into a group of text objects).

See also: – textContainer, –setLayoutManager: (NSTextContainer),
– replaceLayoutManager: (NSTextContainer)

� loosenKerning:
– (void)loosenKerning:(id)sender

This action method increases the space between glyphs in the receiver’s selection, or in all text if the
receiver is a plain text view. Kerning values are determined by the point size of the fonts in the selection.

See also: – tightenKerning, – turnOffKerning:, –useStandardKerning:

� lowerBaseline:
– (void)lowerBaseline:(id)sender

This action method lowers the baseline offset of selected text by one point, or of all text if the receiver is a
plain text view. As such, this method defines a more primitive operation than subscripting.

See also: – raiseBaseline:, –subscript: (NSText), –unscript: (NSText)

� markedRange
– (NSRange)markedRange

Returns the range of marked text. If there’s no marked text, returns a range whose location is NSNotFound.

See also: – setMarkedTextAttributes:

� markedTextAttributes
– (NSDictionary *)markedTextAttributes

Returns the attributes used to draw marked text.

See also: – setMarkedTextAttributes:

19

� pasteAsPlainText:
– (void)pasteAsPlainText:(id)sender

This action method inserts the contents of the pasteboard into the receiver’s text as plain text, in the manner
of insertText:.

See also: – pasteAsRichText:, – insertText:

� pasteAsRichText:
– (void)pasteAsRichText:(id)sender

This action method inserts the contents of the pasteboard into the receiver’s text as rich text, maintaining
its attributes. The text is inserted at the insertion point if there is one, otherwise replacing the selection.

See also: – pasteAsRichText:, – insertText:

� raiseBaseline:
– (void)raiseBaseline:(id)sender

This action method raises the baseline offset of selected text by one point, or of all text if the receiver is a
plain text view. As such, this method defines a more primitive operation than superscripting.

See also: – lowerBaseline:, – superscript: (NSText), –unscript: (NSText)

� rangeForUserCharacterAttributeChange
– (NSRange)rangeForUserCharacterAttributeChange

Returns the range of characters affected by an action method that changes character (not paragraph)
attributes, such as the NSText action method changeFont:. For rich text this is typically the range of the
selection. For plain text this is the entire contents of the receiver.

If the receiver isn’t editable or doesn’t use the Font Panel, the range returned has a location of NSNotFound.

See also: – rangeForUserParagraphAttributeChange, –rangeForUserTextChange, – isEditable,
– usesFontPanel

20

Classes: NSTextView

� rangeForUserParagraphAttributeChange
– (NSRange)rangeForUserParagraphAttributeChange

Returns the range of characters affected by a method that changes paragraph (not character) attributes, such
as the NSText action method alignLeft:. For rich text this is typically calculated by extending the range of
the selection to paragraph boundaries. For plain text this is the entire contents of the receiver.

If the receiver isn’t editable the range returned has a location of NSNotFound.

See also: – rangeForUserParagraphAttributeChange, –rangeForUserTextChange, – isEditable,
– usesRuler

� rangeForUserTextChange
– (NSRange)rangeForUserTextChange

Returns the range of characters affected by a method that changes characters (as opposed to attributes), such
as insertText:. This is typically the range of the selection.

If the receiver isn’t editable or doesn’t use a ruler, the range returned has a location of NSNotFound.

See also: – rangeForUserParagraphAttributeChange, –rangeForUserTextChange, – isEditable,
– usesRuler

� replaceTextContainer:
– (void)replaceTextContainer:(NSTextContainer *)aTextContainer

Replaces the NSTextContainer for the group of text-system objects containing the receiver with
aTextContainer, keeping the association between the receiver and its layout manager intact, unlike
setTextContainer:. Raises NSInvalidArgumentException if aTextContainer is nil.

See also: – initWithFrame:textContainer:, –setTextContainer:

� resignFirstResponder
– (BOOL)resignFirstResponder

Notifies the receiver that it’s been asked to relinquish its status as first responder in its NSWindow. If the
object that will become the new first responder is an NSTextView attached to the same NSLayoutManager
as the receiver, this method returns YES with no further action. Otherwise, this method sends a
textShouldEndEditing: message to its delegate (if any). If the delegate returns NO, this method returns
NO. If the delegate returns YES this method hides the selection highlighting and posts an
NSTextDidEndEditingNotification to the default notification center.

21

Use NSWindow’s makeFirstResponder:, not this method, to make an NSTextView the first responder.
Never invoke this method directly.

See also: – becomeFirstResponder

� rulerView:didAddMarker:
– (void)rulerView:(NSRulerView *)aRulerView didAddMarker:(NSRulerMarker *)aMarker

This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection
to accommodate a new NSTextTab represented by aMarker. It then records the change by invoking
didChangeText.

NSTextView checks for permission to make the change in its rulerView:shouldAddMarker: method,
which invokes shouldChangeTextInRange:replacementString: to send out the proper request and
notifications, and only invokes this method if permission is granted.

See also: – representedObject (NSRulerMarker), –rulerView:didMoveMarker:,
– rulerView:didRemoveMarker:

� rulerView:didMoveMarker:
– (void)rulerView:(NSRulerView *)aRulerView didMoveMarker:(NSRulerMarker *)aMarker

This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection
to record the new location of the NSTextTab represented by aMarker. It then records the change by
invoking didChangeText.

NSTextView checks for permission to make the change in its rulerView:shouldMoveMarker: method,
which invokes shouldChangeTextInRange:replacementString: to send out the proper request and
notifications, and only invokes this method if permission is granted.

See also: – representedObject (NSRulerMarker), –rulerView:didAddMarker:,
– rulerView:didRemoveMarker:

� rulerView:didRemoveMarker:
– (void)rulerView:(NSRulerView *)aRulerView didRemoveMarker:(NSRulerMarker *)aMarker

This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection—
if possible—by removing the NSTextTab represented by aMarker. It then records the change by invoking
didChangeText.

22

Classes: NSTextView

NSTextView checks for permission to move or remove a tab stop in its rulerView:shouldMoveMarker:
method, which invokes shouldChangeTextInRange:replacementString: to send out the proper request
and notifications, and only invokes this method if permission is granted.

See also: – representedObject (NSRulerMarker), –shouldChangeTextInRange:replacementString:,
– rulerView:didAddMarker:, –rulerView:didMoveMarker:

� rulerView:handleMouseDown:
– (void)rulerView:(NSRulerView *)aRulerView handleMouseDown:(NSEvent *)theEvent

This NSRulerView client method adds a left tab marker to the ruler, but a subclass can override this method
to provide other behavior, such as creating guidelines. This method is invoked once with theEvent when the
user first clicks in the aRulerView’s ruler area, as described in the NSRulerView class specification.

� rulerView:shouldAddMarker:
– (BOOL)rulerView:(NSRulerView *)aRulerView shouldAddMarker:(NSRulerMarker *)aMarker

This NSRulerView client method controls whether a new tab stop can be added. The receiver checks for
permission to make the change by invoking shouldChangeTextInRange:replacementString: and
returning the return value of that message. If the change is allowed, the receiver is then sent a
rulerView:didAddMarker: message.

See also: – rulerView:shouldMoveMarker:, –rulerView:shouldRemoveMarker:

� rulerView:shouldMoveMarker:
– (BOOL)rulerView:(NSRulerView *)aRulerView shouldMoveMarker:(NSRulerMarker *)aMarker

This NSRulerView client method controls whether an existing tab stop can be moved. The receiver checks
for permission to make the change by invoking shouldChangeTextInRange:replacementString: and
returning the return value of that message. If the change is allowed, the receiver is then sent a
rulerView:didMoveMarker: message.

See also: – rulerView:shouldAddMarker:, –rulerView:shouldRemoveMarker:

� rulerView:shouldRemoveMarker:
– (BOOL)rulerView:(NSRulerView *)aRulerView

shouldRemoveMarker:(NSRulerMarker *)aMarker

This NSRulerView client method controls whether an existing tab stop can be removed. Returns YES if
aMarker represents an NSTextTab, NO otherwise. Because this method can be invoked repeatedly as the

23

user drags a ruler marker, it returns that value immediately. If the change is allows and the user actually
removes the marker, the receiver is also sent a rulerView:didRemoveMarker: message.

See also: – rulerView:shouldAddMarker:, –rulerView:shouldMoveMarker:

� rulerView:willAddMarker:atLocation:
– (float)rulerView:(NSRulerView *)aRulerView

willAddMarker:(NSRulerMarker *)aMarker
atLocation:(float)location

This NSRulerView client method ensures that the proposed location of aMarker lies within the appropriate
bounds for the receiver’s text container, returning the modified location.

See also: – rulerView:didAddMarker:

� rulerView:willMoveMarker:toLocation:
– (float)rulerView:(NSRulerView *)aRulerView

willMoveMarker:(NSRulerMarker *)aMarker
toLocation:(float)location

This NSRulerView client method ensures that the proposed location of aMarker lies within the appropriate
bounds for the receiver’s text container, returning the modified location.

See also: – rulerView:didMoveMarker:

� selectedRange
– (NSRange)selectedRange

Returns the range of characters selected in the receiver’s layout manager.

See also: – selectedTextAttributes, – setSelectedRange:affinity:stillSelecting:,
– selectionRangeForProposedRange:granularity:, – setSelectedRange:

� selectedTextAttributes
– (NSDictionary *)selectedTextAttributes

Returns the attributes used to indicate the selection. This is typically just the text background color.

See also: – selectedRange, – setSelectedTextAttributes:

24

Classes: NSTextView

� selectionAffinity
– (NSSelectionAffinity)selectionAffinity

Returns the preferred direction of selection, either NSSelectionAffinityUpstream or
NSSelectionAffinityDownstream. Selection affinity determines whether, for example, the insertion point
appears after the last character on a line or before the first character on the following line in cases where
text wraps across line boundaries.

See also: – setSelectedRange:affinity:stillSelecting:

� selectionGranularity
– (NSSelectionGranularity)selectionGranularity

Returns the current selection granularity, used during mouse tracking to modify the range of the selection.
This is one of:

NSSelectByCharacter
NSSelectByWord
NSSelectByParagraph

See also: – selectionRangeForProposedRange:granularity:, – setSelectionGranularity:

� selectionRangeForProposedRange:granularity:
– (NSRange)selectionRangeForProposedRange:(NSRange)proposedSelRange

granularity:(NSSelectionGranularity)granularity

Adjusts the proposedSelRange if necessary, based on granularity, which is one of:

NSSelectByCharacter
NSSelectByWord
NSSelectByParagraph

Returns the adjusted range. This method is invoked repeatedly during mouse tracking to modify the range
of the selection. Override this method to specialize selection behavior.

See also: – setSelectionGranularity:

� setAlignment:range:
– (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)aRange

Sets the alignment of the paragraphs containing characters in aRange to alignment, which is one of:

25

NSLeftTextAlignment
NSRightTextAlignment
NSCenterTextAlignment
NSJustifiedTextAlignment
NSNaturalTextAlignment

See also: – rangeForUserParagraphAttributeChange

� setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the receiver’s background color to aColor.

See also: – setDrawsBackground:, –backgroundColor

� setConstrainedFrameSize:
– (void)setConstrainedFrameSize:(NSSize)desiredSize

Attempts to set the frame size for the NSTextView to desiredSize, constrained by the receiver’s existing
minimum and maximum sizes and by whether resizing is permitted.

See also: – minSize (NSText), –maxSize (NSText), –isHorizontallyResizable (NSText),
– isVerticallyResizable (NSText)

� setDelegate:
– (void)setDelegate:(id)anObject

Sets the delegate for all NSTextViews sharing the receiver’s NSLayoutManager to anObject, without
retaining it.

See also: – delegate

� setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Controls whether the receiver draws its background. If flag is YES, the receiver fills its background with
the background color; if flag is NO, it doesn’t.

See also: – setBackgroundColor:, –drawsBackground

26

Classes: NSTextView

� setEditable:
– (void)setEditable:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to edit text. If flag
is YES, they allow the user to edit text and attributes; if flag is NO, they don’t. If n NSTextView is made
editable, it’s also made selectable. NSTextViews are by default editable.

See also: – setSelectable:, – isEditable

� setFieldEditor:
– (void)setFieldEditor:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and
Return (Enter) as cues to end editing, and possibly to change the first responder. If flag is YES, they do; if
flag is NO, they don’t, instead accepting these characters as text input. See the NSWindow class
specification for more information on field editors. By default, NSTextViews don’t behave as field editors.

See also: – isFieldEditor

� setImportsGraphics:
– (void)setImportsGraphics:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to import files by
dragging. If flag is YES, they do; if flag is NO, they don’t. If an NSTextView is set to accept dragged files,
it’s also set for rich text. By default, NSTextViews don’t accept dragged files.

See also: – textStorage, –setRichText:, – importsGraphics

� setInsertionPointColor:
– (void)setInsertionPointColor:(NSColor *)aColor

Sets the color of the insertion point to aColor.

See also: – drawInsertionPointInRect:color:turnedOn:, – shouldDrawInsertionPoint,
– insertionPointColor

27

� setMarkedTextAttributes:
– (void)setMarkedTextAttributes:(NSDictionary *)attributes

Sets the attributes used to draw marked text to attributes. Text color, background color, and underline are
the only supported attributes for marked text.

See also: – markedTextAttributes, –markedRange

� setNeedsDisplayInRect:avoidAdditionalLayout:
– (void)setNeedsDisplayInRect:(NSRect)aRect avoidAdditionalLayout:(BOOL)flag

Marks the receiver as requiring display within aRect. If flag is YES, the receiver won’t perform any layout
that might be required to complete the display, even if this means that portions of the NSTextView remain
empty. If flag is NO, the receiver performs at least as much layout as needed to display aRect.

NSTextView overrides the NSView setNeedsDisplayInRect: method such that it invokes this method with
NO as flag.

� setRichText:
– (void)setRichText:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to apply attributes
to specific ranges of the text. If flag is YES they do; if flag is NO they don’t. If flag is NO, they’re also set
not to accept dragged files. By default, NSTextViews let the user apply multiple attributes to text, but don’t
accept dragged files.

See also: – textStorage, – isRichText, –setImportsGraphics:

� setRulerVisible:
– (void)setRulerVisible:(BOOL)flag

Controls whether the scroll view enclosing text views sharing the receiver’s NSLayoutManager displays
the ruler. If flag is YES it shows the ruler; if flag is NO it hides the ruler. By default, the ruler is not visible.

See also: – setUsesRuler:, – isRulerVisible, – toggleRuler: (NSText)

28

Classes: NSTextView

� setSelectable:
– (void)setSelectable:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to select text. If
flag is YES, they do; if flag is NO, they don’t. If an NSTextView is made not selectable, it’s also made not
editable. NSTextViews are by default both editable and selectable.

See also: – setEditable:, – isSelectable

� setSelectedRange:
– (void)setSelectedRange:(NSRange)charRange

Sets the selection to the characters in charRange, resets the selection granularity to NSSelectByCharacter,
posts an NSTextViewDidChangeSelectionNotification to the default notification center. Also removes the
marking from marked text if the new selection is greater than the marked region.

charRange must begin and end on glyph boundaries and not split base glyphs and their non-spacing marks.

See also: – setSelectedRange:affinity:stillSelecting:, –selectionAffinity, – selectionGranularity,
– selectedRange

� setSelectedRange:affinity:stillSelecting:
– (void)setSelectedRange:(NSRange)charRange

affinity:(NSSelectionAffinity)affinity
stillSelecting:(BOOL)flag

Sets the selection to the characters in charRange, using affinity if needed to determine how to display the
selection or insertion point (see the description for selectionAffinity for more information). flag indicates
whether this method is being invoked during mouse-dragging or after the user releases the mouse. If flag is
YES the receiver doesn’t send notifications or remove the marking from its marked text; if flag is NO it
does as appropriate. This method also resets the selection granularity to NSSelectByCharacter.

charRange must begin and end on glyph boundaries and not split base glyphs and their non-spacing marks.

See also: – setSelectedRange:, – selectionAffinity, –selectionGranularity, –setSelectedRange:

� setSelectedTextAttributes:
– (void)setSelectedTextAttributes:(NSDictionary *)attributes

Sets the attributes used to indicate the selection to attributes. Text color, background color, and underline
are the only supported attributes for selected text.

See also: – selectedRange, –selectedTextAttributes

29

� setSelectionGranularity:
– (void)setSelectionGranularity:(NSSelectionGranularity)granularity

Sets the selection granularity for subsequent extension of a selection to granularity, which may be one of:

NSSelectByCharacter
NSSelectByWord
NSSelectByParagraph

Selection granularity is used to determine how the selection is modified when the user Shift-clicks or drags
the mouse after a double- or triple-click. For example, if the user selects a word by double-clicking, the
selection granularity is set to NSSelectByWord. Subsequent shift-clicks then extend the selection by words.

Selection granularity is reset to NSSelectByCharacter whenever the selection is set. You should always set
the selection granularity after setting the selection.

See also: – selectionGranularity, – setSelectedRange:

� setSmartInsertDeleteEnabled:
– (void)setSmartInsertDeleteEnabled:(BOOL)flag

Controls whether the receiver inserts or deletes space around selected words so as to preserve proper
spacing and punctuation. If flag is YES it does; if flag is NO it inserts and deletes exactly what’s selected.

See also: – smartInsertForString:replacingRange:beforeString:afterString:,
– smartDeleteRangeForProposedRange:, –smartInsertDeleteEnabled

� setTextContainer:
– (void)setTextContainer:(NSTextContainer *)aTextContainer

Sets the receiver’s text container to aTextContainer. The receiver then uses the layout manager and text
storage of aTextContainer. This method is invoked automatically when you create an NSTextView; you
should never invoke it directly, but might want to override it. To change the text view for an established
group of text-system objects, send setTextView: to the text container. To replace the text container for a
text view and maintain the view’s association with the existing layout manager and text storage, use
replaceTextContainer:.

See also: – textContainer

30

Classes: NSTextView

� setTextContainerInset:
– (void)setTextContainerInset:(NSSize)inset

Sets the empty space the NSTextView leaves around its associated text container to inset.

See also: – textContainerOrigin, – invalidateTextContainerOrigin, – textContainerInset

� setTypingAttributes:
– (void)setTypingAttributes:(NSDictionary *)attributes

Sets the receiver’s typing attributes to attributes. Typing attributes are reset automatically whenever the
selection changes. If you add any user actions that change text attributes, you should use this method to
apply those attributes to a zero-length selection.

See also: – typingAttributes

� setUsesFontPanel:
– (void)setUsesFontPanel:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager use the Font Panel and Font
menu. If flag is YES, they respond to messages from the Font Panel and from the Font menu, and update
the Font Panel with the selection font whenever it changes. If flag is NO they disallow character attribute
changes. By default, NSTextView objects use the Font Panel and menu.

See also: – rangeForUserCharacterAttributeChange, –usesFontPanel

� setUsesRuler:
– (void)setUsesRuler:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager use an NSRulerView and
respond to Format menu commands. If flag is YES, they respond to NSRulerView client messages and to
paragraph-related menu actions, and update the ruler (when visible) as the selection changes with its
paragraph and tab attributes. If flag is NO, the ruler is hidden and the text views disallow paragraph attribute
changes. By default, NSTextView objects use the ruler.

See also: – setRulerVisible:, –rangeForUserParagraphAttributeChange, –usesRuler

31

� shouldChangeTextInRange:replacementString:
– (BOOL)shouldChangeTextInRange:(NSRange)affectedCharRange

replacementString:(NSString *)replacementString

Initiates a series of delegate messages (and general notifications) to determine whether modifications can
be made to the receiver’s text. If characters in the text string are being changed, replacementString contains
the characters that will replace the characters in affectedCharRange. If only text attributes are being
changed, replacementString is nil. This method checks with the delegate as needed using
textShouldBeginEditing: and textView:shouldChangeTextInRange:replacementString:, returning
YES to allow the change, and NO to prohibit it.

This method must be invoked at the start of any sequence of user-initiated editing changes. If your subclass
of NSTextView implements new methods that modify the text, make sure to invoke this method to
determine whether the change should be made. If the change is allowed, complete the change by invoking
the didChangeText method. See “Notifying About Changes to the Text” in the class description for more
information. If you can’t determine the affected range or replacement string before beginning changes, pass
(NSNotFound, 0) and nil for these values.

See also: – isEditable

� shouldDrawInsertionPoint
– (BOOL)shouldDrawInsertionPoint

Returns YES if the receiver should draw its insertion point, NO if the insertion point can’t or shouldn’t be
drawn (for example, if the receiver’s window isn’t key).

See also: – drawInsertionPointInRect:color:turnedOn:

� smartDeleteRangeForProposedRange:
– (NSRange)smartDeleteRangeForProposedRange:(NSRange)proposedCharRange

Given proposedCharRange, returns an extended range that includes adjacent whitespace that should be
deleted along with the proposed range in order to preserve proper spacing and punctuation of the text
surrounding the deletion.

NSTextView uses this method as necessary; you can also use it in implementing your own methods that
delete text, typically when the selection granularity is NSSelectByWord. To do so, invoke this method with
the proposed range to delete, then actually delete the range returned. If placing text on the pasteboard,
however, you should put only the characters from the proposed range onto the pasteboard.

See also: – smartInsertForString:replacingRange:beforeString:afterString:, –selectionGranularity,
– smartInsertDeleteEnabled

32

Classes: NSTextView

� smartInsertDeleteEnabled
– (BOOL)smartInsertDeleteEnabled

Returns YES if the receiver inserts or deletes space around selected words so as to preserve proper spacing
and punctuation, NO if it inserts and deletes exactly what’s selected.

See also: – smartInsertForString:replacingRange:beforeString:afterString:,
– smartDeleteRangeForProposedRange:, –setSmartInsertDeleteEnabled:

� smartInsertForString:replacingRange:beforeString:afterString:
– (void)smartInsertForString:(NSString *) aString

replacingRange:(NSRange)charRange
beforeString:(NSString **) beforeString
afterString:(NSString **) afterString

Determines whether whitespace needs to be added around aString to preserve proper spacing and
punctuation when it’s inserted into the receiver’s text over charRange. Returns by reference in beforeString
and afterString any whitespace that should be added, unless either or both is NULL. Both are returned as
nil if aString is nil or if smart insertion and deletion is disabled.

NSTextView uses this method as necessary; you can also use it in implementing your own methods that
insert text. To do so, invoke this method with the proper arguments, then insert beforeString, aString, and
afterString in order over charRange.

See also: – smartDeleteRangeForProposedRange:, –smartInsertDeleteEnabled

� spellCheckerDocumentTag
– (int)spellCheckerDocumentTag

Returns a tag identifying the NSTextView text as a document for the spell checker server. The document
tag is obtained by sending a uniqueSpellDocumentTag message to the spell server the first time this
method is invoked for a particular group of NSTextViews. See the NSSpellChecking and NSSpellServer
class specifications for more information on how this tag is used.

� textContainer
– (NSTextContainer *)textContainer

Returns the receiver’s text container.

See also: – setTextContainer:

33

� textContainerInset
– (NSSize)textContainerInset

Returns the empty space the NSTextView leaves around its text container.

See also: – textContainerOrigin, – invalidateTextContainerOrigin, – setTextContainerInset:

� textContainerOrigin
– (NSPoint)textContainerOrigin

Returns the origin of the receiver’s text container, which is calculated from the receiver’s bounds rectangle,
container inset, and the container’s used rect.

See also: – invalidateTextContainerOrigin, – textContainerInset,
– usedRectForTextContainer: (NSLayoutManager)

� textStorage
– (NSTextStorage *)textStorage

Returns the receiver’s text storage object.

� tightenKerning:
– (void)tightenKerning:(id)sender

This action method decreases the space between glyphs in the receiver’s selection, or for all glyphs if the
receiver is a plain text view. Kerning values are determined by the point size of the fonts in the selection.

See also: – loosenKerning:, –useStandardKerning:, – turnOffKerning:

� turnOffKerning:
– (void)turnOffKerning:(id)sender

This action method causes the receiver to use nominal glyph spacing for the glyphs in its selection, or for
all glyphs if the receiver is a plain text view.

See also: – useStandardKerning:, – loosenKerning:, – tightenKerning:, – isRichText

34

Classes: NSTextView

� turnOffLigatures:
– (void)turnOffLigatures:(id)sender

This action method causes the receiver to use only required ligatures when setting text, for the glyphs in the
selection if the receiver is a rich text view, or for all glyphs if it’s a plain text view.

See also: – useAllLigatures:, – isRichText, –useStandardLigatures:

� typingAttributes
– (NSDictionary *)typingAttributes

Returns the current typing attributes.

See also: – setTypingAttributes:

� updateDragTypeRegistration
– (void)updateDragTypeRegistration

If the receiver is editable and is a rich text view, causes all NSTextViews associated with the receiver’s
NSLayoutManager to register their acceptable drag types. If the NSTextView isn’t editable or isn’t rich
text, causes those NSTextViews to unregister their dragged types.

Subclasses can override this method to change the conditions for registering and unregistering drag types,
whether as a group or individually based on the current state of the NSTextView. They can then invoke this
method when that state changes to perform that reregistration.

See also: – acceptableDragTypes, –registerForDraggedTypes: (NSView),
– unregisterDraggedTypes (NSView), –isEditable, – importsGraphics, – isRichText

� updateFontPanel
– (void)updateFontPanel

Updates the Font Panel to contain the font attributes of the selection. Does nothing if the receiver doesn’t
use the Font Panel. You should never need to invoke this method directly, but you can override it if needed
to handle additional font attributes.

See also: – usesFontPanel

35

� updateInsertionPointStateAndRestartTimer:
– (void)updateInsertionPointStateAndRestartTimer:(BOOL)flag

Updates the insertion point’s location and, if flag is YES, restarts the blinking cursor timer. This method is
invoked automatically whenever the insertion point needs to be moved; you should never need to invoke it
directly, but you can override it to add different insertion point behavior.

See also: – shouldDrawInsertionPoint, –drawInsertionPointInRect:color:turnedOn:

� updateRuler
– (void)updateRuler

Updates the NSRulerView in the receiver’s enclosing scroll view to reflect the selection’s paragraph and
marker attributes. Does nothing if the ruler isn’t visible or if the receiver doesn’t use the ruler. You should
never need to invoke this method directly, but you can override this method if needed to handle additional
ruler attributes.

See also: – usesRuler

� useAllLigatures:
– (void)useAllLigatures:(id)sender

This action method causes the receiver to use all ligatures available for the fonts and languages used when
setting text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain
text view.

See also: – turnOffLigatures:, –useStandardLigatures:

� usesFontPanel
– (BOOL)usesFontPanel

Returns YES if the text views sharing the receiver’s NSLayoutManager use the Font Panel, NO otherwise.
See setUsesFontPanel: and rangeForUserCharacterAttributeChange for the effect this has on an
NSTextView’s behavior.

36

Classes: NSTextView

� usesRuler
– (BOOL)usesRuler

Returns YES if the text views sharing the receiver’s NSLayoutManager use a ruler view, NO otherwise.
See setUsesRuler: and rangeForUserParagraphAttributeChange for the effect this has on an
NSTextView’s behavior

See also: – setUsesRuler:

� useStandardKerning:
– (void)useStandardKerning:(id)sender

This action method causes the receiver to use pair kerning data for the glyphs in its selection, or for all
glyphs if the receiver is a plain text view. This data is taken from a font’s AFM file

See also: – isRichText, – loosenKerning:, – tightenKerning:, – turnOffKerning:

� useStandardLigatures:
– (void)useStandardLigatures:(id)sender

This action method causes the receiver to use the standard ligatures available for the fonts and languages
used when setting text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if
it’s a plain text view.

See also: – turnOffLigatures:, –useAllLigatures:

Methods Implemented By the Delegate

NSTextView communicates with its delegate through methods declared both by NSTextView and by its
superclass, NSText. See the NSText class specification for those other delegate methods.

� textView:clickedOnCell:inRect:
– (void)textView:(NSTextView *)aTextView

clickedOnCell:(id <NSTextAttachmentCell>)attachmentCell
inRect:(NSRect)cellFrame

Invoked after the user clicks on attachmentCell within cellFrame in an NSTextView and the cell wants to
track the mouse. The delegate can use this message as its cue to perform an action or select the attachment
cell’s character. aTextView is the first NSTextView in a series shared by an NSLayoutManager, not
necessarily the one that draws attachmentCell.

37

The delegate may subsequently receive a textView:doubleClickedOnCell: message if the user continues
to perform a double click.

See also: – wantsToTrackMouse (NSTextAttachmentCell)

� textView:doCommandBySelector:
– (BOOL)textView:(NSTextView *)aTextView

doCommandBySelector:(SEL)aSelector

Sent from NSTextView’s doCommandBySelector:, this method allows the delegate to perform the
command for the text view. If the delegate returns YES, the text view doesn’t perform aSelector; if the
delegate returns NO, the text view attempts to perform it. aTextView is the first NSTextView in a series
shared by an NSLayoutManager.

� textView:doubleClickedOnCell:inRect:
– (void)textView:(NSTextView *)aTextView

doubleClickedOnCell:(id <NSTextAttachmentCell>)attachmentCell
inRect:(NSRect)cellFrame

Invoked when the user double-clicks on attachmentCell within cellFrame in an NSTextView and the cell
want to track the mouse. The delegate can use this message as its cue to perform an action, such as opening
the file represented by the attachment. aTextView is the first NSTextView in a series shared by an
NSLayoutManager, not necessarily the one that draws attachmentCell.

See also: – wantsToTrackMouse (NSTextAttachmentCell)

� textView:draggedCell:inRect:event:
– (void)textView:(NSTextView *)aTextView

draggedCell:(id <NSTextAttachmentCell>)attachmentCell
inRect:(NSRect)aRect
event:(NSEvent *)theEvent

Invoked when the user attempts to drag attachmentCell from aRect within an NSTextView and the cell
wants to track the mouse. theEvent is the mouse-down event that preceded the mouse-dragged event. The
delegate can use this message as its cue to initiate a dragging operation.

See also: – wantsToTrackMouse (NSTextAttachmentCell),
– dragImage:at:offset:event:pasteboard:source:slideBack: (NSView),
– dragFile:fromRect:slideBack:event: (NSView)

38

Classes: NSTextView

� textView:shouldChangeTextInRange:replacementString:
– (BOOL)textView:(NSTextView *)aTextView

shouldChangeTextInRange:(NSRange)affectedCharRange
replacementString:(NSString *)replacementString

Invoked when an NSTextView needs to determine if text in the range affectedCharRange should be
changed. If characters in the text string are being changed, replacementString contains the characters that
will replace the characters in affectedCharRange. If only text attributes are being changed,
replacementString is nil. The delegate can return YES to allow the replacement, or NO to reject the change.

aTextView is the first NSTextView in a series shared by an NSLayoutManager.

� textView:willChangeSelectionFromCharacterRange:toCharacterRange:
– (NSRange)textView:(NSTextView *)aTextView

willChangeSelectionFromCharacterRange:(NSRange)oldSelectedCharRange
toCharacterRange:(NSRange)newSelectedCharRange

Invoked before an NSTextView finishes changing the selection—that is, when the last argument to a
setSelectedRange:affinity:stillSelecting: message is NO. oldSelectedCharRange is the original range of
the selection. newSelectedCharRange is the proposed character range for the new selection. The delegate
can return and adjusted range or return newSelectedCharRange unmodified.

aTextView is the first NSTextView in a series shared by an NSLayoutManager.

� textViewDidChangeSelection:
– (void)textViewDidChangeSelection:(NSNotification *)aNotification

Invoked when the selection changes in the NSTextView. The name of aNotification is
NSTextViewDidChangeSelectionNotification.

See also: NSTextViewDidChangeSelectionNotification

Notifications

NSTextView posts the following notifications as well as those declared by its superclasses, particularly
NSText. See the NSText class specification for those other notifications.

� NSTextViewDidChangeSelectionNotification

Posted when the selected range of characters changes. NSTextView posts this notification whenever
setSelectedRange:affinity:stillSelecting: is invoked either directly, or through the many methods
(mouseDown:, selectAll:, and so on) that invoke it indirectly. When the user is selecting text, this

39

notification is posted only once, at the end of the selection operation. The NSTextView’s delegate receives
a textViewDidChangeSelection: message when this notification is posted.

The notification contains:

Notification Object The notifying NSTextView.

Userinfo

Key Value

NSOldSelectedCharacterRange An NSValue object containing an NSRange

� NSTextViewWillChangeNotifyingTextViewNotification

Posted when a new NSTextView is established as the NSTextView that sends notifications. This allows
observers to reregister themselves for the new NSTextView. Methods such as
removeTextContainerAtIndex:, textContainerChangedTextView:, and
insertTextContainer:atIndex: cause this notification to be posted.

The notification contains:

Notification Object The old notifying NSTextView, or nil.

Userinfo

Key Value

NSOldNotifyingTextView The old NSTextView, if one exists
NSNewNotifyingTextView The new NSTextView, if one exists

There’s no delegate method associated with this notification. The text-handling system ensures that when
a new NSTextView replaces an old one as the notifying NSTextView, the existing delegate becomes the
delegate of the new NSTextView and the delegate is registered to receive NSTextView notifications from
the new notifying NSTextView. All other observers are responsible for registering themselves on receiving
this notification.

See also: – removeObserver: (NSNotificationCenter),
– addObserver:selector:name:object: (NSNotificationCenter)

