
OPENSTEP 4.1    Copyright 1996 by NeXT Computer, Inc.    All Rights Reserved.

Title: OPENSTEP 4.1 Release Notes
Entry Number: xxxx
Last Updated: October 1, 1996

OPENSTEP 4.1 Release Notes

This file contains a complete set of release notes for the following products:

· OPENSTEP Enterprise Release 4.1 (including PDO)
· OPENSTEP for Mach Release 4.1

Information specific to only one of the above products are identified in the individual
note.

This file is divided into the following major sections:

· Important Notes (contains extremely important information about the release that
should be read by all OPENSTEP developers and installers)

· Compiler Tools
· Compiler (OPENSTEP Enterprise)
· Compiler (OPENSTEP for Mach)

· Debugger
· Documentation
· Driver Development
· Interface Builder
· Netware
· NEXTIME Services
· PDO
· Printing
· Project Builder
· TextEdit
· True Type
· Window Server

The following topics are release noted in separate NeXTanswers:

· Application Kit Framework (2469)
· Foundation Framework (2470)
· Enterprise Objects Framework

Important Notes

The following notes are of particular importance, and should be reviewed by all

OPENSTEP developers and installers.

Installing OPENSTEP Enterprise

· Cannot install under directory names with spaces (73170). Installation under
any directory names or paths containing spaces will not work. For example, trying
to    install under C:\Program Files\NeXT will    leave the installation unusable.
Install OPENSTEP Enterprise only in a directory the complete path to which
contains no spaces.

· The automated uninstaller included with OPENSTEP Enterprise doesn't clean up
your System environment variables after a successful uninstallation and reboot.   
The system environment still contains OPENSTEP-specific entries for LIB and
PATH. While this isn't necessarily harmful, successive install-uninstall cycles will
cause your system environment to grow. To work around this problem, after
uninstallation manually edit your system environment variables as described in the
uninstallation section of the OPENSTEP Enterprise Installation Guide. (72486)

· The new Daylight Savings Time (DST) rule in Germany isn't accounted for
(67469). In Germany the rules for ªdaylight saving timeº have changed. From now
on, Daylight Savings Time ends on the last Sunday of October, instead of the last
Sunday in September.    Because Foundation doesn't account for this, unless you
supply a new file for /etc/zoneinfo, all NeXT computers in Germany will use the
incorrect time (including timestamps) between September 29th and    October

27th.

This bug affects all customers in Europe running NEXTSTEP 3.3, NEXTSTEP
3.3risc, 3.3Patch, OPENSTEP for Mach (all versions), and OPENSTEP Enterprise
(all versions). NeXT's Technical Support department has issued a patch to
address this particular problem; consult NeXTanswers for more information.

Known Problems in Deployed Systems

The following two problems are known to have occured in OPENSTEP Enterprise
systems configured for deployment as well as for development.

Reference: 72130

Problem: Text could display incorrectly.

Description: Depending on the length of the document you have and how fast you are
typing, displayed text might sometimes have problems. For instance, you
might get overlapping lines or large blank areas between two lines.

Workaround: Typing will usually fix this right away. Note that in all cases, even though
the display is garbled, your document is still correct, so there's no need to
exit or restart the application.

Reference: 71671

Problem: "Flash active caption bar" visual warning option might cause applications

to hang.

Description: If you have enabled SoundSentry (under Accessibility Options in the
Control Panel under NT 4.0), and turned on the "Flash active caption bar"
visual warning option, applications could hang when they attempt to beep.

Workaround: None. Use one of the other visual warning options.

New Linker

The Microsoft linker is now the default for project builds on Windows with
OPENSTEP Enterprise. This linker is the same one that ships with Visual C++. For
information on this linker, consult the Visual C++ documentation.

Project Builder

· Pasting text into a .m file can cause Project Builder to crash (73263). Pasting
text starting with a tab after an unterminated comment in a source file can cause
Project Builder to crash. In addition, typing an unterminated commentÐa slash, an
asterisk (*), and a spaceÐand then pressing return can cause Project Builder to
crash on Mach systems.

Uninstalling OPENSTEP Enterprise

The uninstaller supplied with OPENSTEP Enterprise doesn't remove OPENSTEP-
specific references from your system environment variables. This can be done
manually after uninstallation by simply deleting the NEXT_ROOT environment
variable and removing all invalid references from both your Path and Lib
environment variables.

If you would like more detailed instructions on how to make these changes, refer to
the relevant step in "Uninstalling OPENSTEP for Windows" in the OPENSTEP
Enterprise Installation Guide. Note that this guide is supplied in printed form only, and
is packaged with the OPENSTEP Enterprise CD-ROM.

Compiler Tools

This file contains release notes for the 4.1 release of the Compiler Tools. It contains
information about the following topics:

· The NeXT Mach-O GNU-based assemblers
· The NeXT Mach-O static link editor
· The NeXT Mach-O dynamic link editor
· Mach-O object tools (nm, otool, and so on)

Notes Specific to Release 4.1

New Features

There is only one new feature for the 4.1 release:

· The dynamic linker now has the environment variable
DYLD_FRAMEWORK_PATH to better support the development of frameworks.    
See the man page for details.

Notes Specific to Release 4.0

New Features

Dynamically Linked Shared Libraries

The compiler tools now allow you to build and develop dynamic shared libraries and
support the programs that use these libraries, including programs that use bundles.
The tools to build or use dynamic shared libraries are in the 4.1 updates for the
m68k, i386, sparc, and hppa target architectures.

All object files that are part of a dynamic shared library or that are to be in an
executable should be compiled with the -dynamic flag.    The -dynamic flag is now

the default. Executables using shared libraries must also be linked with this flag
when using cc(1) or ld(1) and must be using crt1.o (this is done automatically with
cc(1) and the -dynamic flag). To build a dynamic shared library, use    libtool(1) with
the -dynamic option; typically you also specify the -install_name library_name
option as well as other options (see the libtool(1) man page).

The dynamic linker is becoming more fully-featured.    It contains some programmatic
support for runtime loading (but as of yet no unloading or replacing).

The static link editor uses the symbol tables of dynamically-linked shared libraries to
cause modules for undefined symbols to be pulled in from static libraries and to
check for undefined symbols.    The ld(1) flags for undefined checking -undefined
{error, warning, suppress} can be used;    the default is to treat undefined symbols
as errors.    This default holds for dynamically-linked shared libraries and bundles.    In
these cases the dependent libraries should be listed if available.    If not available
then -U _symbol or -undefined {warning, suppress} can be used until they are.

Using and Building Dynamic Shared Libraries from Project Builder

The 4.1 version of Project Builder supports a library project type which by default is a
dynamic shared library and a framework project type which by default contains a
dynamic shared library. Project Builder supports the use of dynamic libraries in other
project types.    To build static libraries, un-comment the LIBRARY_STYLE definition
in the project makefile (LIBRARY_STYLE is set to STATIC and commented out).

Tools that are complete

· The assember, link editor, and otool support position-independent code    for the
m68k, i386, sparc, and hppa architectures.      The link editor, assember and otool
fully support indirect undefined references using symbol pointers and symbol
stubs. And    the assembler now fully supports Mach-O files.

· The dynamic link editor now has the first level of support for runtime loading.   
Currently only loading of MH_BUNDLE files is supported.    Comments in the
header file /NextDeveloper/Headers/mach-o/dyld.h describe what is not yet
implemented.

Tools that are not complete

· The dynamic link editor now has the first level of support for runtime loading.   
Currently only loading of MH_BUNDLE files is supported.    Comments in the
header file /NextDeveloper/Headers/mach-o/dyld.h describe what is not yet
implemented.

· The tool segedit(1) does not have support for dynamic shared libraries.

The NeXT Mach-O GNU-based Assemblers

The NeXT assembler now a fully supports Mach-O files with the ability to create
arbitrary sections with the .section and .zerofill directives.    Contents of sections
now correctly reflect the assembly code with respect to the section aligment and no
unnecessary padding is added.

Major New Features

Support for position-independent code through the use of a new relocatable form of
an expression: "add_symbol - subtract_symbol + offset" where add_symbol and
subtract_symbol can be defined in different sections.

Documentation

Assembler Manual

The assembler manual has been updated to reflect support for dynamically-linked
shared libraries.    It contains appendices of the instructions for the i386, M68K, and
PA-RISC processor architectures.    An RTF version of the Assembler manual is in:

/NextLibrary/Documentation/NextDev/Reference/DevTools/Assembler

Compiler (OPENSTEP Enterprise)

This file contains developer release notes for the Windows and PDO compilers
shipped with OPENSTEP Enterprise Release 4.1.

In this release, the compilers are based on the GNU C compiler version 2.7.2.

New Features

· If the name of your source file ends in .cc, .cxx, .cpp, or .C, gcc will attempt to
compile your program with the C++ compiler.    Similarly, if the name of your
source file ends in .mm or .M, gcc will attempt to compile your program with
the Objective-C++ compiler.

· The Objective-C++ compiler is now much more useable than the ones included
with OPENSTEP for Windows Prerelease 3 and with PDO 4.0.

Including Windows Header Files in Objective-C Code

In general, you should be able to include any Windows header file in an Objective-
C source module without problems. The System framework contains Microsoft's
header files, with slight modifications to make them compatible with gcc. For
instance, slight changes have been made for unnamed unions, Microsoft
assembly, and so on. If you have problems including any of the Windows header
files, try including the file winnt-pdo.h before the Windows header file that's
causing problems.

The -Wmost Compiler Flag

The -Wmost compiler flag is equivalent to FSF's -Wall, except that it doesn't turn
on -Wparenthesis. -Wmost also suppresses warning messages about inline
functions and static constants that are not actually used. This flag is for internal
use and is not officially supported. Its definition may change in a future release.

Known Bugs and Limitations

The following bugs or limitations are worth noting    for the GNU C and C++
compilers for this prerelease.

· Link errors on Windows NT (69211). Programs on Windows NT must add
explicit references to at least one class in each framework in order to avoid link
errors at run time. For instance, you could add a function like that in the
following code excerpt, which refers to classes in each of Enterprise Objects
Framework's layers. Though never invoked, it forces the appropriate linking to
occur.

#ifdef WIN32
#import <EOControl/EOControl.h>
#import <EOAccess/EOAccess.h>
#import <EOInterface/EOInterface.h>

void _referenceAllEOFrameworks()
{

                [EODisplayGroup new];              // EOInterface
                [EOEntity new];                          // EOAccess
                [EOEditingContext new];          // EOControl

}
#endif

If you create your project with the type "EOF Application," this code is
automatically added to your project main file.

· Don't depend on NEXT_OBJC_RUNTIME being predefined (62096).   
Although the macro NEXT_OBJC_RUNTIME is predefined on the Windows NT
compiler, your code shouldn't depend on this being the case, since this macro
won't    be predefined in future releases of the compiler.

· Casting a receiver to conform to a protocol doesn't work (68626).    If,
when invoking a method, you cast the receiver to conform to some protocol in
order to make sure the compiler invokes the correct method in cases where
there is more than one method with the same name, the Objective-C compiler
will not pick up on the hint.    The work around is to either compile your source
file with the Objective-C++ compiler (use the -x objective-c++ switch) or
assign the object returned by the method invocation to some (temporary)
variable that has the same type as that object.

· Constant strings (both char * and NSString) should be 7-bit only. Unless
constant strings are 7-bit, your code will be non-portable as compilers will deal
with 8-bit strings in a machine-dependent encoding.

· Objective-C++ global constructors.    The Objective-C++ compiler sometimes
ignores global constructors; they don't always get called.

· Random name given to executable by default (66861).    If you create an
executable and don't use the -o flag to explicitly tell gcc what to name it, gcc
will most likely give it a random name.

· Using pipes to communicate between compiler passes (61306).    The

-pipe flag does not work.

· -ObjC++ requires -lstdc++ when using C++ streams on PDO (69156). When
compiling C++ programs that use C++ streams with gcc on PDO platforms, if
you specify the -ObjC++ flag you must also specify the -lstdc++ flag. So, for
example, a program "foo" that uses cout (and therefore includes iostream.h)
would be compiled using gcc as follows:

gcc -ObjC++ foo.cc -lstdc++

· __declspec(dllexport) __stdcall doesn't work (69194). On Windows NT,
functions that are declared as __declspec(dllexport)__stdcall aren't handled
properly. This may affect some Windows header files that you include in your
programs.

· The compiler sometimes tries to create a library instead of an executable
(69087). This happens on Windows NT when a function is declared as
__declspec(dllimport) (perhaps in a header file), but the function is actually
defined in the file being compiled. The workaround is to remove the offending
__declspec(dllimport).

· -Wno-precomp flag isn't supported (63746). On Windows NT and on PDO
platforms, gcc refuses to do anything when the -Wno-precomp flag is
specified. Currently, the precomp option isn't supported.

· Reporting bugs (68122).    In some cases, when the compiler detects an
internal error, it prints a message requesting that you send a bug report to
some electronic mail address.    Please disregard this message.    All compiler
bugs should be reported to the appropriate channels at NeXT Software.

· cc -MM Foo.mm produces Foo.mm.o (40491). Compiling a file that has either
a .M or .mm extension with -M or -MM will produce a file whose name is the
same as the source file with the addition of    .o. The original extension is not
stripped off before constructing the name of the .o file.

· -traditional-cpp acts differently on Mach than on NT or PDO (60175). On
Windows NT and on PDO, -traditional-cpp changes the behavior of the
preprocessor in the same way that -traditional does. This can result in
compilation errors when recompiling an existing NEXTSTEP project on
Windows NT or on PDO.

· Inconsistent function declarations involving stdcall produce unexpected
results (69506). On Windows NT, if a function is forward-declared to be stdcall
but not declared to be stdcall in the actual function definition, the compiler will
emit code to pop the arguments off the stack, but won't adjust the function
name.

· The linker complains about objects exported as CONSTANT (70212). On
Windows NT, if you're building a framework and you create your own DEF file
for it, defining exported objects as CONSTANT will produce a warning from the
linker advising you to use the word DATA instead. If you substitute the word
DATA for CONSTANT in your DEF file, some or all of your objects won't be
exported correctly; the linker will be unable to find them. As a workaround,
simply leave the declarations CONSTANT and ignore the linker warnings.

· -static option causes linking to fail (70326). The -static and -dynamic
compiler flags are meaningless on Windows NT, and shouldn't be used.

· Programs that use posing sometimes crash (72283). If a program compiled

with the Objective-C compiler contains an object that accesses its superclass
while posing on a category, it will crash. To workaround this problem, either
rewrite your code so that it doesn't do this, or compile the program with the
Objective-C++ compiler (to do this, use the -x objective-c++ switch).

· Objective-C++ is broken in PDO4.0 on Solaris (69089). In this release of
PDO, gcc doesn't compile Objective-C++ code correctly on Solaris machines.
However, you can compile both Objective-C and C++ codeÐproviding that they
are in separate source filesÐwith gcc.

· Static constructors can't be used for run-time class initialization (54831).
The PDO compiler can't apply a user-defined constructor to a global or static
C++ object and send an Objective-C message in the same file. To work around
this problem, eliminate the constructor, the global, or the Objective-C code.

Compiler (OPENSTEP for Mach)

This file contains developer release notes for the 4.1 and 4.0 releases of the
compiler.    Items specific to or introduced in this release of OPENSTEP Release 4.1
are listed first, followed by items noted in earlier releases.

 
 

Notes Specific to Release 4.1

Known Bugs and Limitations

The following bugs or limitations are worth noting    for the GNU C and C++
Compilers for this release.

· Constant strings (both char * and NSString) should be 7-bit only (52695).   
Unless constant strings are 7-bit, your code will be non-portable as compilers will
deal with 8-bit strings in a machine-dependent encoding.

· Missing precomps cause compiler warnings (73313).    If you only install the
DeveloperLibs and EO2Developer packages for a single architecture (ªthinº),   
precomps won't be generated and the compiler will generate numerous warnings.
While these warnings can safely be ignored, there are a couple of workarounds:
either install the DeveloperLibs and EO2Developer packages for all three
supported architectures (ªfatº), or run fixPrecomps manually to generate the
missing precomp files. To do this, simply log in as root and type the following in a
terminal window:

/usr/bin/fixPrecomps

 
 
Notes Specific to Release 4.0

In this release, the Mach compiler is based on the GNU C compiler version 2.5.8.
The compilers Windows and PDO compilers shipped with the OPENSTEP Enterprise
release are based on the GNU C compiler version 2.7.2.

New Features

· Frameworks.    You can now specify frameworks on the linker and preprocessor
command lines. The -framework flag is accepted by both the linker and the
preprocessor, while the -F flag is accepted by the linker only. These flags are
defined as follows:

-framework framework-name
Search the framework named framework-name when linking. The linker
searches a standard set of directories for the framework. It then uses this file
as if it had been specified precisely by name. The directories searched by the
linker include a couple of standard system directories plus any that you specify
with -F.

-F directory
Add the specified directory to the head of the list of directories to be searched
for frameworks. If you use more than one -F option, the directories are scanned
in left-to-right order; the standard framework directories
(LocalLibrary/Frameworks, followed by /NextLibrary/Frameworks) come after.

In your Objective-C code, include framework headers using the following format:

#include <framework/include_file.h>

Where framework is the name of the framework (such as ªAppKitº or
ªFoundationºÐdon't include the extension) and include_file is the name of the file
to be included.

 

Known Bugs and Limitations

The following bugs or limitations are worth noting    for the GNU C and C++
Compilers for this release.

· Using -pipe (67853).    Although the compiler rarely crashes, if it does, it may
generate some assembly language output before doing so.    If you use the -pipe
flag, the assembler may not be able to detect the fact that its input is incomplete.   
As a result, the assembler may produce an incomplete, but valid .o file.    If you
use the make utility to build your application, make will detect the fact that there
was a problem during compilation.    However, when make is subsequently
invoked, it might not recompile the source file that caused the problem, and the
linker will most likely complain about unresolved external symbols.

· Reporting bugs (68122).    In some cases, when the compiler detects an internal
error, it prints a message requesting that you send a bug report to some electronic
mail address.    Please disregard this message.    All compiler bugs should be
reported to the appropriate channels at NeXT Software.

Notes Specific to Release 4.0 PR2

In this release, the compiler is based on the GNU C compiler version 2.5.8.

New Features

· Position-Independent Code Generation (PIC).    The way the compiler
generates code has changed. It now generates position-independent code by
default when it builds libraries, bundles and executables.    You can control the
code generation style using the -dynamic and -static compiler flags; -dynamic
specifies that position-independent code generation is to be used, whereas -static
specifies position-dependent code generation.      For related information, see the
note on drivers and kernel servers below.

 
·      C++ Templates.    The compiler has been updated to support C++ templates   

or parametrized types.    For example, consider the following code:

 #include <stream.h>
 #include <String.h>
 #include <SLList.h>

 typedef SLList<String> StringList;
 main(){
 StringList listOfnames;

 listOfnames.append("hello world");
 cout <<listOfnames.remove_front() << "\n";

 }

Then the above code is built and run:

%> cc++ template.cc -o test -lg++
%> test
hello world
%>

· Debugging features. The compiler includes a couple new options to assist in
debugging. Specify the -H flag on the command to have the compiler emit a
listing of included header files (indented to reflect where they are included).
Specify the -dM option after the -E (preprocess) option to get a listing of all
macros along with their full definitions.

Changes

· Building drivers and kernel servers.    If you are building drivers and kernel
servers, be sure to include -static on the command line so that position-
dependent code is generated.      Compilation with the -dynamic option assumes
that the dynamic link editor (/usr/lib/dyld) is present in the running program, and
that is not the case for modules to be loaded into the kernel.

Known Bugs and Limitations

The following bugs or limitations are worth noting    for the GNU C and C++
Compilers for this pre-release, since they were not mentioned in earlier releases.

· wchar_t string literals (38759).    The compiler generates wide-character literals
for the host endian-ness only. For example, if you are cross-compiling the string
L"x" from m68k to i386, it will be a big endian wide string.    The only workaround
is not to cross-compile modules which depend on wide characters.

The GNU Source-Level Debugger

This file contains information about GDB, the GNU Debugger.    For more information,
see the debugging chapter in the OPENSTEP Development Tools Reference
manual. On Mach, you may also refer to the gdb(1) manual page. On PDO
platforms, see the gdb reference in
/NextLibrary/Documentation/NextDev/DevTools/Debugger.pdf.

Notes Specific to GDB on Mach:

The gdb debugger in OpenStep 4.1 for Mach is based on the version 4.14 release
from GNU/FSF.    This brings with it many bug fixes and new features, many of which
are mentioned in the debugging chapter of the OPENSTEP Development Tools
Reference manual.

New Features

Dynamic Link-Editor Support

GDB supports debugging of dynamic shared libraries (sometimes known as
Frameworks or Bundles in the OPENSTEP world).    The presence of dynamic shared
libraries has some impact on debugging, which is described in this section.

Debugging symbols for dynamic shared libraries are not present in the program itself.
GDB obtains them when the running program attaches and links to the shared
library.    This means that before the program is actually running, GDB has no
information about the contents of the dynamic shared libraries that it uses.

Because of this, it is not possible to set ordinary breakpoints in a shared library
before that library has been attached.    GDB provides a new command for this
purpose, future-break    or fb.    If GDB cannot find the necessary symbols to resolve
a future-break command, it defers the breakpoint and attempts to resolve it later,
when new symbols from a shared library become available.    Caveat: since the
future-break command deals with names and symbols that are as yet unknown to
the debugger, it cannot check spelling for you; if you make a spelling mistake, it will
never be detected and the breakpoint will never take effect.

There is also an environment variable, DYLD_LIBRARY_PATH, which tells the
dynamic link-editor where to search for dynamic libraries.    This variable can be used

to cause a library with debugging symbols to be linked, even though the library on
the default path has no symbols.    This environment can be set from within GDB by
using the setenv command.    In order to affect the program being debugged, it
should be set before running the program.

The "view" interface

In prior releases, GDB supported a GUI interface that used the NEXTSTEP Edit
application as a source file viewer (invoked by the view command).      Edit has been
replaced by Project Builder as the source file viewer for GDB, and the view command
now connects GDB to Project Builder.    You must start Project Builder yourself before
giving GDB the view command (GDB will not start Project Builder automatically).   
Project Builder has its own user interface for interacting with GDB (see the Project
Builder documentation).

Methods with Variable Number of Arguments

GDB now understands the syntax for calling a method with a variable number of
arguments (for example,    [MyClass myMethod: 1, 2, 3, 4]).

Known Problems

Known Problems with Dynamic Link-Editor Support

It has been observed that GDB sometimes hangs or crashes if you run a program

that uses a dynamic shared library (Framework or Bundle), then recompile the
dynamic shared library, and run the program again.    If this happens to you, we
recommend that you quit GDB and start a new debugging session every time you
rebuild the library.    You can use the .gdbinit file to help re-establish things such as
breakpoints that you need in your debugging session.

Interrupting with ^C during Dynamic Symbol Loading

Immediately after you start your program running under GDB, the program will start to
load dynamic shared libraries, and GDB will begin reading symbols from these
libraries.    If you attempt to interrupt GDB by typing ^C (control-C) during this
process, the debugger will be left in a confused internal state from which the only
known recovery is to quit the debugger and start over.

Notes Specific to GDB on Windows:

The GDB debugger for OPENSTEP for Windows is based on    the version 4.15.1
release from GNU.    This brings with it many, if not most of the features of debugging
on UNIX and Mach, although there are inevitably some differences.

New Features

Dynamically Loaded Library (DLL) Support

GDB supports debugging of dynamically loaded libraries (DLLs).    In OPENSTEP for

Windows, Frameworks and Bundles are implemented as DLL's.      The presence of
DLLs has some impact on debugging, which is described in this section.

Debugging symbols for dynamically-loaded libraries are not present in the program
itself.    GDB obtains them when the running program attaches and links to the DLL.   
This means that before the program is actually running, GDB has no information
about the contents of the DLLs that the program uses.

Because of this, it's not possible to set breakpoints or access data in a DLL before
the DLL has been attached by the program.      If you need to debug code in a DLL, or
set breakpoints on a function or method in a DLL, you should first set a breakpoint on
main (or some place in the program after the DLL has been attached but before the
code you want to debug has been executed).    Run your program up to that point.   
The program will load the DLL, and GDB will gain access to it's symbols, after which
you should be able to set breakpoints in the DLL.    If the DLL was built with the
OpenStep compiler (gcc), and with ª-gº debugging symbols, you should be able to
step into functions or methods in the DLL just like ordinary functions or methods in
your program.

Attach and Detach

GDB's attach command works pretty much as it does on Mach.    The process ID to
attach to can be obtained from PVIEW, or by having the attachee call getpid() and
output the result.    However, when GDB attaches to an already-running process, it
won't learn about symbols from DLLs that the process has already linked to.

The detach command is only partially useful at this time.    detach will let the
attached process continue to run, but a parent/child relationship continues to exist
between the debugger and the detached process. Because of this, if you then quit
the debugger, the detached process will also die.

When you attach to a running process, you will frequently find yourself in a non-
debuggable area of code from which you cannot even get a backtrace.    See the
section on known problems, "Non-Debuggable Code" below for more information on
this topic.

Add-Symbol-File

When GDB attaches to a running process, it does not read any symbols from DLLs
that the process has previously linked itself to.    If you need those symbols for
debugging, you can explicitly cause GDB to load them by using the add-symbol-file
command.    This command takes two arguments: the fully-qualified filename of the
DLL file, and a base address.    For a DLL that you build, this base address will be the
base address at which you linked the DLL plus 0x1000.    Here are the base
addresses to give to the add-symbol-file command for the major OPENSTEP DLLs:

· 0x30001000 System
· 0x31001000 nextpdo
· 0x32011000 Foundation
· 0x34021000 AppKit
· 0x38031000 NeXTApps
· 0x3A041000 DevKit

· 0x3C051000 ProjectBuilder
· 0x3C051000 InterfaceBuilder
· 0x40001000 Message
· 0x42011000 WebObjects
· 0x44021000 EOControl
· 0x46031000 EOAccess
· 0x48041000 EOInterface
· 0x4A051000 Sybase
· 0x4C061000 Oracle
· 0x4E071000 Informix
· 0x50081000 nextorb
· 0x52091000 EOModeler

Command Editing

GDB's command line history can be accessed by using the up and down arrow keys,
or by using the EMACS key bindings (^P and ^N to scroll thru previous commands,
^B, ^A, ^E to move around on a line, and so on).      Also, set history expansion on
enables C-shell-like command history within GDB (!!, !print and so on).    As usual,
an empty newline repeats the previous command (except where specifically disabled,
as with the run command).

Debugging Objective-C: Differences from Mach GDB

The Windows version of GDB is more of a multi-language debugger than the older
GDB on Mach (especially the older version of GDB available with previous releases

of NEXTSTEP).    This GDB has separate features for many different languages,
including Objective-C.    It attempts to guess the source language by looking at the
extension of the source file name (".m" or ".M" for Objective-C).    To find out what
GDB's ªcurrent languageº is, type show language.    To force the current language to
Objective-C, type set language objective-c.

Calling Methods from GDB

To call a method in your program from GDB, use the print, set, or call commands
with an argument that looks just like a method call in Objective C, as shown here:

(gdb) print [myClass showValue: 12]

If the method comes from a Category, you must include the category name, like this:

(gdb) print [myClass(myCategory) showValue: 12]

Listing and Setting Breakpoints on Methods

To refer to a method in a list or break command, you can give the full class and
method name, including a `+' or `-' to indicate a class method or instance method.    If
there is a category name, you must give that too:

(gdb) list +[myClass init]
(gdb) break -[myClass(myCategory) showValue]

You can also set breakpoints or list a method just by giving a selector.    If the selector

is implemented by more than one class, gdb will list the corresponding methods and
ask you to choose one or more:

(gdb) break init
[0] cancel
[1] all
[2] -[Change init] at Change.m:20
[3] -[DrawApp init] at DrawApp.m:130
[4] -[Graphic init] at Graphic.m:139
>

You would then enter your choice or choices at the ">" prompt.

Getting Information about Classes and Methods

GDB for Windows now has the info classes    and info selectors commands.   
These commands accept the same regular expression language as GDB's info type
and info function commands (ie. the Unix style regular expression language).    This
is a change from the Mach gdb, where info classes and info selectors accept a
slightly different regular expression language.          For instance, to learn about class
names beginning with NS (using the '^' character to designate ªbeginning withº):

(gdb) info classes ^NS

To learn about selectors, you can use the info selectors command.    To find every
selector containing the string "withObject:" you could enter:

 (gdb) info selector withObject:

To learn about methods, you can use the info function command, which also takes a
regular expression.    Since the square bracket characters `[' and `]' are significant in
regular expressions, you can quote them with a backward slash to prevent their being
treated as special characters.    To list all the methods of a class, you might say:

 (gdb) info function \[MyClass

To list all the methods whose selector ends with ªcount:º, you might say:

(gdb) info function count:\]

If you want to know about a specific method of a specific class, but you are not sure if
it belongs to a category, you could use the ª.*º wildcard sequence to stand for ªany
number of any charactersº:

(gdb) info function MyClass.*mySelector:

Debugging Threads on Windows

The GDB for Windows is thread-aware.    If you are debugging a multi-threaded
program, you can use the info threads command to see a list of the currently active
threads.    Use the thread command to switch to one of the threads listed by info
threads, giving it the number of the thread you want to debug (a small integer such
as 1 or 2, not the thread ID).

When you switch threads, you will frequently find yourself in a non-debuggable area
of code from which you cannot even get a backtrace.    See the section on known
problems, ªNon-Debuggable Codeº below.

Known Problems

Non-Debuggable Code

When you interrupt a program with ^C, attach to a running program, or switch threads
in a running program, sometimes the program will be in the middle of executing
Windows code that cannot be debugged.    Often GDB cannot even give you a
backtrace, because Windows has done something with the program stack.    When
this happens, if you don't want to simply let the program continue (for instance, you
need to know exactly how you got to where you are), you can use the stepi
command to step by single machine instructions until the Windows code cleans up
the stack and returns, at which time you will suddenly be able to see symbols and
backtraces again.    GDB will notify you when you have returned to a symbolic region
(say, a function or a method) that it knows about.    Usually this does not take too
long; on the order of a few dozen instruction steps.

Notes Specific to GDB on PDO:

The gdb debugger for OPENSTEP Enterprise is based on the version 4.15.1
release from GNU. This brings with it many, if not most of the features of

debugging on Mach, although there are inevitably some differences.

Debugging Objective-C: Differences from Mach gdb

The PDO version of gdb is more of a multi-language debugger than the older gdb
on Mach (especially the older version of gdb available with previous releases of
NEXTSTEP). This gdb has separate features for many different languages,
including Objective-C. It attempts to guess the source language by looking at the
extension of the source file name (.m or .M for Objective-C). To find out what
gdb's current language is, type show language. To force the current language to
Objective-C, type set language objective-c.

Calling Methods from gdb

To call a method in your program from gdb, use the print, set, or call commands
with an argument that looks just like a method call in Objective-C. For example:

(gdb) print [myClass showValue: 12]

If the method comes from a category, you must include the category name, as
shown here:

(gdb) print [myClass(myCategory) showValue: 12]

Listing and Setting Breakpoints on Methods

To refer to a method in a list or break command, you can supply the full class and
method name, including a + or - to indicate a class method or instance method. If
there is a category name, you must give that too:

(gdb) list +[myClass init]
(gdb) break -[myClass(myCategory) showValue]

You can also set breakpoints or list a method just by giving a selector. If the
selector is implemented by more than one class, gdb will list the corresponding
methods and ask you to choose one or more:

(gdb) break init
[0] cancel
[1] all
[2] -[Change init] at Change.m:20
[3] -[DrawApp init] at DrawApp.m:130
[4] -[Graphic init] at Graphic.m:139
>

You would then enter your choice or choices at the ">" prompt.

Getting Information about Classes and Methods

gdb for PDO has the info classes and info selectors commands. These
commands accept the same regular expression language as gdb's info type and

info function commands (that is, the UNIX-style regular expression language).
This is a change from the Mach gdb, where info classes and info selectors
accept a slightly different regular expression language. For instance, to learn
about class names beginning with "NS" (using the "^" character to designate
ªbeginning withº):

(gdb) info classes ^NS

 To learn about selectors, you can use the info selectors command. To find every
selector containing the string "withObject:" you could enter:

(gdb) info selector withObject:

To learn about methods, you can use the info function command, which also
takes a regular expression. Since the square bracket characters ('[' and ']') have
special significance in regular expressions, you can quote them with a backward
slash to prevent their being treated as special characters. To list all the methods of
a class, you might say:

(gdb) info function \[MyClass

To list all the methods whose selector ends with "count:", you might say:

(gdb) info function count:\]

If you want to know about a specific method of a specific class, but you aren't sure
if it belongs to a category, you can use the ".*" wildcard sequence to stand for any

number of any characters:

(gdb) info function MyClass.*mySelector:

Known Problems

Problems with Underscores

gdb doesn't correctly handle methods for which either the class, the category, or
the selector has underscores in the name, except when the underscore is the first
character of the class or selector name.

Thread Support

gdb has no support for debugging multiple threads on either Solaris or HP-UX.

Random SIGTRAPs

gdb occasionally throws random SIGTRAPs. If you verify that the instruction at
the $PC is not a trap instruction, you should be able to continue by saying "signal
0" (that's a zero). This tells gdb to continue the child without passing any signal to
it.

Documentation

This file contains release notes for the Documentation distributed with OpenStep 4.1.

Locating the Developer Documentation

All of the documentation for OPENSTEP 4.1 can be found on-line (some of the
documents are supplied in printed form, as well). The easiest way to access this
documentation is to open the NextDeveloper bookshelf using Digital Librarian (this
bookshelf can be found in /NextLibrary/Bookshelves). Although the NextDeveloper
bookshelf can be used directly to access the documentation, most developers prefer
to create their own custom bookshelf containing just those documents of interest.
Select the first entry in the NextDeveloper bookshelf, then click ªList Titlesº; the
documents that are then listed detail how to create your own custom bookshelf.

In NEXTSTEP Release 3.3, as well as in prior releases,    all developer
documentation was located in a subdirectory of
/NextDeveloper/Documentation/NextDev. In OPENSTEP 4.1, framework
documentation has been moved to a location inside of the relevant framework. All
remaining developer documentation can still be found under
/NextDeveloper/Documentation/NextDev.

In keeping with the philosophy that all framework resources be located within the
framework, framework reference documents are located in the directory
Resources/English.lproj/Documentation, relative to the ª.frameworkº directory.
So, for instance, reference documentation for the Application Kit Framework can be
found in /NextLibrary/Frameworks/AppKit.framework/Resources/
English.lproj/Documentation.

Release Notes

/NextLibrary/Documentation/NextDev/ReleaseNotes contains important
information about the release that was known at the time that the OPENSTEP 4.1
CD-ROM was manufactured. Additional important information, which was discovered
too late to be put onto the release, can be found on NeXTanswers. Request
NeXTanswers #2455 for the location of the most up-to-date release notes for a
variety of NeXT's software products.

Driver Development

OPENSTEP 4.1 cannot be used to develop Mach device drivers. Because NEXTSTEP 3.3

device drivers work on OPENSTEP 4.1 systems, we recommend that you use NEXTSTEP
3.3 Developer to create device drivers.

Interface Builder

This file contains release notes for Interface Builder distributed with OPENSTEP Release
4.1.

Notes Specific to Release 4.1

New Features

This release of Interface Builder supports these new features:

· Context Menus.    Interface Builder on Windows NT has a context menus within editable
windows and panels. A context menu is activated by clicking the right mouse button
within a window or panel. In this way, operations such as Cut, Copy, and Group can be
performed.

· Interface Styles.    Interface Builder has a new preference which permits nib files to be
viewed and edited in either Mach or Windows user interface style. Nib files opened after

a change in the interface style preference will have the new interface style.

· Control mnemonics.    Interface Builder enables users to set mnemonics for user-
interface controls.    In order to set a character in the title of a control to be a mnemonic,
double-click the character while holding down the Alternate key.

· OpenStep Compliance.    Interface Builder is OpenStep-compliant, and you can use it to
create OpenStep nib files.

· Custom Class Inspector.    You now use a new inspector display, the Custom Class
Inspector, to specify a custom subclass of an object. For example, suppose you have
defined a class MyButton to be a subclass of NSButton. To add an object of class
MyButton to your interface, you do the following:

1. Define MyButton in the Classes view of the nib file window.
2. Drag the button from the Views palette to your interface.
3. Choose Custom Class from the pop-up list in the Inspector panel.
4. Select MyButton in the browser to set the class of the button.

 Currently, this works only for NSView and NSWindow subclasses.

· Connection Locking. Connection locking prevents connections from being deleted when
a nib file is edited.    This feature is designed primarily for localization.    To turn
connection locking on or off, use the Preferences panel.

· Nib Dumping. A new tool, nibTool, prints the contents of a nib file in an ASCII format.   

nibTool is located in /usr/bin. You can easily compare two versions of a nib file if you
use this tool to create ASCII representations of each. Currently, nibTool does not
support nib files that use objects from custom palettes.

· Typed Outlets and Actions. The parser in Interface Builder has been improved, and
many parsing bugs have been fixed.    In addition, you can now specify typed outlets.   
Interface Builder considers any of the following to be an outlet when it appears in an
interface:

id outlet;
id outlet1, outlet2, ...;
IBOutlet SomeClass *outlet;
IBOutlet SomeClass *outlet1, *outlet2, ...;

You can also specify the type of the argument to an action, and you can specify the
return type to of an action to be void.    Interface Builder considers any of the following
to be an action:

- action:sender;
- (void)action:sender;
- action:(id)sender;
- (void)action:(id)sender;
- action:(SomeClass *)sender;
- (void)action:(SomeClass *)sender;

The declarations of IBOutlet are in <AppKit/NSNibDeclarations.h>.

· IB supports the new NSComboBox object.    It appears on the DataViews palette.

· The date and number formatters now live on the DataViews palette, not the EOF
palette.

Known Problems

These problems exist in this release of Interface Builder:

· If you are running with 8-bit color, testing your interface may cause Interface Builder to
crash.    After entering test interface mode, if you exit test interface mode by clicking on
the close box of the last open window, Interface Builder will be `hidden' - none of your
document windows will reappear.    At this point, you can restore Interface Builder to its
active state by restarting it from the start menu.    Unfortunately, Interface Builder will be
in an unstable state, and may crash after a few operations.    The workaround is to
always exit test interface mode via the `Exit' menu item. (72599)

· After displaying the inspector the first time, deleting a menu item or submenu may
cause Interface Builder to crash.    This can happen even if you close the inspector and
then delete a menu item.    The workaround is to either delete the menu item before you
display the inspector the first time, or to select the `Custom Class' inspector from the
inspector popup before you delete the menu item. (72727)

· If you select BooksOnline from Interface Builder's Help menu on a system running
Windows NT version 3.51, you'll discover that the links on the BooksOnline page

appears to be broken. BooksOnline works correctly, however, if you invoke it from the
OPENSTEP Enterprise program group.

· NEXTSTEP Release 2 nib files containing bitmaps unknown to the Application Kit are
not loaded correctly. As a workaround, open the nib file in a Release 3 Interface Builder
and save it before opening it in 4.1. For a list of bitmaps that the Application Kit
supports, see the file
/NextLibrary/Frameworks/AppKit.framework/Headers/NSBitmapImageRep.h.

· Interface Builder does not allow you to change the size of the document view when
editing a ScrollView.

· The context-sensitive help links don't work for anything in the palettes window, and they
don't work in the ScrollView Attributes display.

· Model files copied from a mail message are incorrectly referenced.    In Interface Builder,
if you drag a model file in from a mail message, it turns into an entity controller.    Don't
make a copy, and save the nib file.    Then drag the model file from the mail message
into ~/Library/Models.    Go back into the nib file and delete the combined
controller/data source object.    Then drag the model from ~/Library/Models into
Interface Builder.    The resulting entity controller still references the model file in your
mailbox.

Novell Netware

Novell Netware is not included in this release of OPENSTEP 4.1.

NEXTIME Framework

New Features in 4.0

OpenStep

The NEXTIME framework was introduced with release 4.0. It differs considerably from the
architecture shipped with NEXTIME 1.0.    The framework makes extensive use of the
OPENSTEP Foundation classes.

NTMovieScreen

The new NTMovieScreen class provides a simple way to add movie support to
applications.    An NTMovieScreen is an NSControl    containing a
NTMovieScreenCell in which you can display a NEXTIME movie.    The user can then

start and pause the movie's playback by clicking anywhere in the NTMovieScreen.

NTMovieScreenCell

NTMovieScreenCell is a subclass of NSActionCell for displaying the video data of a
NEXTIME movie.    Clicking the mouse within the cell's frame normally starts
playback of the movie.    If the movie is already playing, the click pauses the
playback, so that the current video frame is displayed as a still image.    The
NTMovieScreenCell is normally associated with a NTMovieDocument or other object
conforming to the NTMovieDocument and NTMovieDrawing protocols.

NTMovieControlView

The NTMovieControlView class provides a basic horizontal control bar to play,
position, and step through movies.    The view incorporates a pop-up volume control
on systems with sound hardware.    The class is intended to communicate with a
NTMovieDocument or similar class.

NTMovieDocument

The NTMovieDocument manages a single movie, usually by displaying it in an
NTMovieScreen and receiving control messages from an NTMovieControlView.   
Operations supported include play, pause, reset, fast forward or reverse, and step

forward or backward.    Notifications from the NTMovieDocument report changes in
the movie's playback status and its position in time.    The class provides support for
editing movies from the pasteboard.

/usr/etc/showmacresources

The showmacresources program slightly modifies the state of the loaded Macintosh
filesystem to enable or disable reporting of resource forks by the functions used to
report directory contents.    NEXTIME users can use this program to make finding
and copying Macintosh Quicktime movie resource and data forks much easier.

showmacresources
showmacresources +

Enable reporting of resource forks on disks mounted after the
command is run.

showmacresources -
Disable reporting of resource forks on disks mounted after the
command is run.

The Macintosh filesystem must be loaded prior to running showmacresources.   
There are two ways to ensure that the Mac filesystem is loaded.

1) You can load the Macintosh filesystem by inserting a floppy.    Simply insert a
Macintosh CDROM or floppy, and, on non-NeXT hardware, click on the ªDisk-
>Check for Disksº Workspace menu item.    Once the Workspace has found and

displayed the disk, eject it.    The Macintosh file system is now loaded.

2) You can load the Macintosh filesystem from a shell. To do so, run the following
command as root:

kl_util -a /usr/filesystems/mac.fs/macfs_reloc

The Macintosh file system will be loaded.

If you always want to see resource forks for Macintosh files, you can modify your
/etc/rc.local file to always load the Macintosh file system and modify it to show
resource forks:

#
Load Macintosh filesystem and modify to report resource forks
#
if [-f /usr/filesystems/mac.fs/macfs_reloc -a -f
/usr/etc/showmacresources]; then
 /usr/etc/kl_util -a /usr/filesystems/mac.fs/macfs_reloc
 /usr/etc/showmacresources +
fi

Known Problems in This Release

Cursor during Movie Playback

If    the cursor is placed in the movie screen area during movie playback, the cursor
will disappear until moved again.    When the cursor is moved across the playback
area while the movie is playing, it may leave behind small squares of    ªstaleº movie
images which will disappear when the next key frame is drawn (usually within 1
second).

PDO

Known Problems in This Release

This section documents some of the known problems with this release of PDO. Known
problems with specific portions of PDO (such as Foundation, the compiler, and so on)
can be found in their own release note files.

Reference: 66188
 

Problem: Redefinition of MIN and MAX on HP/UX generates a warning
 

Description: On HP/UX, param.h doesn't guard against the redefinition of MIN and MAX.
Since NSString.h indirectly includes param.h, if you've already imported
NSObjCRuntime.h (which defines MIN and MAX, properly guarded against

redefinition), you get a warning when param.h overrides these.
 

Workaround: Edit the copy of    param.h that's located in
NextDeveloper/lib/gcc-lib/hppa1.1-nextpdo-hpux/2.7.2/include/sys
(relative to the location where PDO is installed), and place a guard    around
the MIN and MAX defines, as shown here:

 

#ifndef MIN
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif

Reference: 68675
 

Problem: Hang while looking up connection after fork
 

Description: If you have a DO client which tries to look up a connection using
NSConnection's connectionWithRegisteredName:host:, then forks a
process, and then either exits or tries to look up the connection again, the
client will hang. If the fork is omitted, the client won't hang.

 

Workaround: None.

Reference: 69152
 

Problem: HP-UX nmserver has problems when passing large structures
 

Description: On HP-UX systems, passing large structures over DO without having first
defined a protocol can cause the nmserver to become non-functional.

 

Workaround: Use DO protocols when passing large structures over DO on HP-UX.

Reference: 69056
 

Problem: Multi-threaded DO example occasionally hangs on HP-UX
 

Description: Compiling and running the multi-threaded DO example in
/NextDeveloper/Examples/Foundation/MultiThreadedDO occasionally
results in a hang.

 

Workaround: None.

Deviations from the OpenStep Specification

The following items are known departures from the OpenStep specification:
· [NSString stringByStandardizingPath] raises when presented an absolute path

ending in "..".

· PDO's implementation of dynamic loading of code from bundles doesn't work on
either HP-UX or Solaris. This includes related functionality such as
+bundleForClass:.

Printing

The following notes relate to printing, and augment those found in the Application Kit
Release Notes.

Known Problems in This Release

Reference: 59276
 

Problem: Default printer in NEXTSTEP 3.3 vs. OpenStep apps
 

Description: Different default mechanisms are used for NEXTSTEP 3.3 and OpenStep
4.x applications. As a result, if you select a printer in TextEdit, it will not be
the default printer in Edit.

Windows-Specific Notes

Third-party software is required to print to non-PostScript printers from OPENSTEP
Enterprise applications.

Project Builder

This file contains release notes for the Project Builder application distributed with
OpenStep 4.1. It includes information specific to OPENSTEP for Mach and to
OPENSTEP for Windows as well as information general to both platforms.

Project Builder has undergone a radical redesign since NEXTSTEP 3.3. Its main
window integrates a project browser with a full-featured code editor. You can bring up
panels for building, debugging, finding information in the project, and setting project
attributes. To familiarize yourself with the new Project Builder's capabilities and
features, you can do one of the following.

· On Mach, choose the Help command from Project Builder's Info menu. This
launches a Digital Librarian bookshelf containing the on-line book OpenStep
Development: Tools and Techniques.

· On Windows, choose the How To command from Project Builder's Help menu.
This launches a Windows Help version of the same book.

New Features for 4.1

New Makefiles

Project Builder includes new makefiles that offer several advantages over the
previous ones. They:

· Build projects with lower overhead.
· Fix a number of extensibility problems.
· Allow a higher degree of parallelism with gnumake -j.
· Make it easier to diagnose problems.

When you first open a project that uses the old makefiles, Project Builder displays a
panel that lets you :

· Convert immediately to the new makefiles.
· Keep your current makefiles.
· Defer the decision to later.

If you convert to the new makefiles,    the project defines this path to them in
MAKEFILEDIR:

 $NEXT_ROOT/NextDeveloper/Makefiles/pb_makefiles
 
The original 4.0 Makefiles are located in this directory:
 

$NEXT_ROOT/NextDeveloper/Makefiles/project

Currently, you can override the MAKEFILEDIR attribute for your project in
Makefile.preamble by setting it to the desired directory. Or you can edit the
MAKEFILEDIR attribute in PB.project, but not through the user interface of Project
Builder.    You are strongly encouraged to convert your projects to the new makefiles
if that is feasible. For instance, a new facility that automatically generates .def files
(see below) depends on these makefiles. However, you might keep older makefiles
intact for those exceptional projects that depend upon unique implementation details
in the project makefiles.

Microsoft Linker

The Microsoft linker is now the default for projects on Windows built with Project
Builder. This is the same linker that ships with Visual C++.    For information on using
the linker, consult the Visual C++ documentation. See the following item, "Automatic
Generation of .def Files," for a related issue.

Automatic Generation of .def Files

On Windows, the Microsoft linker requires symbols exported from a framework DLL
to be explictly specified. One way of doing this is in a .def file in the project (for
example, "MyFramework.def"). In prior releases, this file had to be manually created.
Project Builder now generates a .def file for frameworks and dynamic libraries (that
is, library projects producing DLLs).    It re-creates the file the first time a project is
built and, thereafter, updates it every time an object file changes.    To get this feature,

you must update to the new makefiles (See "New Makefiles," above).

If you currently have a .def file for a framework, and it is not highly customized,
delete it and let Project regenerate it for you. Otherwise, leave it where it is. Project
Builder creates a .def file only if there isn't one already in the project.

The .def file that Project Builder creates is comprehensive, so if you want to create a
customized .def file that is a subset of it, first build your project. Then add the
generated .def file in derived_src to Supporting Files in your project and edit it as
necessary.

Note 1:    You should use the CONSTANT keyword instead DATA in your .def file.
The export of framework functions also requires a little extra code.    For more on
both of these items, see "Known Problems in this Release, " below.

Note 2:    If you have prerelease versions of OPENSTEP 4.1 in which you used
Makefile.preamble-winnt and Makefile.postamble-winnt for manually generating
.def files,    you can delete these files and now use Project Builder's automatic .def
generation facility.    Remember to remove all references to items involved in manual
.def generation, particularly where your Makefiles include the platform-specific
makefiles. Do this by disabling the option in your respective pûeamble and
postamble files. For example:

#-include Makefile.preamble-$(PLATFORM_OS)

Specifying Installation Directories for Dynamic Libraries

On Windows, the makefiles for dynamic-library projects (that is, projects with
"LIBRARY_STYLE = DYNAMIC") put the two files generated by the project in
different locations. The .dll file is installed in INSTALLDIR and the .lib file is installed
in the location for libraries that are imported into executable. You can specify this
latter location in Makefile.preamble by setting IMPORT_LIBRARY_DIR to the
correct path.

New Features for 4.0

Some or all of these new features may exist in the Windows version of Project
Buiilder depending on its state at the time of the release:

· The new Launcher Panel allows you to run or debug executables built by the
project.

· Printing is now supported.

· The Build Attributes Inspector    allows you to specify OS specific values for
compiler flags, linker flags, installation and build directories, and build tool.

· The Build Options panel values persist across invocations of Project Builder. The
values you specify on this panel are saved per-user, per-project.

· In the Project Attributes Inspector    for an application project, you can specify a
help file and icons for both NT (.ico, .ICO) and Mach (.eps, .tiff).

· Project Builder by default sets tab stops at regular intervals of eight spaces each.
There is now a defaults write, ªtabStopCharsº, that allows you alter this interval to
any desired number of spaces, as long as that number is greater than zero.

4.1 Conversion Note

            The _main.m files of 3.x applications have to be manually converted to the
new _main.m content. To do this, copy the main() code from existing 4.1 projects
or create a new project and copy its main() code. You can also copy and paste
this code directly from here:

#import <AppKit/AppKit.h>

int main(int argc, const char *argv[]) {
 return NSApplicationMain(argc, argv);
}

Known Problems in This Release Ð Windows

These problems are known to exist with this release on Windows:

Reference: 72980
 

Problem: Automatic .def file generation doesn't handle subprojects.
 

Description: The Project Builder feature that generates .def files only inspects the object
(.o) files at the top level and overlooks the object files in subprojects.
Complex projectsÐthose with one or more subprojectsÐwill therefore not
build correctly.    To work around this problem, add the following code to the
Makefile.preamble of the library or framework.

$(WINDOWS_DEF_FILE): $(OFILES) $(OTHER_OFILES)
$(SILENT) if [! -r "./$(WINDOWS_DEF_FILE)"] ; then \

$(ECHO) -n "Generating $(notdir $@)...." ; \
(cd $(OFILE_DIR); $(DUMP_SYMBOLS) $(OFILES) $(OTHER_OFILES)

`$(CAT) $(NAME).ofileList` | $(EGREP) "(SECT).*(External).*(\|)"
| $(EGREP) -v "(__GLOBAL_$I)|(_OBJC_)" | $(SED) "s/ _/ /" > $
(TMPFILE)) ; \

$(ECHO) "LIBRARY $(NAME).dll" > $(GENERATED_DEF_FILE) ; \
$(ECHO) "EXPORTS" >> $(GENERATED_DEF_FILE) ; \
$(CAT) $(TMPFILE) | $(EGREP) "(SECT2)|(.objc_c)" | $(AWK)

'{printf "\t%s CONSTANT\n", $$NF}' >> $(GENERATED_DEF_FILE) ; \
$(CAT) $(TMPFILE) | $(EGREP) -v "(SECT2)|(.objc_c)" | $(AWK)

'{printf "\t%s\n", $NF}' >> $(GENERATED_DEF_FILE) ; \
$(RM) $(TMPFILE) ; \
$(ECHO) "done"; \

fi
endif

Reference: 72815
 

Problem: Multiple Control-N's in rapid succession causes Project Builder to lock up
 

Description: Typing a series of Control-N characters one after the other causes Project
Builder to display the Open Project panel. Clicking Cancel causes Project
Builder to freeze. At this point, it can only be killed from Windows NT's Task
Manager.

Reference: 72715
 

Problem: BooksOnline doesn't work when accessed from Project Builder on NT 3.51
 

Description: If you select BooksOnline from ProjectBuilder's Help menu on a system
running Windows NT version 3.51, you'll discover that the links on the
BooksOnline page appears to be broken. BooksOnline works correctly,
however, if you invoke it from the OPENSTEP Enterprise program group.

 

Workaround: Access BooksOnline from the OPENSTEP Enterprise program group.

Reference: 72554
 

Problem: Source code versioning is error-prone with derived project files.
 

Description: Sometimes it might be difficult to keep derived project files (Makefile and
app.iconheader) and original project files (PB.project) synchronized in
source-control situations. You can face a similar problem when you modify

Makefile separately from PB.project and need to "back out" your changes.

Project Builder contains in its Resources directory a command-line tool that
generates derived files from PB.project.    The proper invocation of this tool,
called FileWriter, is:

/NextDeveloper/Apps/ProjectBuilder.app/Resources/FileWriter
-project [path/]PB.project -makefile [path/]Makefile [-iconheader
iconHeaderFile]

Note that the -iconheader option is meaningful only on Mach.

Reference: 72542
 

Problem: LIBRARY_PATHS makefile variable not passed to linker
 

Description: If you add libraries to a project using Project Builder's Project->Add Files
command, or if you add entries to the Library Search Order list in the project
inspector, the LIBRARY_PATHS variable is created in the Makefile.
However, this variable is not passed to the linker.

To work around this problem, assign the following value to the
OTHER_LDFLAGS variable in Makefile.preamble:

OTHER_LDFLAGS = $(LIBRARY_PATHS)

Reference: 72344
 

Problem: Installation of .lib file in static library projects
 

Description: In static library projects (LIBRARY_STYLE=STATIC), the .lib file gets
installed twice, once in the INSTALLDIR and once in the location specified
by IMPORT_LIBRARY_DIR in Makefile.preamble. To have the .lib file
installed only in the desired location (INSTALLDIR), set
IMPORT_LIBRARY_DIR to INSTALLDIR.

Reference: 71975
 

Problem: The libtool utility does not recognize the -read_only_relocs flag.
 

Description: A serious side effect of this bug is that this option causes libtool to ignore all
subsequent flags.    Currently there is no workaround except for not using
this flag.

Reference: 69061
 

Problem: Builds will fail if NEXT_ROOT has been modified to contain backward
slashes.

 

Description: The installer specifies NEXT_ROOT with forward slashes, for example:

C:/NeXT/

Do not edit this variable in the Environment section of the System control

panel, even if to change the forward slashes to backward slashes.

Reference: 72307
 

Problem: The Microsoft linker emits a bogus warning about CONSTANT keywords.
 

Description: When you build framework projects, you will see messages complaining
about the use of CONSTANT keywords in your .def file. Because of
problems with the linker, CONSTANT should be used in place of DATA. You
can ignore the warnings.

Reference: 72308
 

Problem: Automatically generated .def files do not include public exported functions
and variables.

 

Description: In creating the .def file for frameworks and dynamic libraries (DLLs), Project
Builder handles Objective-C symbols and data but not functions or
variables. If you have functions in your framework that need to be callable
from the outside,    or variables that should be externally accessible, define
certain macros in a header file and then use them in your function
declarations. These macros allow you to export non-static functions and
variables from the DLL (FRAMEWORK_EXTERN) or to declare them as
extern, but not exported (FRAMEWORK_PRIVATE_EXTERN).

Make a header file for each framework with functions and variables you

wish to export (FrameworkDefines.h), and in it write the following macros
(substitute your own framework name for FRAMEWORK):

#ifndef _FRAMEWORKDEFINES_H
#define _FRAMEWORKDEFINES_H
#endif

#if defined(WIN32)

//
// For Windows
//

#ifndef _FRAMEWORK_BUILDING_DLL
#define _FRAMEWORK_WINDOWS_DLL __declspec(dllimport)
#else
#define _FRAMEWORK_WINDOWS_DLL __declspec(dllexport)
#endif

#ifdef __cplusplus
#define FRAMEWORK_EXTERN _FRAMEWORK_WINDOWS_DLL extern "C"
#define FRAMEWORK_PRIVATE_EXTERN extern "C"
#else
#define FRAMEWORK_EXTERN _FRAMEWORK_WINDOWS_DLL extern
#define FRAMEWORK_PRIVATE_EXTERN extern
#endif

#else

//

// For MACH and PDO
//

#ifdef __cplusplus
// This isnt extern "C" because the compiler will not
// allow this if it has seen an extern "Objective-C"
#define FRAMEWORK_EXTERN extern
#define FRAMEWORK_PRIVATE_EXTERN __private_extern__
#else
#define FRAMEWORK_EXTERN extern
#define FRAMEWORK_PRIVATE_EXTERN __private_extern__
#endif

#endif

You need to import this header in all your other headers and declare your
function prototypes accordingly. Then, before building your framework,
specify "-DFRAMEWORK_BUILDING_DLL" in the Compiler Flags field of
the Build Attributes inspector.

Additionally on Windows, Project Indexing doesn't work and, because of this, the
ªDefinitionsº and ªReferencesº searches in the Project Find Panel don't work either.

Known Problems in This Release Ð    Mach and Windows

Other problems with this release on both Mach and Windows are the following:

· When Escape is defined as the Meta key in Preferences (and Tab is bound to
indentation), Escape-/ (slash) does not cycle through all possible expansions
(50288).

· Queries in the Project Find panel for macro references do not find existing uses of
macros (55187).

· Comparing autosaved and last-saved versions of files in FileMerge does not work
(56892).

· Header files in Framework projects do not become public by default (56924).

· Renaming a subproject doesn't rename the directory the subproject lives in
(57211).

· You cannot switch to a second view when no files have been loaded into the code
editor (57698). To workaround this problem, after selecting a text file in the upper
browser, type Command-1 followed by Command-2. This switches back to a
single view, and then splits it again so it can double the text file in the upper view.

· Indexing generates an error if a header file is empty (57790).

· Build errors in tear-off windows appear in the main editing view (58863).

· An exception may be raised when running a new executable (that is, after
selecting a different executable from the Launcher Options panel) with no

arguments selected when the previous executable had arguments. The
workaround is to deselect the argments from the old executable before selecting
the new one.

· Breakpoints on functions or methods without debugging information aren't
displayed in the breakpoint inspector. (67785)

· Moving a breakpoint icon doesn't update the line number in the Breakpoint
inspector. However, the location of the breakpoint is updated in gdb. (67712).

TextEdit

TextEdit is a new application based on the new text system. In addition to the
standard text editing features in the 3.3 Edit application, it provides:

· "Wrap to Page" mode. This mode causes the document to be wrapped to the
current page size (as opposed to the window size), and thus shows you a simple
WYSIWYG representation of your pages. This mode also allows zooming.

· Support for new text object features such as kerning, ligatures, and baseline
offsets.

· Ability to read/write plain text files in different 8-bit character encodings and
Unicode. Coupled with the Kanji support in the new text object, you can
read/write/edit Kanji files created by 3.3J or 4.1J. (You will need Kanji fonts and
input manager.)

      The alternate encoding to apply to a file is specified by a popup in the Open or
Save panels. The default item, "Default," tells TextEdit to use either the default 8-bit
encoding of the system or Unicode. Other choices let you select different
encodings. You can also set the default setting of this popup via the Preferences
panel.

Sources to TextEdit are available with the developer software, in
/NextDeveloper/Examples/AppKit/TextEdit.

Known Problems in This Release

Reference: 58895
 

Problem: Tabs in plain text mode
 

Description: Tabs in a plain text window are by default set to a multiple of the font width.
However this setting isn't readjusted when the font is changed, so the tabs
get out of sync.

Workaround: Either don't change the font of a plain text window on the fly, or change it via
defaults and restart the application.

Reference: 58741
 

Problem: Displaying unrenderable characters too slow
 

Description: When given characters which are not valid for the current font, the text
system might spend too much time trying to find a font to render them. This
means that files with random binary data could take a long time to load.

Workaround: Avoid binary files. A few binary characters are probably fine, and will be
displayed as boxes, but a total binary file (for instance, an executable),
could keep TextEdit busy for a while.

Reference: None
 

Problem: Encoding popup in Open/Save panels not available under NT3.51
 

Description: Because accessory views aren't supported under NT3.51, there is no
encoding popup in the Open/Save panels.

Workaround: You can use the popup in the Preferences panel to set the default choice for
the popup, which will then be used when files are opened or saved.

In addition, please refer to the Application Kit release notes for the new text system
bugs.

TrueType Fonts

This file contains release notes for the 4.1 TrueType font support. TrueType font
support was introduced with the 4.0 release.

ttf2font

True Type font files can be converted to font files which are usable by the OpenStep
Window Server and the Application Kit. The ttf2font command line utility converts a
TrueType font file to a font directory which contains the Postscript Type 42 font
definition as well as the Adobe Font Metrics file. The command line syntax is as
follows

ttf2font [-o outputPath] trueTypeFont.ttf

where the -o option is used to identify the directory where .font files will be placed

As an example, the following command line converts the TrueType font file
TIMES.TTF and places the resulting .font directory into the ~/Library/Fonts
directory using standard encoding:

ttf2font -o ~/Library/Fonts TIMES.TTF

Advanced options are also available and are as follows:

-v Verbose mode.    All errors and messages are printed to
standard output.

-e encoding Use a specific encoding scheme, where encoding is one of:

nextstep Nextstep encoding
standard Abobe standard encoding
isolatin1 ISO latin 1 encoding
symbol Symbol encoding
font Font-specific encoding

Encoding schemes stored within the font file are font-specific
encoding schemes. The font vendor is responsible embeding
a suitable encoding scheme for your platform.

Specifiying an encoding scheme other than font, causes the
program to ignore the font specific encoding schemes stored
within the file.

-p platformID
-s platformSpecificID Within a TrueType font file there are several tables which

contain font specific encoding schemes. These encoding
schemes are organized by platform; there can be more that
one encoding scheme stored within a file, each identifying a
different platform.

These options allow you to override the default platform. The
platformID and platformSpecificID pair must identify a valid
encoding scheme store within the file. The    -v option    allows
you to observe the platform encoding schemes stored within
the file. See    The TrueType Font Format    Specification for
more details.

If no encoding option is specificed and the font does not
contain alpha-numeric characters, the best font-specific
encoding scheme is used. Otherwise, the default encoding is
standard encoding.

If no encoding schemes yield any glyph-to-character
mappings, then all glyphs are linearly mapped to character
codes 32 through 255.

Known Problems in This Release

· Printing of TrueType fonts can only performed on printers with Postscript interpreter
versions greater that 2013 which have Type 42 font support.

· The TrueType fonts MS Line Draw and Symbol MT do not work.

Window Server

Notes Specific to Release 4.0

New Features in 4.0 (General)

A new release of DPS from Adobe (2015) has been integrated.

Better Font Support

This release includes support for CID fonts and TrueType (type 42) fonts.    You can
use the ttf2font conversion program to convert TTF files to a format suitable for use
with OPENSTEP.    (see TrueType release notes for details).

New Features in 4.0 (Mach Only)

Native 16-bit color support

We have implemented native support for RGB:555/16 framebuffers on Intel platforms
.    In previous releases, rendering to these framebuffers actually only used 4 bits per
channel of precision (12 bits total).    This new rendering implementation gives much
improved color fidelity on RGB:555/16 displays.    The only difference developers
might notice is that readimage will now return 24 bit images from RGB:555/16

displays.

Backing Store Compression

The WindowServer now uses compression to conserve memory for window backing
stores.    Windows which have not been recently referenced are compressed.    This
leads to a slight increase in CPU usage by the WindowServer with the gain of
significantly reducing memory requirements for window backing stores.

NXHosting

NXHosting is supported from 3.3 applications to the 4.0 WindowServer.    NXHosting
from 4.0 to 3.3 is not supported.

New Features in 4.0 (Window NT Only)

On Windows NT the WindowServer plays a different role in OPENSTEP than it does
under Mach.    It is not involved in Window region management or event distribution.
Instead, it serves as a "drawing server" which interprets PostScript and    provides
backing stores for Windows windows.    OPENSTEP applications still rendezvous
with the WindowServer to do their drawing, but instead of creating windows via the
WindowServer, they use WIN32 to create windows directly.    The application then
passes the Windows window number to the WindowServer and a backing store is
created.    All drawing is occurs in the WindowServer, and when flushgraphics is
called, the backing store is transferred to the display via GDI's BitBlt.

NXHosting

NXHosting is not supported (inbound or outbound) on Windows NT.

Pixel Formats

We support drawing into the following DIB formats for backing stores:

8bit color (includes System Palette entries)
555 16bit color
565 16bit color
32 bit color

In Windows 16 color VGA mode, we use 8bit color backing stores.    This mode is
supported for diagnostics, but is not recommended and has some really bad color
artifacts.

In Windows 32bit color mode, our rendering code currently does not gamma correct.
This means that OPENSTEP applications will look dark, unless you display adaptor
supports gamma correction in hardware.

