
NXApp, Winter 1993 (Volume 1, Issue 1).
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

Spreading the Wealth: DO and PDO

written by Dennis Gentry

The Portable Distributed Objects system (PDO) is a powerful subset of NEXTSTEP
technology. It's an extension of Distributed Objects (DO) and is part of the
NEXTSTEP development environment. Distributed Objects and Portable
Distributed Objects enable developers to efficiently construct, operate, and
maintain complex client/server applications in a heterogenous computing
environment.

What happens when more people need to use your application than you had initially planned,
so that you need to split the processing load across several computers? Or, you want to use
NEXTSTEP to build the user interface to a database application, but the database server runs
on an HPâ server? Or maybe your company needs you to build a groupware application that
lets people work together interactively?

What to do? Why, use Distributed Objects and Portable Distributed Objects, of course!

See the Distributed Objects chapter of the NEXTSTEP 3.2 General Reference for more details on both DO
and PDO.

SHARE AND SHARE ALIKE
The Distributed Object system provides a way to share objects among multiple client and
server applications running on separate computers on a network. The server application is a
collection
of objects that are intended for use by cooperating client applications. The server publishes

some
of its objects to make them available to client applications on the same computer and other
computers on the network. To the clients, the published objects are messaged as if they were
in the same process as the rest of the client. This transparent messaging is much cleaner
than previous remote procedure call (RPC) mechanisms. DO preserves the power and
benefits of object-oriented programming, even in a distributed application environment.

The Portable Distributed Object system extends the power of Distributed Objects to non-
NEXTSTEP computers. It allows a core section of the NEXTSTEP environment to run on
other systems. Objects in the PDO environment can communicate over networks with other
Portable Distributed Objects and NEXTSTEP objects. The PDO system includes all the parts
of NEXTSTEP necessary to run distributed object servers plus some additional common
functionality, like NEXTSTEP's file stream functions and portable BuildServer.

GRIEF-FREE CLIENT/SERVER DEVELOPMENT
Compared to other popular RPCs like Sun RPC and Mach RPC, DO and PDO have a
number of advantages that make developing with them nearly transparent. They allow you to
cleanly design client/server application architectures without the hassles that come with other
RPC mechanisms.

Dynamic and simple
One major advantage of DO over previous RPCs is that DO is dynamic. Other RPC systems
require you to specify the exact procedures that you'll call remotely. Likewise, they require
you to indicate the exact types and sizes of the arguments and return values. When you add
a procedure to your RPC project's list of remotely callable procedures you must recompile all
affected code on the server and the client. In contrast, DO allows you to send messages to
objects that don't exist or haven't even been defined. If a new Distributed Object server
implements and exports an object that conforms to some protocol, previously running clients
that use that protocol can begin using the new object immediately.

Another advantage is that DO frees you from many memory management concerns. You can't
completely ignore memory management because there's no automatic garbage collection in
NEXTSTEP. However, if you're just sending and receiving parameters and return values, you
generally don't need to explicitly deal with memory as you would with other RPC systems.

Divide and conquer
With some RPC systems, you must always be (painfully) aware that you're writing an RPC
program before you start. If your existing single-machine code was not written with RPC in

mind and you later need to scale up your application as your business grows, you'll have to
rewrite and extend your program to distribute it across multiple machines. If you're concerned
about decent performance with your RPC application, you have even more work to do.

In contrast, you can often take a non-distributed NEXTSTEP application and make it
distributed with little trouble. The NEXTSTEP application should already be composed of
objects, and distributing your application might involve merely identifying the relevant objects
and moving them to a server program.

DO and PDO also benefit from the advantages of object-oriented programming over
procedural programming. Because your application is made up of objects, and because of the
encapsulation properties of objects, your application will probably be made up of neatly self-
contained computational units from the start. These can often be relatively easily distributed
across multiple machines because of their clean interfaces to other objects, and they should
have reasonable performance in a distributed environment due to locality of reference.

Accessible servers
PDO allows non-NEXTSTEP operating systems to take advantage of Distributed Objects, so
that the power and benefits of object-oriented programming and NEXTSTEP are available in
a heterogenous distributed environment. PDO allows greater reusability of custom objects
developed under NEXTSTEP and doesn't require additional software on NEXTSTEP clients
or servers. It lets you vend and use objects remotely as either clients or servers, even on
machines that aren't running NEXTSTEP. As a result, you can take advantage of
NEXTSTEP's user interface capabilities while using existing server resources.

To find out more about the advantages of object-oriented programming, see ªAn Informal Approach to Object-
Oriented Designº in this issue.

CHOOSING BETWEEN DO AND PDO
Ordinarily, most programmers would probably choose to use DO instead of PDO because DO
runs under the full NEXTSTEP environment and is therefore more powerful, not to mention
simpler to use. For example, the full Application Kitä is available under NEXTSTEP, but not
under PDO. Also, some PDO operating systems don't have the functionality to support
preemptive threads that you may need to build your server. (The Distributed Object Event
Loop comes with PDO to work around this limitation).

However, in some situations you might consider using Portable Distributed Objects rather
than Distributed Objects to build a server for your application:

A central machine must service many requests.

Your applications have occasional compute- or memory-intensive requests, or need a fail-
safe or easily recoverable server.

A non-NEXTSTEP machine is already set up to parcel out a centralized data feed.

You'd like to take advantage of your heterogenous network to perform tasks in parallel.

If you don't have one or more of these requirements, you might find a NEXTSTEP-based DO
server more convenient than a PDO server. If your site outgrows your NEXTSTEP server, it's
relatively easy to move your server to a Portable Distributed Objects platform.

DISTRIBUTING OBJECTS
Applications take advantage of Distributed Objects by sending ordinary Objective C
messages to objects in remote applications. The program that implements and makes an
object available for remote use is called the server, and a program that takes advantage of
that object by sending it messages is a client. A single application can easily play both the
client and server roles.

To set up servers and clients you need to add a few additional lines of code to each
cooperating application to specify which applications and objects are involved. In most cases,
Distributed Objects and Portable Distributed Objects understand and neatly handle most data
types as arguments or return values, including structures, pointers, strings, and, most
importantly, objects (ids).

The server
To make an object distributed and therefore available to other applications, a server program
must first vend the object. Here's a simple application that shares a central stock price data
feed.

id myServer = [[PriceServer alloc] init];
id myConnection = [NXConnection registerRoot: myServer withName:
"stockPriceServer"];

[myConnection run]; // does not return

The NXConnection class provides other, more commonly used methods than run that allow the waiting to
take place asynchronously. More on this in Multithreaded servers.º

This code instantiates a price server, then registers that server with the network name server
as stockPriceServer. The last line loops to wait for remote messages. In each application

that will participate in Distributed Objects, you need to include the two lines of code.

The client
To use an object that has been vended, a client looks up the desired server object and stores
a handle to it in a local NXProxy object. For example, this line stores the handle in theServer:

id theServer = [NXConnection connectToName:"stockPriceServer"];

If this line of code returns a non-nil value to theServer, the client may then refer to the stock
price server on the server machine as if it were implemented in the client, with only a few
exceptions. This is the heart of Distributed Objects. For example:

printf("IBM is currently at %d\n", [theServer priceFor:"IBM"]);

Passing objects
Probably the most important data type that clients and servers can pass to each other is the
id. In the example above, the server explicitly vends and the client looks up only one serving
object. After that, either the client or the server may pass ids of objects that each wishes to
implicitly vend as arguments or return values .

The few non-transparent aspects of Distributed Objects are described in ªAvoiding Pitfalls.º

As long as the client is prepared to handle remote messages via some form of NXConnection
run message and vends an object to the server in this way, the server may then use objects
in the client. Thus, the client and server switch roles. More commonly, the original server
would make additional objects available that the client would find useful, without additional
setup code overhead.

For example, suppose the stock price server should return more attributes than just the price
of the stock. A good way to do this is to have the server return a Stock object that the client
can then query for the stock attributes. The client code might look like this:

id myStock = [theServer stockFor:"IBM"];
struct tm today = gmtime();
printf("IBM is currently at %d\n", [myStock priceAtTime:today]);
printf("IBM's last dividend was %d\n", [myStock dividend]);

Executing the first line implicitly vends a Stock object from the server, accessible through the
id mystock. Each of the printf commands remotely invokes the stock object in the server,
even though the client refers to myStock just like any local object.

Multithreaded servers
In the first example server above, the last line of the program ([myConnection run]) never
returnsÐit just loops while waiting for incoming remote messages. In most applications a
server must do more than simply service remote messages. For example, a real stock price
server might also update a database from a real-time data feed. To allow a server to continue
with other tasks while it also waits for messages to objects it has vended, use multiple
threads. The DO system makes this very easy for Application Kit-based programs with the
NXConnection method runFromAppkit.

Although for most applications you use Portable Distributed Objects in exactly the same way as Distributed
Objects, you can't currently write multithreaded PDO servers. This is because there are no tools for threads in
the HP operating system.

For example, the code from the server shown above might be enhanced to look like this:

id myServer = [[PriceServer alloc] init];
id myConnection = [NXConnection registerRoot: myServer withName:
"stockPriceServer"];

[myConnection runFromAppkit]; // creates a new thread that waits

/* Code to receive data feed goes here and is executed in the original thread.
*/

The runFromAppkit method creates a new thread whose sole purpose is to loop, waiting for
remote method invocations. runFromAppkit is also aware that the Application Kit isn't
thread-safe, so it waits to dispatch remote methods until your application is between
Application Kit events. If your server doesn't use the Application Kit and requires finer-grained
parallelism, other methods let you create threads that dispatch remote methods without
waiting for the Application Kit. These methods are documented in the NEXTSTEP General
Reference book.

AVOIDING PITFALLS
If your application is simple, like the example shown above, you'll find that using Distributed
Objects and Portable Distributed Objects is pretty transparent. However, if you're building a
more complex, robust application there are a few issues that you must be aware of.

Returning self has new semantics
In Objective C it's common to return the id self to indicate success of a method. This has
reasonable performance for local objects, but returning self to a remote caller actually vends
the object to which self refers, with all the overhead involved. Unused object vending is not
excessively expensive, but for maximum efficiency objects should return a more appropriate
type than self.

For example, to indicate success or failure, an object should return a scalar type such as YES
or NO instead of self or nil. If the server doesn't need to return a status at all, it can return void
and the method call can use the oneway keyword. This results in a very fast one-way
asynchronous call, meaning that the caller doesn't even have to wait for the remote method to
finish.

Network or remote machine failure
Make sure that cooperating programs deal gracefully with the failure of their clients or
servers. The exact action an application should take depends on the nature of the
cooperating programs, but DO provides a reasonably simple mechanism that allows
programs to notice the loss of a cooperating program.

To be notified of the loss of a cooperating program, an object needs to request notification
and implement a senderIsInvalid: method. When the object is asynchronously notified via
this method, it must determine which remote objects have become inaccessible and decide
what to do about it.

Non-transparent data types
A few data types can't be passed and returned transparently: unions, void pointers, and
pointers inside structures other than ids and char *s. The basic problem with these types is
that in general the compiler can't know the size of the data being referenced, so it can't pass
the data to a remote program in a meaningful way. Another problem is that the computer on
which the remote object is running might deal with the data differently; for example, it might
use different byte-ordering. The result is that it's not possible to pass data types whose layout
can't be known.

In a future version DO will manage the memory for strings like it currently does for other data types.

There are at least two ways to deal with this limitation: Type-cast pointers, or enclose
complex structures in objects and then transmit the objects. You can type-cast pointers to
non-recursive structures to work around the void pointer problem, and you can encapsulate

more complex structures in objects. However, if you find yourself often transmitting objects
around, you might consider redesigning your application to lessen network traffic.

To transmit object copies instead of vending them, use the new bycopy Objective C keyword
in the parameter list. Be sure to conform to the NXTransport protocol, which requires that you
write three simple methods: encodeRemotelyFor:freeAfterEncoding:isBycopy:,
encodeUsing:, and decodeUsing:. The first of these is actually implemented in the Object
class. You typically override it with a simple two-line method that uses the isByCopy
parameter to decide whether to send a copy of the object or not. If a copy is to be sent, the
other two methods cooperate to send the data necessary to create a copy of the object at its
new location: Locally encodeUsing: packs up the unique data of the object, and on the
remote computer decodeUsing: unpacks it to instantiate a copy.

Memory management of strings
The current version of DO manages the memory for storing pointers to chars (strings)
differently than it does for pointers to other data types. Normally, pointer data is automatically
freed when the server returns; however, in the current DO, the server must explicitly free
strings when it has finished with them. If you don't free strings in your servers, the memory for
those strings is lost.

Performance, deadlock avoidance, and transaction management
For many Distributed Object applications you don't need to worry about optimizing
performance, avoiding deadlock, or managing atomic transactions. However, for large
distributed applications these issues can become very important. For example, with a larger
network and more complex needs, the latent problems you might have in existing DO
applications can become more apparent. This isn't all bad, because if problems are apparent
you have a better chance of fixing them.

Dealing with these issues properly is beyond the scope of this article. However, consider the
inherent complexity involved in writing distributed applications before beginning work on a
large distributed application, rather than as an afterthought. For example, to deal with
deadlock, be careful to reason about the behavior of cooperating and competing servers to
make sure they can never mutually rely on the same resources at the same time in order to
make progress. Likewise, to deal with managing atomic transactions, use a two-phase
commit protocol.

Realities of servers and networks
When you plan to put compute-intensive tasks on a server, keep perspective on scaling
issues.

For example, no current PDO server has the aggregate computing power of 500 or even 10
Pentium-based NEXTSTEP machines. Therefore, if you might eventually decentralize your
application, you shouldn't plan to saturate a single central serverÐrather, consider distributing
compute-intensive tasks across multiple server machines if possible. The trade-off, of course,
is that it can be more difficult and time-consuming to correctly implement your computation for
parallel processing.

If you do decide to distribute a task across several computers, keep in mind that the network
has a finite bandwidth that can be saturated by a few high-performance machines sending
remote messages extensively. Design your application to take advantage of Distributed
Objects' facility for moving objects from one machine to another. This can reduce the amount
of remote messaging that might otherwise occur.

CONCLUSION
DO and PDO offer you excellent tools for developing client/server applications. Their design
also gives you the flexibility to expand applications as NEXTSTEP and PDO become
available on more platforms. We hope you'll find they're just what you need to make great
applications.

Dennis Gentry is a member of the Developer Support Team. You can reach him by e-mail at
Dennis_Gentry@next.com.

References
Andleigh, Prabhat, and Michael Gretzinger. Distributed Object-Oriented Data-Systems Design. Englewood
Cliffs, NJ: Prentice Hall, 1992. ISBN 0-13-174913-7.

Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems. Redwood City, CA:
Benjamin/Cummings, 1994. ISBN 0-8053-1748-1.

NeXT Computer, Inc. NEXTSTEP 3.2 General Reference, vol. II. Palo Alto, CA: Addison Wesley, 1992. ISBN
0-201-62221-1.

NeXT Computer, Inc.    NEXTSTEP 3.2 Release Notes. Redwood City, CA: NeXT Computer, 1993.

NeXT Computer, Inc. Object-Oriented Programming and the Objective C Language. Palo Alto, CA: Addison
Wesley, 1993.

NeXT Computer, Inc. Portable Distributed Objects 1.0 Release Notes. Redwood City, CA: NeXT Computer,
1993.

__
Next Article NeXTanswer #1504 An Informal Approach to Object-Oriented Design
Table of contents http://www.next.com/HotNews/Journal/NXapp/Winter1994/ContentsWinter1994.html

