
Softblox Client Utility Help Index

The Index contains a list of all Help topics available for the Client Utility program.    Index items are 
arrange in alphabetical order within each major category.    You can use the scroll bar to see the entries 
that are not currently visible in the Help window.

For information on how to use Help, press F1 or choose Using Help from the Help menu.

Procedures
Initiating a Conversation
Terminating a Conversation
Executing a Server Command
Requesting and Poking values
Setting Advisories

DDE Execute Commands
Routing Server Commands
Object Server Commands
Timed-Initiator Server Commands
Stored-Procedure Server Commands

Diagnostics
Messages
Return Codes

Glossary
Defined Terms



Initiating a Conversation

A conversation with a DDE server can be initiated by pressing the Initiate button in the Session Group box 
at the bottom of the Client dialog. When the button is pressed, Client will display a popup dialog box 
containing a list of all DDE server conversations that are available on the system. Choose the desired 
server conversation by either double clicking the entry in the list box or making the list box entry current 
and then pressing the OK button as the bottom of the popup
dialog. The entire operation can be cancelled by pressing the Cancel button.

When an entry is chosen, the popup dialog will disappear and the selected entry will appear in the 
Conversation combo box in the Client dialog window.    The Conversation combo box always shows the 
active conversation that is affected by the other controls in the dialog window. When more than one 
conversation exists, you can change the current active conversation to another by changing the 
Conversation combo box to another entry.



Terminating a Conversation

Make the desired conversation the active entry in the Conversation combo box and press the Terminate 
button in the Session Group box.    All conversations can be terminated by pressing the Terminate 
Conversations and Quit button.

Whenever the Client utility is terminated, all active conversations with other DDE servers are 
automatically terminated before the program ends.



Executing a Server Command

Make the desired conversation the active entry in the Conversation combo box. Then type the server 
command in the Command edit window. The syntax of the command depends upon the server that is 
handling the conversation (refer to specific server help information pertaining to Softblox DDE servers). 
After the command is entered, press the Execute button in the Operations group box to forward the 
command to the server.

The result of the command execution is reflected in the status line at near the right-hand bottom of the 
Client window. The appearance of DDE Success signifies that the command was performed successfully. 
When DDE Failure appears, the command produced an error. The content of Rc=nnn provides further 
information about the reason that the command failed (refer to Return Codes for error code assignments.



Requesting and Poking values

Make the desired conversation active in the Conversation combo box.    Then type the item name in the 
Item edit window.

To request a value:

Press the Request button in the Operations group box. The requested value will appear in the large edit 
window that has horizontal and vertical scroll bars.

To poke a value:

Enter the data value in the large edit window that has horizontal and vertical scroll bars. Then press the 
Poke button in the Operations group box.



Setting Advisories

Make the desired conversation the active entry in the Conversation combo box. Type the item to be 
advised whenever changed in the Item edit window. Press the Advise button in the Operations group box 
to establish the advisory.

An advisory can be cancelled by repeating the preceeding steps but pressing the Unadvise button 
instead of the Advise button.

For Setting of Advisories for each specific Softblox Server, refer to the appropriate servers` DDE 
commands. Specifically refer to handling of standard DDE message WM_DDE_ADVISE.



Softblox Routing Server DDE Commands

System Topic Items

DDE EXECUTE Commands

Only the 'System' topics DDE conversation can perform the DDE_EXECUTE operation to pass one or 
more commands to the server for processing. When multiple commands are supplied, the command 
stream is terminated when either all commands are performed successfully or when a command fails. If a 
command fails, any commands that follow are ignored.

Setting up a profile
Starting the Routing Process
Stopping the Routing Processing
Shutting down the Server

Configuring the Communication Driver
Getting the Status of the Communication Driver
Executing a Protocol-Specific Driver Command



Routing Server System Topic

DDE conversations are passed through the protocol to the remote counterpart. In order to handle external 
application control, the server supports the DDE 'System' topic conversation so that other programs can 
send commands to the server.

 The 'System' topic provides a mechanism to obtain information about the server and it's current operating 
state. For responses that contain multiple entries, entries are separated by TAB characters.

Item Purpose

SysItems provides a list of all items supported in conversation

SysCommands returns a list of all supported DDE_EXECUTE commands

Status returns the current status of the server.

Applications returns a list of currently supported remote applications handled by the server

ApplTopics returns a list of currently support applications and topics that are handled by the 
server.

Profile returns the name of the server profile that is active.

CommDrv returns the name of the communications driver that is active on this server.



[profile(profile-filepath)]

loads the specified configuration profile into the server. 



[start]

start the currently selected remote communication protocol. This command is rejected if the protocol is 
already in progress.



[stop]

stop the communication protocol that is currently in progress. This command is rejected if the protocol is 
not started.



[shutdown]

terminate the server immediately. Any active DDE session is automatically terminated before the server 
ends.



[amexec(command-text)]

sends a protocol-specific command to the communications driver for processing. The syntax and usage of 
the command varies by the type of communication driver that is active. This command is rejected if there 
is no protocol established.



[amstatus]

requests the communication driver to render it's current operating status to the server for subsequent 
return to the DDE client. The content of the status information varies by communication driver. Some 
drivers do not return any status.



[amconfig]

invokes the protocol specific configuration dialog. This command is rejected if the protocol is started or 
there is no protocol established.



Softblox Object Server DDE Commands

Standard DDE Messages
System Topic Items

DDE EXECUTE Commands

Only the 'System' topics DDE conversation can perform the DDE_EXECUTE operation to pass one or 
more commands to the server for processing. When multiple commands are supplied, the command 
stream is terminated when either all commands are performed successfully or when a command fails. If a 
command fails, any commands that follow are ignored.

Setting up a profile pool
Shutting down the Server

Variables
Deleting a Variable
Resetting the Contents of a Variable
Transferring Variables between Pools
Freeing the Local and Global Pools

Tables
Creating and Destroying a Table
Opening and Closing a Table for Processing
Locking and Unlocking a Table for Access
Loading and Saving Disk-Resident Tables

Adding Rows to a Table
Accessing Rows of a Table
Replacing Values in a Row of a Table
Deleting Rows of a Table
Emptying a Table's contents

Setting and Accessing the Current_Row_Pointer of a Table
Finding the Number of Rows and Columns in a Table
Enumerating Column Names associated with a Table

Special Variables Set by the Server



Object Server - Handling Standard DDE Messages

A DDE conversation can be initiated to either the defined server topic or the 'System' topic. A conversation 
to the server topic is necessary to manipulate variables or tables. Table manipulation must be performed 
by issuing DDE_EXECUTE commands to invoke the appropriate table function. The server topic handles 
the following DDE messages:

WM_DDE_REQ
returns the contents of the variable identified by the item.

WM_DDE_POKE
set the contents of the local variable identified by the item. 

WM_DDE_ADVISE
establishes a DDE advisory for the variable identified by the item. When the variable is modified, a 
WM_DDE_DATA message is produced. The variable must exist prior to sending this message.

WM_DDE_UNADVISE
cancels the DDE advisory for the variable identified by the item.

WM_DDE_EXECUTE
the command that accompanies this message is processed to perform table or variable management 
services.

WM_DDE_TERMINATE
terminates the conversation and removes any advisories established during the conversation. In Multiple 
Mode, the local variable pool is released.



Object Server System Topic

The 'System' topic provides a mechanism to obtain information about the server and it's current operating 
state. For responses that contain multiple entries, entries are separated by TAB characters.

Item Purpose

SysItems provides a list of all items supported in conversation

SysCommands returns a list of all supported DDE_EXECUTE commands

SysTables returns a list of all tables currently active

Status returns the current status of the server.

Note: The 'System' topic will accept and process DDE_EXECUTE commands but the proper operation of 
variable or table oriented commands should be issued in the conversation with the server topic. If the 
server is operating in Single Mode, the 'System' topic can be used successfully with these functions.



[shutdown]

terminate the server immediately



[vprofile(application-name, private-profile-filepath)]

establish the profile application keyword and filepath for a private profile to be used in variable transfers 
to/from the variable memory pools and the disk profile pool.



[vdelete(variable-name, pool-name)]

delete a variable from the associated pool (either LOCAL or GLOBAL)



[vreset(variable-name, pool-name)]

reset the contents of a variable in the associated pool (either LOCAL or GLOBAL). This commands differs 
from vdelete in that the variable remains defined in the pool and notification linkages are not lost.



[vtransfer(variable-name, from-pool, to-pool)]

transfer the contents of a variable from one pool to another. If the variable exists in the destination pool, 
the destination variable's content is replaced. The from-pool or to-pool specification must be Local, 
Global, or Profile. Before attempting to transfer information to/from the Profile pool, the vprofile command 
must have been issued.



[vgfree]

removes all variable from the global pool

[vlfree]

removes all variables from the local pool



[tcreate(table-name, colname1, colname2, ... colnamen)]

create a new table, in an empty state, with the specified column variable names.

[tdestroy(table-name)]

destroy the table and remove it from memory. If the table is being used by other conversations, only the 
access context for the current DDE conversation is removed and the table unaffected.



[topen(table-name)]

open an access context to the specified table for the current DDE conversation. This command is used 
when the table is being used by more than one conversation.

[tclose(table-name)]

close the access context to a table for the current DDE conversation. The table is unaffected by this 
command but the conversation cannot access the table unless it is opened again.



[tlock(table-name)]

increase the lock count associated with the specified table. Attempts to modify the table by any 
conversation are blocked.

[tunlock(table-name)]

decrease the lock count associated with the specified table. The table remains in a locked state until the 
lock count is rediced to zero.



[tadd(table-name)]
[tadd(table-name, row-number)]

add a row to the specified table using column-name variables. When the row-number is omitted, the row 
is added at the end of the table. If the row-number is specified, the row is inserted at the appropriate 
position in the table.



[tget(table-name)
[tget(table-name, row-number)]
[tget(table-name, row-number, colname1, colname2, ... colnamen)]

get the contents of a row into the column variables. When row-number is omitted or zero, the next 
sequential row is retrieved. Otherwise, the row corresponding to the row-number is retrieved. Column-
item variable names can be specified to map the contents of the row into different variables than those 
defined for the table. When Column-items are specified, the number of items must match the number of 
columns in the table.



[tdelete(table-name)]
[tdelete(table-name, row-number)]

delete the current sequential row or specifically indicated row from the table.



[tempty(table-name)]

set the table in an empty state, all rows comprising the table are released from memory.



[trep(table-name)]
[trep(table-name, row-number)]

replace the row contents of a table with the current column-item variable. When row-number is omitted, 
the next sequential row is replaced. Otherwise, the row corresponding to the row-number is replaced.



[tpoint(table-name, row-number)]

the next sequential row is altered to the specified value which will affect retrieval of subsequent rows on 
tget commands. Specifying row ZERO will reset retrieval to the beginning of the table.

[trow(table-name)]

returns the current sequential row number in the local variable '@ZROW'.



[tcols(table-name)]

returns the number of columns of the table in the local variable '@ZCOLS'

[trows(table-name)]

returns the number of rows currently in the table to the local variable '@ZMAXROW'



[tload(table-name, filepath)]

creates a table using the table-name and loads the contents of the table file specified by filepath into it. An 
access context for the DDE conversation is automatically established.

[tsave(table-name, filepath)]

writes the contents of the table to disk. The table is unaffected by the command.



[tcolname(table-name, receiving-variable-name)]

transfers the column item list for the specified table into the specified local pool variable. Columns items 
are separated by TAB characters.



Object Server - Special Variables

After table commands are successfully performed, the following variables are automatically set in the 
local variable pool to provide feedback information abount the status of the table.

@zname contains the table-name
@zrow contains the row number
@zmaxrow contains the total number of rows in the table
@zcols contains the number of columns in the table



Softblox Timed-Initiator Server DDE Commands

Standard DDE Messages
System Topic Items

DDE EXECUTE Commands

Only the 'System' topics DDE conversation can perform the DDE_EXECUTE operation to pass one or 
more commands to the server for processing. When multiple commands are supplied, the command 
stream is terminated when either all commands are performed successfully or when a command fails. If a 
command fails, any commands that follow are ignored.

Configuring the Server with a Schedule
Shutting down the Server

Starting the Scheduling Process
Stopping the Scheduling Process
Adding and Executing an Action



Timed-Initiator Server - Handling Standard DDE Messages

A DDE conversation can be initiated to either the defined server topic or the 'System' topic. A conversation 
to the server topic is necessary to manipulate variables. The server topic handles the following DDE 
messages:

WM_DDE_REQ
returns the contents of the variable identified by the item.

WM_DDE_POKE
set the contents of the local variable identified by the item. 

WM_DDE_ADVISE
establishes a DDE advisory for the action name identified by the item. When the action completes 
execution, a WM_DDE_DATA message is produced. 

WM_DDE_UNADVISE
cancels the DDE advisory for the action name identified by the item.

WM_DDE_EXECUTE
the command that accompanies this message is processed to server oriented services.

WM_DDE_TERMINATE
terminates the conversation and removes any advisories established during the conversation. In Multiple 
Mode, the local variable pool is released.



Timed-Initiator Server System Topic

The 'System' topic provides a mechanism to obtain information about the server and it's current operating 
state. For responses that contain multiple entries, entries are separated by TAB characters.

Item Purpose

SysItems provides a list of all items supported in conversation

SysCommands returns a list of all supported DDE_EXECUTE commands

Status returns the current status of the server.

Events returns a list of all events currently defined

Actions returns a list of all actions currently defined

ScheduleFile    returns the name of the currently loaded schedule



[start]

start the currently loaded schedule for processing. This command is rejected if the schedule is already in 
progress or there are no actions defined.



[stop]

stop the schedule that is currently in progress. This command is rejected if the scheduler is not started.



[shutdown]

terminate the server immediately. Any active schedule is automatically halted before the server ends.



[schedule(schedule-filepath)]

loads a schedule into the server for subsequent use. This command is rejected if another schedule is 
already in progress or the currently loaded schedule has been modified.



[addaction(action-name, action-type, action-file)]

adds a new action to the list of actions available to the current schedule. The action-type is specified as 
either 'Procedure' or 'Program'. The action-filepath specifies the disk filepath of the associated action 
processor.

[runaction(action-name)]
[runaction(action-name, interval)]
[runaction(action-name, interval, occurs-count)]

marks the specified action for processing. This command is rejected if the scheduler is not started, the 
action does not exist, or the action is already marked for processing. When omitted, interval and occurs-
count default to 1.

These can be used for User-Controlled Scheduling of predefined Actions.



Softblox Stored-Procedure Server DDE Commands

Standard DDE Messages
System Topic Items

DDE EXECUTE Commands

Any DDE conversation can perform the DDE_EXECUTE operation to pass one or more commands to the 
server for processing. When multiple commands are supplied, the command stream is terminated when 
either all commands are performed successfully or when a command fails. If a command fails, any 
commands that follow are ignored.

Initializing a Procedure Instance
Loading a Procedure Instance
Compiling into a Procedure Instance
Saving a Compiled Procedure Instance
Uncompiling from a Procedure Instance
Freeing a Procedure Instance Resources

Submitting a Procedure Instance for Execution
Removing a Procedure Instance from Execution List

Installing Stored-Procedures as DDE Servers

Starting the Execution Cycle
Stopping the Execution Cycle
Shutting down the Server



Stored-Procedure Server - Handling Standard DDE Messages

A DDE conversation can be initiated to either the defined server topic or the 'System' topic. A conversation 
to the server topic is necessary to manipulate variables. The server topic handles the following DDE 
messages:

WM_DDE_REQ
returns the contents of the variable identified by the item.

WM_DDE_POKE
set the contents of the local variable identified by the item. 

WM_DDE_ADVISE
establishes a DDE advisory for the variable identified by the item. When the variable is modified, a 
WM_DDE_DATA message is produced. 

WM_DDE_UNADVISE
cancels the DDE advisory for the variable identified by the item.

WM_DDE_EXECUTE
the command that accompanies this message is processed to perform 

WM_DDE_TERMINATE
terminates the conversation and removes any advisories established during the conversation. 



Stored-Procedure Server System Topic

 The 'System' topic provides a mechanism to obtain information about the server and it's current operating 
state. For responses that contain multiple entries, entries are separated by TAB characters.

Item Purpose

SysItems provides a list of all items supported in conversation

SysCommands returns a list of all supported DDE_EXECUTE commands

Status returns the current status of the server.

Instances returns a list of all active procedure instances

Running returns a list of all executing procedure instances

Applications returns a list of all server applications present

ApplTopics returns a list of all server application and topics that are present.

Profile returns the name of the server profile that is    active on this server.



[start]

start the procedure server dispatcher. Any procedure(s) marked to run begin execution immediately. 
Subsequent procedures that are requested to run will begin automatically. Server configured DDE 
conversations are permitted. This command is rejected if the dispatcher is    lready started.



[stop]

stop the procedure server dispatcher. Any procedure(s) in progress are immediately halted. Server 
configured DDE conversations are automatically terminated. This command is rejected if the server is not 
started.



[shutdown]

shutdown the server and terminate. If the dispatcher is started, it is automatically stopped before the 
server terminates.



[init(instance-name)]

creates an empty procedure instance.



[load(instance-name, procedure-filepath)]

creates a procedure instance and loads a compiled procedure into it.



[compile(instance-name, procedure-source-filepath)]

the source statements from the specified file are compiled into the named procedure instance. 



[uncompile(instance-name, output-source-filepath)]

the procedure instance is converted into ASCII source statements and written to the specified file.



[run(instance-name)]

marks a procedure instance for execution. If the dispatcher is started, the procedure executes 
immediately. Otherwise, it is suspended until the dispatcher is started. This command is rejected if the 
procedure is already running.



[cancel(instance-name)]

cancels execution of a procedure instance. If the procedure was running, it is halted immediately. If 
suspended, the request to execute is removed.



[save(instance-name, output-procedure-filepath)]

writes the compiled procedure image to the specified file.



[free(instance-name)]

the procedure instance is removed from the server and associated resources are released.



[profile(configuration-filename)]

load the indicated DDE server configuration into the server. This command is rejected if the procedure 
dispatcher is running.

Following Notes are provided as Reference for installation of DLL's or Stored-Procedures as DDE 
servers.

Service Invokation

For DLL functions:

BOOL FAR PASCAL function(HWND hwnd, WORD msg, WORD wParam, LONG lParam); 

The values passed to the function are the same values received by the DDE window processor. The 
function can inspect and use the parameters but should not delete global atoms or release data blocks as 
these actions are done by the window processor when the function returns. When processing the 
WM_DDE_REQUEST message, the function should send the WM_DDE_DATA response itself.

For Stored Procedures:

Information pertaining to the service is mapped into variables so that the procedure can take appropriate 
action. 

Variable Content
 
dde.type Message type: INITIATE, TERMINATE, REQUEST, POKE, 

DATA, ADVISE, UNADVISE, EXECUTE, or ACK
dde.application application name for INITIATE
dde.topic topic name for INITIATE
dde.item item name for current message
dde.poke data received in POKE message
dde.data data received in DATA message
dde.command command received in EXECUTE message
dde.ack POSITIVE or NEGATIVE according to acknowledgement
dde.ack TIMER if caused by timer message

When a procedure is processing the REQUEST message, it should set dde.data to the data to be sent 
back to the client by the message post processor. 

Procedure processing of each message is atomic. This means that the procedure is executed in it's 
entirety before returning to the window processor. each DDE conversation has a private variable pool and 
table access context. Information to be shared among all conversations should be transferred into the 
global variable pool.



Message Post-Processing

Message Type Rc Resulting Action

WM_DDE_INITIATE ==0 accept conversation
WM_DDE_INITIATE !=0 reject conversation
WM_DDE_TERMINATEany terminate conversation
WM_DDE_REQUEST ==0 procedure, send WM_DDE_DATA message
WM_DDE_REQUEST ==0 function, nothing - assumes function responded
WM_DDE_REQUEST !=0 send negative acknowledgement with Rc
WM_DDE_POKE ==0 send positive acknowledgement
WM_DDE_POKE !=0 send negative acknowledgement with Rc
WM_DDE_DATA ==0 fAckReq: send positive acknowledgement
WM_DDE_DATA !=0 fAckReq: send negative acknowledgement
WM_DDE_ADVISE ==0 send positive acknowledgement
WM_DDE_ADVISE !=0 send negative acknowledgement with Rc
WM_DDE_UNADVISE ==0 send positive acknowledgement
WM_DDE_UNADVISE !=0 send negative acknowledgement with Rc
WM_DDE_EXECUTE ==0 send positive acknowledgement
WM_DDE_EXECUTE !=0 send negative acknowledgement with Rc
WM_DDE_ACK any release pending data if applicable

Dynamic Link Library functions can set a timer which will cause the Ack function to be entered whenever 
a WM_TIMER message occurs. Differentiation of whether a timer or ack message has occurred can be 
determined by checking the msg type.



Softblox Component Return Codes

This section lists all return codes originating from Softblox components and APIs. Return codes 
are grouped by component and are unique within the entire software suite. There are instances 
where the meaning of an error is repeated for each component. This was deliberately done in 
order to classify the error condition to the software component where it occurred. 

Code Meaning or Component
0 Successful 

Variable Management

Code Meaning or Component
16 No memory
17 variable does not exist
18 variable truncated in receiving buffer
19 invalid variable attribute
20 unsupported variable type
21 variable control blocks corrupted
22 Memory lock failed
23 variable management is not initialized
24 catastrophic system error
25 invalid window handle
26 protection violation
27 invalid API request

Table Management

Code Meaning or Component
32 No memory
33 Memory lock failed
34 catastrophic system error
35 table already exists
36 table does not exist
37 bad table position
38 invalid API request
39 table is empty
40 end of table on sequential retrieve
41 I/O error during load or save operation
42 attempting to load a file that is not a table
43 column name item list truncated in receiving buffer
44 attempt to modify a locked table
45 lock/unlock request invalid
46 table is inuse by other windows
47 table is not open for current window
48 table is already open for current window

Stored-Procedure 

Code Meaning or Component



64 No memory
65 Memory lock failed
66 compiled procedure does not exist on disk
67 attempt to load a file that is not a compiled procedure
68 attempt to execute beyond last procedure operator
69 procedure operation abnormally terminated
70 procedure execution complete
71 invalid procedure operator
72 atom operation failed for current operator
73 heap management operation failed
74 invalid dynamic link library operation
75 invalid DDE communication operation
76 variable management function failed
77 table management function failed
78 invalid goto operation, destination does not exist
79 invalid Clipboard format
80 attempt to store into a literal string
81 error accessing Windows initialization profile
82 compiler: error message returned
83 compiler: error message line exceeds supplied buffer
84 invalid procedure CALL
85 invalid procedure RETURN
86 invalid or illegal table APPLY operator
87 Timeout awaiting DDE acknowledgement
88 attempt to perform DDE operation without a valid session
89 attempt to establish a duplicate DDE conversation
90 DDE communication error
91 Clipboard function failed

Server Specific Errors

Code Meaning or Component
128 No memory
129 Memory lock failed
130 access method: header error
131 access method: receive error
132 access method: transmit error
133 access method: pending request error
134 invalid request
135 invalid command
136 invalid syntax
137 invalid command syntax
138 command execution error
139 command rejected



 Messages

Diagnostic errors appear in the form of a message box and will contain one of the following texts:

Maximum conversation count exceeded

There is not enough memory available to save information about the new conversation that has 
been selected. Terminate any unnecessary conversations that may be active and repeat the 
Initiate that failed.

Previous DDE operation must be acknowledged first

The previous DDE operation is still being processed by the server application. Another operation 
cannot be started until the previous is complete. This error will appear on heavily loaded systems 
or server operations that take a long time process.    Repeat the operation again after a few 
moments. If the error persists, check the server application to ensure that it is still operating 
properly.



 Terms

Advisory
an asyncronous notification when an item changes at a server.

Advise
ask the server to generate an Advisory whenever a specific of item changes.

Unadvise
ask the server to cancel a previous Advise request.

DDE
Dynamic Data Exchange. A protocol for transferring information between Windows applications

Item
the name of an item for a specific piece of information that is exchanged between the client and server 
applications.

Command
a command that causes the server application to perform a specific service when forwarded by an 
Execute operation.

Initiate
establish a conversation between the client application and a server application.

Terminate
remove a conversation between a client application and a server application.

Request
ask the server application to render a specific item of information

Poke
send a specific item of information to a server application


