Devices

Devices

COLLABORATORS
TITLE :
Devices
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Devices

Contents

1 Devices
1.1 FORM Specs from the Original EA Document / FTXT IFF Formatted Text
1.2 FTXT IFF Formatted Text / Introduction it
1.3 FTIXT IFF Formatted Text/Reference
1.4 FTXT IFF Formatted / Standard Data and Property Chunks
1.5 Standard Data and Property Chunks / Character Set
1.6 Standard Data and Property Chunks / Control Sequences
1.7 Standard Data and Property Chunks / Data Chunk CHRS
1.8 Standard Data and Property Chunks / Property Chunk FONS
1.9 Standard Data and Property Chunks / Future Properties
1.10 Standard Data and Property Chunks / Positioning Units,
1.11 FTXTIFF Formatted / FTXT Stripper o o o o e e e e e e e e e e e e e e
1.12 FTXT IFF Formatted / Appendix A: Character Code Table
1.13 FTXT IFF Formatted / Appendix B. FTXT Example
1.14 FTXT IFF Formatted / Appendix C. ISO/ANSI Control Sequences

Devices

1/10

Chapter 1

Devices

1.1 FORM Specs from the Original EA Document / FTXT IFF Formatted Text

Date: November 15, 1985 (Updated Oct, 1988 Commodore-Amiga, Inc.)
From: Steve Shaw and Jerry Morrison, Electronic Arts

and Bob "Kodiak" Burns, Commodore-Amiga
Status: Adopted

Introduction

Standard Data and Property Chunks

FTXT Stripper

Appendix A: Character Code Table
Appendix B: FTXT Example

Appendix C: ISO/ANSI Control Sequences

1.2 FTXT IFF Formatted Text / Introduction

This memo is the IFF supplement for FORM FTXT. An FTXT is an IFF "data
section" or "FORM type" - which can be an IFF file or a part of one -
containing a stream of text plus optional formatting information.

EA IFF 85 is Electronic Arts’ standard for interchange format files.
(See the IFF reference.)

An FTXT is an archival and interchange representation designed for three
uses. The simplest use is for a "console device" or "glass teletype" (the
minimal 2-D text layout means): a stream of "graphic" ("printable")
characters plus positioning characters "space" ("SP") and line terminator
("LEF"). This is not intended for cursor movements on a screen although it
does not conflict with standard cursor-moving characters. The second use
is text that has explicit formatting information (or "looks") such as font
family and size, typeface, etc. The third use is as the lowest layer of a
structured document that also has "inherited" styles to implicitly control
character looks. For that use, FORMs FTXT would be embedded within a
future document FORM type. The beauty of FTXT is that these three uses
are interchangeable, that is, a program written for one purpose can read
and write the others’ files. So a word processor does not have to write a
separate plain text file to communicate with other programs.

Devices

2/10

Text is stored in one or more "CHRS" chunks inside an FTXT. Each CHRS
contains a stream of 8-bit text compatible with ISO and ANSI data
interchange standards. FTXT uses Jjust the central character set from the
ISO/ANSI standards. (These two standards are henceforth called "ISO/ANSI"
as in "see the ISO/ANSI reference".)

Since it’s possible to extract just the text portions from future document
FORM types, programs can exchange data without having to save both plain
text and formatted text representations.

Character looks are stored as embedded control sequences within CHRS
chunks. This document specifies which class of control sequences to use:
the CSI group. This document does not yet specify their meanings, e.g.,
which one means "turn on italic face". Consult ISO/ANSI.

Section 2 defines the chunk types character stream "CHRS" and font
specifier "FONS". These are the "standard" chunks. Specialized chunks
for private or future needs can be added later. Section 3 outlines an
FTXT reader program that strips a document down to plain unformatted text.
Appendix A is a code table for the 8-bit ISO/ANSI character set used here.
Appendix B is an example FTXT shown as a box diagram. Appendix C is a
racetrack diagram of the syntax of ISO/ANSI control sequences.

Reference

1.3 FTXT IFF Formatted Text / Reference

Amiga® is a registered trademark of Commodore-Amiga, Inc.
Electronic Arts(tm) is a trademark of Electronic Arts.

IFF: "EA IFF 85" Standard for Interchange Format Files describes the
underlying conventions for all IFF files.

ISO/ANSI: ISO/DIS 6429.2 and ANSI X3.64-1979. International Organization
for Standardization (ISO) and American National Standards Institute (ANSI)
data- interchange standards. The relevant parts of these two standards
documents are identical. ISO standard 2022 is also relevant.

1.4 FTXT IFF Formatted / Standard Data and Property Chunks

The main contents of a FORM FTXT is in its character stream "CHRS" chunks.
Formatting property chunks may also appear. The only formatting property
yet defined is "FONS", a font specifier. A FORM FTXT with no CHRS
represents an empty text stream. A FORM FTXT may contain nested IFF
FORMs, LISTs, or CAT s, although a "stripping" reader (see section 3) will
ignore them.

Character Sets
Control Sequences
Data Chunk CHRS
Property Chunk FONS
Future Properties

Devices 3/10

Positioning Units

1.5 Standard Data and Property Chunks / Character Set

FORM FTXT uses the core of the 8-bit character set defined by the ISO/ANSI
standards cited at the start of this document. (See Appendix A for a
character code table.) This character set is divided into two "graphic"
groups plus two "control" groups. Eight of the control characters begin
ISO/ANSI standard control sequences. (See "Control Sequences", below.)
Most control sequences and control characters are reserved for future use
and for compatibility with ISO/ANSI. Current reader programs should skip
them.

* CO0 is the group of control characters in the range NUL (hex 0) through
hex 1F. Of these, only LF (hex 0A) and ESC (hex 1B) are significant.

ESC begins a control sequence. LF is the line terminator, meaning "go
to the first horizontal position of the next line". All other CO
characters are not used. In particular, CR (hex 0D) is not recognized

as a line terminator.

* GO is the group of graphic characters in the range hex 20 through hex
7F. SP (hex 20) is the space character. DEL (hex 7F) 1is the delete
character which is not used. The rest are the standard ASCII printable
characters "!" (hex 21) through "~" (hex 7E).

* Cl is the group of extended control characters in the range hex 80
through hex 9F. Some of these begin control sequences. The control
sequence starting with CSI (hex 9B) 1is used for FTXT formatting. All
other control sequences and Cl control characters are unused.

* Gl is the group of extended graphic characters in the range NBSP (hex
AQ) through "y" (hex FF). It is one of the alternate graphic groups
proposed for ISO/ANSI standardization.

1.6 Standard Data and Property Chunks / Control Sequences

Eight of the control characters begin ISO/ANSI standard "control
sequences" (or "escape sequences"). These sequences are described below
and diagramed in Appendix C.

GO = (SP through DEL)

Gl = (NBSP through "y")

ESC-Seq ::= ESC (SP through "/") = ("O" through "~")
ShiftToG2 ::= SS2 GO

ShiftToG3 = SS3 GO

CSI-Seq = CSI (SP through "?") x ("@" through "~")

DCS-Seq ::= (DCS | OSC | PM | APC) (SP through "~" | Gl) * ST

"ESC-Seg" is the control sequence ESC (hex 1B), followed by zero or more
characters in the range SP through "/" (hex 20 through hex 2F), followed

Devices

4/10

by a character in the range "O0" through "~" (hex 30 through hex 7E).
These sequences are reserved for future use and should be skipped by
current FTXT reader programs.

SS2 (hex 8E) and SS3 (hex 8F) shift the single following GO character into
yet-to-be-defined graphic sets G2 and G3, respectively. These sequences
should not be used until the character sets G2 and G3 are standardized. A
reader may simply skip the SS2 or SS3 (taking the following character as a
corresponding GO character) or replace the two-character sequence with a
character like "?" to mean "absent".

FTXT uses "CSI-Seq" control sequences to store character formatting (font
selection by number, type face, and text size) and perhaps layout
information (position and rotation). "CSI-Seq" control sequences start
with CSI (the "control sequence introducer", hex 9B). Syntactically, the
sequence includes zero or more characters in the range SP through "?" (hex
20 through hex 3F) and a concluding character in the range "@" through "~"
(hex 40 through hex 7E). These sequences may be skipped by a minimal FTXT
reader, i.e., one that ignores formatting information.

Note: A future FTXT standardization document will explain the uses of
CSI-Seq sequences for setting character face (light weight vs. medium vs.
bold, italic wvs. upright, height, pitch, position, and rotation). For
now, consult the ISO/ANSI references.

"DCS-Seqg" is the control sequences starting with DCS (hex 90), 0OSC (hex
9D), PM (hex 9E), or APC (hex 9F), followed by zero or more characters
each of which is in the range SP through "~" (hex 20 through hex 7E) or
else a Gl character, and terminated by an ST (hex 9C). These sequences
are reserved for future use and should be skipped by current FTXT reader
programs.

1.7 Standard Data and Property Chunks / Data Chunk CHRS

A CHRS chunk contains a sequence of 8-bit characters abiding by the
ISO/ANSI standards cited at the start of this document. This includes the
character set and control sequences as described above and summarized in
Appendix A and Appendix C.

A FORM FTXT may contain any number of CHRS chunks. Taken together, they
represent a single stream of textual information. That is, the contents
of CHRS chunks are effectively concatenated except that (1) each control
sequence must be completely within a single CHRS chunk, and (2) any
formatting property chunks appearing between two CHRS chunks affects the
formatting of the latter chunk’s text. Any formatting settings set by
control sequences inside a CHRS carry over to the next CHRS in the same
FORM FTXT. All formatting properties stop at the end of the FORM since
IFF specifies that adjacent FORMs are independent of each other (although
not independent of any properties inherited from an enclosing LIST or
FORM) .

1.8 Standard Data and Property Chunks / Property Chunk FONS

Devices 5/10

The optional property "FONS" holds a FontSpecifier as defined in the C

declaration below. It assigns a font to a numbered "font register" so it
can be referenced by number within subsequent CHRS chunks. (This function
is not provided within the ISO and ANSI standards.) The font specifier

gives both a name and a description for the font so the recipient program
can do font substitution.

By default, CHRS text uses font 1 until it selects another font. A
minimal text reader always uses font 1. If font 1 hasn’t been specified,
the reader may use the local system font as font 1.

typedef struct {
UBYTE id; /+ 0 through 9 is a font id number referenced by an SGR
control sequence selective parameter of 10 through 19.
Other values are reserved for future standardization. =/

UBYTE padl; /* reserved for future use; store 0 here */
UBYTE proportional; /x proportional font—-- O=unknown, l=no, 2=yes */
UBYTE serif; /+ serif font-- 0 = unknown, 1 = no, 2 = yes */
char name[]; /+ A NUL-terminated string naming the preferred font. */

} FontSpecifier;

Fields are filed in the order shown. The UBYTE fields are byte-packed (2
per 16-bit word). The field padl is reserved for future standardization.
Programs should store 0 there for now.

The field proportional indicates if the desired font is proportional width
as opposed to fixed width. The field serif indicates if the desired font
is serif as opposed to sans serif. [Issue: Discuss font substitution!]

1.9 Standard Data and Property Chunks / Future Properties

New optional property chunks may be defined in the future to store
additional formatting information. They will be used to represent
formatting not encoded in standard ISO/ANSI control sequences and for
"inherited" formatting in structured documents. Text orientation might be
one example.

1.10 Standard Data and Property Chunks / Positioning Units

Unless otherwise specified, position and size units used in FTXT
formatting properties and control sequences are in decipoints (720
decipoints/inch). This is ANSI/ISO Positioning Unit Mode (PUM) 2. While a
metric standard might be nice, decipoints allow the existing U.S.A.
typographic units to be encoded easily, e.g., "12 points" is "120
decipoints".

1.11 FTXT IFF Formatted / FTXT Stripper

Devices 6/10

An FTXT reader program can read the text and ignore all formatting and
structural information in a document FORM that uses FORMs FTXT for the
leaf nodes. This amounts to stripping a document down to a stream of
plain text. It would do this by skipping over all chunks except FTXT.CHRS
(CHRS chunks found inside a FORM FTXT) and within the FTXT.CHRS chunks
skipping all control characters and control sequences. (Appendix C
diagrams this text scanner.) It may also read FTXT.FONS chunks to find a
description for font 1.

Here’s a Pascal-ish program for an FTXT stripper. Given a FORM (a
document of some kind), it scans for all FTXT.CHRS chunks. This would
likely be applied to the first FORM in an IFF file.

PROCEDURE ReadFORM4CHRS () ; {Read an IFF FORM for FTXT.CHRS chunks.}
BEGIN
IF the FORM’s subtype = "FTXT"

THEN ReadFTXT4CHRS ()
ELSE WHILE something left to read in the FORM
DO BEGIN
read the next chunk header;
CASE the chunk’s ID OF
"LIST", "CAT ": ReadCAT4CHRS();
"FORM" : ReadFORMA4CHRS () ;
OTHERWISE skip the chunk’s body;
END
END
END;

{Read a LIST or CAT for all FTXT.CHRS chunks.}
PROCEDURE ReadCATA4CHRS () ;
BEGIN
WHILE something left to read in the LIST or CAT
DO BEGIN
read the next chunk header;
CASE the chunk’s ID OF

"LIST", "CAT ": ReadCAT4CHRS();
"FORM": ReadFORMA4CHRS () ;
"PROP": IF we’re reading a LIST AND the PROP’s subtype = "FTXT"

THEN read the PROP for "FONS" chunks;
OTHERWISE error——malformed IFF file;
END
END
END;

PROCEDURE ReadFTXT4CHRS () ; {Read a FORM FTXT for CHRS chunks.}
BEGIN
WHILE something left to read in the FORM FTXT
DO BEGIN
read the next chunk header;
CASE the chunk’s ID OF
"CHRS": ReadCHRS () ;
"FONS": BEGIN
read the chunk’s contents into a FontSpecifier variable;
IF the font specifier’s id =1
THEN use this font;
END;

Devices 7/10

OTHERWISE skip the chunk’s body;
END
END
END;

{Read an FTXT.CHRS. Skip all control sequences and unused control chars.}
PROCEDURE ReadCHRS () ;

BEGIN
WHILE something left to read in the CHRS chunk
DO
CASE read the next character OF
LF: start a new output line;
ESC: SkipControl ([’ '..’/’]1, ['0'.."~"1);
IN [".."~"], IN [NBSP..’y"]: output the character;
SS2, SS3: ; {Just handle the following GO character directly,
ignoring the shift to G2 or G3.}
CSI: SkipControl ([" "..'2'], ['@".."~"1);
DCS, 0OSC, PM, APC: SkipControl ([’ ’..’~"1 + [NBSP..’¥y’1, [ST]);
END
END;
{Skip a control sequence of the format (rSet)x* (tSet), i.e., any number of

characters in the set rSet followed by a character in the set tSet.}
PROCEDURE SkipControl (rSet, tSet);
VAR c: CHAR;
BEGIN
REPEAT c¢ := read the next character
UNTIL ¢ NOT IN rSet;

IF ¢ NOT IN tSet
THEN put character c back into the input stream;
END

The following program 1is an optimized version of the above routines
ReadFORM4CHRS and ReadCAT4CHRS for the case where you’re ignoring fonts as
well as formatting. It takes advantage of certain facts of the IFF format
to read a document FORM and its nested FORMs, LISTs, and CAT s without a
stack. In other words, it’s a hack that ignores all fonts and faces to
cheaply get to the plain text of the document.

{Cheap scan of an IFF FORM for FTXT.CHRS chunks.}
PROCEDURE ScanFORM4CHRS () ;
BEGIN
IF the document FORM’s subtype = "FTXT"
THEN ReadFTXT4CHRS ()
ELSE WHILE something left to read in the FORM
DO BEGIN
read the next chunk header;
IF it’s a group chunk (LIST, FORM, PROP, or CAT)
THEN read its subtype ID;
CASE the chunk’s ID OF
"LIST", "CAT ":; {NOTE: See explanation below.x}

Devices 8/10

"FORM": IF this FORM’s subtype = "FTXT"
THEN ReadFTXT4CHRS ()
ELSE; {NOTE: See explanation below.x*}
OTHERWISE skip the chunk’s body;
END
END
END;

*Note: This implementation is subtle. After reading a group header other
than FORM FTXT it just continues reading. This amounts to reading all the
chunks inside that group as if they weren’t nested in a group.

1.12 FTXT IFF Formatted / Appendix A: Character Code Table

This table corresponds to the ISO/DIS 6429.2 and ANSI X3.64-1979 8-bit
character set standards. Only the core character set of those standards
is used in FTXT.

Two Gl characters aren’t defined in the standards and are shown as dark
gray entries in this table. Light gray shading denotes control
characters. (DEL is a control character although it belongs to the
graphic group GO.)

ISO/DIS 6429.2 and ANSI X3.64-1979 Character Code Table

MSN (most significant nybble)

0 1 2 3 4 5 6 7 8 9 A B C D E F
+——— - F———— -
LSN 0| NUL | SP 0 @ = \ p | DCS |NBSP \textdegree{} A P a
o)
1] | ! 1 A Q a q | [\ensuremath{\pm} A N
a il
2| | " 2 B R b r | | ¢ 72 A O & o
3] | # 3 c s c s | | £ $738 A O a ¢
4| | S 4 D T d t | (- A O a o
5| | ¢ 5 E U e u | | S\yen$ $\mathrm{\mu}s A <«
6O & o
6] | 6 F Vv £ v | I 9 E 0 &« &
7| | 7 G W g wo| | 8 ¢ S\timess$s o} S\
divs
8| | 8 H X h x | | uml E g & o
9] I) 9 I Y i v | (c) 71 E U é u
A| LF | : J 7z j z | | °c E U & 1
B| ESC| + ; K [k { CSI | « » E 0 8 Q
C| \ , < L \ 1 | | ST | \ensuremath{\lnot} Y I —
U i 1
D| CR | - = M] m b OsC | SHY % I Y i ¥
E | | . > N A ~ | $S2 PM | ® w 1 b i P
F| |/ ? o _ o DEL | SS3 APC | ¢ I B bl i
__ _/\ /\ /\ /
\Y% Y% \% \Y%
Control Graphic Group Control Graphic Group

Group CO GO Group Cl Gl

Devices 9/10

NBSP is non-breaking space
SHY is soft hyphen

1.13 FTXT IFF Formatted / Appendix B. FTXT Example

Here’s a box diagram for a simple example: "The quick brown fox jumped.
Four score and seven", written in a proportional serif font named "Roman".

| seven

e +
\ |
| " FORM’ 86 | FORM 86 FTXT

\ |
e e +
| \ |
| | "EFTXT' |
| \ |
| /| - + |

| | | "FONS’ 10 | | .FONS 10
| \ |- \ |
[| | 01, 00, 02, 02 | |
| \ |- \ |
| | | Roman\O |
I I o
[|
| e + |

86 < | | " CHRS’ 27 \ | .CHRS 27
bytes N R .
\ | The quick brown | |
\ | fox jumped | |
| +
\ 0 |
T +

| | "CHRS’ 20 \ | .CHRS 20
\ |
\ |
\ |
\ |
\ |

The "0O" after the first CHRS chunk is a pad byte.

1.14 FTXT IFF Formatted / Appendix C. ISO/ANSI Control Sequences

This is a racetrack diagram of the ISO/ANSI characters and control
sequences as used in FTXT CHRS chunks.

line terminator
———te— > Fr——m >

Devices 10/10

[\ ESC-Seq
| 4+ > ESC—————————————————————————— +-——> 0 through ~ —-——>
| | |
| +<----SP through \ <---+
|
|\ printable
I +-—-—-> sp throuvgh ~» - ---------- - 0"\t¥£poHn00660—¢”000o--——---——————— >
| | /
| o> Gl >+
|
[\ ShiftToG2
| +——— > G0-————————————————————= > (produces a G2 character)
|
[\ ShiftToG3
| 4= > G0 > (produces a G3 character)
|
|
|\ CSI-Seq
| +———— > CSI——F——————— +-———> @ through ~ --——>
| | |
| +<--— SP through ? <-——+
|
I\ DCS-Seq
| > DCS, 0SC,—H+——————————— Fomm > ST —————- >
[PM, APC | | \
| +<--- SP through ~ <-——+ +-——> Gl —————— >
|
\ discard
= > any other character----------—————————————- >

Of the various control sequences, only CSI-Seq is used for FTXT character
formatting information. The others are reserved for future use and for
compatibility with ISO/ANSI standards. Certain character sequences are
syntactically malformed, e.g., CSI followed by a C0O, Cl, or Gl character.
Writer programs should not generate reserved or malformed sequences and
reader programs should skip them.

Consult the ISO/ANSI standards for the meaning of the CSI-Seq control
sequences.

The two character set shifts SS2 and SS3 may be used when the graphic
character groups G2 and G3 become standardized.

	Devices
	 FORM Specs from the Original EA Document / FTXT IFF Formatted Text
	 FTXT IFF Formatted Text / Introduction
	 FTXT IFF Formatted Text / Reference
	 FTXT IFF Formatted / Standard Data and Property Chunks
	 Standard Data and Property Chunks / Character Set
	 Standard Data and Property Chunks / Control Sequences
	 Standard Data and Property Chunks / Data Chunk CHRS
	 Standard Data and Property Chunks / Property Chunk FONS
	 Standard Data and Property Chunks / Future Properties
	 Standard Data and Property Chunks / Positioning Units
	 FTXT IFF Formatted / FTXT Stripper
	 FTXT IFF Formatted / Appendix A: Character Code Table
	 FTXT IFF Formatted / Appendix B. FTXT Example
	 FTXT IFF Formatted / Appendix C. ISO/ANSI Control Sequences

