Devices

Devices

COLLABORATORS
TITLE :
Devices
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Devices

Contents
1 Devices 1
1.1 Amiga® RKM Devices: 2 AudioDevice e 1
1.2 2 Audio Device / About Amiga Audio |
1.3 2/ About Amiga Audio/ Definitions L 2
1.4 2 Audio Device / Audio Device Commands and Functions 3
1.5 2 Audio Device / Device Interface L 4
1.6 2/ Device Interface / Opening The Audio Device 5
1.7 2/ Device Interface / Audio Device Command Types o 6
1.8 2/ Device Interface / Scope Of Audio Commands i 6
1.9 2/ Device Interface / Audio And System I/O Functions 6
1.10 2/ Audio And System I/O Functions / BeginlO() 7
1.11 2/ Audio And System I/O Functions / Wait() and WaitPort() 7
1.12 2/ Audio And System I/O Functions / AbortlO() 7
1.13 2/ Device Interface / Closing The Audio Device 7
1.14 2 Audio Device / A Simple Audio Example e 8
1.15 2 Audio Device / Audio Allocation and Arbitration L L 8
1.16 2 Audio Device / Allocation and Arbitration Commands L 9
1.17 2/ Allocation and Arbitration Commands / ADCMD_ALLOCATE 10
1.18 2/ ADCMD_ALLOCATE / How ADCMD_ALLOCATE Operates oo 10
1.19 2/ ADCMD_ALLOCATE / The ADIOF_NOWAITFlag 10
1.20 2/ ADCMD_ALLOCATE / ADCMD_ALLOCATE Examples 11
1.21 2/ ADCMD_ALLOCATE / The AllocationKey i 11
1.22 2/ Allocation and Arbitration Commands / ADCMD_FREE 11
1.23 2/ Allocation and Arbitration Commands / ADCMD_SETPREC 12
1.24 2/ Allocation and Arbitration Commands / ADCMD _LOCK 12
1.25 2 Audio Device / Hardware Control Commands e 13
1.26 2 /Hardware Control Commands /CMD_WRITE 13
1.27 2/ Hardware Control Commands / ADCMD _FINISH e . 14
1.28 2/ Hardware Control Commands / ADCMD_PERVOL 14

1.29

2 / Hardware Control Commands / CMD_FLUSH e 14

Devices

iv
1.30 2 /Hardware Control Commands / CMD_RESET e 15
1.31 2 /Hardware Control Commands / ADCMD_WAITCYCLE 15
1.32 2 /Hardware Control Commands /CMD_STOP e 15
1.33 2 /Hardware Control Commands / CMD_START e e 15
1.34 2 /Hardware Control Commands / CMD_READ e 15
1.35 2 Audio Device / Double Buffered Sound Example 16
1.36 2 Audio Device / Additional Information on the Audio Device 16

Devices

1/16

Chapter 1

Devices

1.1 Amiga® RKM Devices: 2 Audio Device

The Amiga has four hardware audio channels - two of the channels produce
audio output from the left audio connector, and two from the right. These
channels can be used in many ways. You can combine a right and a left
channel for stereo sound, use a single channel, or play a different sound
through each of the channels to create four-part harmony.

About Amiga Audio

Audio Device Commands and Functions

Device Interface

A Simple Audio Example

Audio Allocation and Arbitration
Allocation and Arbitration Commands
Hardware Control Commands

Double Buffered Sound Example

Additional Information on the Audio Device

1.2 2 Audio Device / About Amiga Audio

Most personal computers that produce sound have hardware designed for one
specific synthesis technique. The Amiga computer uses a very general
method of digital sound synthesis that is quite similar to the method used
in digital hi-fi components and state-of-the-art keyboard and drum
synthesizers.

For programs that can afford the memory, playing sampled sounds gives you
a simple and very CPU-efficient method of sound synthesis. A sampled
sound is a table of numbers which represents a sound digitally. When the
sound is played back by the Amiga, the table is fed by a DMA channel into
one of the four digital-to-analog converters in the custom chips. The
digital-to—-analog converter converts the samples into voltages that can be
played through amplifiers and loudspeakers, reproducing the sound.

On the Amiga you can create sound data in many other ways. For instance,
you can use trigonometric functions in your programs to create the more
traditional sounds - sine waves, square waves, or triangle waves - by

Devices

2/16

using tables that describe their shapes. Then you can combine these waves
for richer sound effects by adding the tables together. Once the data are
entered, you can modify them with techniques described below. For
information about the limitations of the audio hardware and suggestions
for improving system efficiency and sound quality, refer to the Amiga
Hardware Reference Manual.

Some commands enable your program to co-reside with other programs using
the audio device at the same time. Programs can co-reside because the
audio device handles allocation of audio channels and arbitrates among
programs competing for the same resources. When properly used, this
allows many programs to use the audio device simultaneously.

The audio device commands help isolate the programmer from the
idiosyncrasies of the custom chip hardware and make it easier to use. But
you can also produce sound on the Amiga by directly accessing the hardware
registers if you temporarily lock out other users first. For certain
types of sound synthesis, this is more CPU-efficient.

Definitions

1.3 2/ About Amiga Audio / Definitions

Terms used in the following discussions may be unfamiliar. Some of the
more important ones are defined below.

Amplitude
The height of a waveform, which corresponds to the amount of voltage or
current in the electronic circuit.

Amplitude modulation
A means of producing special audio effects by using one channel to alter
the amplitude of another.

Channel
One "unit" of the audio device.

Cycle
One repetition of a waveform.

Frequency
The number of times per second a cycle repeats.

Frequency modulation
A means of producing special audio effects by using one channel to
affect the period of the waveform produced by another channel.

Period
The time elapsed between the output of successive sound samples,

in units of system clock ticks.

Precedence
Priority of the user of a sound channel.

Sample

Devices 3/16

Unit of audio data, one of the fixed-interval points on the waveform.
Waveform

Graph that shows a model of how the amplitude of a sound varies over
time-usually over one cycle.

1.4 2 Audio Device / Audio Device Commands and Functions

Command Operation

ADCMD_ALLOCATE Allocate one or more of the four audio channels.

ADCMD_FINISH Abort the current write request on one or more of the
channels. Can be done immediately or at the end of the

current cycle.

ADCMD_FREE Free one or more audio channels.
ADCMD_LOCK Lock one or more audio channels.
ADCMD_PERVOL Change the period and volume for writes in progress. Can

be done immediately or at the end of the cycle.
ADCMD_SETPREC Set the allocation precedence of one or more channels.
ADCMD_WAITCYCLE Wait for the current write cycle to complete on a single

channel. Returns at the end of the cycle or immediately

if no cycle is active on the channel.

CMD_FLUSH Purge all write cycles and waitcycles (in-progress and
queued) for one or more channels.

CMD_READ Return a pointer to the I/O block currently writing on a
single channel.

CMD_RESET Reset one or more channels their initialized state. All
active and queued requests will be aborted.

CMD_START Resume writes to one or more channels that were stopped.

CMD_STOP Stop any write cycle in progress on one or more
channels.

CMD_WRITE Start a write cycle on a single channel.

Exec Functions as Used in This Chapter

AbortIO() Abort a command to the audio device. If in progress, it
is stopped immediately, otherwise it is removed from the
queue.

BeginIO () Initiate a command and return immediately (asynchronous

request) .

Devices 4/16

CheckIO () Determine the current state of an I/O request.
CloseDevice () Relinquish use of the audio device.

OpenDevice () Obtain use of the audio device.

Wait () Wait for a signal from the audio device.

WaitPort () Wait for the audio message port to receive a message.

Exec Support Functions as Used in This Chapter

AllocMem () Allocate a block of memory.

CreatePort () Create a signal message port for reply messages from the
audio device. Exec will signal a task when a message
arrives at the reply port.

DeletePort () Delete the message port created by CreatePort ().

FreeMem () Free a block of previously allocated memory.

1.5 2 Audio Device / Device Interface

The audio device operates like the other Amiga I/O devices. To make
sound, you first open the audio device, then send I/0 requests to it, and
then close it when finished. See "Introduction to Amiga System Devices"
chapter for general information on device usage.

Audio device commands use an extended I/0 request block named IOAudio to
send commands to the audio device. This is the standard IORequest block
with some extra fields added at the end.

struct IOAudio
{

struct IORequest ioa_Request;/+ I/0 request block. See exec/io.h. */
WORD ioa_AllocKey; /* Alloc. key filled in by audio device */
UBYTE *ioa_Data; /+ Pointer to a sample or allocation mask =/
ULONG ioa_Length; /+ Length of sample or allocation mask. */
UWORD ioa_Period; /+ Sample playback speed */
UWORD ioa_Volume; /* Volume of sound x/
UWORD ioa_Cycles; /+x # of times to play sample. O=forever. =/

struct Message ioa_WriteMsg;/* Filled in by device- usually not used x/
}i

See the include file devices/audio.h for the complete structure definition.
Opening The Audio Device Audio And System I/O Functions

Audio Device Command Types Closing The Audio Device
Scope Of Audio Commands

Devices 5/16

1.6 2/ Device Interface / Opening The Audio Device

Before you can use the audio device, you must first open it with a call to
OpenDevice (). Four primary steps are required to open the audio device:

* Create a message port using CreatePort Reply messages from the
device must be directed to a message port.

* Allocate memory for an extended I/0 request structure of type
IOAudio using AllocMem() .

* Fill in io_Message.mn_ReplyPort with the message port created by

CreatePort.
* Open the audio device. Call OpenDevice (), passing IOAudio.
struct MsgPort «AudioMP; /+ Define storage for port pointer =/
struct IOAudio *AudioIO; /* Define storage for IORequest pointer */

if (AudioMP = CreatePort (0,0))

{
AudioIO

(struct IOAudio x)
AllocMem (sizeof (struct IOAudio), MEMF_PUBLIC | MEMF_CLEAR);
if (AudioIO)
{
AudioIO->ioa_Request.io_Message.mn_ReplyPort = AudioMP;
AudioIO->ioa_AllocKey = 0;
}

if (OpenDevice (AUDIONAME, OL, (struct IORequest =*)AudioIO,O0L))
printf ("%$s did not open\n",AUDIONAME) ;

A special feature of the OpenDevice() function with the audio device
allows you to automatically allocate channels for your program to use when
the device is opened. This is convenient since you must allocate one or
more channels before you can produce sound.

This is done by setting ioa_AllocKey to zero, setting
ioa_Request.io_Message.mn_Node.ln_Pri to the appropriate precedence,
setting io_Data to the address of a channel combination array, and setting
ioa_Request.ioca_Length to a non-zero value (the length of the channel

combination array). The audio device will attempt to allocate channels
just as if you had sent the ADCMD_ALLOCATE command (see below). If the
allocation fails, the OpenDevice() call will return immediately.

If you want to allocate channels at some later time, set the
ioa_Request.ioca_Length field of the IOAudio block to zero when you call
OpenDevice (). For more on channel allocation and the ADCMD_ALLOCATE
command, see the section on Allocation and Arbitration below.

UBYTE chans[] = {1,2,4,8}; /+ get any of the four channels =/
if (AudioIO)

{
AudioIO->ioa_Request.io_Message.mn_ReplyPort = AudioMP;

Devices 6/16

AudioIO->ioa_AllocKey = 0;
AudioIO->ioa_Request.io_Message.mn_Node.ln_Pri= 120;
AudioIO->ioa_Data = chans;
AudioIO->ioa_Length = sizeof (chans);

}

if (OpenDevice (AUDIONAME, 0L, (struct IORequest =x)AudioIO,0L))
printf ("$s did not open\n",AUDIONAME) ;

1.7 2/ Device Interface / Audio Device Command Types

Commands for audio use can be divided into two categories:
allocation/arbitration commands and hardware control commands.

There are four allocation/arbitration commands. These do not actually
produce any sound. Instead they manage and arbitrate the audio resources
for the many tasks that may be using audio in the Amiga’s multitasking
environment.

ADCMD_ALLOCATE Reserves an audio channel for your program to use.

ADCMD_FREE — Frees an audio channel.
ADCMD_SETPREC — Changes the precedence of a sound in progress.
ADCMD_LOCK — Tells if a channel has been stolen from you.

The hardware control commands are used to set up, start, and stop sounds
on the audio device:

CMD_WRITE — The main command. Starts a sound playing.

ADCMD_FINISH - Aborts a sound in progress.

ADCMD_PERVOL — Changes the period (speed) and volume of a sound
in progress.

CMD_FLUSH — Clears the audio channels.

CMD_RESET — Resets and initializes the audio device.

ADCMD_WAITCYCLE - Signals you when a cycle finishes.

CMD__STOP — Temporarily stops a channel from playing.

CMD_START - Restarts an audio channel that was stopped.

CMD_READ - Returns a pointer to the current IOAudio request.

1.8 2/ Device Interface / Scope Of Audio Commands

Most audio commands can operate on multiple channels. The exceptions are
ADCMD_WAITCYCLE, CMD_WRITE and CMD_READ, which can only operate on one
channel at a time. You specify the channel (s) that you want to use by
setting the appropriate bits in the ioa_Request.io_Unit field of the
IOAudio block. If you send a command for a channel that you do not own,
your command will be ignored. For more details, see the section on
"Allocation and Arbitration" below.

1.9 2/ Device Interface / Audio And System I/0 Functions

Devices

7/16

BeginIO ()
Wait () and WaitPort ()
AbortIO ()

1.10 2/ Audio And System I/O Functions / BeginlO()

All the commands that you can give to the audio device should be sent by

calling the BeginIO() function. This differs from other Amiga devices
which generally use SendIO() or DoIO(). You should not use SendIO() or
DoIO() with the audio device because these functions clear some special

flags used by the audio device; this might cause audio to work incorrectly

under certain circumstances. To be safe, you should always use BeginIO()
with the audio device.

1.11 2/ Audio And System I/O Functions / Wait() and WaitPort()

These functions can be used to put your task to sleep while a sound plays.

Wait () takes a wake-up mask as its argument. The wake-up mask is usually
the mp_SigBit of a MsgPort that you have set up to get replies back from
the audio device.

WaitPort () will put your task to sleep while a sound plays. The argument
to WaitPort () is a pointer to a MsgPort that you have set up to get

replies back from the audio device.

Wait () and WaitPort () will not remove the message from the reply port.
You must use GetMsg () to remove it.

You must always use Wait () or WaitPort () to wait for I/O to finish with
the audio device.

1.12 2/ Audio And System I/O Functions / AbortlO()

This function can be used to cancel requests for ADCMD_ALLOCATE,
ADCMD_LOCK, CMD_WRITE, or ADCMD_WAITCYCLE. When used with the audio
device, AbortIO() always succeeds.

1.13 2/ Device Interface / Closing The Audio Device

An OpenDevice () must eventually be matched by a call to CloseDevice().

All I/0 requests must be complete before CloseDevice(). If any requests
are still pending, abort them with AbortIO()

AbortIO((struct IORequest)AudioIO); /* Abort any pending requests =/
WaitPort (AudioMP) ; /+ Wait for abort message =*/
GetMsg (AudioMP) ; /+ Get abort message */

Devices 8/16

CloseDevice ((struct IORequest =)AudiolIO);

CloseDevice () performs an ADCMD_FREE command on any channels selected by

the ioa_Request.io_Unit field of the IOAudio request. This means that if
you close the device with the same IOAudio block that you used to allocate
your channels (or a copy of it), the channels will be automatically freed.

If you allocated channels with multiple allocation commands, you cannot
use this function to close all of them at once. Instead, you will have to
issue one ADCMD_FREE command for each allocation that you made. After
issuing the ADCMD_FREE commands for each of the allocations, you can call
CloseDevice () .

1.14 2 Audio Device / A Simple Audio Example

The Amiga’s audio software has a complex allocation and arbitration system
which is described in detail in the sections below. At this point,
though, it may be helpful to look at a simple audio example:

Audio.c

1.15 2 Audio Device / Audio Allocation and Arbitration

The first command you send to the audio device should always be
ADCMD_ALLOCATE. You can do this when you open the device, or at a later
time. You specify the channels you want in the ioca_Data field of the
IOAudio block. If the allocation succeeds, the audio device will return
the channels that you now own in the lower four bits of the
ioa_Request.io_Unit field of your IOAudio block. For instance, if the
io_Unit field equals 5 (binary 0101) then you own channels 2 and 0. If
the io_Unit field equals 15 (binary 1111) then you own all the channels.

When you send the ADCMD_ALLOCATE command, the audio device will also
return a unique allocation key in the ioa_AllocKey of the IOAudio block.
You must use this allocation key for all subsequent commands that you send
to the audio device. The audio device uses this unique key to identify
which task issued the command. If you do not use the correct allocation
key assigned to you by the audio device when you send a command, your
command will be ignored.

When you request a channel with ADCMD_ALLOCATE, you specify a precedence
number from -128 to 127 in the ioa_Request.io_Message.mn_Node.ln_Pri field
of the IOAudio block. If a channel you want is being used and you have
specified a higher precedence than the current user, ADCMD_ALLOCATE will
"steal" the channel from the other user. Later on, if your precedence is
lower than that of another user who is performing an allocation, the
channel may be stolen from you.

If you set the precedence to 127 when you open the device or raise the
precedence to 127 with the ADCMD_SETPREC command, no other tasks can steal
a channel from you. When you have finished with a channel, you must
relinquish it with the ADCMD_FREE command to make it available for other

Devices

9/16

users.
The following table shows suggested precedence values.
SUGGESTED PRECEDENCES FOR CHANNEL ALLOCATION
Predecence Type of Sound

127 Unstoppable. Sounds first allocated at lower precedence,
then set to this to the highest level.

90 - 100 Emergencies. Alert, urgent situation
that requires immediate action.

80 - 90 Annunciators. Attention, bell (CTRL-G).
75 Speech. Synthesized or recorded speech (narrator.device).
50 - 70 Sonic cues. Sounds thatprovide information that is not

provided by graphics. Only the beginning of each sound
(enough to recognize it) should be at this level;the rest
should be set to sound effects level.

-50 - 50 Music program. Musical notes in music-oriented program.
The higher levels should be used for the attack portions
of each note.

-70 - =50 Sound effects. Sounds used in conjunction with graphics.
More important sounds should use higher levels.

-100 - -80 Background. Theme music and restartable background
sounds.
-128 Silence. Lowest level (freeing the channel completely

is preferred).

If you attempt to perform a command on a channel that has been stolen from
you by a higher priority task, an AUDIO_NOALLOCATION error is returned and
the bit in the ioa_Request.io_Unit field corresponding to the stolen
channel is cleared so you know which channel was stolen.

If you want to be warned before a channel is stolen so that you have a
chance to stop your sound gracefully, then you should use the ADCMD_LOCK
command after you open the device. This command is also useful for
programs which write directly to the audio hardware. For more on
ADCMD_LOCK, see the section below.

1.16 2 Audio Device / Allocation and Arbitration Commands

These commands allow the audio channels to be shared among different tasks
and programs. None of these commands can be called from interrupt code.

ADCMD_ALLOCATE ADCMD_FREE ADCMD_SETPREC ADCMD_LOCK

Devices 10/16

1.17 2/ Allocation and Arbitration Commands / ADCMD_ALLOCATE

This command gives your program a channel to use and should be the first

command you send to the audio device. You specify the channels you want
by setting a pointer to an array in the ioa_Data field of the IOAudio
structure. This array uses a value of 1 to allocate channel 0, 2 for

channel 1, 4 for channel 2, and 8 for channel 3. For multiple channels,
add the values together. For example, if you want to allocate all
channels, use a value of 15.

If you want a pair of stereo channels and you have no preference about
which of the left and right channels the system will choose for the
allocation, you can pass a pointer to an array containing 3, 5, 10, and
12. Channels 1 and 2 produce sound on the left side and channels 0 and 3
on the right side. The table below shows how this array corresponds to all
the possible combinations of a right and a left channel.

POSSIBLE CHANNEL COMBINATIONS

Decimal
Channel 3 Channel 2 Channel 1 Channel 0 Value of
(right) (left) (left) (right) Allocation Mask
0 0 1 1 3
0 1 0 1 5
1 0 1 0 10
1 1 0 0 12
How ADCMD_ALLOCATE Operates ADCMD_ALLOCATE Examples
The ADIOF_NOWAIT Flag The Allocation Key

1.18 2/ ADCMD_ALLOCATE / How ADCMD_ALLOCATE Operates

The ADCMD_ALLOCATE command tries the first combination , 3, to see if
channels 0 and 1 are not being used. If they are available, the 3 is
copied into the io_Unit field and you get an allocation key for these
channels in the ioa_AllocKey field. You copy the key into other I/O blocks
for any other commands you may want to perform on these channels.

If channels 0 and 1 are being used, ADCMD_ALLOCATE tries the other
combinations in turn. If all the combinations are in use, ADCMD_ALLOCATE
checks the precedence number of the users of the channels and finds the
combination that requires it to steal the channel or channels of the
lowest precedence. If all the combinations require stealing a channel or
channels of equal or higher precedence, the ADCMD_ALLOCATE request fails.
Precedence is in the 1ln_Pri field of the io_Message in the IOAudio block
you pass to ADCMD_ALLOCATE; it has a value from -128 to 127.

1.19 2/ ADCMD_ALLOCATE / The ADIOF_NOWAIT Flag

If you need to produce a sound right now and otherwise don’t want to
allocate, set the ADIOF_NOWAIT flag to 1. This will cause the command to
return an IOERR_ALLOCFAILED error if it cannot allocate any of the

Devices

11/16

channels. If you are producing a non-urgent sound and you can wait, set
the ADIOF_NOWAIT flag to 0. Then, the IOAudio block returns only when you
get the allocation. If ADIOF_NOWAIT is set to 0, the audio device will
continue to retry the allocation request whenever channels are freed until
it is successful. If the program decides to cancel the request,

AbortIO () can be used.

1.20 2/ ADCMD_ALLOCATE / ADCMD_ALLOCATE Examples

The following are more examples of how to tell ADCMD_ALLOCATE your channel
preferences. If you want any channel, but want a right channel first, use
an array containing 1, 8, 2, and 4:

0001
1000
0010
0100

If you only want a right channel, use 1 and 8 (channels 0 and 3):

0001
1000

If you want only a left channel, use 2 and 4 (channels 1 and 2):

0010
0100

If you want to allocate a channel and keep it for a sound that can be
interrupted and restarted, allocate it at a certain precedence. If it is
stolen, allocate it again with the ADIOF_NOWAIT flag set to 0. When the
channel is relinquished, you will get it again.

1.21 2/ ADCMD_ALLOCATE / The Allocation Key

If you want to perform multi-channel commands, all the channels must have
the same key since the IOAudio block has only one allocation key field.
The channels must all have that same key even when they were not allocated
simultaneously. If you want to use a key you already have, you can pass
that key in the ioca_AllocKey field and ADCMD_ALLOCATE can allocate other
channels with that existing key. The ADCMD_ALLOCATE command returns a new
and unique key only if you pass it a zero in the allocation key field.

1.22 2/ Allocation and Arbitration Commands / ADCMD_FREE

ADCMD_FREE is the opposite of ADCMD_ALLOCATE. When you perform ADCMD_FREE
on a channel, it does a CMD_RESET command on the hardware and "unlocks"
the channel. It also checks to see if there are other pending allocation
requests. You do not need to perform ADCMD_FREE on channels stolen from
you. If you want channels back after they have been stolen, you must

Devices

12/16

reallocate them with the same allocation key.

1.23 2/ Allocation and Arbitration Commands / ADCMD_ SETPREC

This command changes the precedence of an allocated channel. As an example
of the use of ADCMD_SETPREC, assume that you are making the sound of a
chime that takes a long time to decay. It is important that user hears the
chime but not so important that he hears it decay all the way. You could
lower precedence after the initial attack portion of the sound to let
another program steal the channel. You can also set the precedence to
maximum (127) if you do not want the channel(s) stolen from you.

1.24 2/ Allocation and Arbitration Commands / ADCMD LOCK

The ADCMD_LOCK command performs the "steal verify" function. When

another application is attempting to steal a channel or channels,
ADCMD_LOCK gives you a chance to clean up before the channel is stolen.
You perform a ADCMD_LOCK command right after the ADCMD_ALLOCATE command.
ADCMD_LOCK does not return until a higher-priority user attempts to steal
the channel (s) or you perform an ADCMD_FREE command. If someone is
attempting to steal, you must finish up and ADCMD_FREE the channel as
quickly as possible.

You must use ADCMD_LOCK if you want to write directly to the hardware
registers instead of using the device commands. If your channel is stolen,
you are not notified unless the ADCMD_LOCK command is present. This could
cause problems for the task that has stolen the channel and is now using
it at the same time as your task. ADCMD_LOCK sets a switch that is not
cleared until you perform an ADCMD_FREE command on the channel. Canceling
an ADCMD_LOCK request with AbortIO() will not free the channel.

The following outline describes how ADCMD_LOCK works when a channel is
stolen and when it is not stolen.

1. User A allocates a channel.
2. User A locks the channel.

If User B allocates the channel with a higher precedence:

3. User B’s ADCMD_ALLOCATE command is suspended (regardless of the
setting of the ADIOF_NOWAIT flag).

4. User A’s lock command is replied to with an error
(ADIOERR_CHANNELSTOLEN) .

5. User A does whatever is needed to finish up when a channel is stolen.

User A frees the channel with ADCMD_FREE.

7. User B’s ADCMD_ALLOCATE command is replied to. Now user B has the
channel.

()}

Otherwise, if the channel is not allocated by another user:

3. User A finishes the sound.
4. User A performs the ADCMD_FREE command.

Devices

13/16

5. User A’s ADCMD_LOCK command is replied to.

Never make the freeing of a channel (if the channel is stolen) dependent
on allocating another channel. This may cause a deadlock. If you want
channels back after they have been stolen, you must reallocate them with
the same allocation key. To keep a channel and never let it be stolen, set
precedence to maximum (127). Do not use a lock for this purpose.

1.25 2 Audio Device / Hardware Control Commands

The following commands change hardware registers and affect the actual
sound output.

CMD_WRITE CMD_FLUSH CMD_STOP
ADCMD_FINISH CMD_RESET CMD_START
ADCMD_PERVOL ADCMD_WAITCYCLE CMD_READ

1.26 2/ Hardware Control Commands / CMD_ WRITE

This is a single-channel command and is the main command for making
sounds. You pass the following to CMD_WRITE:

* A pointer to the waveform to be played (must start on a word boundary
and must be in memory accessible by the custom chips, MEME_CHIP)

* The length of the waveform in bytes (must be an even number)
* A count of how many times you want to play the waveform

If the count is 0, CMD_WRITE will play the waveform from beginning to end,
then repeat the waveform continuously until something aborts it.

If you want period and volume to be set at the start of the sound, set the
WRITE command’s ADIOF_PERVOL flag. If you do not do this, the previous
volume and period for that channel will be used. This is one of the flags
that is cleared by DoIO() and SendIO(). The ioca_WriteMsg field in the
IOAudio block is an extra message field that can be replied to at the
start of the CMD_WRITE. This second message is used only to tell you when
the CMD_WRITE command starts processing, and it is used only when the
ADIOF_WRITEMESSAGE flag is set to 1.

If a CMD_STOP has been performed, the CMD_WRITE requests are queued up.
The CMD_WRITE command does not make its own copy of the waveform, so any
modification of the waveform before the CMD_WRITE command is finished may
affect the sound. This is sometimes desirable for special effects. To
splice together two waveforms without clicks or pops, you must send a
separate, second CMD_WRITE command while the first is still in progress.
This technique is used in double-buffering, which is described below.

By using two waveform buffers and two CMD_WRITE requests you can compute a
waveform continuously. This is called double-buffering. The following
describes how you use double-buffering.

Devices

14 /16

1. Compute a waveform in memory buffer A.

2. Issue CMD_WRITE A with io_Data pointing to buffer A.
3. Continue the waveform in memory buffer B.

4. Issue CMD_WRITE B with io_Data pointing to Buffer B.
5. Wait for CMD_WRITE A to finish.

6. Continue the waveform in memory buffer A.

7. Issue CMD_WRITE A with io_Data pointing to Buffer A.
8. Wait for CMD_WRITE B to finish.

9. Loop back to step 3 until the waveform is finished.

10. At the end, remember to wait until both CMD_WRITE A and B are
finished.

1.27 2/ Hardware Control Commands / ADCMD_ FINISH

The ADCMD_FINISH command aborts (calls AbortIO()) the current write
request on a channel or channels. This is useful if you have something
playing, such as a long buffer or some repetitions of a buffer, and you
want to stop it.

ADCMD_FINISH has a flag you can set (ADIOF_SYNCCYCLE) that allows the
waveform to finish the current cycle before aborting it. This is useful
for splicing together sounds at zero crossings or some other place in the
waveform where the amplitude at the end of one waveform matches the
amplitude at the beginning of the next. Zero crossings are positions
within the waveform at which the amplitude is zero. Splicing at zero
crossings gives you fewer clicks and pops when the audio channel is turned
off or the volume is changed.

1.28 2/ Hardware Control Commands / ADCMD_PERVOL

ADCMD_PERVOL lets you change the volume and period of a CMD_WRITE that is
in progress. The change can take place immediately or you can set the
ADIOF_SYNCCYCLE flag to have the change occur at the end of the cycle.
This is useful to produce vibratos, glissandos, tremolos, and volume
envelopes in music or to change the volume of a sound.

1.29 2/ Hardware Control Commands / CMD FLUSH

Devices 15/16

CMD_FLUSH aborts (calls AbortIO()) all CMD_WRITE and all ADCMD_WAITCYCLEs
that are queued up for the channel or channels. It does not abort
ADCMD_LOCKs (only ADCMD_FREE clears locks).

1.30 2/ Hardware Control Commands / CMD RESET

CMD_RESET restores all the audio hardware registers. It clears the attach
bits, restores the audio interrupt vectors if the programmer has changed
them, and performs the CMD_FLUSH command to cancel all requests to the
channels. CMD_RESET also unstops channels that have had a CMD_STOP
performed on them. CMD_RESET does not unlock channels that have been
locked by ADCMD_LOCK.

1.31 2/ Hardware Control Commands / ADCMD_WAITCYCLE

This is a single-channel command. ADCMD_WAITCYCLE is replied to when the
current cycle has completed. TIf there is no CMD_WRITE in progress, it
returns immediately.

1.32 2/ Hardware Control Commands / CMD STOP

This command stops the current write cycle immediately. If there are no
CMD_WRITEs in progress, it sets a flag so any future CMD_WRITEs are queued
up and do not begin processing (playing).

1.33 2/ Hardware Control Commands / CMD_START

CMD_START undoes the CMD_STOP command. Any cycles that were stopped by the
CMD_STOP command are actually lost because of the impossibility of
determining exactly where the DMA ceased. If the CMD_WRITE command was
playing two cycles and the first one was playing when CMD_STOP was issued,
the first one is lost and the second one will be played.

This command is also useful when you are playing the same wave form with
the same period out of multiple channels. If the channels are stopped when
the CMD_WRITE commands are issued, CMD_START exactly synchronizes them,
avoiding cancellation and distortion. When channels are allocated, they
are effectively started by the CMD_START command.

1.34 2/ Hardware Control Commands / CMD_READ

CMD_READ is a single-channel command. Its only function is to return a
pointer to the current CMD_WRITE command. It enables you to determine
which request is being processed.

Devices 16/16

1.35 2 Audio Device / Double Buffered Sound Example

The program listed below demonstrates double buffering with the audio
device. Run the program from the CLI. It takes one parameter - the name
of an IFF 8SVX sample file to play on the Amiga’s audio device. The
maximum size for a sample on the Amiga is 128K. However, by using
double-buffering and queueing up requests to the audio device, you can
play longer samples smoothly and without breaks.

Audio_8SVX.c

1.36 2 Audio Device / Additional Information on the Audio Device

Additional programming information on the audio device can be found in
the include files and the Autodocs for the audio device. Both are
contained in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.
Information can also be found in the Amiga Hardware Reference Manual.

Audio Device Information

INCLUDES devices/audio.h
devices/audio.1i

AUTODOCS audio.doc

	Devices
	Amiga® RKM Devices: 2 Audio Device
	2 Audio Device / About Amiga Audio
	2 / About Amiga Audio / Definitions
	2 Audio Device / Audio Device Commands and Functions
	2 Audio Device / Device Interface
	2 / Device Interface / Opening The Audio Device
	2 / Device Interface / Audio Device Command Types
	2 / Device Interface / Scope Of Audio Commands
	2 / Device Interface / Audio And System I/O Functions
	2 / Audio And System I/O Functions / BeginIO()
	2 / Audio And System I/O Functions / Wait() and WaitPort()
	2 / Audio And System I/O Functions / AbortIO()
	2 / Device Interface / Closing The Audio Device
	2 Audio Device / A Simple Audio Example
	2 Audio Device / Audio Allocation and Arbitration
	2 Audio Device / Allocation and Arbitration Commands
	2 / Allocation and Arbitration Commands / ADCMD_ALLOCATE
	2 / ADCMD_ALLOCATE / How ADCMD_ALLOCATE Operates
	2 / ADCMD_ALLOCATE / The ADIOF_NOWAIT Flag
	2 / ADCMD_ALLOCATE / ADCMD_ALLOCATE Examples
	2 / ADCMD_ALLOCATE / The Allocation Key
	2 / Allocation and Arbitration Commands / ADCMD_FREE
	2 / Allocation and Arbitration Commands / ADCMD_SETPREC
	2 / Allocation and Arbitration Commands / ADCMD_LOCK
	2 Audio Device / Hardware Control Commands
	2 / Hardware Control Commands / CMD_WRITE
	2 / Hardware Control Commands / ADCMD_FINISH
	2 / Hardware Control Commands / ADCMD_PERVOL
	2 / Hardware Control Commands / CMD_FLUSH
	2 / Hardware Control Commands / CMD_RESET
	2 / Hardware Control Commands / ADCMD_WAITCYCLE
	2 / Hardware Control Commands / CMD_STOP
	2 / Hardware Control Commands / CMD_START
	2 / Hardware Control Commands / CMD_READ
	2 Audio Device / Double Buffered Sound Example
	2 Audio Device / Additional Information on the Audio Device

