
Devices

Devices ii

COLLABORATORS

TITLE :

Devices

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Devices iii

Contents

1 Devices 1

1.1 Amiga® RKM Devices: 15 Resources . 1

1.2 15 Resources / The Amiga Resources . 1

1.3 15 Resources / Resource Interface . 2

1.4 15 Resources / BattClock Resource . 3

1.5 15 Resources / BattMem Resource . 4

1.6 15 Resources / CIA Resource . 5

1.7 15 Resources / Disk Resource . 7

1.8 15 Resources / FileSystem Resource . 9

1.9 15 Resources / Misc Resource . 9

1.10 15 / Misc Resource / C Example Of Allocating Misc Resources . 10

1.11 15 Resources / Potgo Resource . 11

Devices 1 / 12

Chapter 1

Devices

1.1 Amiga® RKM Devices: 15 Resources

The Amiga’s low-level hardware control functions are collectively referred
to as "Resources". Most applications will never need to use the
hardware at the resource level - the Amiga’s device interface is much more
convenient and provides for multitasking. However, some high performance
applications, such as MIDI time stamping, may require direct access to the
Amiga hardware registers.

NEW FEATURES FOR VERSION 2.0

Feature Description
--------- ------------
BattClock New resource
BattMem New resource
FileSystem New resource

Compatibility Warning:

The new features for 2.0 are not backwards compatible.

The Amiga Resources BattMem Resource FileSystem Resource
Resource Interface CIA Resource Misc Resource
BattClock Resource Disk Resource Potgo Resource

1.2 15 Resources / The Amiga Resources

There are currently seven standard resources in the Amiga system. The
following lists the name of each resource and its function.

battclock.resource
grants access to the battery-backed clock chip.

battmem.resource
grants access to non-volatile RAM.

cia.resource

Devices 2 / 12

grants access to the interrupts and timer bits of the 8520 CIA
(Complex Interface Adapter) chips.

disk.resource
grants temporary exclusive access to the disk hardware.

FileSystem.resource
grants access to the file system.

misc.resource
grants exclusive access to functional blocks of chip registers. At
present, definitions have been made for the serial and parallel
hardware only.

potgo.resource
manages the bits of the proportional I/O pins on the game controller
ports.

The resources allow you direct access to the hardware in a way that is
compatible with multitasking. They also allow you to temporarily bar
other tasks from using the resource. You may then use the associated
hardware directly for your special purposes. If applicable, you must
return the resource back to the system for other tasks to use when you are
finished with it.

See the Amiga Hardware Reference Manual for detailed information on the
actual hardware involved.

Look Before You Leap.

Resources are just one step above direct hardware manipulation. You
are advised to try the higher level device and library approach
before resorting to the hardware.

1.3 15 Resources / Resource Interface

Resources provide functions that you call to do low-level operations with
the hardware they access. In order to use the functions of a resource,
you must obtain a pointer to the resource. This is done by calling the
OpenResource() function with the resource name as its argument.

OpenResource() returns a pointer to the resource you request or NULL
if it does not exist.

#include <resources/filesysres.h>

struct FileSysResource *FileSysResBase = NULL;

if (!(FileSysResBase = OpenResource(FSRNAME)))
printf("Cannot open %s\n",FSRNAME);

There is no CloseResource() function. When you are done with a resource,
you are done with it. However, as you will see later in this chapter,
some resources provide functions to allocate parts of the hardware they
access. In those cases, you will have to free those parts for anyone else

Devices 3 / 12

to use them.

Each resource has at least one include file in the resources subdirectory
of the include directory. Some of the include files contain only the name
of the resource; others list structures and bit definitions used by the
resource. The include files will be listed at the end of this chapter.

Calling a resource function is the same as calling any other function on
the Amiga. You have to know what parameters it accepts and the return
value, if any. The Autodocs for each resource lists the functions and
their requirements.

#include <hardware/cia.h>
#include <resources/cia.h>

struct Library *CIAResource = NULL;

void main()
{

WORD mask = 0;

if (!(CIAResource = OpenResource(CIABNAME)))
printf("Cannot open %s\n",CIABNAME);

else
{
/* What is the interrupt enable mask? */
mask = AbleICR(CIAResource,0);

printf("\nThe CIA interrupt enable mask: %x \n",mask);
}

}

Looks Can Be Deceiving.

Some resources may look like libraries and act like libraries, but be
assured they are not libraries.

1.4 15 Resources / BattClock Resource

The battery-backed clock (BattClock) keeps Amiga time while the system is
powered off. The time from the BattClock is loaded into the Amiga system
clock as part of the boot sequence.

The battclock resource provides access to the BattClock. Three functions
allow you to read the BattClock value, reset it and set it to a value you
desire.

BattClock Resource Functions

ReadBattClock() Read the time from the BattClock and
returns it as the number of seconds since
12:00 AM, January 1, 1978.

ResetBattClock() Reset the BattClock to 12:00 AM, January 1,

Devices 4 / 12

1978.

WriteBattClock() Set the BattClock to the number of seconds
you pass it relative to 12:00 AM, January
1, 1978.

The utility.library contains time functions which convert the number of
seconds since 12:00 AM, January 1, 1978 to a date and time we can
understand, and vice versa. You will find these functions useful when
dealing with the BattClock. The example program below uses the
Amiga2Date() utility function to convert the value returned by
ReadBattClock(). See the "Utility Library" chapter of the Amiga ROM
Kernel Reference Manual: Libraries for a discussion of the utility.library
and the Amiga ROM Kernel Reference Manual: Includes and Autodocs for a
listing of its functions.

So, You Want to Be A Time Lord?

This resource will allow you to set the BattClock to any value you
desire. Keep in mind that this time will endure a reboot and could
adversely affect your system.

Read_BattClock.c

Additional programming information on the battclock resource can be found
in the include files and the Autodocs for the battclock resource and the
utility library.

1.5 15 Resources / BattMem Resource

The battery-backed memory (BattMem) preserves a small portion of Amiga
memory while the system is powered off. Some of the information stored in
this memory is used during the system boot sequence.

The battmem resource provides access to the BattMem. Four functions allow
you to use the BattMem.

BattMemResource Functions

ObtainBattSemaphore() Obtain exclusive access to the BattMem.

ReadBattMem() Read a bitstring from the BattMem. You
specify the bit position and the number of
bits you wish to read.

ReleaseBattSemaphore() Relinquish exclusive access to the BattMem.

WriteBattMem() Write a bitstring to the BattMem. You
specify the bit position and the number of
bits you wish to write.

The system considers BattMem to be a set of bits rather than bytes. This
is done to conserve the limited space available. All bits are reserved,
and applications should not read, or write undefined bits. Writing bits
should be done with extreme caution since the settings will survive

Devices 5 / 12

power-down/power-up. You can find the bit definitions in the BattMem
include files resources/battmembitsamiga.h, resources/battmembitsamix.h
and resources/battmembitsshared.h. They should be consulted before you do
anything with the resource.

You Don’t Need This Resource.

The BattMem resource is basically for system use only. There is
generally no reason for applications to use it. It is documented here
simply for completeness.

Additional information on the battmem resource can be found in the include
files and the Autodocs for the battmem resource.

BattMem Resource Information
--
INCLUDES resources/battmem.i

resources/battmembitsamiga.h
resources/battmembitsamix.h
resources/battmembitsshared.h

AUTODOCS battmem.doc

1.6 15 Resources / CIA Resource

The CIA resource provides access to the timers and timer interrupt bits of
the 8520 Complex Interface Adapter (CIA) A and B chips. This resource is
intended for use by high performance timing applications such as MIDI time
stamping and SMPTE time coding.

Four functions allow you to interact with the CIA hardware.

CIA Resource Functions

AbleICR() Enable or disable Interrupt Control
Register interrupts. Can also return the
current or previous enabled interrupt mask.

AddICRVector() Allocate one of the CIA timers by assigning
an interrupt handler to an interrupt bit
and enabling the interrupt of one of the
timers. If the timer you request is not
available, a pointer to the interrupt
structure that owns it will be returned.

RemICRVector() Remove an interrupt handler from an
interrupt bit and disable the interrupt.

SetICR() Cause or clear one or more interrupts, or
return the current or previous interrupt
status.

Each CIA chip has two interval timers within it - Timer A and Timer
B - that may be available. The CIA chips operate at different interrupt
levels with the CIA-A timers at interrupt level 2 and the CIA-B timers at
interrupt level 6.

Devices 6 / 12

Choose A Timer Wisely.

The timer you use should be based solely on interrupt level and
availability. If the timer you request is not available, try for
another. Whatever you do, do not base your decision on what you
think the timer is used for by the system.

You allocate a timer by calling AddICRVector(). This is the only way you
should access a timer. If the function returns zero, you have
successfully allocated that timer. If it is unavailable, the owner
interrupt will be returned.

/* allocate CIA-A Timer A */
inta = AddICRVector (CIAResource, CIAICRB_TA, &tint);

if (inta) /* if allocate was not successful */
printf("Error: Could not allocate timer\n");

else
{
...ready for timing
}

The timer is deallocated by calling RemICRVector(). This is the only way
you should deallocate a timer.

RemICRVector(CIAResource, CIAICRB_TA, &tint);

Your application should not make any assumptions regarding which interval
timers (if any) are available for use; other tasks or critical operating
system routines may be using the interval timers. In fact, in the latest
version of the operating system, the timer device may dynamically allocate
one of the interval timers.

Time Is Of The Essence!

There are a limited number of free CIA interval timers. Applications
which use the interval timers may not be able to run at the same time
if all interval timers are in use. As a general rule, you should use
the timer device for most interval timing.

You read from and write to the CIA interrupt control registers using
SetICR() and AbleICR(). SetICR() is useful for sampling which cia
interrupts (if any) are active. It can also be used to clear and generate
interrupts. AbleICR() is used to disable and enable a particular CIA
interrupt. Additional information about these functions can be found in
the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Things to keep in mind:

1. Never directly read from or write to the CIA interrupt control
registers. Always use SetICR() and AbleICR().

2. Your interrupt routine will be called with a pointer to your data
area in register A1, and a pointer to the code being called in
register A5. No other registers are set up for you. You must observe
the standard convention of preserving all registers except D0-D1 and

Devices 7 / 12

A0-A1.

3. Never turn off all level 2 or level 6 interrupts. The proper way to
disable interrupts for an interval timer that you’ve successfully
allocated is via the AbleICR() function.

4. Interrupt handling code should be written in assembly code and, if
possible, should signal a task to do most of the work.

5. Do not make assumptions about which CIA interval timers (if any) are
available for use. The only proper way to own an interval timer is
via the AddICRVector() function.

6. Do not use SetICR(), AbleICR() and RemICRVector() to affect timers or
other CIA hardware which your task does not own.

Changes in the CIA resource:

* In pre-V36 versions of the operating system, SetICR() could return
FALSE for a particular interrupt just prior to processing the
interrupt. SetICR() now returns TRUE for a particular interrupt until
sometime after the interrupt has been processed.

* Applications which only need to read a CIA interval timer should use
the ReadEClock() function of the timer device. See "Timer Device"
chapter of this manual for more information on ReadEClock().

* The timer device may dynamically allocate a free CIA interval timer.
Do not make any assumptions regarding which interval timers are in
use unless you are taking over the machine completely.

Cia_Interval.c

Additional programming information on the CIA resource can be found in the
include files and the Autodocs for the CIA resource and the 8520 spec.
The includes files and Autodocs are in the Amiga ROM Kernel Reference
Manual: Includes and Autodocs and the 8520 spec is in the Amiga
Hardware Reference Manual.

CIA Resource Information

INCLUDES resources/cia.h

resources/cia.i
hardware/cia.h
hardware/cia.i

AUTODOCS cia.doc

HARDWARE 8520 specification

1.7 15 Resources / Disk Resource

The Disk resource obtains exclusive access to the floppy disk hardware
There are four disk/MFM units available, units 0-3.

Devices 8 / 12

Six functions are available for dealing with the floppy disk hardware.

Disk Resource Functions

AllocUnit() Allocate one of the units of the disk
resource.

FreeUnit() Deallocate an allocated disk unit.

GetUnit() Allocate the disk for a driver.

GetUnitID() Return the drive ID of a specified drive
unit.

GiveUnit() Free the disk.

ReadUnitID() Reread and return the drive ID of a
specified unit.

The disk resource provides both a gross and a fine unit allocation scheme.
AllocUnit() and FreeUnit() are used to claim a unit for long term use, and
GetUnit() and GiveUnit() are used to claim a unit and the disk hardware
for shorter periods.

The trackdisk device uses and abides by both allocation schemes. Because
a trackdisk unit is never closed for Amiga 3.5" drives (the file system
keeps them open) the associated resource units will always be allocated
for these drives. GetUnit() and GiveUnit() can still be used, however, by
other applications that have not succeeded with AllocUnit().

You must not change the state of of a disk that the trackdisk device is
using unless you either

a) force its removal before giving it up, or

b) return it to the original track (with no changes to the track), or

c) CMD_STOP the unit before GetUnit(), update the current track number
and CMD_START it after GiveUnit(). This option is only available
under V36 and higher versions of the operating system.

ReadUnitID() is provided to handle drives which use the unit number in a
dynamic manner. Subsequent GetUnit() calls will return the value obtained
by ReadUnitID().

It is therefore possible to prevent the trackdisk device from using units
that have not yet been mounted by successfully performing an AllocUnit()
for that unit. It is also possible to starve trackdisk usage by
performing a GetUnit(). The appropriate companion routine (FreeUnit() or
GiveUnit()) should be called to restore the resource at the end of its use.

Get_Disk_Unit_ID.c

Additional programming information on the disk resource can be found in
the include files and the Autodocs for the disk resource.

Disk Resource Information

Devices 9 / 12

INCLUDES resources/disk.h

resources/disk.i

AUTODOCS disk.doc

1.8 15 Resources / FileSystem Resource

The FileSystem resource returns the filesystems that are available on the
Amiga. It has no functions. Opening the FileSystem resource returns a
pointer to a List structure containing the current filesystems in the
Amiga.

Get_Filesys.c

Additional programming information on the FileSystem resource can be found
in the include files and the Autodocs for the FileSystem resource in the
Amiga ROM Kernel Reference Manual: Includes and Autodocs and the
"Expansion" chapter of the Amiga ROM Kernel Reference Manual: Libraries.

FileSystem Resource Information

INCLUDES resources/filesysres.h

resources/filesysres.i

AUTODOCS filesysres.doc

LIBRARIES expansion library

1.9 15 Resources / Misc Resource

The misc resource oversees usage of the serial data port, the serial
communication bits, the parallel data and handshake port, and the parallel
communication bits. Before using serial or parallel port hardware, it
first must be acquired from the misc resource.

The misc resource provides two functions for allocating and freeing the
serial and parallel hardware.

Misc Resource Functions

AllocMiscResource() Allocate one of the serial or parallel
misc resources.

FreeMiscResource() Deallocate one of the serial or
parallel misc resources.

Once you’ve successfully allocated one of the misc resources, you are free
to write directly to its hardware locations. Information on the serial
and parallel hardware can be found in the Amiga Hardware Reference Manual
and the hardware/custom.h include file.

Devices 10 / 12

The two examples below are assembly and C versions of the same code for
locking the serial misc resources and waiting for CTRL-C to be pressed
before releasing them.

Assembly Example Of Allocating Misc Resources
C Example Of Allocating Misc Resources

1.10 15 / Misc Resource / C Example Of Allocating Misc Resources

Allocate_Misc.c

The example below will try to open the serial device and execute the
SDCMD_QUERY command. If it cannot open the serial device, it will do an
AllocMiscResource() on the serial port and return the name of the owner.

Query_Serial.c

Take Over Everything.

There are two serial.device resources to take over, MR_SERIALBITS and
MR_SERIALPORT. You should get both resources when you take over the
serial port to prevent other tasks from using them. The
parallel.device also has two resources to take over. See the
resources/misc.h include file for the relevant definitions and
structures.

Under V1.3 and earlier versions of the Amiga system software the
MR_GETMISCRESOURCE routine will always fail if the serial device has been
used at all by another task (even if that task has finished using the
resource. In other words, once a printer driver or communication package
has been activated, it will keep the associated resource locked up
preventing your task from using it. Under these conditions, you must get
the resource back from the system yourself.

You do this by calling the function FlushDevice() as follows:

/*
* A safe way to expunge ONLY a certain device. The serial.device holds

* on to the misc serial resource until a general expunge occurs.

* This code attempts to flush ONLY the named device out of memory and

* nothing else. If it fails, no status is returned since it would have

* no valid use after the Permit().

*/

#include <exec/types.h>
#include <exec/execbase.h>

#include <clib/exec_protos.h>

void FlushDevice(char *);

extern struct ExecBase *SysBase;

void FlushDevice(char *name)
{

Devices 11 / 12

struct Device *devpoint;

Forbid();

if (devpoint=(struct Device *)FindName(&SysBase->DeviceList,name))
RemDevice(devpoint);

Permit();
}

Additional programming information on the misc resource can be found in
the include files and the Autodocs for the misc resource.

Misc Resource Information

INCLUDES resources/misc.h

resources/misc.i
hardware/custom.h
hardware/custom.i

AUTODOCS misc.doc

1.11 15 Resources / Potgo Resource

The potgo resource is used to get control of the hardware POTGO register
connected to the proportional I/O pins on the game controller ports. There
are two registers, POTGO (write-only) and POTINP (read-only). These pins
could also be used for digital I/O.

The potgo resource provides three functions for working with the POTGO
hardware.

Potgo Resource Functions

AllocPotBits() Allocate bits in the POTGO register.

FreePotBits() Free previously allocated bits in the POTGO
register.

WritePotgo() Set and clear bits in the POTGO register.
The bits must have been allocated before
calling this function.

The example program shown below demonstrates how to use the ptogo resource
to track mouse button presses on port 1.

Read_Potinp.c

Additional programming information on the potgo resource can be found in
the include files and the Autodocs for the potgo resource.

Potgo Resource Information

INCLUDES resources/potgo.h

Devices 12 / 12

resources/potgo.i
utility/hooks.h
utility/hooks.i

AUTODOCS potgo.doc

	Devices
	Amiga® RKM Devices: 15 Resources
	15 Resources / The Amiga Resources
	15 Resources / Resource Interface
	15 Resources / BattClock Resource
	15 Resources / BattMem Resource
	15 Resources / CIA Resource
	15 Resources / Disk Resource
	15 Resources / FileSystem Resource
	15 Resources / Misc Resource
	15 / Misc Resource / C Example Of Allocating Misc Resources
	15 Resources / Potgo Resource

