Devices

Devices

COLLABORATORS
TITLE :
Devices
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Devices

Contents

1 Devices 1
1.1 Amiga® RKM Devices: 12 Serial Device e 1
1.2 12 Serial Device / Serial Device Commands and Functions 1
1.3 12 Serial Device / Device Interface e 3
1.4 12/ Device Interface / Opening The Serial Device i 3
1.5 12/ Device Interface / Reading From The Serial Device 4
1.6 12/ Device Interface / Writing To The Serial Device 5
1.7 12/ Device Interface / Closing The Serial Device i .. 5
1.8 12 Serial Device / Alternative Modes for Serial InputorOutput 5
1.9 12/ Alternative Modes for Serial Input or Output / High Speed Operation 7
1.10 12//Use Of BeginlO() With The Serial Device ittt 7
1.11 12//Ending A Read Or Write Using Termination Characters 8
1.12 12// Using Separate Read And Write Tasks 8
1.13 12 Serial Device / Setting Serial Parameters (SDCMD_SETPARAMS) 9
1.14 12/ Setting Serial Parameters / Serial Flags (Bits Forio_SerFlags) 11
1.15 12 Serial Device / Querying the Serial Device e 12
1.16 12 Serial Device / Sending the Break Command L oL 13
1.17 12 Serial Device / Error Codes from the Serial Device o 13
1.18 12 Serial Device / Multiple Serial Port Support e 14
1.19 12 Serial Device / Taking Over the Hardware 14

1.20

12 Serial Device / Additional Information on the Serial Device 15

Devices

1/15

Chapter 1

Devices

1.1 Amiga® RKM Devices: 12 Serial Device

The serial device provides a hardware-independent interface to the Amiga’s
built-in RS-232C compatible serial port. Serial ports have a wide range
of uses, including communication with modems, printers, MIDI devices, and
other computers. The same device interface can be used for additional
"byte stream oriented devices" - usually more serial ports. The serial
device is based on the conventions of Exec device I/0, with extensions for
parameter setting and control.

Serial Device Characteristics
MODES Exclusive
Shared Access

BAUD RATES 110-292,000

HANDSHAKING Three-Wire
Seven-Wire

Serial Device Commands and Functions

Device Interface

A Simple Serial Port Example

Alternative Modes for Serial Input or Output
Setting Serial Parameters (SDCMD_SETPARAMS)
Querying the Serial Device

Sending the Break Command

Error Codes from the Serial Device

Multiple Serial Port Support

Taking Over the Hardware

Advanced Example of Serial Device Usage
Additional Information on the Serial Device

1.2 12 Serial Device / Serial Device Commands and Functions

Device Command Operation

Devices

2/15

CMD_CLEAR

CMD_FLUSH

CMD_READ

CMD_RESET

CMD_START

CMD_STOP

CMD_WRITE

SDCMD_BREAK

SDCMD_QUERY

SDCMD__SETPARAMS

Reset the serial port’s read buffer pointers.

Purge all queued requests for the serial device (does not
affect active requests).

Read a stream of characters from the serial port buffer.
The number of characters can be specified or a
termination character (s) used.

Reset the serial port to its initialized state. All
active and queued I/0 requests will be aborted and the
current buffer will be released.

Restart all paused I/O over the serial port. Also sends
an "xON".

Pause all active I/0 over the serial port. Also sends an
"XOFE".

Write out a stream of characters to the serial port. The
number of characters can be specified or a
NULL-terminated string can be sent.

Send a break signal out the serial port. May be done
immediately or queued. Duration of the break (in
microseconds) can be set by the application.

Return the status of the serial port lines and registers,
and the number of bytes in the serial port’s read buffer.

Set the parameters of the serial port. This ranges from
baud rate to number of microseconds a break will last.

Exec Functions as Used in This Chapter

AbortIO()

BeginIO ()

CheckIO()

CloseDevice ()

DoIO()

OpenDevice ()

SendIO ()

Abort a command to the serial device. If the command is
in progress, it is stopped immediately. If it is queued,
it is removed from the queue.

Initiate a command and return immediately (asynchronous
request). This is used to minimize the amount of system
overhead.

Determine the current state of an I/0 request.

Relinguish use of the serial device. All requests must
be complete.

Initiate a command and wait for completion (synchronous
request) .

Obtain use of the serial device.

Initiate a command and return immediately (asynchronous
request) .

Devices 3/15

WaitIO() Wait for the completion of an asynchronous request. When
the request is complete the message will be removed from
your reply port.

Exec Support Functions as Used in This Chapter

CreateExtIO() Create an extended I/O request structure of type
IOExtSer. This structure will be used to communicate
commands to the serial device.

CreatePort () Create a signal message port for reply messages from the
serial device. Exec will signal a task when a message
arrives at the port.

DeleteExtIO() Delete an extended I/O request structure created by
CreateExtIO() .
DeletePort () Delete the message port created by CreatePort ().

1.3 12 Serial Device / Device Interface

The serial device operates like the other Amiga devices. To use it, you
must first open the serial device, then send I/O requests to it, and then
close it when finished. See the "Introduction to Amiga System Devices"
chapter for general information on device usage.

The I/0 request used by the serial device is called IOExtSer.
struct IOExtSer

{
struct I0StdReg IOSer;

ULONG io_CtlChar; /* control characters =*/

ULONG io_RBuflen; /+ length in bytes of serial read buffer =/
ULONG io_ExtFlags; /* additional serial flags =/

ULONG io_Baud; /x baud rate =/

ULONG io_BrkTime; /* duration of break in microseconds x/
struct i0TArray 1io_TermArray; /* termination character array */
UBYTE io_ReadLen; /+ number of bits per read character =/
UBYTE io_Writelen; /+ number of bits per write character =/
UBYTE io_StopBits; /* number of stopbits for read =/

UBYTE io_SerFlags; /+ serial device flags =/

UWORD io_Status; /* status of serial port and lines =/

}i

See the include file devices/serial.h for the complete structure

definition.
Opening The Serial Device Writing To The Serial Device
Reading From The Serial Device Closing The Serial Device

1.4 12/ Device Interface / Opening The Serial Device

Devices 4/15

Three primary steps are required to open the serial device:

* Create a message port using CreatePort (). Reply messages from the
device must be directed to a message port.

x* Create an extended I/0 request structure of type IOExtSer using
CreateExtIO(). CreateExtIO() will initialize the I/0 request to point
to your reply port.

* Open the serial device. Call OpenDevice (), passing the I/O request.
struct MsgPort «SerialMP; /+ Define storage for one pointer «*/
struct IOExtSer *SeriallO; /+ Define storage for one pointer =/

if (SerialMP=CreatePort (0,0))
if (SerialIO=(struct IOExtSer x)
CreateExtIO(SerialMP, sizeof (struct IOExtSer)))
SerialIO->io_SerFlags=SERF_SHARED; /* Turn on SHARED mode =*/
if (OpenDevice (SERIALNAME, OL, (struct IORequest x)SerialIO,0))
printf ("$s did not open\n", SERIALNAME) ;

During the open, the serial device pays attention to a subset of the flags
in the io_SerFlags field. The flag bits, SERF_SHARED and SERF_7WIRE, must
be set before open. For consistency, the other flag bits should also be
properly set. Full descriptions of all flags will be given later.

The serial device automatically fills in default settings for all
parameters - stop bits, parity, baud rate, etc. For the default unit, the
settings will come from Preferences. You may need to change certain
parameters, such as the baud rate, to match your requirements. Once the
serial device is opened, all characters received will be buffered, even if
there is no current request for them.

1.5 12/ Device Interface / Reading From The Serial Device

You read from the serial device by passing an IOExtSer to the device with
CMD_READ set in io_Command, the number of bytes to be read set in
io_Length and the address of the read buffer set in io_Data.

#define READ_BUFFER_SIZE 256
char SerialReadBuffer [READ_BUFFER_SIZE]; /* Reserve SIZE bytes =/

SerialIO->I0Ser.io_Length READ_BUFFER_SIZE;
SerialIO->I0Ser.io_Data (APTR) &SerialReadBuffer[0];
SerialIO->I0Ser.io_Command = CMD_READ;

DoIO ((struct IORequest *)SeriallO);

If you use this example, your task will be put to sleep waiting until the
serial device reads 256 bytes (or terminates early). Early termination

can be caused by error conditions such as a break. The number of
characters actually received will be recorded in the io_Actual field of the
IOExtSer structure you passed to the serial device.

Devices 5/15

1.6 12/ Device Interface / Writing To The Serial Device

You write to the serial device by passing an IOExtSer to the device with
CMD_WRITE set in io_Command, the number of bytes to be written set in
io_Length and the address of the write buffer set in io_Data.

To write a NULL-terminated string, set the length to -1; the device will
output from your buffer until it encounters and transmits a value of zero
(0x00) .

SerialIO->I0Ser.io_Length = -1;

SerialIO—->I0Ser.io_Data = (APTR)"Life is but a dream. ";
SerialIO->I0Ser.io_Command = CMD_WRITE;

DoIO((struct IORequest =*)SeriallO); /* execute write %/

The length of the request is -1, meaning we are writing a NULL-terminated
string. The number of characters sent can be found in io_Actual.

1.7 12/ Device Interface / Closing The Serial Device

Each OpenDevice () must eventually be matched by a call to CloseDevice().
When the last close is performed, the device will deallocate all resources
and buffers.

All IORequests must be complete before CloseDevice (). Abort any pending
requests with AbortIO().

if (! (CheckIO(SerialIO)))
{
AbortIO((struct IORequest x)SeriallIO); /x Ask device to abort =/
} /* request, if pending =/
WaitIO((struct IORequest =)SeriallO); /* Wait for abort, then =/
CloseDevice ((struct IORequest =*)SeriallIO); /+ clean up =/

1.8 12 Serial Device / Alternative Modes for Serial Input or Output

As an alternative to DoIO() you can use an asynchronous I/0 request to
transmit the command. Asynchronous requests are initiated with SendIO().
Your task can continue to execute while the device processes the command.
You can occasionally do a CheckIO() to see if the I/0O has completed. The
write request in this example will be processed while the example
continues to run:

SerialIO->I0Ser.io_Length = -1;
SerialIO—>I0Ser.io_Data (APTR) "Save the whales! ";
SerialIO->I0Ser.io_Command = CMD_WRITE;

SendIO ((struct IORequest «)SeriallO);

printf ("CheckIO %1x\n",CheckIO((struct IORequest =*)SerialIO));
printf ("The device will process the request in the background\n");
printf ("CheckIO %1x\n",CheckIO((struct IORequest x)SerialIO));

(

WaitIO((struct IORequest «)SeriallO); /* Remove message and cleanup =*/

Devices 6/15

Most applications will want to wait on multiple signals. A typical
application will wait for menu messages from Intuition at the same time as
replies from the serial device. The following fragment demonstrates
waiting for one of three signals. The Wait () will wake up if the read
request ever finishes, or if the user presses Ctrl-C or Ctrl-F from the
Shell. This fragment may be inserted into the above complete example.

/+ Precalculate a wait mask for the CTRL-C, CTRL-F and message

* port signals. When one or more signals are received,

* Wait () will return. Press CTRL-C to exit the example.
Press CTRL-F to wake up the example without doing anything.

* NOTE: A signal may show up without an associated message!

*/

WaitMask = SIGBREAKF_CTRL_C|
SIGBREAKF_CTRL_F|
1L << SerialMP->mp_SigBit;

SerialIO->I0Ser.io_Command = CMD_READ;
SerialIO->I0Ser.io_Length READ_BUFFER_SIZE;
SerialIO->I0Ser.io_Data (APTR) &SerialReadBuffer[0];
SendIO (SeriallIO);

printf ("Sleeping until CTRL-C, CTRL-F, or serial input\n");

while (1)
{
Temp = Wait (WaitMask) ;
printf ("Just woke up (YAWN!)\n");

if (SIGBREAKF_CTRL_C & Temp)

break;

if (CheckIO(SeriallIO)) /* If request is complete... */
{
WaitIO(SerialIO); /* clean up and remove reply =/
printf ("$1d bytes received\n",SeriallO->IO0Ser.io_Actual);
break;

}

}
AbortIO(SeriallIO); /* Ask device to abort request, if pending x/

WaitIO (SeriallO); /+ Wait for abort, then clean up =*/

WaitIO() vs. Remove () .

The WaitIO() function is used above, even if the request is already
known to be complete. WaitIO() on a completed request simply removes
the reply and cleans up. The Remove () function is not acceptable for

clearing the reply port; other messages may arrive while the function
is executing.

High Speed Operation

Use Of BeginIO() With The Serial Device

Ending A Read Or Write Using Termination Characters
Using Separate Read And Write Tasks

Devices 7/15

1.9 12/ Alternative Modes for Serial Input or Output / High Speed Operation

The more characters that are processed in each I/0 request, the higher the
total throughput of the device. The following technique will minimize
device overhead for reads:

* Use the SDCMD_QUERY command to get the number of characters currently
in the buffer (see the devices/serial.h Autodocs for information on
SDCMD_QUERY) .

* Use DoIO() to read all available characters (or the maximum size of
your buffer). 1In this case, DoIO() is guaranteed to return without
waiting.

* If zero characters are in the buffer, post an asynchronous request
(SendIO()) for 1 character. When at least one is ready, the device
will return it. Now go back to the first step.

* If the user decides to quit the program, AbortIO() any pending
requests.

1.10 12// Use Of BeginlO() With The Serial Device

Instead of transmitting the read command with either DoIO() or SendIO(),
you might elect to use the low level BeginIO() interface to a device.

BeginIO() works much like SendIO(), i.e., asynchronously, except it gives
you control over the quick I/O bit (IOB_QUICK) in the io_Flags field.
Quick I/O saves the overhead of a reply message, and perhaps the overhead
of a task switch. If a quick I/0 request is actually completed quickly,
the entire command will execute in the context of the caller. See the
"Exec: Device Input/Output" chapter of the Amiga ROM Kernel Reference
Manual: Libraries for more detailed information on quick I/O.

The device will determine if a quick I/O request will be handled quickly.
Most non-I/0 commands will execute quickly; read and write commands may or
may not finish quickly.

SeriallIO.IOSer.io_Flags |= IOF_QUICK; /+* Set QuickIO Flag =*/

BeginIO((struct IORequest x)SeriallO);

if (SerialIO->IOSer.io_Flags & IOF_QUICK)
/* If flag is still set, I/O was synchronous and is now finished.
* The IORequest was NOT appended a reply port. There is no

+ need to remove or WaitIO() for the message.
*/
printf ("QuickIO\n");

else
/+* The device cleared the QuickIO bit. QuickIO could not happen
* for some reason; the device processed the command normally.
+ In this case BeginIO() acted exactly like SendIO().
*/
printf ("Regular I/O\n");
WaitIO (SeriallIO);

Devices

8/15

The way you read from the device depends on your need for processing
speed. Generally the BeginIO() route provides the lowest system overhead
when quick I/0 is possible. However, if quick I/0 does not work, the same
reply message overhead still exists.

1.11 12//Ending A Read Or Write Using Termination Characters

Reads and writes from the serial device may terminate early if an error

occurs or if an end-of-file (EOF) is sensed. For example, if a break is
detected on the line, any current read request will be returned with the
error SerErr_ DetectedBreak. The count of characters read to that point

will be in the io_Actual field of the request.

You can specify a set of possible end-of-file characters that the serial
device is to look for in the input stream or output using the
SDCDMD__SETPARAMS command. These are contained in an io_TermArray that you
provide. io_TermArray is used only when the SERF_EOFMODE flag is selected
(see the Serial Flags section below).

If EOF mode is selected, each input data character read into or written
from the user’s data block is compared against those in io_TermArray. If a
match is found, the IOExtSer is terminated as complete, and the count of
characters transferred (including the termination character) is stored in
io_Actual.

To keep this search overhead as efficient as possible, the serial device
requires that the array of characters be in descending order. The array
has eight bytes and all must be valid (that is, do not pad with zeros
unless zero is a valid EOF character). Fill to the end of the array with
the lowest value termination character. When making an arbitrary choice of
EOF character(s), you will get the quickest response from the lowest

value (s) available.

Terminate_Serial.c

The read will terminate before the io_Length number of characters
is read if a "Q", "E", ETX, or EOT is detected in the serial input stream.

1.12 12//Using Separate Read And Write Tasks

In some cases there are advantages to creating a separate IOExtSer for
reading and writing. This allows simultaneous operation of both reading
and writing. Some users of the device have separate tasks for read and
write operations. The sample code below creates a separate reply port and
request for writing to the serial device.

struct IOExtSer *SerialWriteIO;
struct MsgPort «*SerialWriteMP;

/ %

Devices 9/15
+ If two tasks will use the same device at the same time, it is
* preferred use two OpenDevice () calls and SHARED mode. If exclusive
* access mode is required, then you will need to copy an existing
* IORequest.
* Remember that two separate tasks will require two message ports.
*/

SerialWriteMP = CreatePort (0,0);
SerialWriteIO (struct IOExtSer =)
CreateExtIO(SerialWriteMP, sizeof (struct IOExtSer));

if (SerialWriteMP && SerialWriteIO)
{

/+ Copy over the entire old IO request, then stuff the
* new Message port pointer.

*/

CopyMem(SerialIO, SerialWriteIO, sizeof (struct IOExtSer));
SerialWriteIO->I0Ser.io_Message.mn_ReplyPort = SerialWriteMP;

SerialWriteIO->I0Ser.io_Command = CMD_WRITE;
SerialWriteIO->I0Ser.io_Length = -1;
SerialWriteIO->I0Ser.io_Data = (APTR)"A poet’s food is love and fame";

DoIO (SerialWriteIO);
}

Where’s OpenDevice()?

This code assumes that the OpenDevice () function has already been
called. The initialized read request block is copied onto the new
write request block.

1.13 12 Serial Device / Setting Serial Parameters (SDCMD_SETPARAMS)

When the serial device is opened, default values for baud rate and other

parameters are automatically filled in from the serial settings in
Preferences. The parameters may be changed by using the
SDCMD_SETPARAMS command. The flags are defined in the include file
devices/serial.h.

SERIAL DEVICE PARAMETERS (IOExtSer)

IOExtSer

Field Name Serial Device Parameter It Controls

io_CtlChar Control characters to use for xON, xOFF,
INQ, ACK respectively. Positioned within an unsigned
longword in the sequence from low address to high as
listed. INQ and ACK handshaking is not currently
supported.

io_RBufLen Recommended size of the buffer that the serial device

should allocate for incoming data. For some hardware the

Devices

10/15

io_ExtFlags

io_Baud

io_BrkTime

buffer size will not be adjustable. Changing the value
may cause the device to allocate a new buffer, which might
fail due to lack of memory. In this case the old buffer
will continue to be used.

For the built-in unit, the minimum size is 64 bytes.
Out-of-range numbers will be truncated by the device.
When you do an SDCMD_SETPARAMS command, the driver senses
the difference between its current value and the value of
buffer size you request. All characters that may already
be in the old buffer will be discarded. Thus it is wise
to make sure that you do not attempt buffer size changes
(or any change to the serial device, for that matter)
while any I/0 is actually taking place.

An unsigned long that contains the flags SEXTF_MSPON and
SEXTEF_MARK. SEXTF_MSPON enables either mark or space
parity. SEXTF_MARK selects mark parity (instead of space
parity). Unused bits are reserved.

The real baud rate you request. This is an unsigned long
value in the range of 1 to 4,294,967,295. The device will
reject your baud request if the hardware is unable to
support it.

For the built-in driver, any baud rate in the range of 110
to about 1 megabaud is acceptable. The built-in driver
may round 110 baud requests to 112 baud. Although baud
rates above 19,200 are supported by the hardware, software
overhead will limit your ability to "catch" every single
character that should be received. Output data rate,
however, is not software-dependent.

If you issue a break command, this variable specifies how
long, in microseconds, the break condition lasts. This
value controls the break time for all future break
commands until modified by another SDCMD_SETPARAMS.

io_TermArray A byte—-array of eight termination characters, must be in

io_ReadLen

io_WritelLen

io_StopBits

io_SerFlags

descending order. If the EOFMODE bit is set in the serial
flags, this array specifies eight possible choices of
character to use as an end of file mark. See the section
above "Ending a Read Or Write Using Termination Characters"
and the SDCMD_SETPARAMS summary page in the Autodocs.

How many bits per read character; typically a value of 7
or 8. Generally must be the same as io_Writelen.

How many bits per write character; typically a value of 7
or 8. Generally must be the same as io_ReadLen.

How many stop bits are to be expected when reading a
character and to be produced when writing a character;
typically 1 or 2. The built-in driver does not allow
values above 1 if io_WritelLen is larger than 7.

See the "Serial Flags" section below.

Devices

11/15

io_Status Contains status information filled in by the SDCMD_QUERY
command. Break status is cleared by the execution of
SDCMD_ QUERY .

You set the serial parameters by passing an IOExtSer to the device with
SDCMD_SETPARAMS set in io_Command and with the flags and parameters set to
the values you want.

SeriallO->io_SerFlags &= ~SERF_PARTY_ON; /x set parity off «*/
SerialIO->io_SerFlags |= SERF_XDISABLED; /* set xON/xOFF disabled =*/
SerialIO->io_Baud = 9600; /* set 9600 baud =*/
SerialIO->I0Ser.io_Command = SDCMD_SETPARAMS;/x Set params command x/

if (DoIO((struct IORequest =*)SeriallIO))
printf ("Error setting parameters!\n");

The above fragment modifies two bits in io_SerFlags and changes the baud
rate. If the parameters you request are unacceptable or out of range, the
SDCMD_SETPARAMS command will fail. You are responsible for checking the
error code and informing the user.

Proper Time for Parameter Changes.

A parameter change should not be performed while an I/O request is
actually being processed because it might invalidate the request
handling already in progress. To avoid this, you should use
SDCMD_SETPARAMS only when you have no serial I/O requests pending.

Serial Flags (Bit Definitions For io_SerFlags)

1.14 12/ Setting Serial Parameters / Serial Flags (Bits For io_SerFlags)

There are additional serial device parameters which are controlled by
flags set in the io_SerFlags field of the IOExtSer structure. The default
state of all of these flags is zero. SERF_SHARED and SERF_7WIRE must
always be set before OpenDevice(). The flags are defined in the include
file serial.h.

SERIAL FLAGS (IO_SERFLAGS)

Flag Name Effect on Device Operation

SERF_XDISABLED Disable the XON/XOFF feature. XON/XOFF must be
disabled during XModem transfers.

SERF_EOFMODE Set this bit if you want the serial device to
check input characters against io_TermArray and to
terminate the read immediately if an end-of-file
character has been encountered. Note: this bit
may be set and reset directly in the user’s
IOExtSer without a call to SDCMD_SETPARAMS.

SERF_SHARED Set this bit if you want to allow other tasks to
simultaneously access the serial port. The
default is exclusive—access. Any number of tasks

Devices

12/15

may have shared access. Only one task may have
exclusive access. If someone already has the port
for exclusive access, your OpenDevice() call will
fail. This flag must be set before OpenDevice() .

SERF_RAD_BOOGIE If set, this bit activates high-speed mode.
Certain peripheral devices (MIDI, for example)
require high serial throughput. Setting this bit
high causes the serial device to skip certain of
its internal checking code to speed throughput.
Use SERF_RAD_BOOGIE only when you have:

Disabled parity checking

Disabled XON/XOFF handling

Use 8-bit character length

Do not wish a test for a break signal

b

Note that the Amiga is a multitasking system and
has immediate processing of software interrupts.
If there are other tasks running, it is possible
that the serial driver may be unable to keep up
with high data transfer rates, even with this bit
set.

SERF_QUEUEDBRK If set, every break command that you transmit will
be enqueued. This means that all commands will be
executed on a FIFO (first in, first out) basis.

If this bit is cleared (the default), a break
command takes immediate precedence over any serial
output already engueued. When the break command
has finished, the interrupted request will
continue (if not aborted by the user).

SERF_7WIRE If set at OpenDevice() time, the serial device
will use seven-wire handshaking for RS-232-C
communications. Default is three-wire (pins 2, 3,
and 7).

SERF_PARTY_ODD If set, selects odd parity. If clear, selects
even parity.

SERF_PARTY_ON If set, parity usage and checking is enabled. Also
see the SERF_MSPON bit described under io_ExtFlags
above.

1.15 12 Serial Device / Querying the Serial Device

You query the serial device by passing an IOExtSer to the device with
SDCMD_QUERY set in io_Command. The serial device will respond with the
status of the serial port lines and registers, and the number of unread
characters in the read buffer.

UWORD Serial_Status;
ULONG Unread_Chars;

Devices

13/15

SerialIO->I0Ser.io_Command = SDCMD_QUERY; /% indicate query =/
SendIO ((struct IORequest «)SeriallO);

Serial_Status = SeriallIO->io_Status; /* store returned status =*/
Unread_Chars = SerialIO->IOSer.io_Actual; /x store unread count =/

The 16 status bits of the serial device are returned in io_Status; the
number of unread characters 1is returned in io_Actual.

SERIAL DEVICE STATUS BITS

Bit Active Symbol Function
0 - Reserved
1 - Reserved
2 high (RI) Parallel Select on the A1000. On

the A500 and A2000, Select is also
connected to the serial port’s
Ring Indicator. (Be cautious when
making cables.)

3 low (DSR) Data set ready

4 low (CTS) Clear to send

5 low (CD) Carrier detect

6 low (RTS) Ready to send

7 low (DTR) Data terminal ready
8 high Read overrun

9 high Break sent

10 high Break received
11 high Transmit x-OFFed
12 high Receive x-OFFed
13-15 - (reserved)

1.16 12 Serial Device / Sending the Break Command

You send a break through the serial device by passing an IOExtSer to the

device with SDCMD_BREAK set in io_Command. The break may be immediate or
queued. The choice is determined by the state of flag SERF_QUEUEDBRK in

io_SerFlags.

SerialIO->I0Ser.io_Command = SDCMD_BREAK; /* send break =/
SendIO ((struct IORequest «)SeriallIO);

The duration of the break (in microseconds) can be set in io_BrkTime. The
default is 250,000 microseconds (.25 seconds).

1.17 12 Serial Device / Error Codes from the Serial Device

The serial device returns error codes whenever an operation is attempted.

SeriallO->I0Ser.io_Command = SDCMD_SETPARAMS; /* Set parameters =/

Devices 14 /15

if (DoIO((struct IORequest =) SeriallO))
printf ("Set Params failed. Error: %1d ",SerialIO->IOSer.io_Error);

The error is returned in the io_Error field of the IOExtSer structure.

SERIAL DEVICE ERROR CODES

SerErr_DevBusy 1 Device in use

SerErr_BaudMismatch 2 Baud rate not supported by hardware
SerErr_BufErr 4 Failed to allocate new read buffer
SerErr_InvParam 5 Bad parameter

SerErr_LineErr 6 Hardware data overrun

SerErr_ParityErr 9 Parity error

SerErr_ TimerErr 11 Timeout (if using 7-wire handshaking)
SerErr_BufOverflow 12 Read buffer overflowed

SerErr_NoDSR 13 No Data Set Ready
SerErr_DetectedBreak 15 Break detected

SerErr_UnitBusy 16 Selected unit already in use

1.18 12 Serial Device / Multiple Serial Port Support

Applications that use the serial port should provide the user with a means
to select the name and unit number of the driver. The defaults will be
"serial.device" and unit number 0. Typically unit 0 refers to the
user-selected default. Unit 1 refers to the built-in serial port.

Numbers above 1 are for extended units. The physically lowest connector
on a board will always have the lowest unit number.

Careful attention to error handling is required to survive in a multiple
port environment. Differing serial hardware will have different
capabilities. The device will refuse to open non-existent unit numbers
(symbolic name mapping of unit numbers is not provided at the device
level). The SDCMD_SETPARAMS command will fail if the underlying hardware
cannot support your parameters. Some devices may use quick I/0O for read
or write requests, others will not. Watch out for partially completed
read requests; io_Actual may not match your requested read length.

If the Tool Types mechanism is used for selecting the device and unit, the
defaults of "DEVICE=serial.device" and "UNIT=0" should be provided.

The user should be able to permanently set the device and unit in a
configuration file.

1.19 12 Serial Device / Taking Over the Hardware

For some applications use of the device driver interface is not possible.
By following the established rules, applications may take over the serial
interface at the hardware level. This extreme step is not, however,
encouraged. Taking over means losing the ability to work with additional
serial ports, and will limit future compatibility.

Devices

15/15

Access to the hardware registers is controlled by the misc.resource. See
the "Resources" chapter, and exec/misc.i for details. The MR_SERIALBITS
and MR_SERIALPORT units control the serial registers.

One additional complication exists. The current serial device will not
release the misc.resource bits until after an expunge. This code provides
a work around:

/ *
* A safe way to expunge ONLY a certain device.
* This code attempts to flush ONLY the named device out of memory and

* nothing else. If it fails, no status is returned (the information
* would have no valid use after the Permit ().
*/

#include <exec/types.h>
#include <exec/execbase.h>

void FlushDevice (char x);
extern struct ExecBase xSysBase;

void FlushDevice (name)
char xname;

{

struct Device xdevpoint;

Forbid(); /* ugly =/

if (devpoint = (struct Device x)FindName (&SysBase->Devicelist,name))
RemDevice (devpoint) ;

Permit () ;

}

1.20 12 Serial Device / Additional Information on the Serial Device

Additional programming information on the serial device can be found in
the include files and the Autodocs for the serial device. Both are
contained in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Serial Device Information

INCLUDES devices/serial.h
devices/serial.i

AUTODOCS serial.doc

	Devices
	Amiga® RKM Devices: 12 Serial Device
	12 Serial Device / Serial Device Commands and Functions
	12 Serial Device / Device Interface
	12 / Device Interface / Opening The Serial Device
	12 / Device Interface / Reading From The Serial Device
	12 / Device Interface / Writing To The Serial Device
	12 / Device Interface / Closing The Serial Device
	12 Serial Device / Alternative Modes for Serial Input or Output
	12 / Alternative Modes for Serial Input or Output / High Speed Operation
	12 / / Use Of BeginIO() With The Serial Device
	12 / / Ending A Read Or Write Using Termination Characters
	12 / / Using Separate Read And Write Tasks
	12 Serial Device / Setting Serial Parameters (SDCMD_SETPARAMS)
	12 / Setting Serial Parameters / Serial Flags (Bits For io_SerFlags)
	12 Serial Device / Querying the Serial Device
	12 Serial Device / Sending the Break Command
	12 Serial Device / Error Codes from the Serial Device
	12 Serial Device / Multiple Serial Port Support
	12 Serial Device / Taking Over the Hardware
	12 Serial Device / Additional Information on the Serial Device

