
Devices

Devices ii

COLLABORATORS

TITLE :

Devices

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Devices iii

Contents

1 Devices 1

1.1 Amiga® RKM Devices: 11 SCSI Device . 1

1.2 11 SCSI Device / SCSI Device Commands and Functions . 1

1.3 11 SCSI Device / Device Interface . 2

1.4 11 / Device Interface / Opening The SCSI Device . 3

1.5 11 / Device Interface / Closing The SCSI Device . 4

1.6 11 SCSI Device / SCSI-Direct . 4

1.7 11 SCSI Device / RigidDiskBlock - Fields and Implementation . 7

1.8 11 / RigidDiskBlock-Fields and Implementation / How A Driver Uses RDB . 11

1.9 11 / RigidDiskBlock - Fields and Implementation / Alien Filing Systems . 12

1.10 11 SCSI Device / Amiga BootStrap . 13

1.11 11 / Amiga BootStrap / Bootblock Booting . 14

1.12 11 / Amiga BootStrap / Bootpoint Booting . 15

1.13 11 SCSI Device / Additional Information on the SCSI Device . 15

Devices 1 / 16

Chapter 1

Devices

1.1 Amiga® RKM Devices: 11 SCSI Device

The Small Computer System Interface (SCSI) hardware of the A3000 and
A2091/A590 is controlled by the SCSI device. The SCSI device allows
an application to send Exec I/O commands and SCSI commands to
a SCSI peripheral. Common SCSI peripherals include hard drives, streaming
tape units and CD-ROM drives.

SCSI Device Commands and Functions
Device Interface
SCSI-Direct
RigidDiskBlock - Fields and Implementation
Amiga BootStrap
SCSI-Direct Example
Additional Information on the SCSI Device

1.2 11 SCSI Device / SCSI Device Commands and Functions

SCSI Device Command Operation
------------------- ---------
HD_SCSICMD Issue a SCSI-direct command to a SCSI unit.

Trackdisk Device Commands Supported by the SCSI Device
--
TD_CHANGESTATE Return the disk present/not-present status of a drive.
TD_FORMAT Initialize one or more tracks with a data buffer.
TD_PROTSTATUS Return the write-protect status of a disk.
TD_SEEK Move the head to a specific track.

Exec Commands Supported by SCSI Device

CMD_READ Read one or more sectors from a disk.
CMD_START Restart a SCSI unit that was previously stopped with

CMD_STOP.
CMD_STOP Stop a SCSI unit.

Devices 2 / 16

CMD_WRITE Write one or more sectors to a disk.

Exec Functions as Used in This Chapter

AbortIO() Abort an I/O request to the SCSI device.
AllocMem() Allocate a block of memory.
AllocSignal() Allocate a signal bit.
CheckIO() Return the status of an I/O request.
CloseDevice() Relinquish use of the SCSI device. All requests must

be complete before closing.

DoIO() Initiate a command and wait for completion
(synchronous request).

FreeMem() Free a block of previously allocated memory.
FreeSignal() Free a previously allocated signal.
OpenDevice() Obtain use of the SCSI device. You specify the type

of unit and its characteristics in the call to
OpenDevice().

WaitIO() Wait for completion of an I/O request and remove it
from the reply port.

Exec Support Functions as Used in This Chapter
--
CreateExtIO() Create an extended IORequest structure for use in

communicating with the SCSI device.

CreatePort() Create a message port for reply messages from the
SCSI device. Exec will signal a task when a message
arrives at the port.

DeleteExtIO() Delete the extended IORequest structure created by
CreateExtIO().

DeletePort() Delete the message port created by CreatePort().

1.3 11 SCSI Device / Device Interface

The SCSI device operates like other Amiga devices. To use it, you must
first open the SCSI device, then send I/O requests to it, and then close
it when finished. See the "Introduction to Amiga System Devices"
chapter for general information on device usage.

The power of the SCSI device comes from its special facility for passing
SCSI and SCSI-2 command blocks to any SCSI unit on the bus. This facility
is commonly called SCSI-direct and it allows the Amiga to perform SCSI
functions that are "non-standard" in terms of the normal Amiga I/O model.

To send SCSI-direct or other commands to the SCSI device, an extended I/O
request structure named IOStdReq is used.

struct IOStdReq

Devices 3 / 16

{
struct Message io_Message;
struct Device *io_Device;/* device node pointer */
struct Unit *io_Unit; /* unit (driver private)*/
UWORD io_Command; /* device command */
UBYTE io_Flags;
BYTE io_Error; /* error or warning num */
ULONG io_Actual; /* actual number of bytes transferred */
ULONG io_Length; /* requested number bytes transferred*/
APTR io_Data; /* points to data area */
ULONG io_Offset; /* offset for block structured devices */

};

See the include file exec/io.h for the complete structure definition.

Opening The SCSI Device
Closing The SCSI Device

1.4 11 / Device Interface / Opening The SCSI Device

Three primary steps are required to open the SCSI device:

* Create a message port using CreatePort(). Reply messages from the
device must be directed to a message port.

* Create an I/O request structure of type IOStdReq. The IOStdReq
structure is created by the CreateExtIO() function. CreateExtIO will
initialize your IOStdReq to point to your reply port.

* Open the SCSI device. Call OpenDevice() passing it the I/O request
and the SCSI unit encoded in the unit field.

SCSI unit encoding consists of three decimal digits which refer
to the SCSI Target ID (bus address) in the 1s digit, the SCSI logical unit
(LUN) in the 10s digit, and the controller board in the 100s digit. For
example:

SCSI unit Meaning
--------- -------
6 drive at address 6
12 LUN 1 on multiple drive controller at address 2
104 second controller board, address 4
88 not valid: both logical units and addresses range from 0-7

The Commodore 2090/2090A unit numbers are encoded differently. The SCSI
logical unit (LUN) is in the 100s digit, and the SCSI Target ID is a
permuted 1s digit: Target ID 0-6 maps to unit 3-9 (7 is reserved for the
controller).

2090/A unit Meaning
---------- -------
3 drive at address 0
109 drive at address 6, logical unit 1
1 not valid: this is not a SCSI unit.Perhaps it’s an ST506

unit.

Devices 4 / 16

Some controller boards generate a unique name for the second controller
board, instead of implementing the 100s digit (e.g., the 2090A’s
iddisk.device).

struct MsgPort *SCSIMP; /* Message port pointer */
struct IOStdReq *SCSIIO; /* IORequest pointer */

/* Create message port */
if (!(SCSIMP = CreatePort(NULL,NULL)))

cleanexit("Can’t create message port\n",RETURN_FAIL);

/* Create IORequest */
if (!(SCSIIO = CreateExtIO(SCSIMP,sizeof(struct IOStdReq))))

cleanexit("Can’t create IORequest\n",RETURN_FAIL);

/* Open the SCSI device */
if (error = OpenDevice("scsi.device",6L,SCSIIO,0L))

cleanexit("Can’t open scsi.device\n",RETURN_FAIL);

In the code above, the SCSI unit at address 6 of logical unit 0 of board 0
is opened.

1.5 11 / Device Interface / Closing The SCSI Device

Each OpenDevice() must eventually be matched by a call to CloseDevice().
All I/O requests must be complete before calling CloseDevice(). If any
requests are still pending, abort them with AbortIO().

if (!(CheckIO(SCSIIO)))
{
AbortIO(SCSIIO); /* Ask device to abort any pending requests */
WaitIO(SCSIIO); /* Wait for abort, then clean up */
}

CloseDevice(SCSIIO); /* Close SCSI device */

1.6 11 SCSI Device / SCSI-Direct

SCSI-direct is the facility of the Amiga’s SCSI device interface that
allows low-level SCSI commands to be passed directly to a SCSI unit on the
bus. This makes it possible to support the special features of tape
drives, hard disks and other SCSI equipment that do not fit into the
Amiga’s normal I/O model. For example, with SCSI-direct, special commands
can be sent to hard drives to modify various drive parameters that are
normally inaccessible or which differ from drive to drive.

In order to use SCSI-direct, you must first open the SCSI device for the
unit you want to use in the manner described above. You then send an
HD_SCSICMD I/O request with a pointer to a SCSI command data structure.

The SCSI device uses a special data structure for SCSI-direct
commands named SCSICmd.

Devices 5 / 16

struct SCSICmd
{
UWORD *scsi_Data; /* word aligned data for SCSI Data Phase */

/* (optional) data need not be byte aligned */
/* (optional) data need not be bus accessible */

ULONG scsi_Length; /* even length of Data area */
/* (optional) data can have odd length */
/* (optional) data length can be > 2**24 */

ULONG scsi_Actual; /* actual Data used */
UBYTE *scsi_Command; /* SCSI Command (same options as scsi_Data) */
UWORD scsi_CmdLength; /* length of Command */
UWORD scsi_CmdActual; /* actual Command used */
UBYTE scsi_Flags; /* includes intended data direction */
UBYTE scsi_Status; /* SCSI status of command */
UBYTE *scsi_SenseData; /* sense data: filled if SCSIF_[OLD]AUTOSENSE */

/* is set and scsi_Status has CHECK CONDITION */
/* (bit 1) set */

UWORD scsi_SenseLength;/* size of scsi_SenseData, also bytes to */
/* request w/ SCSIF_AUTOSENSE, must be 4..255 */

UWORD scsi_SenseActual;/* amount actually fetched (0 = no sense) */
};

See the include file devices/scsidisk.h for the complete structure
definition.

SCSICmd will contain the SCSI command and any associated data that you
wish to pass to the SCSI unit. You set its fields to the values required
by the unit and the command. When you have opened the SCSI device and set
the SCSICmd to the proper values, you are ready for SCSI-direct.

You send a SCSI-direct command by passing an IOStdReq to the SCSI device
with a pointer to the SCSICmd structure set in io_Data, the size of the
SCSICmd structure set in io_Length and HD_SCSICMD set in io_Command.:

struct IOStdReq *SCSIreq = NULL;
struct SCSICmd Cmd; /* where the actual SCSI command goes */

SCSIreq->io_Length = sizeof(struct SCSICmd);
SCSIreq->io_Data = (APTR)&Cmd;
SCSIreq->io_Command = HD_SCSICMD;
DoIO(SCSIreq);

The SCSICmd structure must be filled in prior to passing it to the SCSI
unit. How it is filled in depends on the SCSI-direct being passed to the
unit. Below is an example of setting up a SCSICmd structure for the
MODE_SENSE SCSI-direct command.

UBYTE *buffer; /* a data buffer used for mode sense data */
UBYTE Sense[20]; /* buffer for request sense data */
struct SCSICmd Cmd; /* where the actual SCSI command goes */

/* the command being sent */

static UBYTE ModeSense[]={ 0x1a,0,0xff,0,254,0 };

Cmd.scsi_Data = (UWORD *)buffer; /* where we put mode sense data */

Devices 6 / 16

Cmd.scsi_Length = 254; /* how much we will accept */
Cmd.scsi_CmdLength = 6; /* length of the command */
Cmd.scsi_Flags = SCSIF_AUTOSENSE | /* do automatic REQUEST_SENSE */

SCSIF_READ; /* set expected data direction */
Cmd.scsi_SenseData = (UBYTE *)Sense; /* where sense data will go */
Cmd.scsi_SenseLength = 18; /* how much we will accept */
Cmd.scsi_SenseActual = 0; /* how much has been received */

Cmd.scsi_Command=(UBYTE *)ModeSense; /* issuing a MODE_SENSE command */

The fields of the SCSICmd are:

scsi_data
This field points to the data buffer for the SCSI data phase (if any is
expected).It is generally the job of the driver software to ensure that
the given buffer is DMA-accessible and to drop to programmed I/O if it
isn’t. The filing system provides a stop-gap fix for non-conforming
drivers with the AddressMask parameter in DEVS:mountlist. For absolute
safety, restrict all direct reads and writes to Chip RAM.

scsi_Length
This is the expected length of data to be transferred. If an unknown
amount of data is to be transferred from target to host, set the
scsi_Length to be larger than the maximum amount of data expected. Some
controllers explicitly use scsi_Length as the amount of data to
transfer. The A2091, A590 and A3000 drivers always do programmed I/O
for data transfers under 256 bytes or when the DMA chip doesn’t support
the required alignment.

scsi_Actual
How much data was actually received from or sent to the SCSI unit in
response to the SCSI-direct command.

scsi_Command
The SCSI-direct command.

scsi_CmdLength
The length of the SCSI-direct command in bytes.

scsi_CmdActual
The actual number of bytes of the SCSI-direct command that were
transferred to the SCSI unit.

scsi_Flags
These flags contain the intended data direction for the SCSI command. It
is not strictly necessary to set the data direction flag since the SCSI
protocol will inform the driver which direction data transfers will be
going. However, some controllers use this information to set up DMA
before issuing the command . It can also be used as a sanity check in
case the data phase goes the wrong way.

One flag in particular, is worth noting. SCSIF_AUTOSENSE is used to
make the driver perform an automatic REQUEST SENSE if the target returns
CHECK CONDITION for a SCSI command. The reason for having the driver do
this is the multitasking nature of the Amiga.If two tasks were accessing
the same drive and the first received a CHECK CONDITION, the second task
would destroy the sense information when it sent a command.

Devices 7 / 16

SCSIF_AUTOSENSE prevents the caller from having to make two I/O requests
and removes this window of vulnerability.

scsi_Status
The status of the SCSI-direct command. The values returned in this field
can be found in the SCSI specification. For example, 2 is
CHECK_CONDITION.

scsi_SenseActual
If the SCSIF_AUTOSENSE flag is set, it is important to initialize this
field to zero before issuing a SCSI command because some drivers don’t
support AUTOSENSE and won’t initialize the field.

scsi_SenseData
This field is used only for SCSIF_AUTOSENSE. If a REQUEST SENSE command
is directly sent to the driver, the data will be deposited in the buffer
pointed to by scsi_Data.

Keep in mind that SCSI-direct is geared toward an initiator role so it
can’t be expected to perform target-like operations. You can only send
commands to a device, not receive them from an initiator. There is no
provision for SCSI messaging, either. This is due mainly to the
interactive nature of the extended messages (such as synchronous transfer
requests) which have to be handled by the driver because it knows the
limitations of the controller card and has to be made aware of such
protocol changes.

1.7 11 SCSI Device / RigidDiskBlock - Fields and Implementation

The RigidDiskBlock (RDB) standard was borne out of the same development
effort as HD_SCSICMD and as a result has a heavy bias towards SCSI.
However, there is nothing in the RDB specification that makes it unusable
for devices using other bus protocols. The XT style disks used in the
A590 also support the RDB standard.

The RDB scheme was designed to allow the automatic mounting of all
partitions on a hard drive and subsequent booting from the highest
priority partition even if it has a soft loaded filing system. Disks can
be removed from one controller and plugged into another (supporting the
RDB scheme) and will carry with it all the necessary information for
mounting and booting with them.

The preferred method of creating RigidDiskBlocks is with the HDToolBox
program supplied by Commodore. Most controllers include an RDB editor or
utility.

When a driver is initialized, it uses the information contained in the RDB
to mount the required partitions and mark them as bootable if needed. The
driver is also responsible for loading any filing systems that are
required if they are not already available on the filesystem.resource
list. File- systems are added to the resource according to DosType and
version number.

The following is a listing of devices/hardblocks.h that describes all the
fields in the RDB specification.

Devices 8 / 16

/*--

*
* This file describes blocks of data that exist on a hard disk

* to describe that disk. They are not generically accessable to

* the user as they do not appear on any DOS drive. The blocks

* are tagged with a unique identifier, checksummed, and linked

* together. The root of these blocks is the RigidDiskBlock.

*
* The RigidDiskBlock must exist on the disk within the first

* RDB_LOCATION_LIMIT blocks. This inhibits the use of the zero

* cylinder in an AmigaDOS partition: although it is strictly

* possible to store the RigidDiskBlock data in the reserved

* area of a partition, this practice is discouraged since the

* reserved blocks of a partition are overwritten by "Format",

* "Install", "DiskCopy", etc. The recommended disk layout,

* then, is to use the first cylinder(s) to store all the drive

* data specified by these blocks: i.e. partition descriptions,

* file system load images, drive bad block maps, spare blocks,

* etc.

*
* Though only 512 byte blocks are currently supported by the

* file system, this proposal tries to be forward-looking by

* making the block size explicit, and by using only the first

* 256 bytes for all blocks but the LoadSeg data.

*
--/

/*
* NOTE

* optional block addresses below contain $ffffffff to indicate

* a NULL address, as zero is a valid address

*/
struct RigidDiskBlock {

ULONG rdb_ID; /* 4 character identifier */
ULONG rdb_SummedLongs; /* size of this checksummed structure */
LONG rdb_ChkSum; /* block checksum (longword sum to zero) */
ULONG rdb_HostID; /* SCSI Target ID of host */
ULONG rdb_BlockBytes; /* size of disk blocks */
ULONG rdb_Flags; /* see below for defines */
/* block list heads */
ULONG rdb_BadBlockList; /* optional bad block list */
ULONG rdb_PartitionList; /* optional first partition block */
ULONG rdb_FileSysHeaderList; /* optional file system header block */
ULONG rdb_DriveInit; /* optional drive-specific init code */

/* DriveInit(lun,rdb,ior): */
/* "C" stk & d0/a0/a1 */

ULONG rdb_Reserved1[6]; /* set to $ffffffff */
/* physical drive characteristics */
ULONG rdb_Cylinders; /* number of drive cylinders */
ULONG rdb_Sectors; /* sectors per track */
ULONG rdb_Heads; /* number of drive heads */
ULONG rdb_Interleave; /* interleave */
ULONG rdb_Park; /* landing zone cylinder */
ULONG rdb_Reserved2[3];
ULONG rdb_WritePreComp; /* starting cylinder: write precompensation */
ULONG rdb_ReducedWrite; /* starting cylinder: reduced write current */

Devices 9 / 16

ULONG rdb_StepRate; /* drive step rate */
ULONG rdb_Reserved3[5];
/* logical drive characteristics */
ULONG rdb_RDBBlocksLo; /* low block of range reserved for

/* hardblocks */
ULONG rdb_RDBBlocksHi; /* high block of range for these hardblocks */
ULONG rdb_LoCylinder; /* low cylinder of partitionable disk area */
ULONG rdb_HiCylinder; /* high cylinder of partitionable data area */
ULONG rdb_CylBlocks; /* number of blocks available per cylinder */
ULONG rdb_AutoParkSeconds; /* zero for no auto park */
ULONG rdb_HighRDSKBlock; /* highest block used by RDSK */

/* (not including replacement bad blocks) */
ULONG rdb_Reserved4;
/* drive identification */
char rdb_DiskVendor[8];
char rdb_DiskProduct[16];
char rdb_DiskRevision[4];
char rdb_ControllerVendor[8];
char rdb_ControllerProduct[16];
char rdb_ControllerRevision[4];
ULONG rdb_Reserved5[10];

};

#define IDNAME_RIGIDDISK 0x5244534B /* ’RDSK’ */

#define RDB_LOCATION_LIMIT 16

#define RDBFB_LAST 0 /* no disks exist to be configured after */
#define RDBFF_LAST 0x01L /* this one on this controller */
#define RDBFB_LASTLUN 1 /* no LUNs exist to be configured */
#define RDBFF_LASTLUN 0x02L /* greater than this one at this SCSI */

/* Target ID */
#define RDBFB_LASTTID 2 /* no Target IDs exist to be configured */
#define RDBFF_LASTTID 0x04L /* greater than this one on this */

/* SCSI bus */
#define RDBFB_NORESELECT 3 /* don’t bother trying to perform */

/* reselection when talking */
#define RDBFF_NORESELECT 0x08L /* to this drive */
#define RDBFB_DISKID 4 /* rdb_Disk... identification valid */
#define RDBFF_DISKID 0x10L
#define RDBFB_CTRLRID 5 /* rdb_Controller...identification valid */
#define RDBFF_CTRLRID 0x20L

/* added 7/20/89 by commodore: */
#define RDBFB_SYNCH 6 /* drive supports scsi synchronous mode */
#define RDBFF_SYNCH 0x40L /* DANGEROUS TO USE IF IT DOESN’T! */

/*--*/
struct BadBlockEntry {

ULONG bbe_BadBlock; /* block number of bad block */
ULONG bbe_GoodBlock; /* block number of replacement block */

};

struct BadBlockBlock {
ULONG bbb_ID; /* 4 character identifier */
ULONG bbb_SummedLongs; /* size of this checksummed structure */
LONG bbb_ChkSum; /* block checksum (longword sum to zero) */
ULONG bbb_HostID; /* SCSI Target ID of host */

Devices 10 / 16

ULONG bbb_Next; /* block number of the next BadBlockBlock */
ULONG bbb_Reserved;
struct BadBlockEntry bbb_BlockPairs[61]; /* bad block entry pairs */
/* note [61] assumes 512 byte blocks */

};

#define IDNAME_BADBLOCK 0x42414442 /* ’BADB’ */

/*--*/
struct PartitionBlock {

ULONG pb_ID; /* 4 character identifier */
ULONG pb_SummedLongs; /* size of this checksummed structure */
LONG pb_ChkSum; /* block checksum (longword sum to zero) */
ULONG pb_HostID; /* SCSI Target ID of host */
ULONG pb_Next; /* block number of the next PartitionBlock */
ULONG pb_Flags; /* see below for defines */
ULONG pb_Reserved1[2];
ULONG pb_DevFlags; /* preferred flags for OpenDevice */
UBYTE pb_DriveName[32]; /* preferred DOS device name: BSTR form */

/* (not used if this name is in use) */
ULONG pb_Reserved2[15]; /* filler to 32 longwords */
ULONG pb_Environment[17]; /* environment vector for this partition */
ULONG pb_EReserved[15]; /* reserved for future environment vector */

};

#define IDNAME_PARTITION 0x50415254 /* ’PART’ */

#define PBFB_BOOTABLE 0 /* this partition intended to be bootable */
#define PBFF_BOOTABLE 1L /* (expected directories and files exist) */
#define PBFB_NOMOUNT 1 /* do not mount this partition (manually */
#define PBFF_NOMOUNT 2L /* mounted, but space reserved here) */

/*--*/
struct FileSysHeaderBlock {

ULONG fhb_ID; /* 4 character identifier */
ULONG fhb_SummedLongs; /* size of this checksummed structure */
LONG fhb_ChkSum; /* block checksum (longword sum to zero) */
ULONG fhb_HostID; /* SCSI Target ID of host */
ULONG fhb_Next; /* block number of next FileSysHeaderBlock */
ULONG fhb_Flags; /* see below for defines */
ULONG fhb_Reserved1[2];
ULONG fhb_DosType; /* file system description: match this with */

/* partition environment’s DE_DOSTYPE entry */
ULONG fhb_Version; /* release version of this code */
ULONG fhb_PatchFlags; /* bits set for those of the following that */

/* need to be substituted into a standard */
/* device node for this file system: e.g. */
/* 0x180 to substitute SegList & GlobalVec */

ULONG fhb_Type; /* device node type: zero */
ULONG fhb_Task; /* standard dos "task" field: zero */
ULONG fhb_Lock; /* not used for devices: zero */
ULONG fhb_Handler; /* filename to loadseg: zero placeholder */
ULONG fhb_StackSize; /* stacksize to use when starting task */
LONG fhb_Priority; /* task priority when starting task */
LONG fhb_Startup; /* startup msg: zero placeholder */
LONG fhb_SegListBlocks; /* first of linked list of LoadSegBlocks: */

/* note that this entry requires some */

Devices 11 / 16

/* processing before substitution */
LONG fhb_GlobalVec; /* BCPL global vector when starting task */
ULONG fhb_Reserved2[23];/* (those reserved by PatchFlags) */
ULONG fhb_Reserved3[21];

};

#define IDNAME_FILESYSHEADER 0x46534844 /* ’FSHD’ */

/*--*/
struct LoadSegBlock {

ULONG lsb_ID; /* 4 character identifier */
ULONG lsb_SummedLongs; /* size of this checksummed structure */
LONG lsb_ChkSum; /* block checksum (longword sum to zero) */
ULONG lsb_HostID; /* SCSI Target ID of host */
ULONG lsb_Next; /* block number of the next LoadSegBlock */
ULONG lsb_LoadData[123]; /* data for "loadseg" */
/* note [123] assumes 512 byte blocks */

};

#define IDNAME_LOADSEG

How A Driver Uses RDB
Alien Filing Systems

1.8 11 / RigidDiskBlock-Fields and Implementation / How A Driver Uses RDB

The information contained in the RigidDiskBlock and subsequent
PartitionBlocks, et al., is used by a driver in the following manner.

After determining that the target device is a hard disk (using the
SCSI-direct command INQUIRY), the driver will scan the first
RDB_LOCATION_LIMIT (16) blocks looking for a block with the "RDSK"
identifier and a correct sum-to-zero checksum. If no RDB is found then
the driver will give up and not attempt to mount any partitions for this
unit. If the RDB is found then the driver looks to see if there’s a
partition list for this unit (rdb_PartitionList). If none, then just the
rdb_Flags will be used to determine if there are any LUNs or units after
this one. This is used for early termination of the search for units on
bootup.

If a partition list is present, and the partition blocks have the correct
ID and checksum, then for each partition block the driver does the
following.

1. Checks the PBFB_NOMOUNT flag. If set then this partition is just
reserving space. Skip to the next partition without mounting the
current one.

2. If PBFB_NOMOUNT is false, then the partition is to be mounted. The
driver fetches the given drive name from pb_DriveName. This name
will be of the form dh0, work, wb_2.x etc. A check is made to see if
this name already exists on eb_MountList or DOS’s device list. If it
does, then the name is algorithmically altered to remove duplicates.
The A590, A2091 and A3000 append .n (where n is a number) unless
another name ending with .n is found. In that case the name is

Devices 12 / 16

changed to .n+1 and the search for duplicates is retried.

3. Next the driver constructs a parameter packet for MakeDosNode() using
the (possibly altered) drive name and information about the Exec
device name and unit number. MakeDosNode() is called to create a DOS
device node. MakeDosNode() constructs a filesystem startup message
from the given information and fills in defaults for the ROM filing
system.

4. If MakeDosNode() succeeds then the driver checks to see if the entry
is using a standard ("DOS\0") filing system. If not then the
routine for patching in non-standard filing systems is called (see
"Alien File Systems" below).

5. Now that the DOS node has been set up and the correct filing system
segment has been associated with it, the driver checks PBFB_BOOTABLE
to see if this partition is marked as bootable. If the partition is
not bootable, or this is not autoboot time (DiagArea == 0) then the
driver simply calls AddDosNode() to enqueue the DOS device node. If
the partition is bootable, then the driver constructs a boot node and
enqueues it on eb_MountList using the boot priority from the
environment vector. If this boot priority is -128 then the partition
is not considered bootable.

1.9 11 / RigidDiskBlock - Fields and Implementation / Alien Filing Systems

When a filing system other than the ROM filing system is to be used, the
following steps take place.

1. First, open filesystem.resource in preparation for finding the
filesystem segment we want. If filesystem.resource doesn’t exist
then create it and add it via AddResource(). Under 2.0 the resource
is created by the system early on in the initialization sequence.
Under pre-V36 Kickstart, it is the responsibility of the first RDB
driver to create it.

2. Scan filesystem.resource looking for a filesystem that matches the
DosType and version that we want. If it exists go to step 4.

3. Since the driver couldn’t find the filesystem it needed, it will have
to load it from the RDB area. The list of FileSysHeaderBlocks
(pointed to by the "RDSK" block) is scanned for a filesystem of the
required DosType and version. If none is found then the driver will
give up and abort the mounting of the partition. If the required
filesystem is found, then it is LoadSeg()’ed from the "LSEG" blocks
and added as a new entry to the filesystem.resource.

4. The SegList pointer of the found or loaded filesystem is held in the
FileSysEntry structure (which is basically an environment vector for
this filing system). Using the patch flags, the driver now patches
the newly created environment vector (pointed to by the new DosNode)
using the values in the FileSysEntry being used. This ensures that
the partition will have the correct filing system set up with the
correct mount variables using a shared SegList.

Devices 13 / 16

The eb_Mountlist will now be set up with prioritized bootnodes and maybe
some non-bootable, but mounted partitions. The system bootstrap will now
take over.

1.10 11 SCSI Device / Amiga BootStrap

At priority -40 in the system module initialization sequence, after most
other modules are initialized, appropriate expansion boards are
configured. Appropriate boards will match a FindConfigDev(, -1,-1)
- these are all boards on the expansion library board list.

Furthermore, they will meet all of the following conditions:

1. CDB_CONFIGME set in cd_Flags,

2. ERTB_DIAGVALID set in cd_Rom->er_Type,

3. diagnostic area pointer (in cd_Rom->er_Reserved0c) is non-zero,

4. DAC_CONFIGTIME set in da_Config, and

5. at least one valid resident tag within the diagnostic area, the first
of which is used by InitResident() below. This resident structure
was patched to be valid during the ROM diagnostic routine run when
the expansion library first initialized the board.

Boards meeting all these conditions are initialized with the standard
InitResident() mechanism, with a NULL SegList. The board initialization
code can find its ConfigDev structure with the expansion library’s
GetCurrentBinding() function. This is an appropriate time for drivers to
Enqueue() a boot node on the expansion library’s eb_MountList for use by
the strap module below, and clear CDB_CONFIGME so a C:BindDrivers command
will not try to initialize the board a second time.

This module will also enqueue nodes for 3.5" trackdisk device
units. These nodes will be at the following priorities:

Priority Drive
-------- -----

5 df0:
-10 df1:
-20 df2:
-30 df3:

Next, at priority -60 in the system module initialization sequence, the
strap module is invoked. Nodes from the prioritized eb_MountList list is
used in priority order in attempts to boot. An item on the list is given a
chance to boot via one of two different mechanisms, depending on whether
it it uses boot code read in off the disk (BootBlock booting), or uses
boot code provided in the device ConfigDev diagnostic area
(BootPoint booting). Floppies always use the BootBlock method. Other
entries put on the eb_MountList (e.g. hard disk partitions) used the
BootPoint mechanism for pre-V36 Kickstart, but can use either for V36/V37.

The eb_MountList is modified before each boot attempt, and then
restored and re-modified for the next attempt if the boot fails:

Devices 14 / 16

1. The node associated with the current boot attempt is placed at the
head of the eb_MountList.

2. Nodes marked as unusable under AmigaDOS are removed from the list.
Nodes that are unusable are marked by the longword
bn_DeviceNode->dn_Handler having the most significant bit set. This
is used, for example, to keep UNIX partitions off the AmigaDOS device
list when booting AmigaDOS instead of UNIX.

The selection of which of the two different boot mechanisms to use
proceeds as follows:

1. The node must be valid boot node, i.e. meet both of the following
conditions:

a) ln_Type is NT_BOOTNODE,
b) bn_DeviceNode is non-zero,

2. The type of boot is determined by looking at the DosEnvec pointed to
by fssm_Environ pointed to by the dn_Startup in the bn_DeviceNode:

a) if the de_TableSize is less than DE_BOOTBLOCKS, or the
de_BootBlocks entry is zero, BootPoint booting is specified,
otherwise

b) de_BootBlocks contains the number of blocks to read in from
the beginning of the partition, checksum, and try to boot from.

Bootblock Booting
Bootpoint Booting

1.11 11 / Amiga BootStrap / Bootblock Booting

In BootBlock booting the sequence of events is as follows:

1. The disk device must contain valid boot blocks:

a) the device and unit from dn_Startup opens successfully,

b) memory is available for the <de_BootBlocks> * <de_SizeBlock> * 4
bytes of boot block code,

c) the device commands CMD_CLEAR, TD_CHANGENUM, and CMD_READ of the
boot blocks execute without error,

d) the boot blocks start with the three characters "DOS" and pass
the longword checksum (with carry wraparound), and

e) memory is available to construct a boot node on the eb_MountList
to describe the floppy. If a device error is reported in 1.c.,
or if memory is not available for 1.b. or 1.e., a recoverable
alert is presented before continuing.

2. The boot code in the boot blocks is invoked as follows:

Devices 15 / 16

a) The address of the entry point for the boot code is offset
BB_ENTRY into the boot blocks in memory.

b) The boot code is invoked with the I/O request used to issue the
device commands in 1.c. above in register A1, with the io_Offset
pointing to the beginning of the partition (the origin of the
boot blocks) and SysBase in A6.

3. The boot code returns with results in both D0 and A0.

a) Non-zero D0 indicates boot failure. The recoverable alert
AN_BootError is presented before continuing.

b) Zero D0 indicates A0 contains a pointer to the function to
complete the boot. This completion function is chained to with
SysBase in A6 after the strap module frees all its resources.
It is usually the dos.library initialization function, from the
dos.library resident tag. Return from this function is
identical to return from the strap module itself.

1.12 11 / Amiga BootStrap / Bootpoint Booting

BootPoint booting follows this sequence:

1. The eb_MountList node must contain a valid BootPoint:

a) ConfigDev pointer (in ln_Name) is non-zero,

b) diagnostic area pointer (in cd_Rom er_Reserved0c) is non-zero,

c) DAC_CONFIGTIME set in da_Config.

2. The boot routine of a valid boot node is invoked as follows:

a) The address of the boot routine is calculated from da_BootPoint.

b) The resulting boot routine is invoked with the ConfigDev pointer
on the stack in C fashion (i.e., (*boot)(configDev);). Moreover,
register A2 will contain the address of the associated
eb_MountList node.

3. Return from the boot routine indicates failure to boot.

If all entries fail to boot, the user is prompted to put a bootable disk
into a floppy drive with the "strap screen". The system floppy drives
are polled for new disks. When one appears, the "strap screen" is removed
and the appropriate boot mechanism is applied as described above. The
process of prompting and trying continues till a successful boot occurs.

1.13 11 SCSI Device / Additional Information on the SCSI Device

Devices 16 / 16

Additional programming information on the SCSI device can be found in the
include files for the SCSI device and RigidDiskBlock. Both are contained
in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

For information on the SCSI commands, see either the ANSI-X3T9 (draft
SCSI-2) or ANSI X3.131 (SCSI-1) specification. The NCR SCSI BBS - phone
number (316)636-8700 (2400 baud) - has electronic copies of the current
SCSI specifications.

SCSI Device Information

INCLUDES devices/scsidisk.h

devices/scsidisk.i
devices/hardblocks.h
devices/hardblocks.i

	Devices
	Amiga® RKM Devices: 11 SCSI Device
	11 SCSI Device / SCSI Device Commands and Functions
	11 SCSI Device / Device Interface
	11 / Device Interface / Opening The SCSI Device
	11 / Device Interface / Closing The SCSI Device
	11 SCSI Device / SCSI-Direct
	11 SCSI Device / RigidDiskBlock - Fields and Implementation
	11 / RigidDiskBlock-Fields and Implementation / How A Driver Uses RDB
	11 / RigidDiskBlock - Fields and Implementation / Alien Filing Systems
	11 SCSI Device / Amiga BootStrap
	11 / Amiga BootStrap / Bootblock Booting
	11 / Amiga BootStrap / Bootpoint Booting
	11 SCSI Device / Additional Information on the SCSI Device

