
Devices

Devices ii

COLLABORATORS

TITLE :

Devices

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Devices iii

Contents

1 Devices 1

1.1 Amiga® RKM Devices: 9 / Parallel Device . 1

1.2 9 Parallel Device / Parallel Device Commands and Functions . 1

1.3 9 Parallel Device / Device Interface . 2

1.4 9 Device Interface / Opening The Parallel Device . 3

1.5 9 / Device Interface / Reading From The Parallel Device . 3

1.6 9 / Device Interface / Writing To The Parallel Device . 4

1.7 9 / Device Interface / Closing The Parallel Device . 4

1.8 9 Parallel Device / Ending A Read or Write with Termination Characters . 5

1.9 9 Parallel Device / Setting Parallel Parameters . 5

1.10 9 / Setting Parallel Parameters / Parallel Flags (Bits for io_ParFlags) . 6

1.11 9 Parallel Device / Querying the Parallel Device . 7

1.12 9 Parallel Device / Additional Information on the Parallel Device . 8

Devices 1 / 8

Chapter 1

Devices

1.1 Amiga® RKM Devices: 9 / Parallel Device

The parallel device provides a hardware-independent interface to the
Amiga’s Centronics-compatible parallel port. The primary use of the Amiga
parallel port is for output to printers, but with its extensions for
bi-directional I/O, it can also be used for communication with digitizers
and high-speed links with other computers. The parallel device is based
on the conventions of Exec device I/O, with extensions for parameter
setting and control.

Parallel Device Commands and Functions
Device Interface
Ending A Read or Write with Termination Characters
Setting Parallel Parameters
Querying the Parallel Device
Additional Information on the Parallel Device

1.2 9 Parallel Device / Parallel Device Commands and Functions

Command Operation
------- ---------
CMD_FLUSH Purge all queued requests for the parallel device. Does

not affect active requests.

CMD_READ Read a stream of characters from the parallel port. The
number of characters can be specified or a termination
character(s) can be used.

CMD_RESET Reset the parallel port to its initialized state. All
active and queued I/O requests will be aborted.

CMD_START Restart all paused I/O over the parallel port.
Reactivates the handshaking sequence.

CMD_STOP Pause all active I/O over the parallel port. Deactivates
the handshaking sequence.

Devices 2 / 8

CMD_WRITE Write out a stream of characters to the parallel port.
The number of characters can be specified or a
NULL-terminated string can be sent.

PDCMD_QUERY Return the status of the parallel port lines and
registers.

PDCMD_SETPARAMS Set the parameters of the parallel port.

Exec Functions as Used in This Chapter

AbortIO() Abort a command to the parallel device. If the command is

in progress, it is stopped immediately. If it is queued,
it is removed from the queue.

BeginIO() Initiate a command and return immediately (asynchronous
request). This is used to minimize the amount of system
overhead.

CheckIO() Determine the current state of an I/O request.

CloseDevice() Relinquish use of the parallel device. All requests must
be complete.

DoIO() Initiate a command and wait for completion (synchronous
request).

OpenDevice() Obtain use of the parallel device.

SendIO() Initiate a command and return immediately (asynchronous
request).

WaitIO() Wait for the completion of an asynchronous request. When
the request is complete the message will be removed from
your reply port.

Exec Support Functions as Used in This Chapter
--
CreateExtIO() Create an extended I/O request structure of type

IOExtPar. This structure will be used to communicate
commands to the parallel device.

CreatePort() Create a signal message port for reply messages from the
parallel device. Exec will signal a task when a message
arrives at the port.

DeleteExtIO() Delete an extended I/O request structure created by
CreateExtIO().

DeletePort() Delete the message port created by CreatePort().

1.3 9 Parallel Device / Device Interface

Devices 3 / 8

The parallel device operates like the other Amiga devices. To use it, you
must first open the parallel device, then send I/O requests to it, and
then close it when finished. See "Introduction to Amiga System Devices"
chapter for general information on device usage.

The I/O request used by the parallel device is called IOExtPar.

struct IOExtPar
{
struct IOStdReq IOPar;
ULONG io_PExtFlags; /* additional parallel flags */
UBYTE io_Status; /* status of parallel port and registers */
UBYTE io_ParFlags; /* parallel device flags */
struct IOPArray io_PTermArray; /* termination character array */
};

See the include file devices/parallel.h for the complete structure
definition.

Opening The Parallel Device Writing To The Parallel Device
Reading From The Parallel Device Closing The Parallel Device

1.4 9 Device Interface / Opening The Parallel Device

Three primary steps are required to open the parallel device:

* Create a message port using CreatePort(). Reply messages from the
device must be directed to a message port.

* Create an extended I/O request structure of type IOExtPar using
CreateExtIO(). CreateExtIO() will initialize the I/O request to point
to your reply port.

* Open the parallel device. Call OpenDevice(),passing the I/O request.

struct MsgPort *ParallelMP; /* Pointer to reply port */
struct IOExtPar *ParallelIO; /* Pointer to I/O request */

if (ParallelMP=CreatePort(0,0))
if (ParallelIO=(struct IOExtPar *)

CreateExtIO(ParallelMP,sizeof(struct IOExtPar)))
if (OpenDevice(PARALLELNAME,0L,(struct IORequest *)ParallelIO,0))

printf("%s did not open\n",PARALLELNAME);

During the open, the parallel device pays attention to just one flag;
PARF_SHARED. For consistency, the other flag bits should also be properly
set. Full descriptions of all flags will be given later. When the
parallel device is opened, it fills the latest default parameter settings
into the IOExtPar block.

1.5 9 / Device Interface / Reading From The Parallel Device

Devices 4 / 8

You read from the parallel device by passing an IOExtPar to the device
with CMD_READ set in io_Command, the number of bytes to be read set in
io_Length and the address of the read buffer set in io_Data.

#define READ_BUFFER_SIZE 256
/* Reserve SIZE bytes of storage */
char ParallelReadBuffer[READ_BUFFER_SIZE];

ParallelIO->IOPar.io_Length = READ_BUFFER_SIZE;
ParallelIO->IOPar.io_Data = (APTR)&ParallelReadBuffer[0];
ParallelIO->IOPar.io_Command = CMD_READ;
DoIO((struct IORequest *)ParallelIO);

If you use this example, your task will be put to sleep waiting until the
parallel device reads 256 bytes (or terminates early). Early termination
can be caused by error conditions.

1.6 9 / Device Interface / Writing To The Parallel Device

You write to the parallel device by passing an IOExtPar to the device with
CMD_WRITE set in io_Command, the number of bytes to be written set in
io_Length and the address of the write buffer set in io_Data.

To write a NULL-terminated string, set the length to -1; the device will
output from your buffer until it encounters and transmits a value of zero
(0x00).

ParallelIO->IOPar.io_Length = -1;
ParallelIO->IOPar.io_Data = (APTR)"Parallel lines cross 7 times...";
ParallelIO->IOPar.io_Command = CMD_WRITE;
DoIO((struct IORequest *)ParallelIO); /* execute write */

The length of the request is -1, meaning we are writing a NULL-terminated
string. The number of characters sent can be found in io_Actual.

1.7 9 / Device Interface / Closing The Parallel Device

Each OpenDevice() must eventually be matched by a call to CloseDevice().
When the last close is performed, the device will deallocate all resources
and buffers. The latest parameter settings will be saved for the next
open.

All I/O requests must be complete before CloseDevice(). If any requests
are still pending, abort them with AbortIO():

if (!(CheckIO(ParallelIO)))
{
AbortIO(ParallelIO); /* Ask device to abort request, if pending */
}

WaitIO(ParallelIO); /* Wait for abort, then clean up */
CloseDevice((struct IORequest *)ParallelIO);

Devices 5 / 8

1.8 9 Parallel Device / Ending A Read or Write with Termination Characters

Reads and writes from the parallel device may terminate early if an error
occurs or if an end-of-file is sensed. For example, if a break is
detected on the line, any current read request will be returned with the
error ParErr_DetectedBreak. The count of characters read to that point
will be in the io_Actual field of the request.

You can specify a set of possible end-of-file characters that the parallel
device is to look for in the input or output stream using the
PDCMD_SETPARAMS command. These are contained in an io_PTermArray that you
provide. io_PTermArray is used only when the PARF_EOFMODE flag is selected
(see Parallel Flags below).

If EOF mode is selected, each input data character read into or written
from the user’s data block is compared against those in io_PTermArray. If
a match is found, the IOExtPar is terminated as complete, and the count of
characters transferred (including the termination character) is stored in
io_Actual.

To keep this search overhead as efficient as possible, the parallel device
requires that the array of characters be in descending order. The array
has eight bytes and all must be valid (that is, do not pad with zeros
unless zero is a valid EOF character). Fill to the end of the array with
the lowest value termination character. When making an arbitrary choice of
EOF character(s), you will get the quickest response from the lowest
value(s) available.

Terminate_Parallel.c

The read will terminate before the io_Length number of characters is read
if a "Q", "E", or "A" is detected.

It’s Usually For Output.

Most applications for the parallel device use the device for output,
hence the termination feature is usually done on the output stream.

1.9 9 Parallel Device / Setting Parallel Parameters

You can control the parallel parameters shown in the following table. The
parameter name within the parallel IOExtPar data structure is shown below.
All of the fields described in this section are filled with defaults when
you call OpenDevice(). Thus, you need not worry about any parameter that
you do not need to change. The parameters are defined in the include file
devices/parallel.h.

PARALLEL PARAMETERS (IOExtPar)
IOExtPar
Field Name Parallel Device Parameter It Controls
---------- -------------------------------------
io_PExtFlags Reserved for future use.

io_PTermArray A byte-array of eight termination characters, must

Devices 6 / 8

be in descending order. If EOFMODE is set in the
parallel flags, this array specifies eight possible
choices of characters to use as an end-of-file mark.
See the section above titled "Ending A Read Or Write
with Termination Characters" and the PDCMD_SETPARAMS
summary page in the Autodocs.

io_Status Contains status information. It is filled in by the
PDCMD_QUERY command.

io_ParFlags See "Parallel Flags" below.

You set the parallel parameters by passing an IOExtPar to the device with
PDCMD_SETPARAMS set in io_Command and with the flags and parameters set to
the values you want.

ParallelIO->io_ParFlags &= ~PARF_EOFMODE; /* Set EOF mode */
ParallelIO->IOPar.io_Command = PDCMD_SETPARAMS; /* Set params command */
if (DoIO(ParallelIO);

printf("Error setting parameters!\n");

The above code fragment modifies one bit in io_ParFlags, then sends the
command.

Proper Time for Parameter Changes.

A parameter change should not be performed while an I/O request is
actually being processed, because it might invalidate already active
request handling. Therefore you should use PDCMD_SETPARAMS only when
you have no parallel I/O requests pending.

Parallel Flags (Bit Definitions For Io_parflags)

1.10 9 / Setting Parallel Parameters / Parallel Flags (Bits for io_ParFlags)

The flags shown in the following table can be set to affect the operation
of the parallel device. Note that the default state of all of these flags
is zero. The flags are defined in the include file devices/parallel.h.

PARALLEL FLAGS (io_ParFlags)

Flag Name Effect on Device Operation
--------- --------------------------

PARF_EOFMODE Set this bit if you want the parallel
device to check I/O characters against io_TermArray
and terminate the I/O request immediately if an
end-of-file character has been encountered.
Note: This bit can be set and reset directly in
the user’s IOExtPar block without a call to
PDCMD_SETPARAMS.

PARF_ACKMODE Set this bit if you want to use ACK handshaking.

PARF_FASTMODE Set this bit if you want to use

Devices 7 / 8

high-speed mode for transfers to high-speed
printers. This mode will send out data as long as
the BUSY signal is low. The printer must be
able to raise the BUSY signal within three
microseconds or data will be lost. Should only be
used when the device has been opened for exclusive
-access.

PARF_SLOWMODE Set this bit if you want to use slow
-speed mode for transfers to very slow printers.
Should not be used with high-speed printers.

PARF_SHARED Set this bit if you want to allow other
tasks to simultaneously access the parallel port.
The default is exclusive access. If someone already
has the port, whether for exclusive or shared
access, and you ask for exclusive access, your
OpenDevice() call will fail (must be modified
before OpenDevice()).

1.11 9 Parallel Device / Querying the Parallel Device

You query the parallel device by passing an IOExtPar to the device with
PDCMD_QUERY set in io_Command. The parallel device will respond with the
status of the parallel port lines and registers.

UWORD Parallel_Status;

ParallelIO->IOPar.io_Command = PDCMD_QUERY; /* indicate query */
DoIO((struct IORequest *)ParallelIO);

Parallel_Status = ParallelIO->io_Status; /* store returned status */

The 8 status bits of the parallel device are returned in io_Status.

PARALLEL DEVICE STATUS BITS

Bit Active Function
--- ------ --------
0 high Printer busy toggle (offline)
1 high Paper out
2 high Printer Select on the A1000. On theA500 and A2000,

select is also connected to to the parallel port’s
Ring Indicator. Be cautious when making cables.

3 - read=0; write=1
4-7 - (reserved)

The parallel device also returns error codes whenever an operation is
attempted.

struct IOPArray Terminators =
{
0x51454141, /* Q E A A */
0x41414141 /* fill to end with lowest value,must be in desc. order */
};

Devices 8 / 8

ParallellIO->io_ParFlags != PARF_EOFMODE; /* Set EOF mode flag */
ParallelIO->io_PTermArray = Terminators;/* Set termination characters */
ParallellIO->IOPar.io_Command = PDCMD_SETPARAMS; /* Set parameters */
if (DoIO((struct IORequest *)ParallelIO))

printf("Set Params failed. Error: %ld ",ParallelIO->IOPar.io_Error);

The error is returned in the io_Error field of the IOExtPar structure.

PARALLEL DEVICE ERROR CODES

Error Value Explanation
----- ----- -----------

ParErr_DevBusy 1 Device in use
ParErr_BufToBig 2 Out of memory
ParErr_InvParam 3 Invalid parameter
ParErr_LineErr 4 Parallel line error
ParErr_NotOpen 5 Device not open
ParErr_PortReset 6 Port Reset
ParErr_InitErr 7 Initialization Error

Parallel.c

1.12 9 Parallel Device / Additional Information on the Parallel Device

Additional programming information on the parallel device can be found in
the include files and the Autodocs for the parallel device. Both are
contained in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Parallel Device Information height

INCLUDES devices/parallel.h

devices/parallel.i

AUTODOCS parallel.doc

	Devices
	Amiga® RKM Devices: 9 / Parallel Device
	9 Parallel Device / Parallel Device Commands and Functions
	9 Parallel Device / Device Interface
	9 Device Interface / Opening The Parallel Device
	9 / Device Interface / Reading From The Parallel Device
	9 / Device Interface / Writing To The Parallel Device
	9 / Device Interface / Closing The Parallel Device
	9 Parallel Device / Ending A Read or Write with Termination Characters
	9 Parallel Device / Setting Parallel Parameters
	9 / Setting Parallel Parameters / Parallel Flags (Bits for io_ParFlags)
	9 Parallel Device / Querying the Parallel Device
	9 Parallel Device / Additional Information on the Parallel Device

