
Devices

Devices ii

COLLABORATORS

TITLE :

Devices

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Devices iii

Contents

1 Devices 1

1.1 Amiga® RKM Devices: 6 Input Device . 1

1.2 6 Input Device / Input Device Commands and Functions . 2

1.3 6 Input Device / Device Interface . 3

1.4 6 / Device Interface / Opening The Input Device . 4

1.5 6 / Device Interface / Input Device Event Types . 5

1.6 6 / Device Interface / Closing The Input Device . 8

1.7 6 Input Device / Using the Mouse Port With the Input Device . 8

1.8 6 / Setting The Conditions For A Mouse Port Report . 9

1.9 6 Input Device / Adding an Input Handler . 9

1.10 6 / Adding an Input Handler / Rules For Input Device Handlers . 10

1.11 6 / Adding an Input Handler / Removing An Input Handler . 11

1.12 6 Input Device / Writing Events to the Input Device Stream . 11

1.13 6 / Writing Events to Input Device Stream / Setting Position Of Mouse . 12

1.14 6 Input Device / Setting the Key Repeat Threshold . 13

1.15 6 Input Device / Setting the Key Repeat Interval . 14

1.16 6 Input Device / Determining the Current Qualifiers . 14

1.17 6 Input Device / Input Device and Intuition . 15

1.18 6 Input Device / Additional Information on the Input Device . 16

Devices 1 / 16

Chapter 1

Devices

1.1 Amiga® RKM Devices: 6 Input Device

The input device is the central collection point for input events
disseminated throughout the system. The best way to describe the input
device is a manager of a stream with feeders. The input device itself and
other modules such as the file system add events to the stream; so do
input device "users" - programs or other devices that use parts of the
stream or change it in some way. Feeders of the input device include the
keyboard, timer and gameport devices. The keyboard, gameport, and timer
devices are special cases in that the input device opens them and asks
them for input. Users of the input device include Intuition and the
console device.

NEW FEATURES FOR VERSION 2.0

Feature Description
--------------------- -----------------
@{ "IECLASS_NEWPOINTERPOS " link 6-5-1} Input Event Class
IECLASS_MENUHELP Input Event Class
IECLASS_CHANGEWINDOW Input Event Class
IESUBCLASS_COMPATIBLE Input Event SubClass
IESUBCLASS_PIXEL Input Event SubClass
IESUBCLASS_TABLET Input Event SubClass
PeekQualifier() Function

Compatibility Warning:

The new features for the 2.0 input device are not backwards
compatible.

Input Device Commands and Functions
Device Interface
Using the Mouse Port With the Input Device
Adding an Input Handler
Writing Events to the Input Device Stream
Setting the Key Repeat Threshold
Setting the Key Repeat Interval
Determining the Current Qualifiers
Input Device and Intuition
Example Input Device Program

Devices 2 / 16

Additional Information on the Input Device

1.2 6 Input Device / Input Device Commands and Functions

Command Operation
------- ---------
CMD_FLUSH Purge all active and queued requests for the input device.

CMD_RESET Reset the input port to its initialized state. All
active and queued I/O requests will be aborted. Restarts
the device if it has been stopped.

CMD_START Restart the currently active input (if any) and resume
queued I/O requests.

CMD_STOP Stop any currently active input and prevent queued I/O
requests from starting.

IND_ADDHANDLER Add an input-stream handler into the handler chain.

IND_REMHANDLER Remove an input-stream handler from the handler chain.

IND_SETMPORT Set the controller port to which the mouse is connected.

IND_SETMTRIG Set conditions that must be met by a mouse before a
pending read request will be satisfied.

IND_SETMTYPE Set the type of device at the mouse port.

IND_SETPERIOD Set the period at which a repeating key repeats.

IND_SETTHRESH Set the repeating key hold-down time before repeat starts.

IND_WRITEEVENT Propagate an input event stream to all devices.

Input Device Function

PeekQualifier() Return the input device’s current qualifiers. (V36)

Exec Functions as Used in This Chapter

AbortIO() Abort a command to the input device.

CheckIO() Return the status of an I/O request.

CloseDevice() Relinquish use of the input device.

DoIO() Initiate a command and wait for completion (synchronous
request).

OpenDevice() Obtain shared use of the input device.

SendIO() Initiate a command and return immediately (asynchronous

Devices 3 / 16

request).

Exec Support Functions as Used in This Chapter
--
CreateExtIO() Create an extended I/O request structure of type

IOStdReq. This structure will be used to communicate
commands to the input device.

CreatePort() Create a signal message port for reply messages from the
input device. Exec will signal a task when a message
arrives at the reply port.

DeleteExtIO() Delete an I/O request structure created by CreateExtIO().

DeletePort() Delete the message port created by CreatePort().

1.3 6 Input Device / Device Interface

The input device operates like the other Amiga devices. To use it, you
must first open the input device, then send I/O requests to it, and then
close it when finished. See the @{ "Introduction to Amiga System Devices" link ←↩

Dev_1/1-3}
chapter for general information on device usage.

A number of structures are used by the input device to do its processing.
Some are used to pass commands and data to the device, some are used to
describe input events like mouse movements and key depressions, and one
structure is used to describe the environment for input event handlers.

The I/O request used by the input device for most commands is IOStdReq.

struct IOStdReq
{

struct Message io_Message; /* message reply port */
struct Device *io_Device; /* device node pointer */
struct Unit *io_Unit; /* unit */
UWORD io_Command; /* input device command */
UBYTE io_Flags; /* input device flags */
BYTE io_Error; /* error code */
ULONG io_Length; /* number of bytes to transfer */
APTR io_Data; /* pointer to data area */

};

See the include file exec/io.h for the complete structure definition.

Two of the input device commands - IND_SETTHRESH and IND_SETPERIOD -
require a time specification and must use a timerequest structure instead
of an IOStdReq.

struct timerequest
{

struct IORequest tr_node;
struct timeval tr_time;

};

Devices 4 / 16

As you can see, the timerequest structure includes an IORequest structure.
The io_Command field of theIORequest indicates the command to the input
device and the timeval structure sets the time values. See the include
file devices/timer.h for the complete structure definition.

In Case You Feel Like Reinventing the Wheel...
--
You could define a "super-IORequest" structure for the input device
which would combine the IOStdReq fields with the timeval structure of
the timerequest structure.

Opening The Input Device
Input Device Event Types
Closing The Input Device

1.4 6 / Device Interface / Opening The Input Device

Three primary steps are required to open the input device:

* Create a message port using CreatePort(). Reply messages from the
device must be directed to a message port.

* Create an I/O request structure of type IOStdReq or timerequest. The
I/O request created by the CreateExtIO() function will be used to
pass commands and data to the input device.

* Open the Input device. Call OpenDevice(), passing the I/O request.

struct MsgPort *InputMP; /* Message port pointer */
struct IOStdReq *InputIO; /* I/O request pointer */

if (InputMP=CreatePort(0,0))
if (InputIO=(struct IOStdReq *)

CreateExtIO(InputMP,sizeof(struct IOStdReq)))
if (OpenDevice("input.device",0L,(struct IORequest *)InputIO,0))

printf("input.device did not open\n");

The above code will work for all the input device commands except for the
ones which require a time specification. For those, the code would look
like this:

#include <devices/timer.h>

struct MsgPort *InputMP; /* Message port pointer */
struct timerequest *InputIO; /* I/O request pointer */

if (InputMP=CreatePort(0,0))
if (InputIO=(struct timerequest *)

CreateExtIO(InputMP,sizeof(struct timerequest)))
if (OpenDevice("input.device",0L,(struct IORequest *)InputIO,0))

printf("input.device did not open\n");

Devices 5 / 16

1.5 6 / Device Interface / Input Device Event Types

The input device is automatically opened by the console device when the
system boots. When the input device is opened, a task named
"input.device" is started. The input device task communicates directly
with the keyboard device to obtain raw key events. It also communicates
with the gameport device to obtain mouse button and mouse movement events
and with the timer device to obtain time events. In addition to these
events, you can add your own input events to the input device, to be fed
to the handler chain (see below).

The keyboard device is accessible directly (see the Keyboard Device
chapter). However, once the input.device task has started, you should not
read events from the keyboard device directly, since doing so will deprive
the input device of the events and confuse key repeating.

The gameport device has two units. As you view the Amiga, looking at the
gameport connectors, the left connector is assigned as the primary mouse
input for Intuition and contributes gameport input events to the input
event stream.

The right connector is handled by the other gameport unit and is currently
unassigned. While the input device task is running, that task expects to
read the input from the left connector. Direct use of the gameport device
is covered in the Gameport Device chapter of this manual.

The timer device is used to generate time events for the input device. It
is also used to control key repeat rate and key repeat threshold. The
timer device is a shared-access device and is described in
Timer Device chapter of this manual.

The device-specific commands are described below. First though, it may be
helpful to consider the types of input events that the input device deals
with. An input event is a data structure that describes the following:

* The class of the event-often describes the device that generated
the event.

* The subclass of the event-space for more information if needed.

* The code-keycode if keyboard, button information if mouse, others.

* A qualifier such as "Alt key also down,"or "key repeat active".

* A position field that contains a data address or a mouse position
count.

* A time stamp, to determine the sequence in which the events occurred.

* A link-field by which input events are linked together.

* The class, subclass, code and qualifier of the previous down key.

The full definitions for each field can be found in the include file
devices/inputevent.h. You can find more information about input events in
the Gameport Device and Console Device chapters of this manual.

Devices 6 / 16

The various types of input events are listed below.

Input Device Event Types

IECLASS_NULL A NOP input event
IECLASS_RAWKEY A raw keycode from the keyboard device
IECLASS_RAWMOUSE The raw mouse report from the gameport device
IECLASS_EVENT A private console event
IECLASS_POINTERPOS A pointer position report
IECLASS_TIMER A timer event
IECLASS_GADGETDOWN Select button pressed down over a

gadget (address in ie_EventAddress)
IECLASS_GADGETUP Select button released over the same gadget

(address in ie_EventAddress)
IECLASS_REQUESTER Some requester activity has taken place.
IECLASS_MENULIST This is a menu number transmission (menu

number is in ie_Code)
IECLASS_CLOSEWINDOW User has selected active window’s Close Gadget
IECLASS_SIZEWINDOW This window has a new size
IECLASS_REFRESHWINDOW The window pointed to by

ie_EventAddress needs to be refreshed
IECLASS_NEWPREFS New preferences are available
IECLASS_DISKREMOVED The disk has been removed
IECLASS_DISKINSERTED The disk has been inserted
IECLASS_ACTIVEWINDOW The window is about to be been made active
IECLASS_INACTIVEWINDOW The window is about to be made inactive
IECLASS_NEWPOINTERPOS Extended-function pointer position report (V36)
IECLASS_MENUHELP Help key report during Menu session (V36)
IECLASS_CHANGEWINDOW The Window has been modified with move,

size, zoom, or change (V36)

There is a difference between simply receiving an input event from a
device and actually becoming a handler of an input event stream. A handler
is a routine that is passed an input event list. It is up to the handler
to decide if it can process the input events. If the handler does not
recognize an event, it leaves it undisturbed in the event list.

It All Flows Downhill.

Handlers can themselves generate new linked lists of events which can
be passed down to lower priority handlers.

The InputEvent structure is used by the input device to describe an input
event such as a keypress or a mouse movement.

struct InputEvent
{

struct InputEvent *ie_NextEvent;/* the next chronological event */
UBYTE ie_Class; /* the input event class */
UBYTE ie_SubClass; /* optional subclass of the class */
UWORD ie_Code; /* the input event code */
UWORD ie_Qualifier; /* qualifiers in effect for the event*/
union

Devices 7 / 16

{
struct
{

WORD ie_x; /* the pointer position for event */
WORD ie_y;

} ie_xy;
APTR ie_addr; /* the event address */
struct
{

UBYTE ie_prev1DownCode;/* previous down keys for dead */
UBYTE ie_prev1DownQual;/* key translation: the ie_Code */
UBYTE ie_prev2DownCode;/* &low byte of ie_Qualifier for */
UBYTE ie_prev2DownQual;/* last & second last down keys */

} ie_dead;
} ie_position;
struct timeval ie_TimeStamp; /* the system tick at the event */

};

The IEPointerPixel and IEPointerTablet structures are used to set the
mouse position with the IECLASS_NEWPOINTERPOS input event class.

struct IEPointerPixel
{

struct Screen *iepp_Screen; /* pointer to an open screen */
struct
{ /* pixel coordinates in iepp_Screen */

WORD X;
WORD Y;

} iepp_Position;
};

struct IEPointerTablet
{

struct
{

UWORD X;
UWORD Y;

} iept_Range; /* 0 is min, these are max */
struct
{

UWORD X;
UWORD Y;

} iept_Value; /* between 0 and iept_Range */

WORD iept_Pressure; /* -128 to 127 (unused, set to 0) */
};

See the include file devices/inputevent.h for the complete structure
definitions.

For input device handler installation, the Interrupt structure is used.

Devices 8 / 16

struct Interrupt
{

struct Node is_Node;
APTR is_Data; /* server data segment */
VOID (*is_Code)(); /* server code entry */

};

See the include file exec/interrupts.h for the complete structure
definition.

1.6 6 / Device Interface / Closing The Input Device

Each OpenDevice() must eventually be matched by a call to CloseDevice().
All I/O requests must be complete before CloseDevice(). If any requests
are still pending, abort them with AbortIO():

if (!(CheckIO(InputIO)))
{
AbortIO(InputIO); /* Ask device to abort request, if pending */
}

WaitIO(InputIO); /* Wait for abort, then clean up */
CloseDevice((struct IORequest *)InputIO);

1.7 6 Input Device / Using the Mouse Port With the Input Device

To get mouse port information you must first set the current mouse port by
passing an IOStdReq to the device with IND_SETMPORT
link input/IND_SETMPORT} set in io_Command and
a pointer to a byte set in io_Data. If the byte is set to 0 the left
controller port will be used as the current mouse port; if it is set to 1,
the right controller port will be used.

BYTE port = 1; /* set mouse port to right controller */

InputIO->io_Data = &port;
InputIO->io_Flags = IOF_QUICK;
InputIO->io_Length = 1;
InputIO->io_Command = IND_SETMPORT;
BeginIO((struct IORequest *)InputIO);
if (InputIO->io_Error)

printf("\nSETMPORT failed %d\n",InputIO->io_Error);

Put That Back!

The default mouse port is the left controller. Don’t forget to set
the mouse port back to the left controller before exiting if you
change it to the right controller during your application.

Setting The Conditions For A Mouse Port Report

Devices 9 / 16

1.8 6 / Setting The Conditions For A Mouse Port Report

You set the conditions for a mouse port report by passing an IOStdReq to
the device with IND_SETMTRIG set in io_Command, the address of a
GamePortTrigger structure set in io_Data and the length of the structure
set in io_Length.

struct GamePortTrigger InputTR;

InputIO->io_Data = (APTR)InputTR; /* set trigger conditions */
InputIO->io_Command = IND_SETMTRIG; /* from InputTR */
InputIO->io_Length = sizeof(struct GamePortTrigger);
DoIO(InputIO);

The information needed for mouse port report setting is contained in a
GamePortTrigger data structure which is defined in the include file
devices/gameport.h.

struct GamePortTrigger
{

UWORD gpt_Keys; /* key transition triggers */
UWORD gpt_Timeout; /* time trigger (vertical blank units) */
UWORD gpt_XDelta; /* X distance trigger */
UWORD gpt_YDelta; /* Y distance trigger */

};

See the Gameport Device chapter of this manual for a full description
of setting mouse port trigger conditions.

1.9 6 Input Device / Adding an Input Handler

You add an input-stream handler to the input chain by passing an IOStdReq
to the device with IND_ADDHANDLER set in io_Command and a pointer to an
Interrupt structure set in io_Data.

struct Interrupt *InputHandler;
struct IOStdReq *InputIO

InputHandler->is_Code=ButtonSwap; /* Address of code */
InputHandler->is_Data=NULL; /* User Value passed in A1 */
InputHandler->is_Node.ln_Pri=100; /* Priority in food chain */
InputHandler->is_Node.ln_Name=NameString; /* Name of handler */

InputIO->io_Data=(APTR)inputHandler; /* Point to the structure */
InputIO->io_Command=IND_ADDHANDLER; /* Set command ... */
DoIO((struct IORequest *)InputIO); /* DoIO() the command */

Intuition is one of the input device handlers and normally distributes
most of the input events.

Intuition inserts itself at priority position 50. The console device sits
at priority position 0. You can choose the position in the chain at which
your handler will be inserted by setting the priority field in the
list-node part of the interrupt data structure you pass to this routine.

Devices 10 / 16

Speed Saves.

Any processing time expended by a handler subtracts from the time
available before the next event happens. Therefore, handlers for the
input stream must be fast. For this reason it is recommended that the
handlers be written in assembly.

Rules For Input Device Handlers
Removing An Input Handler

1.10 6 / Adding an Input Handler / Rules For Input Device Handlers

The following rules should be followed when you are designing an input
handler:

* If an input handler is capable of processing a specific kind of an
input event and that event has no links (ie_NextEvent = 0), the
handler can end the handler chain by returning a NULL (0) value.

* If there are multiple events linked together, the handler is free to
unlink an event from the input event chain, thereby passing a shorter
list of events to subsequent handlers. The starting address of the
modified list is the return value.

* If a handler wishes to add new events to the chain that it passes to
a lower-priority handler, it may initialize memory to contain the new
event or event chain. The handler, when it again gets control on the
next round of event handling, should assume nothing about the current
contents of the memory blocks attached to the event chain. Lower
priority handlers may have modified the memory as they handled their
part of the event. The handler that allocates the memory for this
purpose should keep track of the starting address and the size of
this memory chunk so that the memory can be returned to the free
memory list when it is no longer needed.

Your assembly language handler routine should be structured similar to the
following pseudo-language statement:

newEventChain = yourHandlerCode(oldEventChain, yourHandlerData);
d0 = a0 a1

where:

* yourHandlerCode is the entry point to your routine.

* oldEventChain is the starting address for the current chain of input
events.

* yourHandlerData is a user-definable value, usually a pointer to some
data structure your handler requires.

* newEventChain is the starting address of an event chain which you are
passing to the next handler, if any.

Devices 11 / 16

When your handler code is called, the event chain is passed in A0 and the
handler data is passed in A1. (You may choose not to use A1.) When your
code returns, it should return the pointer to the event chain in D0. If
all of the events were removed by the routine, return NULL. A NULL (0)
value terminates the handling thus freeing more CPU resources.

Memory that you use to describe a new input event that you have added to
the event chain is available for reuse or deallocation when the handler is
called again or after the IND_REMHANDLER command for the handler is
complete. There is no guarantee that any field in the event is unchanged
since a handler may change any field of an event that comes through the
food chain.

Do Not Confuse the Device.

Altering a repeat key report will confuse the input device when it
tries to stop the repeating after the key is raised under pre-V36
Kickstart.

Because IND_ADDHANDLER installs a handler in any position in the handler
chain, it can, for example, ignore specific types of input events as well
as act upon and modify existing streams of input. It can even create new
input events for Intuition or other programs to interpret.

1.11 6 / Adding an Input Handler / Removing An Input Handler

You remove a handler from the handler chain by passing an IOStdReq to the
device IND_REMHANDLER set in io_Command and a pointer to the Interrupt
structure used to add the handler.

struct Interrupt *InputHandler;
struct IOStdReq *InputIO;

InputIO->io_Data=(APTR)InputHandler; /* Which handler to REM */
InputIO->io_Command=IND_REMHANDLER; /* The REM command */
DoIO((struct IORequest *)InputIO); /* Send the command */

1.12 6 Input Device / Writing Events to the Input Device Stream

Typically, input events are internally generated by the timer device,
keyboard device, and input device.

An application can also generate an input event by setting the appropriate
fields for the event in an InputEvent structure and sending it to the
input device. It will then be treated as any other event and passed
through to the input handler chain. However, I/O requests for
IND_WRITEVENT cannot be made from interrupt code.

You generate an input event by passing an IOStdReq to the device with
IND_WRITEEVENT set in io_Command, a pointer to an InputEvent structure set
in io_Data and the length of the structure set in io_Length.

Devices 12 / 16

struct InputEvent *FakeEvent;
struct IOStdReq *InputIO;

InputIO->io_Data=(APTR)FakeEvent;
InputIO->io_Length=sizeof(struct InputEvent);
InputIO->io_Command=IND_WRITEEVENT;
DoIO((struct IORequest *)InputIO);

You Know What Happens When You Assume.

This command propagates the input event through the handler chain.
The handlers may link other events onto the end of this event or
modify the contents of the data structure you constructed in any way
they wish. Therefore, do not assume any of the data will be the same
from event to event.

Setting The Position Of The Mouse

1.13 6 / Writing Events to Input Device Stream / Setting Position Of Mouse

One use of writing input events to the input device is to set the
position of the mouse pointer. The mouse pointer can be positioned by
using the input classes IECLASS_POINTERPOS and @{ "IECLASS_NEWPOINTERPOS " link ←↩

Includes/devices/inputevent.h/main}.

There are two ways to set the position of the mouse pointer using the
pre-V36 Kickstart input class IECLASS_POINTERPOS:

* At an absolute position on the current screen.

* At a position relative to the current mouse pointer position on the
current screen.

In both cases, you set the Class field of the InputEvent structure to
IECLASS_POINTERPOS, ie_X with the new x-coordinate and ie_Y with the new
y-coordinate. Absolute positioning is done by setting ie_Qualifier to
NULL and relative positioning is done by setting ie_Qualifier to
RELATIVE_MOUSE.

Once the proper values are set, pass an IOStdReq to the input device with
a pointer to the InputEvent structure set in io_Data and io_Command set to
IND_WRITEEVENT.

There are three ways to set the mouse pointer position using
IECLASS_NEWPOINTERPOS:

* At an absolute x-y coordinate on a screen-you specify the exact
location of the pointer and which screen.

* At an relative x-y coordinate-you specify where it will go in
relation to the current pointer position and which screen.

* At a normalized position on a tablet device-you specify the maximum
x-value and y-value of the tablet and an x-y coordinate between them
and the input device will normalize it to fit.

Devices 13 / 16

The basic steps required are the same for all three methods.

* Get a pointer to the screen where you want to position the pointer.
This is not necessary for the tablet device.

* Set up a structure to indicate the new position of the pointer.

For absolute and relative positioning, you set up an IEPointerPixel
structure with iepp_Position.X set to the new x-coordinate,
iepp_Position.Y set to the new y-coordinate and iepp_Screen set to the
screen pointer. You set up an InputEvent structure with ie_SubClass set to
IESUBCLASS_PIXEL, a pointer to the IEPointerPixel structure set in
ie_EventAddress, IECLASS_NEWPOINTERPOS set in Class, and ie_Qualifier set
to either IEQUALIFIER_RELATIVEMOUSE for relative positioning or NULL for
absolute positioning.

For tablet positioning, you set up an IEPointerTablet structure with
iept_Range.X set to the maximum x-coordinate and iept_Range.Y set to the
maximum y-coordinate, and iept_Value.X set to the new x-coordinate and
iept_Value.Y set to the new y-coordinate. You set up an InputEvent
structure with a pointer to the IEPointerTablet structure set in
ie_EventAddress, ie_SubClass to IESUBCLASS_TABLET and Class set to
IECLASS_NEWPOINTERPOS.

Finally, for all three methods, pass an IOStdReq to the device with a
pointer to the InputEvent structure set in io_Data and io_Command set to
IND_WRITEEVENT.

The following example sets the mouse pointer at an absolute position on a
public screen using IECLASS_NEWPOINTERPOS. Notice that it uses V36
functions wherever possible.

Set_Mouse.c

1.14 6 Input Device / Setting the Key Repeat Threshold

The key repeat threshold is the number of seconds and microseconds a user
must hold down a key before it begins to repeat. This delay is normally
set by the Preferences tool or by Intuition when it notices that the
Preferences have been changed, but you can also do it directly through the
input device.

You set the key repeat threshold by passing a timerequest with
IND_SETTHRESH set in io_Command and the number of seconds to delay set in
tv_secs and the number of microseconds to delay set in tv_micro.

#include <devices/timer.h>

struct timerequest *InputTime;/* Init with CreateExtIO() before using */

InputTime->tr_time.tv_secs=1; /* 1 second */
InputTime->tr_time.tv_micro=500000; /* 500000 microseconds */
InputTime->tr_node.io_Command=IND_SETTHRESH;
DoIO((struct IORequest *)InputTime);

Devices 14 / 16

The code above will set the key repeat threshold to 1.5 seconds.

1.15 6 Input Device / Setting the Key Repeat Interval

The key repeat interval is the time period, in seconds and microseconds,
between key repeat events once the initial key repeat threshold has
elapsed. (See Setting the Key Repeat Threshold.) Like the key
repeat threshold, this is normally issued by Intuition and preset by the
Preferences tool.

You set the key repeat interval by passing a timerequest with
IND_SETPERIOD set in io_Command and the number of seconds set in tv_secs
and the number of microseconds set in tv_micro. struct timerequest

InputTime; / Initialize with CreateExtIO() before using */

InputTime->tr_time.tv_secs=0;
InputTime->tr_time.tv_micro=12000; /* .012 seconds */
InputTime->tr_node.io_Command=IND_SETPERIOD;
DoIO((struct IORequest *)InputTime);

The code above sets the key repeat interval to .012 seconds.

The Right Tool For The Right Job.

As previously stated, you must use a timerequest structure with
IND_SETTHRESH and IND_SETPERIOD

input/IND_SETPERIOD}.

1.16 6 Input Device / Determining the Current Qualifiers

Some applications need to know whether the user is holding down a
qualifier key or a mouse button during an operation. To determine the
current qualifiers, you call the input device function PeekQualifier().

PeekQualifier() returns what the input device considers to be the current
qualifiers at the time PeekQualifier() is called (e.g., keyboard
qualifiers and mouse buttons). This does not include any qualifiers
which have been added, removed or otherwise modified by input handlers.

In order to call the function, you must set a pointer to the input device
base address. The pointer must be declared in the global data area of
your program. Once you set the pointer, you can call the function. You
must open the device in order to access the device base address.

PeekQualifier() returns an unsigned word with bits set according to the
qualifiers in effect at the time the function is called. It takes no
parameters.

struct Library *InputBase; /* Input device base address pointer */

VOID main(VOID)

Devices 15 / 16

{
struct IOStdReq *InputIO; /* I/O request block */
UWORD Quals; /* qualifiers */
.
.
.

if (!OpenDevice("input.device",NULL,(struct IORequest *)InputIO,NULL))
{
/* Set input device base address in InputBase */
InputBase = (struct Library *)InputIO->io_Device;

/* Call the function */
Quals = PeekQualifier();
.
.
.
CloseDevice(InputIO);
}

}
The qualifiers returned are listed in the table below.

Bit Qualifier Key or Button
--- --------- -------------
0 IEQUALIFIER_LSHIFT Left Shift
1 IEQUALIFIER_RSHIFT Right Shift
2 IEQUALIFIER_CAPSLOCK Caps Lock
3 IEQUALIFIER_CONTROL Control
4 IEQUALIFIER_LALT Left Alt
5 IEQUALIFIER_RALT Right Alt
6 IEQUALIFIER_LCOMMAND Left-Amiga
7 IEQUALIFIER_RCOMMAND Right-Amiga
12 IEQUALIFIER_MIDBUTTON Middle Mouse
13 IEQUALIFIER_RBUTTON Right Mouse
14 IEQUALIFIER_LEFTBUTTON Left Mouse

1.17 6 Input Device / Input Device and Intuition

There are several ways to receive information from the various devices
that are part of the input device. The first way is to communicate
directly with the device. This method is not recommended while the input
device task is running - which is most of the time. The second way is to
become a handler for the stream of events which the input device produces.
That method is shown above.

The third method of getting input from the input device is to retrieve the
data from the console device or from the IDCMP (Intuition Direct
Communications Message Port). These are the preferred methods for
applications in a multitasking environment because each application can
receive juts its own input (i.e., only the input which occurs when one of
its window is active). See the "Intuition" chapters of Amiga ROM Kernel
Reference Manual: Libraries for more information on IDCMP messages. See
the Console Device chapter of this manual for more information on
console device I/O.

Devices 16 / 16

1.18 6 Input Device / Additional Information on the Input Device

Additional programming information on the input device can be found in
the include files and the autodocs for the input device. Both are
contained in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Input Device Information

INCLUDES devices/input.h

devices/input.i
devices/inputevent.h
devices/inputevent.i

AUTODOCS input.doc

	Devices
	Amiga® RKM Devices: 6 Input Device
	6 Input Device / Input Device Commands and Functions
	6 Input Device / Device Interface
	6 / Device Interface / Opening The Input Device
	6 / Device Interface / Input Device Event Types
	6 / Device Interface / Closing The Input Device
	6 Input Device / Using the Mouse Port With the Input Device
	6 / Setting The Conditions For A Mouse Port Report
	6 Input Device / Adding an Input Handler
	6 / Adding an Input Handler / Rules For Input Device Handlers
	6 / Adding an Input Handler / Removing An Input Handler
	6 Input Device / Writing Events to the Input Device Stream
	6 / Writing Events to Input Device Stream / Setting Position Of Mouse
	6 Input Device / Setting the Key Repeat Threshold
	6 Input Device / Setting the Key Repeat Interval
	6 Input Device / Determining the Current Qualifiers
	6 Input Device / Input Device and Intuition
	6 Input Device / Additional Information on the Input Device

