Devices

Devices

COLLABORATORS
TITLE :
Devices
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Devices

Contents

1 Devices

1.1 Amiga® RKM Devices: 5 Gameport Device
1.2 5 Gameport Device / Gameport Device Commands and Functions
1.3 5 Gameport Device / Device Interface
1.4 5/ Device Interface / Opening The Gameport Device
1.5 5/ Device Interface / Gameport Device Controllers
1.6 5/ Device Interface / Closing The Gameport Device
1.7 5 Gameport Device / Gameport Events
1.8 5/ Gameport Events / Reading Gameport Events
1.9 5/ Gameport Events / Setting Gameport Event Trigger Conditions
1.10 5/ Gameport Events / Determining The Trigger Conditions
1.11 5 Gameport Device / Setting and Reading the Controller Type
1.12 5/ Setting and Reading Controller Type / Determining The Controller Type

1.13 5/ Setting and Reading the Controller Type / Setting The Controller Type .
1.14 5/ Setting Controller Type /Three Step Protocol for Using Gameport Device

1.15 5 Gameport Device / Additional Information on the Gameport Device . . .

Devices

1/10

Chapter 1

Devices

1.1 Amiga® RKM Devices: 5 Gameport Device

The gameport device manages access to the Amiga gameport connectors for
the operating system. It enables the Amiga to interface with various
external pointing devices like mice (two and three button), Jjoysticks,
trackballs and light pens. There are two units in the gameport device,
unit 0 and unit 1.

AMIGA GAMEPORT CONNECTORS

Model Unit O Unit 1
A3000 Front Connector Back Connector
A2000 Left Connector Right Connector
A1000 1 2

A500 1 JOYSTICK 2 JOYSTICK

Gameport Device Commands and Functions

Device Interface

Gameport Events

Setting and Reading the Controller Type
Joystick Example Program

Additional Information on the Gameport Device

1.2 5 Gameport Device / Gameport Device Commands and Functions

Command Operation
CMD_CLEAR Clear the gameport input buffer.
GPD_ASKCTYPE Return the type of gameport controller being used.

GPD_ASKTRIGGER Return the conditions that have been preset for triggering.

GPD_READEVENT Read one or more gameport events.

GPD_SETCTYPE Set the type of the controller to be used.

Devices

2/10

GPD_SETTRIGGER Preset the conditions that will trigger a gameport event.

Exec Functions as Used in This Chapter

AbortIO() Abort a command to the gameport device.
CheckIO() Return the status of an I/0 request.
CloseDevice () Relingquish use of the gameport device. All requests must

be complete before closing.

DoIO () Initiate a command and wait for completion (synchronous
request) .
OpenDevice () Obtain shared use of one unit of the gameport device. The

unit number specified is placed in the I/O request
structure for use by gameport commands.

SendIO () Initiate a command and return immediately (asynchronous
request) .

WaitIO () Wait for the completion of an asynchronous request. When
the request is complete the message will be removed from
reply port.

Exec Support Functions as Used in This Chapter

CreateExtIO() Create an extended I/0 request structure of type IOStdReq.
This structure will be used to communicate commands to the
gameport device.

CreatePort () Create a signal message port for reply messages from the
gameport device. Exec will signal a task when a message
arrives at the port.

DeleteExtIO() Delete an I/0 request structure created by CreateExtIO().
DeletePort () Delete the message port created by CreatePort ().

Who Runs The Mouse?

When the input device or Intution is operating, unit 0 is usually
dedicated to gathering mouse events. The input device uses the
gameport device to read the mouse events. (For applications that
take over the machine without starting up the input device or
Intuition, unit 0 can perform the same functions as unit 1.) See the
"Input Device" chapter for more information on the input device.

1.3 5 Gameport Device / Device Interface

The gameport device operates like the other Amiga devices. To use it, you
must first open the gameport device, then send I/0 requests to it, and

Devices

3/10

then

close it when finished. See the "Introduction to Amiga System Devices"

chapter for general information on device usage.

The I/0 request used by the gameport device is called IOStdReq.

S

{

} .

See t

truct IOStdReg

struct Message io_Message;
struct Device +*io_Device; /* device node pointer «*/

struct Unit xio_Unit; /* unit (driver private)x/

UWORD io_Command; /x device command =%/

UBYTE io_Flags;

BYTE io_Error; /* error or warning num x/

ULONG io_Actual; /* actual number of bytes transferred =/
ULONG io_Length; /* requested number bytes transferredx*/
APTR io_Data; /* points to data area =/

ULONG io_Offset; /+ offset for block structured devices */

4

he include file exec/io.h for the complete structure definition.

Opening The Gameport Device
Gameport Device Controllers

Closing The Gameport Device

1.4

Three

st

st

if

if

if

5 / Device Interface / Opening The Gameport Device

primary steps are required to open the gameport device:

Create a message port using CreatePort (). Reply messages from the
device must be directed to a message port.

Create an I/0 request structure of type IOStdReq. The IOStdReq
structure is created by the CreateExtIO() function. CreateExtIO()
will initialize the I/O request with your reply port.

Open the gameport device. Call OpenDevice (), passing the I/0O request
and and indicating the unit you wish to use.

ruct MsgPort xGameMP; /+ Message port pointer =/
ruct IOStdReqg *GameIO; /% I/0O request pointer =/

/+ Create port for gameport device communications =/
(! (GameMP = CreatePort ("RKM_game_port",0)))
cleanexit (" Error: Can’t create port\n",RETURN_FAIL);

/+ Create message block for device I/0 x/
(! (GameIO = CreateExtIO (GameMP, sizeof (struct IOStdReq))))
cleanexit (" Error: Can’t create I/0 request\n",RETURN_FAIL);

/+ Open the right/back (unit 1, number 2) gameport.device unit x/
(error=OpenDevice ("gameport.device",1l,GameIO, 0))
cleanexit (" Error: Can’t open gameport.device\n",RETURN_FAIL);

The gameport commands are unit specific. The unit number specified in the

Devices

4/10

call to OpenDevice() determines which unit is acted upon.

1.5 5/ Device Interface / Gameport Device Controllers

The Amiga has five gameport device controller types.

GAMEPORT DEVICE CONTROLLERS

Controller Type
GPCT_MOUSE
GPCT_ABSJOYSTICK
GPCT_RELJOYSTICK
GPCT_ALLOCATED
GPCT_NOCONTROLLER

To use the gameport device,

Description

Mouse controller

Absolute (digital) joystick
Relative (digital) Jjoystick
Custom controller

No controller

you must define the type of device connected

to the gameport and define how the device is to respond. The gameport

device can be set up to return the controller status immediately or only
when certain conditions have been met.

When a gameport device unit reponds to a request for input, it creates an
input event. The contents of the input event will vary based on the type
of device and the trigger conditions you have declared.

* A mouse controller can report input events for one, two, or three
buttons and for positive or negative (x,y) movements. A trackball
controller or car-driving controller is generally of the same type
and can be declared as a mouse controller.

* An absolute joystick reports one single event for each change of its

current location. If, for example, the joystick is centered and the

user pushes the stick forward and holds it in that position, only one

single forward-switch event will be generated.

* A relative joystick, on the other hand, is comparable to an absolute

joystick with "autorepeat" installed. As long as the user holds the
stick in a position other than centered, the gameport device
continues to generate position reports.

* There is currently no system software support for proportional
joysticks or proportional controllers (e.g., paddles). If you write
custom code to read proportional controllers or other controllers

(e.g., light pen) make certain that you issue GPD_SETCTYPE (explained

below) with controller type GPCT_ALLOCATED to insure that other
applications know the connector is being used.

GPCT_NOCONTROLLER.

The controller type GPCT_NOCONTROLLER is not a controller at all, but
a flag to indicate that the unit is not being used at the present
time.

Devices

5/10

1.6 5/ Device Interface / Closing The Gameport Device

Each OpenDevice () must eventually be matched by a call to CloseDevice().

All I/0 requests must be complete before CloseDevice(). If any requests

are still pending, abort them with AbortIO() and remove them with WaitIO().

if (! (CheckIO (GameIO)))

{
AbortIO (GameIO); /* Ask device to abort request, if pending =*/

}
WaitIO ((GameIO); /+ Wait for abort, then clean up =*/
CloseDevice (GameIO) ;

1.7 5 Gameport Device / Gameport Events

A gameport event is an InputEvent structure which describes the following:

* The class of the event - always set to IECLASS_RAWMOUSE for the
gameport device.

* The subclass of the event - 0 for the left port; 1 for the right port.

* The code - which button and its state. (No report = OxFF)
* The qualifier - only button and relative mouse bits are set.
* The position - either a data address or mouse position count.

* The time stamp - delta time since last report, returned as frame
count 1in tv_secs field.

* The next event - pointer to next event.

struct InputEvent GameEV
{

struct InputEvent *ie_NextEvent; /* next event =/

UBYTE ie_Class; /+ input event class */
UBYTE ie_SubClass; /* subclass of the class */
UWORD ie_Code; /* input event code x/
UWORD ie_Qualifier; /* event qualifiers in effect «/
union
{
struct
{
WORD ie_x; /* x position for the event x/
WORD ie_y; /* y position for the event x/
}oile_xy;

APTR ie_addr;
} ie_position;
struct timeval ie_TimeStamp; /+ delta time since last report

Devices 6/10

See the include file devices/inputevent.h for the complete structure
definition and listing of input event fields.

Reading Gameport Events
Setting Gameport Event Trigger Conditions
Determining The Trigger Conditions

1.8 5/ Gameport Events / Reading Gameport Events

You read gameport events by passing an I/0 request to the device with
GPD_READEVENT set in io_Command, the address of the InputEvent structure
to store events set in io_Data and the size of the structure set in
io_Length.

struct InputEvent GameEV;
struct IOStdRequest xGamelIO; /x Must be initialized prior to using =/

void send_read_request ()

{
GameIO->io_Command = GPD_READEVENT; /* Read events x/

GameIO->io_Length = sizeof (struct InputEvent);
GameIO->io_Data = (APTR) &GameEV; /+ put events in GameEV=*/
SendIO (GameIO) ; /+ Asynchronous x/

}

1.9 5/ Gameport Events / Setting Gameport Event Trigger Conditions

You set the conditions that can trigger a gameport event by passing an I/O
request to the device with GPD_SETTRIGGER set in io_Command and the
address of a GamePortTrigger structure set in io_Data.

The information needed for gameport trigger setting is placed into a
GamePortTrigger data structure which is defined in the include file
devices/gameport.h.

struct GamePortTrigger

{

UWORD gpt_Keys; /* key transition triggers =/

UWORD gpt_Timeout; /* time trigger (vertical blank units) =/
UWORD gpt_XDelta; /* X distance trigger =/

UWORD gpt_YDelta; /* Y distance trigger =/

A few points to keep in mind with the GPD_SETTRIGGER command are:

* Setting GPTF_UPKEYS enables the reporting of upward transitions.
Setting GPTF_DOWNKEYS enables the reporting of downward transitions.
These flags may both be specified.

* The field gpt_Timeout specifies the time interval (in vertical blank
units) between reports in the absence of another trigger condition.
In other words, an event is generated every gpt_Timeout ticks.

Devices

7/10

Vertical blank units may differ from country to country (e.g 60 Hz
NTSC, 50 Hz PAL.) To find out the exact frequency use this code
fragment:

#include <exec/execbase.h>
extern struct ExecBase xSysBase;

UBYTE get_frequency (void)

{

return ((UBYTE) SysBase—->VBlankFrequency) ;
}

* The gpt_XDelta and gpt_YDelta fields specify the x and y distances
which, if exceeded, trigger a report.

For a mouse controller, you can trigger on a certain minimum-sized move in
either the x or y direction, on up or down transitions of the mouse
buttons, on a timed basis, or any combination of these conditions.

For example, suppose you normally signal mouse events if the mouse moves
at least 10 counts in either the x or y directions. If you are moving the
cursor to keep up with mouse movements and the user moves the mouse less
than 10 counts, after a period of time you will want to update the
position of the cursor to exactly match the mouse position. Thus the timed
report of current mouse counts would be preferred. The following structure
would be used:

#define XMOVE 10
#define YMOVE 10

struct GamePortTrigger GameTR =

{
GPTF_UPKEYS | GPTF_DOWNKEYS, /% trigger on all key transitions =/

1800, /+ and every 36 (PAL) or 30 (NTSC) seconds =/
XMOVE, /+ for any 10 in an x or y direction =/
YMOVE

}i

For a joystick controller, you can select timed reports as well as
button-up and button-down report trigger conditions. For an absolute
joystick specify a value of one (1) for the GameTR_XDelta and
GameTR_YDelta fields or you will not get any direction events. You set the
trigger conditions by using the following code or its equivalent:

struct IOStdReq xGamelIO;

void set_trigger_conditions (struct GamePortTrigger xGameTR)

{

GameIO->io_Command = GPD_SETTRIGGER; /* set trigger conditions =*/
GameIO->io_Data = (APTR)GameTR; /* from GameTR =x/
GameIO->io_Length = sizeof (struct GamePortTrigger);

DoIO (GameIO) ;
}

Triggers and Reads.

If a task sets trigger conditions and does not ask for the position

Devices

8/10

reports the gameport device will queue them up anyway. If the trigger
conditions occur again and the gameport device buffer is filled, the
additional triggers will be ignored until the buffer is read by a

device read request (GPD_READEVENT) or a system CMD_CLEAR command
flushes the buffer.

1.10 5/ Gameport Events / Determining The Trigger Conditions

You determine the conditions required for triggering gameport events by
passing an I/0 request to the device with GPD_ASKTRIGGER set in
io_Command, the length of the GamePortTrigger structure set in io_Length
and the address of the structure set in io_Data. The gameport device will
respond with the event trigger conditions currently set.

struct IOStdReq *GameIO; /* Must be initialized prior to using =/

struct GamePortTrigger GameTR;

void get_trigger_conditions (struct GamePortTrigger =*GameTR)

{

GameIO->io_Command = GPD_ASKTRIGGER; /* get type of triggers x/
GameIO->io_Data = (APTR)GameTR; /+ place data here x/
GameIO->io_Length= sizeof (GameTR) ;

DoIO (GameIO) ;

}

1.11 5 Gameport Device / Setting and Reading the Controller Type

Determining The Controller Type
Setting The Controller Type

1.12 5/ Setting and Reading Controller Type / Determining The Controller Type

You determine
to the device
the number of
with the type

the type of controller being used by passing an I/O request
with GPD_ASKCTYPE set in io_Command, 1 set in io_Length and
the unit set in io_Unit. The gameport device will respond
of controller being used.

struct IOStdReq xGamelIO; /+ Must be initialized prior to using =/

BYTE GetControllerType ()

{

BYTE controller_type = 0;

GameIO->io_Command = GPD_ASKCTYPE; /* get type of controller x*/
GameIO->io_Data = (APTR)&controller_type; /+ place data here «/
GameIO->io_Length = 1;

DoIO (GameIO) ;

return (controller_type);

}

Devices 9/10

The BYTE value returned corresponds to one of the five controller types
noted above.

1.13 5/ Setting and Reading the Controller Type / Setting The Controller Type

You set the type of gameport controller by passing an I/0 request to the
device with GPD_SETCTYPE set in io_Command, 1 set in io_Length and the
address of the byte variable describing the controller type set in io_Data.

The gameport device is a shared device; many tasks may have it open at any
given time. Hence, a high level protocol has been established to prevent
multiple tasks from reading the same unit at the same time.

Three Step Protocol for Using the Gameport Device

1.14 5/ Setting Controller Type /Three Step Protocol for Using Gameport Device

Step 1:
Send GPD_ASKCTYPE to the device and check for a GPCT_NOCONTROLLER
return. Never issue GPD_SETCTYPE without checking whether the desired
gameport unit is in use.

Step 2:
If GPCT_NOCONTROLLER is returned, you have access to the gameport.
Set the allocation flag to GPCT_MOUSE, GPCT_ABSJOYSTICK or
GPCT_RELJOYSTICK if you use a system supported controller, or
GPCT_ALLOCATED if you use a custom controller.

struct IOStdReq xGamelIO; /+ Must be initialized prior to using =/

BOOL set_controller_type (type)
BYTE type;
{

BOOL success = FALSE;
BYTE controller_type = 0;

Forbid(); /+*critical section start =/
GameIO->io_Command = GPD_ASKCTYPE; /+ inquire current status =*/
GameIO->io_Length = 1;

GameIO->io_Flags = IOF_QUICK;

GameIO->io_Data = (APTR)&controller_type; /* put answer in here */
DoIO (GameIO) ;

/* No one is using this device unit, let’s claim it =/

if (controller_type == GPCT_NOCONTROLLER)
{
GameIO->io_Command = GPD_SETCTYPE; /* set controller type =/
GameIO->io_Length = 1;
GameIO->io_Data = (APTR)é&type; /* set to input param =*/
DoIO(GameIO) ;

Devices 10/10

success = TRUE;
UnitOpened = TRUE;
}

Permit (); /% critical section end =/

/* success can be TRUE or FALSE, see above x/
return (success) ;

}

Step 3:
The program must set the controller type back to GPCT_NOCONTROLLER
upon exiting your program:

struct IOStdReg xGameIO; /* Must be initialized prior to using =/

void free_gp_unit ()

{

BYTE type = GPCT_NOCONTROLLER;

GameIO->io_Command = GPD_SETCTYPE; /% set controller type =/
GameIO->io_Length = 1;

GameIO->io_Data = (APTR)&type; /+ set to unused */

DoIO(GameIO);

}

This three step protocol allows applications to share the gameport device
in a system compatible way.

A Word About The Functions.

The functions shown above are designed to be included in any

application using the gameport device. The first function,
set_controller_type (), would be the first thing done after opening
the gameport device. The second function, free_gp_unit (), would be

the last thing done before closing the device.

1.15 5 Gameport Device / Additional Information on the Gameport Device

Additional programming information on the gameport device can be found in
the include files and the Autodocs for the gameport and input devices.
Both are contained in the Amiga ROM Kernel Reference Manual: Includes and
Autodocs.

Gameport Device Information
INCLUDES devices/gameport.h
devices/gameport.i
devices/inputevent.h
devices/inputevent.i

AUTODOCS gameport.doc

	Devices
	Amiga® RKM Devices: 5 Gameport Device
	5 Gameport Device / Gameport Device Commands and Functions
	5 Gameport Device / Device Interface
	5 / Device Interface / Opening The Gameport Device
	5 / Device Interface / Gameport Device Controllers
	5 / Device Interface / Closing The Gameport Device
	5 Gameport Device / Gameport Events
	5 / Gameport Events / Reading Gameport Events
	5 / Gameport Events / Setting Gameport Event Trigger Conditions
	5 / Gameport Events / Determining The Trigger Conditions
	5 Gameport Device / Setting and Reading the Controller Type
	5 / Setting and Reading Controller Type / Determining The Controller Type
	5 / Setting and Reading the Controller Type / Setting The Controller Type
	5 / Setting Controller Type /Three Step Protocol for Using Gameport Device
	5 Gameport Device / Additional Information on the Gameport Device

