
Devices

Devices ii

COLLABORATORS

TITLE :

Devices

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Devices iii

Contents

1 Devices 1

1.1 Amiga® RKM Devices: 4 Console Device . 1

1.2 4 Console Device / Console Device Commands and Functions . 2

1.3 4 Console Device / Device Interface . 3

1.4 4 / Device Interface / Console Device Units . 4

1.5 4 / Device Interface / Opening The Console Device . 4

1.6 4 / Device Interface / Closing The Console Device . 6

1.7 4 Console Device / About Console I/O . 6

1.8 4 / About Console I/O / Exec Functions And The Console Device . 7

1.9 4 / About Console I/O / General Console Screen Output . 7

1.10 4 / About Console I/O / Console Keyboard Input . 7

1.11 4 Console Device / Writing to the Console Device . 8

1.12 4 / Writing to the Console Device / Hints For Writing Text . 8

1.13 4 / Writing to the Console Device / Control Sequences For Window Output . 8

1.14 4 / / Set Graphic Rendition Implementation Notes . 12

1.15 4 / Writing to the Console Device / Example Console Control Sequences . 15

1.16 4 Console Device / Reading from the Console Device . 15

1.17 4 / Reading from the Console Device / Information About The Input Stream . 16

1.18 4 / Reading from the Console Device / Cursor Position Report . 17

1.19 4 / Reading from the Console Device / Window Bounds Report . 17

1.20 4 Console Device / Copy and Paste Support . 18

1.21 4 Console Device / Selecting Raw Input Events . 19

1.22 4 Console Device / Input Event Reports . 20

1.23 4 Console Device / Using the Console Device Without a Window . 22

1.24 4 Console Device / Where Is All the Keymap Information? . 23

1.25 4 Console Device / Console Device Caveats . 24

1.26 4 Console Device / Additional Information on the Console Device . 24

Devices 1 / 24

Chapter 1

Devices

1.1 Amiga® RKM Devices: 4 Console Device

The console device provides the text-oriented interface for Intuition
windows. It acts like an enhanced ASCII terminal obeying many of the
standard ANSI sequences as well as special sequences unique to the Amiga.
The console device also provides a copy-and-paste facility and an internal
character map to redraw a window when it is resized.

NEW CONSOLE FEATURES FOR VERSION 2.0

Feature Description
------- -----------

CONU_LIBRARY New #define
CONU_STANDARD New #define
CONU_CHARMAP Console Unit
CONU_SNIPMAP Console Unit
CONFLAG_DEFAULT Console Flag
CONFLAG_NODRAW_ON_NEWSIZE Console Flag

Compatibility Warning:

The new features for the 2.0 console device are not backwards
compatible.

Console Device Commands and Functions
Device Interface
About Console I/O
Writing to the Console Device
Reading from the Console Device
Copy and Paste Support
Selecting Raw Input Events
Input Event Reports
Using the Console Device Without a Window
Where Is All the Keymap Information?
Console Device Caveats
Console Device Example Code
Additional Information on the Console Device

Devices 2 / 24

1.2 4 Console Device / Console Device Commands and Functions

Command Operation
------- ---------
CD_ASKDEFAULTKEYMAP Get the current default keymap.

CD_ASKKEYMAP Get the current key map structure for this console.

CD_SETDEFAULTKEYMAP Set the current default keymap.

CD_SETKEYMAP Set the current key map structure for this console.

CMD_CLEAR Remove any reports waiting to satisfy read requests
from the console input buffer.

CMD_READ Read the next input, generally from the keyboard.
The form of this input is as an ANSI byte stream.

CMD_WRITE Write a text record to the display interpreting
any ANSI control characters in the record.

Console Device Function

CDInputHandler() Handle an input event for the console device.

RawKeyConvert() Decode raw input classes and convert input events of
type IECLASS_RAWKEY to ANSI bytes based on the keymap
in use.

Exec Functions as Used in This Chapter

AbortIO() Abort an I/O request to the console device.

CheckIO() Return the status of an I/O request.

CloseDevice() Relinquish use of the console device. All requests
must be complete before closing.

DoIO() Initiate a command and wait for completion
(synchronous request).

GetMsg() Get the next message from the reply port.

OpenDevice() Obtain use of the console device. You specify the
type of unit and its characteristics in the call to
OpenDevice().

OpenLibrary() Gain access to a library.

OpenWindow() Open an intuition window.

SendIO() Initiate a command and return immediately
(asynchronous request).

Devices 3 / 24

Wait() Wait for one or more signals.

WaitIO() Wait for completion of an I/O request and remove it
from the reply port.

WaitPort() Wait for the reply port to be non-empty. Does not
remove the message from port.

Exec Support Functions as Used in This Chapter
--
CreateExtIO() Create an extended I/O request structure for use in

communicating with the console device.

CreatePort() Create a message port for reply messages from the
console device. Exec will signal a task when a
message arrives at the port.

DeleteExtIO() Delete the extended I/O request structure created by
CreateExtIO().

DeletePort() Delete the message port created by CreatePort().

1.3 4 Console Device / Device Interface

The console device operates like the other Amiga devices. To use it, you
must first open the console device, then send I/O requests to it, and then
close it when finished. See the "Introduction to Amiga System Devices"
chapter for general information on device usage.

The I/O request used by the console device is called IOStdReq.

struct IOStdReq
{

struct Message io_Message;
struct Device *io_Device;/* device node pointer */
struct Unit *io_Unit; /* unit (driver private)*/
UWORD io_Command; /* device command */
UBYTE io_Flags;
BYTE io_Error; /* error or warning num */
ULONG io_Actual; /* actual number of bytes transferred */
ULONG io_Length; /* requested number bytes transferred*/
APTR io_Data; /* points to data area */
ULONG io_Offset; /* offset for block structured devices */

};

See the include file exec/io.h for the complete structure definition.

Console Device Units
Opening The Console Device
Closing The Console Device

Devices 4 / 24

1.4 4 / Device Interface / Console Device Units

The console device provides four units, three that require a console
window and one that does not. The unit type is specified when you open the
device. See the Opening the Console Device section below for more
details.

The CONU_STANDARD unit (0) is generally used with a SMART_REFRESH window.
This unit has the least amount of overhead (e.g., memory usage and
rendering time), and is highly compatible with all versions of the
operating system.

As of V36, a character mapped console device was introduced. There are
two variations of character mapped console units. Both must be used with
SIMPLE_REFRESH windows and both have the ability to automatically redraw a
console window when resized or revealed.

A character mapped console can be opened which allows the user to
drag-select text with the mouse and COPY the highlighted area. The copied
text can then be PASTEd into other console windows or other windows which
support reading data from the clipboard device.

Character mapped console units have more overhead than standard consoles
(e.g., rendering times and memory usage).

The CONU_LIBRARY unit (-1) does not require a console window. It is
designed to be primarily used with the console device functions and also
with the console device commands that do not require a console window.

The Amiga uses the ECMA-94 Latin1 International 8-bit character set. See
Appendix A (page 397) for a table of character codes.

1.5 4 / Device Interface / Opening The Console Device

Four primary steps are required to open the console device:

* Create a message port using CreatePort(). Reply messages from the
device must be directed to a message port.

* Create an I/O request structure of type IOStdReq. The IOStdReq
structure is created by the CreateExtIO() function. CreateExtIO will
initialize your I/O request to point to your reply port.

* Open an Intuition window and set a pointer to it in the io_Data field
of the IOStdReq and the size of the window in the io_Length field.
This is the window to which the console will be attached. The window
must be SIMPLE_REFRESH for use with the CONU_CHARMAP and CONU_SNIPMAP
units.

* Open the console device. Call OpenDevice() passing it the I/O
request and the type of console unit set in the unit and flags
fields. Console unit types and flag values are listed below.

Console device units:

Devices 5 / 24

* CONU_LIBRARY - Return the device library vector pointer used for
calling console device functions. No console is opened.

* CONU_STANDARD - Open a standard console.

* CONU_CHARMAP - Open a console with a character map.

* CONU_SNIPMAP - Open a console with a character map and
copy-and-paste support.

See the include file devices/conunit.h for the unit definitions
and the Amiga ROM Kernel Reference Manual: Includes and Autodocs for an
explanation of each unit.

No Changes Required

CONU_STANDARD has a numeric value of zero to insure compatibility
with pre-V36 applications. CONU_LIBRARY has a numeric value of
negative one and is also compatible with pre-V36 applications.

Console device flags:

* CONFLAG_DEFAULT - The console device will redraw the window when it
is resized.

* CONFLAG_NODRAW_ON_NEWSIZE - The console device will not redraw the
window when it is resized

The character map units, CONU_CHARMAP and CONU_SNIPMAP, are the only units
which use the flags parameter to set how the character map is used.
CONU_STANDARD units ignore the flags parameter.

See the include file devices/conunit.h for the flag definitions and the
Amiga ROM Kernel Reference Manual: Includes and Autodocs for an
explanation of the flags.

struct MsgPort *ConsoleMP; /* Message port pointer */
struct IOStdReq *ConsIO; /* I/O structure pointer */
struct Window *win = NULL; /* Window pointer */

struct NewWindow nw =
{

10, 10, /* starting position (left,top) */
620,180, /* width, height */
-1,-1, /* detailpen, blockpen */
CLOSEWINDOW, /* flags for idcmp */
WINDOWDEPTH|WINDOWSIZING|
WINDOWDRAG|WINDOWCLOSE|
SIMPLE_REFRESH|ACTIVATE, /* window flags */
NULL, /* no user gadgets */
NULL, /* no user checkmark */
"Console Test", /* title */
NULL, /* pointer to window screen */
NULL, /* pointer to super bitmap */
100,45, /* min width, height */
640,200, /* max width, height */

Devices 6 / 24

WBENCHSCREEN /* open on workbench screen */
};

/* Create reply port console */
if (!(ConsoleMP = CreatePort("RKM.Console",0)))

cleanexit("Can’t create write port\n",RETURN_FAIL);

/* Create message block for device I/O */
if (!(ConsIO = CreateExtIO(ConsoleMP,sizeof(struct IOStdReq))))

cleanexit("Can’t create IORequest\n",RETURN_FAIL);

/* Open a window - we assume intuition.library is already open */
if (!(win = OpenWindow(&nw)))

cleanexit("Can’t open window\n",RETURN_FAIL);

/* Set window pointer and size in I/O request */
ConsIO->io_Data = (APTR) win;
ConsIO->io_Length = sizeof(struct Window);

/* Open the console device */
if (error = OpenDevice("console.device",CONU_CHARMAP,ConsIO,

CONFLAG_DEFAULT))
cleanexit("Can’t open console.device\n",RETURN_FAIL);

1.6 4 / Device Interface / Closing The Console Device

Each OpenDevice() must eventually be matched by a call to CloseDevice().

All I/O requests must be complete before CloseDevice(). If any requests
are still pending, abort them with AbortIO().

if (!(CheckIO(ConsIO)))
AbortIO(ConsIO); /* Ask device to abort any pending requests */

WaitIO(ConsIO); /* Wait for abort, then clean up */
CloseDevice(ConsIO); /* Close console device */

1.7 4 Console Device / About Console I/O

The console device may be thought of as a kind of terminal. You send
character streams to the console device; you also receive them from the
console device. These streams may be characters, control sequences or a
combination of the two.

Console I/O is closely associated with the Amiga Intuition interface; a
console must be tied to a window that is already opened. From the Window
data structure, the console device determines how many characters it can
display on a line and how many lines of text it can display in a window
without clipping at any edge.

You can open the console device many times, if you wish. The result of
each open call is a new console unit. AmigaDOS and Intuition see to it

Devices 7 / 24

that only one window is currently active and its console, if any, is the
only one (with a few exceptions) that receives notification of input
events, such as keystrokes. Later in this chapter you will see that other
Intuition events can be sensed by the console device as well.

Introducing...

For this entire chapter the characters "<CSI>" represent the
control sequence introducer. For output you may use either the
two-character sequence <Esc>[(0x1B 0x5B) or the one-byte value
0x9B. For input you will receive 0x9B unless the sequence has been
typed by the user.

Exec Functions And The Console Device
General Console Screen Output
Console Keyboard Input

1.8 4 / About Console I/O / Exec Functions And The Console Device

The various Exec functions such as DoIO(), SendIO(), AbortIO() and
CheckIO() operate normally. The only caveats are that CMD_WRITE may cause
your application to wait internally, even with SendIO(), and a task using
CMD_READ to wait on a response from a console is at the user’s mercy. If
the user never reselects that window, and the console response provides
the only wake-up call, that task will sleep forever.

1.9 4 / About Console I/O / General Console Screen Output

Console character screen output (as compared to console command sequence
transmission) outputs all standard printable characters (character values
hex 20 through 7E and A0 through FF) normally.

Many control characters such as BACKSPACE (0x8) and RETURN (0x13) are
translated into their exact ANSI equivalent actions. The LINEFEED
character (0xA) is a bit different in that it can be translated into a
RETURN/LINEFEED action. The net effect is that the cursor moves to the
first column of the next line whenever an <LF> is displayed. This option
is set via the mode control sequences discussed under
Control Sequences for Window Output.

1.10 4 / About Console I/O / Console Keyboard Input

If you read from the console device, the keyboard inputs are preprocessed
for you and you will get ASCII characters, such as "B." Most normal
text-gathering programs will read from the console device in this manner.
Some programs may also ask to receive raw events in their console stream.
Keypresses are converted to ASCII characters or CSI sequences via the
keymap associated with the unit.

Devices 8 / 24

1.11 4 Console Device / Writing to the Console Device

You write to the console device by passing an I/O request to the device
with a pointer to the write buffer set in io_Data, the number of bytes in
the buffer set in io_Length and CMD_WRITE set in io_Command.

UBYTE *outstring= "Make it so.";

ConsIO->io_Data = outstring;
ConsIO->io_Length = strlen(outstring);
ConsIO->io_Command = CMD_WRITE;
DoIO(ConsIO);

You may also send NULL-terminated strings to the console device in the
same manner except that io_Length must be set to -1.

ConsIO->io_Data = "\033[3mOh boy.";
ConsIO->io_Length = -1;
ConsIO->io_Command = CMD_WRITE;
DoIO(ConsIO);

The fragment above will output the string "Oh boy." in italics. Keep in
mind that setting the text rendition to italics will remain in effect
until you specifically instruct the console device to change it to another
text style.

Hints For Writing Text
Control Sequences For Window Output
Example Console Control Sequences

1.12 4 / Writing to the Console Device / Hints For Writing Text

256 Is A Nice Round Number

You must keep in mind that the console device locks all layers while
writing text. To avoid, problems with this, it is best to send
smaller rather larger numbers of character to be written. We
recommend no more than 256 bytes per write as the optimum size

Turn Off The Cursor

If your console is attached to a V1.2/1.3 SuperBitmap window, you
will not see a cursor rendered. For output speed and compatibility
with future OS versions which may visibly render the cursor, you
should send the cursor-off sequence (ESC[0 p) whenever you open or
reset (ESCc) a SuperBitmap window’s console.

1.13 4 / Writing to the Console Device / Control Sequences For Window Output

The following table lists functions that the console device supports,
along with the character stream that you must send to the console to
produce the effect. For more information on the control sequences,

Devices 9 / 24

consult the console.doc of the Amiga ROM Kernel Reference Manual: Includes
and Autodocs. The table uses the second form of <CSI>, that is, the hex
value 0x9B, to minimize the number of characters to be transmitted to
produce a function.

A couple of notes about the table. If an item is enclosed in square
brackets, it is optional and may be omitted. For example, for INSERT [N]
CHARACTERS the value for N is shown as optional. The console device
responds to such optional items by treating the value of N as 1 if it is
not specified. The value of N or M is always a decimal number, having one
or more ASCII digits to express its value.

ANSI CONSOLE CONTROL SEQUENCES

Sequence of Characters
Console Command (in Hexadecimal Form)
--------------- ---------------------
BELL 07
(Flash the display
ie; do an Intuition DisplayBeep())

BACKSPACE 08
(move left one column)

HORIZONTAL TAB 09
(move right one tab stop)

LINEFEED 0A
(move down one text line as
specified by the mode function)

VERTICAL TAB 0B
(move up one text line)

FORMFEED 0C
(clear the console’s window)

CARRIAGE RETURN 0D
(move to first column)

SHIFT IN OE
(undo SHIFT OUT)

SHIFT OUT 0F
(set MSB of each character
before displaying)

ESC 1B
(escape; can be part of the
control sequence introducer)

INDEX 84
(move the active position down
one line)

NEXT LINE 85
(go to the beginning of the next

Devices 10 / 24

line)

HORIZONTAL TABULATION SET 88
(Set a tab at the active cursor
position)

REVERSE INDEX 8D
(move the active position up one
line)

CSI 9B
(control sequence introducer)

RESET TO INITIAL STATE 1B 63

INSERT [N] CHARACTERS 9B [N] 40
(insert one or more spaces,
shifting the remainder of the line
to the right)

CURSOR UP [N] CHARACTER POSITIONS 9B [N] 41
(default = 1)

CURSOR DOWN [N] CHARACTER POSITIONS 9B [N] 42
(default = 1)

CURSOR FORWARD [N] CHARACTER POSITIONS 9B [N] 43
(default = 1)

CURSOR BACKWARD [N] CHARACTER 9B [N] 44
(default = 1)

CURSOR NEXT LINE [N] 9B [N] 45
(to column 1)

CURSOR PRECEDING LINE [N] 9B [N] 46
(to column 1)

CURSOR POSITION 9B [N] [3B M] 48
(where N is row, M is column, and
semicolon (hex 3B) must be present
as a separator, or if row is left
out, so the console device can tell
that the number after the semicolon
actually represents the column number)

CURSOR HORIZONTAL TABULATION 9B [N] 49
(move cursor forward to Nth tab
position)

ERASE IN DISPLAY 9B 4A
(only to end of display)

ERASE IN LINE 9B 4B
(only to end of line)

INSERT LINE 9B 4C

Devices 11 / 24

(above the line containing the
cursor)

DELETE LINE 9B 4D
(remove current line, move
all lines up one position to
fill gap, blank bottom line)

DELETE CHARACTER [N] 9B [N] 50
(that cursor is sitting on
and to the right if
[N] is specified)

SCROLL UP [N] LINES 9B [N] 53
(Remove line(s) from top of window,
move all other lines up, blanks [N]
bottom lines)

SCROLL DOWN [N] LINES 9B [N] 54
(Remove line(s) from bottom of
window, move all other lines down,
blanks [N] top lines)

CURSOR TABULATION CONTROL 9B [N] 57
(where N = 0 set tab, 2 = clear tab,
5 = clear all tabs.)

CURSOR BACKWARD TABULATION 9B [N] 5A
(move cursor backward to Nth
tab position.)

SET LINEFEED MODE 9B 32 30 68
(cause LINEFEED to respond
as RETURN-LINEFEED)

RESET NEWLINE MODE 9B 32 30 6C
(cause LINEFEED to respond
only as LINEFEED)

DEVICE STATUS REPORT 9B 36 6E
(cause console device to
insert a CURSOR POSITION REPORT
into your read stream; see
"Reading from the Console Device"
for more information)

SELECT GRAPHIC RENDITION 9B N 3B 3N 3B 4N 3B >N 6D
(select text style, character color, (See note below).
character cell color,background color)

For SELECT GRAPHIC RENDITION, any number of parameters, in any order,
are valid. They are separated by semicolons.

The parameters follow:

<text style> =

Devices 12 / 24

0 Plain text 8 Concealed mode
1 Boldface 22 Normal color, not bold (V36)
2 faint (secondary color) 23 Italic off (V36)
3 Italic 24 Underscore off (V36)
4 Underscore 27 Reversed off (V36)
7 Reversed character/cell colors 28 Concealed off (V36)

<character color> =

30-37 System colors 0-7 for character color.
39 Reset to default character color

Transmitted as two ASCII characters.

<character cell color> =

40-47 System colors 0-7 for character cell color.
39 Reset to default character color

Transmitted as two ASCII characters.

<background color> =

>0-7System colors 0-7 for background color.(V36)
You must specify the ">" in order for this to
be recognized and it must be the last parameter.

For example, to select bold face, with color 3 as the character color, and
color 0 as the character cell color and the background color, send the hex
sequence:

9B 31 3B 33 33 3B 34 30 3B 3E 30 6D

representing the ASCII sequence:

<CSI>1;33;40;>0m

where <CSI> is the control sequence introducer, here used as the single
character value 0x9B.

Go Easy On The Eyes.

In most cases, the character cell color and the background color
should be the same.

Set Graphic Rendition Implementation Notes

1.14 4 / / Set Graphic Rendition Implementation Notes

Previous versions of the operating system did not support the global
background color sequence as is listed above. Instead, the background
color was set by setting the character cell color and then clearing the
screen (e.g., a FORMFEED).

In fact, vacated areas of windows (vacated because of an ERASE or SCROLL)
were filled in with the character cell color. This is no longer the case.
Now, when an area is vacated, it is filled in with the global background

Devices 13 / 24

color.

SMART_REFRESH windows are a special case:

Under V33-V34:
The cell color had to be set and a FORMFEED (clear window) needed to
be sent on resize or immediately to clear the window and set the
background color.

For example, if you took a CLI window and sent the sequence to set the
cell color to something other than the default,the background color
would not be changed immediately (contrary to what was expected).

If you then sent a FORMFEED,the background color would change,but if you
resized the window larger, you would note that the newly revealed areas
were filled in with PEN 0.

Under V36-V37 (non-character mapped):
You need to set the global background color and do a FormFeed. The
background color will then be used to fill the window, but like
V33-V34, if you make the window larger, the vacated areas will be
filled in with PEN 0.

Under V36-V37 (character mapped):
You need to set the global background color, the window is redrawn
immediately (because we have the character map) and will be correctly
redrawn with the global background color on subsequent resizes.

The sequences in the next table are not ANSI standard sequences, they are
private Amiga sequences. In these command descriptions, length, width, and
offset are comprised of one or more ASCII digits, defining a decimal value.

AMIGA CONSOLE CONTROL SEQUENCES

Console Command Sequence of Characters(in Hex Format)
---------------------- -------------------------------------
ENABLE SCROLL(default) 9B 3E 31 68

DISABLE SCROLL 9B 3E 31 6C

AUTOWRAP ON (default) 9B 3F 37 68

AUTOWRAP OFF 9B 3F 37 6C

SET PAGE LENGTH 9B <length> 74
(in character raster lines, causes
console to recalculate,using
current font, how many text lines
will fit on the page)

SET LINE LENGTH 9B <width> 75
(in character positions, using
current font, how many characters
should be placed on each line)

SET LEFT OFFSET 9B <offset> 78
(in raster columns, how far from

Devices 14 / 24

the left of the window should
the text begin)

SET TOP OFFSET 9B <offset> 79
(in raster lines, how far
from the top of the window’s
RastPort should the topmost
line of the character begin)

SET RAW EVENTS 9B <events> 7B
(set the raw input events that
will trigger an INPUT EVENT
REPORT. see the
"Selecting Raw Input Events"
section below for more details.)

INPUT EVENT REPORT 9B <parameters> 7C
(returned by the console device
in response to a raw event
set by the SET RAW EVENT sequence.
See the "Input Event Reports"
section below for more details.)

RESET RAW EVENTS 9B <events> 7D
(reset the raw events set by
the SET RAW EVENT sequence. See the
"Selecting Raw Input Events"
section below.)

SPECIAL KEY REPORT 9B <keyvalue> 7E
(returned by the console device
whenever HELP, or one of the
function keys or arrow keys is
pressed. Some sequences do not end
with 7E)

SET CURSOR RENDITION 9B N 20 70
(make the cursor visible or invisible:
Note-turning off the cursor increases
text output speed)

Invisible: 9B 30 20 70
Visible: 9B 20 70

WINDOW STATUS REQUEST 9B 30 20 71
(ask the console device to tell you
the current bounds of the window,
in upper and lower row and column
character positions. User may have
resized or repositioned it.See
"Window Bounds Report" below.)

WINDOW BOUNDS REPORT 9B 31 3B 31 3B <bot margin>
(returned by the console device in 3B <right margin> 72
response to a WINDOW STATUS REQUEST
sequence)

Devices 15 / 24

RIGHT AMIGA V PRESS 9B 30 20 76
(returned by the console device when
the user presses RIGHT-AMIGA-V. See
the "Copy and Paste Support" section
below for more details.)

Give Back What You Take.

The console device normally handles the SET PAGE LENGTH, SET LINE
LENGTH, SET LEFT OFFSET, and SET TOP OFFSET functions automatically.
To allow it to do so again after setting your own values, send the
functions without a parameter.

1.15 4 / Writing to the Console Device / Example Console Control Sequences

Character String Numeric (hex)
Equivalent Equivalent

---------------- -------------
Move cursor right by 1: <CSI>C or 9B 43

<CSI>1C 9B 31 43

Move cursor right by 20: <CSI>20C 9B 32 30 43

Move cursor to upper-left corner
(Home Position) <CSI>H or 9B 48

<CSI>1;1H or 9B 31 3B 31 48
<CSI>;1H or 9B 3B 31 48
<CSI>1;H 9B 31 3B 48

Move cursor to the fourth column
of the first line of the window: <CSI>1;4H or 9B 31 3B 34 48

<CSI>;4H 9B 3B 34 48

Clear the window: <FF> or 0C
CTRL-L or

(home and clear to end of window) <CSI>H<CSI>J 9B 48 9B 4A

1.16 4 Console Device / Reading from the Console Device

Reading input from the console device returns an ANSI 3.64 standard byte
stream. This stream may contain normal characters and/or RAW input event
information. You may also request other RAW input events using the SET
RAW EVENTS and RESET RAW EVENTS control sequences discussed below. See
"Selection of Raw Input Events.".

Generally, console reads are performed asynchronously so that your program
can respond to other events and other user input (such as menu selections)
when the user is not typing on the keyboard. To perform asynchronous I/O,
an I/O request is sent to the console using the SendIO() function (rather
than a synchronous DoIO() which would wait until the read request returned
with a character).

You read from the console device by passing an I/O request to the device

Devices 16 / 24

with a pointer to the read buffer set in io_Data, the number of bytes in
the buffer set in io_Length and CMD_READ set in io_Command.

#define READ_BUFFER_SIZE 25
char ConsoleReadBuffer[READ_BUFFER_SIZE];

ConsIO->io_Data = (APTR)ConsoleReadBuffer;
ConsIO->io_Length = READ_BUFFER_SIZE;
ConsIO->io_Command = CMD_READ;
SendIO(ConsIO);

You May Get Less Than You Bargained For.
--
A request for more than one character may be satisfied by the receipt
of only one character. If you request more than one character, you
will have to examine the io_Actual field of the request when it
returns to determine how many characters you have actually received.

After sending the read request, your program can wait on a combination of
signal bits including that of the reply port you created. The following
fragment demonstrates waiting on both a queued console read request, and
Window IDCMP messages:

ULONG conreadsig = 1 << ConsoleMP->mp_SigBit;
ULONG windowsig = 1 << win->UserPort->mp_SigBit;

/* A character, or an IDCMP msg, or both will wake us up */
ULONG signals = Wait(conreadsig | windowsig);

if (signals & conreadsig)
{
/* Then check for a character */
};

if (signals & windowsig)
{
/* Then check window messages */
};

Information About The Input Stream
Cursor Position Report
Window Bounds Report

1.17 4 / Reading from the Console Device / Information About The Input Stream

For the most part, keys whose keycaps are labeled with ANSI-standard
characters will ordinarily be translated into their ASCII-equivalent
character by the console device through the use of its keymap. Keymap
information can be found in the "Keymap Library" chapter of the Amiga
ROM Kernel Reference Manual: Libraries.

For keys other than those with normal ASCII equivalents, an escape
sequence is generated and inserted into your input stream. For example,
in the default state (no raw input events selected) the function, arrow
and special keys (reserved for 101 key keyboards) will cause the sequences

Devices 17 / 24

shown in the next table to be inserted in the input stream.

SPECIAL KEY REPORT SEQUENCES

Key Unshifted Sends Shifted Sends
--- --------------- -------------
F1 <CSI>0~ <CSI>10~
F2 <CSI>1~ <CSI>11~
F3 <CSI>2~ <CSI>12~
F4 <CSI>3~ <CSI>13~
F5 <CSI>4~ <CSI>14~
F6 <CSI>5~ <CSI>15~
F7 <CSI>6~ <CSI>16~
F8 <CSI>7~ <CSI>17~
F9 <CSI>8~ <CSI>18~
F10 <CSI>9~ <CSI>19~
F11 <CSI>20~ <CSI>30~ (101 key keyboard)
F12 <CSI>21~ <CSI>31~ (101 key keyboard)
HELP <CSI>?~ <CSI>?~ (same sequence for both)
Insert <CSI>40~ <CSI>50~ (101 key keyboard)
Page Up <CSI>41~ <CSI>51~ (101 key keyboard)
Page Down <CSI>42~ <CSI>52~ (101 key keyboard)
Pause/Break <CSI>43~ <CSI>53~ (101 key keyboard)
Home <CSI>44~ <CSI>54~ (101 key keyboard)
End <CSI>45~ <CSI>55~ (101 key keyboard)

Arrow keys:
Up <CSI>A <CSI>T
Down <CSI>B <CSI>S
Left <CSI>D <CSI>A (notice the space
Right <CSI>C <CSI>@ after <CSI>)

1.18 4 / Reading from the Console Device / Cursor Position Report

If you have sent the DEVICE STATUS REPORT command sequence, the console
device returns a cursor position report into your input stream. It takes
the form:

<CSI><row>;<column>R

For example, if the cursor is at column 40 and row 12, here are the ASCII
values (in hex) you receive in a stream:

9B 34 30 3B 31 32 52

1.19 4 / Reading from the Console Device / Window Bounds Report

A user may have either moved or resized the window to which your console
is bound. By issuing a WINDOW STATUS REPORT to the console, you can read
the current position and size in the input stream. This window bounds
report takes the following form:

Devices 18 / 24

<CSI>1;1;<bottom margin>;<right margin> r

The bottom and right margins give you the window row and column dimensions
as well. For a window that holds 20 lines with 60 characters per line, you
will receive the following in the input stream:

9B 31 3B 31 3B 32 30 3B 36 30 20 72

1.20 4 Console Device / Copy and Paste Support

As noted above, opening the console device with a unit of CONU_SNIPMAP
allows the user to drag-select text with the mouse and copy the selection
with Right-Amiga-C.

Internally, the snip is copied to a private buffer managed by the console
device where it can be copied to other console device windows by pressing
Right-Amiga-V.

However, your application should assume that the user is running the
Conclip" utility which is part of the standard Workbench 2.0
environment. Conclip copies snips from the console device to the
clipboard device where they can be used by other applications which
support reading from the clipboard.

When Conclip is running and the user presses Right-Amiga-V, the console
device puts an escape sequence in your read stream - <CSI>0 v (Hex 9B 30
20 76) - which tells you that the user wants to paste text from the
clipboard.

Upon receipt of this sequence, your application should read the contents
of the clipboard device, make a copy of any text found there and then
release the clipboard so that it can be used by other applications. See
the "Clipboard Device" chapter for more information on reading data from
it.

You paste what you read from the clipboard by using successive writes to
the console. In order to avoid problems with excessively long data in the
clipboard, you should limit the size of writes to something reasonable.
(We define reasonable as no more than 1K per write with the ideal amount
being 256 bytes.) You should also continue to monitor the console read
stream for additional use input, paster requests and, possibly, RAW INPUT
EVENTS while you are doing this.

You should not open a character mapped console unit with COPY capability
if you are unable to support PASTE from the clipboard device. The user
will reasonably expect to be able to PASTE into windows from which a COPY
can be done.

Keep in mind that users do make mistakes, so an UNDO mechanism for
aborting a PASTE is highly desirable - particularly if the user has just
accidentally pasted text into an application like a terminal program which
is sending data at a slow rate.

Use CON:, You’ll Be Glad You Did.

Devices 19 / 24

It is highly recommended that you consider using the console-handler
(CON:) if you want a console window with COPY and PASTE
capablilities. CON: provides you with free PASTE support and is
considerably easier to open and use than using the console device
directly.

1.21 4 Console Device / Selecting Raw Input Events

If the keyboard information - including "cooked" keystrokes - does not
give you enough information about input events, you can request additional
information from the console driver.

The command to SET RAW EVENTS is formatted as:

<CSI>[event-types-separated-by-semicolons]{

If, for example, you need to know when each key is pressed and released,
you would request "RAW keyboard input." This is done by writing
"<CSI>1{" to the console. In a single SET RAW EVENTS request, you can
ask the console to set up for multiple event types at one time. You must
send multiple numeric parameters, separating them by semicolons (;). For
example, to ask for gadget pressed, gadget released, and close gadget
events, write:

<CSI>7;8;11{

You can reset, that is, delete from reporting, one or more of the raw
input event types by using the RESET RAW EVENTS command, in the same
manner as the SET RAW EVENTS was used to establish them in the first
place. This command stream is formatted as:

<CSI>[event-types-separated-by-semicolons]}

So, for example, you could reset all of the events set in the above
example by transmitting the command sequence:

<CSI>7;8;11}

The Read Stream May Not Be Dry.

There could still be pending RAW INPUT EVENTS in your read stream
after turning off one or more RAW INPUT EVENTS.

The following table lists the valid raw input event types.

RAW INPUT EVENT TYPES
Request Request
Number Description Number Description
------- ----------- ------ -----------

0 No-op (used internally) 11 Close Gadget
1 RAW keyboard input * 12 Window resized
2 RAW mouse input 13 Window refreshed
3 Private Console Event 14 Preferences changed
4 Pointer position 15 Disk removed
5 (unused) 16 Disk inserted

Devices 20 / 24

6 Timer 17 Active window
7 Gadget pressed 18 Inactive window
8 Gadget released 19 New pointer position (V36)
9 Requester activity 20 Menu help (V36)
10 Menu numbers 21 Window changed (V36)

(zoom, move)

* Note:Intuition swallows all except the select button.

The event types-requester, window refreshed, active window, inactive
window, window resized and window changed-are dispatched to the console
unit which owns the window from which the events are generated, even if it
is not the active (selected) window at the time the event is generated.
This ensures that the proper console unit is notified of those events. All
other events are dispatched to the active console unit (if it has
requested those events).

1.22 4 Console Device / Input Event Reports

If you select any of these events you will start to get information about
the events in the following form:

<CSI><class>;<subclass>;<keycode>;<qualifiers>;<x>;<y>;<secs>;<microsecs>|

<CSI>
is a one-byte field. It is the "control sequence introducer," 0x9B
in hex.

<class>
is the RAW input event type, from the above table.

<subclass>
is usually 0. If the mouse is moved to the right controller, this
would be 1.

<keycode>
indicates which raw key number was pressed. This field can also be
used for mouse information.

The Raw Key Might Be The Wrong Key.

National keyboards often have different keyboard arrangements. This
means that a particular raw key number may represent different
characters on different national keyboards. The normal console read
stream (as opposed to raw events) will contain the proper ASCII
character for the keypress as translated according to the user’s
keymap.

<qualifiers>
indicates the state of the keyboard and system.

The qualifiers are defined as follows:

INPUT EVENT QUALIFIERS

Devices 21 / 24

Bit Mask Key
--- ---- ---
0 0001 Left shift
1 0002 Right shift
2 0004 Caps Lock Associated keycode is special; see below.
3 0008 Ctrl
4 0010 Left Alt
5 0020 Right Alt
6 0040 Left Amiga key pressed
7 0080 Right Amiga key pressed
8 0100 Numeric pad
9 0200 Repeat
10 0400 Interrupt Not currently used.
11 0800 Multibroadcast This window (active one) or all windows.
12 1000 Middle mouse button (Not available on standard mouse)
13 2000 Right mouse button
14 4000 Left mouse button
15 8000 Relative mouse Mouse coordinates are relative, not absolute.

The Caps Lock key is handled in a special manner. It generates a keycode
only when it is pressed, not when it is released. However, the up/down bit
(80 hex) is still used and reported. If pressing the Caps Lock key causes
the LED to light, keycode 62 (Caps Lock pressed) is sent. If pressing the
Caps Lock key extinguishes the LED, keycode 190 (Caps Lock released) is
sent. In effect, the keyboard reports this key as held down until it is
struck again.

The <x> and <y> fields are filled by some classes with an Intuition
address: x<<16+y.

The <seconds> and <microseconds> fields contain the system time stamp
taken at the time the event occurred. These values are stored as
longwords by the system.

With RAW keyboard input selected, keys will no longer return a simple
one-character "A" to "Z" but will instead return raw keycode reports
of the form:

<CSI>1;0;<keycode>;<qualifiers>;<prev1>;<prev2>;<seconds>;<microseconds>|

For example, if the user pressed and released the A key with the left
Shift and right Amiga keys also pressed, you might receive the following
data:

<CSI>1;0;32;32769;14593;5889;421939940;316673|

<CSI>1;0;160;32769;0;0;421939991;816683|

The <keycode> field is an ASCII decimal value representing the key pressed
or released. Adding 128 to the pressed key code will result in the
released keycode.

The <prev1> and <prev2> fields are relevant for the interpretation of keys
which are modifiable by dead-keys (see "Dead-Class Keys" section). The
<prev1> field shows the previous key pressed. The lower byte shows the
qualifier, the upper byte shows the key code. The <prev2> field shows the
key pressed before the previous key. The lower byte shows the qualifier,

Devices 22 / 24

the upper byte shows the key code.

1.23 4 Console Device / Using the Console Device Without a Window

Most console device processing involves a window, but there are functions
and special commands that may be used without a window. To use the
console device without a window, you call OpenDevice() with the console
unit CONU_LIBRARY.

The console device functions are CDInputHandler() and RawKeyConvert();
they may only be used with the CONU_LIBRARY console unit. The console
device commands which do not require a window are CD_ASKDEFAULTKEYMAP
and CD_SETDEFAULTKEYMAP; they be used with any console unit. The
advantage of using the commands with the CONU_LIBRARY unit is the lack of
overhead required for CONU_LIBRARY because it doesn’t require a window.

To use the functions requires the following steps:

* Declare the console device base address variable ConsoleDevice in the
global data area.

* Declare storage for an I/O request of type IOStdReq.

* Open the console device with CONU_LIBRARY set as the console unit.

* Set the console device base address variable to point to the device
library vector which is returned in io_Device.

* Call the console device function(s).

* Close the console device when you are finished.

#include <devices/conunit.h>
struct ConsoleDevice *ConsoleDevice; /* declare device base address */

struct IOStdReq ConsIO= {0}; /* I/O request */

main()

/* Open the device with CONU_LIBRARY for function use */
if (0 == OpenDevice("console.device",CONU_LIBRARY,

(struct IORequest *)&ConsIO,0))
{
/* Set the base address variable to the device library vector */
ConsoleDevice = (struct ConsoleDevice *)ConsIO.io_Device;

.

. (console device functions would be called here)

.

CloseDevice(ConsIO);
}

Devices 23 / 24

The code fragment shows only the steps outlined above, it is not complete
in any sense of the word. For a complete example of using a console
device function, see the rawkey.c code example in the
"Intuition: Mouse and Keyboard" chapter of the Amiga ROM Kernel Reference
Manual: Libraries. The example uses the RawKeyConvert() function.

To use the commands with the CONU_LIBRARY console unit, you follow the
same steps that were outlined in the Opening the Console Device section of
this chapter.

struct MsgPort *ConsoleMP; /* pointer to our message port */
struct IOStdReq *ConsoleIO; /* pointer to our I/O request */
struct KeyMap *keymap; /* pointer to keymap */

/* Create the message port */
if (ConsoleMP=CreateMsgPort())

{
/* Create the I/O request */

if (ConsoleIO = CreateIORequest(ConsoleMP,sizeof(struct IOStdReq)))
{

/* Open the Console device */
if (OpenDevice("console.device",CONU_LIBRARY,

(struct IORequest *)ConsoleIO,0L))

/* Inform user that it could not be opened */
printf("Error: console.device did not open\n");

else
{

/* Allocate memory for the keymap */
if (keymap = (struct KeyMap *)

AllocMem(sizeof(struct KeyMap),MEMF_PUBLIC | MEMF_CLEAR))
{
/* device opened, send CD_ASKKEYMAP command to it */
ConsoleIO->io_Length = sizeof(struct KeyMap);
ConsoleIO->io_Data = (APTR)keymap; /* where to put it */
ConsoleIO->io_Command = CD_ASKKEYMAP;
DoIO((struct IORequest *)ConsoleIO))
}

CloseDevice(ConsIO);
}

Again, as in the previous code fragment, this is not complete (that’s why
it’s a fragment!) and you should only use it as a guide.

1.24 4 Console Device / Where Is All the Keymap Information?

Unlike previous editions of this chapter, this one has a very small amount
of keymap information. Keymap information is now contained,
appropriately enough, in the "Keymap Library" chapter of the
Amiga ROM Kernel Reference Manual: Libraries.

Devices 24 / 24

1.25 4 Console Device / Console Device Caveats

* Only one console unit can be attached per window. Sharing a console
window must be done at a level higher than the device.

* Do not mix graphics.library calls with console rendering in the same
areas of a window. It is permissible to send console sequences to
adjust the area in which console renders, and use graphics.library
calls to render outside of the area console is using.

For example, do not render text with console sequences and scroll using
the graphics.library ScrollRaster() function.

* The character map feature is private and cannot be accessed by the
programmer. Implementation details and behaviors of the character
map my change in the future.

* Do not use an IDCMP with character mapped consoles. All Intuition
messages should be obtained via RAW INPUT EVENTS from the console
device.

1.26 4 Console Device / Additional Information on the Console Device

Additional programming information on the console device can be found in
the include files and the Autodocs for the console device. Both are
contained in the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Console Device Information

INCLUDES devices/console.h

devices/console.i
devices/conunit.h
devices/conunit.h

AUTODOCS console.doc

	Devices
	Amiga® RKM Devices: 4 Console Device
	4 Console Device / Console Device Commands and Functions
	4 Console Device / Device Interface
	4 / Device Interface / Console Device Units
	4 / Device Interface / Opening The Console Device
	4 / Device Interface / Closing The Console Device
	4 Console Device / About Console I/O
	4 / About Console I/O / Exec Functions And The Console Device
	4 / About Console I/O / General Console Screen Output
	4 / About Console I/O / Console Keyboard Input
	4 Console Device / Writing to the Console Device
	4 / Writing to the Console Device / Hints For Writing Text
	4 / Writing to the Console Device / Control Sequences For Window Output
	4 / / Set Graphic Rendition Implementation Notes
	4 / Writing to the Console Device / Example Console Control Sequences
	4 Console Device / Reading from the Console Device
	4 / Reading from the Console Device / Information About The Input Stream
	4 / Reading from the Console Device / Cursor Position Report
	4 / Reading from the Console Device / Window Bounds Report
	4 Console Device / Copy and Paste Support
	4 Console Device / Selecting Raw Input Events
	4 Console Device / Input Event Reports
	4 Console Device / Using the Console Device Without a Window
	4 Console Device / Where Is All the Keymap Information?
	4 Console Device / Console Device Caveats
	4 Console Device / Additional Information on the Console Device

