Devices

Devices

COLLABORATORS
TITLE :
Devices
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Devices

Contents

1 Devices
1.1 Amiga® RKM Devices: 1 Introduction to Amiga System Devices
1.2 1 Introduction to Amiga System Devices / Whatis a Device?
1.3 1 Introduction to Amiga System Devices / AccessingaDevice
1.4 1 Introduction to Amiga System Devices / UsingaDevice,
1.5 1/Using a Device /Amiga Exec Commands o
1.6 1/ Using a Device / Amiga System Device Command Prefixes and Examples
1.7 1 Introduction Amiga System Devices / Synchronous vs. Asynchronous Requests
1.8 1 Introduction to Amiga System Devices / I/O Request Completion
1.9 1 Introduction to Amiga System Devices / Ending Device Access
1.10 1 Introduction to Amiga System Devices / Devices With Functions

1.11 1 Introduction to Amiga System Devices / Example Device Programs

Devices

1/10

Chapter 1

Devices

1.1 Amiga® RKM Devices: 1 Introduction to Amiga System Devices

The Amiga system devices are software engines that provide access to the
Amiga hardware. Through these devices, a programmer can operate a modem,
spin a disk drive motor, time an event, speak to a user and blast a
trumpet sound in beautiful, living stereo. Yet, for all that variety, the
programmer uses each device in the same basic manner.

Amiga System Devices

Audio Controls the use of the audio hardware

Clipboard Manages the cutting and pasting of common data blocks

Console Provides the text-oriented user interface.

Gameport Controls the two mouse/joystick ports.

Input Processes input from the gameport and keyboard devices.

Keyboard Controls the keyboard.

Narrator Produces the Amiga synthesized speech.

Parallel Controls the parallel port.

Printer Converts a standard set of printer control codes to printer
specific codes.

SCSI Controls the Small Computer Standard Interface hardware.

Serial Controls the serial port.

Timer Provides timing functions to measure time intervals and send
interrupts.

Trackdisk Controls the Amiga floppy disk drives.

What is a Device? I/0 Request Completion

Accessing a Device Ending Device Access

Using a Device Devices With Functions

Synchronous vs. Asynchronous Requests Example Device Programs

1.2 1 Introduction to Amiga System Devices / What is a Device?

An Amiga device is a software module that accepts commands and data and
performs I/0O operations based on the commands it receives. In most cases,
a device interacts with either internal or external hardware. Generally,
an Amiga device runs as a separate task which is capable of processing

Devices

2/10

your commands while your application attends to other things.

Device I/0 is based on the Exec messaging system. The philosophy behind
the devices is that I/O operations should be consistent and uniform. You
print a file in the same manner as you play an audio sample, i.e., you
send the device in question a WRITE command and the address of the buffer
holding the data you wish to write.

The result is that the interface presented to the programmer is
essentially device independent and accessible from any computer language.
This greatly expands the power the Amiga computer brings to the programmer
and, ultimately, to the user.

Devices support two types of commands: Exec standard commands like READ
and WRITE, and device specific commands like the trackdisk device MOTOR
command which controls the floppy drive motor. The Exec standard commands
are supported by most Amiga devices. You should keep in mind, however,
that supporting standard commands does not mean that all devices execute
them in exactly the same manner.

This manual contains a chapter about each of the Amiga devices. The
chapters cover how you use a device and the commands it supports. In
addition, the Amiga ROM Kernel Reference Manual: Includes and Autodocs
contains expanded explanations of the commands and the include files for
each device, and the Amiga ROM Kernel Reference Manual: Libraries contains
chapters on Exec. The command explanations list the data, flags, and
other information required by a device to execute a command. The Exec
chapters provide detailed discussions of its operation. Both are very
useful manuals to have on your desk when you are programming the devices.

1.3 1 Introduction to Amiga System Devices / Accessing a Device

Accessing a device requires obtaining a message port, allocating memory
for a specialized message packet called an I/O request, setting a pointer
to the message port in the I/0 request, and finally, establishing the link
to the device itself by opening it. An example of how to do this will be
provided later in this chapter.

The message port is used by the device to return messages to you. A
message port is obtained by calling the CreateMsgPort () or CreatePort ()
function. You must delete the message port when you are finished by
calling the DeleteMsgPort () or DeletePort () function.

For pre-V36 versions of the operating system (before Release 2.0), use the
amiga.lib functions CreatePort () and DeletePort (); for V36 and higher, use
the Exec functions CreateMsgPort () and DeleteMsgPort (). CreatePort () and
DeletePort () are upward compatible, you can use them with V36/V37;
CreateMsgPort () and DeleteMsgPort () are not backward compatible, however.

The I/0 request is used to send commands and data from your application to
the device. The I/0O request consists of fields used to hold the command
you wish to execute and any parameters it requires. You set up the fields
with the appropriate information and send it to the device by using Exec
I/0 functions.

Devices

3/10

At least four methods exist for creating an I/O request:

* Declaring it as a structure. The memory required will be allocated
at compile time.

* Declaring it as a pointer and calling the AllocMem() function. You
will have to call the FreeMem() function to release the memory when
you are done.

* Declaring it as a pointer and calling the CreateExtIO() function.
This function not only allocates the memory for the request, it also
puts the message port in the I/O request. You will have to call the
DeleteExtIO() function to delete the I/0 request when you are done.
This is the pre-V36 method (used in 1.3 and earlier versions of the
operating system), but is upward compatible.

* Declaring it as a pointer and calling the CreateIORequest () function.
This function not only allocates the memory for the request, it also
puts the message port in the I/0 request. You will have to call the
DeletelORequest () function to delete the I/0O request when you are
done. This is the V36/V37 method; it is not backwards compatible.

The message port pointer in the I/0 request tells the device where to
respond with messages for your application. You must set a pointer to the
message port in the I/0 request if you declare it as a structure or
allocate memory for it using AllocMem() .

The device is opened by calling the OpenDevice () function. In addition to
establishing the link to the device, OpenDevice() also initializes fields
in the I/O request. OpenDevice() has this format:

return = OpenDevice (device_name,unit_number,

(struct IORequest =x)IORequest, flags)
where:

* device_name is one of the following NULL-terminated strings for
system devices:

audio.device keyboard.device serial.device
clipboard.device narrator.device timer.device
console.device parallel.device trackdisk.device
gameport.device printer.device input.device

scsi.device

* unit_number refers to one of the logical units of the device. Devices
with one unit always use unit 0. Multiple unit devices like the
trackdisk device and the timer device use the different units for
specific purposes. The device chapters discuss the units in detail.

* TORequest 1is the structure discussed above. Some of the devices have
their own I/0 requests defined in their include files and others use
standard I/0 requests, (IOStdReq). The device chapters list the I/O
request that each device requires.

x* flags are bits set to indicate options for some of the devices. This
field is set to zero for devices which don’t accept options when they

Devices 4/10

are opened. The device chapters and autodocs list the flags values
and uses.

* return is an indication of whether the OpenDevice () was successful
with zero indicating success. Never assume that a device will
successfully open. Check the return value and act accordingly.

Zero Equals Success for OpenDevice ().
Unlike most Amiga system functions, OpenDevice() returns zero for
success and a device-specific error value for failure.

1.4 1 Introduction to Amiga System Devices / Using a Device

Once a device has been opened, you use it by passing the I/O request to
it. When the device processes the I/0 request, it acts on the information
the I/0 request contains and returns a reply message, i.e., the I/O
request, to the reply port specified in the I/O request when it is
finished. The I/0 request is passed to a device using one of three
functions, DoIO(), SendIO() and BeginIO(). They take only one argument:
the I/0 request you wish to pass to the device.

* DoIO() is a synchronous function. It will not return until the device
has responded to the I/0O request.

* SendIO() 1s an asynchronous function. It can return immediately, but
the I/0 operation it initiates may take a short or long time. Using
SendIO () requires you to monitor the message port for a return
message from the device. In addition, some devices do not actually
respond asynchronously even though you called SendIO(); they will
return when the I/0O operation is finished.

* BeginIO() is commonly used to control the quick I/0 bit when sending
an I/0 request to a device. When the quick I/0O flag (IOF_QUICK) is
set in the I/0 request, a device is allowed to take certain shortcuts
in performing and completing a request. If the request can complete
immediately, the device will not return a reply message and the quick
I/0 flag will remain set. If the request cannot be completed
immediately, the QUICK_IO flag will be clear. DoIO() normally
requests quick I/0; SendIO() does not.

DoIO () and SendIO() are most commonly used.

An I/0 request typically has three fields set for every command sent to a
device. You set the command itself in the io_Command field, a pointer to
the data for the command in the io_Data field, and the length of the data
in the io_Length field.

SeriallO->I0Ser.io_Length = sizeof (ReadBuffer);
SeriallO->I0Ser.io_Data = ReadBuffer;
SeriallO->I0Ser.io_Command = CMD_READ;
SendIO ((struct IORequest «)SeriallO);

Commands consist of two parts - a prefix and the command word separated by

Devices

5/10

an underscore, all in upper case. The prefix indicates whether the
command is an Exec or device specific command. All Exec commands have
CMD as the prefix. They are defined in the include file exec/io.h.

Amiga Exec Commands
Amiga System Device Command Prefixes and Examples

1.5 1/ Using a Device /Amiga Exec Commands

CMD_CLEAR CMD_READ CMD_STOP
CMD_FLUSH CMD_RESET CMD_WRITE
CMD_INVALID CMD_START CMD_UPDATE
You should not assume that a device supports all Exec commands. Always

check the documentation before attempting to use one of them.

Device specific command prefixes vary with the device.

1.6 1/ Using a Device / Amiga System Device Command Prefixes and Examples

Device Prefix Example
Audio ADCMD ADCMD_ALLOCATE
Clipboard CBD CBD_POST
Console CD CD_ASKKEYMAP
Gameport GPD GPD_SETCTYPE
Input IND IND_SETMPORT
Keyboard KBD KBD_READMATRIX
Narrator no device specific commands
Parallel PDCMD PDCMD_QUERY
Printer PRD PRD_PRTCOMMAND
SCSI HD HD_SCSICMD
Serial SDCMD SDCMD_BREAK
Timer TR TR_ADDREQUEST
Trackdisk TD and ETD TD_MOTOR/ETD_MOTOR
Each device maintains its own I/0 request queue. When a device receives

an I/0 request, it either processes the request immediately or puts it in

the queue because one is already being processed. After an I/0 request
is completely processed, the device checks its queue and if it finds
another I/0 request, begins to process that request.

1.7 1 Introduction Amiga System Devices / Synchronous vs. Asynchronous Re-

quests

As stated above, you can send I/O requests to a device synchronously or

asynchronously. The choice of which to use is largely a function of your

application.

Devices 6/10
Synchronous requests use the DoIO() function. DoIO() will not return

control to your application until the I/0 request has been satisfied by

the device. The advantage of this is that you don’t have to monitor the

message port for the device reply because DoIO() takes care of all the
message handling. The disadvantage is that your application will be tied
up while the I/O request is being processed, and should the request not

complete for some reason, DoIO() will not return and your application will
hang.
Asynchronous requests use the SendIO() and BeginIO() functions. Both

return to your application almost immediately after you call them. This
allows you to do other operations, including sending more I/0 requests to
the device.

Do Not Touch!

When you use SendIO() or BeginIO(), the I/O request you pass to the
device and any associated data buffers should be considered
read-only. Once you send it to the device, you must not modify it in
any way until you receive the reply message from the device or abort
the request (though you must still wait for a reply). Any exceptions
to this rule are documented in the autodoc for the device.

Sending multiple asynchronous I/0O requests to a device can be tricky
because devices require them to be unique and initialized. This means
you can’t use an I/0O request that’s still in the queue, but you need the
fields which were initialized in it when you opened the device. The
solution is to copy the initialized I/O request to another I/O request (s)
before sending anything to the device.

Regardless of what you do while you are waiting for an asynchronous I/0
request to return, you need to have some mechanism for knowing when the
request has been done. There are two basic methods for doing this.

The first involves putting your application into a wait state until the
device returns the I/0 request to the message port of your application.
You can use the WaitIO(), Wait () or WaitPort () function to wait for the
return of the I/0 request.

WaitIO() not only waits for the return of the I/O request, it also takes
care of all the message handling functions. This is very convenient, but
you can pay for this convenience: your application will hang in the
unlikely event that the I/O request does not return.

Wait () waits for a signal to be sent to the message port. It will awaken
your task when the signal arrives, but you are responsible for all of the
message handling.

WaitPort () waits for the message port to be non-empty. It returns a
pointer to the message in the port, but you are responsible for all of the
message handling.

The second method to detect when the request is complete involves using
the CheckIO() function. CheckIO() takes an I/O request as its argument
and returns an indication of whether or not it has been completed. When
CheckIO() returns the completed indication, you will still have to remove

Devices 7/10

the I/0 request from the message port.

1.8 1 Introduction to Amiga System Devices / /0 Request Completion

A device will set the io_Error field of the I/0O request to indicate the
success or failure of an operation. The indication will be either zero
for success or a non-zero error code for failure. There are two types of
error codes: Exec I/0 and device specific. Exec I/0 errors are defined in
the include file exec/errors.h; device specific errors are defined in the
include file for each device. You should always check that the operation
you requested was successful.

The exact method for checking io_Error can depend on whether you use
DoIO() or SendIO(). In both cases, io_Error will be set when the I/0
request 1is returned, but in the case of DoIO(), the DoIO() function itself
returns the same value as io_FError.

This gives you the option of checking the function return value:

SerialIO->I0Ser.io_Length = sizeof (ReadBuffer);
SerialIO->I0Ser.io_Data = ReadBuffer;
SeriallO->I0Ser.io_Command = CMD_READ;

if (DoIO((struct IORequest =*)SeriallO);
printf ("Read failed. Error: %1d\n",SerialIO->I0OSer.io_Error);

Or you can check io_Error directly:

SerialIO->I0Ser.io_Length = sizeof (ReadBuffer);
SerialIO->I0Ser.io_Data = ReadBuffer;
SerialIO->I0Ser.io_Command = CMD_READ;

DoIO((struct IORequest =*)SeriallIO);

if (SerialIO->I0Ser.io_Error)
printf ("Read failed. Error: %1d\n",SeriallIO->I0Ser.io_Error);

Keep in mind that checking io_Error is the only way that I/O requests sent
by SendIO() can be checked.

Testing for a failed I/0 request is a minimum step, what you do beyond

that depends on your application. In some instances, you may decide to
resend the I/0 request, and in others, you may decide to stop your
application. One thing you’ll almost always want to do is to inform the

user that an error has occurred.

Exiting The Correct Way.

If you decide that you must prematurely end your application, you
should deallocate, release, give back and let go of everything you
took to run the application. In other words, you should exit
gracefully.

1.9 1 Introduction to Amiga System Devices / Ending Device Access

Devices

8/10

You end device access by reversing the steps you took to access it. This
means you close the device, deallocate the I/0O request memory and delete
the message port. In that order!

Closing a device is how you tell Exec that you are finished using a device
and any associated resources. This can result in housecleaning being
performed by the device. However, before you close a device, you might
have to do some housecleaning of your own.

A device 1s closed by calling the CloseDevice () function. The
CloseDevice () function does not return a value. It has this format:

CloseDevice (IORequest)
where IORequest is the I/0 request used to open the device.

You should not close a device while there are outstanding I/O requests,
otherwise you can cause major and minor problems. Let’s begin with the
minor problem: memory. If an I/0 request is outstanding at the time you
close a device, you won’t be able to reclaim the memory you allocated for
it.

The major problem: the device will try to respond to the I/O request. If
the device tries to respond to an I/0 request, and you’ve deleted the
message port (which is covered below), you will probably crash the system.

One solution would be to wait until all I/0 requests you sent to the
device return. This is not always practical if you’ve sent a few requests
and the user wants to exit the application immediately.

In that case, the only solution is to abort and remove any outstanding I/0
requests. You do this with the functions AbortIO() and WaitIO(). They
must be used together for cleaning up. AbortIO() will abort an I/O
request, but will not prevent a reply message from being sent to the
application requesting the abort. WaitIO() will wait for an I/O request to
complete and remove it from the message port. This is why they must be
used together.

Be Careful With AbortIO().
Do not AbortIO() an I/0 request which has not been sent to a device.
If you do, you may crash the system.

After the device is closed, you must deallocate the I/0 request memory.
The exact method you use depends on how you allocated the memory in the
first place. For AllocMem() you call FreeMem(), for CreateExtIO() you
call DeleteExtIO (), and for CreateIORequest () you call DeleteIORequest ().
If you allocated the I/0 request memory at compile time, you naturally
have nothing to free.

Finally, you must delete the message port you created. You delete the
message port by calling DeleteMsgPort () if you used CreateMsgPort (), or
DeletePort () i1if you used CreatePort().

Here is the checklist for gracefully exiting:

Devices

1. Abort any outstanding I/O requests with AbortIO()

2. Wait for the completion of any outstanding or aborted I/O requests
with WaitIO() .

3. Close the device with CloseDevice() .

4. Release the I/0 request memory with either DeleteIORequest (),
DeleteExtIO() or FreeMem() (as appropriate).

5. Delete the message port with DeleteMsgPort () or DeletePort ().

1.10 1 Introduction to Amiga System Devices / Devices With Functions

Some devices, in addition to their commands, provide functions which can
be directly called by applications. These functions are documented in the
device specific FD files and Autodocs of the Amiga ROM Kernel Reference
Manual: Includes and Autodocs and the device chapters of this manual.

Devices with functions behave much like Amiga libraries, i.e., you set up
a base address pointer and call the functions as offsets from the pointer.
(See the Exec Libraries" chapter of the Amiga ROM Kernel Reference

Manual: Libraries.)

The procedure for accessing a device’s functions is as follows:

* Declare the device base address variable in the global data area.
The name of the base address can be found in the device’s FD file.

* Create a message port using one of the previously discussed methods
if you haven’t already done so.

* Create an I/0 request using one of the previously discussed methods
if you haven’t already done so. Remember to set the message port
pointer in the I/0 request if necessary.

* Call OpenDevice (), passing the I/O request if you haven’t already
done so. When you do this, the device returns a pointer to its base
address in the io_Device field of the I/0 request structure. Consult
the include file for the structure you are using to determine the
full name of the io_Device field. The base address is only valid
while the device is open.

* Set the device base address variable to the pointer returned in the
io_Device field.

We will use the timer device to illustrate the above method. The name of
the timer device base address is listed in its FD file as "TimerBase."

#include <devices/timer.h>
struct Library xTimerBase; /+ device base address pointer =*/

struct MsgPort *xTimerMP; /* message port pointer */
struct timerequest *TimerIO; /% I/O request pointer «/

Devices

10/10

/+ Create the message port =/
if (TimerMP=CreatePort (NULL,NULL))
{
/* Create the I/0 request x/

if (TimerIO = (struct timerequest «)
{ CreateExtIO (TimerMP, sizeof (struct timerequest)))
/+ Open the timer device «/
if (! (OpenDevice (TIMERNAME, UNIT_MICROHZ, TimerIO,0)))

{
/* Set up pointer for timer functions x/
TimerBase = (struct Library x)TimerIO->tr_node.io_Device;

use functions

/* Close the timer device =*/
CloseDevice (TimerIO);

}

/* Delete the I/O request x/
DeleteExtIO (TimerIO);
}

/+ Delete the message port =/
DeletePort (TimerMP) ;
}

1.11 1 Introduction to Amiga System Devices / Example Device Programs

The following short programs are examples of how to use a device. Both
send the serial device command SDCMD_QUERY to the serial device to
determine the status of the serial device lines and registers. The first

program is for pre-V36 versions of the operating system (before Release 2)
and the second is for V36 and higher. You may use the pre-V36 version
with V36 and higher, but you may not use the V36 version with older
systems.

The programs differ in the way they create the message port and I/0
request. The pre-V36 version uses the amiga.lib functions CreatePort () to
create the message port and CreateExtIO() to create the I/0 request; the
V36 version uses the Exec functions CreateMsgPort () to create the message
port and CreateIORequest () to create the I/0O request. Those are the only
differences.

Device Usage Example (Pre-V36)
Device Usage Example (Kickstart V36 And Up)

	Devices
	Amiga® RKM Devices: 1 Introduction to Amiga System Devices
	1 Introduction to Amiga System Devices / What is a Device?
	1 Introduction to Amiga System Devices / Accessing a Device
	1 Introduction to Amiga System Devices / Using a Device
	1 / Using a Device /Amiga Exec Commands
	1 / Using a Device / Amiga System Device Command Prefixes and Examples
	1 Introduction Amiga System Devices / Synchronous vs. Asynchronous Requests
	1 Introduction to Amiga System Devices / I/O Request Completion
	1 Introduction to Amiga System Devices / Ending Device Access
	1 Introduction to Amiga System Devices / Devices With Functions
	1 Introduction to Amiga System Devices / Example Device Programs

