
intuition

intuition ii

COLLABORATORS

TITLE :

intuition

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

intuition iii

Contents

1 intuition 1

1.1 intuition.doc . 1

1.2 intuition.library/ActivateGadget . 1

1.3 intuition.library/ActivateWindow . 2

1.4 intuition.library/AddGadget . 3

1.5 intuition.library/AddGList . 4

1.6 intuition.library/AllocRemember . 5

1.7 intuition.library/AutoRequest . 7

1.8 intuition.library/BeginRefresh . 8

1.9 intuition.library/BuildSysRequest . 9

1.10 intuition.library/ClearDMRequest . 11

1.11 intuition.library/ClearMenuStrip . 12

1.12 intuition.library/ClearPointer . 13

1.13 intuition.library/CloseScreen . 13

1.14 intuition.library/CloseWindow . 14

1.15 intuition.library/CloseWorkBench . 15

1.16 intuition.library/CurrentTime . 15

1.17 intuition.library/DisplayAlert . 16

1.18 intuition.library/DisplayBeep . 17

1.19 intuition.library/DoubleClick . 18

1.20 intuition.library/DrawBorder . 19

1.21 intuition.library/DrawImage . 19

1.22 intuition.library/EndRefresh . 20

1.23 intuition.library/EndRequest . 21

1.24 intuition.library/FreeRemember . 22

1.25 intuition.library/FreeSysRequest . 23

1.26 intuition.library/GetDefPrefs . 23

1.27 intuition.library/GetPrefs . 24

1.28 intuition.library/GetScreenData . 25

1.29 intuition.library/InitRequester . 26

intuition iv

1.30 intuition.library/IntuiTextLength . 26

1.31 intuition.library/ItemAddress . 27

1.32 intuition.library/LockIBase . 28

1.33 intuition.library/MakeScreen . 28

1.34 intuition.library/ModifyIDCMP . 29

1.35 intuition.library/ModifyProp . 31

1.36 intuition.library/MoveScreen . 32

1.37 intuition.library/MoveWindow . 32

1.38 intuition.library/NewModifyProp . 33

1.39 intuition.library/OffGadget . 34

1.40 intuition.library/OffMenu . 35

1.41 intuition.library/OnGadget . 36

1.42 intuition.library/OnMenu . 36

1.43 intuition.library/OpenScreen . 37

1.44 intuition.library/OpenWindow . 39

1.45 intuition.library/OpenWorkBench . 46

1.46 intuition.library/PrintIText . 47

1.47 intuition.library/RefreshGadgets . 47

1.48 intuition.library/RefreshGList . 49

1.49 intuition.library/RefreshWindowFrame . 50

1.50 intuition.library/RemakeDisplay . 50

1.51 intuition.library/RemoveGadget . 51

1.52 intuition.library/RemoveGList . 52

1.53 intuition.library/ReportMouse . 52

1.54 intuition.library/Request . 54

1.55 intuition.library/RethinkDisplay . 54

1.56 intuition.library/ScreenToBack . 55

1.57 intuition.library/ScreenToFront . 56

1.58 intuition.library/SetDMRequest . 56

1.59 intuition.library/SetMenuStrip . 57

1.60 intuition.library/SetPointer . 58

1.61 intuition.library/SetPrefs . 59

1.62 intuition.library/SetWindowTitles . 60

1.63 intuition.library/ShowTitle . 61

1.64 intuition.library/SizeWindow . 61

1.65 intuition.library/UnlockIBase . 62

1.66 intuition.library/ViewAddress . 63

1.67 intuition.library/ViewPortAddress . 63

1.68 intuition.library/WBenchToBack . 64

1.69 intuition.library/WBenchToFront . 65

1.70 intuition.library/WindowLimits . 65

1.71 intuition.library/WindowToBack . 67

1.72 intuition.library/WindowToFront . 67

intuition 1 / 68

Chapter 1

intuition

1.1 intuition.doc

ActivateGadget() GetDefPrefs() RemakeDisplay()
ActivateWindow() GetPrefs() RemoveGadget()
AddGadget() GetScreenData() RemoveGList()
AddGList() InitRequester() ReportMouse()
AllocRemember() IntuiTextLength() Request()
AutoRequest() ItemAddress() RethinkDisplay()
BeginRefresh() LockIBase() ScreenToBack()
BuildSysRequest() MakeScreen() ScreenToFront()
ClearDMRequest() ModifyIDCMP() SetDMRequest()
ClearMenuStrip() ModifyProp() SetMenuStrip()
ClearPointer() MoveScreen() SetPointer()
CloseScreen() MoveWindow() SetPrefs()
CloseWindow() NewModifyProp() SetWindowTitles()
CloseWorkBench() OffGadget() ShowTitle()
CurrentTime() OffMenu() SizeWindow()
DisplayAlert() OnGadget() UnlockIBase()
DisplayBeep() OnMenu() ViewAddress()
DoubleClick() OpenScreen() ViewPortAddress()
DrawBorder() OpenWindow() WBenchToBack()
DrawImage() OpenWorkBench() WBenchToFront()
EndRefresh() PrintIText() WindowLimits()
EndRequest() RefreshGadgets() WindowToBack()
FreeRemember() RefreshGList() WindowToFront()
FreeSysRequest() RefreshWindowFrame()

1.2 intuition.library/ActivateGadget

NAME
ActivateGadget -- Activate a (String) Gadget.

SYNOPSIS
Success = ActivateGadget(Gadget, Window, Request)
D0 A0 A1 A2

BOOL Success;

intuition 2 / 68

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Request;

FUNCTION
Activates a String Gadget. If successful, this means that the user
does not need to click in the gadget before typing.

The Window parameter must point to the window which contains the
Gadget. If the gadget is actually in a Requester, the Window must
contain the Requester, and a pointer to the Requester must also be
passed. The Requester parameter must only be valid if the Gadget
has the REQGADGET flag set, a requirement for all Requester Gadgets.

The success of this function depends on a rather complex set
of conditions. The intent is that the user is never interrupted from
what interactions he may have underway.

The current set of conditions includes:
- The Window must be active. (Use the ACTIVEWINDOW IDCMP).
- No other gadgets may be in use. This includes system gadgets,

such as those for window sizing, dragging, etc.
- If the gadget is in a Requester, that Requester must

be active. (Use the REQSET and REQCLEAR IDCMP).
- The right mouse button cannot be held down (e.g. menus

INPUTS
Gadget = pointer to the Gadget that you want activated.
Window = pointer to a Window structure containing the Gadget.
Requester = pointer to a Requester (may by NULL if this isn’t

a Requester Gadget (i.e. REQGADGET is not set)).

RESULT
If the conditions above are met, and the Gadget is in fact a String
Gadget, then this function will return TRUE, else FALSE.

BUGS

SEE ALSO

1.3 intuition.library/ActivateWindow

NAME
ActivateWindow -- Activate an Intuition Window.

SYNOPSIS
ActivateWindow(Window)

A0

struct Window *Window;

FUNCTION
Activates an Intuition Window.

Note that this call may have its action deferred: you cannot assume

intuition 3 / 68

that when this call is made the selected window has become active.
This action will be postponed while the user plays with gadgets and
menus, or sizes and drags windows. You may detect when the window
actually has become active by the ACTIVEWINDOW IDCMP Message.

This call is intended to provide flexibility but not to confuse the
user. Please call this function synchronously with some action
by the user.

INPUTS
Window = a pointer to a Window structure

RESULT
None

BUGS
Calling this function in a tight loop can blow out Intuition’s deferred
action queue.

SEE ALSO
OpenWindow(), and the ACTIVATE Window Flag

1.4 intuition.library/AddGadget

NAME
AddGadget -- Add a Gadget to the Gadget list of the Window or Screen.

SYNOPSIS
RealPosition = AddGadget(Window, Gadget, Position)
D0 A0 A1 D0

USHORT RealPosition;
struct Window *Window;
struct Gadget *Gadget;
USHORT Position;

FUNCTION
Adds the specified Gadget to the Gadget list of the given Window,
linked in at the position in the list specified by the Position
argument (that is, if Pos == 0, the Gadget will be inserted at the
head of the list, and if Position == 1 then the Gadget will be inserted
after the first Gadget and before the second). If the Position
you specify is greater than the number of Gadgets in the list,
your Gadget will be added to the end of the list.

Calling AddGadget() does not cause your gadget do be redisplayed.
The benefit of this is that you may add several gadgets without having
the gadget list be redrawn every time.

This procedure returns the position at which your Gadget was added.

NOTE: A relatively safe way to add the Gadget to the end of the
list is to specify a Position of -1 (i.e., (USHORT) ~0). That way,
only the 65536th (and multiples of it) will be inserted at the wrong
position. The return value of the procedure will tell you where it was

intuition 4 / 68

actually inserted.

NOTE: The System Window Gadgets are initially added to the
front of the Gadget List. The reason for this is: If you position
your own Gadgets in some way that interferes with the graphical
representation of the system Gadgets, the system’s ones will be "hit"
first by User. If you then start adding Gadgets to the front of the
list, you will disturb this plan, so beware. On the other hand, if
you don’t violate the design rule of never overlapping your Gadgets,
there’s no problem.

NOTE: You may not add your own gadgets to a Screen. Gadgets may
be added to backdrop windows, however, which can be visually similar,
but also provide an IDCMP channel for gadget input messages.

INPUTS
Window = pointer to the Window to get your Gadget
Gadget = pointer to the new Gadget
Position = integer position in the list for the new Gadget (starting

from zero as the first position in the list)

RESULT
Returns the position of where the Gadget was actually added.

BUGS

SEE ALSO
AddGList(), RemoveGadget()

1.5 intuition.library/AddGList

NAME
AddGList -- add a linked list of gadgets to a Window or Requester

SYNOPSIS
RealPosition = AddGList(Window, Gadget, Position, Numgad, Requester);
D0 A0 A1 D0 D1 A2

USHORT RealPosition;
struct Window *Window;
struct Gadget *Gadget;
USHORT Position;
USHORT Numgad;
struct Requester *Requester;

FUNCTION
Adds the list of Gadgets to the Gadget list of the given Window
or Requester linked in at the position in the list specified by
the Position argument.

See AddGadget() for more information about gadget list position.

The Requester parameter will be ignored unless the REQGADGET bit
is set in the GadgetType field of the first Gadget in the list.
In that case, the gadget list is added to the Requester gadgets.

intuition 5 / 68

NOTE: be sure that REQGADGET is either set of cleared consistently
for all gadgets in the list. NOTE ALSO: The Window parameter
should point to the Window that the Requester (will) appear in.

Will add ’Numgad’ gadgets from gadget list linked by the field
NextGadget, or until some NextGadget field is found to be NULL. Does
not assume that the Numgad’th gadget has NextGadget equal to NULL.

NOTE WELL: In order to link your gadget list in, the NextGadget
field of the Numgad’th (or last) gadget will be modified. Thus, if
you are adding the first 3 gadgets from a linked list of five gadgets,
this call will sever the connection between your third and fourth
gadgets.

INPUTS
Window = pointer to the Window to get your Gadget
Gadget = pointer to the first Gadget to be added
Position = integer position in the list for the new Gadget

(starting from zero as the first position in the list)
Numgad = the number of gadgets from the linked list to be added

if Numgad equals -1, the entire null-terminated list of
gadgets will be added.

Requester = the requester the gadgets will be added to if the
REQGADGET GadgetType flag is set for the first gadget in the list

RESULT
Returns the position of where the first Gadget in the list was actually
added.

BUGS

SEE ALSO
AddGadget(), RemoveGadget()

1.6 intuition.library/AllocRemember

NAME
AllocRemember -- AllocMem and create a link node to make FreeMem easy.

SYNOPSIS
MemBlock = AllocRemember(RememberKey, Size, Flags)
D0 A0 D0 D1

CPTR MemBlock;
struct Remember **RememberKey;
ULONG Size;
ULONG Flags;

FUNCTION
This routine calls the EXEC AllocMem() function for you, but also links
the parameters of the allocation into a master list, so that
you can simply call the Intuition routine FreeRemember() at a later
time to deallocate all allocated memory without being required to
remember the details of the memory you’ve allocated.

intuition 6 / 68

This routine will have two primary uses:
- Let’s say that you’re doing a long series of allocations in a

procedure (such as the Intuition OpenWindow() procedure).
If any one of the allocations fails for lack of memory, you
need to abort the procedure. Abandoning ship correctly involves
freeing up what memory you’ve already allocated. This procedure
allows you to free up that memory easily, without being required
to keep track of how many allocations you’ve already done, what the
sizes of the allocations were, or where the memory was allocated.

- Also, in the more general case, you may do all of the allocations
in your entire program using this routine. Then, when your
program is exiting, you can free it all up at once with a
simple call to FreeRemember().

You create the "anchor" for the allocation master list by creating
a variable that’s a pointer to struct Remember, and initializing
that pointer to NULL. This is called the RememberKey. Whenever
you call AllocRemember(), the routine actually does two memory
allocations, one for the memory you want and the other for a copy
of a Remember structure. The Remember structure is filled in
with data describing your memory allocation, and it’s linked
into the master list pointed to by your RememberKey. Then, to
free up any memory that’s been allocated, all you have to do is
call FreeRemember() with your RememberKey.

Please read the FreeRemember() function description, too. As you will
see, you can select either to free just the link nodes and keep all the
allocated memory for yourself, or to free both the nodes and your
memory buffers.

INPUTS
RememberKey = the address of a pointer to struct Remember. Before the
very first call to AllocRemember, initialize this pointer to NULL.

Size = the size in bytes of the memory allocation. Please refer to the
exec.library/AllocMem function for details.

Flags = the specifications for the memory allocation. Please refer to
the exec.library/AllocMem function for details.

EXAMPLE
struct Remember *RememberKey;
RememberKey = NULL;
AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP);
FreeRemember(&RememberKey, TRUE);

RESULT
If the memory allocation is successful, this routine returns the byte
address of your requested memory block. Also, the node to your block
will be linked into the list pointed to by your RememberKey variable.
If the allocation fails, this routine returns NULL and the list pointed
to by RememberKey, if any, will be undisturbed.

BUGS

SEE ALSO

intuition 7 / 68

FreeRemember(), exec.library/AllocMem()

1.7 intuition.library/AutoRequest

NAME
AutoRequest -- Automatically build and get response from a Requester.

SYNOPSIS
Response = AutoRequest(Window, BodyText, PositiveText, NegativeText,
D0 A0 A1 A2 A3

PositiveFlags, NegativeFlags, Width, Height)
D0 D1 D2 D3

BOOL Response;
struct Window *Window;
struct IntuiText *BodyText, *PositiveText, *NegativeText;
ULONG PositiveFlags, NegativeFlags;
SHORT Width, Height;

FUNCTION
This procedure automatically builds a Requester for you and then
waits for a response from the user, or for the system to satisfy your
request. If the response is positive, this procedure returns TRUE.
If the response is negative, this procedure returns FALSE.

An IDCMPFlag specification is creates by bitwise "or’ing" your
PositiveFlags, NegativeFlags, and the IDCMP classes GADGETUP and
RAWKEY. You may specify zero flags for either the PositiveFlags
or NegativeFlags arguments.

The IntuiText arguments, and the Width and Height values, are
passed directly to the BuildSysRequest() procedure along with
your Window pointer and the IDCMP flags. Please refer to
BuildSysRequest() for a description of the IntuiText that you are
expected to supply when calling this routine. It’s an important
but long-winded description that need not be duplicated here.

If the BuildSysRequest() procedure does not return a pointer
to a Window, it will return TRUE or FALSE (not valid structure
pointers) instead, and these BOOL values will be returned to
you immediately.

On the other hand, if a valid Window pointer is returned, that
Window will have had its IDCMP Ports and flags initialized according
to your specifications. AutoRequest() then waits for IDCMP messages
on the UserPort, which satisfies one of four requirements:
- either the message is of a class that matches

one of your PositiveFlags arguments (if you’ve supplied
any), in which case this routine returns TRUE. Or

- the message class matches one of your NegativeFlags
arguments (if you’ve supplied any), in which case
this routine returns FALSE. Or

- the IDCMP message is of class GADGETUP, which means that one of
the two Gadgets, as provided with the PositiveText and NegativeText
arguments, was selected by the user. If the TRUE Gadget

intuition 8 / 68

was selected, TRUE is returned. If the FALSE Gadget was
selected, FALSE is returned.

- Lastly, two RAWKEY messages may satisfy the request: those
for the V and B keys with the left Amiga key depressed.
These keys, satisfy the gadgets on the left or right side of
the Requester--TRUE or FALSE--, respectively.

When the dust has settled, this routine calls FreeSysRequest() if
necessary to clean up the Requester and any other allocated memory.

INPUTS
Window = pointer to a Window structure
BodyText = pointer to an IntuiText structure
PositiveText = pointer to an IntuiText structure, may be NULL.
NegativeText = pointer to an IntuiText structure, MUST be valid!
PositiveFlags = flags for the IDCMP
NegativeFlags = flags for the IDCMP
Width, Height = the sizes to be used for the rendering of the

Requester

RESULT
The return value is either TRUE or FALSE. See the text above for a
complete description of the chain of events that might lead to either
of these values being returned.

BUGS

SEE ALSO
BuildSysRequest()

1.8 intuition.library/BeginRefresh

NAME
BeginRefresh -- Sets up a Window for optimized refreshing.

SYNOPSIS
BeginRefresh(Window)

A0

struct Window *Window;

FUNCTION
This routine sets up your Window for optimized refreshing.

It’s role is to provide Intuition integrated access to the Layers
library function BeginUpdate(). Its additional contribution is
to be sure that locking protocols for layers are followed, by
locking both layers of a GIMMEZEROZERO window only after the
parent Layer_Info has been locked. Also, the WINDOWREFRESH
flag is set in your window, for your information.

The purpose of BeginUpdate(), and hence BeginRefresh(), is to
restrict rendering in a Window (Layer) to the region in
that needs refreshing after an operation such as window sizing or
uncovering. This restriction to the "Damage Region" persists until

intuition 9 / 68

you call EndRefresh().

For instance, if you have a SIMPLE_REFRESH Window which is partially
concealed and the user brings it to the front, you may receive a
message asking you to refresh your display. If you call BeginRefresh()
before doing any of the rendering, then the layer that underlies your
Window will be arranged such that the only rendering that will actually
take place will be that which goes to the newly-revealed areas. This
is very performance-efficient, and visually attractive.

After you have performed your refresh of the display, you should call
EndRefresh() to reset the state of the layer and the Window. Then you
may proceed with rendering to the Window as usual.

You learn that your Window needs refreshing by receiving either a
message of class REFRESHWINDOW through the IDCMP, or an input event
of class IECLASS_REFRESHWINDOW through the Console Device. Whenever
you are told that your Window needs refreshing, you should call
BeginRefresh() and EndRefresh() to clear the refresh-needed state,
even if you don’t plan on doing any rendering. You may relieve
yourself of even this burden by setting the NOCAREREFRESH Flag when
opening your window.

INPUTS
Window = pointer to the Window structure which needs refreshing

RESULT
None

BUGS

SEE ALSO
EndRefresh(), layers.library/BeginUpdate(), OpenWindow()
The "Windows" chapter of the Intuition Reference Manual

1.9 intuition.library/BuildSysRequest

NAME
BuildSysRequest -- Build and display a system Requester.

SYNOPSIS
ReqWindow = BuildSysRequest(Window, BodyText, PositiveText,
D0 A0 A1 A2

NegativeText, IDCMPFlags, Width, Height)
A3 D0 D2 D3

struct Window *ReqWindow;
struct Window *Window;
struct IntuiText *BodyText;
struct IntuiText *PositiveText;
struct IntuiText *NegativeText;
ULONG IDCMPFlags;
SHORT Width, Height;

FUNCTION

intuition 10 / 68

This procedure builds a Requester based on the supplied information.
If all goes well and the Requester is constructed, this procedure
returns a pointer to the Window in which the Requester appears.
That Window will have the IDCMP UserPort and WindowPort initialized
to reflect the flags found in the IDCMPFlags argument. You may then
Wait() on those ports to detect the user’s response to your Requester,
which response may include either selecting one of the Gadgets or
causing some other event to be noticed by Intuition (like DISKINSERTED,
for instance). After the Requester is satisfied, you should call the
FreeSysRequest() procedure to remove the Requester and free up any
allocated memory.

The requester used by this function has the NOISYREQ flag bit set,
which means that the set of IDCMPFlags that may be used here
include RAWKEY, MOUSEBUTTONS, and others.

If it isn’t possible to construct the Requester for any reason, this
procedure will instead use the text arguments to construct a text
string for a call to the DisplayAlert() procedure, and then will return
either a TRUE or FALSE depending on whether DisplayAlert() returned
a FALSE or TRUE respectively.

If the Window argument you supply is equal to NULL, a new Window will
be created for you in the Workbench Screen. If you want the Requester
created by this routine to be bound to a particular Window, you should
not supply a Window argument of NULL.

The text arguments are used to construct the display. Each is a
pointer to an instance of the structure IntuiText.

The BodyText argument should be used to describe the nature of
the Requester. As usual with IntuiText data, you may link several
lines of text together, and the text may be placed in various
locations in the Requester. This IntuiText pointer will be stored
in the ReqText variable of the new Requester.

The PositiveText argument describes the text that you want associated
with the user choice of "Yes, TRUE, Retry, Good." If the Requester
is successfully opened, this text will be rendered in a Gadget in
the lower-left of the Requester, which Gadget will have the
GadgetID field set to TRUE. If the Requester cannot be opened and
the DisplayAlert() mechanism is used, this text will be rendered in
the lower-left corner of the Alert display with additional text
specifying that the left mouse button will select this choice. This
pointer can be set to NULL, which specifies that there is no TRUE
choice that can be made.

The NegativeText argument describes the text that you want associated
with the user choice of "No, FALSE, Cancel, Bad." If the Requester
is successfully opened, this text will be rendered in a Gadget in
the lower-right of the Requester, which Gadget will have the
GadgetID field set to FALSE. If the Requester cannot be opened and
the DisplayAlert() mechanism is used, this text will be rendered in
the lower-right corner of the Alert display with additional text
specifying that the right mouse button will select this choice. This
pointer cannot be set to NULL. There must always be a way for the
user to cancel this Requester.

intuition 11 / 68

The Positive and Negative Gadgets created by this routine have
the following features:

- BOOLGADGET
- RELVERIFY
- REQGADGET
- TOGGLESELECT

When defining the text for your Gadgets, you may find it convenient
to use the special constants used by Intuition for the construction
of the Gadgets. These include defines like AUTODRAWMODE, AUTOLEFTEDGE,
AUTOTOPEDGE and AUTOFRONTPEN. You can find these in your local
intuition.h (or intuition.i) file.

The Width and Height values describe the size of the Requester. All
of your BodyText must fit within the Width and Height of your
Requester. The Gadgets will be created to conform to your sizes.

VERY IMPORTANT NOTE: for this release of this procedure, a new Window
is opened in the same Screen as the one containing your Window.
Future alternatives will be provided as a function distinct from this
one.

INPUTS
Window = pointer to a Window structure
BodyText = pointer to an IntuiText structure
PositiveText = pointer to an IntuiText structure
NegativeText = pointer to an IntuiText structure
IDCMPFlags = the IDCMP flags you want used for the initialization of

the IDCMP of the Window containing this Requester
Width, Height = the size required to render your Requester

RESULT
If the Requester was successfully rendered in a Window, the value
returned by this procedure is a pointer to the Window in which the
Requester was rendered. If, however, the Requester cannot be rendered
in the Window, this routine will have called DisplayAlert() before
returning and will pass back TRUE if the user pressed the left mouse
button and FALSE if the user pressed the right mouse button.

BUGS
This procedure currently opens a Window as wide as the Screen in
which it was rendered, and then opens the Requester within that
Window. Also, if DisplayAlert() is called, the PositiveText and
NegativeText are not rendered in the lower corners of the Alert.

SEE ALSO
FreeSysRequest(), DisplayAlert(), ModifyIDCMP(), exec.library/Wait(),
Request(), AutoRequest()

1.10 intuition.library/ClearDMRequest

NAME
ClearDMRequest -- clears (detaches) the DMRequest of the Window.

intuition 12 / 68

SYNOPSIS
Response = ClearDMRequest(Window)
D0 A0

BOOL Response;
struct Window *Window;

FUNCTION
Attempts to clear the DMRequester from the specified window,
that is detaches the special Requester that you attach to
the double-click of the menu button which the user can then
bring up on demand. This routine WILL NOT clear the DMRequester
if it’s active (in use by the user). The IDCMP message class REQCLEAR
can be used to detect that the requester is not in use,
but that message is sent only when the last of perhaps several
requesters in use in a window is terminated.

INPUTS
Window = pointer to the window from which the DMRequest is to be

cleared.

RESULT
If the DMRequest was not currently in use, zeroes out the DMRequest
pointer in the Window and returns TRUE.

pointer in the Window and returns TRUE.
If the DMRequest was currently in use, doesn’t change the pointer
and returns FALSE.

BUGS

SEE ALSO
SetDMRequest(), Request()

1.11 intuition.library/ClearMenuStrip

NAME
ClearMenuStrip -- Clears (detaches) the Menu strip from the Window

SYNOPSIS
ClearMenuStrip(Window)

A0

struct Window *Window;

FUNCTION
Detaches the current menu strip from the Window; menu strips
are attached to windows using the SetMenuStrip() function.

If the menu is in use (for that matter if any menu is in use)
this function will block (Wait()) until the user has finished.

Call this function before you make any changes to the data
in a Menu or MenuItem structure which is part of a menu
strip linked into a window.

intuition 13 / 68

INPUTS
Window = pointer to a Window structure

RESULT
None

BUGS

SEE ALSO
SetMenuStrip()

1.12 intuition.library/ClearPointer

NAME
ClearPointer -- clears the Mouse Pointer definition from a Window.

SYNOPSIS
ClearPointer(Window)

A0

struct Window *Window;

FUNCTION
Clears the Window of its own definition of the Intuition mouse pointer.
After calling ClearPointer(), every time this Window is the active
one the default Intuition pointer will be the pointer displayed
to the user. If your Window is the active one when this routine
is called, the change will take place immediately.

Custom definitions of the mouse pointer which this function clears
are installed by a call to SetPointer().

INPUTS
Window = pointer to the Window to be cleared of its Pointer definition

RESULT
None

BUGS

SEE ALSO
SetPointer()

1.13 intuition.library/CloseScreen

NAME
CloseScreen -- Closes an Intuition Screen.

SYNOPSIS
CloseScreen(Screen)

A0

intuition 14 / 68

struct Screen *Screen;

FUNCTION
Unlinks the Screen, unlinks the ViewPort, deallocates everything that
Intuition allocated when the screen was opened (using OpenScreen()).
Doesn’t care whether or not there are still any Windows attached to the
Screen. Doesn’t try to close any attached Windows; in fact, ignores
them altogether. If this is the last Screen to go, attempts to
reopen Workbench.

INPUTS
Screen = pointer to the Screen to be closed.

RESULT
None

BUGS

SEE ALSO
OpenScreen()

1.14 intuition.library/CloseWindow

NAME
CloseWindow -- Closes an Intuition Window.

SYNOPSIS
CloseWindow(Window)

A0

struct Window *Window;

FUNCTION
Closes an Intuition Window. Unlinks it from the system, unallocates
its memory, and if its Screen is a system one that would be empty
without the Window, closes the system Screen too.

When this function is called, all IDCMP messages which have been sent
to your window are deallocated. If the window had shared a Message
Port with other windows, you must be sure that there are no unreplied
messages for this window in the message queue. Otherwise, your
program will try to make use of a linked list (the queue) which
contains free memory (the old messages). This will give you big
problems.
NOTE: If you have added a Menu strip to this Window (via
a call to SetMenuStrip()) you must be sure to remove that Menu strip
(via a call to ClearMenuStrip()) before closing your Window.

NOTE: This function may block until it is safe to delink and free
your window. Your program may thus be suspended while the user
plays with gadgets, menus, or window sizes and position.

INPUTS
Window = a pointer to a Window structure

intuition 15 / 68

RESULT
None

BUGS

SEE ALSO
OpenWindow(), CloseScreen()

1.15 intuition.library/CloseWorkBench

NAME
CloseWorkBench -- Closes the Workbench Screen.

SYNOPSIS
Success = CloseWorkBench()
D0

BOOL Success;

FUNCTION
This routine attempts to close the Workbench. The actions taken are:

- Test whether or not any applications have opened Windows on the
Workbench, and return FALSE if so. Otherwise ...

- Clean up all special buffers
- Close the Workbench Screen
- Make the Workbench program mostly inactive (it will still

monitor disk activity)
- Return TRUE

INPUTS
None

RESULT
TRUE if the Workbench Screen closed successfully
FALSE if the Workbench was not open, or if it has windows

open which are not Workbench drawers.

BUGS

SEE ALSO
OpenWindow()

1.16 intuition.library/CurrentTime

NAME
CurrentTime -- Get the current time values.

SYNOPSIS
CurrentTime(Seconds, Micros)

A0 A1

ULONG *Seconds, *Micros;

intuition 16 / 68

FUNCTION
Puts copies of the current time into the supplied argument pointers.

This time value is not extremely accurate, nor is it of a very fine
resolution. This time will be updated no more than sixty times a
a second, and will typically be updated far fewer times a second.

INPUTS
Seconds = pointer to a LONG variable to receive the current seconds

value
Micros = pointer to a LONG variable for the current microseconds value

RESULT
Puts the time values into the memory locations specified by the
arguments. Return value is not defined.

BUGS

SEE ALSO
timer.device/TR_GETSYSTIME

1.17 intuition.library/DisplayAlert

NAME
DisplayAlert -- Create the display of an Alert message.

SYNOPSIS
Response = DisplayAlert(AlertNumber, String, Height)
D0 D0 A0 D1

BOOL Response;
ULONG AlertNumber;
UBYTE *String;
SHORT Height;

FUNCTION
Creates an Alert display with the specified message.

If the system can recover from this Alert, its a RECOVERY_ALERT and
this routine waits until the user presses one of the mouse buttons,
after which the display is restored to its original state and a
BOOL value is returned by this routine to specify whether or not
the User pressed the LEFT mouse button.

If the system cannot recover from this Alert, it’s a DEADEND_ALERT
and this routine returns immediately upon creating the Alert display.
The return value is FALSE.

NOTE THIS: Starting with Version 1.2, if Intuition can’t get enough
memory to display a RECOVERY_ALERT, the value FALSE will be returned.

The AlertNumber is a LONG value, historically related to the value
sent to the Alert() routine. But the only bits that are pertinent to
this routine are the ALERT_TYPE bit(s). These bits must be set to

intuition 17 / 68

either RECOVERY_ALERT for Alerts from which the system may safely
recover, or DEADEND_ALERT for those fatal Alerts. These states are
described in the paragraph above.

The String argument points to an AlertMessage string. The AlertMessage
string is comprised of one or more substrings, each of which is
comprised of the following components:

- first, a 16-bit x-coordinate and an 8-bit y-coordinate,
describing where on the Alert display you want this string
to appear. The y-coordinate describes the offset to the
baseline of the text.

- then, the bytes of the string itself, which must be
null-terminated (end with a byte of zero)

- lastly, the continuation byte, which specifies whether or
not there’s another substring following this one. If the
continuation byte is non-zero, there IS another substring
to be processed in this Alert Message. If the continuation
byte is zero, this is the last substring in the message.

The last argument, Height, describes how many video lines tall you
want the Alert display to be.

INPUTS
AlertNumber = the number of this Alert Message. The only pertinent

bits of this number are the ALERT_TYPE bit(s). The rest of the
number is ignored by this routine

String = pointer to the Alert message string, as described above
Height = minimum display lines required for your message

RESULT
A BOOL value of TRUE or FALSE. If this is a DEADEND_ALERT, FALSE
is always the return value. If this is a RECOVERY_ALERT. The return
value will be TRUE if the User presses the left mouse button in
response to your message, and FALSE if the User presses the right hand
button is response to your text, or if the alert could not
be posted.

BUGS
If the system is worse off than you think, the level of your Alert
may become DEADEND_ALERT without you ever knowing about it.

SEE ALSO

1.18 intuition.library/DisplayBeep

NAME
DisplayBeep -- flashes the video display.

SYNOPSIS
DisplayBeep(Screen)

A0

struct Screen *Screen;

FUNCTION

intuition 18 / 68

"Beeps" the video display by flashing the background color of the
specified Screen. If the Screen argument is NULL, every Screen
in the display will be beeped. Flashing everyone’s Screen is not
a polite thing to do, so this should be reserved for dire
circumstances.

The reason such a routine is supported is because the Amiga has
no internal bell or speaker. When the user needs to know of
an event that is not serious enough to require the use of a Requester,
the DisplayBeep() function may be called.

INPUTS
Screen = pointer to a Screen. If NULL, every Screen in the display

will be flashed

RESULT
None

BUGS

SEE ALSO

1.19 intuition.library/DoubleClick

NAME
DoubleClick -- Test two time values for double-click timing.

SYNOPSIS
IsDouble = DoubleClick(StartSecs, StartMicros, CurrentSecs,
A0 D0 D1 D2

CurrentMicros)
D3

BOOL IsDouble;
LONG StartSecs, StartMicros;
LONG CurrentSecs, CurrentMicros;

FUNCTION
Compares the difference in the time values with the double-click
timeout range that the user has set (using the "Preferences" tool) or
some other program has configured into the system. If the
difference between the specified time values is within the current
double-click time range, this function returns TRUE, else it
returns FALSE.

These time values can be found in InputEvents and IDCMP Messages.
The time values are not perfect; however, they are precise enough for
nearly all applications.

INPUTS
StartSeconds, StartMicros = the timestamp value describing the start of

the double-click time period you are considering
CurrentSeconds, CurrentMicros = the timestamp value describing

the end of the double-click time period you are considering

RESULT

intuition 19 / 68

If the difference between the supplied timestamp values is within the
double-click time range in the current set of Preferences, this
function returns TRUE, else it returns FALSE

BUGS

SEE ALSO
CurrentTime()

1.20 intuition.library/DrawBorder

NAME
DrawBorder -- draws the specified Border into the RastPort.

SYNOPSIS
DrawBorder(RastPort, Border, LeftOffset, TopOffset)

A0 A1 D0 D1

struct RastPort *RastPort;
struct Border *Border;
SHORT LeftOffset, TopOffset;

FUNCTION
First, sets up the DrawMode and Pens in the RastPort according to the
arguments of the Border structure. Then, draws the vectors of
the Border argument into the RastPort, offset by the Left and Top
Offsets. As with all graphics rendering routines, the border will be
clipped to to the boundaries of the RastPort’s layer, if it exists.
This is the case with Window RastPorts.

If the NextBorder field of the Border argument is non-zero,
the next Border is rendered as well, and so on until some NextBorder
field is found to be NULL.

INPUTS
RastPort = pointer to the RastPort to receive the border rendering
Border = pointer to a Border structure
LeftOffset = the offset which will be added to each vector’s

x coordinate
TopOffset = the offset which will be added to each vector’s

y coordinate

RESULT
None

BUGS

SEE ALSO

1.21 intuition.library/DrawImage

intuition 20 / 68

NAME
DrawImage -- draws the specified Image into the RastPort.

SYNOPSIS
DrawImage(RastPort, Image, LeftOffset, TopOffset)

A0 A1 D0 D1

struct RastPort *RastPort;
struct Image *Image;
SHORT LeftOffset, TopOffset;

FUNCTION
First, sets up the DrawMode and Pens in the RastPort according to the
arguments of the Image structure. Then, moves the image data of
the Image argument into the RastPort, offset by the Left and Top
Offsets. This routine does window layer clipping as appropriate -- if
you draw an image outside of your Window, your imagery will be
clipped at the Window’s edge.

If the NextImage field of the Image argument is non-zero,
the next Image is rendered as well, and so on until some
NextImage field is found to be NULL.

INPUTS
RastPort = pointer to the RastPort to receive image rendering
Image = pointer to an Image structure
LeftOffset = the offset which will be added to the Image’s x coordinate
TopOffset = the offset which will be added to the Image’s y coordinate

RESULT
None

BUGS

SEE ALSO

1.22 intuition.library/EndRefresh

NAME
EndRefresh -- Ends the optimized refresh state of the Window.

SYNOPSIS
EndRefresh(Window, Complete)

A0 D0

struct Window *Window;
BOOL Complete;

FUNCTION
This function gets you out of the special refresh state of your
Window. It is called following a call to BeginRefresh(), which
routine puts you into the special refresh state. While your Window
is in the refresh state, the only rendering that will be wrought in
your Window will be to those areas which were recently revealed and

intuition 21 / 68

need to be refreshed.

After you’ve done all the refreshing you want to do for this Window,
you should call this routine to restore the Window to its
non-refreshing state. Then all rendering will go to the entire
Window, as usual.

The Complete argument is a boolean TRUE or FALSE value used to
describe whether or not the refreshing you’ve done was all the
refreshing that needs to be done at this time. Most often, this
argument will be TRUE. But if, for instance, you have multiple
tasks or multiple procedure calls which must run to completely
refresh the Window, then each can call its own Begin/EndRefresh()
pair with a Complete argument of FALSE, and only the last calls
with a Complete argument of TRUE.

For your information, this routine calls the Layers library function
EndUpdate(), unlocks your layers (calls UnlockLayerRom()), clears
the LAYERREFRESH bit in your Layer Flags, and clears the WINDOWREFRESH
bit in your window flags.

INPUTS
Window = pointer to the Window currently in optimized-refresh mode
Complete = Boolean TRUE or FALSE describing whether or not this

Window is completely refreshed

RESULT
None

BUGS

SEE ALSO
BeginRefresh(), layers.library/EndUpdate(),
layers.library/UnlockLayerRom()

1.23 intuition.library/EndRequest

NAME
EndRequest -- Ends the Request and resets the Window.

SYNOPSIS
EndRequest(Requester, Window);

A0 A1

FUNCTION
Ends the Request by erasing the Requester and resetting the Window.
Note that this doesn’t necessarily clear all Requesters from the
Window, only the specified one. If the Window labors under other
Requesters, they will remain in the Window.

INPUTS
Requester = pointer to the Requester to be removed
Window = pointer to the Window structure with which this Requester

is associated

intuition 22 / 68

RESULT
None

BUGS

SEE ALSO
Request()

1.24 intuition.library/FreeRemember

NAME
FreeRemember -- Free memory allocated by calls to AllocRemember().

SYNOPSIS
FreeRemember(RememberKey, ReallyForget)

A0 D0

struct Remember **RememberKey;
BOOL ReallyForget;

FUNCTION
This function frees up memory allocated by the AllocRemember()
function. It will either free up just the Remember structures, which
supply the link nodes that tie your allocations together, or it will
deallocate both the link nodes AND your memory buffers too.

If you want to deallocate just the Remember structure link nodes,
you should set the ReallyForget argument to FALSE. However, if you
want FreeRemember to really deallocate all the memory, including
both the Remember structure link nodes and the buffers you requested
via earlier calls to AllocRemember(), then you should set the
ReallyForget argument to TRUE.

INPUTS
RememberKey = the address of a pointer to struct Remember. This

pointer should either be NULL or set to some value (possibly
NULL) by a call to AllocRemember().

ReallyForget = a BOOL FALSE or TRUE describing, respectively,
whether you want to free up only the Remember nodes or
if you want this procedure to really forget about all of
the memory, including both the nodes and the memory buffers
referenced by the nodes.

EXAMPLE
struct Remember *RememberKey;
RememberKey = NULL;
AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP);
FreeRemember(&RememberKey, TRUE);

RESULT
None

BUGS

SEE ALSO

intuition 23 / 68

AllocRemember(), exec.library/FreeMem()

1.25 intuition.library/FreeSysRequest

NAME
FreeSysRequest -- Frees resources used by a call to BuildSysRequest().

SYNOPSIS
FreeSysRequest(Window)

A0

struct Window *Window;

FUNCTION
This routine frees up all memory allocated by a successful call to
the BuildSysRequest() procedure. If BuildSysRequest() returned a
pointer to a Window, then you are able to Wait() on the message port
of that Window to detect an event which satisfies the Requester.
When you want to remove the Requester, you call this procedure. It
ends the Requester and deallocates any memory used in the creation
of the Requester. It also closes the special window that was opened
for your System Requester.

NOTE: if BuildSysRequest() did not return a pointer to a Window,
you should not call FreeSysRequest()!

INPUTS
Window = value of the Window pointer returned by a successful call to

the BuildSysRequest() procedure

RESULT
None

BUGS

SEE ALSO
BuildSysRequest(), AutoRequest(), CloseWindow(), exec.library/Wait()

1.26 intuition.library/GetDefPrefs

NAME
GetDefPrefs -- Get a copy of the the Intuition default Preferences.

SYNOPSIS
Prefs = GetDefPrefs(PrefBuffer, Size)
D0 A0 D0

struct Preferences *Prefs;
struct Preferences *PrefBuffer;
SHORT Size;

FUNCTION

intuition 24 / 68

Gets a copy of the Intuition default preferences data. Writes the
data into the buffer you specify. The number of bytes you want
copied is specified by the Size argument.

The default Preferences are those that Intuition uses when it
is first opened. If no preferences file is found, these are
the preferences that are used. These would also be the startup
Preferences in an AmigaDOS-less environment.

It is legal to take a partial copy of the Preferences structure.
The more pertinent Preferences variables have been grouped near
the top of the structure to facilitate the memory conservation
that can be had by taking a copy of only some of the Preferences
structure.

INPUTS
PrefBuffer = pointer to the memory buffer to receive your copy of the

Intuition Preferences
Size = the number of bytes in your PrefBuffer, the number of bytes

you want copied from the system’s internal Preference settings

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetPrefs()

1.27 intuition.library/GetPrefs

NAME
GetPrefs -- Get the current setting of the Intuition Preferences.

SYNOPSIS
Prefs = GetPrefs(PrefBuffer, Size)
D0 A0 D0

struct Preferences *Prefs;
struct Preferences *PrefBuffer;

FUNCTION
Gets a copy of the current Intuition Preferences data. Writes the
data into the buffer you specify. The number of bytes you want
copied is specified by the Size argument.

It is legal to take a partial copy of the Preferences structure.
The more pertinent Preferences variables have been grouped near
the top of the structure to facilitate the memory conservation
that can be had by taking a copy of only some of the Preferences
structure.

INPUTS
PrefBuffer = pointer to the memory buffer to receive your copy of the

Intuition Preferences

intuition 25 / 68

Size = the number of bytes in your PrefBuffer, the number of bytes
you want copied from the system’s internal Preference settings

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetDefPrefs(), SetPrefs()

1.28 intuition.library/GetScreenData

NAME
GetScreenData -- Get copy of a screen data structure.

SYNOPSIS
Success = GetScreenData(Buffer, Size, Type, Screen)
D0 A0 D0 D1 A1

BOOL Success;
CPTR Buffer;
USHORT Size;
USHORT Type;
struct Screen *Screen;

FUNCTION
This function copies into the caller’s buffer data from a Screen
structure. Typically, this call will be used to find the size, title
bar height, and other values for a standard screen, such as the
Workbench screen.

To get the data for the Workbench screen, one would call:
GetScreenData(buff, sizeof(struct Screen), WBENCHSCREEN, NULL)

NOTE: if the requested standard screen is not open, this function
will have the effect of opening it.

INPUTS
Buffer = pointer to a buffer into which data can be copied
Size = the size of the buffer provided, in bytes
Type = the screen type, as specified in OpenWindow (WBENCHSCREEN,

CUSTOMSCREEN, ...)
Screen = ignored, unless type is CUSTOMSCREEN, which results only in

copying ’size’ bytes from ’screen’ to ’buffer’

RESULT
TRUE if successful
FALSE if standard screen of Type ’type’ could not be opened.

BUGS

SEE ALSO
OpenWindow()

intuition 26 / 68

1.29 intuition.library/InitRequester

NAME
InitRequester -- initializes a Requester structure.

SYNOPSIS
InitRequester(Requester)

A0

struct Requester *Requester;

FUNCTION
Initializes a requester for general use. After calling InitRequester,
you need fill in only those Requester values that fit your needs.
The other values are set to NULL--or zero--states.

INPUTS
Requester = a pointer to a Requester structure

RESULT
None

BUGS

SEE ALSO

1.30 intuition.library/IntuiTextLength

NAME
IntuiTextLength -- Returns the length (pixel-width) of an IntuiText.

SYNOPSIS
IntuiTextLength(IText)

D0

struct IntuiText *IText;

FUNCTION
This routine accepts a pointer to an instance of an IntuiText
structure, and returns the length (the pixel-width) of the string
which that instance of the structure represents.

NOTE: if the Font pointer of your IntuiText structure is set to NULL,
you’ll get the pixel-width of your text in terms of the current system
default font. You may wish to be sure that the field IText->ITextFont
for ’default font’ text is equal to the Font field of the screen it is
being measured for.

INPUTS
IText = pointer to an instance of an IntuiText structure

RESULT
Returns the pixel-width of the text specified by the IntuiText data

intuition 27 / 68

BUGS
Would do better to take a RastPort as argument, so that a NULL in
the Font pointer would lead automatically to the font for the
intended target RastPort.

SEE ALSO
OpenScreen()

1.31 intuition.library/ItemAddress

NAME
ItemAddress -- Returns the address of the specified MenuItem.

SYNOPSIS
Item = ItemAddress(MenuStrip, MenuNumber)
D0 A0 D0

struct MenuItem *ItemAddress;
struct Menu *MenuStrip;
USHORT MenuNumber;

FUNCTION
This routine feels through the specified MenuStrip and returns the
address of the Item specified by the MenuNumber. Typically,
you will use this routine to get the address of a MenuItem from
a MenuNumber sent to you by Intuition after User has played with
a Window’s Menus.

This routine requires that the arguments are well-defined.
MenuNumber may be equal to MENUNULL, in which case this routine returns
NULL. If MenuNumber doesn’t equal MENUNULL, it’s presumed to be a
valid Item number selector for your MenuStrip, which includes:

- a valid Menu number
- a valid Item Number
- if the Item specified by the above two components has a

SubItem, the MenuNumber may have a SubItem component too

Note that there must be BOTH a Menu number and an Item number.
Because a SubItem specifier is optional, the address returned by
this routine may point to either an Item or a SubItem.

INPUTS
MenuStrip = a pointer to the first Menu in your MenuStrip
MenuNumber = the value which contains the packed data that selects

the Menu and Item (and SubItem). See the Intuition Reference
Manual for information on Menu Numbers.

RESULT
If MenuNumber == MENUNULL, this routine returns NULL,
else this routine returns the address of the MenuItem specified
by MenuNumber.

BUGS

SEE ALSO

intuition 28 / 68

The "Menus" chapter of the Intuition Reference Manual,
for more information about "Menu Numbers."

1.32 intuition.library/LockIBase

NAME
LockIBase -- Intuition user’s access to Intuition Locking

SYNOPSIS
Lock = LockIBase(LockNumber)
D0 D0

ULONG Lock;
ULONG LockNumber;

FUNCTION
Grabs Intuition internal semaphore so that caller may examine
IntuitionBase safely.

The idea here is that you can get the locks Intuition needs before
such IntuitionBase fields as ActiveWindow and FirstScreen are
changed, or linked lists of windows and screens, are changed.

Do Not Get Tricky with this entry point, and do not hold these locks
for long, as all Intuition input processing will wait for you to
surrender the lock by a call to UnlockIBase().

NOTE WELL: A call to this function MUST be paired with a subsequent
call to UnlockIBase(), and soon, please.

INPUTS
A long unsigned integer, LockNumber, specifies which of Intuition’s
internal locks you want to get. This parameter should be zero for all
forseeable uses of this function, which will let you examine Active
fields and linked lists of screens and windows with safety.

RESULT
Returns another ULONG which should be passed to UnlockIBase() to
surrender the lock gotten by this call.

BUGS
This function should not be called while holding any other system locks
such as Layer or LayerInfo locks.

SEE ALSO
UnlockIBase(), layers.library/LockLayerInfo,
exec.library/ObtainSemaphore

1.33 intuition.library/MakeScreen

NAME
MakeScreen -- Do an Intuition-integrated MakeVPort() of a custom

intuition 29 / 68

screen

SYNOPSIS
MakeScreen(Screen)

A0

struct Screen *Screen;

FUNCTION
This procedure allows you to do a MakeVPort() for the ViewPort of your
Custom Screen in an Intuition-integrated way. This allows you to
do your own Screen manipulations without worrying about interference
with Intuition’s usage of the same ViewPort.

The operation of this function is as follows:
- Block until the Intuition View is not in use.
- Set the View Modes correctly to reflect if there is a (visible)

interlaced screen.
- call MakeVPort, passing the Intuition View and your Screen’s

ViewPort.
- Unlocks the Intuition View.

After calling this routine, you can call RethinkDisplay() to
incorporate the new ViewPort of your custom screen into the
Intuition display.

INPUTS
Screen = address of the Custom Screen structure

RESULT
None

BUGS

SEE ALSO
RethinkDisplay(), RemakeDisplay(), graphics.library/MakeVPort()

1.34 intuition.library/ModifyIDCMP

NAME
ModifyIDCMP -- Modify the state of the Window’s IDCMPFlags.

SYNOPSIS
ModifyIDCMP(Window, IDCMPFlags)

A0 D0

struct Window *Window;
ULONG IDCMPFlags;

FUNCTION
This routine modifies the state of your Window’s IDCMP (Intuition
Direct Communication Message Port). The state is modified to reflect
your desires as described by the flag bits in the value IDCMPFlags.

The four actions that might be taken are:

intuition 30 / 68

- if there is currently no IDCMP in the given Window, and IDCMPFlags
is NULL, nothing happens

- if there is currently no IDCMP in the given Window, and any of the
IDCMPFlags is selected (set), then the IDCMP of the Window is
created, including allocating and initializing the message ports
and allocating a Signal bit for your Port. See the "Input and
Output Methods" chapter of the Intuition Reference Manual for full
details

- if the IDCMP for the given Window exists, and the
IDCMPFlags argument is NULL, this says that you want
Intuition to close the Ports, free the buffers and free
your Signal bit. You MUST be the same Task that was active
when this Signal bit was allocated

- if the IDCMP for the given Window is opened, and the IDCMPFlags
argument is not NULL, this means that you want to change the
state of which events will be broadcast to you through the IDCMP

NOTE: You can set up the Window->UserPort to any Port of your own
before you call ModifyIDCMP(). If IDCMPFlags is non-null but
your UserPort is already initialized, Intuition will assume that
it’s a valid Port with Task and Signal data preset and Intuition
won’t disturb your set-up at all, Intuition will just allocate
the Intuition Message Port half of it. The converse is true
as well: if UserPort is NULL when you call here with
IDCMPFlags == NULL, Intuition will deallocate only the Intuition
side of the Port.

This allows you to use a Port that you already have allocated:
- OpenWindow() with IDCMPFlags equal to NULL (open no ports)
- set the UserPort variable of your Window to any valid Port of your

own choosing
- call ModifyIDCMP with IDCMPFlags set to what you want
- then, to clean up later, set UserPort equal to NULL before calling

CloseWindow() (leave IDCMPFlags alone) BUT FIRST: you must make
sure that no messages sent your window are queued at the port,
since they will be returned to the memory free pool.

INPUTS
Window = pointer to the Window structure containing the IDCMP Ports
IDCMPFlags = the flag bits describing the new desired state of the

IDCMP

RESULT
None

BUGS
Method for closing a window with a shared port needs to be better
documented somewhere, or provided as an Intuition call, or both.
At the present, the technique is available through developer support
newsletters as a function called CloseWindowSafely(). See, for
example, Amiga Mail, vol.2.

SEE ALSO
OpenWindow(), CloseWindow()

intuition 31 / 68

1.35 intuition.library/ModifyProp

NAME
ModifyProp -- Modify the current parameters of a Proportional Gadget.

SYNOPSIS
ModifyProp(Gadget, Window, Requester,

A0 A1 A2
Flags, HorizPot, VertPot, HorizBody, VertBody)
D0 D1 D2 D3 D4

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;
USHORT Flags;
USHORT HorizPot, VertPot;
USHORT HorizBody, VertBody;

FUNCTION
Modifies the parameters of the specified Proportional Gadget. The
Gadget’s internal state is then recalculated and the imagery
is redisplayed in the Window or Requester that contains the gadget.

The Requester variable can point to a Requester structure. If the
Gadget has the REQGADGET flag set, the Gadget is in a Requester
and the Window pointer must point to the window of the Requester.
If this is not the Gadget of a Requester, the Requester argument may
be NULL.

NOTE: this function causes all gadgets from the proportional
gadget to the end of the gadget list to be refreshed, for
reasons of compatibility.
For more refinded display updataing, use NewModifyProp

INPUTS
PropGadget = pointer to a Proportional Gadget
Window = pointer to the window containing the gadget or the Window

containing the Requester containing the Gadget.
Requester = pointer to a Requester (may be NULL if this isn’t

a Requester Gadget)
Flags = value to be stored in the Flags variable of PropInfo
HorizPot = value to be stored in the HorizPot variable of PropInfo
VertPot = value to be stored in the VertPot variable of PropInfo
HorizBody = value to be stored in the HorizBody variable of PropInfo
VertBody = value to be stored in the VertBody variable of PropInfo

RESULT
None

BUGS

SEE ALSO
NewModifyProp()
The Intuition Reference Manual contains more information on
Proportional Gadgets.

intuition 32 / 68

1.36 intuition.library/MoveScreen

NAME
MoveScreen -- attempts to move the Screen by increments provided.

SYNOPSIS
MoveScreen(Screen, DeltaX, DeltaY);

A0 D0 D1

struct Screen *Screen;
SHORT DeltaX, DeltaY;

FUNCTION
Moves the screen the specified increment.

Currently, only the DeltaY coordinate is significant; you should
pass zero for DeltaX.

Screens are constrained now only by the top and bottom of the
Intuition View, which is not guaranteed to be the same in all
versions of the software.

If the DeltaX and DeltaY variables you specify would move the Screen
in a way that violates any restrictions, the Screen will be moved
as far as possible. You may examine the LeftEdge and TopEdge fields
of the Screen Structure to see where the screen really ended up.

In operation, this function determines what the actual increments
that are actually to be used, sets these values up, and calls
RethinkDisplay().

INPUTS
Screen = pointer to a Screen structure
DeltaX = amount to move the screen on the x-axis

Note that DeltaX should be set to zero.
DeltaY = amount to move the screen on the y-axis

RESULT
None

BUGS

SEE ALSO
RethinkDisplay()

1.37 intuition.library/MoveWindow

NAME
MoveWindow -- Ask Intuition to move a Window.

SYNOPSIS
MoveWindow(Window, DeltaX, DeltaY)

A0 D0 D1

intuition 33 / 68

struct Window *Window;
SHORT DeltaX, DeltaY;

FUNCTION
This routine sends a request to Intuition asking to move the Window
the specified distance. The delta arguments describe how far to
move the Window along the respective axes.

Note that the Window will not be moved immediately, but rather
will be moved the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second,
and a maximum of sixty times a second.

This routine does no error-checking. If your delta values specify
some far corner of the Universe, Intuition will attempt to move
your Window to the far corners of the Universe. Because of the
distortions in the space-time continuum that can result from this,
as predicted by special relativity, the result is generally not
a pretty sight.

You are thus advised to consider the dimensions of your Window’s screen
and the current position of your window before calling this function.

INPUTS
Window = pointer to the structure of the Window to be moved
DeltaX = signed value describing how far to move the Window on

the x-axis
DeltaY = signed value describing how far to move the Window on

the y-axis

RESULT
None

BUGS

SEE ALSO
SizeWindow(), WindowToFront(), WindowToBack()

1.38 intuition.library/NewModifyProp

NAME
NewModifyProp -- ModifyProp, but with Selective Refresh

SYNOPSIS
NewModifyProp(Gadget, Window, Requester, Flags

A0 A1 A2 D0
HorizPot, VertPot, HorizBody, VertBody, NumGad)
D1 D2 D3 D4 D5

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;
USHORT Flags;
USHORT HorizPot, VertPot;
USHORT HorizBody, VertBody;

intuition 34 / 68

int NumGad;

FUNCTION
Performs the function of ModifyProp(), but refreshes
gadgets following Gadget in the list as specified by
the NumGad parameter. With NumGad = -1, this function
is identical to ModifyProp().

INPUTS
PropGadget = pointer to a Proportional Gadget
Window = pointer to the window containing the gadget or the Window

containing the Requester containing the Gadget.
Requester = pointer to a Requester (may be NULL if this isn’t

a Requester Gadget)
Flags = value to be stored in the Flags variable of PropInfo
HorizPot = value to be stored in the HorizPot variable of PropInfo
VertPot = value to be stored in the VertPot variable of PropInfo
HorizBody = value to be stored in the HorizBody variable of PropInfo
VertBody = value to be stored in the VertBody variable of PropInfo
NumGad = number of gadgets to be refreshed after propgadget internals

have been adjusted. -1 means "to end of list."

RESULT
None

BUGS

SEE ALSO
ModifyProp()
The Intuition Reference Manual contains more information on
Proportional Gadgets.

1.39 intuition.library/OffGadget

NAME
OffGadget -- disables the specified Gadget.

SYNOPSIS
OffGadget(Gadget, Window, Requester)

A0 A1 A2

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;

FUNCTION
This command disables the specified Gadget. When a Gadget is
disabled, these things happen:

- its imagery is displayed ghosted
- the GADGDISABLED flag is set
- the Gadget cannot be selected by User

The Window parameter must point to the window which contains the
Gadget, or which contains the Requester that contains the Gadget
The Requester parameter must only be valid if the Gadget has the

intuition 35 / 68

REQGADGET flag set, a requirement for all Requester Gadgets.

NOTE: it’s never safe to tinker with the Gadget list yourself. Don’t
supply some Gadget that Intuition hasn’t already processed in
the usual way.

NOTE: for compatibility reasons, this function will refresh all
gadgets in a requester, and all gadgets from Gadget to the
end of the gadget list if Gadget is in a window.

INPUTS
Gadget = pointer to the Gadget that you want disabled
Window = pointer to a Window structure containing the Gadget or

containing the Requester which contains the Gadget
Requester = pointer to a Requester (may by NULL if this isn’t

a Requester Gadget (i.e. REQGADGET is not set)).

RESULT
None

BUGS

SEE ALSO
AddGadget(), RefreshGadgets()

1.40 intuition.library/OffMenu

NAME
OffMenu -- disables the given menu or menu item.

SYNOPSIS
OffMenu(Window, MenuNumber)

A0 D0

struct Window *Window;
USHORT MenuNumber;

FUNCTION
This command disables a sub-item, an item, or a whole menu.
This depends on the contents of the data packed into MenuNumber,
which is described in the Intuition Reference Manual.

INPUTS
Window = pointer to the window
MenuNumber = the menu piece to be disabled

RESULT
None

BUGS

SEE ALSO

intuition 36 / 68

1.41 intuition.library/OnGadget

NAME
OnGadget -- enables the specified Gadget.

SYNOPSIS
OnGadget(Gadget, Window, Requester)

A0 A1 A2

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;

FUNCTION
This command enables the specified Gadget. When a Gadget is
enabled, these things happen:
- its imagery is displayed normally (not ghosted)
- the GADGDISABLED flag is cleared
- the Gadget can thereafter be selected by the user

The Window parameter must point to the window which contains the
Gadget, or which contains the Requester that contains the Gadget
The Requester parameter must only be valid if the Gadget has the
REQGADGET flag set, a requirement for all Requester Gadgets.

NOTE: it’s never safe to tinker with the Gadget list yourself. Don’t
supply some Gadget that Intuition hasn’t already processed in
the usual way.

NOTE: for compatibility reasons, this function will refresh all
gadgets in a requester, and all gadgets from Gadget to the
end of the gadget list if Gadget is in a window.

INPUTS
Gadget = pointer to the Gadget that you want disabled
Window = pointer to a Window structure containing the Gadget or

containing the Requester which contains the Gadget
Requester = pointer to a Requester (may by NULL if this isn’t

a Requester Gadget (i.e. REQGADGET is not set)).

RESULT
None

BUGS

SEE ALSO

1.42 intuition.library/OnMenu

NAME
OnMenu -- disables the given menu or menu item.

SYNOPSIS
OnMenu(Window, MenuNumber)

intuition 37 / 68

A0 D0

struct Window *Window;
USHORT MenuNumber;

FUNCTION
This command enables a sub-item, an item, or a whole menu.
This depends on the contents of the data packed into MenuNumber,
which is described in the Intuition Reference Manual.

INPUTS
Window = pointer to the window
MenuNumber = the menu piece to be enables

RESULT
None

BUGS

SEE ALSO

1.43 intuition.library/OpenScreen

NAME
OpenScreen -- Open an Intuition Screen.

SYNOPSIS
Screen = OpenScreen(NewScreen)
D0 A0

struct Screen *Screen;
struct NewScreen *NewScreen;

FUNCTION
Opens an Intuition Screen according to the specified parameters
found in the NewScreen structure.

Does all the allocations, sets up the Screen structure and all
substructures completely, and links this Screen’s ViewPort into
Intuition’s View structure.

Before you call OpenScreen(), you must initialize an instance of
a NewScreen structure. NewScreen is a structure that contains
all of the arguments needed to open a Screen. The NewScreen
structure may be discarded immediately after OpenScreen() returns.

The SHOWTITLE flag is set to TRUE by default when a Screen is opened.
To change this, you must call the routine ShowTitle().

INPUTS
NewScreen = pointer to an instance of a NewScreen structure.
That structure is initialized with the following information:
--
Left = initial x-position of your Screen (should be zero currently)
Top = initial y-position of the opening Screen

intuition 38 / 68

Width = the width for this Screen’s RastPort.
Height = the height for his Screen’s RastPort, or the constant

STDSCREENHEIGHT to get current local maximum (at this time
guaranteed to be at least 200). The actual height the screen
opended to can be found in the returned Screen structure.

The "normal" width and height for a particular system is stored by
the graphics.library in GfxBase->NormalDisplayRows and
GfxBase->NormalDisplayColumns. These values will be different
depending on factors such as PAL video and overscan.

Depth = number of BitPlanes
DetailPen = pen number for details (like gadgets or text in title bar)
BlockPen = pen number for block fills (like title bar)
Type = Screen type

Set these flag bits as desired from the set:
CUSTOMSCREEN -- this is your own Screen, not a System screen.
CUSTOMBITMAP -- this custom screen has bit maps supplied

in the BitMap field of the NewScreen structure. Intuition is
not to allocate any Raster BitMaps.

SCREENBEHIND -- your screen will be created behind all other open
screens. This allows a program to prepare imagery in the
screen, change it’s colors, and so on, bringing it to the
front when it is presentable.

SCREENQUIET -- Intuition will not render system screen gadgets or
screen title. In concert with the RMBTRAP flag on all your
screen’s windows, this flag will prevent Intuition from
rendering into your screen’s bitplanes. Without RMBTRAP (or
using MENUVERIFY IDCMP facility to cancel menu operations),
this flag will prevent Intuition from clearing your menu bar,
which is probably unacceptable. The title bar layer may still
overwrite your bitmap on open.

ViewModes = the appropriate argument for the data type ViewPort.Modes.
these might include:

HIRES for this screen to be HIRES width.
INTERLACE for the display to switch to interlace.
SPRITES for this Screen to use sprites (pointer comes

anyway).
DUALPF for dual-playfield mode (not supported yet)

Font = pointer to the default TextAttr structure for text in this
Screen and all Windows that open in this Screen. Text that uses
this TextAttr includes title bars of both Screen and Windows,
String Gadgets, and Menu titles. Of course, IntuiText
that specifies a NULL TextAttr field will use the Screen/Window
default Fonts.

DefaultTitle = pointer to a line of text that will be displayed along
the Screen’s Title Bar. Null terminated, or just a NULL pointer
to get no text

Gadgets = This field should be set to NULL, since no user Gadgets may
be attached to a Screen.

CustomBitMap = if you’re not supplying a custom BitMap, this value is
ignored. However, if you have your own display memory that you
want used for this Screen, the CustomBitMap argument should
point to the BitMap that describes your display memory. See the
"Screens" chapter and the "Amiga ROM Kernel Manual" for more
information about BitMaps.

RESULT

intuition 39 / 68

If all is well, returns the pointer to your new Screen
If anything goes wrong, returns NULL

NOTE
By default AmigaDOS requesters related to your Process are put on
the workbench screen (these are messages like "Disk Full"). If
you wish them to show up on custom screens, DOS must be told.
This fragment shows the procedure. More information is availble
in the AmigaDOS books. Sample code fragment:

----------- cut here ----------
#include "libraries/dosextens.h"

...
struct Process *process;
struct Window *window;
APTR temp;

...
process=(struct Process *)FindTask(0L);
temp=process->pr_WindowPtr; /* save old value */
process->pr_WindowPtr=(APTR)window;
/* set a pointer to any open window on your screen */

...
your code goes here
...

process->pr_WindowPtr=temp;
/* restore value _before_ CloseWindow */
CloseWindow(window);

------- cut here ------

BUGS

SEE ALSO
OpenWindow(), PrintIText(), CloseScreen(), The Intuition Reference
Manual

1.44 intuition.library/OpenWindow

NAME

OpenWindow -- Opens an Intuition Window

SYNOPSIS

OpenWindow(NewWindow);
where the NewWindow structure is initialized with:

Left, Top, Width, Height, DetailPen, BlockPen, Flags,
IDCMPFlags, Gadgets, CheckMark, Text, Type, Screen, BitMap,
MinWidth, MinHeight, MaxWidth, MaxHeight

FUNCTION

Opens an Intuition window of the given height, width and depth, including
the specified system Gadgets as well as any of your own. Allocates
everything you need to get going.

intuition 40 / 68

Before you call OpenWindow(), you must initialize an instance of
a NewWindow structure. NewWindow is a structure that contains
all of the arguments needed to open a Window. The NewWindow
structure may be discarded immediately after it is used to open
the Window.

If Type == CUSTOMSCREEN, you must have opened your own Screen
already via a call to OpenScreen(). Then Intuition uses your screen
argument for the pertinent information needed to get your Window
going. On the other hand, if type == one of the Intuition’s standard

Screens, your screen argument is ignored. Instead,

Intuition will check to see whether or not that Screen
already exists: if it doesn’t, it will be opened first before

Intuition opens your window in the Standard Screen.

If the flag SUPER_BITMAP is set, the bitmap variable must point to
your own BitMap.

The DetailPen and the BlockPen are used for system rendering; for
instance, the Title bar is first filled using the BlockPen, and then
the Gadgets and text are rendered using DetailPen. You can either
choose to supply special pens for your Window, or, by setting either
of these arguments to -1, the Screen’s Pens will be used instead.

INPUTS

NewWindow = pointer to an instance of a NewWindow structure. That

structure is initialized with the following data:

Left = the initial x-position for your window

Top = the initial y-position for your window

Width = the initial width of this window

Height = the initial height of this window

DetailPen = pen number (or -1) for the rendering of Window details
(like gadgets or text in title bar)

BlockPen = pen number (or -1) for Window block fills (like Title Bar)

Flags = specifiers for your requirements of this window, including:
- which system Gadgets you want attached to your window:

- WINDOWDRAG allows this Window to be dragged
- WINDOWDEPTH lets the user depth-arrange this Window
- WINDOWCLOSE attaches the standard Close Gadget
- WINDOWSIZING allows this Window to be sized. If you ask

the WINDOWSIZING Gadget, you must specify one or both
of the flags SIZEBRIGHT and SIZEBBOTTOM below; if you
don’t, the default is SIZEBRIGHT. See the
following items SIZEBRIGHT and SIZEBBOTTOM for extra

intuition 41 / 68

information.
- SIZEBRIGHT is a special system Gadget flag that

you set to specify whether or not you want the
RIGHT Border adjusted to account for the physical size
of the Sizing Gadget. The Sizing Gadget must, after
all, take up room in either the right or bottom border
(or both, if you like) of the Window. Setting either
this or the SIZEBBOTTOM flag selects which edge
will take up the slack. This will be particularly
useful to applications that want to use the extra space
for other Gadgets (like a Proportional Gadget and two
Booleans done up to look like scroll bars) or, for
for instance, applications that want every possible
horizontal bit and are willing to lose lines vertically.
NOTE: if you select WINDOWSIZING, you must select
either SIZEBRIGHT or SIZEBBOTTOM or both. If you select
neither, the default is SIZEBRIGHT.

- SIZEBBOTTOM is a special system Gadget flag that
you set to specify whether or not you want the
BOTTOM Border adjusted to account for the physical size
of the Sizing Gadget. For details, refer to
SIZEBRIGHT above.
NOTE: if you select WINDOWSIZING, you must select
either SIZEBRIGHT or SIZEBBOTTOM or both. If you select
neither, the default is SIZEBRIGHT.

- GIMMEZEROZERO for easy but expensive output
- what type of window raster you want, either:

- SIMPLE_REFRESH
- SMART_REFRESH
- SUPER_BITMAP

If the type is SMART_REFRESH, and you do not handle
REFRESHWINDOW type messages, also set the NOCAREREFRESH
flag.

- BACKDROP for whether or not you want this window to be one
of Intuition’s special backdrop windows. See BORDERLESS
as well.

- REPORTMOUSE for whether or not you want to "listen" to
mouse movement events whenever your Window is the active
one. After you’ve opened your Window, if you want to change
you can later change the status of this via a call to
ReportMouse(). Whether or not your Window is listening to
Mouse is affected by Gadgets too, since they can cause
you to start getting reports too if you like.
The mouse move reports (either InputEvents or messages on
the IDCMP) that you get will have the x/y coordinates of the
current mouse position, relative to the upper-left corner
of your Window (GIMMEZEROZERO notwithstanding).
This flag can work in conjunction with the IDCMP Flag
called MOUSEMOVE, which allows you to listen via the
IDCMP.

- BORDERLESS should be set if you want a Window with no
Border padding. Your Window may have the Border variables
set anyway, depending on what Gadgetry you’ve requested for
the Window, but you won’t get the standard border lines and
spacing that comes with typical Windows.
This is a good way to take over the entire Screen, since you
can have a Window cover the entire width of the Screen using

intuition 42 / 68

this flag. This will work particularly well in
conjunction with the BACKDROP flag (see above), since it
allows you to open a Window that fills the ENTIRE Screen.
NOTE: this is not a flag that you want to set casually,
since it may cause visual confusion on the Screen. The
Window borders are the only dependable visual division
between various Windows and the background Screen. Taking
away that Border takes away that visual cue, so make sure
that your design doesn’t need it at all before you
proceed.

- ACTIVATE is the flag you set if you want this
Window to automatically become the active Window.
The active Window is the one that receives input from
the keyboard and mouse. It’s usually a good idea to
to have the Window you open when your application
first starts up be an ACTIVATED one, but all others
opened later not be ACTIVATED (if the user is off
doing something with another Screen, for instance, your
new Window will change where the input is going, which
would have the effect of yanking the input rug from
under the user). Please use this flag thoughtfully and
carefully.

- RMBTRAP, when set, causes the right mouse button events
to be trapped and broadcast as events. You can receive
these events through either the IDCMP or the Console.

IDCMPFlags = IDCMP is the acronym for Intuition Direct Communications
Message Port. It’s Intuition’s sole acronym, given in honor of
all hack-heads who love to mangle our brains with maniacal names,
and fashioned especially cryptic and unpronounceable to make them
squirm with sardonic delight. Here’s to you, my chums. Meanwhile,
I still opt (and argue) for simplicity and elegance.

If any of the IDCMP Flags is selected, Intuition will create
a pair of messageports and use them for direct communications with
the Task opening this Window (as compared with broadcasting
information via the Console Device). See the "Input and Output
Methods" chapter of the intuition manual for complete details.

You request an IDCMP by setting any of these flags. Except
for the special VERIFY flags, every other flag you set
tells me that if a given event occurs which your
program wants to know about, I’m to broadcast the details
of that event through the IDCMP rather than via the Console device.
device. This allows a program to interface with Intuition
directly, rather than going through the Console device.

Remember, if you are going to open both an IDCMP and
a Console, it will be far better to get most of the event
messages via the Console. Reserve your usage of the IDCMP
for special performance cases; that is, when you aren’t going
to open a Console for your Window and you do want to learn
about a certain set of events (for instance, CLOSEWINDOW); another
example would be SIZEVERIFY, which is a function that you get
ONLY through the use of the IDCMP (because the Console doesn’t
give you any way to talk to Intuition directly).

On the other hand, if the IDCMPFlags argument is equal to
zero, no IDCMP is created and the only way you can learn about any
Window event for this Window is via a Console opened for
this Window. And you have no way to SIZEVERIFY.

intuition 43 / 68

If you want to change the state of the IDCMP some time after
you’ve opened the Window (including opening or closing the IDCMP)
you call the routine ModifyIDCMP().

The flags you can set are:
- REQVERIFY is the flag which, like SIZEVERIFY and(see

MENUVERIFY (see immediately below), specifies that you
want to make sure that your graphical state is quiescent
before something extraordinary happens. In this
case, the extraordinary event is that a rectangle of
graphical data is about to be blasted into your Window.
If you’re drawing into that Window, you probably will
wish to make sure that you’ve ceased drawing before
the user is allowed to bring up the DMRequest you’ve set
up, and the same for when system has a request for the
user. Set this flag to ask for that verification step.

- REQCLEAR is the flag you set to hear about it when the
last Requester is cleared from your Window and
it’s safe for you to start output again (presuming you’re
using REQVERIFY)

- REQSET is a flag that you set to receive a broadcast
when the first Requester is opened in your Window.
Compare this with REQCLEAR above. This function is
distinct from REQVERIFY. This functions merely tells you
that a Requester has opened, whereas REQVERIFY requires
you to respond before the Requester is opened.

- MENUVERIFY is the flag you set to have Intuition stop
and wait for you to finish all graphical output to your
Window before rendering the menus. Menus are currently
rendered in the most memory-efficient way, which
involves interrupting output to all Windows in the
Screen before the Menus are drawn. If you need to
finish your graphical output before this happens,
you can set this flag to make sure that you do.

- SIZEVERIFY means that you will be doing output to your
Window which depends on a knowledge of the current size
of the Window. If the user wants to resize the
Window, you may want to make sure that any queued
output completes before the sizing takes place
(critical Text, for instance). If this is the case,
set this flag. Then, when the user wants to size,
Intuition will send you the SIZEVERIFY message and
Wait() until you reply that it’s OK to proceed with
the sizing. NOTE: when I say that Intuition will
Wait() until you reply, what I’m really saying is
that User will WAIT until you reply, which suffers the
great negative potential of User-Unfriendliness. So
remember: use this flag sparingly, and, as always
with any IDCMP Message you receive, Reply to it
promptly! Then, after User has sized the Window, you
can find out about it using NEWSIZE:

With all of the "VERIFY" functions, it is not safe
to leve them enabled at any time when you task may
not be able to respond for a long period.

It is NEVER safe to call AmigaDOS, directly or

intuition 44 / 68

indirectly, when a "VERIFY" function is active.
If AmigaDOS needs to put up a disk requester for you,
your task might end up waiting for the requester
to be satisfied, at the same time as Intuition is
waiting for your response. The result is a complete
machine lockup. USE ModifyIDCMP TO TURN OFF ANY VERIFY
MESSAGES BEFORE CALLING AmigaDOS!!!

- NEWSIZE is the flag that tells Intuition to send an IDCMP
Message to you after the user has resized your Window.
At this point, you could examine the size variables
in your Window structure to discover the new size
of the Window

- REFRESHWINDOW when set will cause a Message to be sent
whenever your Window needs refreshing. This flag makes
sense only with SIMPLE_REFRESH and SMART_REFRESH Windows.

- MOUSEBUTTONS will get reports about Mouse-button
Up/Down events broadcast to you (Note: only the
ones that don’t mean something to Intuition. If
the user clicks the Select button over a Gadget,
Intuition deals with it and you don’t find out
about it through here).

- MOUSEMOVE will work only if you’ve set the flag
REPORTMOUSE above, or if one of your Gadgets has the
flag FOLLOWMOUSE set. Then all mouse movements will be
reported here.

- GADGETDOWN means that when the User "selects" a Gadget
you’ve created with the GADGIMMEDIATE flag set, the fact
will be broadcast through the IDCMP.

- GADGETUP means that when the User "releases" a Gadget that
you’ve created with the RELVERIFY flag set, the fact
will be broadcast through the IDCMP.

- MENUPICK selects that MenuNumber data will come this way
- CLOSEWINDOW means broadcast the CLOSEWINDOW event through

the IDCMP rather than the Console
- RAWKEY selects that all RAWKEY events are transmitted via

the IDCMP. Note that these are absolutely RAW keycodes,
which you will have to massage before using. Setting this
and the MOUSE flags effectively eliminates the need to
open a Console Device to get input from the keyboard and
mouse. Of course, in exchange you lose all of the Console
features, most notably the "cooking" of input data and
the systematic output of text to your Window.

- VANILLAKEY is for developers who don’t want the hassle
of RAWKEYS. This flag will return all the keycodes
after translation via the current country-dependant keymap.
When you set this flag, you will get IntuiMessages where the
Code field has a decoded ASCII character representing the key
struck on the keyboard. Only codes that map to one character
are returned, you can’t read such keys as HELP or the Function
keys with VANILLAKEY.

- INTUITICKS gives you simple timer events from Intuition when
your window is the active one; it may help you avoid opening
and managing the timer device. With this flag set, you will

intuition 45 / 68

get only one queued-up INTUITICKS message at a time. If
Intuition notices that you’ve been sent an INTUITICKS message
and haven’t replied to it, another message will not be sent.
Intuition receives timer events ten times a second
(approximately).

- DELTAMOVE gives raw (unscaled) input event delta X/Y values.
This is so you can detect mouse motion regardless of
screen/window/display boundaries. Note that MOUSEBUTTONS
messages will also be affected.

- NEWPREFS indicates you wish to be notified when the system-
wide preferences changes.

- Set ACTIVEWINDOW and INACTIVEWINDOW to get messages when those
events happen to your window. Take care not to confuse this
"ACTIVEWINDOW" with the remarkably familiar sounding, but
totally different "WINDOWACTIVE" flag.

Gadgets = the pointer to the first of a linked list of the your own
Gadgets which you want attached to this Window. Can be NULL
if you have no Gadgets of your own

CheckMark = a pointer to an instance of the struct Image where can
be found the imagery you want used when any of your
MenuItems is to be checkmarked. If you don’t want to
supply your own imagery and you want to just use
Intuition’s own checkmark, set this argument to NULL

Text = a null-terminated line of text to appear on the title bar of
your window (may be null if you want no text)

Type = the Screen type for this window. If this equal CUSTOMSCREEN,
you must have already opened a CUSTOMSCREEN (see text above).
Types available include:

- WBENCHSCREEN
- CUSTOMSCREEN

Screen = if your type is one of Intuition’s Standard Screens, then

this argument is ignored. However, if Type == CUSTOMSCREEN,
this must point to the structure of your own Screen

BitMap = if you have specified SUPER_BITMAP as the type of refreshing you

want for this Window, then this value points to a instance of
the struct BitMap. However, if the refresh type is NOT
SUPER_BITMAP, this pointer is ignored

MinWidth, MinHeight, MaxWidth, MaxHeight = the size limits for this
that the minimums cannot be greater than the current size,
nor can the maximums be smaller than the current size.

The maximums may be LARGER than the current size, or even larger
than the current screen. The maximums should be set to
the highest value your application can handle. This allows
users with larger display devices to take full advantage

intuition 46 / 68

of your software. If there is no good reason to limit the size,
then don’t. -1 or ~0 indicates the maximum available.

Any one of these can be initialized to zero, which means that
limit will be set to the current dimension of that axis.
The limits can be changed after the Window is opened by calling
the WindowLimits() routine.

RESULT

If all is well, returns the pointer to your new Window

If anything goes wrong, returns NULL

BUGS

SEE ALSO

OpenScreen(), ModifyIDCMP(), WindowTitles()

1.45 intuition.library/OpenWorkBench

NAME
OpenWorkBench -- Opens the WorkBench Screen

SYNOPSIS
WBScreen = OpenWorkBench()
D0

struct Screen *WBScreen;

FUNCTION
This routine attempts to reopen the WorkBench. The actions taken are:

- general good stuff and nice things, and then return a non-null
pointer to the Workbench Screen.

- find that something has gone wrong, and return NULL

The return value, if not NULL, is indeed the address of the Workbench
Screen, although you should not use it as such. This is because the
Workbench may be closed by other programs, which can invalidate
the address at any time. We suggest that you regard the return
value as a BOOL indication that the routine has succeeded, if
you pay any attention to it at all.

INPUTS
None

RESULT
non-FALSE if WorkBench Screen opened successfully, or was already
opened FALSE if anything went wrong and the WorkBench Screen isn’t out
there

BUGS

intuition 47 / 68

SEE ALSO

1.46 intuition.library/PrintIText

NAME
PrintIText -- prints the text according to the IntuiText argument

SYNOPSIS
PrintIText(RastPort, IText, LeftOffset, TopOffset)

A0 A1 D0 D1

struct RastPort *RastPort;
struct IntuiText *IText;
SHORT LeftOffset, TopOffset;

FUNCTION
Prints the IntuiText into the specified RastPort. Sets up the RastPort
as specified by the IntuiText values, then prints the text into the
RastPort at the IntuiText x/y coordinates offset by the left/top
arguments. Note, though, that the IntuitText structure itself
may contain further text position coordinates: those coordinates
and the Left/TopOffsets are added to obtain the true position of
the text to be rendered.

This routine does window layer clipping as appropriate -- if you
print text outside of your Window, your characters will be
clipped at the Window’s edge.

If the NextText field of the IntuiText argument is non-NULL,
the next IntuiText is rendered as well, and so on until some
NextText field is NULL.

IntuiText with the ITextAttr field NULL are displayed in the
font of the RastPort. If the RastPort font is also NULL, the
system default font, as set via the Preferences tool, will be used.

INPUTS
RastPort = the RastPort destination of the text
IText = pointer to an instance of the structure IntuiText
LeftOffset = left offset of the IntuiText into the RastPort
TopOffset = top offset of the IntuiText into the RastPort

RESULT
None

BUGS

SEE ALSO

1.47 intuition.library/RefreshGadgets

intuition 48 / 68

NAME
RefreshGadgets -- Refresh (redraw) the Gadget display

SYNOPSIS
RefreshGadgets(Gadgets, Window, Requester)

A0 A1 A2

FUNCTION
Refreshes (redraws) all of the Gadgets in the Gadget List starting
from the specified Gadget.

The Window parameter must point to the window which contains the
Gadget, or which contains the Requester that contains the Gadget
The Requester parameter must only be valid if the Gadget has the
REQGADGET flag set, a requirement for all Requester Gadgets.

The Pointer argument points a Window structure.

The two main reasons why you might want to use this routine are:
first, that you’ve modified the imagery of the Gadgets in your
display and you want the new imagery to be displayed; secondly,
if you think that some graphic operation you just performed
trashed the Gadgetry of your display, this routine will refresh
the imagery for you.

Note that to modify the imagery of a gadget, you must first remove
that gadget from the Window’s Gadget list, using RemoveGadget() (or
RemoveGList()). After changing the Image, Border, Text (including
Text for a String Gadget), the gadget is replaced in the Gadget List
(using AddGadget() or AddGList()). Adding gadgets does not cause
them to be displayed (refreshed), so this function, or RefreshGList()
is typically called.

A common technique is to set or reset the SELECTED flag of a
Boolean Gadget and then call RefreshGadgets() to see them displayed
highlighted if and only if SELECTED is set. If you wish to do this
and be completely proper, you must RemoveGadget(), change SELECTED
flag, AddGadget(), and RefreshGadgets(), or the equivalent.

The Gadgets argument can be a copy of the FirstGadget variable in
either the Screen or Window structure that you want refreshed:
the effect of this will be that all Gadgets will be redrawn.
However, you can selectively refresh just some of the Gadgets
by starting the refresh part-way into the list: for instance,
redrawing your Window non-GIMMEZEROZERO Gadgets only, which you’ve
conveniently grouped at the end of your Gadget list.

Even more control is available using the RefreshGList routine which
enables you to refresh a single gadget, or number of your choice.

NOTE: It’s never safe to tinker with the Gadget list yourself. Don’t
supply some Gadget list that Intuition hasn’t already processed in
the usual way.

INPUTS
Gadgets = pointer to the first in the list of Gadgets wanting

intuition 49 / 68

refreshment
Window = pointer to the Window containing the Gadget or its Requester
Requester = pointer to a Requester (ignored if Gadget is not attached

to a Requester).

RESULT
None

BUGS

SEE ALSO
RefreshGList(), RemoveGadget(), RemoveGList(), AddGadget(), AddGList()

1.48 intuition.library/RefreshGList

NAME
RefreshGList -- Refresh (redraw) a chosen number of gadgets.

SYNOPSIS
RefreshGList(Gadgets, Window, Requester, NumGad)

A0 A1 A2 D0

struct Gadget *Gadget;
struct Window *Window;
struct Requester *Requester;
SHORT NumGad;

FUNCTION
Refreshes (redraws) Gadgets in the Gadget List starting
from the specified Gadget. At most NumGad gadgets are redrawn.
If NumGad is -1, all gadgets until a terminating NULL value
in the NextGadget field is found will be refreshed, making this
routine a superset of RefreshGadgets().

The Requester variable can point to a Requester structure. If
the first Gadget in the list has the REQGADGET flag set, the
Gadget list refers to Gadgets in a Requester and the Pointer
must necessarily point to a Window. If these are not the Gadgets
of a Requester, the Requester argument may be NULL.

Be sure to see the RefreshGadgets() function description, as this
function is simple an extension of that.

INPUTS
Gadgets = pointer to the first in the list of Gadgets wanting

refreshment
Window = pointer to the Window containing the Gadget or its Requester
Requester = pointer to a Requester (ignored if Gadget is not attached

to a Requester).
NumGad = maximum number of gadgets to be refreshed. A value of -1

will cause all gadgets to be refreshed from Gadget to the
end of the list. A value of -2 will also do this, but if Gadget
is a Requester Gadget (REQGADGET) ALL gadgets in the requester
will be refreshed (this is a mode compatible with v1.1
RefreshGadgets().

intuition 50 / 68

RESULT
None

BUGS

SEE ALSO
RefreshGadgets()

1.49 intuition.library/RefreshWindowFrame

NAME
RefreshWindowFrame -- Ask Intuition to redraw your window

border/gadgets

SYNOPSIS
RefreshWindowFrame(Window)

A0

struct Window *Window;

FUNCTION
Refreshes the border of a window, including title region and all
of the window’s gadgets.

You may use this call if you wish to update the display of your
borders. The expected use of this is to correct unavoidable
corruption.

INPUTS
Window = a pointer to a Window structure

RESULT
None

BUGS

SEE ALSO

1.50 intuition.library/RemakeDisplay

NAME
RemakeDisplay -- Remake the entire Intuition display

SYNOPSIS
RemakeDisplay()

FUNCTION
This is the big one.

This procedure remakes the entire Intuition display. It does
the equivalent of MakeScreen() for every Screen in the system,

intuition 51 / 68

and then it calls RethinkDisplay().

WARNING: This routine can take several milliseconds to run, so
do not use it lightly. RethinkDisplay() (called by this routine)
does a Forbid() on entry and a Permit() on exit, which can seriously
degrade the performance of the multi-tasking Eexecutive.

INPUTS
None

RESULT
None

BUGS

SEE ALSO
MakeScreen(), RethinkDisplay(), graphics.library/MakeVPort

1.51 intuition.library/RemoveGadget

NAME
RemoveGadget -- removes a Gadget from a Window

SYNOPSIS
Position = RemoveGadget(Window, Gadget)
D0 A0 A1

USHORT Position;
struct Window *Window;
struct Gadget *Gadget;

FUNCTION
Removes the given Gadget from the Gadget list of the specified
Window. Returns the ordinal position of the removed Gadget.

If the Gadget is in a Requester attached the the window, this
routine will look for it and remove it if it is found.

If the Gadget pointer points to a Gadget that isn’t in the
appropriate list, -1 is returned. If there aren’t any Gadgets in the
list, -1 is returned. If you remove the 65535th Gadget from the list
-1 is returned.

INPUTS
Window = pointer to the Window containing the Gadget or the Requester

containing the Gadget to be removed.
Gadget = pointer to the Gadget to be removed. The Gadget itself

describes whether this is a Gadget that should be removed from the
Window or some Requester.

RESULT
Returns the ordinal position of the removed Gadget. If the Gadget
wasn’t found in the appropriate list, or if there are no Gadgets in
the list, returns -1.

intuition 52 / 68

BUGS

SEE ALSO
AddGadget(), RemoveGList()

1.52 intuition.library/RemoveGList

NAME
RemoveGList -- removes a sublist of Gadgets from a Window.

SYNOPSIS
Position = RemoveGList(Window, Gadget, Numgad)
D0 A0 A1 D0

struct Window *Window;
struct Gadget *Gadget;
SHORT Numgad;

FUNCTION
Removes ’Numgad’ Gadgets from the Gadget list of the specified
Window. Will remove Gadgets from a Requester if the first
Gadget’s GadgetType flag REQGADGET is set.

Otherwise identical to RemoveGadget().

NOTE
The last gadget in the list does NOT have it’s link zeroed.

INPUTS
Window = pointer to the Window containing the Gadget or the Requester

containing the Gadget to be removed.
Gadget = pointer to the Gadget to be removed. The Gadget itself

describes whether this is a Gadget that should be removed
from the Window or some Requester.

Numgad = number of gadgets to be removed. If -1, remove all gadgets
to end of Window Gadget List

RESULT
Returns the ordinal position of the removed Gadget. If the Gadget
wasn’t found in the appropriate list, or if there are no Gadgets in
the list, returns -1.

BUGS

SEE ALSO
RemoveGadget(), AddGadget()

1.53 intuition.library/ReportMouse

NAME
ReportMouse -- tells Intuition whether to report mouse movement.

intuition 53 / 68

SYNOPSIS
ReportMouse(Boolean, Window)

D0 A0 <-note
BOOL Boolean;
struct Window *Window;

SPECIAL NOTE
Some compilers and link files switch the arguments to this function
about in unpredictable ways. The call will take one of two forms:

ReportMouse(Window, (ULONG)Boolean);
-or-

ReportMouse(Boolean, Window);

The Manx Aztec compiler prefers the second form. From assembler the
interface is always the same: Boolean in D0, Window in A0

Also, it is still endorsed to simply set the REPORTMOUSE flag bit
in Window->Flags, or reset it, on your own. Make the operation
an atomic assembly instruction (e.g.: OR.W #REPORTMOUSE,wd_Flags+2(A0)
where A0 contains your window pointer). Most compilers will produce
an atomic operation when faced with:

Window->Flags |= REPORTMOUSE;
Window->Flags &=~REPORTMOUSE;

or else bracket the operation between Forbid/Permit().

FUNCTION
Tells Intuition whether or not to broadcast mouse-movement events to
your Window when it’s the active one. The Boolean value specifies
whether to start or stop broadcasting position information of
mouse-movement. If the Window is the active one, mouse-movement
reports start coming immediately afterwards. This same routine will
change the current state of the FOLLOWMOUSE function of a
currently-selected Gadget too.

Note that calling ReportMouse() when a Gadget is selected will only
temporarily change whether or not mouse movements are reported while
that Gadget remains selected; the next time the Gadget is selected, its
FOLLOWMOUSE flag is examined anew.

Note also that calling ReportMouse() when no Gadget is currently
selected will change the state of the Window’s REPORTMOUSE flag, but
will have no effect on any Gadget that may be subsequently selected.

The ReportMouse() function is first performed when OpenWindow()
is first called; if the flag REPORTMOUSE is included among
the options, then all mouse-movement events are reported
to the opening task and will continue to be reported
until ReportMouse() is called with a Boolean value of FALSE.
If REPORTMOUSE is not set, then no mouse-movement reports will
be broadcast until ReportMouse() is called with a Boolean of TRUE.

Note that the REPORTMOUSE flag, as managed by this routine, determines
IF mouse messages are to be broadcast. Determining HOW they are to
be broadcast is determined by the MOUSEMOVE IDCMPFlag.

INPUTS

intuition 54 / 68

Window = pointer to a Window structure associated with this request
Boolean = TRUE or FALSE value specifying whether to turn this

function on or off

RESULT
None

BUGS
See above

SEE ALSO
The Input and Output section of the Intuition Reference Manual

1.54 intuition.library/Request

NAME
Request -- Activates a Requester.

SYNOPSIS
Success = Request(Requester, Window);
D0 A0 A1

BOOL Success;
struct Requester *Requester;
struct Window *Window;

FUNCTION
Links in and displays a Requester into the specified Window.

This routine ignores the Window’s REQVERIFY flag.

INPUTS
Requester = pointer to the Requester to be displayed
Window = pointer to the Window into which this Requester goes

RESULT
If the Requester is successfully opened, TRUE is returned. Otherwise,
if the Requester could not be opened, FALSE is returned.

BUGS
POINTREL requesters not currently supported, by THIS call, but
are now supported for Double-Menu Requesters.

SEE ALSO
The Requesters section of the Intuition Reference Manual

1.55 intuition.library/RethinkDisplay

NAME
RethinkDisplay -- the grand manipulator of the entire Intuition

display

intuition 55 / 68

SYNOPSIS
RethinkDisplay()

FUNCTION
This function performs the Intuition global display reconstruction.
This includes rethinking about all of the ViewPorts and their
relationship to another and reconstructing the entire display based
on the results of this rethinking.

Specifically, and omitting some internal details, the operation
consists of this:

Determine which ViewPorts are invisible and set their VP_HIDE
ViewPort Mode flag.

If a change to a viewport height or changing interlace needs
require, MakeVPort() is called for specific ViewPorts. After
this phase, the Copper lists for each Screen’s ViewPort are
correctly set up.

MrgCop() and LoadView() are then called to get these copper lists
in action, thus establishing the new state of the Intuition
display.

You may perform a MakeScreen() on your Custom Screen before calling
this routine. The results will be incorporated in the new display,
but changing the INTERLACE ViewPort mode for one screens must be
reflected in the Intuition View, which is best left to Intuition.

WARNING: This routine can take several milliseconds to run, so
do not use it lightly. RethinkDisplay() does a Forbid() on entry
and a Permit() on exit, which can seriously degrade the performance
of the multi-tasking Eexecutive.

INPUTS
None

RESULT
None

BUGS

SEE ALSO
RemakeDisplay(), graphics.library/MakeVPort(),
graphics.library/MrgCop(), graphics.library/LoadView(),
MakeScreen()

1.56 intuition.library/ScreenToBack

NAME
ScreenToBack -- send the specified Screen to the back of the display.

SYNOPSIS
ScreenToBack(Screen)

A0

intuition 56 / 68

struct Screen *Screen;

FUNCTION
Sends the specified Screen to the back of the display.

INPUTS
Screen = pointer to a Screen structure

RESULT
None

BUGS

SEE ALSO

1.57 intuition.library/ScreenToFront

NAME
ScreenToFront -- brings the specified Screen to the front of the

display

SYNOPSIS
ScreenToFront(Screen)

A0

FUNCTION
Brings the specified Screen to the front of the display.

INPUTS
Screen = a pointer to a Screen structure

RESULT
None

BUGS

SEE ALSO

1.58 intuition.library/SetDMRequest

NAME
SetDMRequest -- sets the DMRequest of the Window.

SYNOPSIS
SetDMRequest(Window, DMRequester)

A0 A1

struct Window *Window;
struct Requester *DMRequester;

FUNCTION

intuition 57 / 68

Attempts to set the DMRequester into the specified window.
The DMRequester is the special Requester that you attach to
the double-click of the menu button which the user can then
bring up on demand. This routine WILL NOT set the DMRequester
if it’s already set and is currently active (in use by the user).
After having called SetDMRequest(), if you want to change the
DMRequester, the correct way to start is by calling ClearDMRequest()
until it returns a value of TRUE; then you can call SetDMRequest()
with the new DMRequester.

If the POINTREL flag is set, the DMR will open as close to the
pointer as possible. The RelLeft/Top fields are for fine-tuning
the position.

INPUTS
Window = pointer to the window from which the DMRequest is to be set
DMRequester = a pointer to a Requester

RESULT
If the current DMRequest was not in use, sets the DMRequest

pointer into the Window and returns TRUE.
If the DMRequest was currently in use, doesn’t change the pointer

and returns FALSE

BUGS

SEE ALSO
ClearDMRequest(), Request()

1.59 intuition.library/SetMenuStrip

NAME
SetMenuStrip -- Attaches the Menu strip to the Window.

SYNOPSIS
Success = SetMenuStrip(Window, Menu)
D0 A0 A1

BOOL Success;
struct Window *Window;
struct Menu *Menu;

FUNCTION
Attaches the Menu strip to the Window. After calling this routine,
if the user presses the menu button, this specified menu strip
will be displayed and accessible by the user.

Menus with zero MenuItems are not allowed.

NOTE: You should always design your Menu strip changes to be a
two-way operation, where for every Menu strip you add to your
Window you should always plan to clear that strip sometime. Even
in the simplest case, where you will have just one Menu strip for
the lifetime of your Window, you should always clear the Menu strip
before closing the Window. If you already have a Menu strip attached

intuition 58 / 68

to this Window, the correct procedure for changing to a new Menu
strip involves calling ClearMenuStrip() to clear the old first.
The sequence of events should be:

- OpenWindow()
- zero or more iterations of:
- SetMenuStrip()
- ClearMenuStrip()

- CloseWindow()

INPUTS
Window = pointer to a Window structure
Menu = pointer to the first Menu in the Menu strip

RESULT
TRUE if there were no problems. TRUE always, since this routine
will Wait until it is OK to proceed.

BUGS

SEE ALSO
ClearMenuStrip()

1.60 intuition.library/SetPointer

NAME
SetPointer -- sets a Window with its own Pointer

SYNOPSIS
SetPointer(Window, Pointer, Height, Width, XOffset, YOffset)

A0 A1 D0 D1 D2 D3

struct Window *Window;
USHORT *Pointer;
SHORT Height, Width;
SHORT XOffset, YOffset;

FUNCTION
Sets up the Window with the sprite definition for the Pointer.
Then whenever the Window is the active one, the Pointer
image will change to its version of the Pointer. If the
Window is the active one when this routine is called, the
change takes place immediately.

The XOffset and YOffset are used to offset the top-left corner
of the hardware sprite imagery from what Intuition regards as
the current position of the Pointer. Another way of describing
it is as the offset from the "hot spot" of the Pointer to the
top-left corner of the sprite. For instance, if you specify
offsets of zero, zero, then the top-left corner of your sprite
image will be placed at the Pointer position. On the other hand,
if you specify an XOffset of -7 (remember, sprites are 16 pixels
wide) then your sprite will be centered over the Pointer position.
If you specify an XOffset of -15, the right-edge of the sprite
will be over the Pointer position.

intuition 59 / 68

INPUTS
Window = pointer to the Window to receive this Pointer definition
Pointer = pointer to the data definition of a Sprite
Height = the height of the Pointer
Width = the Width of the sprite (must be less than or equal to sixteen)
XOffset = the offset for your sprite from the Pointer position
YOffset = the offset for your sprite from the Pointer position

RESULT
None

BUGS

SEE ALSO
ClearPointer()

1.61 intuition.library/SetPrefs

NAME
SetPrefs -- Set Intuition Preferences.

SYNOPSIS
Prefs = SetPrefs(PrefBuffer, Size, Inform)
D0 A0 D0 D1

struct Preferences *Prefs;
struct Preferences *PrefBuffer;
int Size;
BOOL Inform;

FUNCTION
Sets new Preferences values. Copies the first ’Size’ bytes
from your Preferences buffer to the system Preferences table,
and puts them into effect.

The ’Inform’ parameter, if TRUE, indicates that a NEWPREFS
message is to be sent to all Windows that have the NEWPREFS
IDCMPFlag set.

It is legal to set a partial copy of the Preferences structure.
The most frequently changed values are grouped at the beginning
of the Preferences structure.

INPUTS
PrefBuffer = pointer to the memory buffer which contains your

desired settings for Intuition Preferences
Size = the number of bytes in your PrefBuffer, the number of bytes

you want copied to the system’s internal Preference settings
Inform = whether you want the information of a new Preferences

setting propogated to all windows.

RESULT
Returns your parameter PrefBuffer.

BUGS

intuition 60 / 68

SEE ALSO
GetDefPrefs(), GetPrefs()

1.62 intuition.library/SetWindowTitles

NAME
SetWindowTitles -- Sets the Window’s titles for both Window and

Screen

SYNOPSIS
SetWindowTitles(Window, WindowTitle, ScreenTitle)

A0 A1 A2

struct Window *Window;
UBYTE *WindowTitle, *ScreenTitle;

FUNCTION
Allows you to set the text which appears in the Window and/or Screen
title bars.

The Window Title appears at all times along the Window Title Bar.
The Window’s Screen Title appears at the Screen Title Bar whenever
this Window is the active one.

When this routine is called, your Window Title will be changed
immediately. If your Window is the active one when this routine is
called, the Screen Title will be changed immediately.

You can specify a value of -1 (i.e. (struct Window *) ~0) for either
of the title pointers. This designates that you want to Intuition to
leave the current setting of that particular title alone, and modify
only the other one. Of course, you could set both to -1.

Furthermore, you can set a value of 0 (zero) for either of the
title pointers. Doing so specifies that you want no title to
appear (the title bar will be blank).

Both of the titles are rendered in the default font of the Window’s
Screen, as set using OpenScreen().

In setting the Window’s title, Intuition may do some other rendering
in the top border of your window. If your own rendering sometimes
appears in your window border areas, you may want to restore the entire
window border frame. The function SetWindowTitles() does not do this
in the newer versions. The function RefreshWindowFrame() is provided
to do this kind of thing for you.

INPUTS
Window = pointer to your Window structure
WindowTitle = pointer to a null-terminated text string, or set to

either the value of -1 (negative one) or 0 (zero)
ScreenTitle = pointer to a null-terminated text string, or set to

either the value of -1 (negative one) or 0 (zero)

intuition 61 / 68

RESULT
None

BUGS

SEE ALSO
OpenWindow(), RefreshWindowFrame(), OpenScreen()

1.63 intuition.library/ShowTitle

NAME
ShowTitle -- Set the Screen title bar display mode

SYNOPSIS
ShowTitle(Screen, ShowIt)

A0 D0

struct Screen *Screen;
BOOL ShowIt;

FUNCTION
This routine sets the SHOWTITLE flag of the specified Screen, and
then coordinates the redisplay of the Screen and its Windows.

The Screen title bar can appear either in front of or behind BACKDROP
Windows. This is contrasted with the fact that non-BACKDROP Windows
always appear in front of the Screen Title Bar. You specify whether
you want the Screen Title Bar to be in front of or behind the
Screen’s BACKDROP Windows by calling this routine.

The ShowIt argument should be set to either TRUE or FALSE. If TRUE,
the Screen’s Title Bar will be shown in front of BACKDROP Windows.
If FALSE, the Title Bar will be rendered behind all Windows.

When a Screen is first opened, the default setting of the SHOWTITLE
flag is TRUE.

INPUTS
Screen = pointer to a Screen structure
ShowIt = Boolean TRUE or FALSE describing whether to show or hide the

Screen Title Bar

RESULT
None

BUGS

SEE ALSO

1.64 intuition.library/SizeWindow

intuition 62 / 68

NAME
SizeWindow -- Ask Intuition to size a Window.

SYNOPSIS
SizeWindow(Window, DeltaX, DeltaY)

A0 D0 D1

struct Window *Window;
SHORT DeltaX, DeltaY;

FUNCTION
This routine sends a request to Intuition asking to size the Window
the specified amounts. The delta arguments describe how much to
size the Window along the respective axes.

Note that the Window will not be sized immediately, but rather
will be sized the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second,
and a maximum of sixty times a second. You can discover when
you Window has finally been sized by setting the NEWSIZE flag
of the IDCMP of your Window. See the "Input and Output Methods"
chapter of The Intuition Reference Manual for description of the IDCMP.

This routine does no error-checking. If your delta values specify
some far corner of the Universe, Intuition will attempt to size
your Window to the far corners of the Universe. Because of the
distortions in the space-time continuum that can result from this,
as predicted by special relativity, the result is generally not
a pretty sight.

INPUTS
Window = pointer to the structure of the Window to be sized
DeltaX = signed value describing how much to size Window on the x-axis
DeltaY = signed value describing how much to size Window on the y-axis

RESULT
None

BUGS

SEE ALSO
MoveWindow(), WindowToFront(), WindowToBack()

1.65 intuition.library/UnlockIBase

NAME
UnlockIBase -- surrender an Intuition lock gotten by LockIBase()

SYNOPSIS
UnlockIBase(Lock)

A0

ULONG Lock;

intuition 63 / 68

FUNCTION
Surrenders lock gotten by LockIBase().

Calling this function when you do not own the specified lock will
immediately crash the system.

INPUTS
The value returned by LockIBase() should be passed to this function,
to specify which internal lock is to be freed.

Note that the parameter is passed in A0, not D0, for historical
reasons.

RESULT
None

BUGS

SEE ALSO
LockIBase()

1.66 intuition.library/ViewAddress

NAME
ViewAddress -- Returns the address of the Intuition View structure.

SYNOPSIS
ViewAddress()

FUNCTION
Returns the address of the Intuition View structure. If you
want to use any of the graphics, text, or animation primitives
in your Window and that primitive requires a pointer to a View,
this routine will return the address of the View for you.

INPUTS
None

RESULT
Returns the address of the Intuition View structure

BUGS

SEE ALSO
graphics.library

1.67 intuition.library/ViewPortAddress

NAME
ViewPortAddress -- Returns the address of a Window’s ViewPort

structure.

intuition 64 / 68

SYNOPSIS
ViewPortAddress(Window)

A0

struct Window *Window;

FUNCTION

Returns the address of the
ViewPort
associated with the specified
Window.
The ViewPort
is actually the
ViewPort of
the Screen
within which the
Window
is displayed. If you want to use any of the graphics, text, or
animation primitives in your
Window
and that primitive requires a pointer to a
ViewPort, you
can use this call.

INPUTS
Window = pointer to the Window for which you want the ViewPort address

RESULT
Returns the address of the Intuition View structure

BUGS

SEE ALSO
graphics.library

1.68 intuition.library/WBenchToBack

NAME
WBenchToBack -- Sends the WorkBench Screen in back of all Screens.

SYNOPSIS
Success = WBenchToBack()
D0

BOOL Success;

FUNCTION
Causes the WorkBench Screen, if it’s currently opened, to go to
the background. This does not ’move’ the Screen up or down, instead
only affects the depth-arrangement of the Screen.

If the WorkBench Screen was opened, this function returns TRUE,
otherwise it returns FALSE.

intuition 65 / 68

INPUTS
None

RESULT
If the WorkBench Screen was opened, this function returns TRUE,
otherwise it returns FALSE.

BUGS

SEE ALSO
WBenchToFront(), ScreenToFront()

1.69 intuition.library/WBenchToFront

NAME
WBenchToFront -- Brings the WorkBench Screen in front of all Screens.

SYNOPSIS
Success = WBenchToFront()
D0

BOOL Success;

FUNCTION
Causes the WorkBench Screen, if it’s currently opened, to come to
the foreground. This does not ’move’ the Screen up or down, instead
only affects the depth-arrangement of the Screen.

If the WorkBench Screen was opened, this function returns TRUE,
otherwise it returns FALSE.

INPUTS
None

RESULT
If the WorkBench Screen was opened, this function returns TRUE,
otherwise it returns FALSE.

BUGS

SEE ALSO
WBenchToBack(), ScreenToBack()

1.70 intuition.library/WindowLimits

NAME
WindowLimits -- Set the minimum and maximum limits of the Window.

SYNOPSIS
Success = WindowLimits(Window, MinWidth, MinHeight, MaxWidth,
D0 A0 D0 D1 D2

MaxHeight)

intuition 66 / 68

D3
BOOL Success;
struct Window *Window;
SHORT MinWidth, MinHeight;
USHORT MaxWidth, MaxHeight;

FUNCTION
Sets the minimum and maximum limits of the Window’s size. Until this
routine is called, the Window’s size limits are equal to the Window’s
initial size, which means that the user won’t be able to size it at
all. After the call to this routine, the Window will be able to be
sized to any dimensions within the specified limits.

If you don’t want to change any one of the dimensions, set the limit
argument for that dimension to zero. If any of the limit arguments
is equal to zero, that argument is ignored and the initial setting
of that parameter remains undisturbed.

If any of the arguments is out of range (minimums greater than the
current size, maximums less than the current size), that limit
will be ignored, though the others will still take effect if they
are in range. If any are out of range, the return value from this
procedure will be FALSE. If all arguments are valid, the return
value will be TRUE.

If you want your window to be able to become "as large as possible"
you may put -1 (i.e. ~0) in either or both Max arguments. But
please note: screen sizes may vary for several reasons, and you
must be able to handle any possible size of window you might end
up with if you use this method. Note that you can use the function
GetScreenData() to find out how big the screen your window appears in
is. That function is particularly useful if your window is in
the Workbench Screen.

If the user is currently sizing this Window, the new limits will
not take effect until after the sizing is completed.

INPUTS
Window = pointer to a Window structure
MinWidth, MinHeight, MaxWidth, MaxHeight = the new limits for the size

of this Window. If any of these is set to zero, it will
be ignored and that setting will be unchanged.

RESULT
Returns TRUE if everything was in order. If any of the parameters was
out of range (minimums greater than current size, maximums less than
current size), FALSE is returned and the errant limit request is
not fulfilled (though the valid ones will be).

BUGS

SEE ALSO
GetScreenData()

intuition 67 / 68

1.71 intuition.library/WindowToBack

NAME
WindowToBack -- Ask Intuition to send this Window to the back

SYNOPSIS
WindowToBack(Window)

A0

FUNCTION
This routine sends a request to Intuition asking to send the Window
in back of all other Windows in the Screen.

Note that the Window will not be depth-arranged immediately, but rather
will be arranged the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second,
and a maximum of sixty times a second.

Remember that BACKDROP Windows cannot be depth-arranged.

INPUTS
Window = pointer to the structure of the Window to be sent to the back

RESULT
None

BUGS

SEE ALSO
MoveWindow(), SizeWindow(), WindowToFront()

1.72 intuition.library/WindowToFront

NAME
WindowToFront -- Ask Intuition to bring this Window to the front.

SYNOPSIS
WindowToFront(Window)

FUNCTION
This routine sends a request to Intuition asking to bring the Window
in front of all other Windows in the Screen.

Note that the Window will not be depth-arranged immediately, but rather
will be arranged the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second,
and a maximum of sixty times a second.

Remember that BACKDROP Windows cannot be depth-arranged.

INPUTS
Window = pointer to the structure of the Window to be brought to front

RESULT

intuition 68 / 68

None

BUGS

SEE ALSO
MoveWindow(), SizeWindow(), WindowToBack()

	intuition
	intuition.doc
	intuition.library/ActivateGadget
	intuition.library/ActivateWindow
	intuition.library/AddGadget
	intuition.library/AddGList
	intuition.library/AllocRemember
	intuition.library/AutoRequest
	intuition.library/BeginRefresh
	intuition.library/BuildSysRequest
	intuition.library/ClearDMRequest
	intuition.library/ClearMenuStrip
	intuition.library/ClearPointer
	intuition.library/CloseScreen
	intuition.library/CloseWindow
	intuition.library/CloseWorkBench
	intuition.library/CurrentTime
	intuition.library/DisplayAlert
	intuition.library/DisplayBeep
	intuition.library/DoubleClick
	intuition.library/DrawBorder
	intuition.library/DrawImage
	intuition.library/EndRefresh
	intuition.library/EndRequest
	intuition.library/FreeRemember
	intuition.library/FreeSysRequest
	intuition.library/GetDefPrefs
	intuition.library/GetPrefs
	intuition.library/GetScreenData
	intuition.library/InitRequester
	intuition.library/IntuiTextLength
	intuition.library/ItemAddress
	intuition.library/LockIBase
	intuition.library/MakeScreen
	intuition.library/ModifyIDCMP
	intuition.library/ModifyProp
	intuition.library/MoveScreen
	intuition.library/MoveWindow
	intuition.library/NewModifyProp
	intuition.library/OffGadget
	intuition.library/OffMenu
	intuition.library/OnGadget
	intuition.library/OnMenu
	intuition.library/OpenScreen
	intuition.library/OpenWindow
	intuition.library/OpenWorkBench
	intuition.library/PrintIText
	intuition.library/RefreshGadgets
	intuition.library/RefreshGList
	intuition.library/RefreshWindowFrame
	intuition.library/RemakeDisplay
	intuition.library/RemoveGadget
	intuition.library/RemoveGList
	intuition.library/ReportMouse
	intuition.library/Request
	intuition.library/RethinkDisplay
	intuition.library/ScreenToBack
	intuition.library/ScreenToFront
	intuition.library/SetDMRequest
	intuition.library/SetMenuStrip
	intuition.library/SetPointer
	intuition.library/SetPrefs
	intuition.library/SetWindowTitles
	intuition.library/ShowTitle
	intuition.library/SizeWindow
	intuition.library/UnlockIBase
	intuition.library/ViewAddress
	intuition.library/ViewPortAddress
	intuition.library/WBenchToBack
	intuition.library/WBenchToFront
	intuition.library/WindowLimits
	intuition.library/WindowToBack
	intuition.library/WindowToFront

