
audio

audio ii

COLLABORATORS

TITLE :

audio

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

audio iii

Contents

1 audio 1

1.1 audio.doc . 1

1.2 audio.device/CloseDevice . 1

1.3 audio.device/ADCMD_ALLOCATE . 2

1.4 audio.device/ADCMD_FINISH . 3

1.5 audio.device/ADCMD_FREE . 4

1.6 audio.device/ADCMD_LOCK . 5

1.7 audio.device/ADCMD_PERVOL . 6

1.8 audio.device/ADCMD_SETPREC . 7

1.9 audio.device/ADCMD_WAITCYCLE . 8

1.10 audio.device/CMD_CLEAR . 8

1.11 audio.device/CMD_FLUSH . 9

1.12 audio.device/CMD_READ . 10

1.13 audio.device/CMD_RESET . 10

1.14 audio.device/CMD_START . 11

1.15 audio.device/CMD_STOP . 12

1.16 audio.device/CMD_UPDATE . 13

1.17 audio.device/CMD_WRITE . 13

1.18 audio.device/OpenDevice . 14

audio 1 / 15

Chapter 1

audio

1.1 audio.doc

CloseDevice() ADCMD_SETPREC CMD_START
ADCMD_ALLOCATE ADCMD_WAITCYCLE CMD_STOP
ADCMD_FINISH CMD_CLEAR CMD_UPDATE
ADCMD_FREE CMD_FLUSH CMD_WRITE
ADCMD_LOCK CMD_READ OpenDevice()
ADCMD_PERVOL CMD_RESET

1.2 audio.device/CloseDevice

NAME
CloseDevice - terminate access to the audio device

SYNOPSIS
CloseDevice(iORequest);

A1

FUNCTION
The CloseDevice routine notifies the audio device that it will no
longer be used. It takes an I/O audio request block (IOAudio) and
clears the device pointer (io_Device). If there are any channels
allocated with the same allocation key (ioa_AllocKey), CloseDevice
frees (ADCMD_FREE) them. CloseDevice decrements the open count, if the
count falls to zero, and the system needs memory, the device is
expunged.

INPUTS
iORequest - pointer to audio request block (struct IOAudio)

io_Device - pointer to device node, must be set by (or
copied from I/O block set by) open (OpenDevice)

io_Unit - bit map of channels to free (ADCMD_FREE) (bits 0
thru 3 correspond to channels 0 thru 3)

ioa_AllocKey- allocation key, used to free channels

OUTPUTS
iORequest - pointer to audio request block (struct IOAudio)

audio 2 / 15

io_Device - set to -1
io_Unit - set to zero

1.3 audio.device/ADCMD_ALLOCATE

NAME
ADCMD_ALLOCATE -- allocate a set of audio channels

FUNCTION
ADCMD_ALLOCATE is a command that allocates multiple audio channels.
ADCMD_ALLOCATE takes an array of possible channel combinations
(ioa_Data) and an allocation precedence (ln_Pri) and tries to allocate
one of the combinations of channels.

If the channel combination array is zero length (ioa_Length), the
allocation succeeds; otherwise, ADCMD_ALLOCATE checks each
combination, one at a time, in the specified order, to find one
combination that does not require ADCMD_ALLOCATE to steal allocated
channels.

If it must steal allocated channels, it uses the channel combination
that steals the lowest precedence channels.

ADCMD_ALLOCATE cannot steal a channel of equal or greater precedence
than the allocation precedence (ln_Pri).

If it fails to allocate any channel combination and the no-wait flag
(ADIOF_NOWAIT) is set ADCMD_ALLOCATE returns a zero in the unit field
of the I/O request (io_Unit) and an error (IOERR_ALLOCFAILED). If the
no-wait flag is clear, it places the I/O request in a list that tries
to allocate again whenever ADCMD_FREE frees channels or ADCMD_SETPREC
lowers the channels’ precedences.

If the allocation is successful, ADCMD_ALLOCATE checks if any channels
are locked (ADCMD_LOCK) and if so, replies (ReplyMsg) the lock I/O
request with an error (ADIOERR_CHANNELSTOLEN). Then it places the
allocation I/O request in a list waiting for the locked channels to be
freed. When all the allocated channels are un-locked, ADCMD_ALLOCATE:

. resets (CMD_RESET) the allocated channels,

. generates a new allocation key (ioa_AllocKey), if it is zero,

. copies the allocation key into each of the allocated channels

. copies the allocation precedence into each of the allocated
channels, and

. copies the channel bit map into the unit field of the I/O request.

If channels are allocated with a non-zero allocation key,
ADCMD_ALLOCATE allocates with that same key; otherwise, it generates a
new and unique key.

ADCMD_ALLOCATE is synchronous:
. if the allocation succeeds and there are no locked channels to be

stolen, or
. if the allocation fails and the no-wait flag is set.

. if the allocation fails and the no-wait flag is set.
In either case, ADCMD_ALLOCATE only replies (mn_ReplyPort) if the

audio 3 / 15

quick flag (IOF_QUICK) is clear; otherwise, the allocation is
asynchronous, so it clears the quick flag and replies the I/O request
after the allocation is finished. If channels are stolen, all audio
device commands return an error (IOERR_NOALLOCATION) when the former
user tries to use them again. Do not use ADCMD_ALLOCATE in interrupt
code.

If you decide to store directly to the audio hardware registers, you
must either lock the channels you’ve allocated, or set the precedence
to maximum (ADALLOC_MAXPREC) to prevent the channels from being
stolen.

Under all circumstances, unless channels are stolen, you must free
(ADCMD_FREE) all allocated channels when you are finished using them.

INPUTS
ln_Pri - allocation precedence (-128 thru 127)
mn_ReplyPort- pointer to message port that receives I/O request after

the allocation completes is asynchronous or quick flag
(ADIOF_QUICK) is set

io_Device - pointer to device node, must be set by (or copied from
I/O block set by) OpenDevice function

io_Command - command number for ADCMD_ALLOCATE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
(SET) only reply I/O request only if

asynchronous (see above text)
ADIOF_NOWAIT- (CLEAR) if allocation fails, wait till is

succeeds
(SET) if allocation fails, return error

(ADIOERR_ALLOCFAILED)
ioa_AllocKey- allocation key, zero to generate new key; otherwise,

it must be set by (or copied from I/O block set by)
OpenDevice function or previous ADCMD_ALLOCATE command

ioa_Data - pointer to channel combination options (byte array, bits
0 thru 3 correspond to channels 0 thru 3)

ioa_Length - length of the channel combination option array
(0 thru 16, 0 always succeeds)

OUTPUTS
io_Unit - bit map of successfully allocated channels (bits 0 thru

3 correspond to channels 0 thru 3)
io_Flags - IOF_QUICK flag cleared if asynchronous (see above text)
io_Error - error number:

0 - no error
ADIOERR_ALLOCFAILED - allocation failed

ioa_AllocKey- allocation key, set to a unique number if passed a zero
and command succeeds

1.4 audio.device/ADCMD_FINISH

NAME
ADCMD_FINISH -- abort writes in progress to audio channels

FUNCTION

audio 4 / 15

ADCMD_FINISH is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD_WRITE)in progress, ADCMD_FINISH
aborts the current write immediately or at the end of the current
cycle depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key is incorrect ADCMD_FINISH returns an error (ADIOERR_NOALLOCATION).
ADCMD_FINISH is synchronous and only replies (mn_ReplyPort) if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD_FINISH in interrupt
code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to finish (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for ADCMD_FINISH
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ADIOF_SYNCCYCLE- (CLEAR) finish immediately

(SET) finish at the end of current
cycle

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully finished (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.5 audio.device/ADCMD_FREE

NAME
ADCMD_FREE -- free audio channels for allocation

FUNCTION
ADCMD_FREE is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_FREE does the following:

. restores the channel to a known state (CMD_RESET),

. changes the channels allocation key, and

. makes the channel available for re-allocation.

. If the channel is locked (ADCMD_LOCK) ADCMD_FREE unlocks it and
clears the bit for the channel (io_Unit) in the lock I/O request.
If the lock I/O request has no channel bits set ADCMD_FREE replies
the lock I/O request, and

. checks if there are allocation requests (ADCMD_ALLOCATE) waiting
for the channel.

Otherwise, ADCMD_FREE returns an error (ADIOERR_NOALLOCATION).

audio 5 / 15

ADCMD_FREE is synchronous and only replies (mn_ReplyPort) if the quick
flag (IOF_QUICK) is clear. Do not use ADCMD_FREE in interrupt code.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to free (bits 0 thru 3 correspond to

channels 0 thru 3)
io_Command - command number for ADCMD_FREE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully freed (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.6 audio.device/ADCMD_LOCK

NAME
ADCMD_LOCK -- prevent audio channels from being stolen

FUNCTION
ADCMD_LOCK is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_LOCK locks the channel, preventing subsequent
allocations (ADCMD_ALLOCATE or OpenDevice) from stealing the channel.
Otherwise, ADCMD_LOCK returns an error (ADIOERR_NOALLOCATION) and will
not lock any channels.

Unlike setting the precedence (ADCMD_SETPREC, ADCMD_ALLOCATE or
OpenDevice) to maximum (ADALLOC_MAXPREC) which would cause all
subsequent allocations to fail, ADCMD_LOCK causes all higher
precedence allocations, even no-wait (ADIOF_NOWAIT) allocations, to
wait until the channels are un-locked.

Locked channels can only be unlocked by freeing them (ADCMD_FREE),
which clears the channel select bits (io_Unit). ADCMD_LOCK does not
reply the I/O request (mn_ReplyPort) until all the channels it locks
are freed, unless a higher precedence allocation attempts to steal one
the locked channels. If a steal occurs, ADCMD_LOCK replies and returns
an error (ADIOERR_CHANNELSTOLEN). If the lock is replied
(mn_ReplyPort) with this error, the channels should be freed as soon
as possible. To avoid a possible deadlock, never make the freeing of
stolen channels dependent on another allocations completion.

ADCMD_LOCK is only asynchronous if the allocation key is correct, in
which case it clears the quick flag (IOF_QUICK); otherwise, it is

audio 6 / 15

synchronous and only replies if the quick flag (IOF_QUICK) is clear.
Do not use ADCMD_LOCK in interrupt code.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to lock (bits 0 thru 3 correspond to

channels 0 thru 3)
io_Command - command number for ADCMD_LOCK
io_Flags - flags, must be cleared
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of successfully locked channels (bits 0 thru 3

correspond to channels 0 thru 3) not freed (ADCMD_FREE)
io_Flags - IOF_QUICK flag cleared if the allocation key is correct

(no ADIOERR_NOALLOCATION error)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel
ADIOERR_CHANNELSTOLEN- allocation attempting to steal

locked channel

1.7 audio.device/ADCMD_PERVOL

NAME
ADCMD_PERVOL -- change the period and volume for writes in progress to

audio channels

FUNCTION
ADCMD_PERVOL is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD_WRITE) in progress, ADCMD_PERVOL
loads a new volume and period immediately or at the end of the current
cycle depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key in incorrect, ADCMD_PERVOL returns an error
(ADIOERR_NOALLOCATION). ADCMD_PERVOL is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear. Do not use
ADCMD_PERVOL in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to load period and volume (bits 0

thru 3 correspond to channels 0 thru 3)
io_Command - command number for ADCMD_PERVOL
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ADIOF_SYNCCYCLE- (CLEAR) load period and volume

audio 7 / 15

immediately
(SET) load period and volume at the end

of the current cycle
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command
ioa_Period - new sample period in 279.365 ns increments (124 thru

65536, anti-aliasing filter works below 300 to 500
depending on waveform)

ioa_Volume - new volume (0 thru 64, linear)

OUTPUTS
io_Unit - bit map of channels that successfully loaded period and

volume (bits 0 thru 3 correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.8 audio.device/ADCMD_SETPREC

NAME
ADCMD_SETPREC -- set the allocation precedence for audio channels

FUNCTION
ADCMD_SETPREC is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_SETPREC sets the allocation precedence to a new value
(ln_Pri) and checks if there are allocation requests (ADCMD_ALLOCATE)
waiting for the channel which now have higher precedence; otherwise,
ADCMD_SETPREC returns an error (ADIOERR_NOALLOCATION). ADCMD_SETPREC
is synchronous and only replies (mn_ReplyPort) if the quick flag
(IOF_QUICK) is clear. Do not use ADCMD_SETPREC in interrupt code.

INPUTS
ln_Pri - new allocation precedence (-128 thru 127)
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to set precedence (bits 0 thru 3

correspond to channels 0 thru 3)
io_Command - command number for ADCMD_SETPREC
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels that successfully set precedence

(bits 0 thru 3 correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

audio 8 / 15

1.9 audio.device/ADCMD_WAITCYCLE

NAME
ADCMD_WAITCYCLE -- wait for an audio channel to complete the current

cycle of a write

FUNCTION
ADCMD_WAITCYCLE is a command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct and there is a write
(CMD_WRITE) in progress on selected channel, ADCMD_WAITCYCLE does not
reply (mn_ReplyPort) until the end of the current cycle. If there is
no write is progress, ADCMD_WAITCYCLE replies immediately. If the
allocation key is incorrect, ADCMD_WAITCYCLE returns an error
(ADIOERR_NOALLOCATION). ADCMD_WAITCYCLE returns an error
(IOERR_ABORTED) if it is canceled (AbortIO) or the channel is stolen
(ADCMD_ALLOCATE). ADCMD_WAITCYCLE is only asynchronous if it is
waiting for a cycle to complete, in which case it clears the quick
flag (IOF_QUICK); otherwise, it is synchronous and only replies if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD_WAITCYCLE in
interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request, if

the quick flag (IOF_QUICK) is clear, or if a write is in
progress on the selected channel and a cycle has
completed

io_Device - pointer to device node, must be set by (or copied from
I/O block set by) OpenDevice function

io_Unit - bit map of channel to wait for cycle (bits 0 thru 3
correspond to channels 0 thru 3), if more then one bit
is set lowest bit number channel is used

io_Command - command number for CMD_WAITCYCLE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
(SET) only reply I/O request if a write is

in progress on the selected channel
and a cycle has completed

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channel that successfully waited for cycle

(bits 0 thru 3 correspond to channels 0 thru 3)
io_Flags - IOF_QUICK flag cleared if a write is in progress on the

selected channel
io_Error - error number:

0 - no error
IOERR_ABORTED - canceled (AbortIO) or channel

stolen
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.10 audio.device/CMD_CLEAR

audio 9 / 15

NAME
CMD_CLEAR -- throw away internal caches

FUNCTION
CMD_CLEAR is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_CLEAR does nothing; otherwise, CMD_CLEAR returns an error
(ADIOERR_NOALLOCATION). CMD_CLEAR is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to clear (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_CLEAR
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully cleared (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.11 audio.device/CMD_FLUSH

NAME
CMD_FLUSH -- cancel all pending I/O

FUNCTION
CMD_FLUSH is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_FLUSH aborts all writes (CMD_WRITE) in progress or queued
and any I/O requests waiting to synchronize with the end of the cycle
(ADCMD_WAITCYCLE); otherwise, CMD_FLUSH returns an error
(ADIOERR_NOALLOCATION). CMD_FLUSH is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear. Do not use
CMD_FLUSH in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to flush (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_FLUSH

audio 10 / 15

io_Flags - flags, must be cleared if not used:
IOF_QUICK - (CLEAR) reply I/O request

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully flushed (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.12 audio.device/CMD_READ

NAME
CMD_READ -- normal I/O entry point

FUNCTION
CMD_READ is a standard command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct, CMD_READ returns a
pointer (io_Data) to the I/O block currently writing (CMD_WRITE) on
the selected channel; otherwise, CMD_READ returns an error
(ADIOERR_NOALLOCATION). If there is no write in progress, CMD_READ
returns zero. CMD_READ is synchronous and only replies (mn_ReplyPort)
if the quick bit (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channel to read (bit 0 thru 3 corresponds to

channel 0 thru 3), if more then one bit is set lowest
bit number channel read

io_Command - command number for CMD_READ
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channel successfully read (bit 0 thru 3

corresponds to channel 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel
ioa_Data - pointer to I/O block for current write, zero if none is

progress

1.13 audio.device/CMD_RESET

audio 11 / 15

NAME
CMD_RESET -- restore device to a known state

FUNCTION
CMD_RESET is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_RESET:

. clears the hardware audio registers and attach bits,

. sets the audio interrupt vector,

. cancels all pending I/O (CMD_FLUSH), and

. un-stops the channel if it is stopped (CMD_STOP),

Otherwise, CMD_RESET returns an error (ADIOERR_NOALLOCATION).
CMD_RESET is synchronous and only replies (mn_ReplyPort) if the quick
flag (IOF_QUICK) is clear. Do not use CMD_RESET in interrupt code at
interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to reset (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_RESET
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels to successfully reset (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.14 audio.device/CMD_START

NAME
CMD_START -- start device processing (like ^Q)

FUNCTION
CMD_START is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct and the channel was previously stopped (CMD_STOP), CMP_START
immediately starts all writes (CMD_WRITE) to the channel. If the
allocation key is incorrect, CMD_START returns an error
(ADIOERR_NOALLOCATION). CMD_START starts multiple channels
simultaneously to minimize distortion if the channels are playing the
same waveform and their outputs are mixed. CMD_START is synchronous and

only replies (mn_ReplyPort) if the quick flag (IOF_QUICK) is clear. Do

audio 12 / 15

not use CMD_START in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to start (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_START
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully started (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.15 audio.device/CMD_STOP

NAME
CMD_STOP -- stop device processing (like ^S)

FUNCTION
CMD_STOP is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_STOP immediately stops any writes (CMD_WRITE) in
progress; otherwise, CMD_STOP returns an error (ADIOERR_NOALLOCATION).
CMD_WRITE queues up writes to a stopped channel until CMD_START starts
the channel or CMD_RESET resets the channel. CMD_STOP is synchronous
and only replies (mn_ReplyPort) if the quick flag (IOF_QUICK) is
clear. Do not use CMD_STOP in interrupt code at interrupt level 5 or
higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to stop (bits 0 thru 3 correspond to

channels 0 thru 3)
io_Command - command number for CMD_STOP
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully stopped (bits 0 thru 3

audio 13 / 15

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.16 audio.device/CMD_UPDATE

NAME
CMD_UPDATE -- force dirty buffers out

FUNCTION
CMD_UPDATE is a standard command for multiple audio channels. For
each selected channel (io_Unit), if the allocation key (ioa_AllocKey)
is correct, CMD_UPDATE does nothing; otherwise, CMD_UPDATE returns an
error (ADIOERR_NOALLOCATION). CMD_UPDATE is synchronous and only
replies (mn_ReplyPort) if the quick flag (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to update (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_UPDATE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully updated (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.17 audio.device/CMD_WRITE

NAME
CMD_WRITE -- normal I/O entry point

FUNCTION
CMD_WRITE is a standard command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct, CMD_WRITE plays a
sound using the selected channel; otherwise, it returns an error
(ADIOERR_NOALLOCATION). CMD_WRITE queues up requests if there is
another write in progress or if the channel is stopped (CMD_STOP).
When the write actually starts; if the ADIOF_PERVOL flag is set,
CMD_WRITE loads volume (ioa_Volume) and period (ioa_Period), and if

audio 14 / 15

the ADIOF_WRITEMESSAGE flag is set, CMD_WRITE replies the write
message (ioa_WriteMsg). CMD_WRITE returns an error (IOERR_ABORTED) if
it is canceled (AbortIO) or the channel is stolen (ADCMD_ALLOCATE).
CMD_WRITE is only asynchronous if there is no error, in which case it
clears the quick flag (IOF_QUICK) and replies the I/O request
(mn_ReplyPort) after it finishes writting; otherwise, it is synchronous

and only replies if the quick flag (IOF_QUICK) is clear. Do not use
CMD_WRITE in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

the write completes
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channel to write (bit 0 thru 3 corresponds to

channel 0 thru 3), if more then one bit is set lowest
bit number channel is written

io_Command - command number for CMD_WRITE
io_Flags - flags, must be cleared if not used:

ADIOF_PERVOL - (SET) load volume and period
ADIOF_WRITEMESSAGE - (SET) reply message at write start

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

ioa_Data - pointer to waveform array (signed bytes (-128 thru 127)
in custom chip addressable ram and word aligned)

ioa_Length - length of the wave array in bytes (2 thru 131072, must
be even number)

ioa_Period - sample period in 279.365 ns increments (124 thru 65536,
anti-aliasing filter works below 300 to 500 depending on
waveform), if enabled by ADIOF_PERVOL

ioa_Volume - volume (0 thru 64, linear), if enabled by ADIOF_PERVOL
ioa_Cycles - number of times to repeat array (0 thru 65535, 0 for

infinite)
ioa_WriteMsg- message replied at start of write, if enabled by

ADIOF_WRITEMESSAGE

OUTPUTS
io_Unit - bit map of channel successfully written (bit 0 thru 3

corresponds to channel 0 thru 3)
io_Flags - IOF_QUICK flag cleared if there is no error
io_Error - error number:

0 - no error
IOERR_ABORTED - canceled (AbortIO) or channel

stolen
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

BUGS
If CMD_WRITE starts the write immediately after stopping a previous
write, you must set the ADIOF_PERVOL flag or else the new data pointer
(ioa_Data) and length (ioa_Length) may not be loaded.

1.18 audio.device/OpenDevice

audio 15 / 15

NAME
OpenDevice - open the audio device

SYNOPSIS
error = OpenDevice("audio.device", unitNumber, iORequest, flags);

FUNCTION
The OpenDevice routine grants access to the audio device. It takes an
I/O audio request block (iORequest) and if it can successfully open
the audio device, it loads the device pointer (io_Device) and the
allocation key (ioa_AllocKey); otherwise, it returns an error
(IOERR_OPENFAIL). OpenDevice increments the open count keeping the
device from being expunged (Expunge). If the length (ioa_Length) is
non-zero, OpenDevice tries to allocate (ADCMD_ALLOCATE) audio channels
from a array of channel combination options (ioa_Data). If the
allocation succeeds, the allocated channel combination is loaded into
the unit field (ioa_Unit); otherwise, OpenDevice returns an error
(ADIOERR_ALLOCFAILED). OpenDevice does not wait for allocation to
succeed and closes (CloseDevice) the audio device if it fails. To
allocate channels, OpenDevice also requires a properly initialized
reply port (mn_ReplyPort) with an allocated signal bit.

INPUTS
unitNumber- not used
iORequest - pointer to audio request block (struct IOAudio)

ln_Pri - allocation precedence (-128 thru 127), only
necessary for allocation (non-zero length)

mn_ReplyPort- pointer to message port for allocation, only
necessary for allocation (non-zero length)

ioa_AllocKey- allocation key; zero to generate new key.
Otherwise, it must be set by (or copied from I/O
block that is set by) previous OpenDevice
function or ADCMD_ALLOCATE command (non-zero
length)

ioa_Data - pointer to channel combination options (byte
array, bits 0 thru 3 correspond to channels 0
thru 3), only necessary for allocation (non-zero
length)

ioa_Length - length of the channel combination option array
(0 thru 16), zero for no allocation

flags - not used

OUTPUTS
iORequest - pointer to audio request block (struct IOAudio)

io_Device - pointer to device node if OpenDevice succeeds,
otherwise -1

io_Unit - bit map of successfully allocated channels (bits
0 thru 3 correspond to channels 0 thru 3)

io_Error - error number:
0 - no error
IOERR_OPENFAIL - open failed
ADIOERR_ALLOCFAILED - allocation failed, no open

ioa_AllocKey- allocation key, set to a unique number if passed
a zero and OpenDevice succeeds

error - copy of io_Error

	audio
	audio.doc
	audio.device/CloseDevice
	audio.device/ADCMD_ALLOCATE
	audio.device/ADCMD_FINISH
	audio.device/ADCMD_FREE
	audio.device/ADCMD_LOCK
	audio.device/ADCMD_PERVOL
	audio.device/ADCMD_SETPREC
	audio.device/ADCMD_WAITCYCLE
	audio.device/CMD_CLEAR
	audio.device/CMD_FLUSH
	audio.device/CMD_READ
	audio.device/CMD_RESET
	audio.device/CMD_START
	audio.device/CMD_STOP
	audio.device/CMD_UPDATE
	audio.device/CMD_WRITE
	audio.device/OpenDevice

