
expansion

expansion ii

COLLABORATORS

TITLE :

expansion

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

expansion iii

Contents

1 expansion 1

1.1 expansion.doc . 1

1.2 expansion.library/AddDosNode . 1

1.3 expansion.library/MakeDosNode . 2

1.4 expansion.library/AddConfigDev . 4

1.5 expansion.library/AllocBoardMem . 4

1.6 expansion.library/AllocConfigDev . 5

1.7 expansion.library/AllocExpansionMem . 6

1.8 expansion.library/ConfigBoard . 7

1.9 expansion.library/ConfigChain . 7

1.10 expansion.library/FindConfigDev . 8

1.11 expansion.library/FreeBoardMem . 9

1.12 expansion.library/FreeConfigDev . 10

1.13 expansion.library/FreeExpansionMem . 10

1.14 expansion.library/GetCurrentBinding . 11

1.15 expansion.library/ObtainConfigBinding . 12

1.16 expansion.library/ReadExpansionByte . 12

1.17 expansion.library/ReadExpansionRom . 13

1.18 expansion.library/ReleaseConfigBinding . 14

1.19 expansion.library/RemConfigDev . 14

1.20 expansion.library/SetCurrentBinding . 15

1.21 expansion.library/WriteExpansionByte . 16

expansion 1 / 17

Chapter 1

expansion

1.1 expansion.doc

AddDosNode() ConfigChain() ReadExpansionByte()
MakeDosNode() FindConfigDev() ReadExpansionRom()
AddConfigDev() FreeBoardMem() ReleaseConfigBinding()
AllocBoardMem() FreeConfigDev() RemConfigDev()
AllocConfigDev() FreeExpansionMem() SetCurrentBinding()
AllocExpansionMem() GetCurrentBinding() WriteExpansionByte()
ConfigBoard() ObtainConfigBinding()

1.2 expansion.library/AddDosNode

NAME
AddDosNode -- mount a disk to the system

SYNOPSIS
ok = AddDosNode(bootPri, flags, deviceNode)
D0 D0 D1 A0

FUNCTION
This routine makes sure that your disk device (or a device
that wants to be treated as if it was a disk...) will be
entered into the system. If the dos is already up and
running, then it will be entered immediately. If the dos
has not yet been run then the data will be recorded, and the
dos will get it later.

We hope to eventually try and boot off a disk device. We will
try and boot off of each device in turn, based on priority,
iff there is no boot floppy in the floppy disk drive. As of
this writing that facility does not yet exist.

There is only one additional piece of magic done by AddDosNode.
If there is no executable code specified in the deviceNode
structure (e.g. dn_SegList, dn_Handler, and dn_Task are all
null) then the standard dos file handler is used for your
device.

expansion 2 / 17

Documentation note: a "task" as used here is a dos-task, not
an exec-task. A dos-task, in the strictest sense, is the
address of an exec-style message port. In general, it is
a pointer to a process’s pr_MsgPort field (e.g. a constant
number of bytes after an exec port).

INPUTS
bootPri -- a BYTE quantity with the boot priority for this disk.

This priority is only for which disks should be looked at:
the actual disk booted from will be the first disk with
a valid boot block. If no disk is found then the "bootme"
hand will come up and the bootstrap code will wait for
a floppy to be inserted. Recommend priority assignments are:

+5 -- unit zero for the floppy disk. The floppy should
always be highest priority to allow the user to
abort out of a hard disk boot.

0 -- the run of the mill hard disk
-5 -- a "network" disk (local disks should take priority).
-128 -- don’t even bother to boot from this device.

flags -- additional flag bits for the call:
ADN_STARTPROC (bit 0) -- start a handler process immediately.

Normally the process is started only when the device node
is first referenced. This bit is meaningless if you
have already specified a handler process (non-null dn_Task).

deviceNode -- a legal DOS device node, properly initialized.
Typically this will be the result of a MakeDosNode()
call, but feel free to manufacture your own if you need
to. If deviceNode is null then AddDosNode does nothing.

RESULTS
ok - non-zero everything went ok, zero if we ran out of memory

or some other weirdness happened.

EXAMPLES
/* enter a bootable disk into the system. Start a file handler

** process immediately.

*/
AddDosNode(0, ADNF_STARTPROC, MakeDosNode(paramPacket));

BUGS
The flexible boot strategy is only that -- strategy. It still
needs to be reflected in code somewhere.

SEE ALSO
MakeDosNode

BUGS

1.3 expansion.library/MakeDosNode

expansion 3 / 17

NAME
MakeDosNode -- construct dos data structures that a disk needs

SYNOPSIS
deviceNode = MakeDosNode(parameterPkt)
D0 A0

FUNCTION
This routine manufactures the data structures needed to enter
a dos disk device into the system. This consists of a DeviceNode,
a FileSysStartupMsg, a disk environment vector, and up to two
bcpl strings. See the libraries/dosextens and libraries/filehandler
include files for more information.

MakeDosNode will allocate all the memory it needs, and then
link the various structure together. It will make sure all
the structures are long-word aligned (as required by the DOS).
It then returns the information to the user so he can
change anything else that needs changing. Typically he will
then call AddDosNode() to enter the new device into the dos
tables.

INPUTS
parameterPkt - a longword array containing all the information

needed to initialize the data structures. Normally I
would have provided a structure for this, but the variable
length of the packet caused problems. The two strings are
null terminated strings, like all other exec strings.

longword description
-------- -----------
0 string with dos handler name
1 string with exec device name
2 unit number (for OpenDevice)
3 flags (for OpenDevice)
4 # of longwords in rest of enviroment
5-n file handler environment (see libraries/filehandler.h)

RESULTS
deviceNode - pointer to initialize device node structure, or

null if there was not enough memory.

EXAMPLES
/* set up a 3.5" amiga format floppy drive for unit 1 */

char execName[] = "trackdisk.device";
char dosName[] = "df1";

ULONG parmPkt[] = {
(ULONG) dosName,
(ULONG) execName,
1, /* unit number */
0, /* OpenDevice flags */

/* here is the environment block */
11, /* table upper bound */

expansion 4 / 17

512>>2, /* # longwords in a block */
0, /* sector origin -- unused */
2, /* number of surfaces */
1, /* secs per logical block -- unused */
11, /* secs per track */
2, /* reserved blocks -- 2 boot blocks */
0, /* ?? -- unused */
0, /* interleave */
0, /* lower cylinder */
79, /* upper cylinder */
5, /* number of buffers */

};

struct Device Node *node, *MakeDosNode();

node = MakeDosNode(parmPkt);

BUGS

SEE ALSO
AddDosNode

1.4 expansion.library/AddConfigDev

NAME
AddConfigDev - add a new ConfigDev structure to the system

SYNOPSIS
AddConfigDev(configDev)

A0

FUNCTION
This routine adds the specified ConfigDev structure to the
list of Configuration Devices in the system.

INPUTS
configDev - a valid ConfigDev structure.

RESULTS

EXCEPTIONS

SEE ALSO
RemConfigDev

BUGS

1.5 expansion.library/AllocBoardMem

NAME
AllocBoardMem - allocate standard device expansion memory

expansion 5 / 17

SYNOPSIS
startSlot = AllocBoardMem(slotSpec)
D0 D0

FUNCTION
This function allocates numslots of expansion space (each slot
is E_SLOTSIZE bytes). It returns the slot number of the
start of the expansion memory. The EC_MEMADDR macro may be
used to convert this to a memory address.

AllocBoardMem() knows about the intracacies of expansion
board hardware and will allocate the proper expansion
memory for each board type.

INPUTS
slotSpec - the memory size field of the Type byte of

an expansion board

RESULTS
startSlot - the slot number that was allocated, or -1 for error.

EXAMPLES
struct ExpansionRom *er;
slot = AllocBoardMem(er->er_Type & ERT_MEMMASK)

EXCEPTIONS
Not typically called by user code.

SEE ALSO
AllocExpansionMem, FreeExpansionMem, FreeBoardMem

BUGS

1.6 expansion.library/AllocConfigDev

NAME
AllocConfigDev - allocate a ConfigDev structure

SYNOPSIS
configDev = AllocConfigDev()
D0

FUNCTION
This routine returns the address of a ConfigDev structure.
It is provided so new fields can be added to the structure
without breaking old, existing code. The structure is cleared
when it is returned to the user.

INPUTS

RESULTS
configDev - either a valid ConfigDev structure or NULL.

EXCEPTIONS

expansion 6 / 17

SEE ALSO
FreeConfigDev

BUGS

1.7 expansion.library/AllocExpansionMem

NAME
AllocExpansionMem - allocate expansion memory

SYNOPSIS
startSlot = AllocExpansionMem(numSlots, slotOffset)
D0 D0 D1

FUNCTION
This function allocates numslots of expansion space (each slot
is E_SLOTSIZE bytes). It returns the slot number of the
start of the expansion memory. The EC_MEMADDR macro may be
used to convert this to a memory address.

Boards that fit the expansion architecture have alignment
rules. Normally a board must be on a binary boundary of its
size. Four and Eight megabyte boards have special rules.
User defined boards might have other special rules.

The routine AllocBoardMem() knows about all the allocation
rules for standard boards. Most users will want to use
that routine if they want memory for a standard expansion
device.

If AllocExpansionMem() succeeds, the startSlot will satisfy
the following equation:

(startSlot - slotOffset) MOD slotAlign = 0

INPUTS
numSlots - the number of slots required.
slotOffset - an offset from that boundary for startSlot.

RESULTS
startSlot - the slot number that was allocated, or -1 for error.

EXAMPLES
AllocExpansionMem(2, 0)

Tries to allocate 2 slots on a two slot boundary.

AllocExpansionMem(64, 32)

This is the allocation rule for 4 meg boards. It allocates
4 megabytes (64 slots) on an odd 2 meg boundary.

EXCEPTIONS
Not typically called by user code.

expansion 7 / 17

SEE ALSO
FreeExpansionMem, AllocBoardMem, FreeBoardMem

BUGS

1.8 expansion.library/ConfigBoard

NAME
ConfigBoard - configure a board

SYNOPSIS
error = ConfigBoard(board, configDev)
D0 A0 A1

FUNCTION
This routine configures an expansion board. The board
will generally live at E_EXPANSIONBASE, but the base is
passed as a parameter to allow future compatibility.
The configDev parameter must be a valid configDev that
has already had ReadExpansionRom() called on it.

ConfigBoard will allocate expansion memory and place
the board at its new address. It will update configDev
accordingly. If there is not enough expansion memory
for this board then an error will be returned.

INPUTS
board - the current address that the expansion board is

responding.
configDev - an initialized ConfigDev structure.

RESULTS
error - non-zero if there was a problem configuring this board

EXCEPTIONS
Not normally called by user code

SEE ALSO
FreeConfigDev

BUGS

1.9 expansion.library/ConfigChain

NAME
ConfigChain - configure the whole damn system

SYNOPSIS
error = ConfigChain(baseAddr)
D0 A0

FUNCTION

expansion 8 / 17

This is the big one! This routine will take a base address
(generally E_EXPANSIONBASE) and configure all the devices that
live there. This routine will call all the other routines
that might need to be called. All boards that are found will
be linked into the configuration list.

INPUTS
baseAddr - the base address to start looking for boards.

RESULTS
error - non-zero if something went wrong.

EXCEPTIONS
Not normally called by user code

SEE ALSO
FreeConfigDev

BUGS

1.10 expansion.library/FindConfigDev

NAME
FindConfigDev - find a matching ConfigDev entry

SYNOPSIS
configDev = FindConfigDev(oldConfigDev, manufacturer, product)
D0 A0 D0 D1

FUNCTION
This routine searches the list of existing ConfigDev
structures in the system and looks for one that has
the specified manufacturer and product codes.

If the oldConfigDev is NULL the the search is from the
start of the list of configuration devices. If it is
not null then it searches from the first configuration
device entry AFTER oldConfigDev.

A code of -1 is treated as a wildcard -- e.g. it matches
any manufacturer (or product)

INPUTS
oldConfigDev - a valid ConfigDev structure, or NULL to start

from the start of the list.
manufacturer - the manufacturer code being searched for, or

-1 to ignore manufacturer numbers.
product - the product code being searched for, or -1 to

ignore product numbers.

RESULTS
configDev - the next ConfigDev entry that matches the

manufacturer and product codes, or NULL if there
are no more matches.

expansion 9 / 17

EXCEPTIONS

EXAMPLES
/* to find all configdevs of the proper type */
struct ConfigDev *cd = NULL;

while(cd = FindConfigDev(cd, MANUFACTURER, PRODUCT)) {
/* do something with the returned ConfigDev */

}

SEE ALSO

BUGS

1.11 expansion.library/FreeBoardMem

NAME
FreeBoardMem - allocate standard device expansion memory

SYNOPSIS
FreeBoardMem(startSlot, slotSpec)

D0 D1

FUNCTION
This function frees numslots of expansion space (each slot
is E_SLOTSIZE bytes). It is the inverse function of
AllocBoardMem().

INPUTS
startSlot - a slot number in expansion space.
slotSpec - the memory size field of the Type byte of

an expansion board

RESULTS

EXAMPLES
struct ExpansionRom *er;
int startSlot;
int slotSpec;

slotSpec = er->er_Type & ERT_MEMMASK;
startSlot = AllocBoardMem(er->er_Type & ERT_MEMMAK);

if(startSlot != -1) {
FreeBoardMem(startSlot, slotSpec);

}

EXCEPTIONS
If the caller tries to free a slot that is already in the
free list, FreeBoardMem will Alert() (e.g. crash the
system).

Not normally called by user code

SEE ALSO

expansion 10 / 17

AllocExpansionMem, FreeExpansionMem, AllocBoardMem

BUGS

1.12 expansion.library/FreeConfigDev

NAME
FreeConfigDev - allocate a ConfigDev structure

SYNOPSIS
FreeConfigDev(configDev)

A0

FUNCTION
This routine frees a ConfigDev structure as returned by
AllocConfigDev.

INPUTS
configDev - a valid ConfigDev structure.

RESULTS

EXCEPTIONS

SEE ALSO
AllocConfigDev

BUGS

1.13 expansion.library/FreeExpansionMem

NAME
FreeExpansionMem - allocate standard device expansion memory

SYNOPSIS
FreeExpansionMem(startSlot, numSlots)

D0 D1

FUNCTION
This function allocates numslots of expansion space (each slot
is E_SLOTSIZE bytes). It is the inverse function of
AllocExpansionMem().

INPUTS
startSlot - the slot number that was allocated, or -1 for error.
numSlots - the number of slots to be freed.

RESULTS

EXAMPLES

EXCEPTIONS

expansion 11 / 17

If the caller tries to free a slot that is already in the
free list, FreeExpansionMem will Alert() (e.g. crash the
system).

Not normally called by user code

SEE ALSO
AllocExpansionMem, AllocBoardMem, FreeBoardMem

BUGS

1.14 expansion.library/GetCurrentBinding

NAME
GetCurrentBinding - sets static board configuration area

SYNOPSIS
actual = GetCurrentBinding(currentBinding, size)

A0 D0:16

FUNCTION
This function writes the contents of the "currentBinding"
structure out of a private place. It may be set via
SetCurrentBinding(). This is really a kludge, but it is
the only way to pass extra arguments to a newly configured
device.

A CurrentBinding structure has the name of the currently
loaded file, the product string that was associated with
this driver, and a pointer to the head of a singly linked
list of ConfigDev structures (linked through the cd_NextCD
field).

Many devices may not need this information; they have hard
coded into themselves their manufacture number. It is
recommended that you at least check that you can deal with
the product code in the linked ConfigDev structures.

INPUTS
currentBinding - a pointer to a CurrentBinding structure

size - the size of the user’s binddriver structure. No
more than this much data will be copied. If size is
larger than the libraries idea a CurrentBinding size,
then the structure will be null padded.

RESULTS
actual - the true size of a CurrentBinding structure is returned.

EXAMPLES

EXCEPTIONS

SEE ALSO
GetCurrentBinding

expansion 12 / 17

BUGS

1.15 expansion.library/ObtainConfigBinding

NAME
ObtainConfigBinding - try to get permission to bind drivers

SYNOPSIS
ObtainConfigBinding()

FUNCTION
ObtainConfigBinding gives permission to bind drivers to
ConfigDev structures. It exists so two drivers at once
do not try and own the same ConfigDev structure. This
call will block until it is safe proceed.

Individual drivers to not need to call this routine. It
is intended for BindDriver program, and others like it.
If your drivers won’t be loaded via the standard method,
you may need to lock out others.

It is crucially important that people lock out others
before loading new drivers. Much of the data that is used
to configure things is statically kept, and others need
to be kept from using it.

This call is build directly on Exec SignalSemaphore code
(e.g. ObtainSemaphore).

INPUTS

RESULTS

EXCEPTIONS

SEE ALSO
ReleaseConfigBinding

BUGS

1.16 expansion.library/ReadExpansionByte

NAME
ReadExpansionByte - read a byte nybble by nybble.

SYNOPSIS
byte = ReadExpansionByte(board, offset)
D0 A0 D0

FUNCTION
ReadExpansionByte reads a byte from a new-style expansion

expansion 13 / 17

board. These boards have their readable data organized
as a series of nybbles in memory. This routine reads
two nybbles and returns the byte value.

In general, this routine will only be called by ReadExpansionRom.

The offset is a byte offset into a ExpansionRom structure.
The actual memory address read will be four times larger.
The macros EROFFSET and ECOFFSET are provided to help get
these offsets from C.

INPUTS
board - a pointer to the base of a new style expansion board.
offset - a logical offset from the board base

RESULTS
byte - a byte of data from the expansion board, or -1 if there

was an error reading from the board.

EXAMPLES
byte = ReadExpansionByte(cd->BoardAddr, EROFFSET(er_Type));
ints = ReadExpansionByte(cd->BoardAddr, ECOFFSET(ec_Interrupt));

EXCEPTIONS
Not typically called by user code.

SEE ALSO
WriteExpansionByte, ReadExpansionRom

BUGS

1.17 expansion.library/ReadExpansionRom

NAME
ReadExpansionRom - read a boards configuration rom space

SYNOPSIS
error = ReadExpansionRom(board, configDev)
D0 A0 A1

FUNCTION
ReadExpansionRom reads a the rom portion of an expansion
device in to cd_Rom portion of a ConfigDev structure.
This routine knows how to detect whether or not there is
actually a board there,

In addition, the Rom portion of a new style expansion board
is encoded in ones-complement format (except for the first
two nybbles -- the er_Type field). ReadExpansionRom knows
about this and un-complements the appropriate fields.

INPUTS
board - a pointer to the base of a new style expansion board.
configDev - the ConfigDev structure that will be read in.
offset - a logical offset from the configdev base

expansion 14 / 17

RESULTS
error - If the board address does not contain a valid new style

expansion board, then error will be non-zero.

EXAMPLES
configDev = AllocConfigDev();
if(! configDev) panic();

error = ReadExpansionBoard(board, configDev);
if(! error) {

configDev->cd_BoardAddr = board;
ConfigBoard(configDev);

}

EXCEPTIONS
Not typically called by user code.

SEE ALSO
ReadExpansionByte, WriteExpansionByte

BUGS

1.18 expansion.library/ReleaseConfigBinding

NAME
ReleaseConfigBinding - allow others to bind to drivers

SYNOPSIS
ReleaseConfigBinding()

FUNCTION
This call should be used when you are done binding drivers
to ConfigDev entries. It releases the SignalSemaphore; this
allows others to bind their drivers to ConfigDev structures.

INPUTS

RESULTS

EXAMPLES

EXCEPTIONS

SEE ALSO
ObtainConfigBinding

BUGS

1.19 expansion.library/RemConfigDev

expansion 15 / 17

NAME
RemConfigDev - remove a ConfigDev structure from the system

SYNOPSIS
RemConfigDev(configDev)

A0

FUNCTION
This routine removes the specified ConfigDev structure from the
list of Configuration Devices in the system.

INPUTS
configDev - a valid ConfigDev structure.

RESULTS

EXCEPTIONS

SEE ALSO
AddConfigDev

BUGS

1.20 expansion.library/SetCurrentBinding

NAME
SetCurrentBinding - sets static board configuration area

SYNOPSIS
SetCurrentBinding(currentBinding, size)

A0 D0:16

FUNCTION
This function records the contents of the "currentBinding"
structure in a private place. It may be read via
GetCurrentBinding(). This is really a kludge, but it is
the only way to pass extra arguments to a newly configured
device.

A CurrentBinding structure has the name of the currently
loaded file, the product string that was associated with
this driver, and a pointer to the head of a singly linked
list of ConfigDev structures (linked through the cd_NextCD
field).

Many devices may not need this information; they have hard
coded into themselves their manufacture number. It is
recommended that you at least check that you can deal with
the product code in the linked ConfigDev structures.

INPUTS
currentBinding - a pointer to a CurrentBinding structure

size - the size of the user’s binddriver structure. No

expansion 16 / 17

more than this much data will be copied. If size is
larger than the libraries idea a CurrentBinding size,
then the structure will be null padded.

RESULTS

EXAMPLES

EXCEPTIONS

SEE ALSO
GetCurrentBinding

BUGS

1.21 expansion.library/WriteExpansionByte

NAME
WriteExpansionByte - write a byte nybble by nybble.

SYNOPSIS
error = WriteExpansionByte(board, offset, byte)
D0 A0 D0 D1

FUNCTION
WriteExpansionByte write a byte to a new-style expansion
board. These boards have their writeable data organized
as a series of nybbles in memory. This routine writes
two nybbles in a very carefull manner to work with all
types of new expansion boards.

To make certain types of board less expensive, an expansion
board’s write registers may be organized as either a
byte-wide or nybble-wide register. If it is nybble-wide
then it must latch the less significant nybble until the
more significant nybble is written. This allows the
following algorithm to work with either type of board:

write the low order nybble to bits D15-D12 of
byte (offset*4)+2

write the entire byte to bits D15-D8 of
byte (offset*4)

The offset is a byte offset into a ExpansionRom structure.
The actual memory address read will be four times larger.
The macros EROFFSET and ECOFFSET are provided to help get
these offsets from C.

INPUTS
board - a pointer to the base of a new style expansion board.
offset - a logical offset from the configdev base
byte - the byte of data to be written to the expansion board.

RESULTS

expansion 17 / 17

error - the routine will return a zero on success, non-zero if
there was a problem.

EXAMPLES
err = WriteExpansionByte(cd->BoardAddr, ECOFFSET(ec_Shutup), 0);
err = WriteExpansionByte(cd->BoardAddr, ECOFFSET(ec_Interrupt), 1);

EXCEPTIONS
Not typically called by user code.

SEE ALSO
ReadExpansionByte, ReadExpansionRom

BUGS

	expansion
	expansion.doc
	expansion.library/AddDosNode
	expansion.library/MakeDosNode
	expansion.library/AddConfigDev
	expansion.library/AllocBoardMem
	expansion.library/AllocConfigDev
	expansion.library/AllocExpansionMem
	expansion.library/ConfigBoard
	expansion.library/ConfigChain
	expansion.library/FindConfigDev
	expansion.library/FreeBoardMem
	expansion.library/FreeConfigDev
	expansion.library/FreeExpansionMem
	expansion.library/GetCurrentBinding
	expansion.library/ObtainConfigBinding
	expansion.library/ReadExpansionByte
	expansion.library/ReadExpansionRom
	expansion.library/ReleaseConfigBinding
	expansion.library/RemConfigDev
	expansion.library/SetCurrentBinding
	expansion.library/WriteExpansionByte

