
layers

layers ii

COLLABORATORS

TITLE :

layers

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

layers iii

Contents

1 layers 1

1.1 layers.doc . 1

1.2 layers.library/BeginUpdate . 1

1.3 layers.library/BehindLayer . 2

1.4 layers.library/CreateBehindLayer . 3

1.5 layers.library/CreateUpfrontLayer . 3

1.6 layers.library/DeleteLayer . 4

1.7 layers.library/DisposeLayerInfo . 5

1.8 layers.library/EndUpdate . 6

1.9 layers.library/FattenLayerInfo . 6

1.10 layers.library/InitLayers . 7

1.11 layers.library/InstallClipRegion . 8

1.12 layers.library/LockLayer . 8

1.13 layers.library/LockLayerInfo . 9

1.14 layers.library/LockLayers . 10

1.15 layers.library/MoveLayer . 10

1.16 layers.library/MoveLayerInFrontOf . 11

1.17 layers.library/NewLayerInfo . 12

1.18 layers.library/ScrollLayer . 12

1.19 layers.library/SizeLayer . 13

1.20 layers.library/SwapBitsRastPortClipRect . 13

1.21 layers.library/ThinLayerInfo . 14

1.22 layers.library/UnlockLayer . 15

1.23 layers.library/UnlockLayerInfo . 15

1.24 layers.library/UnlockLayers . 16

1.25 layers.library/UpfrontLayer . 16

1.26 layers.library/WhichLayer . 17

layers 1 / 17

Chapter 1

layers

1.1 layers.doc

BeginUpdate() MoveLayer()
BehindLayer() MoveLayerInFrontOf()
CreateBehindLayer() NewLayerInfo()
CreateUpfrontLayer() ScrollLayer()
DeleteLayer() SizeLayer()
DisposeLayerInfo() SwapBitsRastPortClipRect()
EndUpdate() ThinLayerInfo()
FattenLayerInfo() UnlockLayer()
InitLayers() UnlockLayerInfo()
InstallClipRegion() UnlockLayers()
LockLayer() UpfrontLayer()
LockLayerInfo() WhichLayer()
LockLayers()

1.2 layers.library/BeginUpdate

NAME
BeginUpdate -- Prepare to repair damaged layer.

SYNOPSIS
result = BeginUpdate(l)
d0 a0

BOOLEAN result;
struct Layer *l;

FUNCTION
Convert damage list to ClipRect list and swap in for
programmer to redraw through. This routine simulates
the ROM library environment. The idea is to only render in the
"damaged" areas, saving time over redrawing all of the layer.
The layer is locked against changes made by the layer library.

INPUTS
l - pointer to a layer

layers 2 / 17

RESULTS
result - TRUE if damage list converted to ClipRect list sucessfully.

FALSE if list conversion aborted. (probably out of memory)

BUGS
If BeginUpdate returns FALSE, programmer must abort the attempt to
refresh this layer and instead call EndUpdate(l, FALSE) to restore
original ClipRect and damage list.

SEE ALSO
EndUpdate, graphics/layers.h, graphics/clip.h

1.3 layers.library/BehindLayer

NAME
BehindLayer -- Put layer behind other layers.

SYNOPSIS
result = BehindLayer(dummy, l)
d0 a0 a1

BOOLEAN result;
LONG dummy;
struct Layer *l;

FUNCTION
Move this layer to the most behind position swapping bits
in and out of the display with other layers.
If other layers are REFRESH then collect their damage lists and
set the LAYERREFRESH bit in the Flags fields of those layers that
may be revealed. If this layer is a backdrop layer then
put this layer behind all other backdrop layers.
If this layer is NOT a backdrop layer then put in front of the
top backdrop layer and behind all other layers.

Note: this operation may generate refresh events in other layers
associated with this layer’s Layer_Info structure.

INPUTS
dummy - unused
l - pointer to a layer

RESULTS
result - TRUE if operation successful

FALSE if operation unsuccessful (probably out of memory)

BUGS

SEE ALSO
graphics/layers.h, graphics/clip.h

layers 3 / 17

1.4 layers.library/CreateBehindLayer

NAME
CreateBehindLayer -- Create a new layer behind all existing layers.

SYNOPSIS
result = CreateBehindLayer(li,bm,x0,y0,x1,y1,flags [,bm2])
d0 a0 a1 d0 d1 d2 d3 d4 [a2]

struct Layer *result;
struct Layer_Info *li;
struct BitMap *bm;
LONG x0,y0,x1,y1;
LONG flags;
struct BitMap *bm2;

FUNCTION
Create a new Layer of position and size (x0,y0)->(x1,y1)
Make this layer of type found in flags.
If SuperBitMap, use bm2 as pointer to real SuperBitMap,
and copy contents of Superbitmap into display layer.
If this layer is a backdrop layer then place it behind all
other layers including other backdrop layers. If this is
not a backdrop layer then place it behind all nonbackdrop
layers.

Note: when using SUPERBITMAP, you should also set LAYERSMART flag.

INPUTS
li - pointer to LayerInfo structure
bm - pointer to common BitMap used by all Layers
x0,y0 - upper left hand corner of layer
x1,y1 - lower right hand corner of layer
flags - various types of layers supported as bit sets.

(for bit definitions, see graphics/layers.h)
bm2 - pointer to optional Super BitMap

RESULTS
result - pointer to Layer structure if successful

NULL if not successful

BUGS

SEE ALSO
DeleteLayer, graphics/layers.h, graphics/clip.h, graphics/gfx.h

1.5 layers.library/CreateUpfrontLayer

NAME
CreateUpfrontLayer -- Create a new layer on top of existing layers.

SYNOPSIS
result = CreateUpfrontLayer(li,bm,x0,y0,x1,y1,flags [,bm2])
d0 a0 a1 d0 d1 d2 d3 d4 [a2]

layers 4 / 17

struct Layer *result;
struct Layer_Info *li;
struct BitMap *bm;
LONG x0,y0,x1,y1;
LONG flags;
struct BitMap *bm2;

FUNCTION
Create a new Layer of position and size (x0,y0)->(x1,y1)
and place it on top of all other layers.
Make this layer of type found in flags
if SuperBitMap, use bm2 as pointer to real SuperBitMap.
and copy contents of Superbitmap into display layer.

Note: when using SUPERBITMAP, you should also set LAYERSMART flag.

INPUTS
li - pointer to LayerInfo structure
bm - pointer to common BitMap used by all Layers
x0,y0 - upper left hand corner of layer
x1,y1 - lower right hand corner of layer
flags - various types of layers supported as bit sets.
bm2 - pointer to optional Super BitMap

RESULTS
result - pointer to Layer structure if successful

NULL if not successful

BUGS

SEE ALSO
DeleteLayer, graphics/layers.h, graphics/clip.h, graphics/gfx.h

1.6 layers.library/DeleteLayer

NAME
DeleteLayer -- delete layer from layer list.

SYNOPSIS
result = DeleteLayer(dummy, l)
d0 a0, a1

BOOLEAN result;
LONG dummy;
struct Layer *l;

FUNCTION
Remove this layer from the list of layers. Release memory
associated with it. Restore other layers that may have been
obscured by it. Trigger refresh in those that may need it.
If this is a superbitmap layer make sure SuperBitMap is current.
The SuperBitMap is not removed from the system but is available
for program use even though the rest of the layer information has
been deallocated.

layers 5 / 17

INPUTS
dummy - unused
l - pointer to a layer

RESULTS
result - TRUE if this layer successfully deleted from the system

FALSE if layer not deleted. (probably out of memory)

BUGS

SEE ALSO
graphics/layers.h, graphics/clip.h

1.7 layers.library/DisposeLayerInfo

NAME
DisposeLayerInfo -- Return all memory for LayerInfo to memory pool

SYNOPSIS
DisposeLayerInfo(li)

a0

struct Layer_Info *li;

FUNCTION
return LayerInfo and any other memory attached to this LayerInfo
to memory allocator.

Note: if you wish to delete the layers associated with this Layer_Info
structure, remember to call DeleteLayer() for each of the layers
before calling DisposeLayerInfo().

INPUTS
li - pointer to LayerInfo structure

EXAMPLE
-- delete the layers associated this Layer_Info structure --

DeleteLayer(li,simple_layer);
DeleteLayer(li,smart_layer);

- see documentation on DeleteLayer about deleting SuperBitMap layers -
my_super_bitmap_ptr = super_layer->SuperBitMap;
DeleteLayer(li,super_layer);

-- now dispose of the Layer_Info structure itself --
DisposeLayerInfo(li);

BUGS

SEE ALSO
DeleteLayer, graphics/layers.h

layers 6 / 17

1.8 layers.library/EndUpdate

NAME
EndUpdate -- remove damage list and restore state of layer to normal.

SYNOPSIS
EndUpdate(l, flag)

a0 d0

struct Layer *l;
USHORT flag;

FUNCTION
After the programmer has redrawn his picture he calls this
routine to restore the ClipRects to point to his standard
layer tiling. The layer is then unlocked for access by the
layer library.

Note: use flag = FALSE if you are only making a partial update.
You may use the other region functions (graphics functions such as
OrRectRegion, AndRectRegion, and XorRectRegion) to clip adjust
the DamageList to reflect a partial update.

INPUTS
l - pointer to a layer
flag - use TRUE if update was completed. The damage list is cleared.

use FALSE if update not complete. The damage list is retained.

EXAMPLE
-- begin update for first part of two-part refresh --
BeginUpdate(my_layer);

-- do some refresh, but not all --
my_partial_refresh_routine(my_layer);

-- end update, false (not completely done refreshing yet) --
EndUpdate(my_layer, FALSE);

-- begin update for last part of refresh --
BeginUpdate(my_layer);

-- do rest of refresh --
my_complete_refresh_routine(my_layer);

-- end update, true (completely done refreshing now) --
EndUpdate(my_layer, TRUE);

BUGS

SEE ALSO
BeginUpdate, graphics/layers.h, graphics/clip.h

1.9 layers.library/FattenLayerInfo

layers 7 / 17

NAME
FattenLayerInfo -- convert 1.0 LayerInfo to 1.1 LayerInfo
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

SYNOPSIS
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE
FattenLayerInfo(li)

a0

struct Layer_Info *li;
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

FUNCTION
V1.1 software and any later releases need to have more info in the
Layer_Info structure. To do this in a 1.0 supportable manner requires
allocation and deallocation of the memory whenever most
layer library functions are called. To prevent unnecessary
allocation/deallocation FattenLayerInfo will preallocate the
necessary data structures and fake out the layer library into
thinking it has a LayerInfo gotten from NewLayerInfo.
NewLayerInfo is the approved method for getting this structure.
When a program needs to give up the LayerInfo structure it
must call ThinLayerInfo before freeing the memory. ThinLayerInfo
is not necessary if New/DisposeLayerInfo are used however.

INPUTS
li - pointer to LayerInfo structure

BUGS

SEE ALSO
NewLayerInfo, ThinLayerInfo, DisposeLayerInfo, graphics/layers.h

1.10 layers.library/InitLayers

NAME
InitLayers -- Initialize Layer_Info structure
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

SYNOPSIS
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE
InitLayers(li)

a0

struct Layer_Info *li;
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

FUNCTION
Initialize Layer_Info structure in preparation to use
other layer operations on this list of layers.
Make the Layers unlocked (open), available to layer operations.

INPUTS
li - pointer to LayerInfo structure

layers 8 / 17

BUGS

SEE ALSO
NewLayerInfo, DisposeLayerInfo, graphics/layers.h

1.11 layers.library/InstallClipRegion

NAME
InstallClipRegion -- Install clip region in layer

SYNOPSIS
oldclipregion = InstallClipRegion(l, region)
d0 a0 a1

struct Region *oldclipregion;
struct Layer *l;
struct Region *region;

FUNCTION
Installs a transparent Clip region in the layer. All
subsequent graphics calls will be clipped to this region.
You MUST remember to call InstallClipRegion(l,NULL) before
calling DeleteLayer(l) or the Intuition function CloseWindow()
if you have installed a non-NULL ClipRegion in l.

INPUTS
l - pointer to a layer
region - pointer to a region

RESULTS
oldclipregion - The pointer to the previous ClipRegion that

was installed. Returns NULL if no previous ClipRegion installed.

Note: If the system runs out of memory while computing the
resulting ClipRects the LAYERS_CLIPRECTS_LOST bit will
be set in l->Flags.

BUGS
If the system runs out of memory during normal layer operations,
the ClipRect list may get swept away and not restored.
As soon as there is enough memory and the layer library
gets called again the ClipRect list will be rebuilt.

SEE ALSO
BeginUpdate EndUpdate,
graphics/layers.h, graphics/clip.h, graphics/regions.h

1.12 layers.library/LockLayer

NAME
LockLayer -- Lock layer to make changes to ClipRects.

layers 9 / 17

SYNOPSIS
LockLayer(dummy, l)

a0 a1

LONG dummy;
struct Layer *l;

FUNCTION
Make this layer unavailable for other tasks to use.
If another task is already using this layer then wait for
it to complete and then reserve the layer for your own use.
(this function does the same thing as graphics.library/LockLayerRom)

Note: if you wish to lock MORE THAN ONE layer at a time, you
must call LockLayerInfo() before locking those layers and
then call UnlockLayerInfo() when you have finished. This
is to prevent system "deadlocks".

Further Note: while you hold the lock on a layer, Intuition will block
on operations such as windowsizing, dragging, menus, and depth
arranging windows in this layer’s screen. It is recommended that
YOU do not make Intuition function calls while the layer is locked.

INPUTS
dummy - unused
l - pointer to a layer

BUGS

SEE ALSO
UnlockLayer, LockLayerInfo, UnlockLayerInfo,
graphics.library/LockLayerRom, graphics/layers.h, graphics/clip.h

1.13 layers.library/LockLayerInfo

NAME
LockLayerInfo -- Lock the LayerInfo structure.

SYNOPSIS
LockLayerInfo(li)

a0

struct Layer_Info *li;

FUNCTION
Before doing an operation that requires the LayerInfo
structure, make sure that no other task is also using the
LayerInfo structure. LockLayerInfo() returns when the
LayerInfo belongs to this task. There should be
an UnlockLayerInfo for every LockLayerInfo.

Note: All layer routines presently LockLayerInfo() when they
start up and UnlockLayerInfo() as they exit. Programmers
will need to use these Lock/Unlock routines if they wish

layers 10 / 17

to do something with the LayerStructure that is not
supported by the layer library.

INPUTS
li - pointer to Layer_Info structure

BUGS

SEE ALSO
UnlockLayerInfo, graphics/layers.h

1.14 layers.library/LockLayers

NAME
LockLayers -- lock all layers from graphics output.

SYNOPSIS
LockLayers(li)

a0

struct Layer_Info *li;

FUNCTION
First calls LockLayerInfo()
Make all layers in this layer list locked.

INPUTS
li - pointer to Layer_Info structure

BUGS

SEE ALSO
LockLayer, LockLayerInfo, graphics/layers.h

1.15 layers.library/MoveLayer

NAME
MoveLayer -- Move layer to new position in BitMap.

SYNOPSIS
result = MoveLayer(dummy, l, dx, dy)
d0 a0 a1 d0 d1

BOOLEAN result;
LONG dummmy;
struct Layer *l;
LONG dx,dy;

FUNCTION
Move this layer to new position in shared BitMap.
If any refresh layers become revealed, collect damage and
set REFRESH bit in layer Flags.

layers 11 / 17

INPUTS
dummy - unused
l - pointer to a nonbackdrop layer
dx - delta to add to current x position
dy - delta to add to current y position

RETURNS
result - TRUE if operation successful

FALSE if failed (out of memory)

BUGS
May not handle (dx,dy) which attempts to move the layer ouside the
layer’s RastPort->BitMap bounds .

SEE ALSO
graphics/layers.h, graphics/clip.h

1.16 layers.library/MoveLayerInFrontOf

NAME
MoveLayerInFrontOf-- Put layer in front of another layer.

SYNOPSIS
result = MoveLayerInFrontOf(layertomove, targetlayer)

a0 a1
BOOLEAN result;
struct Layer *layertomove;
struct Layer *targetlayer;

FUNCTION
Move this layer in front of target layer, swapping bits
in and out of the display with other layers.
If this is a refresh layer then collect damage list and
set the LAYERREFRESH bit in layer->Flags if redraw required.

Note: this operation may generate refresh events in other layers
associated with this layer’s Layer_Info structure.

INPUTS
layertomove - pointer to layer which should be moved
targetlayer - pointer to target layer in front of which to move layer

RESULTS
result = TRUE if operation successful

FALSE if operation unsuccessful (probably out of memory)

BUGS

SEE ALSO
graphics/layers.h

layers 12 / 17

1.17 layers.library/NewLayerInfo

NAME
NewLayerInfo -- Allocate and Initialize full Layer_Info structure.

SYNOPSIS
result = NewLayerInfo()
d0

struct Layer_Info *result;

FUNCTION
Allocate memory required for full Layer_Info structure.
Initialize Layer_Info structure in preparation to use
other layer operations on this list of layers.
Make the Layer_Info unlocked (open).

INPUTS
None

RESULT
result- pointer to Layer_Info structure if successful

NULL if not enough memory

BUGS

SEE ALSO
graphics/layers.h

1.18 layers.library/ScrollLayer

NAME
ScrollLayer -- Scroll around in a superbitmap, translate coordinates

in non-superbitmap layer.

SYNOPSIS
ScrollLayer(dummy, l, dx, dy)

a0 a1 d0 d1

LONG dummy;
struct Layer *l;
LONG dx,dy;

FUNCTION
For a SuperBitMap Layer:
Update the SuperBitMap from the layer display, then copy bits
between Layer and SuperBitMap to reposition layer over different
portion of SuperBitMap.
For nonSuperBitMap layers, all (x,y) pairs are adjusted by
the scroll(x,y) value in the layer. To cause (0,0) to actually
be drawn at (3,10) use ScrollLayer(-3,-10). This can be useful
along with InstallClipRegion to simulate Intuition GZZWindows
without the overhead of an extra layer.

layers 13 / 17

INPUTS
dummy - unused
l - pointer to a layer
dx - delta to add to current x scroll value
dy - delta to add to current y scroll value

BUGS
May not handle (dx,dy) which attempts to move the layer ouside the
layer’s SuperBitMap bounds.

SEE ALSO
graphics/layers.h

1.19 layers.library/SizeLayer

NAME
SizeLayer -- Change the size of this nonbackdrop layer.

SYNOPSIS
result = SizeLayer(dummy, l, dx, dy)
d0 a0 a1 d0 d1

BOOLEAN result;
LONG dummy;
struct Layer *l;
LONG dx, dy;

FUNCTION
Change the size of this layer by (dx,dy). The lower right hand
corner is extended to make room for the larger layer.
If there is SuperBitMap for this layer then copy pixels into
or out of the layer depending on whether the layer increases or
decreases in size. Collect damage list for those layers that may
need to be refreshed if damage occurred.

INPUTS
dummy - unused
l - pointer to a nonbackdrop layer
dx - delta to add to current x size
dy - delta to add to current y size

RESULTS
result - TRUE if operation successful

FALSE if failed (out of memory)

BUGS

SEE ALSO
graphics/layers.h, graphics/clip.h

1.20 layers.library/SwapBitsRastPortClipRect

layers 14 / 17

NAME
SwapBitsRastPortClipRect -- Swap bits between common bitmap

and obscured ClipRect

SYNOPSIS
SwapBitsRastPortClipRect(rp, cr)

a0 a1

struct RastPort *rp;
struct ClipRect *cr;

FUNCTION
Support routine useful for those that need to do some
operations not done by the layer library. Allows programmer
to swap the contents of a small BitMap with a subsection of
the display. This is accomplished without using extra memory.
The bits in the display RastPort are exchanged with the
bits in the ClipRect’s BitMap.

Note: the ClipRect structures which the layer library allocates are
actually a little bigger than those described in the graphics/clip.h
include file. So be warned that it is not a good idea to have
instances of cliprects in your code.

INPUTS
rp - pointer to rastport
cr - pointer to cliprect to swap bits with

BUGS

SEE ALSO
graphics/clip.h, graphics/rastport.h, graphics/clip.h

1.21 layers.library/ThinLayerInfo

NAME
ThinLayerInfo -- convert 1.1 LayerInfo to 1.0 LayerInfo.
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

SYNOPSIS
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE
ThinLayerInfo(li)

a0

struct Layer_Info *li;
OBSOLETE OBSOLETE OBSOLETE OBSOLETE OBSOLETE

FUNCTION
return the extra memory needed that was allocated with
FattenLayerInfo. This is must be done prior to freeing
the Layer_Info structure itself. V1.1 software should be
using DisposeLayerInfo.

INPUTS

layers 15 / 17

li - pointer to LayerInfo structure

BUGS

SEE ALSO
DisposeLayerInfo, FattenLayerInfo, graphics/layers.h

1.22 layers.library/UnlockLayer

NAME
UnlockLayer -- Unlock layer and allow graphics routines to use it.

SYNOPSIS
UnlockLayer(l)

a0

struct Layer *l;

FUNCTION
When finished changing the ClipRects or whatever you were
doing with this layer you must call UnlockLayer() to allow
other tasks to proceed with graphic output to the layer.

INPUTS
l - pointer to a layer

BUGS

SEE ALSO
graphics/layers.h, graphics/clip.h

1.23 layers.library/UnlockLayerInfo

NAME
UnlockLayerInfo -- Unlock the LayerInfo structure.

SYNOPSIS
UnlockLayerInfo(li)

a0

struct Layer_Info *li;

FUNCTION
After the operation is complete that required a LockLayerInfo,
unlock the LayerInfo structure so that other tasks may
affect the layers.

INPUTS
li - pointer to the Layer_Info structure

BUGS

layers 16 / 17

SEE ALSO
LockLayerInfo, graphics/layers.h

1.24 layers.library/UnlockLayers

NAME
UnlockLayers -- Unlock all layers from graphics output.

Restart graphics output to layers that have been waiting

SYNOPSIS
UnlockLayers(li)

a0

struct Layer_Info *li;

FUNCTION
Make all layers in this layer list unlocked.
Then call UnlockLayerInfo

INPUTS
li - pointer to the Layer_Info structure

BUGS

SEE ALSO
LockLayers, UnlockLayer, graphics/layers.h

1.25 layers.library/UpfrontLayer

NAME
UpfrontLayer -- Put layer in front of all other layers.

SYNOPSIS
result = UpfrontLayer(dummy, l)
do a0 a1

BOOLEAN result;
LONG dummy;
struct Layer *l;

FUNCTION
Move this layer to the most upfront position swapping bits
in and out of the display with other layers.
If this is a refresh layer then collect damage list and
set the LAYERREFRESH bit in layer->Flags if redraw required.
By clearing the BACKDROP bit in the layers Flags you may
bring a Backdrop layer up to the front of all other layers.

Note: this operation may generate refresh events in other layers
associated with this layer’s Layer_Info structure.

INPUTS

layers 17 / 17

dummy - unused
l - pointer to a nonbackdrop layer

RESULTS
result - TRUE if operation successful

FALSE if operation unsuccessful (probably out of memory)

BUGS

SEE ALSO
graphics/layers.h

1.26 layers.library/WhichLayer

NAME
WhichLayer -- Which Layer is this point in?

SYNOPSIS
layer = WhichLayer(li, x, y)
d0 a0 d0 d1

FUNCTION
Starting at the topmost layer check to see if this point (x,y)

occurs in this layer. If it does return the pointer to this
layer. Return NULL if there is no layer at this point.

INPUTS
li = pointer to LayerInfo structure
(x,y) = coordinate in the BitMap

RESULTS
layer - pointer to the topmost layer that this point is in

NULL if this point is not in a layer

SEE ALSO
graphics/layers.h

	layers
	layers.doc
	layers.library/BeginUpdate
	layers.library/BehindLayer
	layers.library/CreateBehindLayer
	layers.library/CreateUpfrontLayer
	layers.library/DeleteLayer
	layers.library/DisposeLayerInfo
	layers.library/EndUpdate
	layers.library/FattenLayerInfo
	layers.library/InitLayers
	layers.library/InstallClipRegion
	layers.library/LockLayer
	layers.library/LockLayerInfo
	layers.library/LockLayers
	layers.library/MoveLayer
	layers.library/MoveLayerInFrontOf
	layers.library/NewLayerInfo
	layers.library/ScrollLayer
	layers.library/SizeLayer
	layers.library/SwapBitsRastPortClipRect
	layers.library/ThinLayerInfo
	layers.library/UnlockLayer
	layers.library/UnlockLayerInfo
	layers.library/UnlockLayers
	layers.library/UpfrontLayer
	layers.library/WhichLayer

