
graphics

graphics ii

COLLABORATORS

TITLE :

graphics

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

graphics iii

Contents

1 graphics 1

1.1 graphics.doc . 1

1.2 graphics.library/AddAnimOb . 2

1.3 graphics.library/AddBob . 2

1.4 graphics.library/AddFont . 3

1.5 graphics.library/AddVSprite . 3

1.6 graphics.library/AllocRaster . 3

1.7 graphics.library/AndRectRegion . 4

1.8 graphics.library/AndRegionRegion . 5

1.9 graphics.library/Animate . 5

1.10 graphics.library/AreaCircle . 6

1.11 graphics.library/AreaDraw . 6

1.12 graphics.library/AreaEllipse . 7

1.13 graphics.library/AreaEnd . 7

1.14 graphics.library/AreaMove . 8

1.15 graphics.library/AskFont . 9

1.16 graphics.library/AskSoftStyle . 9

1.17 graphics.library/AttemptLockLayerRom . 10

1.18 graphics.library/BltBitMap . 10

1.19 graphics.library/BltBitMapRastPort . 12

1.20 graphics.library/BltClear . 13

1.21 graphics.library/BltMaskBitMapRastPort . 13

1.22 graphics.library/BltPattern . 14

1.23 graphics.library/BltTemplate . 15

1.24 graphics.library/CBump . 16

1.25 graphics.library/CEND . 16

1.26 graphics.library/ChangeSprite . 17

1.27 graphics.library/CINIT . 18

1.28 graphics.library/ClearEOL . 18

1.29 graphics.library/ClearRectRegion . 19

graphics iv

1.30 graphics.library/ClearRegion . 20

1.31 graphics.library/ClearScreen . 20

1.32 graphics.library/ClipBlit . 20

1.33 graphics.library/CloseFont . 21

1.34 graphics.library/CMOVE . 22

1.35 graphics.library/CopySBitMap . 22

1.36 graphics.library/CWAIT . 23

1.37 graphics.library/DisownBlitter . 24

1.38 graphics.library/DisposeRegion . 24

1.39 graphics.library/DoCollision . 24

1.40 graphics.library/Draw . 25

1.41 graphics.library/DrawEllipse . 25

1.42 graphics.library/DrawGList . 26

1.43 graphics.library/Flood . 27

1.44 graphics.library/FreeColorMap . 27

1.45 graphics.library/FreeCopList . 28

1.46 graphics.library/FreeCprList . 28

1.47 graphics.library/FreeGBuffers . 29

1.48 graphics.library/FreeRaster . 29

1.49 graphics.library/FreeSprite . 30

1.50 graphics.library/FreeVPortCopLists . 31

1.51 graphics.library/GetColorMap . 31

1.52 graphics.library/GetGBuffers . 32

1.53 graphics.library/GetRGB4 . 33

1.54 graphics.library/GetSprite . 33

1.55 graphics.library/InitArea . 34

1.56 graphics.library/InitBitMap . 35

1.57 graphics.library/InitGels . 35

1.58 graphics.library/InitGMasks . 36

1.59 graphics.library/InitMasks . 36

1.60 graphics.library/InitRastPort . 37

1.61 graphics.library/InitTmpRas . 38

1.62 graphics.library/InitView . 38

1.63 graphics.library/InitVPort . 39

1.64 graphics.library/LoadRGB4 . 39

1.65 graphics.library/LoadView . 40

1.66 graphics.library/LockLayerRom . 41

1.67 graphics.library/MakeVPort . 41

1.68 graphics.library/Move . 42

graphics v

1.69 graphics.library/MoveSprite . 43

1.70 graphics.library/MrgCop . 43

1.71 graphics.library/NewRegion . 44

1.72 graphics.library/OpenFont . 45

1.73 graphics.library/OrRectRegion . 45

1.74 graphics.library/OrRegionRegion . 46

1.75 graphics.library/OwnBlitter . 46

1.76 graphics.library/PolyDraw . 47

1.77 graphics.library/QBlit . 48

1.78 graphics.library/QBSBlit . 48

1.79 graphics.library/ReadPixel . 49

1.80 graphics.library/RectFill . 50

1.81 graphics.library/RemBob . 50

1.82 graphics.library/RemFont . 51

1.83 graphics.library/RemIBob . 51

1.84 graphics.library/RemVSprite . 52

1.85 graphics.library/ScrollRaster . 52

1.86 graphics.library/ScrollVPort . 53

1.87 graphics.library/SetAPen . 54

1.88 graphics.library/SetBPen . 54

1.89 graphics.library/SetCollision . 55

1.90 graphics.library/SetDrMd . 55

1.91 graphics.library/SetFont . 56

1.92 graphics.library/SetOPen . 56

1.93 graphics.library/SetRast . 57

1.94 graphics.library/SetRGB4 . 58

1.95 graphics.library/SetRGB4CM . 58

1.96 graphics.library/SetSoftStyle . 59

1.97 graphics.library/SortGList . 59

1.98 graphics.library/SyncSBitMap . 60

1.99 graphics.library/Text . 61

1.100graphics.library/TextLength . 61

1.101graphics.library/UnlockLayerRom . 62

1.102graphics.library/VBeamPos . 63

1.103graphics.library/WaitBlit . 63

1.104graphics.library/WaitBOVP . 64

1.105graphics.library/WaitTOF . 65

1.106graphics.library/WritePixel . 65

1.107graphics.library/XorRectRegion . 66

1.108graphics.library/XorRegionRegion . 66

graphics 1 / 67

Chapter 1

graphics

1.1 graphics.doc

AddAnimOb() DisposeRegion() OrRegionRegion()
AddBob() DoCollision() OwnBlitter()
AddFont() Draw() PolyDraw()
AddVSprite() DrawEllipse() QBlit()
AllocRaster() DrawGList() QBSBlit()
AndRectRegion() Flood() ReadPixel()
AndRegionRegion() FreeColorMap() RectFill()
Animate() FreeCopList() RemBob()
AreaCircle() FreeCprList() RemFont()
AreaDraw() FreeGBuffers() RemIBob()
AreaEllipse() FreeRaster() RemVSprite()
AreaEnd() FreeSprite() ScrollRaster()
AreaMove() FreeVPortCopLists() ScrollVPort()
AskFont() GetColorMap() SetAPen()
AskSoftStyle() GetGBuffers() SetBPen()
AttemptLockLayerRom() GetRGB4() SetCollision()
BltBitMap() GetSprite() SetDrMd()
BltBitMapRastPort() InitArea() SetFont()
BltClear() InitBitMap() SetOPen()
BltMaskBitMapRastPort() InitGels() SetRast()
BltPattern() InitGMasks() SetRGB4()
BltTemplate() InitMasks() SetRGB4CM()
CBump() InitRastPort() SetSoftStyle()
CEND InitTmpRas() SortGList()
ChangeSprite() InitView() SyncSBitMap()
CINIT InitVPort() Text()
ClearEOL() LoadRGB4() TextLength()
ClearRectRegion() LoadView() UnlockLayerRom()
ClearRegion() LockLayerRom() VBeamPos()
ClearScreen() MakeVPort() WaitBlit()
ClipBlit() Move() WaitBOVP()
CloseFont() MoveSprite() WaitTOF()
CMOVE MrgCop() WritePixel()
CopySBitMap() NewRegion() XorRectRegion()
CWAIT OpenFont() XorRegionRegion()
DisownBlitter() OrRectRegion()

graphics 2 / 67

1.2 graphics.library/AddAnimOb

NAME
AddAnimOb -- Add an AnimOb to the linked list of AnimObs.

SYNOPSIS
AddAnimOb(anOb, anKey, rp)

a0 a1 a2

struct AnimOb *anOb,**anKey;
struct RastPort *rp;

FUNCTION
Links this AnimOb into the current list pointed to by animKey.
Initializes all the Timers of the AnimOb’s components.
Calls AddBob with each component’s Bob.
rp->GelsInfo must point to an initialized GelsInfo structure.

INPUTS
anOb = pointer to the AnimOb structure to be added to the list
anKey = address of a pointer to the first AnimOb in the list

(anKey = NULL if there are no AnimObs in the list so far)
rp = pointer to a valid RastPort

BUGS

SEE ALSO
Animate graphics/rastport.h graphics/gels.h

1.3 graphics.library/AddBob

NAME
AddBob -- Adds a Bob to current gel list.

SYNOPSIS
AddBob(Bob, rp)

a0 a1

struct Bob *Bob;
struct RastPort *rp;

FUNCTION
Sets up the system Bob flags, then links this gel into the list

via AddVSprite.

INPUTS
Bob = pointer to the Bob structure to be added to the gel list
rp = pointer to a RastPort structure

BUGS

SEE ALSO
InitGels AddVSprite graphics/gels.h graphics/rastport.h

graphics 3 / 67

1.4 graphics.library/AddFont

NAME
AddFont -- add a font to the system list

SYNOPSIS
AddFont(textFont)

a1

struct TextFont *textFont;

FUNCTION
This function adds the text font to the system, making it
available for use by any application. The font added must be
in public memory, and remain until successfully removed.

INPUTS
textFont - a TextFont structure in public ram.

BUGS

SEE ALSO
SetFont RemFont graphics/text.h

1.5 graphics.library/AddVSprite

NAME
AddVSprite -- Add a VSprite to the current gel list.

SYNOPSIS
AddVSprite(vs, rp)

a0 a1

struct VSprite *vs;
struct RastPort *rp;

FUNCTION
Sets up the system VSprite flags
Links this VSprite into the current gel list using its Y,X

INPUTS
vs = pointer to the VSprite structure to be added to the gel list
rp = pointer to a RastPort structure

BUGS

SEE ALSO
InitGels graphics/rastport.h graphics/gels.h

1.6 graphics.library/AllocRaster

graphics 4 / 67

NAME
AllocRaster -- Allocate space for a bitplane.

SYNOPSIS
planeptr = AllocRaster(width, height)

d0 d0:16 d1:16

PLANEPTR planeptr;
USHORT width,height;

FUNCTION
This function calls the memory allocation routines
to allocate memory space for a bitplane width bits
wide and height bits high.

INPUTS
width - number of bits wide for bitplane
height - number of rows in bitplane

RESULT
planeptr - pointer to first word in bitplane

If unable to allocate space then planeptr will be NULL.

BUGS

SEE ALSO
FreeRaster graphics/gfx.h

1.7 graphics.library/AndRectRegion

NAME
AndRectRegion -- Perform 2d AND operation of rectangle

with region, leaving result in region.

SYNOPSIS
AndRectRegion(region,rectangle)

a0 a1

struct Region *region;
struct Rectangle *rectangle;

FUNCTION
Clip away any portion of the region that exists outside
of the rectangle. Leave the result in region.

INPUTS
region - pointer to Region structure
rectangle - pointer to Rectangle structure

BUGS

SEE ALSO
AndRegionRegion OrRectRegion graphics/regions.h

graphics 5 / 67

1.8 graphics.library/AndRegionRegion

NAME
AndRegionRegion -- Perform 2d AND operation of one region

with second region, leaving result in second region.

SYNOPSIS
status = AndRegionRegion(region1,region2)

d0 a0 a1

BOOL status;
struct Region *region1, *region2;

FUNCTION
Remove any portion of region2 that is not in region1.

INPUTS
region1 - pointer to Region structure
region2 - pointer to Region structure to use and for result

RESULTS
status - return TRUE if successful operation

return FALSE if ran out of memory

BUGS

SEE ALSO
OrRegionRegion AndRectRegion graphics/regions.h

1.9 graphics.library/Animate

NAME
Animate -- Processes every AnimOb in the current animation list.

SYNOPSIS
Animate(anKey, rp)

a0 a1

struct AnimOb **anKey;
struct RastPort *rp;

FUNCTION
For every AnimOb in the list

- update its location and velocities
- call the AnimOb’s special routine if one is supplied
- for each component of the AnimOb

- if this sequence times out, switch to the new one
- call this component’s special routine if one is supplied
- set the sequence’s VSprite’s y,x coordinates based

on whatever these routines cause

INPUTS
key = address of the variable that points to the head AnimOb
rp = pointer to the RastPort structure

graphics 6 / 67

BUGS

SEE ALSO
AddAnimOb graphics/gels.h graphics/rastport.h

1.10 graphics.library/AreaCircle

NAME
AreaCircle -- add a circle to areainfo list for areafill.

SYNOPSIS
error = (int) AreaCircle(rp, cx, cy, radius)
D0 A1 D0 D1 D2

LONG error;
struct RastPort *rp;
SHORT cx, cy;
SHORT radius;

FUNCTION
Add circle to the vector buffer.

INPUTS
rp - pointer to a RastPort structure

(cx, cy) - are coordinates of a "centerpoint" in the raster
radius is the radius of the circle to draw around the centerpoint

This function is a macro which calls
AreaEllipse(rp,cx,cy,radius,radius).

RESULTS
0 if no error
-1 if no space left in vector list

SEE ALSO
AreaMove, AreaDraw, AreaCircle, InitArea, AreaEnd, graphics/rastport.h
graphics/gfxmacros.h

1.11 graphics.library/AreaDraw

NAME
AreaDraw -- Add a point to a list of end points for areafill.

SYNOPSIS
error = AreaDraw(rp, x, y)

d0 A1 D0:16 D1:16

LONG error;
struct RastPort *rp;
SHORT x,y;

graphics 7 / 67

FUNCTION
Add point to the vector buffer.

INPUTS
rp - points to a RastPort structure
x,y - are coordinates of a point in the raster

RETURNS
0 if no error
-1 if no space left in vector list

BUGS

SEE ALSO
AreaMove InitArea AreaEnd graphics/rastport.h

1.12 graphics.library/AreaEllipse

NAME
AreaEllipse -- add a ellipse to areainfo list for areafill.

SYNOPSIS
error = AreaEllipse(rp, cx, cy, a, b)
d0 a1 d0:16 d1:16 d2:16 d3:16

LONG error;
struct RastPort *rp;
SHORT cx, cy;
SHORT a, b;

FUNCTION
Add ellipse to the vector buffer.

INPUTS
rp - pointer to a RastPort structure
cx - x coordinate of the centerpoint relative to the rastport.
cy - y coordinate of the centerpoint relative to the rastport.
a - the horizontal radius of the ellipse (note: a must be > 0)
b - the vertical radius of the ellipse (note: b must be > 0)

RESULTS
0 if no error
-1 if no space left in vector list

SEE ALSO
AreaMove, AreaDraw, AreaCircle, InitArea, AreaEnd, graphics/rastport.h

1.13 graphics.library/AreaEnd

NAME
AreaEnd -- Process table of vectors and produce areafill.

graphics 8 / 67

SYNOPSIS
error = AreaEnd(rp)

d0 A1

LONG error;
struct RastPort *rp;

FUNCTION
Trigger the filling operation.
Process the vector buffer and generate required
fill into the raster planes. After the fill is
complete reinitialize for the next AreaMove. Use
the raster set up by InitTmpRas when generating an
areafill mask.

RESULT
Fill the area enclosed by the definitions in the vector table.
Returns -1 if an error occured anywhere.
Returns 0 if no error.

INPUTS
rp points to a RastPort structure

BUGS

SEE ALSO
InitArea AreaMove AreaDraw AreaEllipse graphics/rastport.h

1.14 graphics.library/AreaMove

NAME
AreaMove -- Define a new starting point for a new

shape in the vector list.

SYNOPSIS
error = AreaMove(rp, x, y)
d0 a1 d0:16 d1:16

LONG error;
struct RastPort *rp;
SHORT x,y;

FUNCTION
Close the last polygon and start another polygon
at (x,y). Enter necessary points in vector
buffer. Cosing a polygon may result in the generation
of another AreaDraw() to close previous polygon.
Remember to have an initialized AreaInfo structure attached
to the RastPort.

INPUTS
rp - points to a RastPort structure
x,y - positions in the raster

graphics 9 / 67

RETURNS
0 if no error
-1 if no space left in vector list

BUGS

SEE ALSO
InitArea AreaDraw AreaEllipse AreaEnd graphics/rastport.h

1.15 graphics.library/AskFont

NAME
AskFont -- get the text attributes of the current font

SYNOPSIS
AskFont(rp, textAttr)

a1 a0

struct RastPort *rp;
struct TextAttr *textAttr;

FUNCTION
This function fills the text attributes structure with the
attributes of the current font in the RastPort.

INPUTS
rp - the RastPort from which the text attributes are extracted
textAttr - the TextAttr structure to be filled

BUGS

SEE ALSO
graphics/text.h

1.16 graphics.library/AskSoftStyle

NAME
AskSoftStyle -- Get the soft style bits of the current font.

SYNOPSIS
enable = AskSoftStyle(rp)

d0 a1

ULONG enable;
struct RastPort *rp;

FUNCTION
This function returns those style bits of the current font
that are not intrinsic in the font itself, but
algorithmically generated. These are the bits that are
valid to set in the enable mask for SetSoftStyle

graphics 10 / 67

INPUTS
rp - the RastPort from which the font and style are extracted.

RESULTS
enable - those bits in the style algorithmically generated

Style bits that are not defined are also set.

BUGS

SEE ALSO
SetSoftStyle graphics/text.h

1.17 graphics.library/AttemptLockLayerRom

*

NAME
AttemptLockLayerRom -- Attempt to Lock Layer structure

by rom(gfx lib) code

SYNOPSIS
gotit = AttemptLockLayerRom(layer)
d0 a5

BOOLEAN gotit;
struct Layer *layer;

FUNCTION
Query the current state of the lock on this Layer. If it is
already locked then return FALSE, could not lock. If the
Layer was not locked then lock it and return TRUE.
This call does not destroy any registers.
This call nests so that callers in this chain will not lock
themselves out.

INPUTS
layer - pointer to Layer structure

RESULT
returns TRUE or FALSE depending on whether the Layer is now
locked by the caller.

SEE ALSO
LockLayerRom UnlockLayerRom

1.18 graphics.library/BltBitMap

NAME
BltBitMap -- Move a rectangular region of bits in a BitMap.

SYNOPSIS
planecnt = BltBitMap(SrcBitMap, SrcX, SrcY, DstBitMap,

graphics 11 / 67

D0 A0 D0:16 D1:16 A1
DstX, DstY, SizeX, SizeY, Minterm, Mask [, TempA])
D2:16 D3:16 D4:16 D5:16 D6:8 D7:8 [A2]

ULONG planecnt;
struct BitMap *SrcBitMap,*DstBitMap;
SHORT SrcX,SrcY;
SHORT DstX,DstY;
SHORT SizeX,SizeY;
UBYTE MinTerm,Mask;
CPTR TempA; /*optional */

FUNCTION
Perform non-destructive blits to move a rectangle from one
area in a BitMap to another area, which can be on a different
BitMap.
This blit is assumed to be friendly: no error conditions (e.g.
a rectangle outside the BitMap bounds) are tested or reported.

INPUTS
SrcBitMap, DstBitMap - the BitMap(s) containing the

rectangles
- the planes copied from the source to the destination are

only those whose plane numbers are identical and less
than the minimum Depth of either BitMap and whose Mask
bit for that plane is non-zero.

- SrcBitMap and DstBitMap can be identical
SrcX, SrcY - the x and y coordinates of the upper left corner

of the source rectangle. Valid range is positive
signed integer such that the raster word’s offset
0..(32767-Size)

DstX, DstY - the x and y coordinates of the upper left
corner of the destination for the rectangle. Valid
range is as for Src.

SizeX, SizeY - the size of the rectangle to be moved. Valid
range is (X: 1..976; Y: 1..1023 such that final raster
word’s offset is 0..32767)

Minterm - the logic function to apply to the rectangle when
A is non-zero (i.e. within the rectangle). B is the
source rectangle and C, D is the destination for the
rectangle.
- $0C0 is a vanilla copy
- $030 inverts the source before the copy
- $050 ignores the source and inverts the destination
- see the hardware reference manual for other combinations

Mask - the write mask to apply to this operation. Bits set
indicate the corresponding planes (if not greater than
the minimum plane count) are to participate in the
operation. Typically this is set to 0xff.

TempA - If the copy overlaps exactly to the left or right
(i.e. the scan line addresses overlap), and TempA is
non-zero, it points to enough chip accessable memory
(MAXBYTESPERROW) to hold a line of A source for the blit.
BitBitMap will allocate the needed TempA if none is
provided and one is needed. If the blit does not overlap;
SrcBitMap != DstBitMap then TempA need not be supplied.

graphics 12 / 67

RESULTS
planecnt - the number of planes actually involved in the blit.

BUGS
This routine uses over 300 bytes of stack when it really does
not need to. It calculates all blits ahead of time and then
sits in a loop doing the blits when it should overlap blits
with calculations.

SEE ALSO
ClipBlit graphics/gfx.h hardware/blit.h

1.19 graphics.library/BltBitMapRastPort

NAME
BltBitMapRastPort -- Blit from source bitmap to destination rastport.

SYNOPSIS
BltBitMapRastPort

(srcbm,srcx,srcy,destrp,destX,destY,sizeX,sizeY,minterm)
a0 d0 d1 a1 d2 d3 d4 d5 d6

struct BitMap *srcbm;
SHORT srcx,srcy;
struct RastPort *destrp;
SHORT destX,destY;
SHORT sizeX,sizeY;
UBYTE minterm;

FUNCTION
Blits from source bitmap to position specified in destination rastport
using minterm.

INPUTS
srcbm - a pointer to the source bitmap
srcx - x offset into source bitmap
srcy - y offset into source bitmap
destrp - a pointer to the destination rastport
destX - x offset into dest rastport
destY - y offset into dest rastport
sizeX - width of blit in pixels
sizeY - height of blit in rows
minterm - minterm to use for this blit

RETURNS
TRUE

BUGS

SEE ALSO
BltMaskBitMapRastPort graphics/gfx.h graphics/rastport.h

graphics 13 / 67

1.20 graphics.library/BltClear

NAME
BltClear - Clear a block of memory words to zero.

SYNOPSIS
BltClear(memBlock, bytecount, flags)

a1 d0 d1

APTR memBlock;
ULONG bytecount;
ULONG flags;

FUNCTION
For memory that is local and blitter accessable
the most efficient way to clear a range of memory locations is
to use the system’s most efficient data mover, the blitter.
This command accepts the starting location and count and clears
that block to zeros.

INPUTS
memBloc - pointer to local memory to be cleared

memBlock is assumed to be even.
flags set bit 0 to force function to wait until blit

is done.
set bit1 to use row/bytesperrow

bytecount if (flags & 2) == 0 then
even number of bytes to clear.

else
low 16 bits is taken as number of bytes
per row and upper 16 bits taken as
number of rows.

This function is somewhat hardware dependant. In the
rows/bytesperrow mode, rows must be <=1024.
In bytecount mode multiple runs of the blitter
may be used to clear all the memory.

may be used to clear all the memory.

RESULT
The block of memory is set to zeros.

BUGS

SEE ALSO

1.21 graphics.library/BltMaskBitMapRastPort

NAME
BltMaskBitMapRastPort -- blit from source bitmap to destination

rastport with masking of source image.

SYNOPSIS
BltMaskBitMapRastPort

graphics 14 / 67

(srcbm,srcx,srcy,destrp,destX,destY,sizeX,sizeY,minterm,bltmask)
a0 d0 d1 a1 d2 d3 d4 d5 d6 a2

struct BitMap *srcbm;
SHORT srcx,srcy;
struct RastPort *destrp;
SHORT destX,destY;
SHORT sizeX,sizeY;
UBYTE minterm;
APTR bltmask; * chip memory *

FUNCTION
Blits from source bitmap to position specified in destination rastport
using bltmask to determine where source overlays destination, and
minterm to determine whether to copy the source image "as is" or
to "invert" the sense of the source image when copying. In either
case, blit only occurs where the mask is non-zero.

INPUTS
srcbm - a pointer to the source bitmap
srcx - x offset into source bitmap
srcy - y offset into source bitmap
destrp - a pointer to the destination rastport
destX - x offset into dest rastport
destY - y offset into dest rastport
sizeX - width of blit in pixels
sizeY - height of blit in rows
minterm - either (ABC|ABNC|ANBC) if copy source and blit thru mask

or (ANBC) if invert source and blit thru mask
bltmask - pointer to the single bit-plane mask, which must be the

same size and dimensions as the planes of the
source bitmap.

RETURNS

BUGS

SEE ALSO

BltBitMapRastPort graphics/gfx.h graphics/rastport.h

1.22 graphics.library/BltPattern

NAME
BltPattern -- Using standard drawing rules for areafill,

blit through a mask.

SYNOPSIS
BltPattern(rp, mask, xl, yl, maxx, maxy, bytecnt)

a1, a0 d0 d1 d2 d3 d4

struct RastPort *rp;
APTR mask;
SHORT xl,yl,maxx,maxy;
SHORT bytecnt;

graphics 15 / 67

FUNCTION
Blit using drawmode,areafill pattern, and mask
at position rectangle (xl,yl) (maxx,maxy).

INPUTS
rp - points to RastPort
mask - points to 2 dimensional mask if needed

if mask == NULL then use a rectangle.
xl,yl - upper left of rectangular region in RastPort
maxx,maxy - points to lower right of rectangular region in RastPort
bytecnt - BytesPerRow for mask

RETURNS

SEE ALSO
AreaEnd

1.23 graphics.library/BltTemplate

NAME
BltTemplate -- Cookie cut a shape in a rectangle to the RastPort.

SYNOPSIS
BltTemplate(SrcTemplate, SrcX, SrcMod, rp,

a0 d0:16 d1:16 a1
DstX, DstY, SizeX, SizeY)
d2:16 d3:16 d4:16 d5:16

CPTR SrcTemplate;
SHORT SrcX;
SHORT SrcMod;
struct RastPort *rp;
SHORT DstX,DstY;
SHORT SizeX,SizeY;

FUNCTION
This function draws the image in the template into the
RastPort in the current color and drawing mode at the
specified position. The template is assumed not to overlap
the destination.
If the template falls outside the RastPort boundary, it is
truncated to that boundary.

Note: the SrcTemplate pointer should point to the "nearest" word
(rounded down) of the template mask. Fine alignment of the mask
is acheived by setting the SrcX bit offseet within the range
of 0 to 15 decimal.

INPUTS
SrcTemplate - pointer to the first (nearest) word of the template mask.
SrcX - x bit offset into the template mask (range 0..15).
SrcMod - number of bytes per row in template mask.
rp - pointer to destination RastPort.
DstX, DstY - x and y coordinates of the upper left

graphics 16 / 67

corner of the destination for the blit.
SizeX, SizeY - size of the rectangle to be used as the

template.

BUGS
The destination rastport (rp) must have an associated
Layer structure or srcX will be ignored.

SEE ALSO
BltPattern graphics/rastport.h

1.24 graphics.library/CBump

NAME
CBump - increment user copper list pointer (bump to next position in

list).

SYNOPSIS
CBump(c)

a1

struct UCopList *c;

FUNCTION
Increment pointer to space for next instruction in user copper list.

INPUTS
c - pointer to UCopList structure

RESULTS
User copper list pointer is incremented to next position.
Pointer is repositioned to next user copperlist instruction block
if the current block is full.

Note: CBump is usually invoked for the programmer as part of the
macro definitions CWAIT or CMOVE.

BUGS

SEE ALSO
CINIT CWAIT CMOVE CEND graphics/copper.h

1.25 graphics.library/CEND

NAME
CEND -- Terminate user copper list.

SYNOPSIS
CEND(c)

struct UCopList *c;

graphics 17 / 67

FUNCTION
Add instruction to terminate user copper list.

INPUTS
c - pointer to UCopList structure

RESULTS
This is actually a macro that calls the macro CWAIT(c,10000,255).
10000 is a magical number that the graphics library uses.
I hope display technology doesn’t catch up too fast!

BUGS

SEE ALSO
CINIT CWAIT CMOVE graphics/copper.h

1.26 graphics.library/ChangeSprite

NAME
ChangeSprite -- Change the sprite image pointer.

SYNOPSIS
ChangeSprite(vp, s, newdata)

a0 a1 a2

struct ViewPort *vp;
struct SimpleSprite *s;
APTR newdata; /* chip memory */

FUNCTION
The sprite image is changed to use the data starting at newdata

INPUTS
vp - pointer to ViewPort structure that this sprite is

relative to.
or 0 if relative only top of View

s - pointer to SimpleSprite structure
newdata - pointer to data structure of the following form.

struct spriteimage
{

UWORD posctl[2]; /* used by simple sprite machine*/
UWORD data[height][2]; /* actual sprite image */
UWORD reserved[2]; /* initialized to */

/* 0x0,0x0 */
};

Programmer must initialize reserved[2]. Spriteimage must be
in CHIP memory. The height subfield of the SimpleSprite structure
must be set to reflect the height of the new spriteimage BEFORE
calling ChangeSprite. The programmer may allocate two sprites to
handle a single attached sprite. After GetSprite, ChangeSprite,
the programmer can set the SPRITE_ATTACHED bit in posctl[1] of the
odd numbered sprite.
If you need more than 8 sprites look up VSprites in the
graphics documentation.

graphics 18 / 67

RESULTS

BUGS

SEE ALSO
FreeSprite ChangeSprite MoveSprite AddVSprite graphics/sprite.h

1.27 graphics.library/CINIT

NAME
CINIT -- Initialize user copperlist to accept intermediate

user copper instructions.

SYNOPSIS
ucl = CINIT(c , n)

UCopperListInit(c , n)
a0 d0

struct UCopList *ucl;
struct UCopList *c;
short n;

FUNCTION
Allocates and/or initialize copperlist structures/buffers.
This is a macro that calls UCopListLinit. CINIT will
allocate a new UCopList if c==0. If (c != 0) it will
initialize the data structures to begin new copperlist
without allocating more memory and it ignores n.

INPUTS
c - pointer to UCopList structure
n - number of instructions buffer must hold

RESULTS
An initialize list to accept intermediate copper instructions.

BUGS
CINIT will not actually allocate a new copperlist if c==0.
Instead you must allocate a 12 byte MEMF_PUBLIC|MEMF_CLEAR block,
and pass it to this function. The system’s FreeVPortCopLists
function will take care of deallocating it.

SEE ALSO

1.28 graphics.library/ClearEOL

NAME
ClearEOL - Clear from current position to end of line.

SYNOPSIS
ClearEOL(rp)

graphics 19 / 67

a1

struct RastPort *rp;

FUNCTION
Clear a rectangular swath from the current position to the
right edge of the rastPort. The height of the swath is taken
from that of the current text font, and the vertical
positioning of the swath is adjusted by the text baseline,
such that text output at this position would lie wholly on
this newly cleared area.
Clearing consists of setting the color of the swath to zero,
or, if the DrawMode is 2, to the BgPen.

INPUTS
rp - pointer to RastPort structure

BUGS

SEE ALSO
Text ClearScreen SetRast graphics/text.h graphics/rastport.h

1.29 graphics.library/ClearRectRegion

NAME
ClearRectRegion -- Perform 2d CLEAR operation of rectangle

with region, leaving result in region.

SYNOPSIS
status = ClearRectRegion(region,rectangle)
d0 a0 a1

BOOL error;
struct Region *region;
struct Rectangle *rectangle;

FUNCTION
Clip away any portion of the region that exists inside
of the rectangle. Leave the result in region.

INPUTS
region - pointer to Region structure
rectangle - pointer to Rectangle structure

RESULTS
status - return TRUE if successful operation

return FALSE if ran out of memory

BUGS

SEE ALSO
AndRectRegion graphics/regions.h

graphics 20 / 67

1.30 graphics.library/ClearRegion

NAME
ClearRegion -- Remove all rectangles from region.

SYNOPSIS
ClearRegion(region)

a0

struct Region *region;

FUNCTION
Clip away all rectangles in the region leaving nothing.

INPUTS
region - pointer to Region structure

BUGS

SEE ALSO
NewRegion graphics/regions.h

1.31 graphics.library/ClearScreen

NAME
ClearScreen - Clear from current position to end of RastPort.

SYNOPSIS
ClearScreen(rp)

a1

struct RastPort *rp;

FUNCTION
Clear a rectangular swath from the current position to the
right edge of the rastPort with ClearEOL, then clear the rest
of the screen from just beneath the swath to the bottom of
the rastPort.
Clearing consists of setting the color of the swath to zero,
or, if the DrawMode is 2, to the BgPen.

INPUTS
rp - pointer to RastPort structure

BUGS

SEE ALSO
ClearEOL Text SetRast graphics/text.h graphics/rastport.h

1.32 graphics.library/ClipBlit

graphics 21 / 67

NAME
ClipBlit -- Calls BltBitMap() after accounting for windows

SYNOPSIS
ClipBlit(Src, SrcX, SrcY, Dest, DestX, DestY, XSize, YSize, Minterm);

a0 d0 d1 a1 d2 d3 d4 d5 d6

FUNCTION
Performs the same function as BltBitMap(), except that it
takes into account the Layers and ClipRects of the layer library,
all of which are (and should be) transparent to you. So, whereas
BltBitMap() requires pointers to BitMaps, ClipBlit requires pointers to
the RastPorts that contain the Bitmaps, Layers, et cetera.
If you are going to blit blocks of data around via the RastPort of your
Intuition Window, you must call this routine (rather than BltBitMap()).
Either the Src RastPort, the Dest RastPort, both, or neither, can have
Layers. This routine takes care of all cases.
See BltBitMap() for a thorough explanation.

INPUTS
Src = pointer to the RastPort of the source for your blit
SrcX, SrcY = the topleft offset into Src for your data
Dest = pointer to the RastPort to receive the blitted data
DestX, DestY = the topleft offset into the destination RastPort
XSize = the width of the blit
YSize = the height of the blit

Minterm = the boolean blitter function, where SRCB is associated with the
Src RastPort and SRCC goes to the Dest RastPort

RESULT
None

BUGS
None

SEE ALSO
BltBitMap()

1.33 graphics.library/CloseFont

NAME
CloseFont -- Release a pointer to a system font.

SYNOPSIS
CloseFont(font)

a1

struct TextFont *font;

FUNCTION
This function indicates that the font specified is no longer
in use. It is used to close a font opened by OpenFont, so
that fonts that are no longer in use do not consume system

graphics 22 / 67

resources.

INPUTS
font - a font pointer as returned by OpenFont or OpenDiskFont

BUGS

SEE ALSO
OpenFont diskfont.library/OpenDiskFont graphics/text.h

1.34 graphics.library/CMOVE

NAME
CMOVE -- append copper move instruction to user copper list.

SYNOPSIS
CMOVE(c , a , v)

CMove(c , a , v)
a1 d0 d1

CBump(c)
a1

struct UCopList *c;
APTR a;
SHORT v;

FUNCTION
Add instruction to move value v to hardware register a.

INPUTS
c - pointer to UCopList structure
a - hardware register
v - 16 bit value to be written

RESULTS
This is actually a macro that calls CMove(c,&a,v)
and then calls CBump(c) to bump the local pointer
to the next instruction. Watch out for macro side affects.

BUGS

SEE ALSO
CINIT CMOVE CWAIT graphics/copper.h

1.35 graphics.library/CopySBitMap

NAME
CopySBitMap -- Syncronize Layer window with contents of

Super BitMap

SYNOPSIS

graphics 23 / 67

CopySBitMap(layer)
a0

struct Layer *layer;

FUNCTION
This is the inverse of SyncSBitMap.
Copy all bits from SuperBitMap to Layer bounds.
This is used for those functions that do not
want to deal with the ClipRect structures but do want
to be able to work with a SuperBitMap Layer.

INPUTS
layer - pointer to a SuperBitMap Layer

The Layer must already be locked by the caller.

BUGS

SEE ALSO
LockLayerRom SyncSBitMap

1.36 graphics.library/CWAIT

NAME
CWAIT -- Append copper wait instruction to user copper list.

SYNOPSIS
CWAIT(c , v , h)

CWait(c , v , h)
a1 d0 d1

CBump(c)
a1

struct UCopList *c;
short v,h;

FUNCTION
Add instruction to wait for vertical beam position v and
horizontal position h to this intermediate copper list.

INPUTS
c - pointer to UCopList structure
v - vertical beam position (relative to top of viewport)
h - horizontal beam position

RESULTS
this is actually a macro that calls CWait(c,v,h)
and then calls CBump(c) to bump the local pointer
to the next instruction.

BUGS
User waiting for horizontal values of greater than 222 decimal is
illegal.

graphics 24 / 67

SEE ALSO
CINIT CMOVE CEND graphics/copper.h

1.37 graphics.library/DisownBlitter

NAME
DisownBlitter - return blitter to free state.

SYNOPSIS
DisownBlitter()

FUNCTION
Free blitter up for use by other blitter users.

INPUTS

RETURNS

SEE ALSO
OwnBlitter

1.38 graphics.library/DisposeRegion

NAME
DisposeRegion -- Return all space for this region to free

memory pool.

SYNOPSIS
DisposeRegion(region)

a0

struct Region *region;

FUNCTION
Free all RegionRectangles for this Region then
free the Region itself.

INPUTS
region - pointer to Region structure

BUGS

SEE ALSO
NewRegion graphics/regions.h

1.39 graphics.library/DoCollision

NAME
DoCollision -- Test every gel in gel list for collisions.

graphics 25 / 67

SYNOPSIS
DoCollision(rp)

a1

struct RastPort *rp;

FUNCTION
Tests each gel in gel list for boundary and gel-to-gel collisions.
On detecting one of these collisions, the appropriate collision-
handling routine is called. See the documentation for a thorough
description of which collision routine is called. This routine
expects to find the gel list correctly sorted in Y,X order.
The system routine SortGList performs this function for the user

INPUTS
rp = pointer to a RastPort

BUGS

SEE ALSO
InitGels SortGList graphics/gels.h graphics/gels.h

1.40 graphics.library/Draw

NAME
Draw -- Draw a line between the current pen position

and the new x,y position.

SYNOPSIS
Draw(rp, x, y)

a1 d0:16 d1:16

struct RastPort *rp;
SHORT x,y;

FUNCTION
Draw a line from the current pen position to (x,y).

INPUTS
rp - pointer to a RastPort
x,y - point in the RastPort to end the line.

BUGS

SEE ALSO
Move graphics/rastport.h

1.41 graphics.library/DrawEllipse

NAME
DrawEllipse -- Draw an ellipse centered at cx,cy with vertical

and horizontal radii of a,b respectively.

graphics 26 / 67

SYNOPSIS
DrawEllipse(rp, cx, cy, a, b)

a1 d0 d1 d2 d3

struct RastPort *rp;
SHORT cx, cy;
SHORT a, b;

FUNCTION
Create an elliptical outine within the rectangular region
specified by the parameters, using the current foreground pen color.

INPUTS
rp - pointer to the RastPort into which the ellipse will be drawn.
cx - x coordinate of the centerpoint relative to the rastport.
cy - y coordinate of the centerpoint relative to the rastport.
a - the horizontal radius of the ellipse (note: a must be > 0)
b - the vertical radius of the ellipse (note: b must be > 0)

Note: this routine does not clip the ellipse to a non-layered rastport.

BUGS

SEE ALSO
DrawCircle, graphics/rastport.h

1.42 graphics.library/DrawGList

NAME
DrawGList -- Process the gel list, queueing VSprites, drawing Bobs.

SYNOPSIS
DrawGList(rp, vp)

a1 a0

struct RastPort *rp;
struct ViewPort *vp;

FUNCTION
Performs one pass of the current gel list.

- If nextLine and lastColor are defined, these are
initialized for each gel.

- If it’s a VSprite build it into the copper list.
- If it’s a Bob, draw it into the current raster.

- Copy the save values into the "old" variables,
double-buffering if required.

INPUTS
rp = pointer to the RastPort where Bobs will be drawn
vp = pointer to the ViewPort for which VSprites will be created

BUGS
MUSTDRAW isn’t implemented yet.

graphics 27 / 67

SEE ALSO
InitGels graphics/gels.h graphics/rastport.h graphics/view.h

1.43 graphics.library/Flood

NAME
Flood -- Flood rastport like areafill.

SYNOPSIS
error = Flood(rp, mode, x, y)
d0 a1 d2 d0 d1

BOOLEAN error;
struct RastPort rp;
ULONG mode;
SHORT x,y;

FUNCTION
Search the BitMap starting at (x,y). Fill all adjacent pixels
if they are:
a: arenot the same as AOLPen Mode 0
b: same as the one at (x,y) Mode 1
When actually doing the fill use the modes that apply to
standard areafill routine such as drawmodes and patterns.

INPUTS
rp - pointer to RastPort
(x,y) - coordinate in BitMap
mode - 0 fill all adjacent pixels searching for border

1 fill all adjacent pixels that have same pen number
as (x,y)

Note: in order to use Flood, the destination RastPort must
have a valid TmpRas raster whose size is as large as
that of the RastPort.

SEE ALSO
AreaEnd graphics/rastport.h

1.44 graphics.library/FreeColorMap

NAME
FreeColorMap -- Free the ColorMap structure and return memory

to free memory pool.

SYNOPSIS
FreeColorMap(colormap)

a0

struct ColorMap *colormap;

FUNCTION

graphics 28 / 67

Return the memory to the free memory pool that was allocated
with GetColorMap.

INPUTS
colormap - pointer to ColorMap allocated with GetColorMap

RESULT
The space is made available for others to use.

BUGS

SEE ALSO
SetRGB4 GetColorMap graphics/view.h

1.45 graphics.library/FreeCopList

NAME
FreeCopList -- deallocate intermediate copper list

SYNOPSIS
FreeCopList(coplist)

a0

struct CopList *coplist;

FUNCTION
Deallocate all memory associated with this copper list.

INPUTS
coplist - pointer to structure CopList

RESULTS
memory returned to memory manager

BUGS

SEE ALSO
graphics/copper.h

1.46 graphics.library/FreeCprList

NAME
FreeCprList -- deallocate hardware copper list

SYNOPSIS
FreeCprList(cprlist)

a0

struct cprlist *cprlist;

FUNCTION
return cprlist to free memory pool

graphics 29 / 67

INPUTS
cprlist - pointer to cprlist structure

RESULTS
memory returned and made available to other tasks

BUGS

SEE ALSO
graphics/copper.h

1.47 graphics.library/FreeGBuffers

NAME
FreeGBuffers -- Deallocate memory obtained by GetGBufers.

SYNOPSIS
FreeGBuffers(anOb, rp, db)

a0 a1 d0

struct AnimOb *anOb;
struct RastPort *rp;
BOOL db;

FUNCTION
For each sequence of each component of the AnimOb,
deallocate memory for:

SaveBuffer
BorderLine
CollMask and ImageShadow (point to same buffer)
if db is set (user had used double-buffering) deallocate:

DBufPacket
BufBuffer

INPUTS
anOb = pointer to the AnimOb structure
rp = pointer to the current RastPort
db = double-buffer indicator (set TRUE for double-buffering)

BUGS

SEE ALSO
GetGBuffers graphics/gels.h graphics/rastport.h

1.48 graphics.library/FreeRaster

NAME
FreeRaster -- Release an allocated area to the system free memory pool.

SYNOPSIS
FreeRaster(p, width, height)

graphics 30 / 67

a0 d0:16 d1:16

PLANEPTR p;
USHORT width,height;

FUNCTION
Return the memory associated with this PLANEPTR of size
width and height to the MEMF_CHIP memory pool.

INPUTS
p = a pointer to a memory space returned as a

result of a call to AllocRaster.

width - the width in bits of the bitplane.
height - number of rows in bitplane.

the same values of width and height with which you
called AllocRaster in the first place, when the
pointer p returned. This defines the size of the
memory space which is to be returned to the free
memory pool.

BUGS

SEE ALSO
AllocRaster graphics/gfx.h

1.49 graphics.library/FreeSprite

NAME
FreeSprite -- Return sprite for use by others and virtual

sprite machine.

SYNOPSIS
FreeSprite(pick)

d0

SHORT pick;

FUNCTION
Mark sprite as available for others to use.
These sprite routines are provided to ease sharing of sprite
hardware and to handle simple cases of sprite usage and
movement. It is assumed the programs that use these routines
do want to be good citizens in their hearts. ie: they will
not FreeSprite unless they actually own the sprite.
Virtual Sprite machine may ignore simple sprite machine.

INPUTS
pick - number in range of 0-7

RESULTS
sprite made available for subsequent callers of GetSprite
as well as use by Virtual Sprite Machine

graphics 31 / 67

BUGS

SEE ALSO
GetSprite ChangeSprite MoveSprite graphics/sprite.h

1.50 graphics.library/FreeVPortCopLists

NAME
FreeVPortCopLists -- deallocate all intermediate copper lists and
their headers from a viewport

SYNOPSIS
FreeVPortCopLists(vp)

a0

struct ViewPort *vp;

FUNCTION
Search display, color, sprite, and user copper
lists and call FreeMem() to deallocate them from memory

INPUTS
vp - pointer to ViewPort structure

RESULTS
vp->DspIns = NULL; vp->SprIns = NULL; vp->ClrIns = NULL;
vp->UCopIns = NULL;

BUGS
none known

SEE ALSO
graphics/view.h

1.51 graphics.library/GetColorMap

NAME
GetColorMap -- allocate and initialize Colormap

SYNOPSIS
cm = GetColorMap(entries)
d0 d0

struct ColorMap *cm;
LONG entries;

FUNCTION
Allocates, initializes and returns a pointer to a ColorMap
data structure, later enabling calls to SetRGB4
and LoadRGB4 to load colors for a view port. The ColorTable
pointer in the ColorMap structure points to a hardware
specific colormap data structure. You should not count on

graphics 32 / 67

it being anything you can understand. Use GetRGB4() to
query it or SetRGB4CM to set it directly.

INPUTS
entries - number of entries for this colormap

RESULT
The pointer value returned by this routine, if nonzero,
may be stored into the ViewPort.ColorMap pointer.
If a value of 0 is returned, the system was unable
to allocate enough memory space for the required
data structures.

BUGS

SEE ALSO
SetRGB4 FreeColorMap

1.52 graphics.library/GetGBuffers

NAME
GetGBuffers -- Attempt to allocate ALL buffers of an entire AnimOb.

SYNOPSIS
status = GetGBuffers(anOb, rp, db)
d0 a0 a1 d0

BOOL status;
struct AnimOb *anOb;
struct RastPort *rp;
BOOL db;

FUNCTION
For each sequence of each component of the AnimOb, allocate memory for:

SaveBuffer
BorderLine
CollMask and ImageShadow (point to same buffer)
if db is set TRUE (user wants double-buffering) allocate:

DBufPacket
BufBuffer

INPUTS
anOb = pointer to the AnimOb structure
rp = pointer to the current RastPort
db = double-buffer indicator (set TRUE for double-buffering)

RESULT
status = TRUE if the memory allocations were all successful, else FALSE

BUGS
If any of the memory allocations fail it does not free the partial
allocations that did succeed.

SEE ALSO

graphics 33 / 67

FreeGBuffers graphics/gels.h

1.53 graphics.library/GetRGB4

NAME
GetRGB4 -- Inquire value of entry in ColorMap.

SYNOPSIS
value = GetRGB4(colormap, entry)

d0 a0 d0

ULONG value;
struct ColorMap *colormap;
LONG entry;

FUNCTION
Read and format a value from the ColorMap.

INPUTS
colormap - pointer to ColorMap structure
entry - index into colormap

RESULT
returns -1 if no valid entry
return UWORD RGB value 4 bits per gun right justified

BUGS

SEE ALSO
SetRGB4 LoadRGB4 GetColorMap FreeColorMap graphics/view.h

1.54 graphics.library/GetSprite

NAME
GetSprite -- Attempt to get a sprite for the simple sprite

manager.

SYNOPSIS
Sprite_Number = GetSprite(sprite, pick)

d0 a0 d0

SHORT Sprite_Number;
struct SimpleSprite *sprite;
SHORT pick;

FUNCTION
Attempt to allocate one of the eight sprites for private use
with the simple sprite manager. This must be done before using
further calls to simple sprite machine. If the programmer
wants to use 15 color sprites you must allocate both sprites
and set the ’SPRITE_ATTACHED’ bit in the odd sprite’s posctldata
array.

graphics 34 / 67

INPUTS
sprite - ptr to programmers SimpleSprite structure.
pick - number in the range of 0-7 or

-1 if programmer just wants the next one.

RESULTS
If pick is 0-7 attempt to allocate the sprite. If the sprite
is already allocated then return -1.
If pick -1 allocate the next sprite starting search at 0.
If no sprites are available return -1 and fill -1 in num entry
of SimpleSprite structure.
If the sprite is available for allocation, mark it allocated
and fill in the ’num’ entry of the SimpleSprite structure.
If successful return the sprite number.

BUGS

SEE ALSO
FreeSprite ChangeSprite MoveSprite GetSprite graphics/sprite.h

1.55 graphics.library/InitArea

NAME
InitArea -- Initialize vector collection matrix

SYNOPSIS
InitArea(areainfo, buffer, maxvectors)

a0 a1 d0

struct AreaInfo *areainfo;
APTR buffer;
SHORT maxvectors;

FUNCTION
This function provides initialization for the vector collection matrix
such that it has a size of (max vectors). The size of the region
pointed to by buffer (short pointer) should be five (5) times as large
as maxvectors. This size is in bytes. Areafills done by using
AreaMove, AreaDraw, and AreaEnd must have enough space allocated in
this table to store all the points of the largest fill. AreaEllipse
takes up two vectors for every call. If AreaMove/Draw/Ellipse detect
too many vectors going into the buffer they will return -1.

INPUTS
areainfo - pointer to AreaInfo structure
buffer - pointer to chunk of memory to collect vertices
maxvectors - max number of vectors this buffer can hold

RESULT
Pointers are set up to begin storage of vectors done by
AreaMove, AreaDraw, and AreaEllipse.

BUGS

graphics 35 / 67

SEE ALSO
AreaEnd AreaMove AreaDraw AreaEllipse graphics/rastport.h

1.56 graphics.library/InitBitMap

NAME
InitBitMap -- Initialize bit map structure with input values.

SYNOPSIS
InitBitMap(bm, depth, width, height)

a0 d0 d1 d2

struct BitMap *bm;
BYTE depth;
SHORT width, height;

FUNCTION
Initialize various elements in the BitMap structure to
correctly reflect depth, width, and height.
Must be used before use of BitMap in other graphics calls.
The Planes[8] are not initialized and need to be set up
by the caller. The Planes table was put at the end of the
structure so that it may be truncated to conserve space,
as well as extended. All routines that use BitMap should
only depend on existence of depth number of bitplanes.

INPUTS
bm - pointer to a BitMap structure (gfx.h)
depth - number of bitplanes that this bitmap will have
width - number of bits (columns) wide for this BitMap
height- number of bits (rows) tall for this BitMap

BUGS

SEE ALSO
graphics/gfx.h

1.57 graphics.library/InitGels

NAME
InitGels -- initialize a gel list; must be called before using gels.

SYNOPSIS
InitGels(head, tail, GInfo)

a0 a1 a2

struct VSprite *head, *tail;
struct GelsInfo *GInfo;

FUNCTION
Assigns the VSprites as the head and tail of the gel list in GfxBase.
Links these two gels together as the keystones of the list.

graphics 36 / 67

If the collHandler vector points to some memory array, sets
the BORDERHIT vector to NULL.

INPUTS
head = pointer to the VSprite structure to be used as the gel list head

tail = pointer to the VSprite structure to be used as the gel list tail

GInfo = pointer to the GelsInfo structure to be initialized

BUGS

SEE ALSO
graphics/gels.h graphics/rastport.h

1.58 graphics.library/InitGMasks

NAME
InitGMasks -- Initialize all of the masks of an AnimOb.

SYNOPSIS
InitGMasks(anOb)

a0

struct AnimOb *anOb;

FUNCTION
For every sequence of every component call InitMasks.

INPUTS
anOb = pointer to the AnimOb

BUGS

SEE ALSO
InitMasks graphics/gels.h

1.59 graphics.library/InitMasks

NAME
InitMasks -- Initialize the BorderLine and CollMask masks of a VSprite.

SYNOPSIS
InitMasks(vs)

a0

struct VSprite *vs;

FUNCTION
Creates the appropriate BorderLine and CollMask masks of the VSprite.
Correctly detects if the VSprite is actually a Bob definition, handles
the image data accordingly.

graphics 37 / 67

INPUTS
vs = pointer to the VSprite structure

BUGS

SEE ALSO
InitGels graphics/gels.h

1.60 graphics.library/InitRastPort

NAME
InitRastPort -- Initialize raster port structure

SYNOPSIS
InitRastPort(rp)

a1

struct RastPort *rp;

FUNCTION
Initialize a RastPort structure to standard values.
The struct Rastport describes a control structure
for a write-able raster. The RastPort structure
describes how a complete single playfield display
will be written into. A RastPort structure is
referenced whenever any drawing or filling
operations are to be performed on a section of
memory.

The section of memory which is being used in this
way may or may not be presently a part of the
current actual onscreen display memory. The name
of the actual memory section which is linked to
the RastPort is referred to here as a "raster" or
as a bitmap.

NOTE: Calling the routine InitRastPort only
establishes various defaults. It does NOT
establish where, in memory, the rasters are
located. To do graphics with this RastPort the user
must set up the BitMap pointer in the RastPort.

INPUTS
rp = pointer to a RastPort structure.

RESULT
all entries in RastPort get zeroed out.
exceptions:

The following get -1:
Mask,FgPen,AOLPen,LinePtrn

DrawMode = JAM2
The font is set to the standard system font

BUGS

graphics 38 / 67

SEE ALSO
graphics/rastport.h

1.61 graphics.library/InitTmpRas

NAME
InitTmpRas -- Initialize area of local memory for usage by

areafill, floodfill, text.

SYNOPSIS
InitTmpRas(tmpras, buffer, size)

a0 a1 d0

struct TmpRas *tmpras;
APTR buffer;
LONG size;

FUNCTION
The area of memory pointed to by buffer is set up to be used
by RastPort routines that may need to get some memory for
intermediate operations in preparation to putting the graphics
into the final BitMap.
Tmpras is used to control the usage of buffer.

INPUTS
tmpras - pointer to a TmpRas structure to be linked into

a RastPort
buffer - pointer to a contguous piece of chip memory.
size - size in bytes of buffer

RESULT
makes buffer available for users of RastPort

BUGS
Would be nice if RastPorts could share one TmpRas.

SEE ALSO
AreaEnd Flood Text graphics/rastport.h

1.62 graphics.library/InitView

NAME

InitView - Initialize View structure.

SYNOPSIS
InitView(view)

a1

struct View *view;

graphics 39 / 67

FUNCTION
Initialize View structure to default values.

INPUTS
view - pointer to a View structure

RESULT
View structure set to all 0’s. (1.0,1.1.1.2)
Then values are put in DxOffset,DyOffset to properly position
default display about .5 inches from top and left on monitor.
InitView pays no attention to previous contents of view.

BUGS

SEE ALSO
MakeVPort graphics/view.h

1.63 graphics.library/InitVPort

NAME
InitVPort - Initialize ViewPort structure.

SYNOPSIS
InitVPort(vp)

a0

struct ViewPort *vp;

FUNCTION
Initialize ViewPort structure to default values.

INPUTS
vp - pointer to a ViewPort structure

RESULT

BUGS

SEE ALSO
MakeVPort graphics/view.h

1.64 graphics.library/LoadRGB4

NAME
LoadRGB4 -- Load RGB color values from table.

SYNOPSIS
LoadRGB4(vp, colors , count)

a0 a1 d0:16

struct ViewPort *vp;
UWORD colors[];

graphics 40 / 67

SHORT count;

FUNCTION
load the count words of the colormapper from table starting at
entry 0.

INPUTS
vp - pointer to ViewPort, whos colors you want to change
colors - pointer to table of RGB values set up as an array

of USHORTS
background-- 0x0RGB
color1 -- 0x0RGB
color2 -- 0x0RGB
etc. UWORD per value.

The colors are interpreted as 15 = maximum intensity.
0 = minimum intensity.

count = number of UWORDs in the table to load into the
colormap starting at color 0(background) and proceeding
to the next higher color number

RESULTS
The ViewPort should have a pointer to a valid ColorMap to store
the colors in.
Update the hardware copperlist to reflect the new colors.
Update the intermediate copperlist with the new colors.

BUGS

SEE ALSO
SetRGB4 GetRGB4 GetColorMap graphics/view.h

1.65 graphics.library/LoadView

NAME
LoadView -- Use a (possibly freshly created) coprocessor instruction

list to create the current display.

SYNOPSIS
LoadView(View)

A1

struct View *View;

FUNCTION
Install a new view to be displayed during the next display
refresh pass.
Coprocessor instruction list has been created by
InitVPort, MakeView, and MrgCop.

INPUTS
View - a pointer to the View structure which contains the
pointer to the constructed coprocessor instructions list.

RESULT
The new View is displayed, according to your instructions.

graphics 41 / 67

The vertical blank routine will pick this pointer up and
direct the copper to start displaying this View.

BUGS

SEE ALSO
InitVPort MakeVPort MrgCop intuition/RethinkDisplay graphics/view.h

1.66 graphics.library/LockLayerRom

*

NAME
LockLayerRom -- Lock Layer structure by rom(gfx lib) code.

SYNOPSIS
LockLayerRom(layer)

a5

struct Layer *layer;

FUNCTION
Return when the layer is locked and no other task may
alter the ClipRect structure in the Layer structure.
This call does not destroy any registers.
This call nests so that callers in this chain will not lock
themselves out.
Do not have the Layer locked during a call to intuition.
There is a potential deadlock problem here, if intuition
needs to get other locks as well.
Having the layer locked prevents other tasks from using the
layer library functions, most notably intuition itself. So
be brief.
layer.library’s LockLayer is identical to LockLayerRom.

INPUTS
layer - pointer to Layer structure

RESULTS
The layer is locked and the task can render assuming the
ClipRects will not change out from underneath it until
an UnlockLayerRom is called.

SEE ALSO
UnlockLayerRom graphics/clip.h

1.67 graphics.library/MakeVPort

NAME
MakeVPort -- generate display copper list.

SYNOPSIS

graphics 42 / 67

MakeVPort(view, viewport)
a0 a1

struct View *view;
struct ViewPort *viewport;

FUNCTION
Use information in the View, ViewPort, ViewPort->RasInfo;
construct intermediate copper list for this ViewPort.

INPUTS
view - pointer to View structure
viewport - pointer to ViewPort structure

The viewport must have valid pointer to a RasInfo.

RESULTS
constructs intermediate copper list and puts pointers in
viewport.DspIns
If the ColorMap ptr in ViewPort is NULL then it uses colors
from the default color table.
If DUALPF in Modes then there must be a second RasInfo pointed
to by the first RasInfo

BUGS

SEE ALSO
InitVPort MrgCop graphics/view.h
Intuition’s MakeScreen RemakeDisplay and RethinkDisplay

1.68 graphics.library/Move

NAME
Move -- Move graphics pen position.

SYNOPSIS
Move(rp, x, y)

a1 d0:16 d1:16

struct RastPort *rp;
SHORT x,y;

FUNCTION
Move graphics pen position to (x,y) relative to upper left (0,0)
of RastPort.
Note: Text uses the same position.

INPUTS
rp - pointer to a RastPort structure
x,y - point in the RastPort

RESULTS

BUGS

SEE ALSO

graphics 43 / 67

Draw graphics/rastport.h

1.69 graphics.library/MoveSprite

NAME
MoveSprite -- Move sprite to a point relative to top of viewport.

SYNOPSIS
MoveSprite(vp, sprite, x, y)

a0 a1 d0 d1

struct ViewPort *vp;
struct SimpleSprite *sprite;
SHORT x,y;

FUNCTION
Move sprite image to new place on display.

INPUTS
vp - pointer to ViewPort structure

if vp = 0, sprite is positioned relative to View.
sprite - pointer to SimpleSprite structure
(x,y) - new position relative to top of viewport or view.

RESULTS
Calculate the hardware information for the sprite and
place it in the posctldata array. During next video display
the sprite will appear in new position.

BUGS
Sprites really appear one pixel to the left of the position you
specify. This bug affects the apparent display position of the sprite
on the screen, but does not affect the numeric position relative to
the viewport or view.

SEE ALSO
FreeSprite ChangeSprite GetSprite graphics/sprite.h

1.70 graphics.library/MrgCop

NAME
MrgCop -- Merge together coprocessor instructions.

SYNOPSIS
MrgCop(View)

A1

struct View *View;

FUNCTION
Merge together the display, color, sprite and user coprocessor
instructions into a single coprocessor instruction stream. This

graphics 44 / 67

essentially creates a per-display-frame program for the coprocessor.
This function MrgCop is used, for example, by the graphics animation
routines which effectively add information into an essentially
static background display. This changes some of the user
or sprite instructions, but not those which have formed the
basic display in the first place. When all forms of coprocessor
instructions are merged together, you will have a complete per-
frame instruction list for the coprocessor.

Restrictions: Each of the coprocessor instruction lists MUST be
internally sorted in min to max Y-X order. The merge routines
depend on this!

Each list must be terminated using CEND(copperlist)

INPUTS
View - a pointer to the view structure whose coprocessor

instructions are to be merged.

RESULT
The view structure will now contain a complete, sorted/merged
list of instructions for the coprocessor, ready to be used by
the display processor. The display processor is told to use
this new instruction stream through the instruction LoadView().

BUGS

SEE ALSO
InitVPort MakeVPort LoadView graphics/view.h

Intuition’s RethinkDisplay

1.71 graphics.library/NewRegion

NAME
NewRegion -- Get a clear region.

SYNOPSIS
region = NewRegion()
d0

struct Region *region;

FUNCTION
Create a Region structure, initialize it to empty and return
a pointer it.

RESULTS
region - pointer to initialized region. If it could not allocate

required memory region = NULL.

INPUTS
none

BUGS

SEE ALSO

graphics 45 / 67

graphics/regions.h

1.72 graphics.library/OpenFont

NAME
OpenFont -- Get a pointer to a system font.

SYNOPSIS
font = OpenFont(textAttr)
d0 a0

struct TextFont *font;
struct TextAttr *textAttr;

FUNCTION
This function searches the system font space for the graphics
text font that best matches the attributes specified. The
pointer to the font returned can be used in subsequent
SetFont and CloseFont calls. It is important to match this
call with a corresponding CloseFont call for effective
management of ram fonts.

INPUTS
textAttr - a TextAttr structure that describes the text font

attributes desired

RESULTS
font is zero if the desired font cannot be found. If the named
font is found, but the size and style specified are not
available, a font with the nearest attributes is returned.

BUGS

SEE ALSO
CloseFont SetFont diskfont.library/OpenDiskFont graphics/text.h

1.73 graphics.library/OrRectRegion

NAME
OrRectRegion -- Perform 2d OR operation of rectangle

with region, leaving result in region.

SYNOPSIS
status = OrRectRegion(region,rectangle)
d0 a0 a1

BOOL status
struct Region *region;
struct Rectangle *rectangle;

FUNCTION
If any portion of rectangle is not in the region then add

graphics 46 / 67

that portion to the region.

INPUTS
region - pointer to Region structure
rectangle - pointer to Rectangle structure

RESULTS
status - return TRUE if successful operation

return FALSE if ran out of memory

BUGS

SEE ALSO
AndRectRegion OrRegionRegion graphics/regions.h

1.74 graphics.library/OrRegionRegion

NAME
OrRegionRegion -- Perform 2d OR operation of one region

with second region, leaving result in second region

SYNOPSIS
status = OrRegionRegion(region1,region2)
d0 a0 a1

BOOL status;
struct Region *region1, *region2;

FUNCTION
If any portion of region1 is not in the region then add
that portion to the region2

INPUTS
region1 - pointer to Region structure
region2 - pointer to Region structure

RESULTS
status - return TRUE if successful operation

return FALSE if ran out of memory

BUGS

SEE ALSO
OrRectRegion graphics/regions.h

1.75 graphics.library/OwnBlitter

NAME
OwnBlitter -- get the blitter for private usage

SYNOPSIS
OwnBlitter()

graphics 47 / 67

FUNCTION
If blitter is available return immediately with the blitter
locked for your exclusive use. If the blitter is not available
put task to sleep. It will be awakened as soon as the blitter
is available. When the task first owns the blitter the blitter
may still be finishing up a blit for the previous owner. You
must do a WaitBlit before actually using the blitter registers.

Calls to OwnBlitter() not nest. If a task that owns the
blitter calls OwnBlitter() again, a lockup will result.
(Same situation if the task calls a system function
that tries to own the blitter).

INPUTS
NONE

RETURNS

SEE ALSO
DisownBlitter

1.76 graphics.library/PolyDraw

*

NAME
PolyDraw -- Draw lines from table of (x,y) values.

SYNOPSIS
PolyDraw(rp, count , array)

a1 d0 a0

struct RastPort *rp;
SHORT count;
SHORT array[];

FUNCTION
starting with the first pair draw connected lines to
it and every succeeding pair.

INPUTS
rp - pointer to RastPort structure
count - number of points in array (x,y) pairs
array - pointer to first (x,y) pair

BUGS

SEE ALSO
Draw Move graphics/rastport.h

*

graphics 48 / 67

1.77 graphics.library/QBlit

NAME
QBlit -- Queue up a request for blitter usage

SYNOPSIS
QBlit(bp)

a1

struct bltnode *bp;

FUNCTION
Link a request for the use of the blitter to the end of the
current blitter queue. The pointer bp points to a blit structure
containing, among other things, the link information, and the
address of your routine which is to be called when the blitter
queue finally gets around to this specific request. When your
routine is called, you are in control of the blitter ... it is
not busy with anyone else’s requests. This means that you can
directly specify the register contents and start the blitter.
See the description of the blit structure and the uses of QBlit
in the section titled Graphics Support in the OS Kernel Manual.
Your code must be written to run either in supervisor or user
mode on the 68000.

INPUTS
bp - pointer to a blit structure

RESULT
Your routine is called when the blitter is ready for you.
In general requests for blitter usage through this channel are
put in front of those who use the blitter via OwnBlitter and
DisownBlitter. However for small blits there is more overhead
using the queuer than Own/Disown Blitter.

BUGS

SEE ALSO
QBSBlit hardware/blit.h

1.78 graphics.library/QBSBlit

NAME
QBSBlit -- Synchronize the blitter request with the video beam.

SYNOPSIS
QBSBlit(bsp)

a1

struct bltnode *bsp;

FUNCTION
Call a user routine for use of the blitter, enqueued separately from
the QBlit queue. Calls the user routine contained in the blit

graphics 49 / 67

structure when the video beam is located at a specified position
onscreen. Useful when you are trying to blit into a visible part
of the screen and wish to perform the data move while the beam is
not trying to display that same area. (prevents showning part of
an old display and part of a new display simultaneously). Blitter
requests on the QBSBlit queue take precedence over those on the
regular blitter queue. The beamposition is specified the blitnode.

INPUTS
bsp - pointer to a blit structure. See description in the

Graphics Support section of the manual for more info.

RESULT
User routine is called when the QBSBlit queue reaches this
request AND the video beam is in the specified position.
If there are lots of blits going on and the video beam
has wrapped around back to the top it will call all the
remaining bltnodes as fast as it can to try and catch up.

BUGS
Not very smart when getting blits from different tasks.
They all get put in same queue so there are unfortunately
some interdependencies with the beam syncing.

SEE ALSO
QBlit hardware/blit.h

1.79 graphics.library/ReadPixel

NAME
ReadPixel -- read the pen number value of the pixel at a

specified x,y location within a certain RastPort.

SYNOPSIS
penno = ReadPixel(rp, x, y)
d0 a1 d0:16 d1:16

LONG penno;
struct RastPort *rp;
SHORT x,y;

FUNCTION
Combine the bits from each of the bit-planes used to describe
a particular RastPort into the pen number selector which that
bit combination normally forms for the system hardware selection
of pixel color.

INPUTS
rp - pointer to a RastPort structure

(x,y) a point in the RastPort

RESULT
Pen - (0..255) number at that position is returned.

-1 is returned if cannot read that pixel

graphics 50 / 67

BUGS

SEE ALSO
WritePixel graphics/rastport.h

1.80 graphics.library/RectFill

NAME
RectFill -- Fill a defined rectangular area with

the current drawing pen color, outline color,
secondary color, and pattern.

SYNOPSIS
RectFill(rp, xmin, ymin, xmax, ymax)
a1 d0:16 d1:16 d2:16 d3:16

struct RastPort *rp;
SHORT xmin,ymin;
SHORT xmax,ymax;

FUNCTION
Fill the rectangular region specified by the
parameters with the chosen pen colors, areafill
pattern, and drawing mode. If no areafill pattern is
specified, fill the rectangular region with the FgPen
color, taking into account the drawing mode.

INPUTS
rp - pointer to a RastPort structure
(xmin,ymin) (xmax,ymax) are the coordinates of the upper
left corner and the lower right corner, respectively, of the

rectangle.
The following relation MUST be true:
(xmax >= xmin) and (ymax >= ymin)

BUGS
Complement mode with FgPen complements all bitplanes.

SEE ALSO
AreaEnd graphics/rastport.h

1.81 graphics.library/RemBob

NAME
RemBob -- Remove a Bob from the gel list.

SYNOPSIS
RemBob(bob)

struct Bob *bob;

FUNCTION

graphics 51 / 67

Marks a Bob as no-longer-required. The gels internal code then
removes the Bob from the list of active gels the next time
DrawGList is executed. This is implemented as a macro.
If the user is double-buffering the Bob, it could take two
calls to DrawGList before the Bob actually disappears from
the RastPort.

INPUTS
Bob = pointer to the Bob to be removed

BUGS

SEE ALSO
RemIBob DrawGList graphics/gels.h graphics/gfxmacros.h

1.82 graphics.library/RemFont

NAME
RemFont -- Remove a font from the system list.

SYNOPSIS
RemFont(textFont)

a1

struct TextFont *textFont;

FUNCTION
This function removes a font from the system, ensuring that
access to it is restricted to those applications that
currently have an active pointer to it: i.e. no new SetFont
requests to this font are satisfied.

INPUTS
textFont - the TextFont structure to remove.

BUGS

SEE ALSO
SetFont AddFont graphics/text.h

1.83 graphics.library/RemIBob

NAME
RemIBob -- Immediately remove a Bob from the gel list and the RastPort.

SYNOPSIS
RemIBob(bob, rp, vp)

a0 a1 a2

struct Bob *bob;
struct RastPort *rp;
struct ViewPort *vp;

graphics 52 / 67

FUNCTION
Removes a Bob immediately by uncoupling it from the gel list and
erases it from the RastPort.

INPUTS
bob = pointer to the Bob to be removed
rp = pointer to the RastPort if the Bob is to be erased
vp = pointer to the ViewPort for beam-synchronizing

BUGS

SEE ALSO
InitGels RemVSprite graphics/gels.h

1.84 graphics.library/RemVSprite

NAME
RemVSprite -- Remove a VSprite from the current gel list.

SYNOPSIS
RemVSprite(vs)

a0

struct VSprite *vs;

FUNCTION
Unlinks the VSprite from the current gel list.

INPUTS
vs = pointer to the VSprite structure to be removed from the gel list

BUGS

SEE ALSO
InitGels RemIBob graphics/gels.h

1.85 graphics.library/ScrollRaster

NAME
ScrollRaster -- Push bits in rectangle in raster around by

dx,dy towards 0,0 inside rectangle.

SYNOPSIS
ScrollRaster(rp, dx, dy, xmin, ymin, xmax, ymax)

a1 d0 d1 d2 d3 d4 d5

struct RastPort *rp;
SHORT dx,dy;
SHORT xmin,ymin;
SHORT xmax,ymax;

graphics 53 / 67

FUNCTION
Move the bits in the raster by (dx,dy) towards (0,0)
The space vacated is RectFilled with BGPen.
Limit the scroll operation to the rectangle defined
by (xmin,ymin)(xmax,ymax). Bits outside will not be
affected. If xmax,ymax is outside the rastport then use
the lower right corner of the rastport.
If you are dealing with a SimpleRefresh layered RastPort you
should check rp->Layer->Flags & LAYER_REFRESH to see if
there is any damage in the damage list. If there is you should
call the appropriate BeginRefresh(Intuition) or BeginUpdate(graphics)
routine sequence.

INPUTS
rp - pointer to a RastPort structure
dx,dy are integers that may be postive, zero, or negative
xmin,ymin - upper left of bounding rectangle
xmax,ymax - lower right of bounding rectangle

EXAMPLE
ScrollRaster(rp,0,1) /* shift raster up by one row */
ScrollRaster(rp,-1,-1) /* shift raster down and to the right by 1 pixel

BUGS
In 1.2/V1.3 if you ScrollRaster a SUPERBITMAP exactly left or right,
and there is no TmpRas attached to the RastPort, the system will
allocate one for you, but will never free it or record its location.
The only workaround is to attach a valid TmpRas of size at least
MAXBYTESPERROW to the RastPort before the call.

ScrollRaster does not add the shifted areas into the damage list.
This can cause difficulties for SIMPLE_REFRESH windows.

SEE ALSO
graphics/rastport.h

1.86 graphics.library/ScrollVPort

NAME
ScrollVPort -- Reinterpret RasInfo information in ViewPort.

SYNOPSIS
ScrollVPort(vp)

a0

struct ViewPort *vp;

FUNCTION
After the programmer has adjusted the Offset values in
the RasInfo structures of ViewPort, change the
the copper lists to reflect the the Scroll positions.
Changing the BitMap ptr in RasInfo and not changing the
the Offsets will effect a double buffering affect.

INPUTS

graphics 54 / 67

vp - pointer to a ViewPort structure
that is currently be displayed.

RESULTS
modifies hardware and intermediate copperlists to reflect
new RasInfo

BUGS
pokes not fast enough to avoid some visible hashing of display

SEE ALSO
MakeVPort MrgCop LoadView graphics/view.h

1.87 graphics.library/SetAPen

NAME
SetAPen -- Set primary pen

SYNOPSIS
SetAPen(rp, pen)

a1 d0

struct RastPort *rp;
UBYTE pen;

FUNCTION
Set the primary drawing pen for lines, fills, and text.

INPUTS
rp - pointer to RastPort structure.
pen - (0-255)

RESULT
Changes the minterms in the RastPort to reflect new primary pen.
Set line drawer to restart pattern.

BUGS

SEE ALSO
SetBPen graphics/rastport.h

1.88 graphics.library/SetBPen

NAME
SetBPen -- Set secondary pen

SYNOPSIS
SetBPen(rp, pen)

a1 d0

struct RastPort *rp;
UBYTE pen;

graphics 55 / 67

FUNCTION
Set the secondary drawing pen for lines, fills, and text.

INPUTS
rp - pointer to RastPort structure.
pen - (0-255)

RESULT
Changes the minterms in the RastPort to reflect new secondary pen.
Set line drawer to restart pattern.

BUGS

SEE ALSO
SetAPen graphics/rastport.h

1.89 graphics.library/SetCollision

NAME
SetCollision -- Set a pointer to a user collision routine.

SYNOPSIS
SetCollision(num, routine, GInfo)

d0 a0 a1

ULONG num;
VOID (*routine)();
struct GelsInfo *GInfo;

FUNCTION
Sets a specified entry (num) in the user’s collision vectors table
equal to the address of the specified collision routine.

INPUTS
num = collision vector number
routine = pointer to the user’s collision routine
GInfo = pointer to a GelsInfo structure

BUGS

SEE ALSO
InitGels graphics/gels.h graphics/rastport.h

1.90 graphics.library/SetDrMd

NAME
SetDrMd -- Set drawing mode

SYNOPSIS
SetDrMd(rp, mode)

a1 d0:8

graphics 56 / 67

struct RastPort *rp;
UBYTE mode;

FUNCTION
Set the drawing mode for lines, fills and text.
Get the bit definitions from rastport.h

INPUTS
rp - pointer to RastPort structure.
mode - 0-255, some combinations may not make much sense.

RESULT
The mode set is dependant on the bits selected.
Change minterms to reflect new drawing mode.
Set line drawer to restart pattern.

BUGS

SEE ALSO
SetAPen graphics/rastport.h

1.91 graphics.library/SetFont

NAME
SetFont -- Set the text font and attributes in a RastPort.

SYNOPSIS
SetFont(rp, font)

a1 a0

struct RastPort *rp;
struct TextFont *font;

FUNCTION
This function sets the font in the RastPort to that described
by font, and updates the text attributes to reflect that
change. If font is zero, this call leaves the RastPort
with no font. This function clears the effect of any previous
soft styles.

INPUTS
rp - the RastPort in which the text attributes are to be changed
font - pointer to a TextFont structure returned from OpenFont

or OpenDiskFont

BUGS

SEE ALSO
OpenFont diskfont.library/OpenDiskFont graphics/text.h

1.92 graphics.library/SetOPen

graphics 57 / 67

NAME
SetOPen -- Change the Area OutLine pen and turn on Outline

mode for areafills.

SYNOPSIS
SetOPen(rp, pen)

struct RastPort *rp;
UBYTE pen;

FUNCTION
This is implemented as a c-macro.
Pen is the pen number that will be used to draw a border
around an areafill during AreaEnd().

INPUTS
rp = pointer to RastPort structure
pen = number between 0-255

BUGS

SEE ALSO
AreaEnd() graphics/gfxmacros.h graphics/rastport.h

1.93 graphics.library/SetRast

NAME
SetRast - Set an entire drawing area to a specified color.

SYNOPSIS
SetRast(rp, pen)

a1 d0

struct RastPort *rp;
UBYTE pen;

FUNCTION
Set the entire contents of the specified RastPort to the
specified pen.

INPUTS
rp - pointer to RastPort structure
pen - the pen number (0-255) to jam into bitmap

RESULT
The drawing area becomes the selected pen number.

BUGS

SEE ALSO
RectFill graphics/rastport.h

graphics 58 / 67

1.94 graphics.library/SetRGB4

NAME
SetRGB4 -- Set one color register for this viewport.

SYNOPSIS
SetRGB4(vp, n, r, g, b)

a0 d0 d1:4 d2:4 d3:4

struct ViewPort *vp;
SHORT n;
UBYTE r,g,b;

FUNCTION
Change the color look up table so that this viewport displays
the color (r,g,b) for pen number n.

INPUTS
vp - pointer to viewport structure
n - the color number (range from 0 to 31)
r - red level
g - green level
b - blue level

RESULT
If there is a ColorMap for this viewport store the value in
in the structure ColorMap.
The selected color register is changed to match your specs.
If the color value is unused then nothing will happen.

BUGS

SEE ALSO
LoadRGB4 GetRGB4 graphics/view.h

1.95 graphics.library/SetRGB4CM

NAME
SetRGB4CM -- Set one color register for this ColorMap.

SYNOPSIS
SetRGB4CM(cm, n, r, g, b)

a0 d0 d1:4 d2:4 d3:4

struct ColorMap *cm;
SHORT n;
UBYTE r,g,b;

INPUTS
cm = colormap
n = the color number (range from 0 to 31)
r = red level
g = green level
b = blue level

graphics 59 / 67

RESULT
Store the (r,g,b) triplet at index n of the ColorMap structure.
This function can be used to set up a ColorMap before before
linking it into a viewport.

BUGS

SEE ALSO
GetColorMap GetRGB4 SetRGB4 graphics/view.h

1.96 graphics.library/SetSoftStyle

NAME
SetSoftStyle -- Set the soft style of the current font.

SYNOPSIS
newStyle = SetSoftStyle(rp, style, enable)

d0 a1 d0 d1

ULONG newStyle;
struct RastPort *rp;
ULONG style;
ULONG enable;

FUNCTION
This function alters the soft style of the current font. Only
those bits that are also set in enable are affected. The
resulting style is returned, since some style request changes
will not be honored when the implicit style of the font
precludes changing them.

INPUTS
rp - the RastPort from which the font and style are extracted.
style - the new font style to set, subject to enable.
enable - those bits in style to be changed. Any set bits here

that would not be set as a result of AskSoftStyle will
be ignored, and the newStyle result will not be as
expected.

RESULTS
newStyle - the resulting style, both as a result of previous

soft style selection, the effect of this function, and
the style inherent in the set font.

BUGS

SEE ALSO
AskSoftStyle graphics/text.h

1.97 graphics.library/SortGList

graphics 60 / 67

NAME
SortGList -- Sort the current gel list, ordering its y,x coordinates.

SYNOPSIS
SortGList(rp)

a1

FUNCTION
Sorts the current gel list according to the gels’ y,x coordinates.
This sorting is essential before calls to DrawGList or DoCollision.

INPUTS
rp = pointer to the RastPort structure containing the GelsInfo

BUGS

SEE ALSO
InitGels DoCollision DrawGList graphics/rastport.h

1.98 graphics.library/SyncSBitMap

NAME
SyncSBitMap -- Syncronize Super BitMap with whatever is

in the standard Layer bounds.

SYNOPSIS
SyncSBitMap(layer)

a0

struct Layer *layer;

FUNCTION
Copy all bits from ClipRects in Layer into Super BitMap
BitMap. This is used for those functions that do not
want to deal with the ClipRect structures but do want
to be able to work with a SuperBitMap Layer.

INPUTS
layer - pointer to a Layer that has a SuperBitMap

The Layer should already be locked by the caller.

RESULT
A bitmap that the programmer can now diddle with the bits.
After diddling the programmer should call CopySBitMap to
copy the bits back into the onscreen layer.

BUGS

SEE ALSO
CopySBitMap graphics/clip.h

graphics 61 / 67

1.99 graphics.library/Text

NAME
Text -- Write text characters (no formatting).

SYNOPSIS
Text(rp, string, count)

a1 a0 d0-0:16

struct RastPort *rp;
STRPTR string;
SHORT count;

FUNCTION
This graphics function writes printable text characters to the
specified RastPort at the current position. No control meaning
is applied to any of the characters, and only text on the
current line is output.
If the characters displayed run past the RastPort boundary,
the current position is truncated to the boundary, and
thus does not represent the true position.

INPUTS
rp - a pointer to the RastPort which describes where the

text is to be output
count - the string length. If zero, there are no characters

to be output.
string - the address of string to output

BUGS
The maximum string length (in pixels) is limited to (1024 - 16 = 1008)

pixels wide.

Text is clipped to the width of the rastport even if the Text() write
was made starting to the left of the rastport.

SEE ALSO
Move TextLength graphics/text.h graphics/rastport.h

1.100 graphics.library/TextLength

NAME
TextLength -- Determine raster length of text data.

SYNOPSIS
length = TextLength(rp, string, count)
d0:16 a1 a0 d0:16

SHORT length;
struct RastPort *rp;
STRPTR string;
SHORT count;

FUNCTION

graphics 62 / 67

This graphics function determines the length that text data
would occupy if output to the specified RastPort with the
current attributes. The length is specified as the number of
raster dots: to determine what the current position would be
after a Write using this string, add the length to cp_x
(cp_y is unchanged by Write).

INPUTS
rp - a pointer to the RastPort which describes where the

text attributes reside.
string - the address of string to determine the length of
count - the string length. If zero, there are no characters

in the string.

RESULTS
length - the number of pixels in x this text would occupy, not

including any negative kerning that may take place at
the beginning of the text string, nor taking into
account the effects of any clipping that may take
place.

BUGS
A length that would overflow single word arithmatic is not
calculated correctly.

SEE ALSO
Text graphics/text.h graphics/rastport.h

1.101 graphics.library/UnlockLayerRom

*

NAME
UnlockLayerRom -- Unlock Layer structure by rom(gfx lib) code.

SYNOPSIS
UnlockLayerRom(layer)

a5

FUNCTION
Release the lock on this layer. If the same task has called
LockLayerRom more than once than the same number of calls to
UnlockLayerRom must happen before the layer is actually freed
so that other tasks may use it.
This call does destroy scratch registers.
This call is identical to UnlockLayer (layers.library).

INPUTS
layer - pointer to Layer structure

BUGS

SEE ALSO
LockLayerRom graphics/clip.h

graphics 63 / 67

*

1.102 graphics.library/VBeamPos

NAME
VBeamPos -- Get vertical beam position at this instant.

SYNOPSIS
pos = VBeamPos()
d0

LONG pos;

FUNCTION
Get the vertical beam position from the hardware.

INPUTS
none

RESULT
interrogates hardware for beam position and returns value.
valid results in the range of 0-511
Because of multitasking, the actual value returned may have
no use. If you are the highest priority task then the value
returned should be close, within 1 line.

BUGS

SEE ALSO

1.103 graphics.library/WaitBlit

NAME
WaitBlit -- Wait for the blitter to be finished before proceeding

with anything else.

SYNOPSIS
WaitBlit()

FUNCTION
WaitBlit returns when the blitter is idle. This function should
normally only be used when dealing with the blitter in a
synchronous manner, such as when using OwnBlitter and DisownBlitter.
WaitBlit does not wait for all blits queued up using QBlit or
QBSBlit. You should call WaitBlit if you are just about to free
some memory that you have used with the blitter.

Note that many graphics calls fire up the blitter, and let it run.
The CPU does not need to wait for the blitter to finish before
returning. When examining bits with the CPU right after a blit, or
when freeeing temorary memory used by the blitter, a WaitBlit() may
be required.

graphics 64 / 67

INPUTS
none

RESULT
Your program waits until the blitter is finished. Unlike most Amiga
rom routines, the CPU registers D0/D1/A0 and A1 are preserved by this
call.

BUGS
There is a bug in the older revisions of the Agnus chip that can
cause the BUSY bit to indicate the blit has finished when the blitter
has, in fact, not started the blit yet (even though BltSize has been
written). This most often occurs in a heavily loaded systen with
extended memory, HIRES, and 4 bitplanes. WaitBlit currently tries to
avoid the Agnus problem by testing the BUSY bit multiple times to make
sure the blitter has started, there is no need for further action on
the part of the WaitBlit user. Also this pig busy waits. (sigh)

The hardware bug was fixed as of the first "Fat Agnus" chip, as used
in all A500 and A2000 computers.

SEE ALSO
OwnBlitter DisownBlitter hardware/blit.h

1.104 graphics.library/WaitBOVP

NAME
WaitBOVP -- Wait till vertical beam reached bottom of

this viewport.

SYNOPSIS
WaitBOVP(vp)

a0

FUNCTION
Returns when vertical beam reaches bottom of this viewport

INPUTS
vp - pointer to ViewPort structure

RESULT
This function will return sometime after the beam gets beyond
the bottom of the viewport. Depending on the multitasking load
of the system, the actual beam position may be different than
what would be expected in a lightly loaded system.

BUGS
Horrors! This function currently busy waits waiting for the
beam to get to the right place. It should use the copper
interrupt to trigger and send signals like WaitTOF does.

SEE ALSO
WaitTOF VBeamPos

graphics 65 / 67

1.105 graphics.library/WaitTOF

NAME
WaitTOF -- Wait for the top of the next video frame.

SYNOPSIS
WaitTOF()

FUNCTION
Wait for vertical blank to occur and all vertical blank
interrupt routines to complete before returning to caller.

INPUTS
none

RESULT
Place this task on the TOF wait queue. When vertical blank
interupt comes around the interrupt service routine fires off
signals to all the tasks doing WaitTOF. The highest priority task
ready gets to run then.

BUGS

SEE ALSO
exec/Wait exec/Signal

1.106 graphics.library/WritePixel

NAME
WritePixel -- Change the pen num of one specific pixel in a

specified RasterPort.

SYNOPSIS
error = WritePixel(rp, x, y)
d0 a1 D0 D1

LONG error;
struct RastPort *rp;
SHORT x,y;

FUNCTION
Changes the pen number of the selected pixel in the specified
RastPort to that currently specified by PenA, the primary
drawing pen. Obey minterms in RastPort.

INPUTS
rp - a pointer to the RastPort structure

(x,y) - point within the RastPort at which the selected
pixel is located.

RESULT
error = 0 if pixel succesfully changed

= -1 if (x,y) is outside the RastPort

graphics 66 / 67

BUGS

SEE ALSO
ReadPixel graphics/rastport.h

1.107 graphics.library/XorRectRegion

NAME
XorRectRegion -- Perform 2d XOR operation of rectangle

with region, leaving result in region

SYNOPSIS
status = XorRectRegion(region,rectangle)
d0 a0 a1

BOOL status;
struct Region *region;
struct Rectangle *rectangle;

FUNCTION
Add portions of rectangle to region if they are not in
the region.
Remove portions of rectangle from region if they are
in the region.

INPUTS
region - pointer to Region structure
rectangle - pointer to Rectangle structure

RESULTS
status - return TRUE if successful operation

return FALSE if ran out of memory

BUGS

SEE ALSO
OrRegionRegion AndRegionRegion graphics/regions.h

1.108 graphics.library/XorRegionRegion

NAME
XorRegionRegion -- Perform 2d XOR operation of one region

with second region, leaving result in second region

SYNOPSIS
status = XorRegionRegion(region1,region2)
d0 a0 a1

BOOL status;
struct Region *region1, *region2;

FUNCTION

graphics 67 / 67

Join the regions together. If any part of region1 overlaps
region2 then remove that from the new region.

INPUTS
region1 = pointer to Region structure
region2 = pointer to Region structure

RESULTS
status - return TRUE if successful operation

return FALSE if ran out of memory

BUGS

	graphics
	graphics.doc
	graphics.library/AddAnimOb
	graphics.library/AddBob
	graphics.library/AddFont
	graphics.library/AddVSprite
	graphics.library/AllocRaster
	graphics.library/AndRectRegion
	graphics.library/AndRegionRegion
	graphics.library/Animate
	graphics.library/AreaCircle
	graphics.library/AreaDraw
	graphics.library/AreaEllipse
	graphics.library/AreaEnd
	graphics.library/AreaMove
	graphics.library/AskFont
	graphics.library/AskSoftStyle
	graphics.library/AttemptLockLayerRom
	graphics.library/BltBitMap
	graphics.library/BltBitMapRastPort
	graphics.library/BltClear
	graphics.library/BltMaskBitMapRastPort
	graphics.library/BltPattern
	graphics.library/BltTemplate
	graphics.library/CBump
	graphics.library/CEND
	graphics.library/ChangeSprite
	graphics.library/CINIT
	graphics.library/ClearEOL
	graphics.library/ClearRectRegion
	graphics.library/ClearRegion
	graphics.library/ClearScreen
	graphics.library/ClipBlit
	graphics.library/CloseFont
	graphics.library/CMOVE
	graphics.library/CopySBitMap
	graphics.library/CWAIT
	graphics.library/DisownBlitter
	graphics.library/DisposeRegion
	graphics.library/DoCollision
	graphics.library/Draw
	graphics.library/DrawEllipse
	graphics.library/DrawGList
	graphics.library/Flood
	graphics.library/FreeColorMap
	graphics.library/FreeCopList
	graphics.library/FreeCprList
	graphics.library/FreeGBuffers
	graphics.library/FreeRaster
	graphics.library/FreeSprite
	graphics.library/FreeVPortCopLists
	graphics.library/GetColorMap
	graphics.library/GetGBuffers
	graphics.library/GetRGB4
	graphics.library/GetSprite
	graphics.library/InitArea
	graphics.library/InitBitMap
	graphics.library/InitGels
	graphics.library/InitGMasks
	graphics.library/InitMasks
	graphics.library/InitRastPort
	graphics.library/InitTmpRas
	graphics.library/InitView
	graphics.library/InitVPort
	graphics.library/LoadRGB4
	graphics.library/LoadView
	graphics.library/LockLayerRom
	graphics.library/MakeVPort
	graphics.library/Move
	graphics.library/MoveSprite
	graphics.library/MrgCop
	graphics.library/NewRegion
	graphics.library/OpenFont
	graphics.library/OrRectRegion
	graphics.library/OrRegionRegion
	graphics.library/OwnBlitter
	graphics.library/PolyDraw
	graphics.library/QBlit
	graphics.library/QBSBlit
	graphics.library/ReadPixel
	graphics.library/RectFill
	graphics.library/RemBob
	graphics.library/RemFont
	graphics.library/RemIBob
	graphics.library/RemVSprite
	graphics.library/ScrollRaster
	graphics.library/ScrollVPort
	graphics.library/SetAPen
	graphics.library/SetBPen
	graphics.library/SetCollision
	graphics.library/SetDrMd
	graphics.library/SetFont
	graphics.library/SetOPen
	graphics.library/SetRast
	graphics.library/SetRGB4
	graphics.library/SetRGB4CM
	graphics.library/SetSoftStyle
	graphics.library/SortGList
	graphics.library/SyncSBitMap
	graphics.library/Text
	graphics.library/TextLength
	graphics.library/UnlockLayerRom
	graphics.library/VBeamPos
	graphics.library/WaitBlit
	graphics.library/WaitBOVP
	graphics.library/WaitTOF
	graphics.library/WritePixel
	graphics.library/XorRectRegion
	graphics.library/XorRegionRegion

