amiga.lib

amiga.lib

] COLLABORATORS
TITLE :
amiga.lib
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

amiga.lib iii

Contents

1 amiga.lib 1
1.1 amiga.lib.doc L e e 1
1.2 amigalib/AddTOF 1
1.3 amiga.lib/BeginlO e e 2
1.4 amiga.lib/CreateEXtIO e e e e 2
1.5 amiga.lib/CreatePort e 3
1.6 amiga.lib/CreateTask e 3
1.7 amiga.lib/DeleteEXtIO o e e e e e 4
1.8 amiga.lib/DeletePort e e e 4
1.9 amigalib/DeleteTask L 5
1.10 amiga.lib/FastRand e 5
1.11 amiga.lib/math/afp e 6
1.12 amiga.lib/math/arnd 7
1.13 amiga.lib/math/dbf 7
1.14 amiga.lib/math/fpa L e 8
1.15 amiga.lib/math/fpbcd L e 8
1.16 amiga.lib/NewList. 0 e 9
1.17 amigalib/printf e e 9
1.18 amiga.lib/RangeRand e 11
1.19 amigalib/RemTOF e 11
1.20 amiga.lib/sprintf oL 12
1.21 amiga.lib/stdioo e e e 12

amiga.lib

1/13

Chapter 1

amiga.lib

1.1 amiga.lib.doc

AddTOF () DeleteTask () NewList ()
BeginIO () FastRand() printf ()
CreateExtIO() afp () RangeRand ()
CreatePort () arnd () RemTOF ()
CreateTask () dbf () sprintf ()
DeleteExtIO() fra () stdio ()
DeletePort () fpbcd ()

1.2 amiga.lib/AddTOF

NAME
AddTOF - add a task to the TopOfFrame Interrupt server chain.

SYNOPSIS
AddTOF (i,p,a);
void AddTOF (struct Isrvstr %, APTR, APTR);

FUNCTION
Adds a task to the vertical-blanking interval interrupt server
chain. This prevents C programmers from needing to write an

assembly language stub to do this function.

INPUTS
i - pointer to structure Isrvstr.
p - pointer to the C-code routine that this server is to call each

time TOF happens.

a — pointer to the first longword in an array of longwords that
is to be used as the arguments passed to your routine
pointed to by p.

SEE ALSO
RemTOF, graphics/graphint.h

amiga.lib 2/13

1.3 amiga.lib/BeginlO

NAME
BeginIO -- initiate asynchronous I/0

SYNOPSIS
BeginIO (iORequest)
void BeginIO (struct IORequest x*);

FUNCTION
This function takes an IORequest, and passes it directly to the
BEGINIO vector of the proper device. This works exactly like
SendIO, but does not clear the io_Flags field first.

This function does not wait for the I/O to complete.

INPUTS
iORequest - Pointer to an initialized, open IORequest structure
with the io_Flags field set to a reasonable value
(use zero if you do not require io_Flags).

SEE ALSO
exec/DoI0, exec/SendIO, exec/WaitIO

1.4 amiga.lib/CreateExtlO

NAME
CreateExtIO() —— create an IORequest structure

SYNOPSIS
ioReqg = CreateExtIO(ioReplyPort, size);
struct IORequest *CreateExtIO(struct MsgPort =, ULONG) ;

FUNCTION
Allocates memory for and initializes a new IO request block
of a user-specified number of bytes. The number of bytes

MUST be the size of a legal IORequest (or extended IORequest)
or very nasty things will happen.

INPUTS
ioReplyPort - a pointer to an already initialized
message port to be used for this IO request’s reply port.
(usually created by CreatePort()).
size - the size of the IO request to be created.
RESULT

Returns a pointer to the new IO Request block, or NULL if
the request failed.

SEE ALSO
CreatePort, DeleteExtIO
CreateIORequest

amiga.lib 3/13

1.5 amiga.lib/CreatePort

NAME
CreatePort - Allocate and initialize a new message port

SYNOPSIS
CreatePort (name, pri)
struct MsgPort xCreatePort (char =*,LONG);

FUNCTION
Allocates and initializes a new message port. The message list
of the new port will be prepared for use (via NewList). The port

will be set to signal your task when a message arrives (PA_SIGNAL).

INPUTS
name - NULL if other tasks will not search for this port
via the FindPort () call. If non—-null, this must be
a null-terminated string; the port will be added to
the system public port list. The name is not copied.
pri - Priority used for insertion into the public port list.
RESULT

A new MsgPort structure ready for use.

SEE ALSO
DeletePort, exec/FindPort, exec/ports.h

1.6 amiga.lib/CreateTask

NAME
CreateTask —-- Create task with given name, priority, stacksize

SYNOPSIS
CreateTask (name, pri, initPC, stackSize)
task=(struct Task «)CreateTask (char *, LONG, funcEntry, ULONG) ;

FUNCTION
This function simplifies program creation of subtasks by
dynamically allocating and initializing required structures
and stack space, and adding the task to Exec’s task list
with the given name and priority. A tc_MemEntry list is provided
so that all stack and structure memory allocated by CreateTask
is automatically deallocated when the task is removed.

An Exec task may not call dos.library functions or any function
which might cause the loading of a disk-resident library, device,
or file (since such functions are indirectly calls to dos.library).
Only AmigaDOS Processes may call AmigaDOS; see the DOS CreateProc()
call for more information.

If other tasks or processes will need to find this task by name,
provide a complex and unigue name to avoid conflicts.

If your compiler provides automatic insertion of stack-checking

amiga.lib

4/13

code, you may need to disable this feature when compiling subtask

code since the stack for the subtask is at a dynamically allocated

location. 1If your compiler requires 68000 registers to contain
particular values for base relative addressing, you may need to
save these registers from your main process, and restore them
in your initial subtask code.

The function entry initPC is generally provided as follows:

In C:
extern void functionName () ;
char xtname = "unique name";

task = CreateTask (tname, 0L, functionName, 4000L);

In assembler:

PEA startLabel
INPUTS
name - a null terminated string.
pri - an Exec task priority between -128 and 127 (commonly O0)

funcEntry - the address of the first executable instruction
of the subtask code.

stackSize - size in bytes of stack for the subtask. Don’t cut it
too close - system function stack usage may change.

SEE ALSO
DeleteTask, exec/FindTask

1.7 amiga.lib/DeleteExtlO

NAME
DeleteExtIO () — return memory allocated for extended IO request

SYNOPSIS
DeleteExtIO(ioReq);
void DeleteExtIO (struct IORequest «x);

FUNCTION
Frees up an I0 request as allocated by CreateExtIO(). By
looking at the mn_Length field, it knows how much memory
to deallocate.

INPUTS
ioReq — A pointer to the IORequest block to be freed.

SEE ALSO
CreateExtIO

1.8 amiga.lib/DeletePort

NAME
DeletePort — Free a message port created by CreatePort

amiga.lib

5/13

SYNOPSIS
DeletePort (msgPort)
void DeletePort (struct MsgPort x);

FUNCTION
Frees a message port created by CreatePort. All messages that
may have been attached to this port must have already been
replied to.

INPUTS
msgPort - A message port

SEE ALSO
CreatePort

1.9 amiga.lib/DeleteTask

NAME
DeleteTask ——- Delete a task created with CreateTask

SYNOPSIS
DeleteTask (task)
void DeleteTask (struct Task =«);

FUNCTION
This function simply calls exec/RemTask, deleting a task from the
Exec task lists and automatically freeing any stack and
structure memory allocated for it by CreateTask.

Before deleting a task, you must first make sure that the task is
not currently executing any system code which might try to signal
the task after it is gone.

This can be accomplished by stopping all sources that might reference
the doomed task, then causing the subtask execute a Wait (0L). Another
option is to have have the task DeleteTask () /RemTask () itself.

INPUTS
task - pointer to a Task

SEE ALSO
CreateTask, exec/RemTask

1.10 amiga.lib/FastRand

NAME
FastRand - quickly generate a somewhat random integer

SYNOPSIS
number = FastRand (seed);
ULONG FastRand (ULONG) ;

amiga.lib

6/13

FUNCTION
C-implementation only. Seed value is taken from stack, shifted
left one position, exclusive-or’ed with hex value $1D872B41 and
returned (DO) .

INPUTS
seed - a 32-bit integer

RESULT
number - new random seed, a 32-bit value

SEE ALSO
RangeRand

1.11 amiga.lib/math/afp

NAME
afp - Convert ASCII string variable into fast floating point

USAGE
ffp_value = afp(string);

FUNCTION
Accepts the address of the ASCII string in C format that is
converted into an FFP floating point number.

The string is expected in this Format:
{S}{digits}{’." }{digits}{’E’}{S}{digits}
<Kk *x*x*k*A*MANTISSA**x+x*x***x><*** EXPONENT % x x>

Syntax rules:
Both signs are optional and are "+’ or ’'-’. The mantissa must be
present. The exponent need not be present. The mantissa may lead

with a decimal point. The mantissa need not have a decimal point.

Examples: All of these values represent the number fourty-two.

42 .042e3
42. +.042e+03
+42. 0.000042e6
0000042.00 420000e-4

420000.00e-0004

Floating point range:
Fast floating point supports the value zero and non-zero values
within the following bounds -
18 20
9.22337177 x 10 > 4+number > 5.42101070 x 10
18 -20
-9.22337177 x 10 > —number > -2.71050535 x 10

Precision:
This conversion results in a 24 bit precision with guaranteed
error less than or equal to one-half least significant bit.

amiga.lib 7/13

INPUTS
string - Pointer to the ASCII string to be converted.

OUTPUTS
string — points to the character which terminated the scan
equ - fast floating point equivalent

1.12 amiga.lib/math/arnd

NAME
arnd — ASCII round of the provided floating point string

USAGE
arnd (place, exp, &string[0]);

FUNCTION
Accepts an ASCII string representing an FFP floating point
number, the binary representation of the exponent of said
floating point number and the number of places to round to.
A rounding process 1s initiated, either to the left or right
of the decimal place and the result placed back at the
input address defined by &string[0].

INPUTS
place - integer representing number of decimal places to round to
exp - integer representing exponent value of the ASCII string
&string[0] - address where rounded ASCII string is to be placed

(16 bytes)

RESULT
&string[0] - rounded ASCII string

BUGS
None

1.13 amiga.lib/math/dbf

NAME
dbf - convert FFP dual-binary number to FFP format

USAGE
fnum = dbf (exp, mant);

FUNCTION
Accepts a dual-binary format (described below) floating point
number and converts it to an FFP format floating point number.
The dual-binary format is defined as:

exp bit 16 = sign (0=>positive, l=>negative)
exp bits 15-0 = binary integer representing the base
ten (10) exponent

amiga.lib 8/13

man = binary integer mantissa

INPUTS
exp - binary integer representing sign and exponent
mant - binary integer representing the mantissa

RESULT
fnum - converted FFP floating point format number

BUGS
None

1.14 amiga.lib/math/fpa

NAME
fpa - convert fast floating point into ASCII string equivalent

USAGE
exp = fpa(fnum, &string[0]);

FUNCTION
Accepts an FFP number and the address of the ASCII string where it’s
onverted output is to be stored. The number is converted to a NULL
terminated ASCII string in and stored at the address provided.
Additionally, the base ten (10) exponent in binary form is returned.

INPUTS
fnum — Motorola Fast Floating Point number
&string[0] - address for output of converted ASCII character string
(16 bytes)
RESULT
&string[0] - converted ASCII character string
exp - integer exponent value in binary form
BUGS
None

1.15 amiga.lib/math/fpbcd

NAME
fpbcd - convert FFP floating point number to BCD format

USAGE
fpbcd (fnum, &string[0]);

FUNCTION
Accepts a floating point number and the address where the
converted BCD data is to be stored. The FFP number is
converted and stored at the specified address in an ASCII
form in accordance with the following format:

amiga.lib

9/13

MMMM S E S B

Where: M = Four bytes of BCD, each with two (2) digits of
the mantissa (8 digits)

S = Sign of mantissa (0x00 = positive, OxFF = negative)
E = BCD byte for two (2) digit exponent
S = Sign of exponent (0x00 = positive, OxFF = negative)
B = One (1) byte binary two’s compliment representation
of the exponent
INPUTS
fnum - floating point number
&string[0] - address where converted BCD data is to be placed
RESULT
&string[0] - converted BCD data

1.16 amiga.lib/NewList

NAME
NewList —-- prepare a list structure for use

SYNOPSIS
NewList (1list«*)
void NewList (struct List =)

FUNCTION
Prepare a List structure for use; the list will be empty and
ready to use.

This function prepares the lh_Head, 1lh_Tail and 1lh_TailPred fields.
You are responsible for initializing lh_Type. Assembly programmers

will want to use the NEWLIST macro instead.

INPUTS
list - Pointer to a List

SEE ALSO
exec/lists.h

1.17 amiga.lib/printf

NAME
printf - print a formatted output line to the standard output.

SYNOPSIS
printf (formatstring [,value [,values]]);

FUNCTION

Format the output in accordance with specifications in the format

string:

amiga.lib 10/13

INPUTS
formatstring - a pointer to a null-terminated string describing the
output data, and locations for parameter substitutions.
value(s) - numeric variables or addresses of null-terminated strings

to be added to the format information.

The function printf can handle the following format conversions, in
common with the normal C language call to printf:

o\

c - the next long word in the array is to be formatted
as a character (8-bit) wvalue

%d - the next long word in the array is to be formatted
as a decimal number
%$x — the next long word in the array is to be formatted

as a hexadecimal number
s — the next long word is the starting address of a
null-terminated string of characters

o\°

And "1" (small-L) character must be added between the % and the letter
if the value is a long (32 bits) or if the compiler in use forces
passed paramters to 32 bits.

Floating point output is not supported.

Following the %, you may also specify:

o an optional minus (-) sign that tells the formatter
to left-justify the formatted item within the field
width

o an optional field-width specifier... that is, how

many spaces to allot for the full width of this
item. If the field width specifier begins with

a zero (0), it means that leading spaces, ahead of
the formatted item (usually a number) are to be
zero—filled instead of blank-filled

o an optional period (.) that separates the width
specifier from a maximum number of characters
specifier

o) an optional digit string (for %1ls specifications

only) that specifies the maximum number of characters
to print from a string.

See other books on C language programming for examples of the use
of these formatting options (see "printf" in other books).

NOTE
The global "_stdout" must be defined, and contain a pointer to
a legal AmigaDOS file handle. Using the standard Amiga startup
module sets this up. In other cases you will need to define
stdout, and assign it to some reasonable value (like what the
AmigaDOS Output () call returns). This code would set it up:

ULONG stdout;

amiga.lib 11/13

stdout=Output () ;

1.18 amiga.lib/RangeRand

NAME
RangeRand - To obtain a random number within a specific integer range
of 0 to value.

SYNOPSIS
number = RangeRand (value);

FUNCTION
RangeRand accepts a value from 1 to 65535, and returns a value
within that range. (l16-bit integer). Note: C-language implementation.

Value is passed on stack as a 32-bit integer but used as though
it is only a 16-bit integer. Variable named RangeSeed is available
beginning with V1.2 that contains the global seed value passed from
call to call and thus can be changed by a program by declaring::

extern ULONG RangeSeed;

INPUTS
value - integer in the range of 1 to 65535.

RESULT
number - pseudo random integer in the range of 1 to <value>.

SEE ALSO
FastRand

1.19 amiga.lib/RemTOF

NAME
RemTOF - Remove a task from the TopOfFrame interrupt server chain.

SYNOPSIS
RemTOF (1) ;
void RemTOF (struct Isrvstr =);

FUNCTION

To remove a task from the vertical-blanking interval interrupt server
chain.

INPUTS
i - pointer to structure Isrvstr.

SEE ALSO
AddTOF, graphics/graphinit.h

amiga.lib 12/13

1.20 amiga.lib/sprintf

NAME
sprintf - format a C-like string into a string buffer
SYNOPSIS
sprintf (destination, formatstring [,value [, values]]);
FUNCTION
perform string formatting identical to printf, but direct the output
into a specific destination in memory. This uses the ROM version

of printf, so it is very small.

Assembly programmers can call this by placing values on the
stack, followed by a pointer to the formatstring, followed
by a pointer to the destination string.

INPUTS
destination - the address of an area in memory into which the
formatted output is to be placed.

formatstring - pointer to a null terminated string describing the
desired output formatting.
value (s) - numeric information to be formatted into the output
stream.
SEE ALSO

printf, exec/RawDoFmt

1.21 amiga.lib/stdio

NAMES

fclose - close file

fgetc - get a character from a file

fprintf - format data to file (see exec.library/RawDoFmt)

fputc - put character to file

fputs - write string to file

getchar - get a character from stdin

printf - put format data to stdout (see exec.library/RawDoFmt)

putchar - put character to stdout

puts - put string to stdout, followed by newline

sprintf - format data into string (see exec.library/RawDoFmt)
FUNCTION

These functions work much like the standard C functions of the same
names. The file I/O functions all use non-buffered AmigaDOS
filehandles, and must not be mixed with the file I/0O of any C
compiler. The names of these function match those found in many
standard C libraries, when a name conflict occurs, the function is
generally taken from the FIRST library that was specified on the
linker’s command line. Thus to use these functions, specify

the amiga.lib library first.

To get a suitable AmigaDOS filehandle, the AmigaDOS Open ()
function must be used.

amiga.lib

13/13

All of the functions that write to stdout expect an appropriate
filehandle to have been set up ahead of time.
your C compiler and options,
startup code.

Depending on
this may have been done by the
Or it can be done manually:
FROM C:

extern ULONG stdout;

/+ Remove the extern if startup code did not define stdout =/
stdout=0Output () ;
FROM ASSEMBLY:

XDEF _stdout

DC.L _stdout ;<- Place result of dos.library Output ()

here.

	amiga.lib
	amiga.lib.doc
	amiga.lib/AddTOF
	amiga.lib/BeginIO
	amiga.lib/CreateExtIO
	amiga.lib/CreatePort
	amiga.lib/CreateTask
	amiga.lib/DeleteExtIO
	amiga.lib/DeletePort
	amiga.lib/DeleteTask
	amiga.lib/FastRand
	amiga.lib/math/afp
	amiga.lib/math/arnd
	amiga.lib/math/dbf
	amiga.lib/math/fpa
	amiga.lib/math/fpbcd
	amiga.lib/NewList
	amiga.lib/printf
	amiga.lib/RangeRand
	amiga.lib/RemTOF
	amiga.lib/sprintf
	amiga.lib/stdio

