
iostream.info

iostream.info ii

COLLABORATORS

TITLE :

iostream.info

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

iostream.info iii

Contents

1 iostream.info 1

1.1 iostream.info . 1

1.2 iostream.info/Introduction . 1

1.3 iostream.info/Using the iostream layer . 1

1.4 iostream.info/C-style formatting for streams . 2

1.5 iostream.info/Using the streambuf layer . 2

1.6 iostream.info/C-style formatting for streambufs . 2

1.7 iostream.info/stdiobuf . 3

1.8 iostream.info/indirectbuf . 3

1.9 iostream.info/Backing up . 4

1.10 iostream.info/stdio - C-style input-output . 5

1.11 iostream.info/Streambuf internals . 5

1.12 iostream.info/Buffer management . 6

1.13 iostream.info/Filebuf internals . 7

1.14 iostream.info/Function and Variable Index . 8

1.15 iostream.info/Concept Index . 9

iostream.info 1 / 9

Chapter 1

iostream.info

1.1 iostream.info

Introduction
Using the iostream layer
Using the streambuf layer
stdio - C-style input-output
Streambuf internals

Indices:
Function and Variable Index
Concept Index

1.2 iostream.info/Introduction

Introduction

The iostream library was written by Per Bothner.

Various people have found bugs or come with suggestions. Hongjiu Lu
has worked hard to use the library as the default stdio implementation
for Linux, and has provided much stress-testing of the library.

Some code was derived from parts of BSD 4.4, which is copyright
University of California at Berkeley.

1.3 iostream.info/Using the iostream layer

Using the iostream layer

C-style formatting for streams

iostream.info 2 / 9

1.4 iostream.info/C-style formatting for streams

C-style formatting for streams
==============================

These methods all return *this.

- Method: ostream& ostream::vform(const char *format , ...)
Similar to fprintf(file, format, ...). The format is a
printf-style format control string, which is used to format
the (variable number of) arguments, printing the result on the
this stream.

- Method: ostream& ostream::vform(const char *format , va_list args)
Similar to vfprintf(file, format, args). The format is a
printf-style format control string, which is used to format
the argument list args, printing the result on the this stream.

- Method: istream& istream::scan(const char *format , ...)
Similar to fscanf(file, format, ...). The format is a scanf-style
format control string, which is used to read the (variable number
of) arguments from the this stream.

- Method: istream& istream::vscan(const char *format , va_list args)
Like istream::scan, but takes a single va_list argument.

1.5 iostream.info/Using the streambuf layer

Using the streambuf layer

C-style formatting for streambufs
stdiobuf
indirectbuf
Backing up

1.6 iostream.info/C-style formatting for streambufs

C-style formatting for streambufs
=================================

The GNU streambuf class supports printf-like formatting.

- Method: int streambuf::vform(const char *format , ...)
Similar to fprintf(file, format, ...). The format is a

iostream.info 3 / 9

printf-style format control string, which is used to format
the (variable number of) arguments, printing the result on the
this streambuf. The result is the number of characters
printed.

- Method: int streambuf::vform(const char *format , va_list args)
Similar to vfprintf(file, format, args). The format is a
printf-style format control string, which is used to format
the argument list args, printing the result on the this streambuf.
The result is the number of characters printed.

- Method: int streambuf::scan(const char *format , ...)
Similar to fscanf(file, format, ...). The format is a scanf-style
format control string, which is used to read the (variable number
of) arguments from the this streambuf. The result is the number
of items assigned, or EOF in case of input failure before any
conversion.

- Method: int streambuf::vscan(const char *format , va_list args)
Like streambuf::scan, but takes a single va_list argument.

1.7 iostream.info/stdiobuf

stdiobuf
========

A stdiobuf is a streambuf object that points to a FILE object (as
defined by stdio.h). All streambuf operations on the stdiobuf are
forwarded to the FILE. Thus the stdiobuf object provides a wrapper
around a FILE, allowing use of streambuf operations on a FILE. This
can be useful when mixing C code with C++ code.

The pre-defined streams cin, cout, and cerr are normally implemented
as stdiobufs that point to respectively stdin, stdout, and stderr.
This is convenient, but it does cost some extra overhead. (If you have
sets things up so that you use the implementation of stdio provided
with this library, then cin, cout, and cerr will be set up to ot use
stdiobufs, since you get their benefits for free.)

Note that if you use setbuf to give a buffer to a stdiobuf, that
buffer will provide intermediate buffering in addition that whatever is
done by the FILE.

1.8 iostream.info/indirectbuf

indirectbuf
===========

An indirectbuf is one that forwards all of its I/O requests to
another streambuf. All get-related requests are sent to get_stream().

iostream.info 4 / 9

All put-related requests are sent to put_stream().

An indirectbuf can be used to implement Common Lisp synonym-streams
and two-way-streams:

class synonymbuf : public indirectbuf {
Symbol *sym;
synonymbuf(Symbol *s) { sym = s; }
virtual streambuf *lookup_stream(int mode) {

return coerce_to_streambuf(lookup_value(sym)); }
};

1.9 iostream.info/Backing up

Backing up
==========

The GNU iostream library allows you to ask streambuf to remember the
current position, and then later after you’ve read further be able to
go back to it. Your’re guaranteed to be able to backup arbitrary
amounts, even on unbuffered files or multiple buffers worth, as long as
you tell the library advance. This unbounded backup is very useful for
scanning and parsing applications. This example shows a typical
scenario:

// Read either "dog", "hound", or "hounddog".
// If "dog" is found, return 1.
// If "hound" is found, return 2.
// If "hounddog" is found, return 3.
// If non of these are found, return -1.
int my_scan(streambuf* sb)
{

streammarker fence(sb);
char buffer[20];
// Try reading "hounddog":
if (sb->sgetn(buffer, 8) == 8 && strncmp(buffer, "hounddog", 8) == 0)

return 3;
// No, no "hounddog": Backup to ’fence’ ...
sb->seekmark(fence); //
// ... and try reading "dog":
if (sb->sgetn(buffer, 3) == 3 && strncmp(buffer, "dog", 3) == 0)

return 1;
// No, no "dog" either: Backup to ’fence’ ...
sb->seekmark(fence); //
// ... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5 && strncmp(buffer, "hound", 5) == 0)

return 2;
// No, no "hound" either: Backup to ’fence’ and signal failure.
sb->seekmark(fence); // Backup to ’fence’..
return -1;

}

- Constructor: streammarker::streammarker (streambuf* sbuf)
Create a streammarker associated with sbuf that remembers the
current postion of the get pointer.

iostream.info 5 / 9

- Method: int streammarker::delta (streammarker& mark2)
Return the difference between the get positions corresponding to

*this and mark2 (which must point into the same streambuffer as
this).

- Method: int streammarker::delta ()
Return the position relative to the streambuffer’s current get
position.

- Method: int streambuffer::seekmark (streammarker& mark)
Move the get pointer to where it (logicly) was when mark was
constructed.

1.10 iostream.info/stdio - C-style input-output

stdio: C input/output

Iostreams is distributed with a complete implementation of the ANSI C
stdio facility. It is implemented using streambufs.

The stdio package is intended as a replacement for the whatever stdio
is in your C library. It can co-exist with C libraries that have
alternate implementations of stdio, but there may be some problems.
Since stdio works best when you build libc to contain it, and that may
be inconvenient, it is not installed by default.

Extensions beyond ANSI:

* A stdio FILE is identical to a streambuf. Hence there is no need
to worry about synchronizing C and C++ input/output - they are by
definition always synchronized.

* If you create a new streambuf sub-class (in C++), you can use it
as a FILE from C. Thus the system is extensible using the standard
streambuf protocol.

* You can arbitrarily mix reading and writing, without having to seek
in between.

* Unbounded ungetc() buffer.

1.11 iostream.info/Streambuf internals

Streambuf internals

Buffer management
Filebuf internals

iostream.info 6 / 9

1.12 iostream.info/Buffer management

Buffer management
=================

Areas

Streambuf buffer management is fairly sophisticated (this is a nice
way to say "complicated"). The standard protocol has the following
"areas":

* The put area contains characters waiting for output.

* The get area contains characters available for reading.

* The reserve area is available to virtual methods. Usually, the
get and/or put areas are part of the reserve area.

The GNU streambuf design extends this by supporting two get areas:

* The main get area contains characters that have been read in from
the character source, but not yet read by the application.

* The backup area contains previously read data that is being saved
because of a user request, or that have been "unread" (putback).

The backup and the main get area are logically contiguous: That is,
the first character of the main get area follows the last character of
the backup area.

The current get area is whichever one of the backup or main get
areas that is currently being read from. The other of the two is the
non-current get area.

Pointers

The following char* pointers define the various areas. (Note that
if a pointer points to the ’end’ of an area, it means that it points to
the character after the area.)

- Method: char* streambuffer::base ()
The start of the reserve area.

- Method: char* streambuffer::ebuf ()
The end of the reserve area.

- Method: char* streambuffer::pbase ()
The start of the put area.

- Method: char* streambuffer::pptr ()
The current put position. If pptr() < epptr(), then the next
write will overwrite *pptr(), and increment pptr().

iostream.info 7 / 9

- Method: char* streambuffer::epptr ()
The end of the put area.

- Method: char* streambuffer::eback ()
The start of the current get area.

- Method: char* streambuffer::gptr ()
The current get position. If gptr() < egptr(), then the next read
will read *gptr(), and increment gptr().

- Method: char* streambuffer::egptr ()
The end of the current get area.

- Method: char* streambuffer::Gbase ()
The start of the main get area.

- Method: char* streambuffer::eGptr ()
The end of the main get area.

- Method: char* streambuffer::Bbase ()
The start of the backup area.

- Method: char* streambuffer::Bptr ()
The start of the used part of the backup area. The area (Bptr()
.. eBptr()) contains data that has been pushed back, while
(Bbase() .. eBptr()) contains unused space available for
future putbacks.

- Method: char* streambuffer::eBptr ()
The end of the backup area.

- Method: char* streambuffer::Nbase ()
The start of the non-current get area (either main_gbase or
backup_gbase).

- Method: char* streambuffer::eNptr ()
The end of the non-current get area.

1.13 iostream.info/Filebuf internals

Filebuf internals
=================

The filebuf is used a lot, so it is importamt that it be efficient.
It is also supports rather complex semantics. so let us examine its
implementation.

Tied read and write pointers

The streambuf model allows completely independent read and write
pointers. However, a filebuf has only a single logical pointer used
for both reads and writes. Since the streambuf protocol uses gptr()

iostream.info 8 / 9

for reading and pptr() for writing, we map the logical file pointer
into either gptr() or pptr() at different times.

* Reading is allowed when gptr() < egptr(), which we call get mode.

* Writing is allowed when pptr() < epptr(), which we call put mode.
A filebuf cannot be in get mode and put mode at the same time.

We have upto two buffers:

* The backup area, defined by Bbase(), Bptr(), and eBptr(). This
can be empty.

* The reserve area, which also contains the main get area. For an
unbuffered file, the (shortbuf()..shortbuf()+1) is used, where
shortbuf() points to a 1-byte buffer that is part of the filebuf.

The file system’s idea of the current position is eGptr().

Character that have been written into a buffer but not yet written
out (flushed) to the file systems are those between pbase() and pptr().

The end of the valid data bytes is: pptr() > eGptr() && pptr() <
ebuf() ? pptr() : eGptr().

If the filebuf is unbuffered or line buffered, the eptr() is
pbase(). This forces a call to overflow() on each put of a
character. The logical epptr() is epptr() ? ebuf() : NULL. (If the
buffer is read-only, set pbase(), pptr(), and epptr() to NULL. NOT!)

1.14 iostream.info/Function and Variable Index

Function and Variable Index,Concept Index,,Top

**

istream::scan C-style formatting for streams
istream::vscan C-style formatting for streams
ostream::vform C-style formatting for streams
ostream::vform C-style formatting for streams
streambuf::scan C-style formatting for streambufs
streambuf::vform C-style formatting for streambufs
streambuf::vform C-style formatting for streambufs
streambuf::vscan C-style formatting for streambufs
streambuffer::base Buffer management
streambuffer::Bbase Buffer management
streambuffer::Bptr Buffer management
streambuffer::eback Buffer management
streambuffer::eBptr Buffer management
streambuffer::ebuf Buffer management
streambuffer::eGptr Buffer management
streambuffer::egptr Buffer management
streambuffer::eNptr Buffer management
streambuffer::epptr Buffer management

iostream.info 9 / 9

streambuffer::Gbase Buffer management
streambuffer::gptr Buffer management
streambuffer::Nbase Buffer management
streambuffer::pbase Buffer management
streambuffer::pptr Buffer management
streambuffer::seekmark Backing up
streammarker::delta Backing up
streammarker::delta Backing up
streammarker::streammarker Backing up

1.15 iostream.info/Concept Index

Concept Index,,Function and Variable Index,Top

**

backup area Buffer management
get area Buffer management
main get area Buffer management
put area Buffer management
reserve area Buffer management

	iostream.info
	iostream.info
	iostream.info/Introduction
	iostream.info/Using the iostream layer
	iostream.info/C-style formatting for streams
	iostream.info/Using the streambuf layer
	iostream.info/C-style formatting for streambufs
	iostream.info/stdiobuf
	iostream.info/indirectbuf
	iostream.info/Backing up
	iostream.info/stdio - C-style input-output
	iostream.info/Streambuf internals
	iostream.info/Buffer management
	iostream.info/Filebuf internals
	iostream.info/Function and Variable Index
	iostream.info/Concept Index

