
Mac2E

Mac2E ii

COLLABORATORS

TITLE :

Mac2E

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Mac2E iii

Contents

1 Mac2E 1

1.1 Mac2E . 1

1.2 Introduction . 1

1.3 How it all started... 2

1.4 General Presentation . 2

1.5 Spirit . 2

1.6 What is a macro ? . 3

1.7 Example 1 . 3

1.8 Example 2 . 3

1.9 Example 3 . 3

1.10 Defining a macro . 4

1.11 Definition of a macro without parameters . 4

1.12 Definition of a macro with parameter(s) . 4

1.13 Advanced macro definition . 5

1.14 Using several lines for the body . 5

1.15 Comments in the body . 6

1.16 Using a macro . 7

1.17 Identifying a macro name . 7

1.18 Handling of argument passing . 7

1.19 Replacing a macro . 8

1.20 Advanced use . 9

1.21 Macros, comments and character strings . 9

1.22 Macros in a macro body . 9

1.23 Macro calls as macro arguments . 10

1.24 Special Characters . 11

1.25 Using Mac2E . 11

1.26 Macro files . 12

1.27 Calling Mac2E . 12

1.28 Pre-analyzis mode . 12

1.29 Preprocessor mode . 13

Mac2E iv

1.30 VERBOSE . 14

1.31 KEEPSPACES . 14

1.32 DEBUG . 14

1.33 Error messages . 14

1.34 Mac2E and MUI . 15

1.35 mui.m . 15

1.36 muimaster.m . 16

1.37 mui.ma . 16

1.38 OptiMUI2E . 16

1.39 Bugs . 17

1.40 History . 17

1.41 Future . 18

1.42 Distribution . 19

1.43 The author . 20

1.44 Acknowledgments . 21

1.45 Index . 21

Mac2E 1 / 22

Chapter 1

Mac2E

1.1 Mac2E

Mac2E (v4.0)
Macro preprocessor for the E language
Archive of September 1994, the 2nd

© Copyright 1993, 1994, Lionel Vintenat

WARNING ! All the executables in this archive require Workbench 2.0 or higher
to run. Sorry to 1.3 users.

Introduction
What is a macro ?
Using Mac2E
Mac2E and MUI
Bugs
History
Future
Distribution
The author
Acknowledgments

1.2 Introduction

This paragraph answers the 3 essential questions :
- Why Mac2E ?
- What does Mac2E do ?
- How does it do it ?

How it all started
General presentation
Spirit

Mac2E 2 / 22

1.3 How it all started...

In the beginning, there was Amiga E and me. It was great, the two of
us, we wrote wonderful programs in record time. As I didn’t have (and still
don’t have) the RKM’s, these programs were very ugly, without graphical
interfaces, but no matter, they were good times...

And then, MUI arrived, and nothing has been the same since between
Amiga E and me. Why? Well, Amiga E does not permit the use of macros, and
programming MUI without macros is almost crazy! On the other hand, it was
inconceivable to pass up something like MUI. So, I retreated for a while to
the language C: it was the beginning of dark times for my Amiga...

Then I got access to the INTERNET. I spoke about my problem with Wouter
who advised me to use a C preprocessor: there was a great idea! But after
trying, it turned out to be very tedious to use: compilation times were
increased by a factor of 100, and the compiler didn’t give the correct line
numbers for errors. It was then that I got the idea for Mac2E...

1.4 General Presentation

Mac2E is a preprocessor for the Amiga E compiler by Wouter van Oortmerssen,
but it only knows how to do one thing: replace macros in an E source. In other
words, the "conditional compilation" and "file inclusion" aspects, for example,
are not handled by Mac2E, whereas they are with most C preprocessors.

Oh! I almost forgot: all the executables in this archive are of course
written in Amiga E!

1.5 Spirit

I designed Mac2E with 3 ideas in mind:
- make something easy to use (in the spirit of Amiga E)
- solve the problems that I encountered in using a C preprocessor with

Amiga E (see how it all started...)
- make a preprocessor whose use doesn’t make E sources dependant on it;

in other words, if another version of Amiga E which contains a preprocessor
comes out, the conversion of your sources from Mac2E to the new preprocessor
should require very few modifications

I think that this version 3.0 effectively implements these 3 ideas,
in that:

- Mac2E remains very close to the level of use of a classical
C preprocessor, so learning it will be very quick for most programmers

- using Mac2E on a file takes about the same amount of time as the
compilation itself, which, taking into account the speed of Amiga E itself,
aught to be acceptable even for slow Amigas

- Mac2E never introduces line feeds when it replaces a macro, so that
the compiler always indicates the correct line number when reporting errors

- Macro definition is done in separate files from the source, and the
macro files are passed directly to the command Mac2E without your source
needing to be modified by a single character, so the passage from Mac2E to the
future (maybe) Amiga E preprocessor will be very simple and will require a
minimum of modifications to your source code.

Mac2E 3 / 22

1.6 What is a macro ?

In a simple manner, we define a macro by associating an identifier
(the macro’s name) with a chain of characters (the body of the macro). Then,
instead of putting the body of the macro in your source, you simply put it’s
name and the preprocessor replaces the name of the macro with the body.

In my opinion, the macros are very useful in 3 cases :

- to avoid rewriting the same sequence several times
-> see example 1

- to facilitate the use of abstract values
-> see example 2

- to logically regroup a program sequence
-> see example 3

Of course, this is a very superficial view of the notion of macros.
Macros, as implemented in almost all preprocessors today, permit lots of
things. The following paragraphs present the use of macros in detail.

Defining a macro
Using a macro
Advanced usage

1.7 Example 1

Consider the example of a program which reads memory sequentially. For
this purpose, 2 variables are defined:
DEF memory_pointer:PTR TO CHAR, character

Accessing a byte is done in the following manner:
character:=Char(memory_pointer++)

Without macros, you need to type that line with each read. If you are
performing reads in several procedures, this can quickly become tedious. The
solution is to define a macro with the name ReadMemory and the body
character:=Char(memory_pointer++). You then need only type ReadMemory
each time.

1.8 Example 2

To open a library, you need to pass it’s name in lowercase to the
function OpenLibrary(). If you write OpenLibrary(’Dos.library’,0), there will
be no error during compilation, but the library will not be found during
execution. The solution is to define a macro with the name DosLibraryName and
the body ’dos.library’. This way, you need only type
OpenLibrary(DosLibraryName,0) to open the dos library, without worrying about
making a typing mistake.

1.9 Example 3

Mac2E 4 / 22

If you want to be sure that stdout is non null, the Amiga E
documentation advises placing a WriteF(’’) at the beginning of your program. A
more elegant solution is to define a macro with the name OpenStdout
and the body WriteF(’’). You then simply use OpenStdout in your source,
which is much more eloquent.

In this simple example, the difference between this case and the 2
previous ones is not very clear, but what is important to understand is that
the OpenStdout macro is not local to one program (as in example 1), but can be
used in all programs where it is necessary for stdout to be non null. In
addition, OpenStdout behaves like a mini-procedure (as opposed to example 2)
which accomplishes a task.

1.10 Defining a macro

The following paragraphs explain the different syntaxes for defining
a macro, from the simplest to the most complex.

Definition of a macro without parameters
Definition of a macro with parameter(s)
Advanced definition of a macro

1.11 Definition of a macro without parameters

A simple macro definition has the following syntax:

#define macro_name macro_body
| | | | | |

(1) (2) (3) (2) (4) (5)
where

(1) #define marks the beginning of the definition and can be found
anywhere on the line (not necessarily at the beginning)

(2) 1 or more spaces and tabs
(3) the name of the macro (any combination of numbers, uppercase

and lowercase letters, and "_" characters)
(4) the body of the macro (any combination of characters other than

carriage returns)
(5) carriage return which marks the end of the macro definition

Examples :
#define ReadMemory character:=Char(memory_pointer++)
#define DosLibraryName ’dos.library’
#define OpenStdout WriteF(’’)

1.12 Definition of a macro with parameter(s)

Like a procedure, a macro can have parameters. The definition syntax is
then:

Mac2E 5 / 22

#define macro_name(parameter1,parameter2,...,parameterN) macro_body
| | | | | | | | | | | | |

(1) (2) (3) (4) | (5) | (5) (5) | (7) (8) (9)
+----------+--------------+

|
(6)

where
(1) #define marks the beginning of the definition and can be placed

anywhere on the line (not necessarily the beginning)
(2) 1 or more spaces and tabs
(3) the name of the macro (any combination of numbers, uppercase and

lowercase letters, and "_" characters)
(4) opening parenthesis immediately following the macro’s name
(5) comma separating each parameter
(6) 1 or more parameters (any combination of numbers, uppercase and

lowercase letters, and "_" characters); each parameter can be preceded and
followed by any number of spaces and tabs

(7) closing parenthesis which can be followed by any number of spaces
and tabs

(8) the body of the macro (any combination of characters other than
carriage returns)

(9) carriage return marking the end of the macro definition

Examples :
#define Power2(x) ((x)*(x))
#define SwapVariablesXY(X,Y,TEMP) TEMP:=X; X:=Y; Y:=TEMP
#define Max(x , y) (IF (x)>(y) THEN (x) ELSE (y))

Parameters specified in the macro definition are called formal
parameters.

1.13 Advanced macro definition

Better and better to define a macro...

Using several lines for the body
Comments in the body

1.14 Using several lines for the body

It can happen that the body of a macro is too long to fit in one line
on the screen. It is possible to break the body of the macro into several
pieces. To tell the preprocessor that the body is continued on the next
line, place a "\" character before the carriage return ending the line. The
preprocessor will skip the "\" character and the carriage return and will
interpret the next line, starting with the first character, as part of the
body of the macro. A macro can extend over several lines in this manner.
The definition syntax in this case is:

#define macro_name(parameters) body_piece1 \
body_piece2 \
...

Mac2E 6 / 22

body_pieceN
Warning: the "\" character must be immediately followed by a carriage

return for the preprocessor to interpret it correctly.

1st example :
#define SwapVariablesXY(X,Y,TEMP) TEMP:=X; \
X:=Y; \
Y:=TEMP

is a macro which has as it’s body TEMP:=X; X:=Y; Y:=TEMP
(note that the ";" characters are necessary preprocessor skips the carriage
returns after the "\" characters)

2nd example :
#define SayHello WriteF(’Hello, I’m the one who wrote \
the great program Mac2E (pub) !\n’)

is a macro which has as it’s body
WriteF(’Hello, I’m the one who wrote the great program Mac2E (pub) !\n’)
(note that the single "\" character followed by a carriage return was
interpreted as a signal that the body of the macro is continued)

3rd example :
#define UselessMacro [1 space ->\
][2 spaces ->\
][3 spaces ->\
] and that’s all !
is a macro which has as it’s body

[1 space ->][2 spaces ->][3 spaces ->] and that’s all !

1.15 Comments in the body

Starting from Mac2E v4.0, you can put comments inside the body of a macro.
These comments are introduced by the two characters "->" and end with the
carriage return at the end of the line (or eventually with the end of the
file). The principle is so the same as the new Amiga E v3.0 comments (besides
the idea comes from there !). All the comments are of course ignored by the
preprocessor.

1st example :
#define MacroName MacroBody -> Here is a comment

is a macro which has as it’s body MacroBody .

In the same way that for a macro which body isn’t composed of comments
(see Using several lines for the body), you can extend over several lines
the body of macro which body is composed of comments.

2ème exemple :
#define NomMacro FirstPieceOfBody -> First comment \

SecondPieceOfBody -> Second comment \
LastPieceOfBody -> Last comment

is a macro which has as it’s body
FirstPieceOfBody SecondPieceOfBody LastPieceOfBody .

Mac2E 7 / 22

1.16 Using a macro

Defining macros is not everything, we also want to use them! To do
that, you simply have to place the names of the macros you have defined where
you need them in your source code the same way you would use normal
instructions. But be careful, a macro is not an instruction recognized by
the compiler. Before compiling a program containing macros, you must use
the preprocessor. The purpose of this program is to find all the macro
names in a source code file and replace them with the body of the
associated macro. The body of a macro should contain instructions
recognized by the compiler! Once the preprocessor is finished, the file can
be compiled.

The following paragraphs explain in detail how the preprocessor
proceeds to find and replace a macro name.

Identifying a macro name
Handling of argument passing
Replacing a macro

1.17 Identifying a macro name

For a macro name to be recognized by the preprocessor, the name which
you put in the source code file must be:

- exactly the same as the one specified in the definition; the
preprocessor distinguishes between uppercase and lowercase

- preceded and followed by a character other than a letter, a number
or a "_" character

If these 2 conditions are met, the preprocessor will recognize the
macro name.

Examples :
Suppose that you have defined a macro name toto (the body’s

contents don’t matter). It will be recognized in the following instruction
sequences:
a:=toto+1
WriteF(’Silly string to introduce \d !\n’,toto)

However, the preprocessor will not recognize it in the following
instructions sequences:
a:=different_than_toto+1
WriteF(’Silly string to introduce \d !\n’,toto1)

1.18 Handling of argument passing

You have seen in a previous section that we can give parameters (called
formal) to a macro in it’s definition, as you would for a procedure.
Then, as for a procedure, when you use a macro you must provide it with
arguments (called real parameters). The calling syntax for a macro (I use
the word call as an analogy to procedures) is the following:

macro_name(parameter1,parameter2,...,parameterN)
| | | | | | | | |

Mac2E 8 / 22

(1) (2) | (4) | (4) (4) | (5)
+----------+--------------+

|
(3)

where
(1) the name of the macro
(2) opening parenthesis immediately following the macro name, and

which can be followed by any number of carriage returns (starting from
Mac2E v4.0 only)

(3) 1 or more parameters (any combination of characters other than
carriage returns)

(4) comma to separate each parameter, and which can be followed by
any number of carriage returns (starting from Mac2E v4.0 only)

(5) closing parenthesis, which can be preceded by any number of
carriage returns (starting from Mac2E v4.0 only)

Warning: the parameters are bounded by commas and parentheses, and
between these 2 consecutive symbols, all the characters are taken into
account and interpreted as being part of a parameter, except the carriage
returns which follow the opening parenthesis, follow the commas and
precede the closing parenthesis (starting from Mac2E v4.0 only).

If a macro was defined without parameters, it’s calling syntax is
simply macro_name.

When the preprocessor analyses a macro call, it naturally expects to
find as many real parameters as formal parameters! In particular, a macro
defined without arguments should not be followed by a "(" character, otherwise
the preprocessor will think that the macro is being called with arguments.

If the calling syntax for a macro is correct, the preprocessor
associates each real parameter with the corresponding formal parameter, as the
compiler does for a procedure.

Examples :
Suppose that you have defined a macro toto like this:

#define toto(param1, param2) any_body
Here’s a table of what will happen for several calling sequences:

+---------------------------------------+------------------+------------------+
| calling sequence |assoc’d to param1 |assoc’d to param2 |
+---------------------------------------+------------------+------------------+
toto(a,1)	a	1
toto(a , 1)	a	1
toto((3+2)*5 ,WriteF(’Ah !\n’))	(3+2)*5	WriteF(’Ah !\n’)
toto (a,1)	E R R O R	
toto(1,2,3)	E R R O R	
+---------------------------------------+------------------+------------------+

1.19 Replacing a macro

If a macro to be replaced was defined without parameters, the
preprocessor simply substitutes the macro’s name with it’s body.

If, on the other hand, the macro to be replaced was defined with
parameters, the preprocessor still replaces the macro’s name with it’s
body, but also substitutes all the formal parameters in the body with the

Mac2E 9 / 22

corresponding real parameters.

1st example:
Consider the following macro definition:

#define DosLibraryName ’dos.library’
We will then have, for example, the call OpenLibrary(DosLibraryName

which will be replaced by OpenLibrary(’dos.library’).

2nd example:
Consider the following macro definition:

#define Square(x) ((x)*(x))
#define Max(x,y) (IF (x)>(y) THEN (x) ELSE (y))

We will then have, for example, the call
a:=Square(4+3) * Max(7,2*(8-2)) which will be replaced by
a:=((4+3)*(4+3)) * (IF (7)>(2*(8-2)) THEN (7) ELSE (2*(8-2)))

Note how the many parentheses present in the bodies of these 2 macros
control the evaluation priority of the expression. Without them, the result
will not be what was expected. Generally, you must be very careful in
creating a macro. In effect, even if a macro resembles a procedure or a
function, it’s not exactly the same! The body of a macro is never evaluated
during a call, it is simply substituted for the macro name. It can
therefore find itself stuck right next to another expression. The example
macro Square is a good example of this kind of problem.

1.20 Advanced use

By now you should have mastered the definition and the usage of macros.
If this is not the case, return to the preceding sections.

The following paragraphs explain more technical aspects of macro use,
but they are nonetheless still important to be aware of.

Macros, comments and strings
Macros in a macro body
Macro calls as macro arguments
Special characters

1.21 Macros, comments and character strings

It has been previously stated that a macro call can be placed anywhere
in a source code file. Well, that’s not true! In reality, the preprocessor does
not look for macro calls in comments (including nested comments) or in
strings. In effect, macros are there to regroup under one name a section
of code. There is therefore no reason to put macro calls within comments and
strings.

In practice, this signifies that you can put whatever you want in
comments and strings, the preprocessor will not touch it.

1.22 Macros in a macro body

Mac2E 10 / 22

When you define a macro, you can put whatever you want in it’s body,
even calls to other macros. The preprocessor will handle this kind of call
during the substitution of the surrounding macro’s name. In effect, the
preprocessor makes as many substitutions as possible, and when it is
finished, there will not be a single macro call left in the source code
file. Of course, the calling arguments for a macro within the body of
another macro can be the formal parameters of the outer macro. There is no
limit to the depth of these imbrications.

Warning: the body of a macro cannot contain calls to itself, otherwise
the preprocessor would make the same substitution infinitely, until all
free memory is used up... or the user’s patience is!

1st example :
Suppose you define 2 macros as follows:

#define InfiniteValue $FFFFFFFF
#define FinitePositiveNumber(x) (((x)>0) AND ((x)<>InfiniteValue))

Then you can, for example, make the call:
IF FinitePositiveNumber(A*B)=FALSE THEN WriteF(’Error !\n’) which will
be replaced by
IF (((A*B)>0) AND ((A*B)<>$FFFFFFFF))=FALSE THEN WriteF(’Error !\n’).

2nd example :
Suppose you define two macros as follows:

#define AbsoluteValue(x) (IF (x)>0 THEN (x) ELSE -(x))
#define MaxOfAbsoluteValues(x,y) (IF AbsoluteValue(x)>AbsoluteValue(y) THEN
(x) ELSE (y))

You can then, for example, make the call
a:=MaxOfAbsoluteValues(5,-(A*B)) which will be replaced by
(IF (IF (5)>0 THEN (5) ELSE -(5))>(IF (-(A*B))>0 THEN (-(A*B)) ELSE -(-(A*B)))
THEN (5) ELSE (-(A*B))).

1.23 Macro calls as macro arguments

In the preceding examples, you probably noticed that the arguments
passed to a macro can be anything, as long as they are coherent, obviously
(carriage returns are not, for example, allowed in an argument). You can
even use a macro call as the argument for another macro. Again, the
preprocessor will handle first the macro call included in the argument, and
then afterwards the surrounding macro call with the substituted argument.
There is no limit to the depth of these imbrications.

Remember: the general rule is that the preprocessor handles absolutely
all the macro calls in a source code file, where it finds them, except
in comments and strings.

1st example :
Consider the following examples:

#define SillyValue 12
#define Double(x) (2*(x))

The macro call Double(SillyValue) would be replaced by
(2*(12)).

2nd example :
Consider the following examples:

#define MaskWeightStrong(x) ((x) AND $FFFF)

Mac2E 11 / 22

#define Average(x,y) (((x)+(y))/2)
The macro call Average(100,MaskWeightStrong(100000))

would be replaced by (((100)+((100000) AND $FFFF))/2).

1.24 Special Characters

You have no doubt wondered what would happen if a macro’s argument
contained the characters "(", ")" or ",". As they are used to delimit the
arguments, their presence can cause confusion with their recognition. Well,
it doesn’t matter; the preprocessor is intelligent enough to distinguish
which of these characters are there to delimit the arguments and which are
part of the arguments.

Warning: the arguments must nonetheless remain coherent! For example,
every opening parenthesis must have a corresponding closing parenthesis.
Also, a comma must be enclosed within quotes or in a string enclosed
within quotes.

Starting from Mac2E v4.0, the brackets "[" and "]" are processed in the
same way as parenthesis. So you can give as macro parameter an E list. The
coherency rules also applied to the brackets : for each opening bracket, a
closing bracket must exists in the parameter.

Examples :
Consider a macro toto defined as having 2 formal parameters.

Here is a table of what will happen for different calling sequences:
+---+----------------+----------------+
| calling sequence | 1st parameter | 2nd parameter |
+---+----------------+----------------+
toto((3+4)*(5-6),’1, 2 et 3’)	(3+4)*(5-6)	’1, 2 et 3’
toto([1,(),’str’],character ",")	[1,(),’str’]	character ","
toto(),4)	E R R O R	
toto(4,,)	E R R O R	
+---+----------------+----------------+

1.25 Using Mac2E

To understand what follows, you should know what a macro is, and
particularly how to define and use a macro as it is done in the language C.
If this is not the case, return to the section What is a macro? .
If you already know all about C macros before getting this program, reading
this section is not necessary. However, you should refer to it to verify
syntax. Basically, the following paragraphs discuss the use of Mac2E only,
without recalling anything about macros.

The goal of these programs is, let me remind you, to permit the use of
macros in your source code.

The first thing to do is therefore to define some macros. This is done
in files separate from your source code, called the macro files.
After, you can use Mac2E to replace the macro calls in your source code
files.

Macro files

Mac2E 12 / 22

Calling Mac2E
Error messages

1.26 Macro files

A macro file is an ASCII file containing only macro definitions. I
remind you that you cannot define macros in your source code, you must do it
separately in a macro file.

These files may also contain comments. These can be placed anywhere
outside the macro definitions. In other words, the comments are placed
between the macro definitions. Note that the comments can be placed in the
file as they are, with neither beginning nor ending delimiters.

Starting Mac2E v4.0, it’s also possible to put comments inside macro
definitions, but these ones obey to a special syntax (see
comments in the body).

Normally, the macro files are placed in the sub-directory MacroFiles/
which is in the directory where you installed Amiga E.

See defining a macro

1.27 Calling Mac2E

The calling Mac2E syntax is the following :
FROM/A,TO/A,WITH/M,PA=PREANALYZE/S,VER=VERBOSE/S,KS=KEEPSPACES/S,DEBUG/S.

In fact, the exact behaviour of Mac2E is determined by the PREANALYSE
flag (shortcut PA). If this one is set, Mac2E is going to pre-analyze a
macro file, and in the opposite case, it’s going to behave like a prepro-
cessor.

@{ " Pre-analyze mode " Link Mode_préanalyse }
@{ " Preprocessor mode " Link Mode_préprocesseur }
@{ " VERBOSE " Link VERBOSE }
@{ " KEEPSPACES " Link KEEPSPACES }
@{ " DEBUG " Link DEBUG }

It’s possible to interrupt Mac2E at any moment and whatever its current
mode by pressing Ctrl-C.

1.28 Pre-analyzis mode

In this mode, Mac2E is going to pre-analyze the macro file precised in
the FROM field and to save the result of the pre-analysis in the file precised
in the TO field. The field WITH is so useless and so must be empty during the
Mac2E call.

The interest of pre-analyzing a macro file is of course the speed-up.
Indeed, during a pre-analysis, Mac2E mainly does 3 things :

- to process in the body of all the macros the calls from other macros

Mac2E 13 / 22

- to classify the macros in a hashed-coded table
- to locate precisely the position of all the arguments in the body of

the macros
Thus, when Mac2E will perform in preprocessor mode, if it uses a

pre-analyzed macro file instead of the original macro file, it will have
the body of all the macros ready to be inserted in the source file without
any extra analysis to do.

However this method presents two disadvantages :
- after each modification to a macro file, you must update the

corresponding pre-analyzed macro file with a new pre-analysis
- a pre-analyzed macro file is used by Mac2E in preprocessor mode as is

without any extra analysis : thus if you call Mac2E in preprocessor mode
with two macro files which one is pre-analyzed, Mac2E won’t check that
this last one contains some macros defined in the othe one or that some
macros of this last one depends on macros defined in the other one

In a general manner, it’s very interesting to pre-analyze the big
macro files of general using (i.e. which contents is steady). For the
little macro files, it’s up to you : on a fast Amiga, the speed-up isn’t
really impressive.

Normally, the pre-analyzed macro files are put inside the subdirectory
PreAnalysedMacroFiles/ of the place where you put Amiga E.

1.29 Preprocessor mode

In this mode, Mac2E acts like a real preprocessor : it processes in the
file of the FROM field all the macro calls and writes the result in the file
of the TO field.

With the WITH field, you precise as many macro files as you want. Starting
from Mac2E v4.0, these files can be either pre-analyzed ones or "raw" ones.
Mac2E will automagically make the difference.

If a macro file of the WITH field is "raw", it will be added to the set of
already known macros of Mac2E, and Mac2E will check that it doesn’t contain
any macros already defined in an other macro file loaded before. Then, the
macros it contained will be pre-analyzed only when needed, thus this limits
speed loss relatively to a pre-analyzed macro file. During such a pre-analysis
"on the fly", the internal macro calls are searched for the very all macros
known at the moment of the analysis of the file of the TO field. In other
words, a "raw" macro file can depend on an other macro file (if this one is
of course precised in the WITH field).

If a macro file of the WITH field is pre-analyzed, it will be added as is
to the set of the already known macros without checking if it contains
any macros already defined in an other macro file loaded before, or any macros
which depends on macros defined in an other macro file precised or not in the
WITH field. In other words, a pre-analyzed macro must depend on nothing.

THe VERBOSE, KEEPSPACES and DEBUG flags also apply to the "on the fly"
pre-analysis that Mac2E may have to perform in preprocessor mode.

Mac2E 14 / 22

1.30 VERBOSE

VERBOSE forces Mac2E during a macro body pre-analysis to display the name
of this macro before this pre-analysis.

See error messages for a using example of this flag.

VERBOSE can’t be used with DEBUG.

1.31 KEEPSPACES

KEEPSPACES forces Mac2E during a macro body pre-analysis to conserve
within this body the spaces and tabs at the start of the line, when it spans
several lines. By default, Mac2E eliminates them, reducing the size of
the pre-analyzed file and accelerating handling.

1.32 DEBUG

DEBUG forces Mac2E during a macro body pre-analysis to display a full
description of this macro :

- name of the macro
- number of arguments
- body of the macro before the pre-analysis
- body of the macro after the pre-analysis

This flag is there above all for debugging purposes (so its name !) when
it’s interesting to see exactly how Mac2E interpret a macro definition.

DEBUG can’t be used with VERBOSE.

1.33 Error messages

All the error messages returned by PreMac2E and Mac2E are sufficiently
self-explanatory. The line number where the error was found is also given.

The only exception to this is when Mac2E processes macro calls within
the bodies of other macros during a pre-analysis. Indeed, this analysis is
done out of any file, so without line number to indicate precisely an error.

So, in order to locate where an error signaled without line number takes
place, you have to run again Mac2E with VERBOSE flag. This will force Mac2E
to display all the names of the macros which it pre-analyzes the body. Thus,
when it prompts an error, you just have to look at the macro names it has
just pre-analyzed, starting from the most recent until the oldest. For each
one (following the previous order), you check if it was it which contained
the error until you find the faulty one. It is likely that the last one was
the faulty one, but it isn’t sure. Indeed, consider a macro wich the body
contains a correct macro call and after an other macro call, but incorrect
this time. During the pre-analysis of this body, the first call will make
Mac2E pre-analyze the corresponding macro, then once done, the body

Mac2E 15 / 22

pre-analysis will go on until the incorrect macro call. There, an error will
be signaled, but the faulty macro will be the next to last displayed by
VERBOSE because the last one will have been the macro corresponding to the
first correct macro call.

Exactly in the same way, the VERBOSE flag is very usefull to determine
the macro dependency cycle when Mac2E detects such a cycle.

1.34 Mac2E and MUI

If you read how it all started... , you know that Mac2E
owes it’s existence to the fact that MUI is infinitely easier to use with
macros than without. That is why the first example (and the only one for
the time being) of using Mac2E concerns MUI. You will find in this archive
everything you need to use MUI with Amiga E, practically in the same manner
that you would do it in C. To do this, you need 5 things:

- Mac2E
- mui.m
- muimaster.m
- mui.ma
- OptiMUI2E

All of "this interface" is based on MUI v2.2. In the MUI archive, there
are already some files for use in E, but neither as complete nor as practical
as those supplied here, so forget about them and use these ones!

Mac2E
mui.m
muimaster.m
mui.ma
OptiMUI2E

1.35 mui.m

mui.m is, as it’s name implies, a classical Amiga E module file. It
contains all the structures defined in mui.h with the difference that all
the names (of structures and their fields) are in lowercase. This limitation
is due to Iconvert.

Starting from Mac2E v4.0, all the constant definitions were put in this
file instead of remained as macros in mui.ma. However the syntax is remained
the same, in particular the lowercase parts of these constants are still
lowercase. So your sources needn’t to be adapted with one exception to this
rule : you may have to include this mui.m module in some of your modules (in
the Amiga E v3.0 case) now, whereas before preprocessing these last ones with
Mac2E and mui.ma was enough.

Starting from Mac2E v4.0, mui.m also contains the new MUI_TRUE constant
which has one for value. In fact, this corresponds to the TRUE constant of C
language which was used to write MUI. So you must use MUI_TRUE instead of
TRUE (E language constant) with MUI.

Mac2E 16 / 22

To use MUI objects in your programs, you need to put
MODULE ’libraries/mui.m’ at the beginning of your source code file.

1.36 muimaster.m

muimaster is, as it’s name implies, a classical Amiga E module file. It
contains all the function definitions for the library muimaster.library. The
function names are the same as in C except they all start with Mui instead
of MUI (example: Mui_NewObjectA). This limitation is imposed by Amiga E as
function names must have the first letter in uppercase and the second in
lowercase.

To use the functions of the library muimaster.library in your programs
(and chances are you do use them!), you must put MODULE ’muimaster.m’
at the beginning of your source code file.

1.37 mui.ma

mui.ma is the key to the gateway to "this MUI-Amiga E interface" since
it contains all the macros different from constants (starting from Mac2E
v4.0) of the file mui.h, but adapted for the E language. The syntax of the
mui.ma macros, as well as the syntax of their bodies, is exactly the same
as in mui.h.

As well as it’s advantage for using MUI, this file also constitutes a
large library of examples of macro definitions.

The file mui.ma is supplied in 2 copies: one in the MacroFiles/
directory and the other in the PreAnalysedMacroFiles/ directory. The first is
a readable version, as opposed to the second which has been pre-analyzed with
Mac2E.

To use all these MUI macros in your E programs, you must run Mac2E on
your source code file before compiling it:
Mac2E source.e destination.e PreAnalyzedMacroFiles/mui.ma

Among all the macros of mui.ma, two of them need more precisions :
StringMUI() and set().

The String() macro was renamed to StringMUI() because String() already
correponds to an E language function.

If you already used the set() macro with a Mac2E anterior to the 4.0
version, you probably noticed that it didn’t always work with MUI. One
solution was to write instead domethod(object , [MUIM_Set , attribute ,
new_value]). But this wasn’t very smart ! Thanks to Jan Hendrik Schulz
who discovered the problem origin, I could change the set() macro definition
in order it works all the time. All I have said before also applies to
the nnset() macro.

1.38 OptiMUI2E

Mac2E 17 / 22

If you take a look at mui.ma, you will see in the body of the macros
defining new objects "TAG_IGNORE, 0", for example
"#define WindowObject Mui_NewObjectA(’Window.mui’, TAG_IGNORE, 0)"
This tag does, as it’s name implies, absolutely nothing during execution.
However, I was obliged to introduce them to keep the same usage syntax as in
C. It’s at this level that OptiMUI2E intervenes. It’s job is to remove
these useless "TAG_IGNORE, 0"’s from E source code. It’s calling syntax is
as follows:
OptiMUI2E e_source_file e_destination_file
where

- e_source_file designates the name of the source file (eventually with
path) where there are "TAG_IGNORE, 0"’s to remove

- e_destination_file designates the name of the file (eventually with
path) which will contain e_source_file with the "TAG_IGNORE, 0"’s
suppressed.

The usage for OptiMUI2E is "FROM/A,TO/A".

Warning: OptiMUI2E sometimes removes carriage returns from your source
code to respect line breaks on a comma, obligatory in E. Thus the file
produced will not necessarily contain the same number of lines as the
original file, which can cause possible problems with the line numbers
reported by the compiler. It is therefore strongly advised not to use
OptiMUI2E except for the final compilation when the finished program is
tested. In any case, OptiMUI2E is absolutely not necessary to use MUI with
Amiga E. It reduces the size of source code files and executables using the
MUI macros, but only by a small amount.

1.39 Bugs

Don’t panic, none of the following points are bugs, but rather
limitations.

* Using pre-analyzed macro files asks for some precautions (see
mode pre-analysis and mode preprocessor).

* The number of arguments for a macro is limited to 32.

* Mac2E does not verify that the preceding limitation is respected.

1.40 History

Version 1.0 : - 1st functional version (VERY VERY SLOW...)
Version 2.0 : - modified version of v1.0 with lots of assembly

optimizations in the E source (10 times faster!)
- addition of OptiMUI2E v1.0
- 1st distributed version

Version 3.0 : - addition of PreMac2E v1.0 to pre-analyze macro
files

- use of an encoded hash-table (14 times faster!)
- PreMac2E and Mac2E now give explicit error messages
- verification of all memory allocations
- a few minor bugs fixed
- OptiMUI2E v1.1 works with 68000

Mac2E 18 / 22

- mui.e is now commented
- source for the function doMethod() supplied
- source to all executables supplied
- better documentation
- update of mui.e according to MUI v2.0

Version 3.1 : - a few minor bugs fixed
- update of mui.e according to MUI v2.1

Version 4.0 : - completely reprogrammed for Amiga E v3.0 with using of
optimization options, of hasing method provided with
Amiga E v3.0, of OO programming, of new very fast
algorithms for string handling and of a better (and above
all faster) processing of I/O

- pre-analysis are about 50% faster and preprocessing is about
twice faster than with Mac2E v3.x

- PreMac2E was merged to Mac2E which is now the only executable
file (see calling Mac2E for its new calling syntax)

- it’s possible to give Mac2E macro files pre-analyzed or
not, and in this last case, it will perform pre-analysis
when needed "on the fly" (see preprocessor mode)

- it’s possible to put comments inside the body of macros, even
when this body extends over several lines (see
comments in the body)

- it’s possible to extend a macro call over several lines
(see handling of argument passing)

- it’s possible to give an E list as macro parameter (see
special characters)

- Mac2E can be interrupted at any moment by pressing Ctrl-C
- addition of a "DEBUG" mode to Mac2E (see DEBUG)
- Mac2E checks the double declarations of macros
- Mac2E detects the macro dependency cycles
- Mac2E hasn’t any more limitation about macro name size and

macro body size
- Mac2E reports accurately write errors
- a few minor bugs fixed
- Mac2E is now GiftWare ! (see distribution)
- optiMUI2E v1.2 was rewritten cleaner for Amiga E v3.0
- update of mui.ma according to MUI v2.2
- the constant definitions were moved to mui.m (see

mui.m)
- new MUI_TRUE constant introduced (see mui.m)
- two macros interesting to look at (see mui.ma)

1.41 Future

For Mac2E v3.0, I wrote :
<<

I’m awaiting (as you are) the next version of Amiga E, which shouldn’t
take much longer according to Wouter... Of course, I’m also awaiting your
suggestions!
>>

So now, I’m only waiting for your suggestions :-).

Mac2E 19 / 22

1.42 Distribution

All the files of this distribution stay under the copyright of the
author (Lionel Vintenat). You are allowed to modify them only for your
STRICTLY PERSONAL usage.

The only exceptions are the files "mui.m", "muimaster.m", "mui.ma",
"Readme.mui" and the icons. You can of course use the sources provided in
this archive for your personal programs : they are here for that !

This archive can be freely distributed by any thinkable ways
(ftp server, BBS, public domain collection, etc), as long as the two
following conditions are respected :

1) No person gains ANY benefit from this distribution. In
particular, if Mac2E is spread on a floppy disk, this one can’t be sold
for more than 4$ US (or equivalent), and if it is spread on a CDROM, this
one can’t be sold for more than 30$ US (or equivalent). No other type of
sale (with benefit) can be made IN ANY CASES without the author’s
authorization. The only exceptions are the Fred Fish’s and aminet CDROMs,
who they (and only them !) can include Mac2E in their collections without
asking me the permission first. In particular, this excludes DEFINITIVELY
to France Festival Distribution the right to distribute Mac2E (I insist
HEAVILY on this point...). But maybe this won’t annoy too much Mr Serge
Hammouche, who doesn’t hesitate to call (openly on some French nets) French
PD programers incapable...

2) This archive is distributed IN IT’S ENTIRETY, and without
MODIFICATIONS compared to the original version on aminet. This means
in particular that if you make a translation of the documentation or of the
catalog in a new language, or if you fix some bugs and re-compile the
executable, you MUST send them to me in order I EVENTUALLY (pretty sure in
fact for translations) redistribute a new version of this program. The
file structure this archive must have is given in the "ReadMe.first" file
of this distribution.

Any distribution of Mac2E which doesn’t respect the two previous
conditions without my authorization is ILLEGAL.

All the begining of this paragraph may seem very strict, even close to
the paranoia, but knowing the dubious practices of people like Serge
Hammouche who sells for HUDGE prices (under translation excuse) some freely
distribuable softwares without even informing the authors, I think it’s
necessary to protect my rights. I make programs for my pleasure without any
claim to earn money, and I’m happy if they may help other persons, but that
some people make money from my work : NO ! The previous limitations doesn’t
aim in any way serious people like Fred Fish, the Montréal Amiga Club, the
aminet system operators, or all the clubs of fascinated people, who, them,
really support the Amiga domain public. They only aim the organizations
with discutable pratices like France Festival Distribution.

Moreover, I cannot be held responsible for the use of this program and
any damages that it may cause directly or not. I want this to be clear :
YOU USE IT AT YOUR OWN RISK !

Mac2E 20 / 22

However, I think I tested and I made people test it enough to say that
it doesn’t contain any serious bug.

Finally, this program is distributed under giftware concept.
In other words, you must send me a gift if you use Mac2E ! :)

Indeed, I make programs for my pleasure and by need. My goal is
certainly not to earn money with. However to distribute a program ask for
some extra work (documentations, installer script, etc), so I’d like to
receive a feedback from those who will use Mac2E. In fact, any sign of
life will be VERY appreciated, even a simple e-mail or a postcard. What I
am the more interested in is contact with other persons. But to help you to
choose my gift, here are some suggestions :) :

- a (free !) registration to a shareware program
- one of your realizations (program, module, animation, picture,

etc) if it isn’t easy to retrieve it from aminet
- some sourves
- some E, C or assembly sources which are closed to the

programation of the system, or even False or BrainFuck sources (they can
be closed of anything, provided they work ! :))

- some money, hummmm, why not ? :)
- your old 1.3 RKM (or better 2.0)

I insist on the fact that it’s very frustrating to make the effort to
put his program in the freely distribuable domain wihtout never receiving
any feedback, just guessing that some people use your program ! So please
support the giftware concept, everybody break even : the author is happy to
receive a feedback, and it costs almost nothing to the users.

1.43 The author

You can reach me by snail-mail at my family address :

Lionel Vintenat
3 impasse Boileau
Lotissement Les Termes
87270 COUZEIX
FRANCE

You can also reach me on the internet. My e-mail address is
vintenat@irit.fr. This one will probably be reliable until September 1994
included, but I won’t have access to it cause of holydays/military service
until this September month. So don’t rely too much on a quick reply if you
use this address ! If you really want to reach me until there, the best is
to directly write to me to my family address (don’t forget to do it with a
nice postcard from you country 8)).

The best solution is for my point of view to wait for new signs of life
from me on the net starting September 1994, because I will have at this
moment a new internet address reliable for all the new school year.

Mac2E 21 / 22

1.44 Acknowledgments

A big thank you:
- to the Amiga for being the best personal computer
- to Wouter van Oortmerssen for his work in the field

of compilers (try his FALSE, guaranteed surprise!) in general and for
Amiga E in particular

- to Brian Mury for the English translation of the documentation :
if you see strange sentences in this documentation, it’s not his fault, it
probably comes from my personal updates :-)

- to Marc Schröer for the German translation of the documentation
- to all those who have sent to me some bug reports and some encou-

ragements, and especially among them Jan Hendrik Schulz who have gave me a
lot of very good ideas for the Amiga E-MUI gateaway (above all the solution
to the set() macro problem)

- to Xavier Billault for his help in the conception
of this documentation

- to all those on the French Amiga mailing list who
have helped me

- to all those who write public domain programs in general

Finally, thank you to all those who alert me to bugs or
send me suggestions, or who send me corrections or translations of this
document (see The author)

Happy E programming and...

NEVER FORGET, ONLY AMIGA MAKES IT POSSIBLE!

1.45 Index

Acknowledgments
Advanced macro definition
Advanced use
Bugs
Calling Mac2E
Comments in the body
DEBUG
Defining a macro
Definition of a macro with parameter(s)
Definition of a macro without parameters
Distribution
Error messages
Example 1
Example 2
Example 3
Future
General Presentation
Handling of argument passing
History
How it all started...
Identifying a macro name
Introduction
KEEPSPACES

Mac2E 22 / 22

Mac2E and MUI
Mac2E
Macro calls as macro arguments
Macro files
Macros in a macro body
Macros, comments and character strings
mui.m
mui.ma
muimaster.m
OptiMUI2E
Pre-analyzis mode
Preprocessor mode
Replacing a macro
Special Characters
Spirit
The author
Using a macro
Using Mac2E
Using several lines for the body
VERBOSE
What is a macro ?

	Mac2E
	Mac2E
	Introduction
	How it all started...
	General Presentation
	Spirit
	What is a macro ?
	Example 1
	Example 2
	Example 3
	Defining a macro
	Definition of a macro without parameters
	Definition of a macro with parameter(s)
	Advanced macro definition
	Using several lines for the body
	Comments in the body
	Using a macro
	Identifying a macro name
	Handling of argument passing
	Replacing a macro
	Advanced use
	Macros, comments and character strings
	Macros in a macro body
	Macro calls as macro arguments
	Special Characters
	Using Mac2E
	Macro files
	Calling Mac2E
	Pre-analyzis mode
	Preprocessor mode
	VERBOSE
	KEEPSPACES
	DEBUG
	Error messages
	Mac2E and MUI
	mui.m
	muimaster.m
	mui.ma
	OptiMUI2E
	Bugs
	History
	Future
	Distribution
	The author
	Acknowledgments
	Index

