
sc_util

sc_util ii

COLLABORATORS

TITLE :

sc_util

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

sc_util iii

Contents

1 sc_util 1

1.1 sc_util.guide . 1

1.2 cpr . 1

1.3 cpr options . 2

1.4 cprk . 4

1.5 cprx . 5

1.6 cprx commands . 6

1.7 cprx options . 6

1.8 cover . 7

1.9 cover options . 7

1.10 demangle . 8

1.11 diff . 8

1.12 diff options . 9

1.13 diff error messages . 10

1.14 grep . 11

1.15 grep options . 13

1.16 grep error messages . 14

1.17 gst . 16

1.18 gst options . 17

1.19 gst error messages . 17

1.20 hypergst . 18

1.21 hypergst error messages . 19

1.22 lctosc . 19

1.23 lprof . 20

1.24 lstat . 20

1.25 lstat options . 21

1.26 mkmk . 21

1.27 omd . 22

1.28 oml . 23

1.29 oml commands . 25

sc_util iv

1.30 oml options . 26

1.31 sc . 26

1.32 sc5 . 27

1.33 scmsg . 27

1.34 scmsg arexx commands . 28

1.35 scmsg options . 32

1.36 scompare . 33

1.37 scopts . 33

1.38 scsetup . 36

1.39 slink . 37

1.40 slink options . 38

1.41 addsym . 38

1.42 batch . 38

1.43 bufsize . 38

1.44 chip . 39

1.45 define . 39

1.46 fancy . 39

1.47 fast . 39

1.48 faster . 40

1.49 from . 40

1.50 fwidth . 40

1.51 height . 40

1.52 hwidth . 41

1.53 indent . 41

1.54 libfd . 41

1.55 libprefix . 41

1.56 library . 42

1.57 librevision . 42

1.58 libversion . 42

1.59 map . 42

1.60 maxhunk . 43

1.61 newocv . 43

1.62 noalvs . 43

1.63 nodebug . 43

1.64 noicons . 43

1.65 onedata . 44

1.66 overlay . 44

1.67 ovlymgr . 44

1.68 prelink . 44

sc_util v

1.69 plain . 45

1.70 pwidth . 45

1.71 quiet . 45

1.72 root . 45

1.73 swidth . 45

1.74 smallcode . 45

1.75 smalldata . 46

1.76 stripdebug . 46

1.77 to . 46

1.78 verbose . 46

1.79 verify . 46

1.80 width . 46

1.81 with . 47

1.82 xref . 47

1.83 smake . 47

1.84 smake options . 50

1.85 smfind . 51

1.86 spatch . 52

1.87 splat . 52

1.88 splat options . 53

1.89 sprof . 53

1.90 guiprof . 54

1.91 tb . 55

1.92 tb options . 56

1.93 HELP . 56

sc_util 1 / 57

Chapter 1

sc_util

1.1 sc_util.guide

cpr CodePRobe - Source level debugger
cprk CodePRobe - Cross-debugger kernel
cprx CodePRobe - Cross-debugger version
cover Analyzes coverage data
demangle Converts C names into C++ name
diff Determines the differences between two files
grep Searches for and prints regular expressions
gst Manages global symbol tables
guiprof Graphical code profiler
hypergst Displays the contents of GSTs
lctosc Converts older V5 options to newer options
lprof Generates run-time statistics
lstat Analyzes and prints run-time statistics
mkmk Creates makefiles
omd Disassembles object modules
oml Manages libraries
sc SAS/C Development System driver
sc5 SAS/C Development System V5 compatible driver
scmsg Searches for and corrects errors and warnings
scompare Generates patch files
scopts Sets compiler options
scsetup Sets up a new project
slink SAS/C Development System Linker
smake Maintains and updates records of file dependencies
smfind Finds strings in text files
spatch Applies patches to files
splat Searches and replaces patterns matching regular expressions
sprof Determines the time a program spends in each function
tb Displays traceback information

1.2 cpr

cpr - CodePRobe - Source level debugger

Synopsis

sc_util 2 / 57

cpr [options] program [program parameters]

Description

CodePRobe is a powerful source-level debugger that enables you to
monitor, line-by-line, the behavior of your C program, Assembler
program, or both.

See Also

cpr commands , cpr options

1.3 cpr options

-buffer size

Specifies the size of the Dialog window buffer. By default, the Dialog
window saves the last 4096 bytes displayed so that you can scroll
backwards and review output. "size" is the new buffer size in bytes.

-cli

instructs CodeProbe to invoke your application as a Shell (CLI)
process. CodeProbe passes arguments to the application through
the normal command line interface. This option is the default if
CodeProbe is invoked from a Shell. The option is necessary if
CodeProbe is invoked from the Workbench screen, and you want your
program to run as if invoked from a Shell.

-command commands

executes the specified debugger commands at startup. The
commands are executed after go main if the -startup option is not
specified or after the profile script if -startup is specified.
For example, the command

cpr -command "proceed; display fahr" program-name

executes to main, steps over 1 line of code, and displays the
variable fahr before giving control to you.

-i

sets up a screen in interlace mode. By default, CodeProbe opens a
new screen using the specifications set up by Preferences for
Workbench screens. To force a screen to be opened in interlace
mode, include the -i option before typing the application command
name.

-line

starts CodeProbe in line mode. See "Running CodeProbe in Line
Mode," earlier in this chapter, for more information.

sc_util 3 / 57

-nommu

tells CodeProbe not to use the MMU. This option is useful only
if you have a 68020 or higher CPU.

If your machine is running Enforcer and has a 68020 or higher
CPU, CodeProbe tries to use the MMU to stop references to illegal
memory. For these machines, specifying -nommu tells the debugger
not to verify memory in the MMU tables before trying to access
the memory. However, if Enforcer is running, you will still not
be able to display illegal memory.

-noprofile

suppresses execution of the CodeProbe startup file. When
CodeProbe is invoked, it automatically executes a script file
named cprinit, which must be located in either the current
directory or ENV:sc. If the startup file is in the current
directory, CodeProbe does not search ENV:sc.

-screen screen-name

tells CodeProbe to open its windows on the named public screen.
By default, CodeProbe creates a new public screen named SC_CPR.1
when it is invoked. If you specify -screen, CodeProbe looks for
an existing public screen with the specified name, and if it
finds one, CodeProbe uses that screen to display its windows. If
a screen with the given name does not exist, CodeProbe creates a
new one with that name. To use the Workbench screen, specify
-screen workbench.

Public screens are a feature of Intuition 2.0. For users of
earlier versions of Intuition, this option is not generally
useful. However, specifying -screen workbench causes CodeProbe
to use the Workbench screen on older releases.

-startup

suppresses the automatic go main that is normally executed by the
debugger on startup. This option is useful you want to step
through the startup code or debug constructors or
autoinitialization functions that run before main. If you
specify -startup, the application process does not perform any
type of initialization before control is given to you.

If the quit, start, or restart commands are invoked and an
application process has not exited, the debugger normally calls
exit to clean up any process resources that may not have been
freed. However, if you invoked CodeProbe with the -startup
option, exit is not called.

-w
runs CodeProbe on the Workbench screen. Specifying -w is
equivalent to specifying -screen workbench.

-wb
tells CodeProbe to invoke the application as a Workbench process.

sc_util 4 / 57

It passes arguments to the application through a Workbench
startup message. This option is the default if CodeProbe is
invoked from the Debug icon. The option is necessary if CodeProbe
is invoked from a Shell, but you want the application to run as
if invoked from the Workbench screen.

-wdialog left top width height
-wregister left top width height
-wsource left top width height
-wwatch left top width height

specifies startup window coordinates for the Dialog, Register,
Source, and Watch windows, respectively. Window coordinates are
measured in character positions. A width or height of 0 causes
the window to extend to the screen border on the right or bottom,
respectively. For example, to open the Source window in position
(0,1) and make the Source window 50 characters (columns) wide and
12 lines long, you would specify:

cpr -ws 0 1 50 12 program-name

NOTE: The Register and Watch windows are not displayed on
startup. However, when they are opened by pressing the
appropriate function key (either F1 or F4), they will open
to the coordinates specified on the command line.

-.
suppresses the copyright banner that is displayed at startup.

1.4 cprk

cprk - CodePRobe - Cross-debugger kernel

Synopsis

cprk [option]

Description

This kernel program is a version of CodePRobe, a powerful source-level
debugger that enables you to monitor, line-by-line, the behavior of
your C program, Assembler program, or both.

This version is to be run on a machine which will be debugged remotely,
via the cprx program.

cprk supports the following communication parameters:

-pipe name

specifies that a named pipe is to be used instead of the serial
port. If name is not specified, pipe:cpr is used. CPRX or CPRK
will open two pipes using name as a base, name_d and name_k.

To communicate successfully over a network, you must invoke

sc_util 5 / 57

either CPRX or CPRK with a pipe filename that refers to a pipe on
the other machine. If your network allows you to refer to a pipe
device on an attached machine by specifying

net:pipe/pipename

then you can start CPRK on the target machine using

cprk -pipe net:pipe/cpr

and start CPRX on the host machine with the -pipe option without
a pipename.

-device name

specifies that the named device should be opened for
communications if -pipe was not specified. The default is
serial.device.

-unit number

specifies the unit number of the communications device if -pipe
was not specified. The default is zero (0).

-speed number

specifies the baud rate of the communications device if -pipe was
not specified. The default is the value is set with the Serial
editor in the Prefs drawer from Workbench.

See Also

cprx

1.5 cprx

cprx - CodePRobe - Cross-debugger version

Synopsis

cprx [options] program [program parameters]

Description

This is the Cross-Debugger version of CodePRobe, a powerful
source-level debugger that enables you to monitor, line-by-line, the
behavior of your C program, Assembler program, or both.

This version of cpr allows you to control a program running under the
cprk kernel program on another machine, via a serial or NetWork link.

See Also

cprx commands , cprk , cprx options

sc_util 6 / 57

1.6 cprx commands

In addition to all regular cpr commands , cprx also recognises the
following:

finish

The program being debugged is automatically terminated if it has
not yet completed execution.

quit

CPRK continues running, so you can start another CPRX session.
The program being debugged is automatically terminated if it has
not yet completed execution.

1.7 cprx options

In addition to all regular cpr options , cprx also recognises the
following:

-pipe name

specifies that a named pipe is to be used instead of the serial
port. If name is not specified, pipe:cpr is used. CPRX or CPRK
will open two pipes using name as a base, name_d and name_k.

To communicate successfully over a network, you must invoke
either CPRX or CPRK with a pipe filename that refers to a pipe on
the other machine. If your network allows you to refer to a pipe
device on an attached machine by specifying

net:pipe/pipename

then you can start CPRK on the target machine using

cprk -pipe net:pipe/cpr

and start CPRX on the host machine with the -pipe option without
a pipename.

-device name

specifies that the named device should be opened for
communications if -pipe was not specified. The default is
serial.device.

-unit number

specifies the unit number of the communications device if -pipe
was not specified. The default is zero (0).

-speed number

sc_util 7 / 57

specifies the baud rate of the communications device if -pipe was
not specified. The default is the value is set with the Serial
editor in the Prefs drawer from Workbench.

-symfile filename

specifies the location of the executable file on the host
machine. If the executable file is located in different places
on the target and host, then use this option, to specify where
the executable file resides on the host machine. CPRK still
looks in the location specified by target-executable-filename.

-x

strips all debugging information from the host’s version of the
executable file, copies the stripped version to the target
machine, and tells CPRK to invoke the just-transmitted version.
This option allows CPRK to run constantly without changing disks
or rebooting (as long as your program does not crash).

1.8 cover

cover - Analyzes coverage data

Synopsis

cover [options] [datafile]. . .

Description

The cover utility analyzes the coverage data produced when you compile
your program with the COVERAGE option, link with the object file
covutil.o, and run your program. Using this data, you can determine
which lines of code in your program were executed and which were not.
This information can help you design test cases that exercise all paths
through your program.

See Also

cover options

1.9 cover options

dir=directory-pathname

specifies the directory path or paths to search to locate the C source
files.

merge filename

tells cover to read the specified data files, merge the information
contained in them, and write the merged data to filename.

sc_util 8 / 57

nosource

tells cover not to read in the C source files.

1.10 demangle

demangle - Converts C names into C++ names

Synopsis

demangle C-name C-name...

Description

The demangle utility converts the specified C names that were
generated by the C++ translator into their original C++ forms.

If you run sc with the cxxonly option, the resulting ..c file
contains C names that were generated by the translator. To read
this file, you may need to use the demangle utility to convert
the C names.

If you compiled with the debug option, the debugging information
in the object module refers to the names generated by the
translator. In many cases, the debugger can also display the C++
name. If you want to run the debugger from an AREXX script, you
may need to use demangle to convert the C names.

Example

> demangle bar__3foo

foo::bar

bar__3foo is the mangled C name as it would appear in the
generated ..c file. foo::bar is the demangled C++ name as it
would appear in your C++ source file.

1.11 diff

diff - Determines the differences between two files

Synopsis

diff [>destination] [options] file1 file2

Description

The diff utility determines the differences in contents between two
files and describes the lines that you should delete from, add to, or

sc_util 9 / 57

change in file2 to make it look like file1. To help you find those
lines, diff identifies the line numbers and gives the text of the
lines.

If you enter the diff command without specifying filenames, diff
displays the version that you are using and describes the options
available.

Output from this utility is sent to the standard output device, unless
you redirect it by specifying the -o option or by entering a greater
than (>) sign followed by a destination.

NOTE: Appendix 1, "diff File-Matching Algorithm," discusses the theory
of file matching and how it affects diff.

See Also

diff error messages , diff options

1.12 diff options

-bnn

sets the size of the I/O buffer to the value specified by nn. The
default I/O buffer size is 4K, and the maximum size is limited by the
amount of available system memory.

-c

displays only those lines common to both files.

-Fnn

sets the column number where you want diff to begin comparing lines.
For example, if you set nn to 25, diff ignores the first 25 characters
on each line.

-Lnn

sets the column number where you want diff to stop comparing lines.
For example, if you set nn to 75, diff ignores the characters beyond
column 75 on each line.

-lnn

defines the number of lines, nn, per file that can be handled by diff.
diff uses two tables (one for each file) to keep track of the lines
read in from each file. The default size of each of these tables is
2000; the maximum number is limited by memory availability.

-ofile

sends the output to the specified file (or device). You can use this
option instead of the AmigaDOS redirection command. You can send the
output to a different device by specifying the device name. For

sc_util 10 / 57

example, to send output to the printer, specify -oprt:. To send output
to a file on drive df0:, specify -odf0:filename.

-p

filters out unprintable characters from the input stream. You can use
this option to clean out an AmigaDOS binary file.

-q

suppresses any messages if there are no differences between the
specified files.

-w

ignores differences related solely to space or tab characters and
reduces sequences of these characters to a single space. This option
also removes trailing blanks. When you specify the -w option, diff
uses additional memory to create a third table for each line in its
compressed form.

1.13 diff error messages

Can’t open file

indicates that diff cannot open the named file. The file may not exist
or it may be protected.

Diff I/O Error

indicates an I/O problem.

Improper -l specification: nn

indicates that diff cannot interpret the nn value specified with the -l
option as a number.

Internal Error: ...

indicates an internal error. Please contact the Technical Support
Division at SAS Institute if you see this error message. The Technical
Support representative will need the following information:

> the version of diff you are using

> the exact wording of the command line you used

> the exact wording of the message you received

> the size of the files you were trying to compare.

Line table overflow

indicates that one of the two line tables, in which diff stores the
lines from each file while they are being compared, is too small to

sc_util 11 / 57

hold the lines in one of the files. Try increasing the line table size
with the -l option.

Not enough memory for nn lines per file

indicates that you have used the -l option to increase the line table
size, but you do not have enough memory to increase it by the amount
you specified.

Out of memory

indicates that diff is out of memory. Try decreasing the line table
size with the -l option if possible. Do not use the -w option. You
can also try decreasing the size of the I/O buffer by using the -b
option; however, this action makes diff run slower because more disk
accesses may be required. If you are using a hard disk, this factor
may be negligible.

Too many file names: ...

indicates that you have made an error on the command line in such a way
that diff assumes you are attempting to operate on more than two files.

Unrecognized option

indicates that you specified an option that diff does not recognize.

1.14 grep

grep - Searches for and prints regular expressions

Synopsis

grep [>destination] [options] pattern file . . .

Description

The grep utility searches the files you specify for all the lines that
contain the specified pattern. For each file in which it finds the
pattern, grep displays, on the screen, the filename, line number, and
contents of the line that contains the matching string. The patterns
that you can specify can be specific or general, and they are sometimes
referred to as regular expressions. In this text, they are referred to
as patterns.

To specify the files that you want grep to search, you can use the
AmigaDOS wildcards (eg. #?).

Specifying the Pattern

The following list describes the special characters that you can use to
specify the pattern for which you are looking:

.

sc_util 12 / 57

is the grep wildcard character. A period will match any single
character, including a space, tab, newline, or control character.

A period followed by an asterisk (*) tells grep that any number of any
characters can be present. The .* sequence is equivalent to the #?
sequence for AmigaDOS commands.

""

are used to enclose patterns that include space characters.

[]

are used to search for any one character from a set of characters by
enclosing that set of characters inside square brackets. A set of
characters enclosed in square brackets is called a character class. A
character class will match one single character. For example, to
search for lines that contain vowels, you can enter [aeiou].

n(--) -

is used to specify a range. Inside a character class, you can specify
a range of characters by entering the first character in the range and
the last character in the range separated by a hyphen. The first
character must occur alphabetically before the second. For example, to
find any one of the lowercase alphabetic characters, you enter [a-z].

!

is used as the negation character when included as the first character
in a character class. An exclamation point tells grep to find any
character that is not in the character class. For example, to find any
one character that is not a lowercase alphabetic character, enter
[!a-z]. To find any one character that is not a lowercase alphabetic
character and is not the end-of-line character, enter [!a-z\N].

*

tells grep that the preceding character does not have to be present in
the pattern but can be present an unlimited number of times. In other
words, an asterisk means "zero or more occurances of."

A period followed by an asterisk tells grep that any number of any
characters can be present. The .* sequence is equivalent to the #?
sequence for AmigaDOS commands.

NOTE: Following AmigaDOS conventions, if the * is used inside quotes,
it is treated as an escape character, so will need to be doubled to
actually pass a * to grep. In other words, if the search string is
"foo* bar", you will need to type "foo** bar" instead.

+

tells grep that the preceding character must be present in the pattern
at least one time but can be present an unlimited number of times. In
other words, a plus sign means "one or more of." For example, to find
all lines in your file that contain one or more of the lowercase letter

sc_util 13 / 57

t, enter t+.

^

tells grep that the pattern must begin in column 0. Enter the caret
(^) at the beginning of the pattern. grep will look only for those
lines in which the pattern occurs beginning in column 0. For example,
to find all lines that begin with a left parenthesis, enter ^(.

$

tells grep that the pattern must occur at the end of a line. Enter the
dollar sign at the end of the pattern. For example, to find all lines
that end with a right parenthesis, enter)$.

\

is the escape character. If you want to search for any of the special
characters included in this list, you must enter a backslash before
that character. For example, to find all lines that contain a caret,
enter \^. Similarly, if you want to search for a backslash, enter two
backslashes, \.

You also need to use the backslash to identify certain additional
characters. These characters are as follows:

\b backspace
\n newline
\r carriage return
\s space
\t tab
\xij control character identified by hexadecimal digits ij

For example, to locate all lines containing the Control-g character,
enter \x07.

See Also

grep error messages , grep options

1.15 grep options

-c

prints the total number of matched lines.

-f

prints only the names of all files in which grep finds a string that
matches the pattern.

-n

tells grep not to display line numbers.

sc_util 14 / 57

-p

displays only printable ASCII characters. Non-printable characters are
filtered out. This option is useful if you are searching a binary file
that may contain control characters.

-q

does not display filenames or line numbers.

-s

displays the names of all files that grep searches. Normally, grep
displays only those filenames in which it found a match for the
pattern.

-v

prints only the lines in which a match of the pattern is not found.

-V

prints the version number of grep.

-$

tells grep not to distinguish between upper- and lowercase. For
example, if you use this option, the pattern int would match int, INT,
Int, and INt.

1.16 grep error messages

Bad character class

indicates that grep is unable to interpret a character class in the
pattern you have asked it to find. Check to see if you have used any
special symbols that you did not intend to use. This message also can
be generated if, in specifying a character class and using the minus
(-) character to indicate a range of characters, the first character in
the range does not alphabetically precede the second (for example,
[d-a]).

Bad pattern

indicates that grep is unable to interpret the pattern you are asking
it to find. You may have used a special character in the pattern that
does not make sense in this context. Check to see if you have
forgotten to escape a special character.

Can’t find file(s) ...

indicates that grep is unable to find one or more of the files you have
asked it to search. The files may not exist, or you may have
misspelled the filenames.

sc_util 15 / 57

Can’t open ...

indicates that grep is unable to open the named file. The file may not
exist or may be protected.

Closing] not found

indicates that grep believes that you have asked it to search for a
pattern that contains a character class, but you have omitted the right
bracket (]) that terminates the character class. If not, you may have
included a left bracket ([) in the pattern but forgot to use a
backslash (\) before it.

Empty character class

indicates that a character class you have used in your pattern has no
members, for example [].

Improper hex specification

indicates that you have used the x escape sequence but have not
followed it with two recognizable hexadecimal digits.

Incompatible combination of options

indicates that the options with which you have invoked grep are
contradictory.

Internal Error: ...

indicates an internal error. Please contact the Technical Support
Division at SAS Institute if you see this message. The Technical
Support representative will need the following information:

> the version number of grep you are using

> the exact wording of the command line you used

> the exact wording of the resulting error message.

Invalid option

indicates that you have used a command line option that grep does not
recognize. This message also can be generated if your pattern begins
with a minus sign (-) but you have not escaped it or enclosed the
pattern in double quote marks (").

No beginning double quote in pattern

indicates that grep has detected double quote marks (") in a pattern
that did not start with a double quote. You may need a backslash (\)
before the double quote.

No file arguments provided

indicates that grep believes you have specified a pattern but no

sc_util 16 / 57

filenames. This message also may be generated if you invoke grep with
a filename but no pattern.

No pattern or file arguments given

indicates that grep cannot find either a pattern or filename on its
command line.

Out of space

indicates that grep has run out of space in constructing its pattern
representation. Please contact the Technical Support Division at SAS
Institute if you see this message.

Pattern ill-formed: no terminating double quote

indicates that you started the pattern with a double quote (") but
failed to terminate it with one.

Too few arguments to GREP

indicates that grep demands at least two arguments on its command line:
a pattern and at least one filename.

1.17 gst

gst - Manages global symbol tables

Synopsis

gst [gst-filename] [options] [symbol-name . . .]

Description

A Global Symbol Table (GST) is a collection of all the information
defined in a set of header files and stored in a format that the
compiler can use easily and quickly.

For information on creating and using GSTs, refer to Chapter 4, "Using
the System Header Files to Access Libraries," in SAS/C Development
System Library Reference.

The gst utility helps you manage GSTs and extract information from a
GST.

To load a GST into memory, specify the GST command as follows:

gst gst-filename

The gst utility loads the GST into memory and then exits.

NOTE: You should do this only if you plan to remove the disk containing
the GST from the drive.

To display information about a symbol contained in a GST, specify the

sc_util 17 / 57

gst command as follows:

gst gst-filename symbol-name

Some symbols may occur more than once in the GST. For example, a
symbol may occur once as a structure tag and again as an identifier.
The gst utility prints all definitions of the same symbol.

See Also

gst error messages , gst options

1.18 gst options

list

lists all GSTs currently in memory. You can use this option to
determine which GSTs to unload if you need more memory.

[name=]filename

specifies a GST file created using the makegst option in the sc
command. You do not need to specify name= unless you want to load a
GST that has the same name as a keyword (for example, name=symbol).
If you use the special name anygst, the gst utility uses the
first GST on its list, as reported by gst list.

[symbol=]symbol-name

displays the type of symbol name and the filename and line number where
symbol-name is defined. The type may be one of the following:
n(Preprocessor) tag struct, union, or enum name identifier variable or
function name typedef typedef include #include filename preprocessor
preprocessor macro or #define

You do not need to specify symbol= unless you want information about a
symbol that has the same name as a keyword (name, unload, and so on).

unload

forces a GST to be unloaded from memory. If you also specify symbol
names on the command line, gst prints all definitions for those symbols
before it unloads the GST.

verbose

prints the full definition of symbol-name.

1.19 gst error messages

No GST file specified

sc_util 18 / 57

indicates that you did not specify a GST filename.

Can’t find GST file "filename"

indicates that gst cannot find the file specified.

Symbol "symbol-name" not found

indicates that gst could not find the specified symbol.

Not enough memory to load GST

indicates that the GST file could not be loaded due to insufficient
memory.

1.20 hypergst

hypergst - Displays the contents of GSTs

Synopsis

hypergst [gst-filename]

Description

The hypergst utility allows you to browse the definitions of symbols
and data structures in GSTs (Global Symbol Tables) that are loaded into
memory.

hypergst works with the AmigaGuide hypertext system. For information
on using AmigaGuide, see Chapter 2, "Getting Help," in SAS/C
Development System User’s Guide, Volume I: Introduction, Editor,
Compiler.

To browse the definitions in a GST, the GST must be loaded in memory.
You can invoke the hypergst utility and load a GST in one of two ways:

> You can enter the hypergst command followed by the name of the GST
file that you want to browse.

> From the Workbench, you can click on the HyperGST icon, then hold
down the Shift key and double-click on the icon for the GST file
that you want to browse.

If the GST that you want to browse is already loaded into memory:

> You can enter the hypergst command without specifying a GST
filename. hypergst displays a screen listing the names of all
GSTs in memory. To select a specific GST, click on the name of
the GST file.

> You can double-click on the HyperGST icon. hypergst displays a
screen listing the names of all GSTs in memory. To select a
specific GST, click on the name of the GST file.

sc_util 19 / 57

After the GST is loaded, hypergst displays a screen containing buttons
for the various kinds of symbols defined in the GST. These buttons are
as follows:

> Data Items
> Prototypes
> Typedefs
> Structs/Unions/Enums
> Preprocessor Symbols

If you click on one of these buttons, hypergst displays an alphabetical
list of all symbols of that type in the GST. If you click on the name
of a symbol, hypergst displays a symbol information screen for that
symbol. This screen may contain other buttons that reference header
files, structure tags, type definitions, and so on. You can click on
any of these buttons to display more information about the highlighted
item.

See Also

hypergst error messages

1.21 hypergst error messages

No GST files in memory

indicates that you have not loaded any GST files into memory. For
example, you see this message if you invoke hypergst immediately
following a reboot and do not specify any arguments.

1.22 lctosc

lctosc - Converts older V5 options to newer options

Synopsis

lctosc [>file] [lc options]

Description

This utility will convert V5 ’LC’ options to the newer ’SC’ option
style. It prints the converted options to stdout. To keep and use
these converted options, you will need to redirect the output of lctosc
to a file using the AmigaDOS ’>’ output redirection operator. The new
driver looks for options in a file named "SCOptions".

You may either type the options to be converted on the command line, or
redirect the input to lctosc from a file using the AmigaDOS ’<’ input
redirection operator. The old driver, LC, looked for options in a file
named "SASCOPTS".

sc_util 20 / 57

1.23 lprof

lprof - Generates run-time statistics

Synopsis

lprof [-t=n] [>prog-output-dest] program [program-options]

Description

The lprof utility generates run-time statistics for a program. lprof
records the amount of time spent in each routine that is called as your
program runs.

To use lprof with your program, you must compile your program with the
debug option.

After lprof loads your program, it runs the program and gathers
statistics by examining the current program counter at given intervals.
lprof writes your program’s statistics to the file named prof.out in
the current directory. You can use the lstat utility to produce a
report from those statistics.

lprof only supports one option:

-t=n

specify the interval, in milliseconds, between lprof statistics
checks on your program.

See Also

lstat

1.24 lstat

lstat - Analyzes and prints run-time statistics

Synopsis

lstat [>destination] [options] program [profile]

Description

The lstat utility analyzes the profile statistics created by lprof .

The profile is the name of the output file created by lprof. lstat
first looks in your current directory for the default file produced by
lprof, prof.out. If this file is not in your current directory, or if
you have changed its name, you must specify its full pathname as the
value for profile.

You must specify the program name. lstat uses this name to get
debugging and symbol information for its report.

sc_util 21 / 57

NOTE: This utility assumes that you have linked the program with
the addsym linker option. The addsym linker option allows
the profiler to produce statistics for library functions.
If you link your program using the link and debug options
in the sc command, the linker automatically links your
program with the addsym option. If you are linking with a
separate slink command, you must specify the addsym linker
option.

If the report produced by lstat shows that a large percentage of time
is spent in one program module, you may want to

> redesign the module

> incorporate the module into the calling routines, thus eliminating
calling overhead

> rewrite the routine in assembly language

> restructure your program.

You also may find that most of the work being done involves the routine
in question, and the percentage of time taken is reasonable.

See Also

options

1.25 lstat options

-z

tells lstat to display statistics for all subroutines even if they were
not encountered in profiling. By default, lstat does not report
subroutines that it does not encounter.

-f

tells lstat to display full statistics for each subroutine, indicating
the line numbers within a module that it encountered. By default,
lstat displays only summary information about the subroutine.

-t=n

tells lstat to display only those routines that have at least n hits.
By default, lstat prints all subroutines that it encountered even once.

1.26 mkmk

sc_util 22 / 57

mkmk - Creates makefiles

Synopsis

mkmk [options] [filename...]

Description

The mkmk utility creates makefiles. mkmk examines the source and
header files you specify, determines which files depend on which
other files, and generates a makefile. If you do not specify any
filenames, mkmk examines all the files in the current directory
ending with .c, .cxx, .cpp, or .cc.

mkmk supports the following options:

target=filename

specifies the name to use in the makefile for the target
executable module. If not specified, the root part of the name
of the first .c, .cxx, .cpp, or .cc file in the file list is
used.

force

tells mkmk to overwrite an existing makefile.

makefile=filename

tells mkmk to write the makefile to the specified filename.
The default filename is smakefile.

After running mkmk, you can build your project by entering smake
from the Shell or by double-clicking the Build icon from the
Workbench. If you add any new files to your project, or if you
add or delete any #include directives in existing files, you need
to add them to the generated makefile either by editing the
makefile or by rerunning mkmk.

The source code for mkmk is in the sc:extras/mkmk directory.

1.27 omd

omd - Disassembles object modules

Synopsis

omd [>destination] [-x] object [source]

Description

The omd (Object Module Disassembler) utility program disassembles an

sc_util 23 / 57

object file produced by the SAS/C Compiler and produces a listing
consisting of assembly language statements (interspersed with the
original C source code if you specified a source filename).

object is the object filename. You must specify the complete filename,
including the .o extension.

source is the source filename. If you specify source, you must specify
the complete source filename, and the source file should have been
compiled with the debug compiler option. The debug option allows omd
to associate source lines with the object code they generated. If you
did not use the debug option, C source lines will not appear in the
output produced by omd.

omd only supports one option:

-x

This option sets the size of the buffer used to hold the
external symbol section of the object module. For example,
-x250 establishes a buffer that can hold 250 external symbols.
The default size is 200. You should increase the buffer size
only if omd reports that there are too many external symbols.

1.28 oml

oml - Manages libraries

Synopsis

oml [<cmdfile] [>listfile] [options] libfile [command [module. . .]]. .

Description

You can use the oml (Object Module Librarian) to manage your libraries.
oml allows you to:

> create library files
> list the modules in a library file
> delete modules from a library file
> replace old modules with new modules.

A link library is a group of object modules, each of which was
originally in a separate file and consisted of one or more subroutines.
Some advantages of using a link library are as follows:

> The subroutines in a library can be used by several programs.
> When you are linking your program, you specify only the library

file instead of several individual object modules.
> The linker includes only those modules in the library that are

required by your program.

Each module within the library is identified by a module name, which is
placed in the object module by the program (the SAS/C Assembler or
Compiler) that generates the module. The assembler and compiler use

sc_util 24 / 57

the name of the object file. If a module does not contain a module
name, oml assigns a module name of the form $nnn, where nnn is a
decimal number.

A module may define one or more public symbols. A public symbol is
something in the module that is available to other modules, such as
global variables or functions. When the linker resolves external
references for a program, it examines each module in each library you
specify. It decides which of the modules are required by the program
it is linking by looking at the module’s list of public symbols. If
any of the program’s unresolved external references match any of the
module’s public symbols, that module will be included in the executable
module.

When writing the modules for your library, be careful to avoid
duplicate names for public symbols. If you create a library that
defines a symbol more than once, oml issues a warning message. If you
then link with that library without correcting the problem, the linker
may include the wrong module or give a duplicate symbol error.

To invoke oml, enter the oml command followed by a library name, as
follows:

oml mylib.lib

oml waits for you to enter commands (and module names, if necessary)
from the keyboard. oml executes the commands as you enter them and
displays a list of any duplicate symbol names that it finds. After you
have entered all your commands, enter a Control-backslash (Control-\)
to terminate oml. You also can include the commands and module names
on the oml command line. If you enter commands on the command line,
oml executes those commands and terminates. For example, the following
command replaces the module ftoc.o in mylib.lib with the version of the
same module in your current directory:

oml mylib.lib r ftoc.o

oml replaces the module, lists any duplicate symbol names it finds, and
terminates. You also can enter some commands on the command line
followed by some from the keyboard. If you include an at (@) sign at
the end of the command line, oml executes the commands you enter on the
command line and then waits for you to enter additional commands from
the keyboard. You must enter a Control-\ to terminate oml. For
example, the following command replaces the module ftoc.o in mylib.lib
with the version of the same module in your current directory and then
waits for you to enter additional commands from the keyboard:

oml mylib.lib r ftoc.o @

You also can enter the commands into a file and tell oml to use that
file as input. You can tell oml to use that file by either of the
following methods:

> entering a less than (<) sign followed by the filename (<cmdfile)
as the second item on the oml command line

> entering an at (@) sign followed by the filename (@cmdfile) as the
last item on the oml command line.

sc_util 25 / 57

oml sends its output to the screen unless you redirect it by specifying
a greater than (>) sign followed by a filename.

oml produces warning messages if either of the following are true:

> A module that you want to delete or extract is not in the library.
> Any module in the library includes a second definition for a

public symbol.

See Also

oml commands , oml options

1.29 oml commands

r file file ...

replaces the named object files in the library or adds them to the
library, if they are not already present. Each module should be in a
separate object file. To replace modules within a library, make sure
that the module contains a module name and that the filename is the
same as the module name.

d module module ...

deletes the named modules from the library. oml assigns module names
to those modules without names; therefore, you may need to get a
listing of names in the library (using the l command) to determine the
name of the module that you want to delete.

x module module ...

extracts the named modules from the library and creates separate files
using the same names. You may need to get a listing of names in the
library (using the l command) to determine the correct name of the
module that you want to extract. If the module name contains a
pathname, oml attempts to create a file with that name. If the module
name does not contain a pathname, oml creates the file in the current
directory unless you specify a different pathname with the -o option.
You can use an asterisk (*) to specify that you want all modules
extracted. oml terminates if it cannot extract a module. You cannot
extract and replace the same module with the same oml command line.

l

generates a listing of the modules in the library after all other
commands have been executed. If you also specify the -s option, the
listing includes the public symbols defined in each module.

@[filename]

tells oml to execute the commands that you enter from stdin (usually
defined as the keyboard) or from the filename, if specified. If you

sc_util 26 / 57

include this option it should be the last option on the command line.

1.30 oml options

-b

tells oml not to issue prompts, including prompts for missing
information.

-n

strips debugging information from modules before adding them to the
library.

-oprefix

specifies a prefix for the filenames to be created by the x command. If
the prefix includes a directory name, you must include the forward
slash (/) at the end of the name.

-s

includes, in the listing produced by the l command, a list of the
public symbols defined in the module.

-tpathname

specifies a path for the temporary library.

-v

tells oml to display messages as it adds or deletes modules to and from
the library.

-x

generates a cross reference for variables and functions used in a
library.

1.31 sc

sc - SAS/C Development System driver

Synopsis

sc [options] [source-filename(s)]

Description

This is the main command used to invoke the SAS/C Compiler. It manages
loading the different parts of the compiler, and generating the output
based on the options you specify on the command line, and/or in an

sc_util 27 / 57

SCOptions file.

The sc command accepts C source files, assembly source files, object
files, and link libraries as input files.

See Also
sc options

1.32 sc5

sc5 - SAS/C Development System V5.10 compatible driver

Synopsis

sc5 [options] [source-filename(s)]

Description

This version of the SC driver is provided for compatibility with older
versions of the SAS/C Compiler. It accepts the old-style options (such
as -L, -cs, etc.).

See the documentation for a version of SAS/C prior to V6 for details on
the available options.

See Also

sc

1.33 scmsg

scmsg - Searches for and corrects errors and warnings

Synopsis

scmsg [options]

Description

The scmsg utility helps you find and fix errors and warnings in your
code. It acts as a filter between you and the compiler, allowing you
to invoke the editor of your choice and go to the line causing the
error or warning quickly and easily.

To use scmsg, you must compile your program with the errorrexx
option.

You can use scmsg with the editor of your choice, using AREXX as a
communication medium. AREXX is a standard part of AmigaDOS 2.0 and can
be purchased as a third-party product for use under AmigaDOS 1.3. If
you do not have AREXX, you still can use scmsg to control the se editor
provided as part of the SAS/C Development System, but you will not be

sc_util 28 / 57

able to program the editor keys to control scmsg.

If you invoke the compiler from the Shell or by using the Build icon on
the Workbench, scmsg is automatically invoked for you.

The current message is always highlighted. You can move from message
to message by clicking on the message or by using the arrow keys. The
scroll bar on the right side of the window allows you to move around in
the list. Double-clicking on a message invokes the editor at the file
and line number specified in the message.

Every time a C source file is compiled, all old messages listing that
file as the primary file are deleted from the scmsg window.

See Also

scmsg AREXX commands , scmsg options

1.34 scmsg arexx commands

Note: The AREXX Port name for scmsg is "SC_SCMSG".

abort

aborts any builds currently running.

altfile

returns the alternate filename (if any). An empty string indicates
that there are no messages on the list or that the current message has
no alternate file.

altline

returns the alternate line number (if any). An empty string indicates
that there are no messages on the list or that the current message has
no alternate file.

bottom

goes to the last message in the list.

build [options]

calls the smake utility, using the options specified, to rebuild
the last project built.

class

returns either error or warning, depending on the current message.

clear

deletes all messages.

sc_util 29 / 57

delcomp [filename]

deletes all messages with the specified filename as their primary
filename. If no filename is specified, the primary filename of the
current message is used. If the current message is deleted, the next
non-deleted message becomes current.

delete

deletes the current message and goes to the next message in the list.

delfile [filename]

deletes all messages with the specified filename as their secondary
filename. If no filename is specified, the secondary filename of the
current message is used. If the current message is deleted, the next
non-deleted message becomes current.

delnum [msgno]

deletes all messages with the specified message number. If no message
number is specified, the number of the current message is used. If the
current message is deleted, the next non-deleted message becomes
current.

file

returns the filename for the current message. An empty string
indicates there are no messages on the list.

number

returns the error number. An empty string indicates that there
are no messages on the list.

hide <option>

closes the scmsg window, but keeps scmsg running. By default,
the scmsg window reappears when a new message is issued from the
compiler. To change when the window reappears, you can specify
one of the following options:

autoedit

specifies that you want scmsg to invoke your editor
automatically, open the source file, and move to the line
producing the message.

noautoedit

cancels autoedit mode.

rexxonly

specifies that scmsg should not open a window. Use this
option if you intend to query scmsg for the messages from your
editor or some other AREXX-supporting program and you do not

sc_util 30 / 57

want to see the scmsg window. This option does not take any
arguments. To cancel rexxonly mode, you must send the
norexxonly command.

norexxonly

cancels rexxonly mode. If you send a norexxonly command, then
scmsg opens the message browser window when it receives the
next message.

You can also send a show command with AREXX or reinvoke scmsg
from the command line to redisplay the window.

line

returns the line number for the current message. An empty string
indicates there are no messages on the list.

next

goes to the next message in the list. Unlike Version 6.0, using
the next command on the last message in the list does not move
you back to the top of the list. Use the top command to go to
the top of the list.

newbld <compunit>

tells scmsg to clear all messages for the specified compilation
unit. When the compiler begins a new build, it sends a newbld
message to scmsg. If you have set the autoedit option, newbld
also forces scmsg to invoke the editor on the next new message.

newmsg "compunit" "file" line 0 "" 0 <class> <errnum> <text>

adds a message to scmsg’s message list, where:

compunit
is the compilation unit associated with the message (the .c
filename). Enclose the unit name in double quotes (").

file
is the filename of the message. Enclose the filename in
double quotes.

line
is the line number of the message.

0 "" 0
must appear exactly as shown.

class
is either Error, Warning, Note, or Info.

errnum
is a positive error number. If errnum is zero, no error
message number will be displayed.

sc_util 31 / 57

text
is the message text.

If the message text contains the words

See line nnn file "filename"

where nnn is a decimal number, then nnn and filename are
interpreted as the alternate line number and filename associated
with the message.

number

is a synonym for errnum.

opts [option]

allows you to load, set, and save scmsg options without leaving
scmsg. You can specify any of the following:

load <filename>
loads scmsg options from the specified file.

save <filename>
saves options to the specified file. This file can contain
any option that is valid on the command line or from Set
Options in the Project menu.

portname <name>
sets the name of the editor’s AREXX port to the specified
name.

screen <name>
closes the scmsg window and reopens it on the specified public
screen.

the specified public screen.

prev

goes to the previous message in the list. If the current message is
the first in the list, scmsg goes to the last message in the list.

quit

terminates scmsg.

rexxonly

specifies that scmsg should close the message browser window and not
reopen it unless you specify scmsg nohidden at the Shell prompt or send
the AREXX show command to the SC_SCMSG AREXX port. Use this command if
you intend to query scmsg for the messages from your editor or some
other AREXX-supporting program, and you do not want to see the scmsg
window.

select

sc_util 32 / 57

selects the current message for editing. Your editor is invoked and
moved to the proper file and line number. This command is equivalent
to pressing the Return key on the current message.

show [activate]

pops the scmsg window to the front or redisplays the window if it is
hidden. If you specify activate, the scmsg window becomes the active
window, and you can enter keyboard commands to scmsg.

text

returns the message text. An empty string indicates that there are no
messages on the list.

top

goes to the first message in the list.

1.35 scmsg options

autoedit

specifies that you want scmsg to invoke your editor automatically, open
the source file, and display the line producing the message. The
default value is noautoedit.

config=filename

specifies the name of a configuration file. Typically, the
configuration file contains the command necessary to invoke your
editor, open a source file, and display the appropriate line. For more
information about configuration files, see "Using AREXX to Invoke Your
Editor," in your manual.

hidden

specifies that you do not want scmsg to display the message browser
window until the compiler returns a message. The default value is
nohidden.

pubscreen=<name>

tells scmsg to open its window on the public screen you specify.
You can abbreviate this option as screen.

quit

terminates scmsg.

rexxonly

specifies that scmsg should not open a window. Use this option if you
intend to query scmsg for the messages from your editor or some other

sc_util 33 / 57

AREXX-supporting program, and you do not want to see the scmsg window.

1.36 scompare

scompare - Generates patch files

Synopsis

scompare [options] <oldfile> <newfile>

Description

You can use the scompare utility to create a patch file. oldfile
is the name of the old binary file. newfile is the name of the
new, updated binary file. Applying the patch file generated by
scompare to oldfile produces a file identical to newfile. You
can use the spatch utility to apply patches created by scompare.

scompare supports the following options:

-i<info-filename>
specifies the file containing messages to be displayed
whenever the patch is applied.

-n<match-number>
specifies the number of bytes that must be identical to be
considered a match. The default value is 10.

-o<out-filename>
specifies the name of the generated patch file. The default
filename is oldfile.pch.

-a
prints the changes as text in addition to creating the patch
file.

NOTE: You cannot distribute copies of scompare or any other
utility, except spatch, that is included in the SAS/C
Development System. The patch file that you create using
scompare and the spatch utility are both freely
redistributable.

1.37 scopts

scopts - Sets compiler options

Synopsis

scopts [options]

Description

sc_util 34 / 57

The scopts utility allows you to set compiler options for a project by
clicking on the gadget that corresponds to the option. The options you
specify are used by the sc command whenever you compile and link your
files.

To run scopts, you can double-click on the SCoptions icon, or you can
enter scopts on the Shell command line. scopts displays the SAS/C
Compiler Options Index screen. This window contains buttons that open
additional windows. Each of these windows allows you to set different
compiler options. In all, scopts can display nine windows:

> Compiler Options Index
> Compiler Options
> Diagnostic Message Options
> Code Generation Options
> Listing/Cross Reference Options
> Optimizer Options
> Prototype Generation Options
> Linker Options
> Map Options

For a brief description of an option, move the cursor to the option
gadget and press the Help key.

These windows may contain one or more of the following basic types of
gadgets:

> cycles

appear as raised buttons with a cycle symbol on the left side. By
clicking on the gadget with the left mouse button, you can cycle
through the settings available for that option. To reverse the
direction of the cycle, press the Shift key as you click the mouse
button.

> actions

appear as raised buttons. Selecting the button causes an
immediate action to occur. For example, selecting the Compiler
Options... gadget displays the Compiler Options window.

> strings

appear as a raised ridge around a text area. You can enter data
in the area by clicking within the text area and typing. When you
have finished typing, press the Return key.

> lists

appear as a set of control gadgets (a scroll bar, arrow gadgets, a
string area, and ADD and DEL buttons) combined with a raised
scrolling area. Use the scroll bar and arrow gadgets to position
the scrolling area on specific items. To add new items to the
list, select the ADD button, type the new item name, and press the
Return key. To remove an item from the list, click on the item
(to copy it to the string area), and select the DEL button. To

sc_util 35 / 57

modify an item, click on the item (to copy it), and enter any
corrections.

To specify an option for which the scopts utility does not have a
gadget, enter the option and any parameters required by the option into
the SPECIAL gadget. You can enter as many additional options as you
like. If you use the SPECIAL gadget to specify an option for which
scopts already has a gadget, then the next time you invoke scopts, the
gadget for that option is selected, and the option is no longer
included in the SPECIAL gadget. The only options remaining in the
SPECIAL gadget are those for which scopts does not have a gadget.

For example, if you enter LINK into the SPECIAL gadget, the next
time you invoke scopts, the LINK gadget is selected, and the SPECIAL
gadget does not contain the LINK option.

Any values you enter into the SPECIAL gadget are processed after all
other gadgets are processed. Therefore, options you enter into the
SPECIAL gadget may override other options.

To specify the name of your final executable module, specify a filename
in the ProgramNAME gadget.

To save your option settings, select the appropriate option from the
Project menu.

To exit scopts without saving any of your changes, click on the
Cancel button.

When you run the sc command, it first looks for an scoptions file in
your current directory. If this file does not exist, the sc command
looks for the ENV:sc/scoptions file.

The scoptions file is an ASCII file that contains the list of sc
options that you specify. You can edit this file with a text editor
and add any options you want.

To load a previously saved options file or to reset all options to
their default values, select the appropriate option from the Project
menu.

You can also change option settings by specifying the option on the
scopts command line. For example, to set the math=standard and link
options, you can enter the scopts command as follows:

scopts math=standard link

If you enter the scopts command followed by option settings, scopts
does not display any windows, and you cannot choose the file into which
the options are saved. Specifically, scopts does the following:

> reads the scoptions file in your current directory, if it exists.
> If this file does not exist, scopts reads ENV:sc/scoptions.
> adds or changes the options you specified.
> saves the new option settings in the file scoptions in the current

directory.

sc_util 36 / 57

1.38 scsetup

scsetup - Sets up a new project

Synopsis

sc:scsetup [options] [directory] . . .

Description

The scsetup utility sets up a directory that you can use for C
development. You can run scsetup on existing directories or use it to
create new directories. scsetup creates an icon for the directory and
copies into the directory icons for the most commonly used SAS/C
Development System tools, such as smake and CodeProbe. You can add
icons for any file extensions or tools that you want scsetup to copy in
addition to the standard icons. Specifically, scsetup performs the
following actions:

> Creates the directory, if necessary.

> Creates an icon file for the directory being set up, if it does
not already have one. scsetup uses the file
sc:starter_project.info as a template for directory icons.

> Creates icons for the files in the directory, if necessary.
Default icons are supplied for .c, .cxx, .cpp, .cc, .h, .a,
and .smk files. These icons are in the sc:icons drawer under
the name def_c.info, def_cxx.info, def_h.info, def_a.info, and
def_smk.info. You can add any default icons needed for other
extensions by copying an icon into sc:icons with the appropriate
name (def_extension.info).

> Creates an icon file for any subdirectories of the directory being
set up, if they do not already have one.

> Creates icons for the files in each subdirectory, if necessary.

> Copies the contents of the directory sc:starter_project, if
present, to the directory being set up (if you do not
specify the nostarter option). This starter directory
contains a Build icon, a Debug icon, an Edit icon, a Find
icon, and an SCoptions icon. You can place any other icons
or programs in this starter directory that you want copied
to directories set up with scsetup.

scsetup will not overwrite any existing files or icons unless you
specify the force option.

You can specify the following options in the scsetup command:

force

tells scsetup to copy icons and files into the directory
whether or not they already exist. Use this option if you
have a directory already set up for previous versions of the

sc_util 37 / 57

SAS/C Development System.

nostarter

tells scsetup not to copy the contents of the drawer
sc:starter_project into the directory being set up. Use
this option to create icons for files in a directory based
on their extension when you do not want the SCoptions, Edit,
Debug, Build, and Find icons copied into the directory.

You can run scsetup from the CLI or from the Workbench. To run scsetup
from the CLI, enter the following command:

sc:scsetup [directory] . . .

If you do not specify a directory name, scsetup sets up the current
directory. If you specify a directory that does not exist, scsetup
creates the directory. To run scsetup from the Workbench and create a
new project, double-click on the SCsetup icon, and type the name of the
drawer when prompted. To run scsetup from the Workbench and set up an
existing drawer, click on the drawer icon. (Click on the actual drawer
icon, not the file icons in the drawer.) To select additional drawers,
hold down the Shift key and click on their icons. After you have
selected all the drawers, hold down the Shift key and double-click on
the SCsetup icon.

After you have set up a directory, you can run the editor by
double-clicking on the Edit icon, and you can run CodeProbe by
double-clicking on the Debug icon. You can run smake by
double-clicking on the Build icon. smake looks for a smakefile or a
makefile. If none are present, it compiles and links all .c files in
the directory using the options specified through the scopts utility,
described earlier in this chapter.

1.39 slink

slink - SAS/C Development System Linker

Synopsis

slink object-files [options]

Description

This program takes the object files created by using the SC command,
and creates the final executable file.

It will be invoked automatically from SC if you specify the LINK
option to the SC command.

See Also

slink options

sc_util 38 / 57

1.40 slink options

addsym batch
bufsize chip
define fancy
fast faster
from fwidth
height hwidth
indent libfd
libprefix library
librevision libversion
map maxhunk
newocv noalvs
nodebug noicons
onedata overlay
ovlymgr prelink
plain pwidth
quiet root
swidth smallcode
smalldata stripdebug
to verbose
verify width
with xref

1.41 addsym

addsym
generates hunk_symbol records for all externally-visible symbols
in each object file and library module whether or not the object
file was compiled with the debug compiler option. This option
gives CodeProbe the location, but not the size or type, of any
externally visible symbols in your program.

1.42 batch

batch
sets the value of all undefined data symbols to 0 and all
undefined code symbols to __ _stub. Normally, slink asks you to
enter a value for each undefined symbol. However, if you specify
batch, slink does not prompt you to enter values for undefined
symbols. If an undefined function is called, the library
function __stub (__ _stub to the linker) is called instead. The
library’s version of __stub displays a requester telling you that
an undefined routine was called and allows you to choose whether
to abort or continue.

1.43 bufsize

sc_util 39 / 57

bufsize <number>
sets the I/O buffer size for slink. By default, slink buffers all
object modules. Buffering requires more memory but reduces the
time required to link your program. If you run out of memory
while linking, try linking with bufsize 4096. This specification
tells slink to buffer only one file at a time and to use a buffer
size of 4096 bytes.

1.44 chip

chip
specifies that all hunks are to be placed in chip memory
regardless of the input object hunk specifications. However, if
you specify fast or chip for the datamem, codemem, or bssmem
compiler options, that value overrides this option.

The chip option is provided for compatibility with previous
versions of the linker. It is recommended that you use the
datamem, codemem, and bssmem compiler options instead.

1.45 define

define <symbol[=value]>
defines a symbol to be used in the linking process. You can use
this option with the prelink option to force specific routines
from the libraries to be linked into your program even though
your program does not contain any references to the routines.

Remember that linker symbols have an extra underscore added to
the beginning of the symbol name. To refer to a function foo
using the define option, you must specify _foo. To refer to
registerized functions, add an at (@) sign to the beginning of
the symbol name, as in @foo.

NOTE: Do not confuse this option with the define compiler
option.

1.46 fancy

fancy
enters control characters to highlight and bold headings in the
map file. The option is on by default. To disable the use of
these control characters, specify the plain option. fancy is
ignored if you do not specify the map option.

1.47 fast

sc_util 40 / 57

fast
specifies that all hunks are to be placed in fast or expansion
memory regardless of the input object hunk specifications.
However, if you specify fast or chip for the datamem, codemem, or
bssmem compiler options, that value overrides this option.

The fast option is provided for compatibility with previous
versions of the linker. It is recommended that you use the
datamem, codemem, and bssmem compiler options instead.

1.48 faster

faster
is included only for compatibility with the Commodore linker,
alink.

1.49 from

from <object-filename(s)>
identifies the object files that are the primary input to the
linker. You can specify the from option as many times as
necessary in the slink command. If you specify the object files
as the first items in the slink command, you do not need to use
the from option. The root option is a synonym for this option.

The object files are copied to the root of the object module.
You must specify at least one object file in the slink command.

1.50 fwidth

fwidth <number>
specifies the filename width, in columns, in the map file. The
default value is 16. This option is ignored if you do not
specify the map option.

1.51 height

height <number>
specifies the total number of lines on a page in a map file. If
you specify 0, the linker does not add form feed characters to
the file. The default value is 55. This option is ignored if you
do not specify the map option.

sc_util 41 / 57

1.52 hwidth

hwidth <number>
specifies the hunk name field width, in columns, in the map file.
The default value is 8. This option is ignored if you do not
specify the map option.

1.53 indent

indent <number>
specifies the number of columns to indent on a line in the map
file. The map file is indented n columns from the value
specified by the width option. The default value is 0. This
option is ignored if you do not specify the map option.

1.54 libfd

libfd <filename>
specifies the name of a function description (.fd) file. Use
this option only if you are building a shared library.

For information on creating shared libraries, refer to SAS/C
Development System Library Reference.

1.55 libprefix

libprefix <prefix>
specifies the prefix you want added to the functions listed in
the function description (.fd) file. The default prefix is an
underscore (_). Use this option only if you are building a
shared library. The libprefix option allows the library to call
entry points within itself, without using the library base.

Make sure that the function declarations in your source code
match the full name, including any specified prefix. For
example, suppose your library has a function called myfunc. Your
.fd file contains the following line:

myfunc(a)(d0)

If you specify a prefix of _LIB, you should declare the function
in your source code as LIBmyfunc, as shown in the following
example:

#pragma mylibbase myfunc 1e 001

__asm LIBmyfunc(register __d int a)
{

return a+1;

sc_util 42 / 57

}

void test(void)
{

LIBmyfunc(1); /* Call myfunc directly. */
myfunc(2); /* Call myfunc through the library base. */

}

For information on creating shared libraries, refer to SAS/C
Development System Library Reference.

1.56 library

library <link-library-filename(s)>
specifies the library files that you want the linker to search
for modules referenced in your code. Only referenced modules from
library files are included in the final executable module. You
can abbreviate this option as lib.

1.57 librevision

librevision <number>
specifies a minor revision number of the library you are
creating. If you do not specify a revision number, it defaults
to 0. Use this option only if you are building a shared library.

For information on creating shared libraries, refer to SAS/C
Development System Library Reference.

1.58 libversion

libversion <number>
sets the version number of the library you are creating. You can
set the version number to any number from 0 to 255. The default
is 1. Use this option only if you are building a shared library.

For information on creating shared libraries, refer to SAS/C
Development System Library Reference.

1.59 map

map <[mapfile[map-option[,] map-option...]]>
tells slink to create a map file. The map file contains
information on the size and location of all hunks and the value
of all symbols.

sc_util 43 / 57

If you do not specify a mapfile, the linker writes the map
information to the file executable.map. If you specify a
mapfile, you can also specify the following map file options:

f lists the hunks in each file
h lists hunks by size and originating function
l lists hunks by library function
o lists hunks in each overlay
s lists where symbols are defined
x creates a symbol cross-reference that lists where the

symbols are defined and their definition.

1.60 maxhunk

maxhunk <n>
limits to n bytes the size of the hunks that slink creates when
merging hunks. By default, there is no limit on hunk size.

1.61 newocv

newocv
This option tells slink to use the new overlay manager. The new
overlay manager will allow you to call registerized parameter
functions across overlays. The name of the new overlay manager
is @ovlyMgr. The old overlay manager is called _ovlyMgr.

1.62 noalvs

noalvs
issues warning messages if slink generates an automatic link
vector (ALV) instruction to resolve 16-bit program
counter-relative references. Using this option stops slink from
creating a non-relocatable module from what was intended to be
relocatable code.

1.63 nodebug

nodebug
is included for compatibility with previous releases of the
linker. Use the stripdebug option instead. You can abbreviate
this option as nd.

1.64 noicons

sc_util 44 / 57

noicons
prevents the linker from creating icons for the files that it
creates.

1.65 onedata

onedata
tells the linker to merge all data, bss, and chip sections.
Merging hunks may decrease the time required to load your program
but may produce larger hunks that are difficult to scatter load.

1.66 overlay

overlay
identifies the start of an overlay tree. You should enter the
overlay option and the list of files in each overlay in a with
file, as follows:

overlay
overlay-1-filename(s)

*overlay-2-filename(s)
.
.
.
#
You must terminate the overlay tree with a line consisting of a
single pound (#) sign. For more information, see " Using
Overlays," later in this chapter. See also the description of
the with option.

1.67 ovlymgr

ovlymgr <filename>
tells slink to use the filename you specify as the overlay
manager instead of the default filename, ovs.o, which is
contained in the libraries. The file you specify should consist
of a single code hunk named NTRYHUNK and define the global symbol
_ovlyMgr.

1.68 prelink

prelink
tells slink to produce an object module with symbol references
and definitions still intact. You can then link with this object
module to produce an executable module. This option is useful if
you are developing a large application and changing only a single
source module. Do not specify this option if you are using
overlays.

sc_util 45 / 57

1.69 plain

plain
turns off the fancy option. This option tells the linker not to
enter control characters for highlighting and bold in the map
file. This option is ignored if you do not specify the map
option.

1.70 pwidth

pwidth <number>
specifies the width of program unit name field in the map file.
The default value is 8. This option is ignored if you do not
specify the map option.

1.71 quiet

quiet
suppresses all linker messages except error messages.

1.72 root

root <object-filename(s)>
specifies the object files that are the primary input to the
linker. These object files are always copied to the root of the
object module. You must specify at least one object file for the
root. If the primary input files appear as the first option to
slink, then the root keyword is optional and may be omitted. The
from option is a synonym for root. You can specify the root
option more than once. The files you specify with root are added
to the list of files to be linked.

1.73 swidth

swidth <number>
specifies the width of the symbol names field in the map file.
Default value is 8. This option is ignored if you do not specify
the map option.

1.74 smallcode

smallcode
tells the linker to merge all code hunks. You can abbreviate
this option as sc.

sc_util 46 / 57

1.75 smalldata

smalldata
tells the linker to merge all data and bss sections. Merging
hunks may decrease the time required to load your program, but
may produce larger hunks that are difficult to scatter load. You
can abbreviate this option as sd. The smalldata option does not
merge chip data with non-chip data. To merge chip data also,
specify the onedata option instead.

1.76 stripdebug

stripdebug
suppresses any H_DEBUG and H_SYMBOL debug information in the
final executable file.

1.77 to

to <filename>
specifies the name of the final executable module. If you do not
specify the to option and you specify one filename on the slink
command line, slink will use that filename (without the file
extension) as the object module name. If you specify more than
one filename, slink assumes that the first filename is the name
of a startup module and will use the second filename as the
object filename.

1.78 verbose

verbose
prints the names of each file as the file is processed.

1.79 verify

verify <filename>
specifies a file to which you want the linker to write all
messages. If you do not specify the verify option, the linker
writes all messages to stdout. You can abbreviate this option as
ver.

1.80 width

width <number>
sets the maximum line length for the map and cross reference
listing files. The default value is 80. This option is ignored if
you do not specify the map option.

sc_util 47 / 57

1.81 with

with <filename>
specifies a file containing slink options. The linker processes
the contents of with files as if you had specified the option in
the slink command. You can specify the with option as many times
as necessary. Also, you can enter with options in a with file.

The following is an example with file.

from lib:c.o vt100.o init.o window.o xmodem.o remote.o
kermit.o script.o

library lib:sc.lib lib:amiga.lib
verbose
smallcode
smalldata
to vt100

NOTE: Do not confuse this option with the with compiler option.

1.82 xref

xref <filename>
specifies a file to which you want the linker to write cross
reference information. If you do not specify xref, but you
specify the map option, the linker writes the cross reference
information in the map file.

NOTE: Do not confuse this option with the xref compiler option.

1.83 smake

smake - Maintains and updates records of file dependencies

Synopsis

smake [options] [macro-definitions] [targets]

Description

The smake utility is a tool that you can use to maintain projects that
are composed of many files. A file can be C source code, a data file
for a graphics or audio, or perhaps a spreadsheet file. For example,
you may have a project that consists of 50 files, and several
programmers may be responsible for different files. To manage this
project, you need to keep track of which files have been changed and
which files must be compiled before other files (that is, which files
are dependent on other files). You can use smake to keep track of file
dependencies, recompile and relink any files that have been updated,
and produce new product files.

In other words, smake determines if any of the source files have

sc_util 48 / 57

changed since the last version of the product file was generated and,
if so, generates a new product file.

To use smake, you create a smakefile that identifies dependent files
and target files and describes the actions required to produce a new
product. A basic description of these terms follows:

> target file

is any file that is created or updated by smake. Producing this
file may require creating or updating several intermediate files.

> dependent file

is a file that must be created or updated before a target file can
be updated. A dependent file can be a source code file, header
file, or object code file. In other words, if a dependent file is
changed (for example, by editing), then the target file must be
rebuilt.

> actions

are the commands necessary to update each dependent and target
file. Actions can be calls to the compiler or linker or basic
housekeeping commands.

> smakefile

is a file that identifies every dependent file required to create
the target file and describes every action required to update or
create the dependent and target files.

NOTE: You can use the mkmk utility to generate smakefiles.

When you run smake, it re-creates only the first target file specified
in the smakefile (unless you specify an alternate target as described
in "Using Alternate Targets," later in this section) and, if necessary,
any dependent files needed to re-create the target file. Specifically,
smake performs the following actions:

> locates and identifies the target file.

By default, smake remakes the first target file specified in the
smakefile. You can specify an alternate target as described under
"Using Alternate Targets," later in this section.

> ensures that any file on which the target file depends already
exists and is up to date.

To determine when dependent files were last modified, smake looks
at the time stamp of the file. A file is considered current if it
has a time stamp later than that of any of its dependent files.

NOTE: Before using smake, make sure that your system clock is
accurate, using the date command if appropriate.

sc_util 49 / 57

An example of the date command under AmigaDOS follows:

date 12-Aug-92 16:34:57

You must enter the time using 24-hour clock notation. Enter
the month as a three-character field.

> Re-creates the target file if any of the dependent files have been
modified more recently than the target file.

For details on creating a smakefile, please see your manual.

Running smake

You can run smake from the Workbench or from the CLI.

To run smake from the Workbench, double-click on the Build icon. smake
looks for the smakefile in your current directory. The default file
names that smake looks for, in the order in which it looks for them,
are as follows:

smakefile

smakefile.smk

lmkfile

lmkfile.lmk

makefile

To use a different smakefile name, specify the -f option as described
later in the "smake options" section. To specify options, define
macros, or specify alternate targets for the Build icon, select the
Build icon, choose Information from the Icons menu, and add the
necessary parameters in the Tool Types box.

When running smake from the Workbench, the search order of files is
based on the smake_files: assignment.

You can create the assignment using the following command (from the
CLI):

assign smake_files: your-smake-file-location

When no assignment has been made, smake searches the current directory
for the required files.

To run smake from the CLI, enter the smake command as follows:

smake [options] [macro definitions] [targets]

As with the Build icon, smake looks for one of the three default
smakefile names in your current directory. To use a different
smakefile name, specify the -f option as described in the smake
options.

sc_util 50 / 57

See Also
smake options

1.84 smake options

-a

rebuilds all targets and subtargets without regard to time stamps.

-bfile

uses the .def file you specify instead of the default file smake.def.

-c

tells smake to record everything it would have done if it had executed
the command you entered. When you specify the -c option, smake does
not execute the command you enter. Instead, it creates a batch file
containing all the instructions it would have executed if you had not
specified the -c option. This file is named smakefile.bat in the
current directory, and you can run it by entering the following on the
command line:

execute smakefile.bat

-d

prints detailed debugging information about the processing of the
smakefile.

-e

erases any out-of-date targets before remaking them.

-f<file>

uses the filename you specify as the input smakefile. smake attempts
to locate the file with the exact name you have specified. If this
search is unsuccessful, smake searches for a file with the name you
specified plus an extension of .smake.

-h

prints help information and then exits.

-i

ignores errors caused by executing the actions. Both the -k and -i
actions should be used with caution because smake will continue
running. The -k option incorporates all of the functionality of the -i
option.

-k

ignores error returns from actions passed to AmigaDOS and from smake

sc_util 51 / 57

not knowing how to make certain targets. Both the -k and -i actions
should be used with caution because smake will continue running. The
-k option incorporates all of the functionality of the -i option.

-n

displays the actions smake would have taken, but smake does not execute
these actions.

-p

prints target descriptions and expanded macros.

-q

determines if the target file is current. smake prints a 1 if the
target is current or a 0 if it is not. smake will not execute any
actions.

-s

does not echo actions to the screen before executing them.

-t

touches the target files by updating them with the current system time.
smake does not execute any of the actions associated with these
targets.

-u

rebuilds unconditionally all targets and subtargets without regard to
time stamps.

-w

forces smake to act as if it was invoked from Workbench.

-x

is for UNIX compatibility. If you specify this option, smake attempts
to detect any features of the smakefile that would prevent it from
working correctly with the UNIX make utility.

1.85 smfind

smfind - Finds strings in text files

smfind <pattern> <file> [file]. . .

Description

The smfind utility helps you find character strings in your
source code. smfind uses the grep utility to locate the
character string you specify in the files that you specify, and

sc_util 52 / 57

it displays each occurrence of the character string using the
message browser (scmsg). You can then double-click on one or
more occurrences of the character string, and scmsg will open the
appropriate file at the correct location.

You can run smfind from the Shell or the Workbench.

If smfind finds any matches in the files that you specify, it
invokes scmsg and sends all occurrences to scmsg. You can then
double-click on each occurrence to move to that file and line
number.

1.86 spatch

spatch - Applies patches to files

Synopsis

spatch [options] <oldfile>

Description

The spatch utility applies patches to files. A patch file is a
binary file that describes the differences between an existing
file and a new version of that file. You can use the scompare
utility to generate patch files.

<oldfile> is the name of the file to be patched.

spatch supports the following options:

-o<out-filename>
is the name of the generated patched file. If you do not
specify the -p option, spatch looks for the file oldfile.new
in the current directory.

-p<patchfile>
is the name of the patch file generated by the scompare
utility. The default file is oldfile.pch in the current
directory.

NOTE: You cannot distribute copies of scompare or any other
utility, except spatch, that is included in the SAS/C
Development System. The patch file that you create using
scompare and the spatch utility are both freely
redistributable.

1.87 splat

splat - Searches for and replaces patterns that match regular expressions

Synopsis

sc_util 53 / 57

splat [options] <pattern> <string> <file> . . .

Description

splat replaces all occurrences of pattern with string in each file that
you specify. splat does not overwrite the original version of the file
unless you specify the -o option. If you do not redirect the output by
specifying a greater than (>) sign followed by a destination, splat
places the changed file in either a temporary file or, if you use the
-d option, in the specified directory. splat uses the same root
filename with an extension of .$$$.

You must use the rules recognized by grep for specifying the pattern
and string. For example, to specify a string that contains spaces, you
must enclose the string in double quotes. For additional information,
see the description of the grep utility earlier in this chapter.

See Also

splat options

1.88 splat options

-ddirectory

specifies the directory where you want splat to place the new files.
Using this option leaves the original versions untouched. If the
specified directory does not exist, splat attempts to create it. If
the attempt fails, splat displays an error message. The -o and -d
options are mutually exclusive.

-o

tells splat to overwrite the original version of the file with the new
version. The -o and -d options are mutually exclusive.

-s

displays the name of the file on which splat is currently working. It
also displays a message saying that no substitutions have been
performed if it was unable to find the specified pattern in the file.
If you do not specify -s, splat performs its task silently.

-v

displays all lines in which substitutions are made, but it does not
create new versions of the files. You can use this option to determine
the changes that splat will make to your files.

1.89 sprof

sc_util 54 / 57

sprof - Determines the time a program spends in each function

Synopsis

sprof [report n] [program [program-options]]

Description

The sprof utility tells you how much time your program spends
executing each function and how many times each was called. In
other words, it profiles your code. Profiling tells you where
your code spends most of its time. You can use this information
to identify areas of your program where efficiency can be
improved. sprof has these advantages over the other SAS/C
profiler, lprof:

> sprof tells you exactly how much time was spent in each
function.

> sprof tells you how many times each function was called.

> sprof filters out the time spent waiting for the user, if you
use the appropriate calls to PROFILE_ON and PROFILE_OFF.
These macros are described below.

> You can use sprof from a library, device, file system, task,
the Workbench, or any other way of invoking an application on
the Amiga.

This utility works under AmigaDOS version 2.0 or later. It does
not work under AmigaDOS version 1.3.

The report option tells sprof to produce intermediate reports on
the status of the program. The parameter n is an integer that
specifies the number of seconds between reports. You can also
get a report at any time by sending a Control-F signal to the
sprof process. If you invoked sprof from the Shell, type
Control-F in the Shell in which sprof is running. If you invoked
sprof from the Workbench, there is no easy way to send a
Control-F to sprof.

To use the profiler, you must first compile your program with the
profile option.

You can run sprof from either the command line or the Workbench.

1.90 guiprof

guiprof - Illustrates time a program spends in each function

Synopsis

guiprof <prof options> [program [program options]]

sc_util 55 / 57

Description

Similar to sprof, the guiprof utility tells you how much time
your program spends executing each function and how many times
each was called. Unlike sprof, however, guiprof displays this
information as a dynamic histogram. You can use this
information to identify areas of your program where efficiency
can be improved. guiprof works the same way as sprof, by
using special compiler-generated hooks in the entry and exit
code for each function. For more information on using guiprof,
see the READ.ME file in the directory SC:EXTRAS/GUIPROF.

To use the profiler, you must first compile your program with the
profile option.

You can run guiprof from either the command line or the Workbench.

1.91 tb

tb - Displays traceback information

Synopsis

tb [>destination] [options] [tbfile [program]]

Description

The tb utility processes the traceback file that is created when you
link your program with catch.o and your program terminates abnormally.
To get traceback information for your program, you must link your
program with catch.o. If your program terminates abnormally, catch.o
creates a standard IFF format file named Snapshot.TB in your current
directory. This file contains up to six sections:

symbol cross reference
stack
registers
environment
memory
user data.

Each section contains information about your program at the time it
terminated. (Two sections, memory and user data, may not be available
for your program.) tb displays the traceback information on the screen
unless you redirect it by specifying a greater than (>) sign followed
by a destination. If you do not specify any options, tb displays only
the current stack frame, which indicates the location where the program
terminated. By specifying options, you can print all of the sections
in the traceback file.

By default, tb looks for the traceback file Snapshot.TB in your current
directory. If you want tb to use a different traceback file, specify
the traceback file as the tbfile parameter.

The program parameter specifies the program from which you want tb to

sc_util 56 / 57

read debugging information. If you do not specify program, this
utility uses the program specified in the traceback file.

NOTE: Specifying a program is useful when you have two executables of
your program: one created with debugging information and another
without debugging information. The version without debugging
information loads faster, but you still have access to the
traceback information if your program crashes.

See Also
tb options

1.92 tb options

-l

displays all sections present in the traceback file

-x

displays the location of all symbols encountered in the program

-s

displays the contents of the entire stack at the time your program
terminated

-r

displays the current contents of registers at the time your program
terminated

-v

displays the callback chain and the location where the program
terminated

-m

displays the amount of memory available at the time your program
terminated (if present in Snapshot.TB)

-u

displays any user data generated by your program (if present in
Snapshot.TB).

1.93 HELP

You have reached this Help window by either clicking on the Help
button or by hitting the Help key within the SAS/C Help utility.
Unlike other help topics present in the SAS/C Help utility, the Help

sc_util 57 / 57

help topic opens its own window. You must close this window by
clicking on the close gadget or hitting escape before returning to
the SAS/C help utility. You cannot hit the Retrace button to return.

To quit the SAS/C Help utility, select Quit from the Project menu or
click on the close gadget. You may also hit escape.

Most help screens will display one or more buttons as part of the text.
Clicking on these buttons will provide further information on the topic
listed on the button. You can also reach these help topics through the
main Contents screen or one of its sub-screens.

In addition, double-clicking in the help window will bring up a help
screen for the word under the mouse cursor, if such a help screen
exists.

While in the SAS/C Help utility, you may retrace your steps through the
help screens you have selected by clicking on the Retrace button.

The Browse buttons will move you forward and backwards between help
screens. The help screens are usually arranged alphabetically by
command or topic.

	sc_util
	sc_util.guide
	cpr
	cpr options
	cprk
	cprx
	cprx commands
	cprx options
	cover
	cover options
	demangle
	diff
	diff options
	diff error messages
	grep
	grep options
	grep error messages
	gst
	gst options
	gst error messages
	hypergst
	hypergst error messages
	lctosc
	lprof
	lstat
	lstat options
	mkmk
	omd
	oml
	oml commands
	oml options
	sc
	sc5
	scmsg
	scmsg arexx commands
	scmsg options
	scompare
	scopts
	scsetup
	slink
	slink options
	addsym
	batch
	bufsize
	chip
	define
	fancy
	fast
	faster
	from
	fwidth
	height
	hwidth
	indent
	libfd
	libprefix
	library
	librevision
	libversion
	map
	maxhunk
	newocv
	noalvs
	nodebug
	noicons
	onedata
	overlay
	ovlymgr
	prelink
	plain
	pwidth
	quiet
	root
	swidth
	smallcode
	smalldata
	stripdebug
	to
	verbose
	verify
	width
	with
	xref
	smake
	smake options
	smfind
	spatch
	splat
	splat options
	sprof
	guiprof
	tb
	tb options
	HELP

