
cpr

cpr ii

COLLABORATORS

TITLE :

cpr

ACTION NAME DATE SIGNATURE

WRITTEN BY March 28, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

cpr iii

Contents

1 cpr 1

1.1 CPR Help . 1

1.2 parameter types . 1

1.3 ADDRESS . 2

1.4 ARRAY-SLICE . 2

1.5 EXPRESSION . 3

1.6 ITEMSIZE . 4

1.7 LOCATION . 4

1.8 NUMBER . 6

1.9 RANGE . 6

1.10 REGISTER . 7

1.11 STRING . 7

1.12 SUBRANGE . 8

1.13 TASK-ADDRESS . 9

1.14 TASK-NAME . 9

1.15 TYPE . 9

1.16 VARIABLE . 10

1.17 builtin function parameters . 11

1.18 Activate . 11

1.19 ALias . 12

1.20 ARgs . 13

1.21 BClear . 13

1.22 BDisable . 14

1.23 BEnable . 15

1.24 BList . 15

1.25 Break . 16

1.26 Call . 19

1.27 CAtch . 20

1.28 DEActivate . 21

1.29 DEFine . 22

cpr iv

1.30 DETach . 22

1.31 Display . 23

1.32 DUmp . 25

1.33 DZero . 27

1.34 ECho . 28

1.35 ENV . 28

1.36 EXecute . 30

1.37 EXPAND . 31

1.38 FINish . 32

1.39 FRegister . 32

1.40 Go . 33

1.41 HELP . 35

1.42 HUnks . 35

1.43 Jump . 36

1.44 List . 37

1.45 listsym . 38

1.46 LOg . 39

1.47 modules . 40

1.48 OPt . 41

1.49 Proceed . 46

1.50 PS . 46

1.51 Quit . 47

1.52 Register . 48

1.53 REStart . 49

1.54 RETurn . 49

1.55 RFlag . 50

1.56 SEArch . 51

1.57 SEt . 52

1.58 SLEep . 53

1.59 show . 53

1.60 SOurce . 54

1.61 STArt . 55

1.62 SYMBol . 56

1.63 SYMload . 56

1.64 TAsks . 58

1.65 Trace . 59

1.66 TS . 60

1.67 UNAlias . 60

1.68 Unassemble . 61

cpr v

1.69 UNDefine . 62

1.70 Watch . 62

1.71 WBreak . 63

1.72 WClear . 64

1.73 WDisable . 65

1.74 WEnable . 65

1.75 WHAtis . 66

1.76 WHEre . 67

1.77 WIndow . 68

1.78 WList . 69

1.79 WMSG . 69

1.80 MEMCMP . 70

1.81 MEMCPY . 70

1.82 MEMMOVE . 71

1.83 MEMSET . 72

1.84 STRCAT . 72

1.85 STRCMP . 73

1.86 STRCPY . 74

1.87 STRLEN . 74

1.88 HELP . 75

1.89 getting around . 75

1.90 ORGANIZATION . 75

cpr 1 / 76

Chapter 1

cpr

1.1 CPR Help

CPR Commands and Builtin-Functions
Activate ALias ARgs BClear
BDisable BEnable BList Break
Call CAtch DEActivate DEFine
DETach Display DUmp DZero
ECho ENV EXecute EXPAND
FINish FRegister Go Help
HUnks Jump ListSym List
LOg MEMCMP MEMCPY MEMMOVE
MEMSET Modules OPt Proceed
PS Quit Register REStart
RETurn RFlag SEArch SEt
SHow SLEep SOurce STArt
STRCAT STRCMP STRCPY STRLEN
SYMBol SYMload TAsks Trace
TS UNAlias Unassemble Watch
WBreak WClear WDisable WEnable
WHAtis WHEre WIndow WList
WMSG

Parameter Types Common Problems

1.2 parameter types

Array-Slice
Address
Expression
Itemsize
Location
Number
Range
Register
String
Subrange
Task-Address

cpr 2 / 76

Task-Name
Type
Variable

Builtin Function Parameters

1.3 ADDRESS

An address parameter is any expression that denotes an address. The
expression can be any of the following:

> a hexadecimal constant
> a C pointer variable
> a register
> the result of prefixing & to a C identifier of the correct

type (not a bitfield or register identifier)
> the result of arithmetic calculations on other addresses
> any C expression that evaluates to a pointer type.

The following list shows expression that denote addresses. In these
expressions, p is a pointer, and i and x are integers.

&i
(&i + 8)
&array[3]
&mystruct - x
p
0x00C85400
a0
(a0 + 0x22)
__this
myclass::memberfunc

In some cases, a register name may be ambiguous. For example, you
may have defined a variable sp in your program. In the following
command, CodeProbe cannot tell whether you want to dump data
beginning at the variable sp or at the address contained in the
register SP:

db sp

In these cases, the debugger assumes that you are referring to to
the variable sp. However, you can prefix the register name with a
dollar sign ($) or use the register command to examine the value of
the SP register even if you have declared a variable named sp.

In some commands, it is necessary to specify the type of an object
to be modified or displayed. If the object is referred to using an
address constant or register, the value is assumed to be a character
pointer (char *).

1.4 ARRAY-SLICE

cpr 3 / 76

An array-slice parameter is one of the following:

> a contiguous section of a unidimensional array of scalar
variables

> an ordered selection of elements from a multidimensional array

> an ordered selection of members from an array of complex
types.

You can use an array-slice anywhere an array is valid. You can
specify an array-slice in either of the following formats:

variable [n..m]
variable [*]

NOTE: The inner brackets do not denote optional parameters and must
be entered as shown if you want to specify index numbers or
the asterisk (*).

The advantage of using an array-slice parameter over a range
parameter (described later in this chapter) is that the array-slice
can be used to select isolated subcomponents, such as a particular
structure member from an array of structures. The array-slice
parameter can also be nested for multidimensional arrays or
structure members that are arrays themselves.

If you specify a subrange (as described later in this chapter) as
the index of an array-slice, those elements within the subrange are
selected. The asterisk (*) index specifies that all elements of the
array are to be contained in the array-slice. The following are
examples of the array-slice parameter:

a[3..7]
matrix[i..j][1..3]
b[*]
a[3..6]->b

1.5 EXPRESSION

Any C expression is accepted as an expression parameter, except
those that use one or more of the following operators:

++ or --
,
?:
=
&=
|=
>>=
<<=
+=
-=

*=

cpr 4 / 76

/=
%=
^=

C++ expressions are not supported, so you cannot use overloaded
operators in an expression in a debugger command.

The following are valid expressions:

a[i*8]
p->d[5]+f(3)

1.6 ITEMSIZE

ITEMSIZE is an optional parameter that controls the length of each item
dumped by the DUMP command. ITEMSIZE can have a value of 1, 2, 4,
or 8. ITEMSIZE is concatenated onto the end of the format parameter
(for example, b4 for a binary format of length 4). If you do not specify
ITEMSIZE, CodeProbe uses a default. As shown in the following table, the
allowable size and default values depend on the format specified.

ITEMSIZE has the following default values and allowable sizes:

Format Default Allowed Sizes
------ ------- -------------
ascii 1 1
binary 1 1, 2, 4
decimal 4 1, 2, 4
FFPfloat 4 4
float 8 4, 8
hex 4 1, 2, 4
IEEEfloat 8 4, 8
octal 4 1, 2, 4
unsigned 4 1, 2, 4

1.7 LOCATION

A location parameter specifies a place in the code at which a
breakpoint is to be set, code is to be unassembled, or a similar
action is to be performed. When debugging in source mode, a location
parameter is a line number in a source file or a function entry
point. When debugging in assembly mode, you may want to place
breakpoints at specific addresses. To do this, use a hexadecimal
address as the location parameter.

You can specify a location parameter as follows:

$
specifies the current location in the current executable, module,
and function.

hex-address

cpr 5 / 76

can be any valid absolute address specified as a hexadecimal
integer.

[[executable-name:][\module\] function] [line]
can identify any location in any executable. The values for
executable-name, module, and function can be specified explicitly
as follows:

executable-name:
is the name of the executable image (the program, library,
or device) containing the location. It is usually
specified in lowercase. In a program with only one
executable image, you do not need to specify an
executable-name:. If you specify an executable image,
follow the name with a colon (:). The default executable
image is the current executable.

\module\
is the name of the C source file compiled to yield the
specified function. If you specify a module name, follow
the name with a backslash (\).

function
is the name of a function in the application. For C++, the
function can be a member function, operator, constructor,
or destructor, but you need to precede the function name
with the name of the class for which the function is
defined, as follows: p myclass::function
myclass::operatorx myclass::myclass myclass::~myclass

line
can be any of the following:

integer
a line number, relative to the start of the C source
file containing the function.

$
the current location.

e[ntry]
the entry to the function (prolog).

r[eturn]
the return from the function (epilog).

You must enter a space before the line parameter. All other spaces
and tabs are ignored. If you do not specify the name of an
executable, module, and/or function, the debugger uses the names
from the current environment. (For more information, see the
description of the env command in Chapter 9.) If you specify a
function name but do not specify a line, the debugger uses the the
first execution line of the specified function.

The following are examples of locations:

cpr 6 / 76

main
test.c\main
myprog:test.c\main
example.device:\serial.c\cmd_handler 70
myclass::myfunc
myclass::operator+
mycxxprog:myclass::myfunc 12

1.8 NUMBER

A number parameter is a number in decimal, octal, or hexadecimal
notation. If you begin the number with a 0 digit, the number is
interpreted as an octal number. If you begin the number with 0x or
0X, the number is interpreted as a hexadecimal number, and if you
begin the number with 0n or 0N, the number is interpreted as a
decimal number.

By default, the number is interpreted as a decimal number. You can
use the opt radix command to change the default.

The following examples show acceptable values for number parameters:

12345
0455
0x380
0X1849
0n12345

1.9 RANGE

A range parameter is a contiguous area of memory, and you can
specify a range in one of two ways:

start-address. . end-address

start-address l|L length

In the second form, the length is a number (as described earlier)
that indicates the number of elements, and the range is from the
start address through address + number -1. When the debugger sees a
solitary l or L in a command, it is considered part of a range
expression.

For example, the following pairs of ranges are equivalent:

0x123456 .. 0x123461
0x123456 L 11

&p[0] .. &p[5]
&p[0] l 6

cpr 7 / 76

p[0] .. p[5]
p[0] l 6

The following examples use the names of address registers:

a1 .. a2
a7 l 20

1.10 REGISTER

A register parameter refers to the name of any of the following
680x0 registers:

A0 - A7
are address registers. Register A7 functions as the stack
pointer and can be specified as either A7 or SP.

D0 - D7
are general-purpose registers.

PC
is the program counter.

SP
is the stack pointer.

SR
is the status register. It contains the CCR register as
well as the current processor status.

CCR
is the condition code register. It resides in the lower
byte of the status register, SR.

If a math coprocessor is present, the following registers also can
be specified as the register parameter:

FP0 - FP7
are the floating-point registers.

FCR
is the floating-point control register.

FSR
is the floating-point status register. It contains the
current floating-point condition codes.

In some cases, a register name may be ambiguous. See the
description of the address parameter, earlier in this chapter, for
more information.

1.11 STRING

cpr 8 / 76

A string parameter can be any standard C or C++ string in double
quotes ("):

"string"

You can continue a string onto the next line by ending the line with
a backslash (\). The debugger supports ANSI string concatenation:
two strings adjacent to each other will be combined into one longer
string.

In strings, the debugger supports the C escape sequences shown in
Table 1.5.

Escape Sequences in Character Strings and Character Contstants

Escape Sequence Meaning
--------------- ---------------------

\n newline (0x0a)
\t horizontal tab (0x09)
\b backspace (0x08)
\r carriage return (0x0d)
\f form feed (0x0c)
\v vertical tab (0x0b)
\NNN octal constant, where NNN are 3 octal digits
\xNN hex constant, where NN are 2 hexadecimal

digits

A backslash followed by any character other than those shown
previously is interpreted as a plain character. For example, \ is
a string consisting of a single backslash, and a\"b is three
characters long: an a, a double quote, and a b.

The Dialog window does not recognize any of these escape sequences
when they are displayed. You cannot use the \t escape sequence to
tab in the Dialog window. The escape sequences are useful in line
mode and when setting a character string.

1.12 SUBRANGE

A subrange parameter is a series of contiguous integers, inclusive
of its bounds. The integers may be either integer constants or
variables from the program being debugged. You can specify a
subrange parameter as follows:

[integer | variable] . . [integer | variable]

The following are examples of the subrange parameter:

3..7
i..j

cpr 9 / 76

1.13 TASK-ADDRESS

TASK-ADDRESS is the address of the executable for a task. TASK-ADDRESS
can be determined from the output of the TASKS command. The
following example is a partial listing of output from the "tasks all"
command. Note that TASK-ADDRESS is listed on the far left.

> tasks all
Address Type Pri State SigWait StackPtr Debug Name
003D2498 13 0 Running 00000100 003D1D4E Cpr
002BED58 13 0 Waiting 80001000 002BFC66 iprefs 37.8 (31.5.91)
0035E9E0 13 0 Waiting C0003000 00371B66 Background CLI
00287790 1 5 Waiting F0000000 00287736 console.device
00295498 13 10 Waiting 40000100 00295E5A DF2
0029DA98 13 10 Waiting 40000100 0029E45A Work

1.14 TASK-NAME

TASK-NAME is the name of a task. TASK-NAME can be determined from the
output of the TASKS command. The following example is a
partial listing of output from the "tasks all" command. Note that
TASK-NAME is listed on the far right.

> tasks all
Address Type Pri State SigWait StackPtr Debug Name
003D2498 13 0 Running 00000100 003D1D4E Cpr
002BED58 13 0 Waiting 80001000 002BFC66 iprefs 37.8 (31.5.91)
0035E9E0 13 0 Waiting C0003000 00371B66 Background CLI
00287790 1 5 Waiting F0000000 00287736 console.device
00295498 13 10 Waiting 40000100 00295E5A DF2
0029DA98 13 10 Waiting 40000100 0029E45A Work

1.15 TYPE

A type parameter can be any of the data types provided by the C
language, including:

char
unsigned char
short
unsigned short
int
unsigned int
long
unsigned long
unsigned
float
double
struct name
union name
enum name
class name

cpr 10 / 76

A type also can be any of these C types followed by some number of
asterisks indicating that the type is a pointer to the base object.

In addition, the type parameter can take any identifier defined by
means of a typedef statement if the debugging information for the
module supplies typedef information.

CodeProbe considers an int to be four bytes, regardless of whether
you compiled your program with the shortint option. Use short to
refer to objects declared int in code compiled with shortint.

1.16 VARIABLE

A variable parameter denotes a data object. The variable can be
either a simple identifier or an expression referring to an array
element, structure member, or object pointed to by a pointer. You
specify variables as follows:

[[executable-name:][\module\]function\]variable

See the location parameter earlier in this chapter for a description
of the executable-name, module, and function.

The following are valid examples of variable parameters:

i
max
array[3]
array
io:readfile\length
mystruct->name[2]
mystruct

*cptr
main.c\opnf\count
opnf\i
mylib.library:LIBmyfunc\myvar
myobject.mypublicmember
myobjectptr->mypublicmember
mycxxprog:myclass::myfunc\mylocalvar

In C programs, if you have more than one variable with the same
name, CodeProbe uses the variable that is in scope.

In C++ programs, a local variable in a member function and a data
member of the object that invoked the function can have the same
name. For example, if the variable name is myvar, you can display
the local variable with:

display myvar

To display the data member of the class that invokes the function,
use the object’s this pointer:

display __this->myvar

cpr 11 / 76

CodeProbe cannot display variables that have the same name as a
register but begin with a dollar sign such as $d5.

1.17 builtin function parameters

The parameters to CodeProbe’s built-in functions are a little more
flexible than the parameters to the C versions:

formal type actual parameter types allowed
----------- -------------------------------

void * constant, register, any pointer scalar,
array, function, address, string constant

char * constant, register, character pointer,
unsigned character pointer, character array,
string constant

int constant, register, any integral scalar,
bitfield, enumerated constant

Floating-point constants and registers are not allowed, and string
constants can only be specified as the source operand.

1.18 Activate

Activate -- Activates a task under debugger control

SYNOPSIS
a[ctivate] [task-name | task-address]

DESCRIPTION
The activate command activates a task that was deactivated by the
deactivate command. The task is activated when the next go, proceed, or
trace command is executed.

The task-name is the name of the task, and task-address is the
address of the task as specified by the tasks command. You can specify only
one of these parameters.

EXAMPLES
activate "Child"

activates the task named Child under debugger control.

activate 0x7D9F884
activates the task with a task block starting at address
0x7D9F884.

SEE ALSO
catch , deactivate , detach , tasks

cpr 12 / 76

1.19 ALias

ALias -- Define an alias for a debugger command

SYNOPSIS
al[ias] [name[definition]]

DESCRIPTION

If you do not specify any arguments, the alias command displays the
list of all currently defined aliases. If you specify a name as the
only argument, alias displays the definition for that name. Any
text following the name parameter is treated as a definition and is
used to define the alias.

For a complete description of aliases, see Chapter 2, "Customizing
the Debugging Environment."

EXAMPLES
alias

displays a list of all alias definitions.

alias foo
displays a definition of foo.

alias next proceed
defines next to be an alias for proceed.

alias pr display foo, bar, $*
defines pr to be an alias that executes the display command
printing the value of foo, bar, and any variables entered
after the pr.

alias doit {go $1; d foo}
defines doit to execute the go command using the first
parameter, and displays the variable named foo.

alias doit {go $1;\
d foo}

uses the backslash command to split a command across two
lines.

alias doit "go $1; d $2"
uses positional parameters with multiple commands. The first
parameter, $1, is passed to the go command, and the second
parameter, $2, is passed to the display command.

alias this display *__this
defines this to display the object pointed to by the this
pointer in C++ when CodeProbe is inside of a C++ member
function. The C++ this pointer points to the object that
invoked the member function.

SEE ALSO
DEFine , UNALias , UNDefine

cpr 13 / 76

1.20 ARgs

ARgs -- Displays the arguments to a function

SYNOPSIS
ar[gs] [function-name]

DESCRIPTION

The args command displays all of the argument names and values to
the current function or the function specified by the function-name
parameter. If you specify a function-name, the function must be in
the calling sequence, as displayed by the where command.

EXAMPLES
args

displays the arguments to the current function.

args sort
displays the arguments to the sort function.

args chessBoard::movePiece
displays the arguments to the C++ member function
chessBoard::movePiece.

SEE ALSO
Display , ENV , WHEre

1.21 BClear

bclear-Clears (deletes) one or more breakpoints

SYNOPSIS
bc[lear] integer [integer...]
bc[lear] *|l[ast]
bc[lear] integer..integer

DESCRIPTION

The bclear command clears (deletes) one or more breakpoints. When a
breakpoint is cleared, it ceases to exist and can be reinstated only
by issuing the break command again. To disable breakpoints
temporarily, use the bdisable command.

The integer parameter specifies the breakpoint number as displayed
by the blist command. You can specify as many breakpoint numbers as
needed. An asterisk clears all breakpoints, and last clears the
most recently set breakpoint. You can specify a range of
breakpoints with integer..integer.

EXAMPLES
bclear 2 5 6

cpr 14 / 76

clears the breakpoints numbered 2, 5, and 6.

bclear last
clears the last breakpoint set.

bclear *
clears all breakpoints.

bclear 4..7
clears breakpoints 4, 5, 6, and 7

bclear 3..4 last 9
clears breakpoints 3 and 4, the last breakpoint that was
set, and breakpoint 9.

SEE ALSO
BDisable , BEnable , BList , Break , WClear

1.22 BDisable

bdisable - Disables (turns off) one or more breakpoints

SYNOPSIS

bd[isable] integer [integer . . .]
bd[isable] *|l[ast]
bd[isable] integer..integer

DESCRIPTION

The bdisable command disables (turns off) one or more breakpoints.
When a breakpoint is disabled, it is not recognized by CodeProbe,
but it remains on the list of current breakpoints. To re-enable a
disabled breakpoint, use the benable command. To remove the
breakpoint from the list, use the bclear command.

The integer parameter specifies the breakpoint number as displayed
by the blist command. You can specify as many breakpoint numbers as
needed. An asterisk disables all breakpoints, and last disables the
most recently set breakpoint. You can specify a range of
breakpoints with integer..integer.

EXAMPLES
bdisable 2 5 6

disables the breakpoints numbered 2, 5, and 6.

bdisable last
disables the last breakpoint set.

bdisable *
disables all breakpoints.

bdisable 4..7
disables breakpoints 4, 5, 6, and 7.

cpr 15 / 76

bd 3..4 last 9
disables breakpoints 3 and 4, the last breakpoint that was
set, and breakpoint 9.

SEE ALSO
BClear , BEnable , BList , Break , WDisable

1.23 BEnable

benable - Enables (turns on) one or more breakpoints

SYNOPSIS

be[nable] integer [integer ...]
be[nable] *|l[ast]
be[nable] integer..integer

DESCRIPTION

The benable command enables (turns on) one or more breakpoints that
have been disabled by the bdisable command.

The integer parameter specifies the breakpoint number as displayed
by the blist command. You can specify as many breakpoint numbers as
needed. An asterisk enables all breakpoints, and last enables the
most recently set breakpoint. You can specify a range of
breakpoints with integer..integer.

EXAMPLES
benable 2 5 6

enables the breakpoints numbered 2, 5, and 6.

benable last
enables the last breakpoint set.

benable *
enables all breakpoints.

benable 4 .. 7
enables breakpoints 4, 5, 6, and 7.

be 3..4 last 9
enables breakpoints 3 and 4, the last breakpoint that was
set, and breakpoint 9.

SEE ALSO
BClear , BDisable , BList , Break , WEnable

1.24 BList

blist - Lists all breakpoints Synopsis

cpr 16 / 76

SYNOPSIS
bl[ist]

DESCRIPTION
The blist command displays one or more breakpoints. The integer
parameter specifies a breakpoint number. You specify one breakpoint
or a range of breakpoints. If you specify last, then blist displays
the last breakpoint set. If you specify an asterisk (*) or if you
do not specify any parameters, blist displays the list of all
breakpoints, as shown in the following example:

1 0x1CA8 example:\example.c\main 38 (1 hit)
after(3) when(i==4)

2 0x1E14 example:\example.c\initarr 62 (1 hit)
3* 0x1D70 example:\example.c\main 43
4 0x1DA4 example:\example.c\main 45

trace {echo Hi}

The numbers 1, 2, 3, and 4 are breakpoint numbers. You can use
these numbers to identify a specific breakpoint in the bclear,
bdisable, and benable commands.

If the breakpoint number is followed by an asterisk (as in
breakpoint number 3), the breakpoint is disabled and will not be
triggered until you enable it with the benable command. Following
the breakpoint number is the hexadecimal address at which the
breakpoint resides. If the executable module contains sufficient
debug information, the hexadecimal address is followed by the
location that it represents. For example, breakpoint 1 resides at
address 0x1CA8, which occurs at line 38 of the main program. The
hit count is the number of times that the breakpoint has been
triggered. If any options (such as after or trace) are associated
with the breakpoint, these commands are displayed on the line
following the breakpoint number and address.

SEE ALSO
BClear , BDisable , BEnable , Break , WList

1.25 Break

Break -- Sets a breakpoint

SYNOPSIS
b[reak] location [after(integer)] [when(expression)]

[tr[ace]][q[uiet]] [te[mp]] [{cmd-list}]

DESCRIPTION

The break command sets a breakpoint at a location specified by the
location parameter. You can use a dollar sign to specify the current
location.

If you specify a C++ overloaded function name as the location,
the debugger displays a requester that allows you to select

cpr 17 / 76

the function on which you want to set a breakpoint. You can click
on the function name or use the arrow and Return keys to select
a function.

When you are setting a breakpoint on a C++ member function or
operator member function, you must specify the class, followed by
two colons, and then the member function or operator member function
name.

The break command supports the following options:

after
specifies the minimum number of times the specified line
must be executed before the breakpoint is triggered. The
integer you specify with the after option is called the pass
count. Each time the breakpoint is hit, the pass count is
tested. If the pass count is greater than 1, the pass count
is decremented by 1, and execution continues. The
breakpoint is triggered when the pass count equals 1. For
example, if you specify a pass count of 5, the breakpoint is
triggered when the line is executed the 5th time. For break
commands that do not contain an after clause, the pass count
is set to 1. The blist command shows the current pass count
for each breakpoint.

when
specifies an expression that must evaluate to true (nonzero)
before the the breakpoint is triggered. You can specify the
after and when options in any order. If you specify both
options, the pass count is tested and decremented only if
the when condition is true.

trace
continues execution automatically after the breakpoint is
triggered, unless you reach the breakpoint by
single-stepping. If you reach the breakpoint by
single-stepping, then the the trace option has no effect.

quiet
suppresses the default message showing the location when the
breakpoint is triggered.

temp
deletes the breakpoint after it has been triggered.

{cmd-list}
specifies commands that you want the debugger to execute
each time the breakpoint is triggered. You can use the
backslash (\) to continue the command list onto more than
one line.

NOTE: To avoid confusion, the break command does not use the
default radix setting. You must specify 0x for an address;
otherwise, you will be specifying a line number. For example,
even if the radix is set to hex, the following command
specifies a break command for line 20 and not address 0x20:

cpr 18 / 76

b 20

A breakpoint is triggered when all of the following conditions are
true:

> execution has reached the address shown
> the when and after conditions, if specified, are true,
> the breakpoint is enabled.

CAUTION!!
Incorrect use of breakpoints may crash your machine.

A breakpoint is implemented by placing an illegal instruction
at the desired location. All tasks under the debugger’s
control have a trap handler that reports back to the debugger
when the illegal instruction is executed. If you must place a
breakpoint in shared code, such as a resident library under
test, be sure that any task that might open the library is
under debugger control. Never place breakpoints in libraries
that you do not control.

EXAMPLES
break $

sets a breakpoint at the current line.

b 14
sets a breakpoint at line 14 of the current module.

b sort
sets a breakpoint at the first line of the sort function.

break sort return
sets a breakpoint at the return from the sort function.

break \myfile.c\sort 14
sets a breakpoint at line 14 of sort in the module named
myfile.c.

break mylib.library:myfunc
sets a breakpoint at the first line of the myfunc function
in the shared library mylib.library.

b $ after(5)
breaks the fifth time the current line is executed.

break 0x804A
sets a breakpoint at the absolute address 0x804A.

break 14 when (i > 5) {di p L 16; b sort 26
when (i == 8); bl; go}

sets a breakpoint on line 14 that performs the commands
given inside the curly braces if i > 5 evaluates true.

b 8 trace quiet {d "i = ", i}
prints a message of the form "i = value " every time line 8
is executed.

cpr 19 / 76

break 100 temp {d foo}
stops at line 100, prints foo, and deletes this breakpoint.

break myclass::myfunc when(i == 5)
sets a breakpoint on the member function myfunc in class
myclass when i > 5 evaluates to true.

break myclass::operator+ and break myclass::+
set a breakpoint on operator + in myclass. Do not enter a
space between the keyword operator and the operator itself.

break myclass::myclass
sets a breakpoint on a constructor for myclass.

break myclass::~myclass
sets a breakpoint on a destructor for myclass.

SEE ALSO
BClear , BDisable , BEnable , BList , Go

1.26 Call

Call -- Evaluates an expression and discards the result

SYNOPSIS
c[all] expression

DESCRIPTION
The call command evaluates an expression and discards the result.
This command is useful when you do not care about the value returned
by an expression and is equivalent to the following statement in C
language:

expression ;

The most common use of the call command is to call a function in
your program, though function calls also may appear in arbitrary
expressions in other commands. For example, you may want to write a
function to display the contents of a complex structure and call
that function at various points during the execution of your
program.

If you want to see the value returned by an expression, use the
display command.

The debugger looks at the types of the parameters specified and not
at the definition of the function or any prototype. Thus, the
debugger does not flag an error if the wrong number of parameters
are specified, nor does it perform automatic casting of types or
allow passing of char, short, or float types. For example, the
following command passes two parameters, an int and a double,
regardless of how the function is declared:

call f(2, 1.5)

cpr 20 / 76

CodeProbe supports standard C syntax for function calls. Either a
function name or an expression evaluating to a function type may be
specified before the opening parenthesis. Thus, the call command
can be used only to call functions or evaluate expressions that
point to a function. For example, if pf is a function pointer, and
func is a function, the following commands are allowed:

call func()
call (*pf)()

However, the following commands are not allowed:

call pf()
call 0x134()
call register()

You cannot use the call command to execute a function after your
program has ended.

If a breakpoint is hit, a signal is caught, or the program
terminates in the middle of a function call, the debugger aborts the
expression and leaves you at that location. A warning is printed if
any parameters are not cleaned off the stack. This may cause a
return to an invalid location later if execution is allowed to
continue. If this happens, you should enter the restart command.

EXAMPLES
call status()

calls the status function.

call print("Test", 300)
calls the print function passing in a string and an integer
parameter.

call (*fp)(&arr[5], j+10, 3.0)
evaluates arbitrary expressions.

SEE ALSO
Display , ENV , WHEre

1.27 CAtch

catch - Places a task under debugger control Synopsis

SYNOPSIS
ca[tch] [\

DESCRIPTION
The catch command places a task under the debugger’s control
(catches a task). You can use this command to gain control of tasks
that were not started under the debugger. For example, you may find
that a process or task not started under the debugger is behaving in
an unpredictable or undesired manner. The task may be caught in an
infinite loop or waiting on some message port for a message that

cpr 21 / 76

will never come.

The task-name and address are the task and address as displayed by
the tasks all command.

If the task that you want to catch is a process, this command uses
the process structure to find the code segments associated with the
executable module. If you are running SegTracker and the task you
catch was launched after SegTracker, just enter symload, and
CodeProbe will automatically find the seglist. If you are not
running SegTracker, you must locate the task’s seglist yourself and
specify it on the symload command.

For more information on segment lists, see The AmigaDOS Manual, 3rd
Edition.

EXAMPLES
catch "Child"

catches the task named Child.

ca 0x7D9F884
catches the task with a task block starting address
0x7D9F884.

SEE ALSO
Activate , DEActivate , DETach , SYMload , TAsks

1.28 DEActivate

DEActivate -- Deactivate a task under debugger control

SYNOPSIS
dea[ctivate] [\

DESCRIPTION

Normally, the debugger starts all tasks under its control when you
enter a go or proceed command. You can use the deactivate command
to prevent a task from running, unless it is the current task. You
can reactivate the task with the activate command.

The task-name and address are the task name and address as displayed
by the tasks command.

EXAMPLES
dea "Child"

deactivates the task named Child that is running under
control of the debugger.

deactivate 0x7D9F884
deactivates the task with a task block starting at address
0x7D9F884.

SEE ALSO

cpr 22 / 76

Activate , CAtch , DETach , TAsks

1.29 DEFine

DEFine -- Defines a macro

SYNOPSIS

DESCRIPTION

The define command provides a general macro substitution facility
that is nearly identical to the mechanism provided by the C
preprocessor. Macros defined in the debugger are expanded anywhere
within a line of text except when

> the macro occurs inside quotes or filenames
> the macro is prefixed with a backtick character (‘).

The # sign is optional and allows the debugger to read C header
files (.h files) using the execute command.

The define command does not support the ANSI C # and ## operators.

EXAMPLES
define

displays all the macro definitions.

define foo
defines foo as a null definition.

def foo bar
defines foo to be bar.

define func(a,b) (a+b)
defines func with parameters.

SEE ALSO
ALias , UNALias , UNDefine

1.30 DETach

detach - Frees a task from debugger control

SYNOPSIS
det[ach] [\

DESCRIPTION
The detach command frees a task from debugger control.

You may want to allow one or more tasks spawned by a task under the
debugger to run freely and not under the control of CodeProbe. For
example, a task designed to respond to Intuition events may cause

cpr 23 / 76

the system to lock up if it does not respond to menu events quickly.
You may not want such a task to be stopped when other tasks hit a
breakpoint.

The task-name and address are the task name and address as displayed
by the tasks command.

To use the detach command, first set a breakpoint at the entry point
to the task. CodeProbe will hit this breakpoint when the task is
launched, which allows you to detach the task right away. When the
breakpoint is reached, use the tasks command to identify the address
or name of the task (you may know this based on your code). Then,
clear all the breakpoints in the task, including the breakpoint that
you set at the beginning of the task. The task will crash if it hits
a breakpoint after it has been detached. After you clear all the
breakpoints, enter the detach command with the task name or address.
Also, do not detach a program if any of its child processes continue
to run in the same code segment.

The detached task is not removed automatically when you quit the
debugger, and it can continue running even after you exit CodeProbe.
Since CodeProbe frees all of the memory containing the code used by
the detached task, the program will be executing in freed memory,
and it may crash. Make sure that the program runs to completion
before you quit the debugger.

If you later want to re-attach the task to the debugger, you can use
the catch command.

EXAMPLES
detach "Child"

detaches the task named Child from debugger control.

det 0xC08540
detaches the task with a task block starting at address
0xC08540.

SEE ALSO
Activate , CAtch , DEActivate , TAsks

1.31 Display

display - Displays the value of an expression Synopsis

SYNOPSIS
d[isplay] expression ["format"][, expression ["format"]]...
d[isplay] string [, string]...

DESCRIPTION
The display command evaluates the value of the expression parameter
and displays the result. The expression parameter can be any C
expression containing constants, variables, and function calls from
the program being debugged. Any number of expressions and strings
can be specified, separated by commas. All expressions are displayed
on the same line.

cpr 24 / 76

If you do not specify a format, the display command chooses the
default format based on the type of the expression. Values of type
char are displayed as characters as well as in decimal and
hexadecimal format. If the character is unprintable, it is
displayed as an escape sequence, for example, \n or \xAC. Values of
type int and long are displayed in decimal and hexadecimal format,
and floats and doubles are displayed in floating-point format.

To override the default format, you can specify printf format
containing conversion operators after each expression. No error
checking is done on the format parameter, so strange results are
possible. The format may contain up to two conversion operators for
short and long types but only one for all other types. Refer to the
description of the printf function in the SAS/C Development System
Library Reference for more information.

All members of structures, unions, and arrays are displayed using
the default formats. You can display partial arrays by specifying
the first and last elements to display For example, the following
command displays array elements 3, 4, and 5:

display a[3..5]

To display all elements in an array, use an asterisk (*).

The string parameter can be any standard C string in double quotes
as described in Chapter 1, "Getting Started."

To display a null-terminated string, use the dzero command. To dump
an area of memory, use the dump command.

EXAMPLES
display i

displays the variable i.

d a "a=%10.5e"
displays a using a printf style format specifier.

d p->d[5] + f(3)
displays the value of an expression containing a function call.

display "X is", x, "J is", j
displays the value of several arguments including strings.

d x "X is %d", j "J is %d"
displays the value of several arguments using printf style
format specifiers.

d a[3]
displays the value of an element of an array.

display a[3..5]
displays the value of elements 3 through 5 in an array named
a.

d a[*]

cpr 25 / 76

displays the value of every element of an array.

d myobject
displays the contents of the object myobject.

d myobjectptr
displays the address value of the object pointed to by the
object pointer myobjectptr.

d *myobjectptr
displays the C++ object pointed to by the object pointer
myobjectptr.

d myobject.mypublicmember
displays the contents of the public member, mypublicmember,
of the objectmyobject.

d myobjectptr->mypublicmember
displays the contents of the public member of the object
pointed to by the object pointer.

SEE ALSO
Call , DUmp , DZero

1.32 DUmp

dump - Dumps memory contents

SYNOPSIS
du[mp] [variable | address | range] [$]
[format [itemsize] | text]

DESCRIPTION
The dump command displays an area of memory. If you do not specify
any parameters, the dump command uses the same parameters that you
specified in the previous dump command (if any), but it displays
memory beginning where the previous dump command ended.

The variable, address, range, array-slice or $ parameter specifies
the memory to be displayed. If you use the l or L form of the
range, the range length is scaled by the itemsize. The $ specifies
the memory immediately following the last memory dumped when the
format or text parameters are used. The $ is ignored if a variable,
address, or range parameter has already been specified making it
useful for aliases where the dump address may be omitted.

The format parameter controls the format of the dump and
its value can be any of the following:

a[scii] FFP[float] IEEE[float]
b[inary] f[loat] o[ctal]
d[ecimal] h[ex] u[nsigned]

The default format is hex.

cpr 26 / 76

If you specify a format parameter, you also can specify an itemsize
parameter to control the length of each item dumped. The itemsize
parameter can have a value of 1, 2, 4, or 8. The itemsize parameter
is concatenated onto the end of the format parameter (for example,
b4 for a binary format of length 4). If you do not specify
itemsize, CodeProbe uses a default. As shown in the following table,
the allowable size and default values depend on the format
specified.

Format Default Allowed Sizes
-------- ------- -------------
ascii 1 1
binary 1 1, 2, 4
decimal 4 1, 2, 4
FFPfloat 4 4
float 8 4, 8
hex 4 1, 2, 4
IEEEfloat 8 4, 8
octal 4 1, 2, 4
unsigned 4 1, 2, 4

The text parameter is used to specify that an ASCII representation
of the memory dump should be displayed.

Aliases For The dump Command

To provide compatibility with previous releases, CodeProbe supports
the following aliases for the dump command:

da
dumps a range of memory as ASCII characters

db
dumps a range of memory in both hexadecimal and ASCII format

dc
dumps a range of memory in decimal format

dd
dumps a range of memory as 8-byte floating-point numbers in
IEEE format

df
dumps a range of memory as 4-byte floating-point numbers in
IEEE format

dffp
dumps a range of memory as 4-byte floating-point numbers in
FFP format

di or dl
dumps a range of memory in integer format using decimal
representations of the integers

dw
dumps a range of memory in short integer (16-bit) format
using hexadecimal representations of the integers

cpr 27 / 76

dp
dumps a range of memory in 4-byte hexadecimal format

ds
dumps a range of memory in short integer (16-bit) format,
using decimal representations of the integers.

EXAMPLES
dump var

dumps memory contents of variable var.

du var L 13 hex1
dumps memory contents for 13 bytes using 1-byte hexadecimal
format.

du var1..var2 ascii
dumps memory contents between var1..var2 in ASCII format.

dump 0xAF8100 L 8
dumps memory contents for 8 longs (32 bytes) starting at
absolute address 0xAF8100.

SEE ALSO
Display , DZero

1.33 DZero

dzero - Displays memory as a null-terminated ASCII string

SYNOPSIS
dz[ero] variable | address | array-slice

DESCRIPTION
The dzero command displays the contents of memory at the specified
location as a null-terminated (\0) string. The location can be any
of the following:

nonpointer variable
displays the memory contents starting at the address of the
variable and continuing until the null character is found.

pointer variable
displays bytes starting at that address until a null
character is encountered.

absolute address
displays the contents of that address until a null character
is encountered.

array-slice
displays all of the strings pointed to by the elements in
the slice of the array of char * elements.

The dzero command wraps long strings on successive lines. You can

cpr 28 / 76

use the opt strlen command to limit the number of characters printed
in long strings. You can use the opt badchars command to control
printing of strings containing unprintable characters.

EXAMPLES
dzero string

displays characters until the null character is reached.

dz ptr
displays data pointed to by ptr as a string.

dz ptr[3 .. 7]
displays each element in the array slice ptr[3 .. 7] until
the null character is reached.

SEE ALSO
Display , DUmp

1.34 ECho

echo - Displays a string

SYNOPSIS
ec[ho] [text]

DESCRIPTION

The echo command writes the specified text in the Dialog window. If
the text contains semicolons, the semicolons must be preceded with a
backslash (\;). The echo command does not expand defines or
aliases.

This command is useful for documenting the actions being taken in a
debugger command file, the cprinit file, or AREXX macros.

EXAMPLES
echo Starting program\; loading defines.

displays the message following the echo command in the
Display window.

SEE ALSO
Display , EXecute

1.35 ENV

env - Sets the environment

SYNOPSIS
env [function|level]
env [-c[aller]|-s[ubroutine]|-u[p]|-d[own]|-integer|+integer]

DESCRIPTION

cpr 29 / 76

The env command changes the environment for subsequent debugger
commands. The environment is the state of the machine at a specific
point in the calling sequence (that is, the position in the call
chain and the contents of variables). Setting the environment to a
previous point in the calling sequence, such as the point where the
current function was called, returns the machine to the state it was
in at that time. However, only the information that can be
retrieved from the stack or procedure save areas will have been
restored. Scratch registers and other components, such as the
values of externs, that are not saved and restored by function calls
remain relative to the current execution point in the program and
are not changed. Nonscratch registers are set to the values for the
new environment.

The environment can be set to an absolute or relative position in
the call chain. To set the environment to an absolute position,
specify a function or level:

function
specifies the name of a function in the call chain. If the
same function appears more than once in the call chain, the
most deeply recursive one is selected.

level
moves the environment to the level specified. level must be
an integer. Level 1 is defined to be the function in which
you are currently stopped. The caller’s level is 2, its
caller is level 3, and so on. These level number
designations change as the program steps into and returns
from functions. You can display level numbers using the
where command or Calls window.

The other forms to the env command set the environment relative to
the current function:

-caller, -up, and -1
move the environment up one level to the caller of the
current function

-subroutine, -down, and +1
move the environment down one level toward the bottom of the
call chain

+integer
moves the environment down the call chain the number of
levels you specify

-integer
moves the environment up the call chain the number of levels
you specify.

If you attempt to move the environment up or down more levels than
there are in the call chain, a warning is displayed and the
environment is moved as far as possible.

Any command that causes the program to resume execution, such as the
go or trace commands, automatically resets the environment to the

cpr 30 / 76

last point of execution. Issuing the env command is the same as
double-clicking on a function call entry in the Calls window.

EXAMPLES
env

sets the user environment to the last point of execution.

env main; d i
sets the user environment to main and display i.

env -subroutine
sets the environment to the called function (down 1 level).

env -caller
sets the environment to the caller function (up 1 level).

env +5
moves the environment down 5 levels.

env 7
moves the environment to the level 7.

env myclass::mymemberfunction
sets the environment to the called member function
myclass::mymemberfunction.

SEE ALSO
WHEre

1.36 EXecute

execute - Executes a debugger command file

SYNOPSIS
ex[ecute] filename

DESCRIPTION
The execute command reads and executes CodeProbe commands from the
file specified by filename. If the file cannot be found, CodeProbe
appends a .cpr extension to the filename and tries again. Thus, you
can place a set of debugger commands in a file with a .cpr extension
and specify the root filename, minus the extension, in the execute
command. CodeProbe searches for the specified file in your normal
Shell path as defined with the AmigaDOS path command:

For example, you may have a file, cmds.cpr, that contains the
following commands:

break sort
blist
trace
trace

The execute cmds.cpr command produces output similar to the

cpr 31 / 76

following:

executing commands from cmds.cpr
1 0xC32D3E sort:\sort.c\sort 22
sort:\sort.c\init 5
sort:\sort.c\init 9

The debugger commands themselves are not displayed unless echo mode
is turned on.

If you are debugging a program frequently and want to set a number
of breakpoints at the same places, you can place all of your
breakpoint commands in a file and then use the execute command on
this file. Using the execute command means that you do not have to
re-enter the same commands each time you use the debugger.

If the execute command is used in a command list, it must be the
last command in the list.

In the Dialog window, in line mode, and in execute files, lines
containing only comments are ignored. In the Dialog window and in
line mode, blank lines are treated as a proceed command.

EXAMPLES
execute setvars

executes the file named setvars or setvars.cpr.

execute test/cmds.cpr
executes the file named cmds.cpr located in the test
directory.

1.37 EXPAND

expand - Expands and displays a command line

SYNOPSIS
expand [alias] command-line

DESCRIPTION
The expand command displays its arguments with all macros expanded.
If you specify the alias option, this command also expands aliases.
The command-line specifies any valid command-line entry that
includes aliases or macros.

EXAMPLES
expand alias dp

expands the alias named dp to display the following:

dump $ hex4

expand ISEQUAL(1,5)
expands the macro ISEQUAL using the arguments 1 and 5. For
example, if ISEQUAL has been defined as (a == b), then it
would be expanded to (1 == 5).

cpr 32 / 76

SEE ALSO
ALias , DEFine

1.38 FINish

finish - Terminates the kernel and the cross-debugger

SYNOPSIS
fin[ish]

DESCRIPTION
In cross-debugging mode, the finish command terminates the session.
You should enter the finish command on the host machine. The host
machine is the machine that displays the CodeProbe user interface.

The cross debugger (CPRX) on the host machine tells the kernel
(CPRK) on the target machine to terminate after cleaning up and
closing the communications link. If you are not in cross-debugging
mode, the finish command does not work.

For a complete description of the cross debugger, see Chapter 8,
"Using the Cross Debugger."

EXAMPLE
finish

tells the kernel to terminate after disconnecting from the
cross debugger.

SEE ALSO
Quit

1.39 FRegister

fregister - Displays or modifies floating-point registers

SYNOPSIS
fr[egister] [register [[=] expression]]

DESCRIPTION
On machines that have a math coprocessor chip, the fregister command
displays or modifies the contents of the floating-point registers.
If you do not specify any parameters, the fregister command displays
the current contents of all the machine’s floating-point registers
in hexadecimal and as floating-point numbers. If you specify only a
register name, the contents of the register are displayed. If you
also specify an expression, then that expression is saved in the
register.

You can also use the display and set commands to display and modify
the registers, and you can use the Register window to display the

cpr 33 / 76

registers.

EXAMPLES
fr

displays all floating-point registers and flags.

fregister fp0 30.14
sets floating-point register fp0 to 30.14.

fr fp2 = sales
sets floating-point register fp2 equal to the value of
sales.

fregister fp1
displays the value of floating-point register fp1.

SEE ALSO
Display , Register , RFlag , SEt

1.40 Go

go - Continues execution until a breakpoint is encountered or the
program exits

SYNOPSIS
g[o] [location [after(integer)] [when(expression)]]

DESCRIPTION
The go command begins execution of the program at the current
location, which is identified by the address stored in the program
counter (PC) register. Execution continues until a breakpoint is
reached or until the program terminates, either normally or with an
error.

The location parameter specifies a location for a temporary
breakpoint. If you specify a location, the temporary breakpoint
exists only for the duration of the go command. The next time
program execution stops, the breakpoint is cleared, even if the
temporary breakpoint was not reached.

The go command supports the following options:

after
specifies the minimum number of times the specified location
must be executed before the breakpoint is triggered. The
integer you specify with the after option is called the pass
count. Each time the breakpoint is hit, the pass count is
tested. If the pass count is greater than 1, the pass count
is decremented by 1, and execution continues. The
breakpoint is triggered when the pass count equals 1. For
example, if you specify a pass count of 5, the breakpoint is
triggered when the location is executed the 5th time. For go
commands that do not contain an after clause, the pass count
is set to 1. The blist command shows the current pass count
for each breakpoint.

cpr 34 / 76

when
specifies an expression that must evaluate to true (nonzero)
before the breakpoint is triggered.

You can specify the after and when options in any order. If you
specify both options, the pass count is tested and decremented only
if the when condition is true.

NOTE: To avoid confusion, the go command does not use the default
radix setting. You must specify 0x for an address; otherwise,
you will be specifying a line number. For example, even if
the radix is set to hex, the following command specifies a go
command for line 20 and not address 0x20:

g 20

EXAMPLES
go

continues program execution to the next breakpoint or the
end of the program.

go 14
continues program execution to line 14 of the current
module. Line numbers are relative to a module and not a
function. This example assumes that code was generated at
line 14. You cannot use the go command to go to a line with
no code generated.

go sort
continues program execution to the first line of the sort
function.

go \myfile.c\sort 14
continues program execution to line 14 of the sort function
in module myfile.c. This example also assumes that code was
generated at line 14.

go mylib.library:myfunc
continues program execution to the myfunc function in the
shared C library mylib.library.

go $ after(5)
continues program execution until the fifth time the current
line is executed.

go 0x804A
continues program execution until absolute address 0x804A is
reached.

go myclass::mymemberfunction
continues program execution to the first line of the
myclass::mymemberfunction function.

go \myfile.cxx\myclass::mymemberfunction 14
continues program execution to line 14 of the
myclass::mymemberfunction function in module myfile.cxx.

cpr 35 / 76

This example assumes that code was generated at line 14.

go mycxxlib.library:myclass::mymemberfunction
continues program execution to the myclass::mymemberfunction
function in the shared C++ library mycxxlib.library.

SEE ALSO
Break , Proceed , PS , Trace , TS

1.41 HELP

help -- Displays help information

SYNOPSIS
h[elp] [command-or-topic]
? [command-or-topic]

DESCRIPTION
The help command displays information about commands and operands.
To display help about a specific command or topic, enter the command
or topic as a parameter to the help command.

In window mode, if you do not specify a command or topic, CodeProbe
opens the Help window and displays a list of commands and topics.
You can click on a command or topic to display more detailed
information. In line mode, CodeProbe displays this same list of
commands and topics, and must enter help followed by the command or
topic to see additional information.

Each help screen contains a See Also section listing related
commands and topics. To display information about one of these
items, click on the command or topic. For example, the See Also
section for the dump command lists the display and dzero commands.
You can display the help screen for either of these commands by
clicking on the name of the command.

The Help window is an AmigaDOS window invoked on the AmigaGuide
database sc:help/cpr.guide.

EXAMPLES
help

displays a list of commands and topics.

h break
displays information about the break command.

? break
displays information about the break command.

1.42 HUnks

cpr 36 / 76

hunks - Lists the addresses and sizes of all hunks

SYNOPSIS
hu[nks]

DESCRIPTION
The hunks command displays the list of loaded hunks, their
addresses, and their sizes for the current executable file.

The hunks command displays information in the following format:

Hunk Address Size
---- ------- ------------
0 00C32AE8 0xB54 (2900)
1 00C28570 0x27C (636)

The size is displayed first in hexadecimal format followed by
decimal format in parentheses.

EXAMPLE
hunks

lists all hunks for the current executable file.

1.43 Jump

jump - Changes the current execution point

SYNOPSIS
j[ump] location

DESCRIPTION
The jump command updates the program counter to point to a new
location. If you use the jump command, the code between the
previous execution point and the new location is not executed. The
jump command also allows you to re-execute code that you want to
inspect more closely.

For the location parameter, you can specify any value that would
also be valid for the break or go commands.

NOTE: The jump command does not restore any program variables or
memory locations. If you use jump to re-execute a statement
that increments a variable, the variable is incremented again
when you step over that statement.

CAUTION!!
Certain registers may not be set up the way the code that is
jumped to expects.

Using the jump command is more likely to be safe if you always
jump from one C source file line to another in the same function
(not from assembly lines), and you have compiled with a debugging
option that flushes non-register variables being held in registers
to memory at C source line boundaries (that is, symbolflush or

cpr 37 / 76

fullflush). If the jump command is used on optimized code, the
registers are probably not set correctly.

NOTE: To avoid confusion, the jump command does not use the default
radix setting. You must specify 0x for an address; otherwise,
you will be specifying a line number. For example, even if
the radix is set to hex, the following command specifies a
jump command for line 20 and not address 0x20:

j 20

EXAMPLES
jump 12

jumps to line 12 in the current function.

jump 0x804E
jumps to the address 0x804E.

SEE ALSO
ENV , Go , RETurn

1.44 List

list - Lists the lines in a source file

SYNOPSIS
l[ist]
l[ist] $
l[ist] +integer|- integer [L length]
l[ist] line-range
l[ist] [executable-name:]\module [line-range]
l[ist] [[executable-name:]\module\]function [line-range]

DESCRIPTION

In line mode, the list command lists the lines in a source file.

If you do not specify any arguments, the list command displays lines
starting with the current list line, and the number of lines that
are displayed is controlled by the opt list command. The current
list line is the source line at which the program is stopped.

If you specify list $, the list command displays a number of lines
above and below the current list line, and the number of lines above
and below is controlled by the opt context command.

See the description of the location parameter in Chapter 1, "Getting
Started," for a description of the executable-name, module, and
function parameters.

NOTE: Specifying the module is not supported with C++ programs.

If you specify a line-range, the line command displays the lines in

cpr 38 / 76

that range. Specify the range using one of the following forms:

starting-line[[..]ending-line]
starting-line L number-of-lines

If you specify a module or function, CodeProbe opens the source file
for that environment, if possible, and displays the desired line
range. If you do not specify a line range or function, the listing
begins at line 1. If you specify a function but do not specify a
line range, CodeProbe lists lines beginning with the function
declaration.

Each time you enter the list command, the current list line is set
to the line immediately following the last line listed. the current
list line is also updated each time the program is allowed to
execute.

EXAMPLES
list

lists the next group of lines. The number of lines listed is
set by the opt list command.

list $
lists lines around the line pointed to by the current
program counter.

list module
lists first lines of the specified module.

list \module 20 40
lists lines 20 through 40 of the specified module.

list \module 20 l 10
lists 10 lines of the specified module starting at line 20.

list +20
starts listing lines 20 lines down from the current line.

list -20
starts listing lines 20 lines up from the current line.

list -20 L 10
lists 10 lines, starting 20 lines up from the current line.

list foo
starts listing at the declaration of the function named foo.

list foo 10 20
lists lines 10 through 20 of the function named foo.

SEE ALSO
OPt , SOurce , Unassemble

1.45 listsym

cpr 39 / 76

listsym - Lists all currently defined symbols

SYNOPSIS

listsym [symbol-name]

DESCRIPTION

The listsym command displays the list of all symbols and as much
information as possible about the symbol, such as current value,
prototype, the address of the symbol (for externs), and mangled name.

EXAMPLES
listsym

displays all of the currently defined symbols.

listsym i
lists the value of variable i.

listsym myclass::memfunc
displays the prototype, address, and mangled name for memfunc in
class myclass.

SEE ALSO
display

1.46 LOg

log - Logs debugger commands to a file

SYNOPSIS
lo[g] [log-command]

DESCRIPTION
The log command saves, in a log file, a record of all activity in
the Dialog window including commands and results. The name of the
log file is set with the log file command. The default filename is
cpr.log.

The log command does not save menu selections.

If you do not specify a log-command, the log command displays the
current log state (either on or off) and the filename of the log
file. The log-command parameter can be any of the following:

append
appends log information to the end of the log file

file <filename>
specifies the filename of the log file and opens the file

off
closes the log file

cpr 40 / 76

on
opens a new log file

snap
snapshots the contents of the Dialog window to the log file.

If you enter a command that turns on the logging of your session,
such as log on, log append, or log snap, but logging is already
turned on, the log command itself is added to the current log file.
If you change the log filename while logging is enabled, CodeProbe
closes the current log file and opens a new one. The log file is
automatically closed when you exit the debugger.

EXAMPLES
log snap

saves the dialog for the current session into the log file
named cpr.log.

log file foo.log
sets the log file to the filename foo.log.

log on
enables the log file.

log off
disables the log file.

log append
enables the log file and appends new log information to the
end of the log file.

1.47 modules

modules - Lists all of the modules in an executable

SYNOPSIS

m[odules] [location]

DESCRIPTION

The modules command produces a list of all of the modules in an
executable. If you do not specify a location, the debugger lists all
of the modules for the current executable. If you specify a
location, CodeProbe lists all of the modules for the specified
executable.

This command is not supported for C++ programs.

NOTE: This command accepts a location containing just an executable
name, even though that is not legal for locations in general.

EXAMPLES
mod

cpr 41 / 76

lists all modules in the current executable.

mod img:
lists all modules in the executable img.

mod img:\mod.c\fnc
lists all modules in img. The mod.c and fnc are ignored.

1.48 OPt

OPt -- Show option values or change the value of a debugger option

SYNOPSIS

op[t]
op[t] au[toswap] [on|off]
op[t] ar[rdim] integer
op[t] b[adchar] integer
op[t] ca[se] [on|off]
op[t] cat[ch] [on|off]
op[t] co[ntext] integer
op[t] dev[ices] [on|off]
op[t] e[cho] [on|off]
op[t] ib[ytes] [on|off]
op[t] ig[norepath] [on|off]
op[t] l[ist] integer
op[t] rad[ix] [d[ecimal]|h[ex]]
op[t] ran[gelen] integer
op[t] re[slib] [on|off]
op[t] se[arch] [+|-] directory[,directory]...
op[t] so[urce] c|a[sm]|m[ixed]|n[ext]
op[t] st[rlen] integer
op[t] tab n
op[t] t[ask] [task-name | task-address]
op[t] u[nassemble] integer

DESCRIPTION
The opt command is used to display and change the current setting of
the debugger’s options. The opt command by itself shows the current
settings of all options, plus the current task. If you also specify
an option and a setting, this command changes the debugger’s options
as you specify. The following list describes the options and their
possible values:

arrdim
specifies the maximum number of array elements that are
displayed at one time with the display command. The default
value is 20. If an array has fewer than the specified
number of elements, all of the array’s elements are
displayed. For larger arrays, the specified number of
elements are displayed, followed by an ellipsis (...).

autoswap
if set to on, pushes the program’s screen to the front each
time control is given to your program. When a breakpoint is

cpr 42 / 76

reached, the debugger screen is again pushed to the front.
If you are single stepping through source code, the
switching of screens will probably appear as a brief flash.
Autoswap mode is particularly useful when debugging programs
that require input from the keyboard. The program’s screen
is automatically pushed to the front whenever input is
required.

If set to off, the program’s screen is not pushed to the
front. The default setting is off.

badchar
controls the number of non-printable characters that a dzero
or display command will accept when displaying a string
referenced by a character pointer. The default value is 3.
A value of zero (0) indicates no limit.

case
controls case sensitivity for the search command. If you
specify opt case on, the search command performs
case-sensitive string searches. The default setting is off.

catch
if set to on, catches any new task generated by a task that
is already under debugger control. The default setting is
off. NOTE: Tasks started by a call to OpenDevice are
controlled by the opt devices command.

context
controls the number of lines (context lines) displayed above
and below the current line. The default number is 2. In
windowing mode, the maximum number of lines is limited by
the number of lines in the Source window. In source mixed
mode, it is not always possible to keep the correct number
of lines above or below the current line. In line mode,
this option controls the number of lines displayed with the
list $ command.

devices
if set to on, the debugger attaches to, or catches, any new
device process or task generated by a task under debugger
control. When a device is opened for the first time, a new
task may be created. The default setting is off.

echo
if set to on, tells the debugger to echo all commands to the
Dialog window before executing them. This option is
especially useful if you want to use the execute command to
execute a file of debugger commands and see the commands and
their output as they are executed. The debugger also
displays commands that are invoked by selecting menu options
or by double-clicking with the mouse. The default is off.

ibytes
if set to on, tells the debugger to display the instruction
bytes being disassembled. This affects the output of the
unassemble command, and in windowing mode, it also affects

cpr 43 / 76

the Source window in mixed and asm source modes. If this
option is set to on, the second field of the disassembly
contains a hexadecimal dump of the instruction. For
example, if ibytes is set to on, the unassemble command may
produce: p 0025F950 48E70130 MOVEM.L D7/A2-A3,-(A7)

If ibytes is set of off, the same command would produce:

0025F950 MOVEM.L D7/A2-A3,-(A7)

The default setting is off.

For more information, see the description of the unassemble
command.

ignorepath
if set to on, tells the debugger to ignore the pathname for
the source file provided by the compiler. In this case,
CodeProbe looks in the current directory for the source
file. By default, ignorepath is set to off, and CodeProbe
uses the entire pathname when searching for the source file.
You can use this option and the opt search command to
override the source filename specified in the object file.
For more information, see Chapter 2, "Customizing the
Debugging Environment."

list
controls the default number of lines displayed by the list
command in line mode. The default number is 6.

radix
sets the default input type for constants. You can specify
hexadecimal or decimal. The default setting is decimal. If
you specify hexadecimal, then you do not have to type the 0x
before hexadecimal constants.

rangelen
controls the default size of ranges when no range size
information is available. The default value is 64. This
value is used when you specify only an address parameter for
the display, dump, or watch commands.

reslib
steps into resident libraries while tracing or running a
program with watch breaks. The default setting is on.
Leave this option on unless you want to debug your own
resident libraries. However, tracing into system libraries
such as Exec or Intuition can cause problems. Stepping into
system libraries means that you are in ROM. You will not
have C source code available, and you cannot set breakpoints
in ROM. The debugger will not be able to figure out where
you are. Also, you should disable all watch breaks before
stepping into a ROM-resident library routine.

search
defines a set of directories that you want the debugger to
search for the source code. For a complete description of

cpr 44 / 76

the opt search command, see Chapter 2, "Customizing the
Debugging Environment."

source
controls how your source code is displayed in the Source
window in windowing mode. You can choose one of three
possible settings:

C displays C or C++ source lines when you enter a
trace or proceed command or when a breakpoint is
triggered. In C mode, you cannot single step by
assembly instruction. The default setting is C.

asm displays disassembled code. The trace and proceed
commands step by assembly instruction.

mixed displays both assembly instructions and C or C++
source lines.

Repeatedly choosing the next value cycles through the three
possible modes.

strlen
controls the maximum number of bytes that are displayed when
a character string is displayed with the display and dzero
commands. The default number is 128. If the character
string contains unprintable characters, fewer characters may
be displayed.

tab n
sets tab stops every n columns in the Source window. The
number n must be greater than zero. The default setting is
8.

task
displays the current task or, if you specify a task-name or
task-address, changes the current task to the task you
specify. The task-name and task-address are the task name
and address of the task control block, as displayed by the
tasks command.

If you specify the name, the name should be unique. If the
name is not unique, the debugger uses the first task with
that name that appears in its task list. If the name
contains a blank, enclose the name in double quotes. The
task names are case sensitive.

If you specify the task address, enter the address in
hexadecimal notation (with a 0x prefix).

When you change to a new task, CodeProbe displays a new set
of registers. The highlighting of changed registers in the
Register window may be incorrect since the debugger keeps
track of changes only while stepping through a single task.
The module displayed in the Source window may change. If
the task was in a system or linked library, assembler lines
are displayed.

cpr 45 / 76

You may be able to display the calling sequence of the task
by using the where command, but since assembler routines,
including the Amiga system’s resident libraries, do not
follow C language calling conventions, the information
displayed by the where command may not be accurate.

You can modify any registers, condition control register
(CCR) flags, or stack variables, just as in the breakpointed
task. You can also single step through the code.

CAUTION!!
Incorrect use of breakpoints may crash your machine.

A breakpoint is implemented by placing an illegal instruction at
the desired location. All tasks under the debugger’s control
have a trap handler that reports back to the debugger when the
illegal instruction is executed. If you must place a breakpoint
in shared code, such as a resident library under test, be sure
that any task that might open the library is under debugger
control. Never place breakpoints in libraries that you do not
control.

unassemble
controls the default number of instructions that are
disassembled by the unassemble command in line mode when the
source file is not available. When the source file is
available, the unassemble command displays the disassembly
for a single source line. This option has no effect in C
mode or windowing mode. The default setting is 4.

EXAMPLES
opt

displays the settings of all options, plus the current task.
You cannot change the current task with the opt command,
but you can use the jump command to change the execution
point.

opt unassemble 10
sets unassemble count to 10.

opt search /src,/test
sets search directories.

opt search +test2
appends a new search directory.

opt task "Child"
changes the current task to the task named Child.

opt task 0x7D9F884
changes the current task to the task with the address
0x7D9F884.

opt task "Child of multi"

cpr 46 / 76

changes the current task to the task named "Child of multi".

SEE ALSO
Display , DZero , jump , List , Unassemble

1.49 Proceed

proceed - Single-steps over function calls

SYNOPSIS
p[roceed] [integer]

DESCRIPTION
In C mode, the proceed command steps over the number of source
statements specified by the integer parameter. In Mixed or Asm
modes, it steps over integer number of machine instructions. If
CodeProbe encounters a function call, the function is executed as if
it were a single statement. If you do not specify an integer, it
defaults to 1.

When you are debugging a C++ program in C source mode, the proceed
command steps over the translated C statements. In other words, if
one C++ statement was translated into more than two C statements, it
will require two proceed commands to step over the C++ statement.

If you press Enter at the CodeProbe prompt without typing any
commands on the command line, CodeProbe executes a proceed 1
command. You can also press the F6 key to enter the proceed
command.

EXAMPLES
proceed

steps 1 source statement in C mode or 1 machine instruction
if in Mixed or Asm modes.

proceed 5
steps 5 source statements in C mode or 5 machine
instructions if in Mixed or Asm modes.

SEE ALSO
Go , PS , Trace , TS

1.50 PS

ps - Single-steps over function calls by source line

SYNOPSIS

ps [integer]

DESCRIPTION

cpr 47 / 76

The ps command steps over the number of C source statements
specified by the integer, even if mode is set to Mixed or Asm. If
CodeProbe encounters a function call, the function is executed as if
it were a single statement. If you do not specify an integer, it
defaults to 1.

When you are debugging a C++ program in C source mode, the ps
command steps over the translated C statements. In other words, if
one C++ statement was translated into more than two C statements, it
will require two ps commands to step over the C++ statement.

EXAMPLE
ps 2

steps through two source lines regardless of the debugger
mode.

SEE ALSO
Go , Proceed , Trace , TS

1.51 Quit

quit - Terminates the debugger

SYNOPSIS

q[uit] [-abort]

DESCRIPTION
The quit command terminates the debugging session and returns to the
operating system prompt.

In cross-debugging mode, the quit command terminates only the cross
debugger (CPRX) on the host machine, leaving the kernel (CPRK)
waiting for a new debug session.

Normally, CodeProbe forces the program being debugged to call the
exit function before the debugger terminates the program. The
debugger then exits. If you invoke the debugger with the -startup
option, the debugger exits without forcing the program to call exit.
If you start CodeProbe with the -startup option, terminate CodeProbe
on the target machine with the finish command instead of entering
quit.

If you specify the -abort option, the debugger will not call exit
before terminating. If you think that your destructors,
autotermination functions, or atexit functions may cause system
problems, then specify the -abort option. For example, if you
determine during your debugging session that the memory heap managed
by malloc is corrupt, then you do not want to free that memory as
CodeProbe exits. Normally, this memory is freed by an
autotermination function called from exit.

If you specify -abort, then cleanup for your program is not
performed. Files opened with fopen or open are not closed, memory
allocated with malloc is not freed, and destructors are not

cpr 48 / 76

executed.

EXAMPLE
quit

terminates the debugging session. The program calls exit
(unless you started the debugger with the -startup option).

quit -abort
terminates the debugging session. The program does not call
exit.

1.52 Register

register - Displays or modifies registers

SYNOPSIS
r[egister] [register [[=] expression]]

DESCRIPTION

If you do not specify any arguments, the register command displays
the current contents of all the machine registers except
floating-point registers. You can display integer, status, and flag
registers, stack pointers, and instruction counters with the
register command. If you specify a register, CodeProbe displays the
contents of that register. If you also specify an expression,
CodeProbe stores the value of that expression in the register.

regs is a synonym for register.

You can also use the display and set commands to display and modify
the contents of registers. (You can use the fregister command to
display floating-point registers. You can use the rflag command to
modify flag registers.)

EXAMPLES
register

displays all registers and flags.

register d5 = 30
sets register D5 to 30.

r d3 = index
sets register D3 to the value of index.

register a0 &x
sets register A0 to the value pointed to by x.

r a1
displays the value stored in register A1.

SEE ALSO
Display , FRegister , RFlag , SEt

cpr 49 / 76

1.53 REStart

restart - Restarts the program being debugged

SYNOPSIS
res[tart] [argument-list]

DESCRIPTION

EXAMPLES
restart /* restarts the program using the same arguments

with which it was initially invoked with */
restart myfile.txt 5 /* restarts the program passing it two

arguments: myfile.txt and 5 */
restart "sample string " /* restarts the program passing in a string

as an argument */

SEE ALSO
STArt

1.54 RETurn

return - Returns immediately from the current function

SYNOPSIS

ret[urn] [expression]

DESCRIPTION
The return command causes the current function to return to its
caller without executing the rest of the function.

NOTE: This command is not supported for C++ programs.

The value of the expression, if specified, is used as the return
value from the function. The value is converted to the appropriate
type if necessary. However, it must be a scalar quantity (not a
structure or union).

If register is the machine register that holds the return value, the
return command is equivalent to the following:

set register=expression;jump return;proceed

When you enter the return command, the return value, if any, is
returned to the calling function, and execution is suspended as
though a breakpoint were triggered in the calling function after the
call was made. For example, you may have the following code:

i = 5;
j = func(i);
if (j < 2)

j++;

cpr 50 / 76

If a return 7 command is issued during the execution of func,
execution stops inside the line that did the call, just before the
assignment to j. You can then step to the next statement.

An attempt to return a value from a function declared void is
treated as an error, and an error message is displayed. Similarly,
an error message is displayed if you use a simple return command
(without an expression) from within a function declared as having a
return value. In all other cases, the return value is cast (if
necessary) to the correct type and returned to the calling function.

CAUTION!!
Using the return command while stopped in the prolog of a
function causes unpredictable results.

A function prolog is code generated by the compiler at the
start of each function. This code sets up the call frame and
any automatic variables. If you have specified opt prolog off
or if you step into a function in assembler mode, it is
possible to stop inside the function prolog.

CAUTION!!
Do not use return in optimized code.

The optimizer may have modified the data on the stack, and the
debugger will not be able to find the return address.

EXAMPLES
return stringptr

returns the value of stringptr.

ret 5
returns an integer value of 5.

return
returns from a void function.

1.55 RFlag

rflag - Displays or modifies flags

SYNOPSIS

rf[lag] [flag-setting...]

DESCRIPTION
The rflag command can be used to display or modify the settings of
the machine flags. If no parameters are specified, the current
settings of the flags are displayed. With one or more arguments,
the indicated flags are set or cleared according to the values
given.

A flag setting can be one of the values in the following table. The
Set column contains the values used to set flags, while the Clear

cpr 51 / 76

column contains the values used to clear flags.

Flag Name Set Clear
----------------------- --------- ---------
Overflow (yes/no) OV NV
Sign (negative/positive) NG PL
Zero (yes/no) ZR NZ
Auxiliary Carry (yes/no) AC NA
Carry (yes/no) CY NC

EXAMPLES
rflag

displays all registers and flags.

rflag cy
sets the carry flag to 1 (yes).

SEE ALSO
FRegister , Register

1.56 SEArch

search - Searches for a string in the current source file

SYNOPSIS
sea[rch] [string]

DESCRIPTION
The search command searches the current source file for the
specified string.

In windowing mode, the search begins from the top line of the
current Source window. If the debugger finds a match, CodeProbe
repositions the Source window so that the line containing the match
is the number of lines specified by the opt context command from the
top of the window. The cursor is positioned at the beginning of the
matching string.

In line mode, the search begins at the first line that would be
displayed if you entered a list command with no arguments.
CodeProbe displays the line containing the match.

If you do not specify any arguments, the debugger searches for the
string specified in the last search command, starting from the new
current line. If it does not find a match, CodeProbe prints a
message. If you enter search again, the search resumes beginning at
the top of the file.

You can use the opt case command to specify whether the search is
case sensitive.

EXAMPLES
search foo

finds the string "foo".

cpr 52 / 76

search foo;
finds the string "foo". The semicolon used in this command
is a command delimiter and is not considered part of the
search string.

search foo\;
finds the string "foo;". The escape character (\) tells the
debugger that the semicolon is part of the search string.

search
repeats the last search.

SEE ALSO
OPt , List

1.57 SEt

set - Modifies the values of variables or memory locations

SYNOPSIS

se[t] variable
se[t] register-name [=] expression
se[t] address [=] string

DESCRIPTION
The set command modifies the values of variables, registers, or
memory locations in the program being debugged.

NOTE: This command is not supported for C++ objects.

If you specify a variable or register name and an expression, this
command stores the result of expression in the location you specify.
In this command, variable can be a reference to an array element or
a structure member or an indirect reference. The variable cannot
refer to an aggregate such as a structure, union, or array.
Specifying a register name and expression is equivalent to:

register register-name=expression

If necessary, the value for variable will be converted to the proper
type in accordance with the normal C conversion rules; it is then
entered into memory at the address of the first variable operand.
This is similar to a C assignment statement for a scalar variable.

The register can be any valid register name, D0 through D7 and A0
through A7, and if a co-processor is present, FP0 through FP7. You
can use the $ prefix to distinguish the register from a variable of
the same name.

You can also use the set command to store a string into memory. The
null terminator is not copied unless it is explicitly present in the
string. The equal sign is optional. You can also use the built-in
strcpy and memcpy functions to store a string in memory.

cpr 53 / 76

You should the built-in strcpy and memcpy functions instead of using
set address=string. However, if you specify an address and a
string, the set command stores the string at that address in memory.
set does not copy the null terminator unless it is explicitly
present in the string.

EXAMPLES
set i = 5

sets the variable i equal to the integer value 5.

set a = 3.1415
sets the variable a equal to the floating-point value
3.1415.

set $d0 = 300
sets register D0 equal to 300. The $ is optional.

set time->date = newtime
sets the date member of the time structure equal to the
value of the variable newtime.

set stringptr "this string has no null byte"
stores a string that is not null-terminated to the memory
location pointed to by stringptr.

set stringptr "this string has a null byte\0"
stores a null-terminated string to the memory location
pointed to by stringptr.

set stringptr "string one\0string two\0"
stores two null-terminated strings to the memory location
pointed to by stringptr.

SEE ALSO
FRegister , MEMCPY , STRCPY , Register

1.58 SLEep

sleep - Pauses for the time specified

SYNOPSIS
sle[ep] number

DESCRIPTION
The sleep command pauses for the number of seconds specified by the
number parameter.

EXAMPLE
sleep 10

pauses for 10 seconds.

1.59 show

cpr 54 / 76

show - Sets Source window to display specified source

SYNOPSIS

sh[ow] \module[\func] [line]
sh[ow] func [line]
sh[ow] line

DESCRIPTION
The show command tells the debugger to display the specified source
in the Source window. The current environment does not change.
Specify the module, function, or line in the same format as that
displayed by the env command.

To return the Source window to the current environment, enter the
env command without any parameters.

EXAMPLE
show \sort.c\printArr 42

moves the Source window to line 42 of the printArr function
in the module sort.c.

1.60 SOurce

source - Displays the source file

SYNOPSIS

so[urce] [filename]

DESCRIPTION
The source command overrides the C source file associated with the
current module. The specified value for filename replaces the
filename associated with the module for the rest of the current
debugging session. CodeProbe displays the new file immediately and
echos its name in the Dialog window.

If you do not specify a filename, the name of the current source
file is echoed in the Dialog window but the current source file is
not changed. The file is reread from disk if it has changed.

If the filename to which you want to change is the same as the
default filename but the path is different, you can use the \nl opt
search command instead of the source command to change the locations
where CodeProbe looks for source files. The opt search command
affects all source files, not just the current one.

EXAMPLES
source

displays the current filename.

source test/test1.c
changes the filename for the current module to test1.c in
the test directory.

cpr 55 / 76

SEE ALSO
OPt

1.61 STArt

start - Restarts the program being debugged

SYNOPSIS

sta[rt] [argument-list]

DESCRIPTION
The start command reloads and executes your program up to the entry
point of main, just as when the debugger was first invoked. If you
do not specify any arguments, start restarts the program with the
same arguments that you specified when the debugger was first
invoked. (If you started CodeProbe with the -startup option,
execution stops before the startup code is executed and not at the
first line of the main function.) Because the program is reloaded,
all static data is reinitialized. All breakpoints are retained, and
watch breaks on static and external variables are retained and
disabled if:

> You linked with a startup module other than cres.o or
catchres.o.

> The breakpoint or watch break is set on an item in the near
data section.

If you started CodeProbe with the -command option, do not use the
start command. Do not use the start command as one of a sequence of
commands separated by semicolons.

If you specify arguments to the program, separate each argument with
white space, just as the arguments would appear on the command line
when invoking the program. The program uses these arguments as if
they were specified on the command line.

CAUTION!!
The start command may cause your machine to crash if used
improperly.

When you enter the start command, your program is immediately
reloaded and re-executed with no cleanup other than calling the
exit function to close files. The machine may be left in a
state that can cause problems later. To avoid this problem,
allow your program to run to completion, if possible, and do
any necessary cleanup before entering the start command.

The start and restart commands are the same if the same arguments
are provided as the argument-list. The significant difference
between the two commands is their behavior when they are specified
with no arguments. The start command without an argument-list

cpr 56 / 76

restarts the program without any arguments; however, the restart
command without an argument-list restarts the program with the
original arguments used when the debugger was invoked.

EXAMPLES
start

restarts the program being debugged without passing it any
arguments.

start myfile.txt 5
restarts the program being debugged passing in the arguments
myfile.text and 5.

SEE ALSO
REStart

1.62 SYMBol

symbol - Finds the symbol nearest to the specified address

SYNOPSIS
symb[ol] address

DESCRIPTION
The symbol command searches the symbol information and displays the
name of the symbol whose location is closest to the address
specified by the address parameter.

EXAMPLE
symbol 0x7D9F884

displays the symbol whose address is nearest to 0x7D9F884.

SEE ALSO
SYMload

1.63 SYMload

symload - Loads debugging information for an executable file

SYNOPSIS
sy[mload]
sy[mload] "executable-filename"
sy[mload] pc address ["executable-filename"]
sy[mload] proc "proc-name"|proc-address ["executable-filename"]
sy[mload] seg address "executable-filename"

DESCRIPTION

The symload command associates an executable file and any debugging
information found in that file with a load module. The symload
command is useful when you are debugging several interacting
programs that are invoked from separate executable files. This

cpr 57 / 76

command does not not load any code into memory or spawn any new
processes or tasks.

If you do not specify any options and you are running SegTracker,
symload asks SegTracker for the seglist and filename based on the
current PC. symload then loads the debugging information from the
file if it is avaliable.

If you specify an executable-file without any other options and you
are debugging a process, the symload command gets the seglist from
the current process CLI if the process was started from the Shell or
from the current Process structure if the process was started from
the Workbench. symload then loads the debugging information from
the filename in the seglist. If the PC is not in the seglist,
symload prints a message saying that the debugging information was
loaded properly, but the program is probably in an operating system
call. (This option is useful if you want to catch rpograms that are
in a Wait system call.)

The symload command supports the following options:

pc
asks SegTracker for the seglist and filename based on the
address that you specify. If you also specify an
executable-filename, then symload loads the debug
information associated with that file instead of looking for
the file associated with the process.

proc
uses the process name or address to find the CLI structure
(if the program was invoked from the Shell) or the current
Process structure (if the program was started from the
Workbench). symload gets the seglist and command name from
the CLI or Process structure. If you specify a process
name, enclose the name in double quotes (" "). If the
process name is not unique, symload uses the first process
with that name in its list. If you also specify an
executable-filename, then symload loads the debug
information associated with that file instead of looking for
the file associated with the process.

seg
treats the hexadecimal address you specify as a pointer to a
BCPL segment list and maps the list to the executable file
you specify.

EXAMPLES
symload "myapp"

reads the current segment list and symbols from the file
named myapp.

sym proc "myapp"
reads the segment list and executable file for process
myapp.

symload proc 0x7D9F884 "myapp"

cpr 58 / 76

reads the segment list and executable file for the process
located at 0x7D9F884.

symload seg 0x7D9F884 "myapp"
uses the segment list at address 0x7D9F884.

SEE ALSO
HUnks

1.64 TAsks

tasks - Displays a list of system tasks

SYNOPSIS
ta[sks] [a[ll]]

DESCRIPTION
The tasks command displays information about tasks. By default,
tasks displays the tasks currently under debugger control. If you
specify all, this commands displays the list of all system tasks.

The opt task command displays information in the following format:

Address Type Pri State SigWait StackPtr Debug Name
00C513B8 13 0 Waiting 80000000 00C551CC act multi

The fields contain the following information:

Address contains the address of the task control block.

Type indicates the type of node that begins the task
control block. The number 13 is used for processes,
and 1 is used for simple tasks. For a complete list
of the possible task types, see the header file
include:exec/nodes.h.

Pri contains the priority of the task.

State indicates the process state: Waiting or Ready.

SigWait displays the SigWait field of the task control block.
This field indicates which signal bits the task may
be waiting on.

StackPtr is the current position of the stack pointer. This
value will be different from the value displayed in
the SP register. The value displayed by tasks
includes any information placed on the stack by the
trap handler or exception handler associated with
this task.

Debug indicates the task’s status with the debugger: act
denotes an active task, and inact denotes an inactive
task. This field is blank for tasks that are not
under the control of the debugger.

cpr 59 / 76

Name is the name of the task as specified in the task’s
node structure.

For more information on tasks or on any of these fields (except
Debug), refer to the Amiga ROM Kernel Reference Manual: Libraries
and Devices.

EXAMPLES
tasks

displays a listing of all tasks under debugger control.

ta all
displays a listing of all tasks in the system.

SEE ALSO
Activate , CAtch , DEActivate , DETach , OPt

1.65 Trace

trace - Single-steps into function calls

SYNOPSIS

t[race] [integer]

DESCRIPTION

In C mode, the trace command steps the number of source statements
specified by the integer parameter. In Mixed or Asm modes, it steps
the number of machine instructions specified by the integer
parameter. If CodeProbe encounters a function call, stepping
continues into that function. If you do not specify an integer,
trace steps one line.

You can also enter the trace command by pressing the F7 key.

When you are debugging a C++ program in C source mode, the trace
command steps over the translated C statements. In other words, if
one C++ statement was translated into more than two C statements, it
will require two trace commands to step over the C++ statement.

EXAMPLES
trace

steps one source statement if in C mode, or one machine
instruction if in Mixed or Asm mode.

t 5
steps five source statements or machine instructions.

SEE ALSO
Go , Proceed , PS , TS

cpr 60 / 76

1.66 TS

ts - Single-steps by source line into function calls

SYNOPSIS

ts [integer]

DESCRIPTION
The ts command is similar to the trace command, except that ts steps
only by C source line, even if the source mode is set to Asm or
Mixed. The integer parameter specifies the number of C source lines
to step. If you do not specify an integer, ts steps one line at a
time.

When you are debugging a C++ program in C source mode, the ts
command steps over the translated C statements. In other words, if
one C++ statement was translated into more than two C statements, it
will require two ts commands to step over the C++ statement.

EXAMPLES
ts

steps one source line regardless of the mode the debugger is in.

ts 2
steps two source lines.

SEE ALSO
Proceed , PS , Trace

1.67 UNAlias

unalias - Deletes an alias

SYNOPSIS

una[lias] name
una[lias] *

DESCRIPTION
The unalias command removes entries from the debugger’s list of aliases.
To remove a specific alias, specify the alias name. To remove all
aliases, specify an asterisk (*).

EXAMPLES
unalias foo

deletes the alias for foo.

una *
deletes all aliases.

SEE ALSO

cpr 61 / 76

ALias , DEFine , UNDefine

1.68 Unassemble

unassemble - Displays memory as assembler instructions

SYNOPSIS
u[nassemble] [start-location [end-location]]

DESCRIPTION

The unassemble command displays the range of memory from
start-location to end-location in assembler format.

If you do not specify a location, unassemble disassembles the memory
at the address in the current program counter. If you specify only
a start-address, unassemble displays the memory at that address.

If you enter additional unassemble commands before giving the
program control with a trace, proceed, or go command, unassemble
continues disassembling from the location at which the previous
unassemble command stopped.

If the debugging information contains source line numbers for the
memory being displayed, unassemble displays the C source line and
the assembler instructions generated for that line. If the
debugging information does not contain source line numbers for the
memory being displayed, unassemble displays the number of
instructions as specified by the opt unassemble command. By
default, unassemble displays 4 instructions.

The output of the unassemble command is equivalent in format to
output displayed in the Source window if you are in asm mode. The
output consists of three or four fields depending on the setting of
the instruction bytes option, which is controlled by the opt ibytes
command. The following is an example of unassemble output with
instruction bytes on and source unavailable:

0x25F950 48E70130 MOVEM.L D7/A2-A3,-(A7)
0x25F954 BFEC0004 CMPA.L 0004(A4),A7
0x25F958 65001BD6 BCS 00261530

The first field contains the hexadecimal address of the instruction
being disassembled. The second field is a hexadecimal dump of the
actual bytes composing the instruction. The third field contains
the M680x0 mnemonic for the given opcode. The fourth field contains
the operands to the instruction. If the ibytes option is turned
off, the second field is not displayed.

EXAMPLES
unassemble \mod1\func1 10

unassembles line 10 of func1 in mod1.

unassemble 13 14
unassembles lines 13 to 14.

cpr 62 / 76

unassemble func1
unassembles the first line of func1.

unassemble func1 func2
unassembles from &func1 to &func2.

unassemble
continues unassembling at the last location.

SEE ALSO
OPt , List

1.69 UNDefine

undefine - Deletes a macro definition

SYNOPSIS

[#]und[efine] name
[#]und[efine] *

DESCRIPTION
The undefine command removes entries from the debugger’s list of
macro definitions. To remove a specific macro, specify the macro
name. To remove all defines, specify an asterisk (*).

The # sign is optional and allows the debugger to read C header
files (.h files) using the execute command.

EXAMPLES
#undef foo

deletes the macro named foo.

undefine *
deletes all macros.

SEE ALSO
ALias , DEFine , EXecute , UNAlias

1.70 Watch

watch - Sets a watch on a variable or memory

SYNOPSIS
w[atch] expression | range [s[tatic] | d[ynamic]]

DESCRIPTION
The watch command sets a watch for the expression or memory range
specified. A watch allows you to monitor a variable, an address, or
a range of memory. Whenever control returns to the user, for
example by stepping or stopping at a breakpoint, the new value of

cpr 63 / 76

the watched object is displayed in the Watch window. The Watch
window can be opened with the View menu, the window command, or by
pressing the F1 key.

In line mode, the object is not automatically displayed. You must
use the wlist command to display it.

NOTE: This command is not supported with C++ objects.

The watch command does not stop program execution when the value
being watched changes; it just displays the changed value. Use the
wbreak command if you want program execution to stop when the
watched value is changed.

By default, watches are dynamic. The expression being watched is
re-evaluated whenever control returns to the debugger. For example,
watch tmp[i] causes the watch to move every time i changes.

The static option evaluates the expression only once, when the watch
is set. The static option treats the result as an address, and
displays the contents of t

EXAMPLES
watch text->len

sets a watch for the symbolic scalar text->len.

w \mod\f1\a[0] L 20
sets a watch for a length of 20 bytes starting at the
symbolic range specified by \mod\f1\a[0].

w &a[0] .. &a[5]
sets a watch for the range from &a[0]to &a[5].

watch tmp[i] static
if i = 3, watches tmp[3] regardless of changes to i.

SEE ALSO
WBreak , WClear , WDisable , WEnable , WList

1.71 WBreak

wbreak -- Sets a watch break

SYNOPSIS
wb[reak] expression | range [s[tatic] | d[ynamic]]

DESCRIPTION
The wbreak command sets a watch break for the expression or memory
range specified. Whenever any byte in a specified range is
modified, control is returned to you.

NOTE: This command is not supported with C++ objects.

By default, watch breaks are static. The expression is evaluated
once when the watch break is set. The debugger treats the result as

cpr 64 / 76

an address, and displays the contents of the memory at that address.

The dynamic option re-evaluates the expression or range whenever
control returns to the debugger. For example, wbreak tmp[i] causes
the watch break to break every time i changes.

EXAMPLES
wbreak text->len

sets a watch break for the symbolic scalar text->len.

wb \mod\f1\a[0] L 20
sets a watch break for a length of 20 bytes starting at the
symbolic range specified by \mod\f1\a\lbk 0].

wbreak &a[0]..&a[5]
sets a watch break for the range from &a[0]to &a[5].

wb p->q dynamic
sets a watch break for different locations depending on the
value of p.

SEE ALSO
Watch , WClear , WDisable , WEnable , WList

1.72 WClear

WClear -- Clears one or more watches

SYNOPSIS

wc[lear] integer [integer ...]
wc[lear] *|l[ast]
wc[lear] integer..integer

DESCRIPTION
wclear command clears (deletes) one or more watches or watch breaks.
When a watch or watch break is cleared, it ceases to exist and can
be reinstated only by entering the watch or wbreak command again.
To disable watches or watch breaks temporarily, use the wdisable
command.

The integer parameter specifies the watch or watch break number as
displayed by the wlist command. You can specify as many watch or
watch break numbers as needed. An asterisk (*) clears all watches
and watch breaks, and last clears only the most recently set watch
or watch break. You can specify a range of watches or watch breaks
with integer..integer.

EXAMPLES
wclear 2 5 6

clears watches or watch breaks numbered 2, 5, and 6.

wclear last
clears the last watch or watch break set.

cpr 65 / 76

wc *
clears all watches or watch breaks.

wc4..7
clears watches 4, 5, 6, and 7.

SEE ALSO
Watch , WBreak , WDisable , WList

1.73 WDisable

wdisable - Disables (turns off) one or more watches

SYNOPSIS

wd[isable] integer [integer...]
wd[isable] *|l[ast]
wd[isable] integer..integer

DESCRIPTION
The wdisable command disables (turns off) one or more watches or
watch breaks. When a watch or watch break is disabled, it is not
recognized by CodeProbe, but it remains on the list of current
watches or watch breaks.

The integer parameter specifies the watch or watch break number as
displayed by the wlist command. You can specify as many watch or
watch break numbers as needed. An asterisk (*) disables all watches
and watch breaks and last disables only the most recently set watch
or watch break. You can specify a range of watches or watch breaks
with integer..integer.

To re-enable a disabled watch or watch break, use the wenable
command.

EXAMPLES
wdisable 2 5 6

disables watches or watch breaks numbered 2, 5, and 6.

wdisable last
disables the last watch or watch break set.

wdisable *
disables all watches or watch breaks.

wdisable 4..7
disables watches 4, 5, 6, and 7.

SEE ALSO
Watch , WBreak , WClear , WEnable , WList

1.74 WEnable

cpr 66 / 76

wenable - Enables (turns on) one or more watches

SYNOPSIS

we[nable] integer...
we[nable] [*|l[ast]
we[nable] integer..integer

DESCRIPTION
The wenable command enables (turns on) one or more watches or watch
breaks that have been disabled by the wdisable command.

The integer parameter specifies the watch or watch break number as
displayed by the wlist command. You can specify as many watch or
watch break numbers as needed. An asterisk (*) enables all watches
and watch breaks and last enables only the most recently set watch
or watch break. You can specify a range of watches or watch breaks
with integer..integer.

EXAMPLES
we 2 5 6

enables watches or watch breaks numbered 2, 5, and 6.

we last
enables the last watch or watch break set.

wenable *
enables all watches or watch breaks.

we 4..7
enables watches 4, 5, 6, and 7.

SEE ALSO
Watch , WBreak , WClear , WDisable , WList

1.75 WHAtis

whatis - Determines the type of an object

SYNOPSIS
wha[tis] expression
wha[tis] (type)

DESCRIPTION
The whatis command displays the type, location, and storage class of
an object or gives additional information about a data type. If you
specify an expression, whatis displays the C data type of the
expression. If the result of the expression is a simple variable or
a member of an array, whatis displays the address of the object and
identifies it as either static, extern, or automatic. If the result
of the expression is a function, whatis displays the address of the
function, its return type, and its location.

If you specify a type, whatis displays the full definition for the

cpr 67 / 76

type. For struct, union, and enum types, the debugger displays all
members of the aggregate. For a type that has been defined by a
typedef statement, the debuggger displays the base type of the
typedef. You can also specify basic C data types such as int or
long as the type.

This command is not supported for C++ names. Use the listsym
command to display the mangled C name, and specify the C name as the
parameter to whatis.

EXAMPLES

whatis i
determines the type of a variable named i.

wha main
determines the type, address, and defining module for the
main function.

wha 3.5
determines the type of a constant.

whatis Red
determines the type of an enumeration constant.

wha *p->c[3]
determines the type of the expression *p->c[3].

whatis (int) (1*3.4)
determines the type of an expression with a type cast.

whatis (node)
determines the type of a typedef.

whatis (struct X)
displays the members of struct X.

1.76 WHEre

where - Shows the calling sequence

SYNOPSIS

whe[re] [a[rgs]] [integer]

DESCRIPTION
The where command displays a list of the function calls in the call
sequence. Calls are listed in reverse order beginning with the most
deeply nested function. For example, if main calls firstfunc at
line 92, firstfunc calls nextone, and nextone calls innermost at
line 68, the output from the where command would look like this:

1 In routine fpreg.o:\fpreg.c\innermost 48
2* Called from fpreg.o:\fpreg.c\nextone 68 (+0xE)
3 Called from fpreg.o:\fpreg.c\firstfunc 82

cpr 68 / 76

4 Called from fpreg.o:\fpreg.c\main 92

The numbers on the left indicate a level number that can be passed
to the env command. Level 1 is the run environment or the function
in which you are currently stopped. The caller’s level is 2, its
caller is 3, and so on. These level number designations change over
time as the program steps into and returns from functions. The
asterisk indicates the current user environment as set by the env
command.

The args option displays the arguments to each function like the
args command.

The integer parameter specifies the number of calls to be displayed.
By default, only the 20 most recent calls are printed.

You can also display the calling sequence by opening the Calls
window.

The Calls window also displays this information.

EXAMPLES
whe

displays a list of the last 20 function calls.

where 5
displays a list of the last 5 function calls.

where a
displays the arguments to each function.

SEE ALSO
ARgs , ENV

1.77 WIndow

window - Opens or closes a window

SYNOPSIS
wi[ndow] <window-name> [on | off]

DESCRIPTION
The window command opens or closes the specified window. You can
specify any of the following window-names:

c[alls] mo[dules] w[atch]
he[lp] ms[g] s[ource]
me[mory] r[egister]

If you do not specify on or off, the window command toggles the
specified window. (If the window is currently opened, the window
command closes it, and if it is currently closed the window command
opens it.)

If you specify on and the name of a window that is already open, the

cpr 69 / 76

specified window pops to the foreground.

The window command is ignored in line mode.

EXAMPLES
wi register

toggles the Register window.

window help on
opens the Help window or pops it to the top.

1.78 WList

wlist - Lists all watches

SYNOPSIS
wl[ist]

DESCRIPTION
The wlist command displays a list of all watches and watch breaks.
wlist displays the list of all watch and watch breaks, as shown in
the following example:

1 <dynamic> i : 42 (0x2A)
2! <static register> d : 21
3 * <dynamic> q : 14 (0x0E)

The numbers 1, 2, 3, and 4 are watch or watch break numbers. You
can use these numbers to identify a specific watch or watch break in
the wclear, wdisable, and wenable commands. If the number is
followed by an asterisk (as with number 3), the watch or watch break
is disabled. An exclamation point (!) indicates a watch break.
Following the number is a description of the watch or watch point.
In the above example, watch number 1 is a watch on the variable i,
and its current value is 42 (0x2A in hexadecimal).

EXAMPLES
wlist

lists all watches.

SEE ALSO
Watch , WBreak , WClear , WDisable , WEnable

1.79 WMSG

wmsg - Writes a message to the Message window

SYNOPSIS
wmsg <integer> <message-text>

DESCRIPTION

cpr 70 / 76

The wmsg command writes the text specified by the message-text in
the Message window. The integer parameter specifies the line number
in the window for the text. Line 0 is the top line. This command
is used primarily with AREXX scripts.

EXAMPLES
wmsg 0 --- This is the Message window. ---

displays the string --- This is the Message window. --- on
the top line of the Message window.

wmsg 12 This goes on line 12.
displays the string This goes on line 12. on line 12 of the
Message window.

1.80 MEMCMP

memcmp - Compares two memory blocks

SYNOPSIS
i = memcmp(a, b, n);
int i; /* comparison results */
void *a, *b; /* blocks being compared */
int n; /* block size in bytes */

DESCRIPTION
The memcmp function compares two memory blocks and returns a value whose
sign indicates the collating sequence of the blocks, as follows:

Return Meaning
-------- -----------------------
Negative First block below the second

Zero Blocks are equal
Positive First block above the second

EXAMPLES
display memcmp(ptr1, ptr2, n)

displays the result of comparing ptr1 and ptr2 for n bytes.

b 27 when(memcmp(ptr1, ptr2, 10) < 0)
breaks at line 27 when the 10 bytes pointed to by ptr1
evaluate to a value less than the value of the 10 bytes
pointed to by ptr2.

SEE ALSO
MEMCPY , MEMMOVE , MEMSET

1.81 MEMCPY

memcpy - Copies a memory block (non-overlapping)

SYNOPSIS
to = memcpy(to, from, n);

cpr 71 / 76

void *to; /* destination pointer */
void *from; /* source pointer */
int n; /* block size in bytes */

DESCRIPTION
The memcpy function copies data from one memory block to another.
The memcpy function cannot be used to copy overlapping memory
blocks. You should use the memmove function when copying
overlapping blocks.

CAUTION!!
This function produces unpredictable results if there is not
enough memory to hold the data at the destination memory
location.

On some systems, you can crash your machine.

EXAMPLES
call memcpy(ptr1, &j, 10)

copies 10 bytes from ptr2 to ptr1.

call memcpy(0x804a, myptr, 50)
copies 50 bytes from myptr to location 0x804a.

b 27 {memcpy(a0, a1, 15)}
sets a breakpoint at line 27 with an action to copy 15 bytes
from the memory pointed to by register A1 to the memory
pointed to by register A0.

SEE ALSO
MEMCMP , MEMMOVE , MEMSET

1.82 MEMMOVE

memmove - Copies a memory block (possibly overlapping)

SYNOPSIS
to = memmove(to, from, n);
void *to; /* destination pointer */
void *from; /* source pointer */
int n; /* block size in bytes */

DESCRIPTION
The memmove function copies data from one memory block to another.
Overlapping blocks are handled correctly.

CAUTION!!
This function produces unpredictable results if there is not
enough memory to hold the data at the destination memory
location.

On some systems, you can crash your machine.

EXAMPLES
call memmove(ptr1, &j, 10)

cpr 72 / 76

copies 10 bytes from ptr2 to ptr1.

call memmove(0x804a, myptr, 50)
copies 50 bytes from myptr to location 0x804a.

b 27 {memmove(a0, a1, 15)}
sets a breakpoint at line 27 with an action to copy 15 bytes
from the memory pointed to by register A1 to the memory
pointed to by register A0.

SEE ALSO
MEMCPY , MEMCMP , MEMSET

1.83 MEMSET

memset - Sets memory to a specified value

SYNOPSIS
to = memset(to, c, n);
void *to /* base of memory to be initialized */
int c; /* initialization value */
int n; /* number of bytes to be initialized */

DESCRIPTION
The memset function sets the specified number of bytes of memory to
the specified value.

CAUTION!!
This function produces unpredictable results if there is not
enough memory to hold the data at the destination memory
location.

On some systems, you can crash your machine.

EXAMPLES
call memset(ptr, 0, 100)

sets 100 bytes to 0 starting at the address pointed to by
ptr.

call memset(a0, ’X’, 50)
sets 50 bytes to the ASCII character X starting at the
address pointed to by register A0.

SEE ALSO
MEMCPY , MEMCMP , MEMMOVE

1.84 STRCAT

strcat - Concatenates two strings

SYNOPSIS
to = strcat(to, from);

cpr 73 / 76

char *to; /* destination pointer */
char *from; /* source pointer */

DESCRIPTION
The strcat function copies data from one string to the end of
another string until a null character is found. Do not use strcat
to copy overlapping strings.

CAUTION!!
This function produces unpredictable results if there is not
enough memory to hold the data at the destination memory location.

On some systems, you can crash your machine.

EXAMPLES
call strcat(myptr, "foo")

concatenates the string "foo" after the string pointed to by
the variable myptr.

SEE ALSO
STRLEN , STRCMP , STRCPY

1.85 STRCMP

strcmp-Compares two strings

SYNOPSIS
i = strcmp(a, b);
int i; /* comparison result */
char *a, *b; /* strings being compared */

DESCRIPTION
The strcmp function compares two strings and returns a value whose
signs indicate the collating sequence of the blocks as follows:

Return Meaning
-------- -----------------------
Negative First string below the second

Zero Strings are equal
Positive First string above the second

EXAMPLES
display strcmp("abc", "def")

tests the strings "abc" and "def" and displays the return
value. The value indicates whether the strings are equal or
which string is higher.

break myfunc when(strcmp(arg, "foobar") == 0)
breaks at the function myfunc when the variable arg points
to the string "foobar".

SEE ALSO
STRLEN , STRCPY , STRCAT

cpr 74 / 76

1.86 STRCPY

strcpy - Copies a string

SYNOPSIS
to = strcpy(to, from);
char *to; /* destination pointer */
char *from; /* source pointer */

DESCRIPTION
The strcpy function copies data from one string to another until a
null character is found. Do not use the strcpy function to copy
overlapping strings.

CAUTION!!
This function produces unpredictable results if there is not
enough memory to hold the data at the destination memory
location.

On some systems, you can crash your machine.

EXAMPLE
call strcpy(a, b)

copies the string pointed to by b to the memory location
pointed to by a.

SEE ALSO
STRLEN , STRCMP , STRCAT

1.87 STRLEN

strlen - Returns the length of a string

SYNOPSIS
len = strlen(s);
int len; /* length of string s */
char *s; /* string to scan for length */

DESCRIPTION
The strlen function returns the length of a string, as determined by
the index of the first null character found.

EXAMPLE
display strlen("hello")

displays the length of the string "hello", which is 5.

display strlen(0x804a)
displays the length of the string starting at address
0x804a.

SEE ALSO
STRCMP , STRCPY , STRCAT

cpr 75 / 76

1.88 HELP

Getting Around
Organization

1.89 getting around

You have reached this Help window by either clicking on the Help
button or by hitting the Help key within the SAS/C Help utility.
Unlike other help topics present in the SAS/C Help utility, the Help
help topic opens its own window. You must close this window by
clicking on the close gadget or hitting escape before returning to
the SAS/C help utility. You cannot hit the Retrace button to return.

To quit the SAS/C Help utility, select Quit from the Project menu or
click on the close gadget. You may also hit escape.

Most help screens will display one or more buttons as part of the text.
Clicking on these buttons will provide further information on the topic
listed on the button. You can also reach these help topics through the
main Contents screen or one of its sub-screens.

In addition, double-clicking in the help window will bring up a help
screen for the word under the mouse cursor, if such a help screen
exists.

While in the SAS/C Help utility, you may retrace your steps through the
help screens you have selected by clicking on the Retrace button.

The Browse buttons will move you forward and backwards between help
screens. The help screens are usually arranged alphabetically by
command or topic.

1.90 ORGANIZATION

The CPR Amigaguide Help Utility is organized into three sections. The
sections are:

- Commands and Builtin Functions
- Parameter Types

- Common Problems

The first screen (the screen displayed when you select the "Contents"
button) displays an alphabetized list of all commands and builtin
functions that you can use in CPR. Selecting one of these buttons will
display a window with sections titled "SYNOPSIS", "DESCRIPTION",
"EXAMPLES", and "SEE ALSO".

The "SYNOPSIS" section describes the syntax of the command, including
any parameters that it may take. A parameter is the part of the command
that is specific to each situation in which you use it. For example,
the command "display my_variable" displays the contents of a variable

cpr 76 / 76

called my_variable. The name of the variable can vary, so this is
represented in the "SYNOPSIS" section by placing the word "variable" on
a button in its proper place in the syntax. Clicking on this button
will pop up a description of what can replace "variable" in the syntax
for the command.

The "DESCRIPTION" section describes what the command does. If present,
the "EXAMPLES" section gives some common examples that will help explain
the use of the command. The "SEE ALSO" section lists other related
commands that either have a similar function or that can be used in
conjuction with the command. The commands listed in the "SEE ALSO"
section are equipped with links to allow you to quickly reference them.

The first screen also displays two buttons that will lead you to the
Parameter Types and Common Problems windows. In the Parameter Types
window, buttons are displayed for all of the different types of
parameters that the CodeProbe commands and builtin functions may take.
Selecting one of these buttons will pop up the same description for each
that is displayed from the parameter buttons in the "SYNOPSIS" section
of each command.

The Common Problems section described some problems that you might run
into while running CPR for which there is a simple solution. If you
have questions that aren’t answered in this question, please contact
Technical Support. Please read the section titled "Contacting Technical
Support" in the User’s Guide volume 1 before doing so.

	cpr
	CPR Help
	parameter types
	ADDRESS
	ARRAY-SLICE
	EXPRESSION
	ITEMSIZE
	LOCATION
	NUMBER
	RANGE
	REGISTER
	STRING
	SUBRANGE
	TASK-ADDRESS
	TASK-NAME
	TYPE
	VARIABLE
	builtin function parameters
	Activate
	ALias
	ARgs
	BClear
	BDisable
	BEnable
	BList
	Break
	Call
	CAtch
	DEActivate
	DEFine
	DETach
	Display
	DUmp
	DZero
	ECho
	ENV
	EXecute
	EXPAND
	FINish
	FRegister
	Go
	HELP
	HUnks
	Jump
	List
	listsym
	LOg
	modules
	OPt
	Proceed
	PS
	Quit
	Register
	REStart
	RETurn
	RFlag
	SEArch
	SEt
	SLEep
	show
	SOurce
	STArt
	SYMBol
	SYMload
	TAsks
	Trace
	TS
	UNAlias
	Unassemble
	UNDefine
	Watch
	WBreak
	WClear
	WDisable
	WEnable
	WHAtis
	WHEre
	WIndow
	WList
	WMSG
	MEMCMP
	MEMCPY
	MEMMOVE
	MEMSET
	STRCAT
	STRCMP
	STRCPY
	STRLEN
	HELP
	getting around
	ORGANIZATION

