scmsg

scmsg

] COLLABORATORS
TITLE
scmsg
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

scmsg iii

Contents
1 scmsg 1
1.1 SAS/C Error/Warning Messages« . o o v v v i it e e e e e e e e e e 1
1.2 compiler L e |
I3 Linker 6
1.4 cplusplus 7
LIS StCE . . . 14
1.6 ANSICOMPILER FLAG s 14
1.7 semxxl . ..o 14
1.8 SCIMXXZ 15
1.9 semxXX3 . ..o e 15
LI0 semxX4 e 15
LI1 semXXS . . o o o 15
112 semXXO . . . L e e 15
I3 SCMXXT . . o o e e e e e e e 16
L14 semxXX8 16
115 semxXX9 . . e 16
116 semx10 o 16
LI7 semx1l . . 0o 16
118 semx12 . . o o L 17
119 semxX1I3 . . . 17
120 semOOL oo 17
1.21 semO02 e e e 17
1.22 semO03 17
123 semO04 18
1.24 scmO0S5 e 18
125 semO06 18
1.26 scmO07 o e e e e e e 18
1.27 semO08 e 19
1.28 semO09 19

1.29 semOI0 oo e 19

scmsg iv
130 semOLL . . o o e 19
131 scmO12 . . . o 20
1.32 semO13 . . . 20
1.33 scmO14 . . . 20
134 semOLS . . . 20
135 semO16 21
1.36 semO17 . . . o 21
137 semO18 . . . o o 21
1.38 scmO19 . . . e 21
1.39 scmO20 22
140 semO21 . . . o e 22
L1A1 scmO22 . . . o e 22
142 semO23 . . . e 22
1.43 scmO24 . . . L 23
144 semO25 . . . L e 23
145 scmO26 L 24
146 semO27 L 24
147 semO28 o 24
1.48 scmO029 e e 24
1.49 semO30 25
150 semO31 . . . e 25
1.51 semO32 . . . o 25
1.52 semO33 . . L 25
1.53 semO34 . . L e 26
1.54 scmO35 . . L e 26
1.55 semO36 26
1.56 semO37 . . . 27
1.57 semO38 27
1.58 scmO39 . . . L e 27
1.59 semO40 . . . o 27
1.60 semO41 L 27
161 semO42 . . L 28
1.62 scmO43 . . e 28
1.63 scmO44 . . L L 28
1.64 scmO45 . . . e e 29
1.65 semO46 L 29
1.66 scmO47 . . . L e e 29
1.67 scmO48 29
1.68 scmO49 . . . L e 29

scmsg v
1.69 semOS50 L 30
170 semOS1 . . . o o 30
L71 semOS52 . . L e 30
172 semO53 . . . L 30
173 semOS54 . . . e 30
174 semO55 L 31
175 semOS56 . . . 31
176 semOS57 31
177 semOS8 . . . o e 31
178 semO059 31
1.79 semO60 L 32
1.80 scmOO1 32
181 semO62 32
1.82 scmO63 33
1.83 semO64 L 33
1.84 scmO05 33
1.85 semO66 e 33
1.86 scmO67 34
1.87 semO68 34
1.88 scmO69 34
1.89 scmO70 o e e e e 34
1.90 semO71 o 35
191 semO72 . . . o e e e e 35
1.92 semO73 . . . o 36
1.93 scmO74 . . . e e 36
1.94 semO75o 36
1.95 scmO76 e e e 37
1.96 scmO77 o 37
1.97 semO78 . . . o e e e 37
1.98 scmO79 37
1.99 scmO80 o e e e 38
L1.100scmO8L e 38
1.101semO82 o e e e e 38
1.1025cmO83 39
1.103scmO84 e e e 39
1.104scmO8S5 39
1.105scmO86 o e e e e 40
1.106ScmO87 e 40

1.107semO88 L e 40

scmsg vi

1.108scmO89 e e 40
1.109scmO90 L e 41
1.110scmO91 . . . o e 41
LI11semO92 o 41
1.112semO93 . . . e e 42
L113scmO94 o e 42
1.114scmO95 . . . o e 43
L115scmO96 o o 43
1.116secmO97 . . . o o e e e 43
L117scmO98 o 43
L.118scmO99 e 44
L119seml00 o o 44
L120semlOl . . . oo e 44
L121seml02 . . . o 44
1.122seml03 . . . e 45
1.123scm104 . . . 45
L124seml05 o e 46
L125seml06 o e 46
L126seml07 . . . o e e 46
LI27seml08 . . . o 46
1.128seml09 e e 47
L129seml10 o 47
LI30semlll . . o 47
LI3LsemlI2 . .o oo 47
1.132seml13 . . e e e 48
LI33semlld . . o 48
LI34scml1S .. o e e e 48
LI35semll6 . . . o 49
1136scml17 . ..o e e e e 49
LI37semll8 . . o 49
1I38scml19 . . . e e 49
L139seml20 L 50
1.140scml2] . . .o e e e e 50
L141seml22 . . . o oo 51
1.142scml23 . . e e e e 51
L143seml25 . . L o 51
1.144scml26o e e e 52
LI45seml27 . . L o o e 52

1.146scml128 L e 52

scmsg vii

L147scml29 . . oo o e e e 52
L148scml31 . . . o 53
1.149scml32 . . e 53
L1150secm133 . . 54
LISTseml34 . o o 54
L152scml35 . . . 54
LIS3seml36 . . . o 54
LIS4seml37 . . o 55
LISSseml38 o o o 55
1.156scm139 . . 55
LISTseml40 . . . o o 55
LIS8scmIA2 . . L o 56
1.159scml43 . . e e 56
L1.160scm146 L e 56
LI61seml47 . . o o 57
L1162scm148 . . . o 57
1.163scml49 . . . e e 57
L164scm1S0 L 58
LI65ScmIS2 . . . o 58
L166ScmIS4 . . L 59
LI67scmISS . . . o e 59
LI68ScmIS0 59
1.169scm1S8 e e 60
L.1708cm1S9 .« . L 60
LI71semlO] . . . o o o e e 60
L1725cml02 . . L . e e 60
1.173seml603 . . . L e e e 60
L174scml64o 61
L175scml05 . . . o o e e e 61
LI76scml66 61
L177seml09 o e e e e e 61
LI78secml70 o o 62
1.179scml76 o o e e e e e 62
LI80ScmITE .« . o 63
LABIscmIT7O . . . o e e 63
LI82scml80 63
LA83scml81 . . . o e 63
LI84scml82 64

1.185seml183 . . . e 64

scmsg viii

LI86ScmIBA . . . e 64
LI87scm18S . . . 64
LI88ScmIBO e 64
LI89seml87 65
1.190scm188 e 65
L191secm189 . . . 66
1.192scml190 e e e 66
1.193scm192 . . . L 66
1.194scml193 . . e 67
1.195scm194 . . 67
1.196scm105 . . . e 68
1.197scm106 L 68
1.198scml1O98 . . . e 68
1.199scm199 . . . 68
1.2008cm200 e e 68
1.201sem202 L e 69
1.2025cm204 e 69
1.2035cm209 . . . L 69
1.2045cm212 . . L o e 70
1.2055cm213 . . L L 70
1.206SCm2L6 e 70
1.207sem217 . . . o oo 71
1.208scm2I8 71
1.200secm220 e 71
1.210sem223 . . L e e e e e 71
1.211sem224 . . . oL 72
1.2125em225 . . oL e e e 72
L2133Cm226 o e e e 73
1.214sem301 . . . e e e 73
L215sem302 . . L . e 73
1.2165ecm303 . . . L e e e e 73
1.217sem304 o 73
1.218scm305 e e e e 74
1.2195cm306 L e 74
1.220scm307 e e e e e 74
1.221sem308 74
1.2225cmd02 . . . L e e e 75
1.223scmd03 . . L 75

1.224semd04 . . . L e 75

scmsg iX

1.2255cmd05 . . L e 75
1.2265cmd406 L 75
1.2273cmd07 . . . o e 76
1.228scmd08 L 76
1.229scmd09 . . . L e e 76
1.230scmd10 . . . L e 76
1.231semdll . . o e 76
1.232scmd412 . . L 76
1.233scmdlS . . . e 77
1.234semd416 77
1.235scmdl7 . . o o e e 77
1.236sem1101 o 77
1.237seml102 . . . o o o e e 77
1.238scml103 . . . o 77
1.239seml104 o o e 78
1.240scm1105 o L 78
1.241seml106 o o o e 78
1.2425cm1107 o o e 78
1.243seml108 o o o 78
1.2445cm1109 o oL 79
1.245semll10 . . . oo o e e 79
1.246semll11 . . Lo o 79
L247semll12 . . oo o e 79
1.248semll13 . . L o o e 79
1.249scml 114 . . .o o o e e 79
1.250semllIS © . L oo 80
1.251semll16 . . . o o o e e e 80
1.252semll17 . . Lo 80
1.253seml 118 . . . o o e e 80
1.254semll19 . . L oo 80
1.255seml12] . . oo o o e e e 80
1.256seml122 . . L o L e e 81
1.257seml123 . . o o o e e 81
1.258seml124 . . L o e 81
1.259seml125 . . o o o e e 81
1.260scmlI26 oL e e 81
1.261seml 127 . . .o o o e e e e e e 81
1.2625cml129 . . L L L e 82

1.263sem1130 L L e 82

scmsg X

1.264scm1200 L L e 82
1.265scm1205 L 82
1.266scml200 oo e e e e e 82
1.267scm1208 L e 83
1.268scml1319 L L 83
1.269scm1320 L L 83
1.2708em132] . . L e 83
L.271seml322 . L . o o 83
1.2725eml1323 . L L L e 83
1.273scm1324 . . . o 84
1.274secml1325 . . . L e 84
L1.275scml326 L 84
1.2768cm1327 e e 84
L.277scml328 . . . o 84
1.278scml329 L e e 84
1.279scml1330 L 85
1.280scml331 85
1.281seml332 . . L 85
1.282secml1334 . . L L 85
1.283scml335 . . L . 86
1.284scml336 L 86
1.285scml337 . . L 86
1.286scm1338 e 86
1.287scml1339 . . L 86
1.288scml1340 o 87
1.289scml342 . . . L 87
1.290secm1343 . . . e e 87
1.291seml344 . . L 87
1.292scml1345 . . . e 87
1.2935cml346 L e 87
1.294scml1347 . . . L o e e 88
1.295seml348 . . L 88
1.296scml1349 . . . L e 88
1.297seml1350 L e 88
1.298scml351 . . . o e e 88
1.2995cml352 . . L L 89
1.300scml1353 . . . e e 89
1.301seml354 . . o 89

1.302seml1355 . . . e 89

scmsg Xi

1.303scml356 e e 89
1.304sem1357 90
1.305seml1358 . . . o L 90
1.306seml1359 L e 90
1.307seml1361 oo e 90
1.308seml362 L 90
1.309scml363 e e e 90
1.310seml1364 91
1.311seml365 o o 91
1.312seml366 L 91
1.313seml367 o o e e 91
L314seml368 91
1.315seml369 o e 91
1.316seml1370 L 92
L317semlI371 . . o o oo e 92
L318seml372 L 92
1.319seml1373 . . o o L e 92
1.320seml1374 . . . oo o 92
1.321seml1375 . . o o o e 92
1.322seml376 oo 93
1.323seml1377 . . . o o e 93
1.324seml1378 L 93
1.325seml1379 . . o o 93
1.326seml1380 L 93
1.327seml1382 . . . o L e 93
1.328seml1383 94
1.329seml1384 . . . o L e 94
1.330secml1385 94
1.331seml1386 L e 94
1.332seml387 o 94
1.333sem1388 . . . L e 94
1.334seml1389 L 95
1.335seml1391 . . . oL e 95
1.336scm1392 95
1.337seml1393 . . o L e 95
1.338secml1394 95
1.339seml1395 . . . e 96
1.340scml1396 96

1.341seml1397 . . . o L e e 96

scmsg Xii

1.342seml1398 L 96
1.343sem1399 L 97
1.344sem1400 o oL 97
1.345sem1401 e 97
1.346scm1402 oL e e e e 98
1.347sem1403 98
1.348sem1404 oL 98
1.349seml1406 98
1.350seml407 . . . o oL 98
1.351seml408 o 99
1.352seml1409 . . . e 99
1.353seml410 o 99
1.354seml41l . . . o o o 99
1.355seml412 . . . 99
1.356seml1413 . . . o L 99
L357semld414 o 99
1.358seml415 . . . o o e 100
1.359seml416 oo 100
1.360scml417 . . . o o e e 100
1.361seml418 o 100
1.362scml419 . . . o e e 100
1.363sem1420 oL 100
1.364scml42] . . . oo e e 100
1.365seml422 . . . oL 101
1.366scm1423 . . . L e e e 101
1.367secml424 oL 101
1.368scml425 . . . o e e e 101
1.369secml426 L 101
1.370seml427 . . o o o e e 101
1.371seml428 o 102
1.372seml1429 . . o o e 102
1.373seml1430 102
1.374seml431 . . o o L o 102
1.375seml432 . . . oo 102
1.376seml1433 . . . L L e 103
1377semld434 . . . o o o 103
1.378seml435 . . o o e 103
1.379secml436 o 103

1.380seml437 . . . o o e 103

scmsg xiii

1.381semld438 L e 103
1.382seml439 104
1.383seml1440 L L 104
1.384semld44] 104
1.385seml442 . . . o L e 104
1.386seml443 104
1.387seml444 . . . o L L e 104
1.388semld445 105
1.389scml446 e e 105
1.390sem1447 105
1.391seml448 oL e 105
1.392seml1449 . . . 105
1.393seml1450 . . . e 105
1.394seml451 e 106
1.395seml452 . . o oL 106
1.396seml453 106
1.397seml454 . . o o e 106
1.398scml455 o 106
1.399seml456 oL e e 106
1.400seml457 o o 107
1.401seml458 . . . o o L e 107
1.402secm1460 o 107
1.403scml46] L e e 107
1.404secml462 Lo 107
1.405scml463 o o e e 108
1.406scm1464 108
1.407seml465 L L e 108
1.408scml467 o 108
1.409scml1468 L 108
1.410sem1469 o 108
LALLsemI472 . . o o o e e 109
LA12seml473 . . o o o 109
1413seml474 . . o o L e 109
LA14seml475 . . o o o o 109
1415semld476 L L e e 109
LA16scmI477 . . . o o o 109
LA41T7semld478 o e e 110
LA18scm1479 110

1.419seml480 oL e 110

scmsg Xiv

1.420seml481 . . . o 110
L1A21secml482 o L 111
1.4225cml483 . . L o 111
1.423scml484 111
1424scml485 . . . o 111
1.425scml486 L 111
1A26scml487 o e 111
1.427scml489 112
1.428scml490 o e 112
1.429scm1491 . . . o L L 112
1.430scm1492 . . . L e 112
1.431scm1493 . . 112
1.432scml494 . . . L L 112
1.433scm1495 . . . 113
1.434scm1498 . . . o e 113
1.435scm1499 . . . 113
1436scm1S500 L e 113
1437seml1501 113
1A438semlS02 o o 113
1.439scm1S503 L e 114
1440scm1S504 L 114
1441semlS06 o L 114
14425cml1S507 o o 114
1.443scm1S08 L 114
1.444scml1509 o o 114
LA445semlS10 . . . o o 114
1.446scmIST] . . o o o o e e 115
LA4TsemlIS12 . . o oo o 115
1.448scml1S13 e 115
1449scmlS14 . . L L 115
1.450scmlIS15 . . o o e 115
LASTsemISIO o 116
1AS2semlIS17 . . oo o e e e e 116
1A453semlSI8 . . L . 116
LASAscmIS22 . . . o o e e e 116
LASSsemIS23 . . L 116
LAS6SCcmIS24 . . . L L e e e 116
LASTsecm1S25 o o 117

1.458seml1S528 L e 117

scmsg XV

1.459scml1S530 o 117
1.460scm1S31 . . . L L 117
LA61semIS32 . . L o 117
1.462scm1533 . . . L 117
1463scm1S34 . . . L 118
L1A464scm1S35 . . . L 118
LA65scmIS36 L 118
1.466scm1S37 L 118
LA6Tscm1S38 118
1.468scml1539 L 118
1.469scml1S540 o L e 119
L470seml1541 . . . 119
LAT1semIS42 . . L o o 119
LAT2scm1543 . L L o 119
LAT3scmlS44 . . L o 119
LATAscm 1545 . . . o 120
LAT5semIS46 o e 120
LA765cmIS47 . . L o o 120
LATTsemIS48 . . . o e 120
LA478scml1S49 . . L L 120
1A79scml1S550 oo e e 120
1480scm1SST 121
LA81semISS3 . . . 121
1A825cm1SS4 . . L 121
1.483scmlS55 . . . o e 121
LA84secmISS0 121
LABSscmISST . . o o e e 121
1A86ScmISS8 122
LABTscmIS59 . . . o e 122
1A88scmIS60 e 122
1489scmIS02 L e e e 122
1.490scm1S64 L 122
1A91scmlS05 o o e e 122
1.4925cmlS66 e 123
1.493scmlS67 o e e e e e 123
1.494scmlS68 L 123
1.495scml1569 L e 123
1.496scm1S70 L 123

1.497semlISTL . . o o oo e e 124

scmsg Xvi

1.498scmIST2 . . . o o o e e 124
1.499scm1S73 . . . e 124
1.500scm1S74 . . . o e 124
L501scmISTS . . o e 124
1.5025cmIS76 . . . o o e 124
L1.503semlS77 . . . 125
1.504scmlS78 . . . o 125
1.505scm1S79 . . . o 125
1.506scmIS80 L e 125
L1.507scm1S81 . . . o o L 126
L1.508secmIS82 o e 126
1.509scm1583 . . . L L 126
L510semlS84 . . o . o 126
LS11secmlS8S . . . o o o 126
L5128emlS86 o o e 126
L513scmlS87 o o 127
LS14semlS88 o o 127
L515semlS89 .« . L 127
1.516seml1S590 o o e 127
L517semlS91 . . o o o o 127
1.518scmlS92 . . . o e 127
1.519semlS93 © . L 128
1.520scml1594 . . . oL e 128
1.521semlS97 « . L o e 128
1.522seml1610 o o e e e 128
1.523seml61] . . . o 129
1.524seml612 . . . o oL 129
1.525seml613 . . L 129
1.526scml614 o L 129
1.527semlOlS . . L o 129
1.528scml616 o e e 130
1.529sImI03 .« . L e 130
1.530sIm425 . . . e e 130
LS31SImA26 .« . L 130
1.532sIm443 . . e e 130
1.5338Im444 . . . L 130
1.534sImA45 . . o o e 131
1.535SImA46 . . . L o 131

1.536SImA47 . . . L e e 131

scmsg XVii

1.537sIm448 . . . o o e 131
1.538sIm449 131
1.539sIm450 e 131
L1.540sImS501 L 132
1.541sImS502 oL 132
1.542sIm503 L L 132
1.543sIm504 L e 132
L1.544sIm505 133
1.545sImS00 L e e 133
1.546sIm507 133
1.547sImS508 e 133
L1.548sIm509 133
1.549sImS10 oL 134
L550sImSI2 . . . o o o 134
LSSISImSI3 . o o o e 134
1.552sImS14 . . o o o 134
1.553sImS15 .« o L o e 135
1554sImS16 o o 135
1.555sImO00 o o e e 135
1.556sImO01 o 135
1.557sIm602 oL e 135
1.558sImO03 136
1.559sIm604 L e 136
1.560sImO05 o 136
1.561SIMO07 o o e e e e e 136
1.562sImO08 136
1.563sImO09 e 136
1.564sImO10 o 136
1.565sImO11 . . . o o e 137
1.566sIMO12 L 137
1.567sImO13 o L e 137
1.568sImO14 137
1.569sImO15 o o e 137
1.570sImO16 o o 138
LSTISIMOLT . . o o o e e 138
LS72sImO18 o 138
1.573sIm619 o e 138
L574sImO20 L 138

L575sImO21 o L e 138

scmsg xviii

1.576sImMO22 L e e e 139
LSTTsIMO23 o o 139
L578sImO24 139
L.579sIm625 o L e e 139
1.580sIMO26 o e 139
LS8ISImMO27 o o 140

LS82HELP 140

scmsg 1/140

Chapter 1

scmsg

1.1 SAS/C Error/Warning Messages

Effect of Specific Compiler Flags on Compiler Error Messages
STRICT ANST
Compiler Error and Warning Messages
C++ Error and Warning Messages
Linker Error Messages
Common Problems Compiling

Common Problems Linking

1.2 compiler

* Kk Can’t delete old GST: object is in use
Continuing with no GST file

* k% Can’t open GST file: <gst-filename>

* Kk Can’t open sc:libs/<lib-name>.library

* kK Can’t open <type> file "<name>" for <mode>

* %k Combined output filename too long

* kK CXERR: <num>

* * K CXWRN : <text>

* k% Floating point overflow optimizing constants

* kK Freeing Resources

* K K Invalid symbol definition: <symbol-name>

* %k I/0 error code on file "<name>"

* kK Seek error on object file

* k% Warning: Debugging information may be incorrect for

optimized code.

Warning 1 invalid preprocessor command
Error 2 unexpected end of file
Error 3 file not found "<filename>"

scmsg 2/140
Error 4 invalid lexical token
Error 5 invalid macro usage
Error 6 line buffer overflow
Warning 7 register parameters require a prototype
Stack parameters used
Error 8 invalid conversion
Error 9 undefined identifier "<name>"
Error 10 invalid subscript expression
Error 11 string not terminated
Error 12 invalid structure reference
Error 13 member name missing
Error 14 undefined member "<name>"
Error 15 invalid function call
Error 16 invalid function argument
Error 17 too many operands
Warning 18 non-ANSI use of operator in preprocessor condition
Error 19 unbalanced parentheses
Error 20 invalid constant expression
Error 21 illegal use of struct, union, or array type
Error 22 __asm functions cannot accept structure or union arguments
Use pointers instead
Error 23 invalid use of conditional operator
Error 24 pointer operand required
Error 25 modifiable lvalue required
Error 26 arithmetic operand required
Error 27 arithmetic or pointer operand required
Error 28 missing operand
Error 29 operation cannot be performed on a pointer
Warning 30 pointers do not point to same type of object
Error 31 integral operand required
Error 32 cannot convert to required type
Warning 33 non-portable operation on structure or union
Error 34 invalid initializer expression
Error 35 closing brace expected
Warning 36 control cannot reach this statement
Error 37 duplicate statement label "<name>"
See line <number> in file "<filename>"
Error 38 unbalanced braces
Error 39 invalid use of keyword "<keyword>"
Error 40 break not inside loop or switch
Error 41 case not inside switch
Warning 42 case expression not integral
Error 43 duplicate of case value
See line <number> in file "<filename>"
Error 44 continue not inside loop
Error 45 default not inside switch
Error 46 duplicate default
See line <number> in file "<filename>"
Error 47 while missing from do statement
Error 48 invalid while expression
Error 49 else not associated with if
Error 50 label missing from goto
Warning 51 C++ comment detected
Error 52 invalid if expression
Error 53 invalid return expression
Warning 54 switch expression not integral
Warning 55 no case values for switch statement

scmsg 3/140

Error 56 colon expected

Error 57 semi-colon expected

Error 58 missing parenthesis

Error 59 invalid storage class

Error 60 incompatible struct, union or array types

Error 61 undefined struct/union tag "<tag-name>"

Warning 62 constant <number> out of range for type "type"
Valid range is <low> to <high>

Warning 63 item "<name>" already declared
See line <number> file "<filename>"

Error 64 structure contains no members

Error 65 invalid function definition

Warning 66 invalid array limit expression

Error 67 illegal object

Error 68 illegal object for structure

Error 69 struct <name> includes instance of self

Warning 70 unrecognized escape sequence

Error 71 formal declaration error "<name>"

Error 72 conflict with previous declaration
See line <number> file "<filename>"

Warning 73 declaration expected

Warning 74 initializer data truncated

Error 75 invalid sizeof expression

Error 76 left brace expected

Error 77 identifier expected

Error 78 undefined statement label "<name>"

Warning 79 duplicate of enumeration value
See line <line> file "<filename>"

Warning 80 invalid bit field or misplaced ’:’

Error 81 preprocessor symbol loop; macro expansion too long or
circular

Error 82 maximum object/storage size exceeded
Size limit for this class is <number>

Warning 83 reference beyond object size

Warning 84 redefinition of pragma or preprocessor symbol "<name>"
See line <number> file "<filename>"

Warning 85 return value mismatch for function "<name>"
Expecting "<typel>", found "<type2>"

Warning 86 formal parameters conflict with prototype
See line <number> file "<filename>"

Warning 87 argument count incorrect, expecting <number> arguments
See line <number> file "<filename>"

Warning 88 argument type incorrect
Expecting "<typel>", found "<type2>"

Warning 89 constant converted from "<typel>" to "<type2>"

Error 90 invalid argument type specifier

Error 91 illegal void operand

Warning 92 statement has no effect

Warning 93 no reference to identifier "<name>"

Warning 94 uninitialized auto variable "<name>"

Warning 95 unrecognized #pragma operand

Error 96 missing name for #pragma

Error 97 bad library base for #pragma

Error 98 invalid data for #pragma

Error 99 attempt to change a const lvalue

Warning 100 no prototype declared for function "<name>"

Error 101 redundant keywords in declaration

scmsg 4/140

Error 102 conflicting keywords in declaration

Warning 103 uninitialized constant " [name]"

Warning 104 conversion from pointer to const/volatile to pointer to
non-const/volatile

Warning 105 module does not define any externally-known symbols

Error 106 postfix expression not allowed on a constant

Error 107 too many initializers

Warning 108 zero—length arrays are not an ANSI feature

Error 109 invalid use of type name or keyword

Warning 110 enum constant expression is wrong type
Expecting "<typel>", found "<type2>"

Warning 111 non-portable enum type specified

Warning 112 include file "filename" not in GST

Warning 113 invalid structure reference
"<op>" operator invalid for type "<type>"

Warning 114 negative shift or shift too big for type shifts for type
"<type>" must be between 0 and <number> bits

Error 115 enum constant value "<number>" out of range for enum type

Warning 116 undefined enum tag "<name>"

Error 117 enum contains no members

Error 118 conflicting use of enum/struct/union tag "<name>"

Error 119 identifiers missing from definition of function "<name>"

Warning 120 Integral type mismatch: possible portability problem
Expecting "<typel>", found "<type2>"

Warning 121 hex/octal constant "<constant>" too large for char
High bits may be lost

Warning 122 missing ellipsis

Warning 123 no tag defined for enumeration
Cannot construct prototype

Error 125 invalid number

Warning 126 #endif, #else, or #elif out of order

Error 127 operand to # operator must be a macro argument

Error 128 text-from-#error

Error 129 ambiguous struct or union member "<name>"

Error 131 maximum temporary or formal storage exceeded

Warning 132 extra tokens after valid preprocessor directive

Error 133 cannot redefine macro "<name>"

Warning 134 too many arguments

Error 135 argument count incorrect for macro "<name>", expecting
<number> arguments
See line <number> file "<filename>"

Error 136 invalid use of register keyword

Warning 137 ANSI limits #line numbers to between 1 and 32767

Error 138 operation invalid for pointer to void

Warning 139 missing #endif
See line <number> file "<filename>"

Warning 140 sizeof operator used on array that has been converted to
pointer

Error 142 array size never given for "<name>"

Error 143 object has no address

Warning 146 case value out of range for switch type

Warning 147 conversion between function and data pointers

Warning 148 use of incomplete struct/union/enum tag "<name>"
See line <number> file "<filename>"

Warning 149 incomplete struct/union/enum tag in prototype scope "<name>"

Warning 150 the keyword "<name>" is meaningless for <itemtype>

Error 152 cannot define function via typedef name

scmsg 5/140
Warning 154 no prototype declared for function pointer
Warning 155 no statement after label
Warning 156 operation/comparison of pointer to "int" and pointer to
"type"
Error 158 invalid type name
Warning 159 use of unary minus on unsigned value
Warning 161 no prototype declared at definition for function "<name>"
Warning 162 non-ANSI use of ellipsis punctuator
Warning 163 initialization of auto struct, union, or array
Warning 164 & applied to array
Warning 165 use of narrow type in prototype
Error 166 unrecoverable error or too many errors
Terminating compilation
Warning 169 incompatible operands of conditional operator (?:)
"<typel>" conflicts with "<type2>"
Warning 170 overflow during operation on constants
Warning 176 implicitly promoted formal "<name>" conflicts with prototype
See line <number> file "<filename>"
Warning 178 indirect call without indirection operator
Warning 179 narrow type used in old-style definition
Warning 180 no space between macro name and its replacement list
Warning 181 "<name>" was declared both static and external
See line <number> file "<filename>"
Warning 182 static function "<name>" declared but not defined
See line <number> file "<filename>"
Warning 183 inline function declared but not defined
See line <number> file "<filename>"
Warning 184 unterminated character constant
Error 185 comma expected
Warning 186 implicit conversion between pointer and scalar
Warning 187 negative value assigned to unsigned type
Error 188 Function and data definitions not allowed when creating a GST
Warning 189 <option> option differs from the one used to build the GST
Warning 190 #include ignored because header already included
See line <number> file "<filename>"
Warning 192 wrong size for enum
Warning 193 implicit reference to struct/union member
Reference assumed to be "<reference>"
Warning 194 too much local data for NEAR reference, some changed to
FAR
Warning 195 nested comment detected
Warning 196 specified include directory not found: "<name>"
Warning 198 __regargs and __asm cannot be used on a varargs function
Error 199 unbalanced comment
See line <number> file "<filename>"
Error 200 no register specified for parameter to __asm function
Warning 202 relational comparison between unsigned and zero
Warning 204 macro invocation not terminated
Warning 209 macro invocation may have multiple side effects
Warning 212 item "<name>" already declared
See line <number> file "<filename>"
Warning 213 empty argument to preprocessor macro
Warning 216 symbol "<name>" found
Warning 217 macro invocation may call function multiple times
Error 218 declaration found in statement block
Warning 220 old-fashioned assignment operator taken as "<operators>"
Error 223 "<filename>" is not a valid GST file

scmsg 6/140
Warning 224 item "<name>" already defined
See line <number> file "<filename>"
Warning 225 pointer type mismatch
"<typel>" does not match "<type2>"
Error 226 cannot convert "typel" to "typel2"
Warning 301 Indirect reference through NULL pointer.
Warning 302 Type punning involves representation change <symbol>
Warning 303 Reference has overlapped definition <symbol>
Warning 304 Dead assignment eliminated <symbol>
Warning 305 Uninitialized variable <symbol>
Note 306 <reason> function inlined: <function name> {from
line <u>}
Warning 307 Return value missing in inline function
Note 308 Inline function does not use formal parameter <symbol>
Error 402 Wrong number of parms to builtin function
Error 403 Argument (s) to function-name must be int type
Error 404 __builtin_fpc requires MATH=68881 option
Error 405 Floating point opcode must be a constant.
Error 406 Offset from library base must be a constant
Error 407 Offset from library base must be negative
Error 408 Insufficient parameters for library call
Error 409 Too many parameters for library call
Error 410 Invalid register specification for getreg/putreg
Error 411 Value for getreg/putreg must be an integral type
Error 412 FP register used without co-processor
Error 415 Same register used twice for parameters
Error 416 No register specified for ASM call
Error 417 No Data register available to reach far formals.

1.3 linker

Error 103
Error 425
Error 426
Error 443
Error 444
Error 445
Error 446
Error 447
Error 448
Error 449
Error 450
Error 501
Error 502

Error 503
Error 504

Error 505

Error 506
Error 507
Error 508

Reduce the size of auto variables or reduce the
number of register parameters.

Out of memory!!

Cannot find library <library-name>

Cannot find object name

<filename> is an invalid file name

Hunk_Symbol has bad <symbol-type> symbol <symbol-name>

Invalid HUNK_SYMBOL <symbol-name>

Invalid symbol type <symbol-type> for <symbol-name>

<filename> is a load file

<filename> is not a valid object file

No hunk_end seen for <filename>

Object file <filename> is an extended library

Invalid Reloc 8 or 16 reference

<function-name> symbol - Distance for Reloc 16 greater than
32768

<function-name> symbol - Distance for Reloc 8 greater than 128
<variable-name> symbol - Distance for Data Reloc 16 greater
than 32768
<variable-name> symbol
128

Can’t locate resolved symbol <symbol-name>

Unknown Symbol type <symbol-type>, for symbol <symbol-name>
Symbol type <symbol-type> unimplemented

Distance for Data Reloc 8 greater than

scmsg 7/140
Error 509 Unknown hunk type <symbol-type> in Pass2
Error 510 <symbol-name> symbol - Near reference to a data item not in
near data section
Error 512 Invalid branch to <function-name> in overlay Node <module-name>
Error 513 Multiple NTRYHUNK segments not permitted
Error 514 Overlay manager _ovlyMgr is undefined
Error 515 An ALV was generated pointing to data <variable-name> symbol
Error 516 Attempt to merge BSS with CODE or CODE/DATA
Error 600 Invalid command <command>
Error 601 <option> option specified more than once
Error 602 Unable to open output file <filename>
Error 603 <string> is not a valid number
Error 604 with file is not readable
Error 605 Cannot open with file <filename>
Error 607 No FROM/ROOT files specified
Error 608 Premature EOF encountered
Error 609 Error seeking in file <filename>
Error 610 <module-name> has no parent in overlay tree
Error 611 Reloc found with odd address for symbol <symbol-name>, file
<filename>
Error 612 MERGED Data relocation to non-code section in Overlay Node
Reference at offset <hex—-address> in <module—name>,
To Unit <module—-name>
Error 613 MERGED Data relocation to static function is not resolvable
by Overlay Manager.
Reference at <offset> hex—-address in <filename>, To
Unit <filename>
Error 614 More than one MERGED data section found
Error 615 Code hunk named __ MERGED
Error 616 ALVs were generated
Error 617 MERGED data greater than 64K
Error 618 Multiple OVERLAY usage——-previous occurrences were ignored
Error 619 Ignoring null OVERLAY list
Error 620 Missing "#’ at end of OVERLAY list
Error 621 Conflicting integer sizes found
Error 622 Conflicting math types found
Error 623 Regargs function <function> called through overlay manager.
Parameters passed in registers to this function will be
destroyed. Use NEWOCV option.
Error 624 Absolute reference to <symbol> module: file <filename>
Error 625 Proper math library has not been included
Error 626 Libcode used on module <module>
Error 627 Near references found in executable that has a module

compiled with FARONLY option

1.4 cplusplus

Error
Error
Error
Error

1101
1102
1103
1104

Warning 1105

Error

1106

Warning 1107

Error

1108

Illegal token.

Can’t find file: filename.

Invalid file name.

End of file encountered in comment.

Invalid escape sequence.

illegal preprocessor directive.

Extra token(s) after preprocessor directive.
Missing identifier in preprocessor context.

scmsg 8/140
Error 1109 Redefinition of preprocessor symbol: symbol.
Error 1110 Missing ")’ in macro call.
Error 1111 Missing argument to preprocessor macro.
Error 1112 Missing comma in preprocessor expression.
Error 1113 Illegal operator in preprocessor context.
Error 1114 Missing operand in preprocessor context.
Error 1115 Illegal expression in preprocessor context.
Error 1116 Preprocessor number not a true number.
Error 1117 Integer required in preprocessor expression.
Error 1118 Extra #else or #elif.
Error 1119 Extra #endif.
Error 1121 Invalid #line format.
Error 1122 Missing parenthesis in preprocessor expression.
Error 1123 Illegal use of # operator.
Error 1124 #error directive.
Error 1125 Illegal ## expression.
Error 1126 Illegal operand of ## operator.
Error 1127 Unterminated string or character constant.
Error 1129 Character literals must contain at least one character.
Error 1130 Unterminated preprocessor conditional.
Error 1200 Syntax error more-explanation.
Error 1205 Newline within string or character literal.
Error 1206 Bad character in input (hex—-number).
Warning 1208 C style comment starting on line line-number never ends.
Error 1319 "identifier’ not declared.
Error 1320 No such class: ’'identifier’.
Error 1321 "struct’ or ’'class’ used on ‘enum identifier’.
Error 1322 "enum’ used on ’‘class identifier’.
Error 1323 "identifier’ previously declared to be a type-name.
Error 1324 "identifier’ redefined.
Error 1325 Scoped declaration in parameter list.
Error 1326 Label ’label-name’ not defined.
Error 1327 Label ’label-name’ previously defined.
Error 1328 Repeated keyword or type name: ’keyword’.
Error 1329 Conflicting keywords or type names: 'keyword-1’ and
"keyword-2'.
Error 1330 Must be integral, pointer, or member pointer.
Error 1331 Must be integral.
Error 1332 No such conversion.
Error 1334 Expression is not modifiable.
Error 1335 Invalid use of ’&’ address-of operator (object).
Error 1336 Cannot initialize (variable) with (initializer).
Error 1337 Preprocessor error.
Error 1338 Unexpected end of file.
Warning 1339 A non-lvalue array was converted to a pointer.
Error 1340 The base name ’class-1’ is ambiguous in class ’‘class-2'.
Error 1342 Conversion from a virtual base class (’class-name’) to a
derived class is not allowed.
Error 1343 Ambiguous conversion to integral type from ’class
class—name’ .
Error 1344 Ambiguous conversion to pointer from ’‘class class—-name’.
Error 1345 Ambiguous conversion to testable from ’'class class—-name’.
Error 1346 Ambiguous conversion to derived member pointer.
Error 1347 Ambiguous conversion of overloaded function pointer.
Error 1348 Ambiguous conversion to class.
Error 1349 Ambiguous conversion.
Error 1350 Ambiguous function call.

scmsg 9/140

Error 1351 Overloaded functions (’function-1’ and ’function-2’) used
ambiguously in conditional expression.

Error 1352 Ambiguous common base class: class—name.

Error 1353 Ambiguous member name: member—-name.

Error 1354 Non-static member ’'member-name’ must be used with dot, arrow,
or address—-of operator.

Error 1355 Value of an undefined class cannot be used.

Error 1356 An array may not be the target of an assignment.

Error 1357 A function may not be the target of an assignment.

Error 1358 Cannot operation a pointer to type.

Error 1359 Typedef names cannot be declared in parameter lists.

Error 1361 Cannot take the address of a member of virtual base class.

Error 1362 Invalid initializer.

Error 1363 Invalid use of void.

Error 1364 Cast to undefined class not allowed.

Error 1365 Cannot find offset into non-class.

Error 1366 Cannot find offset into undefined class.

Error 1367 Invalid use of the scope operator.

Error 1368 Cannot find the offset of ’"object’.

Error 1369 Cannot find offset because class ’‘class—-name’ has no member
named ’‘member—-name’ .

Error 1370 Cannot take the size of an undefined class.

Error 1371 Cannot dereference pointer to undefined class.

Error 1372 No such constructor.

Error 1373 "identifier’ previously declared as type-1. Cannot be
defined as type-2.

Error 1374 No such member ’'member—name’.

Error 1375 Member ’"member—name’ redeclared.

Error 1376 "identifier’ not a definable member.

Error 1377 "this’ may occur only in a (non-static) member function.

Error 1378 Cannot create a new value of a function.

Error 1379 Cannot create a new value of a reference.

Error 1380 Cannot create a new instance of an undefined class.

Error 1382 Missing array size in expression.

Error 1383 Class ’'class—-name’ has no default constructor.

Error 1384 Cannot initialize new array.

Error 1385 Cannot delete an object of an undefined class.

Error 1386 Length expression of array must be integral.

Error 1387 No match for call to function or overloaded operator.

Error 1388 Missing constructor body.

Error 1389 Non-virtual functions ('’ function-name’) cannot be declared
pure.

Error 1391 Uninitialized const identifier.

Error 1392 Uninitialized const identifier or reference: identifier.

Error 1393 Const identifier or reference member ’'member-name’ must be
initialized.

Error 1394 Member ’"member—-name’ must have initializer, class
"class—name’ has no default constructor.

Error 1395 Base ’'class—name’ must have initializer, class ’'class—name’
has no default constructor.

Error 1396 Virtual base class ’'class-name’ must have initializer since
class has no default constructor.

Error 1397 "identifier’ is not a base class or member of class
"class—name’ .

Error 1398 Member access through protected base class not allowed for
"member-name’ .

Error 1399 Member access through private base class not allowed for

scmsg 10/140
"member—-name’ .

Error 1400 Base access through protected base class not allowed.

Error 1401 Base access through private base class not allowed.

Error 1402 Cannot access protected member ’'member-name’.

Error 1403 Cannot access private member ’'member-name’ .

Error 1404 Virtual function ’function-name’ declared in virtual base
"class—name’ must be overridden.

Error 1406 Parameter of type ’'void’.

Error 1407 Default argument expression missing.

Error 1408 Multiple declarations of function specifying default
arguments.

Error 1409 Arrays cannot contain elements of type ’void’.

Error 1410 Arrays cannot contain bitfields.

Error 1411 Arrays cannot contain functions.

Error 1412 Functions cannot return functions.

Error 1413 Functions cannot return arrays.

Error 1414 Functions cannot return bitfields.

Error 1415 Functions cannot return undefined classes.

Error 1416 Pointers cannot point to references.

Error 1417 Pointers cannot point to bitfields.

Error 1418 References cannot refer to references.

Error 1419 References cannot refer to bitfields.

Error 1420 References cannot refer to objects of type ’'void’.

Error 1421 Member pointers cannot point to bitfields.

Error 1422 Member pointers cannot point to references.

Error 1423 Member pointers cannot point to objects of type ’'void’.

Error 1424 Bitfields must be of integral type.

Error 1425 Overloaded functions with indistinguishable arguments.

Warning 1426 K&R C style function definition.

Error 1427 K&R C style functions cannot return classes with constructors
or destructors.

Error 1428 Conversion function must be a member function.

Error 1429 Destructor function must be a member function.

Error 1430 Conversion function ’function-name’ not correctly declared.

Error 1431 Destructor function ’'destructor’ not correctly declared.

Error 1432 Copy constructor for a class may not take an argument whose
type is that class.

Error 1433 Operator function ’function-name’ not correctly declared.

Error 1434 Invalid linkage specifier.

Error 1435 Linkage differs from prior declaration.

Error 1436 Unknown linkage convention.

Error 1437 Missing class name.

Error 1438 Repeated base class.

Error 1439 Objects of abstract classes (’object-name’) cannot be
declared.

Error 1440 Object of type ’'void’.

Error 1441 Static members ('member-name’) of a local class may not be
initialized.

Error 1442 Cannot use undefined enum ’identifier’.

Error 1443 Enum constants (’identifier’) must be initialized with
integral wvalues.

Error 1444 A class cannot be a member of itself.

Error 1445 Cannot declare members of an undefined class.

Error 1446 Cannot declare arrays of an undefined class.

Error 1447 Cannot declare variables of an undefined class.

Error 1448 Cannot initialize data members in member declaration.

Error 1449 Member function of a local class must be defined within that

scmsg 11/140
class: class—name.

Error 1450 Member ’'member-name’ declared ’'void’.

Error 1451 "friend’” used on non-function.

Error 1452 "friend’” can only be used inside a class.

Error 1453 Invalid syntax for access declaration.

Error 1454 Invalid access adjustment: ’'member-name’.

Error 1455 Access cannot be changed, but only reinstated.

Error 1456 Previously declared as a member in this class.

Error 1457 "class::member’ is not a member of a base class.

Error 1458 Access declaration names class that is not a base of this
class.

Error 1460 Constructor function ’constructor’ not correctly declared.

Error 1461 Destructor function ’'destructor’ not correctly declared.

Error 1462 Operator function ’function-name’ not correctly declared.

Error 1463 Static functions (' function-name’) cannot be virtual.

Error 1464 Constructors (’constructor’) cannot be virtual.

Error 1465 Static functions (’/function-name’) cannot be used to override
virtual functions.

Error 1467 Linkage specification cannot be used in a member declaration
(" member—name’) .

Error 1468 Cannot define classes or enums 1in return types or parameter
lists.

Error 1469 Invalid parameter name ’'parameter’.

Error 1472 Formal ’"argument’ is not listed in function declaration.

Error 1473 Initialized local extern ’variable’.

Error 1474 Type names (name) cannot be initialized.

Error 1475 Class with constructors must have an initializer.

Error 1476 Cannot define classes or enums in type names.

Error 1477 Not a function.

Error 1478 A mem-initializer may be used only within constructor
functions.

Error 1479 Base or member ’identifier’ re-initialized.

Error 1480 0ld style base initializer cannot be used on class with no
bases.

Error 1481 0ld style base initializer cannot be used on class with
multiple base classes.

Warning 1482 Statement is unreachable.

Error 1483 "case’ label must be within a switch statement.

Error 1484 "default’ label must be within a switch statement.

Error 1485 "continue’ must be within a loop (‘do’, ’'for’, or ’'while’)
statement.

Error 1486 "break’ must be within a switch or loop ('do’, ’'for’, or
"while’) statement.

Error 1487 Missing return value.

Error 1489 Return value given for constructor, destructor, or void
function.

Error 1490 Missing function name in function declaration.

Error 1491 Illegal formal declaration list in prototype function
definition.

Error 1492 Formal (’argument’) must be declared in function header
identifier list.

Error 1493 Expression in array declarator must be constant expression.

Error 1494 Expression in array declarator must be integral.

Error 1495 Expression in array declarator must be positive.

Error 1498 Invalid bitfield size.

Error 1499 Cannot use undefined class ’‘class—-name’ as base class.

Error 1500 Missing declaration-specifier.

scmsg 12/140

Error 1501 Illegal use of ’'item’ in local member function.

Error 1502 A class cannot be derived from a union (’union—-name’).

Error 1503 A union ("union—-name’) cannot be derived from another class.

Error 1504 Constant expression contains a division by zero (0).

Error 1506 Cannot take the size of a function.

Error 1507 Cannot take the size of a bitfield.

Error 1508 Cannot take the size of void.

Error 1509 Cannot take the size of array with unspecified length.

Warning 1510 Cannot Jjump into a block to a label after a declaration
having an initializer.

Error 1511 Overloaded member functions (’function-name’) may not be both
static and non-static.

Error 1512 Function hides a virtual function from base class.

Error 1513 Overriding virtual function has different return type.

Error 1514 Arrays cannot contain references.

Error 1515 Previous declaration of function had different return type.

Error 1516 Cannot have two extern "C" functions with same name (’name’).

Error 1517 Previous declaration differed in the use of _ builtin.

Error 1518 object-type (’expression’) cannot be used in default argument
expressions.

Error 1522 Keyword can only be used on functions.

Warning 1523 "keyword’ cannot be applied to object-type.

Error 1524 Previous declaration was not static.

Error 1525 Function declared ’'inline’ after first use.

Error 1528 Member functions must be C++ functions.

Error 1530 Previous errors prevent continuation.

Error 1531 A declaration must declare something.

Error 1532 function—-name cannot have ’storage-type’ storage class.

Warning 1533 Extra comma at end of enumeration list.

Warning 1534 Enum value: value is used for both ’'enum-1’ and ’'enum-2’.

Error 1535 Cannot overload ’'main’.

Error 1536 Cannot call or take the address of 'main’.

Error 1537 "main’ cannot be ’storage-type’.

Error 1538 Anonymous classes cannot have constructors or destructors.

Error 1539 Destructor names (’destructor’) must be the same as their
class name (’class’).

Error 1540 Expression in array declarator must not be negative.

Error 1541 Cannot allocate array of class ’'class—name’ with no default
constructor.

Error 1542 Invalid constructor given for member ’'member-name’.

Error 1543 "operand-1’ and ’operand-2’ are not compatible types for
conditional operator.

Error 1544 (type-1) operator (type-2): Invalid type for binary
operator.

Error 1545 "operand’ is of invalid type for postfix operator ’operator’.

Warning 1546 "operator’ is invalid for operand type ’operand’.

Error 1547 "object’ is of invalid type for call operator.

Error 1548 Invalid pointer conversion from ’type-1’ to ’'type-2'.

Warning 1549 Non-const and/or non-volatile member function called with
const and/or volatile object.

Warning 1550 Non-constant reference ’'reference-object’ initialized with a
non-lvalue.

Error 1551 Cannot take size of pointer to overloaded function
" function—-name’ .

Error 1553 Error writing to output file: filename.

Error 1554 Inline member function does not end.

Error 1555 Static function ’function-name’ was not defined.

scmsg 13/140
Error 1556 Global anonymous unions must be static.
Error 1557 Anonymous unions may not have function members.
Error 1558 Anonymous unions may not have private or protected members.
Error 1559 "identifier’ redeclared in anonymous union.
Error 1560 An anonymous union cannot be declared as a static member.
Error 1562 Conflicting declaration of name ’identifier’ reserved for
purpose.
Error 1564 Cannot initialize a function ('’ function-name’).
Error 1565 Static members (member-name) cannot be initialized by a
mem—-initializer.
Error 1566 Enum constants (identifier) cannot be initialized by a
mem—-initializer.
Error 1567 Types must match in a delete expression: type-l->~type-2.
Error 1568 Cannot create a new value of a void.
Error 1569 Loop in —-> operators.
Error 1570 A linkage-specification may occur only in file scope.
Error 1571 Cannot define a type in return or argument types.
Error 1572 object may not have the same name as its class.
Error 1573 An overloaded operator cannot have default arguments.
Error 1574 Invalid use of abstract class: class-name.
Error 1575 An object of a class with a object-type may not be a member
of a union.
Error 1576 Error declaring ’'new’: reason.
Error 1577 Error declaring ’delete’: reason.
Error 1578 Initializer-clause cannot be used for class having a
object-type.
Error 1579 Conversion to a virtual base class (’class—name’) from a
derived class is not allowed for member pointers.
Error 1580 Cannot return (attempted-return-type) from function returning
(declared-return-type) .
Error 1581 Function ’function-name’ has an initializer.
Error 1582 Character array (array-name) too short for string of length
(string—-length) .
Error 1583 Too many initializers for (array-name) : found n
initializers.
Error 1584 Too many initializers for (class—name).
Error 1585 Left operand of ’'operator’ must be type.
Error 1586 Type ’'type’ is invalid for the left operand of ’operator’.
Error 1587 Case label value must be a constant expression.
Error 1588 Duplicate case label wvalue.
Error 1589 More than one default.
Error 1590 symbol-name is not an enum.
Error 1591 symbol-name is not a class, struct, or union.
Warning 1592 Wide and narrow character strings concatenated, using width.
Warning 1593 Missing return statement.
Warning 1594 Zero—-length array used.
Warning 1597 "%$s’ assigned to ’%s’.
Error 1610 Previous declaration of ’symbol’ was ’'attribute’, this
declaration is ’attribute’.
Error 1611 Previous declaration of ’symbol’ differed in the use of
"keyword’ .
Error 1612 Asm function has parameter without a register.
Error 1613 Asm function uses register ’'%s’ more than once.
Error 1614 Previous declaration of asm function used different
registers, was ’'%s’, now ’'%s’.
Error 1615 Explicit register ’'register’ keyword used in non-asm

function.

scmsg

14 /140

Error 1616 Vararg functions cannot be ’'__asm’.

1.5 strict

Using the STRICT compiler flag automatically turns on the ANSI flag
as well as some additional warnings. When the STRICT flag is used, the
following warning messages are turned on:

Warning 18 non-ANSI use of operator in preprocessor condition
Warning 51 C++ comment detected

Warning 70 unrecognized escape sequence

Warning 108 zero—length arrays are not an ANSI feature

Warning 111 non-portable enum type specified

Warning 120 Integral type mismatch: possible portability problem
Expecting "<typel>", found "<type2>"
Warning 137 ANSI limits #line numbers to between 1 and 32767

Warning 149 incomplete struct/union/enum tag in prototype scope "<name>"

Warning 159 use of unary minus on unsigned value

Warning 162 non-ANSI use of ellipsis punctuator

Warning 163 initialization of auto struct, union, or array

Warning 164 & applied to array

Warning 176 implicitly promoted formal "<name>" conflicts with prototype
See line <number> file "<filename>"

Warning 178 indirect call without indirection operator

Warning 179 narrow type used in old-style definition

Warning 180 no space between macro name and its replacement list

Warning 187 negative value assigned to unsigned type

Warning 189 <option> option differs from the one used to build the GST

Warning 213 empty argument to preprocessor macro

Warning 220 old-fashioned assignment operator taken as "<operators>"

1.6 ANSI COMPILER FLAG

Using the ANSI compiler flag turns on a subset of the messages turned
on by the STRICT flag. The ANSI flag turns on the following warning
messages:

Warning 18 non-ANSI use of operator in preprocessor condition

Warning 51 C++ comment detected

Warning 70 unrecognized escape sequence

Warning 108 zero—length arrays are not an ANSI feature

Warning 111 non-portable enum type specified

Warning 137 ANSI limits #line numbers to between 1 and 32767

Warning 162 non-ANSI use of ellipsis punctuator

Warning 176 implicitly promoted formal "<name>" conflicts with prototype
See line <number> file "<filename>"

Warning 180 no space between macro name and its replacement list

Warning 213 empty argument to preprocessor macro

1.7 scmxxi

scmsg 15/140

*xx Can’t delete old GST: object is in use
Continuing with no GST file

You specified the MAKEGST option, but an existing copy of the same GST was
in use by another program. Check for other compilations or applications

that are using the GST. You may also be browsing the GST with the hypergst
utility.

1.8 scmxx2

**x% Can’t open GST file: <gst-filename>

The specified GST file could not be loaded. Either the file is an invalid
GST file, or the file does not exist.

1.9 scmxx3

x%x Can’t open sc:libs/<lib-name>.library

The specified shared library could not be found. Make sure the library is
available in sc:libs.

1.10 scmxx4

**x%x Can’t open <type> file "<name>" for <mode>

The compiler could not open the specified file. The mode is either read or
write.

1.11 scmxx5

**x% Combined output filename too long

The filename produced by the compiler, with the path, overflowed the
compiler’s internal buffer (255 bytes).

1.12 scmxx6

*xx CXERR: num

An internal error prevented the compiler from continuing. Please contact
the Technical Support Division.

scmsg 16 /140

1.13 scmxx7

*x%x CXWRN: text
An internal error occurred. With CXWRN errors, the compiler attempts to

continue the compilation, but may not be able to do so. Please contact the
Technical Support Division.

1.14 scmxx8

**xx Freeing Resources
If you compile your program and your machine runs low on memory, the
compiler displays this message and frees memory to enable it to continue

the compilation. You can force the compiler to free memory at any time by
pressing Control-F in the window to which the compiler is sending output.

1.15 scmxx9

**x%x Floating point overflow optimizing constants
The global optimizer was attempting to perform compile-time constant

calculations, but the calculations caused a floating-point error. Your
code is causing floating-point numbers to overflow.

1.16 scmx10

*%x% Invalid symbol definition: symbol-name

You attempted to define the specified symbol on the command line with the
DEFINE compiler option, but the symbol did not adhere to the normal rules
for C preprocessor symbol syntax.

1.17 scmxi11

x%% 1/0 error <code> on file "name"

The compiler received the specified I/O error code from the operating
system while attempting to read the named file. Refer to The AmigaDOS
Manual, 3rd Edition (Commodore-Amiga, Inc. 1991) or see the header file
dos/dos.h for details on the numeric error codes.

scmsg 17 /140

1.18 scmx12

*%% Seek error on object file

The compiler attempted to perform a seek operation on the output object
file but encountered an I/O error.

1.19 scmx13

*%x% Warning: Debugging information may be incorrect for optimized code.

You are compiling with the debug option, and you are also using the global
optimizer. The optimizer eliminates variables and moves functions inline,
so the debugger may not be able to provide accurate information.

1.20 scmO001

Warning 1l: invalid preprocessor command

This warning is generated by invalid use of preprocessor commands. For
example, you could specify an unrecognized command, fail to include a space
between command elements, or use an illegal preprocessor symbol. The
command is ignored and compilation continues.

1.21 scmO002

Error 2: wunexpected end of file

This error is generated when the compiler expects more data, but it
encounters the end of an input file. This error may occur in a #include
file or in the original source file. A missing #endif or unbalanced curly
brace or parentheses in the source file or in one of the previously
included files may produce this message. In many cases, correcting a
previous error eliminates this error.

1.22 scmO003

Error 3: file not found "filename"

The filename specified in a #include command was not found or could not be
opened.

scmsg 18/140

1.23 scmO004

Error 4: invalid lexical token

A character was found in the file that is not a standard character in the C
character set or is in an inappropriate place. For example, entering a
pound sign (#) in the middle of non-preprocessor C code or entering
nonprintable control characters anywhere except in a comment produces this
error.

1.24 scmO005

Error 5: invalid usage for macro "macro-name"
Your code invoked a macro incorrectly. Check for unbalanced parentheses

and other syntax errors. The problem may be in a macro used by the macro
that you invoked in your program.

1.25 scm006

Error 6: 1line buffer overflow
A line of preprocessed input was longer than the line buffer size. The
size of the line buffer is controlled by the ppbuf and memsize options. If

you do not specify ppbuf or memsize, the size of the line buffer is 8192
bytes.

1.26 scm007

Warning 7: register parameters require a prototype
Stack parameters used

You compiled with parameters=register or parameters=both, but did not
provide a prototype for a function that you called. Without a prototype,
the compiler cannot pass parameters in registers so it passes parameters on
the stack instead.

Omitting a prototype can cause problems when your program is linked. The
compiler identifies functions that expect arguments in registers by placing
an at sign (@) in front of the function name. The @ replaces the
underscore that the compiler normally places at the beginning of function
names. Because you compiled with parameters=register, the compiler
prepends the @ sign to the function name when the function is defined.
However, because you did not provide a prototype, the compiler assumes the
function is called with stack parameters and when the function is called,
the caller prepends an underscore (_) instead of the @ sign. The @ version
of the function will not satisfy the reference to the _ version, so the
linker will issue an error saying that the @ version of the function is
undefined.

scmsg 19/140

1.27 scmO008

Error 8: invalid conversion

You attempted to cast a type to an incompatible type. This error usually
occurs when you attempt to convert something into an array, a structure, or
a function. Check for missing indirection (*) and/or address (&)
operators. For example, the following program tries to assign a whole
structure to a pointer.

void main (void)
{
struct FOO
{
int a, b;
}oE;
struct FOO x*pj;
p = f; /% Error 8 x/
p = &f; /* Correct =/

1.28 scm009

Error 9: undefined identifier "name"

The specified identifier has not been declared. You may not have included
the proper header files to declare an extern, or you may have misspelled

the name of a variable. This message is produced only once for each
undeclared identifier. Subsequent uses of the identifier do not produce a
message. Subsequent declarations of the identifier may produce messages

about redeclaring the variable. Fix the error that is causing the first
error 9 message and recompile your program before trying to fix additional
messages involving the same variable.

1.29 scmO010

Error 10: invalid subscript expression

An error was detected in an expression used inside square brackets ([]).
This error may occur if:

the expression is missing

the expression is a preprocessor macro that evaluates to nothing
the result of the expression is void

the result of the expression is a pointer, a structure, or a union.

1.30 scmO11

scmsg 20/140

Error 11: string not terminated

The closing double quote (") was not provided when defining a string.

1.31 scmO012

Error 12: invalid structure reference

The operand preceding the structure member (.) or structure pointer (->)
operator is not a structure or a pointer to a structure, respectively.

Make sure you are not trying to reference a structure member with the
structure pointer operator or a structure pointer with the structure member
operator. In many cases, correcting a previous error eliminates this
message.

1.32 scm013

Error 13: member name missing

The name of the desired structure or union member did not follow the
structure member operator (.) or the structure pointer operator (->).
Check for preprocessor macros that may be defined to the same name as the
member.

1.33 scmO014

Error 14: undefined member "name"

The indicated identifier is not a member of the structure or union to which
the structure member operator (.) or the structure pointer operator (->)
referred.

1.34 scmO015

Error 15: invalid function call

An identifier or constant is used where a function or function pointer
identifier is required. This message can occur if you attempt to use a
variable not declared as a function or function pointer but give the
variable a parameter list. The compiler sees the parenthesized expression
and thinks you are calling a function. Check for typographical errors such
as leaving out an operator in an expression, which produces a variable and
a parenthesized expression. Such typographical errors may also occur in
preprocessor macros. For example:

/* The incorrect expression below generates an =/
/* "invalid function call" error. */

scmsg

21/140

int i, 7J;
void function (void)
{
i =1+ (j*2); /+ Intended expression x/
i =1 (j*2); /+ INCORRECT - deleted "+" operator =*/

1.35 scmO016

Error 16: invalid function argument

A function argument expression following the left parenthesis of a function

call is invalid. You may see this message if you omit:
an argument expression
a right parenthesis from a function call

a comma separator between two function arguments.

For example:

func(.);
func (;
func(l 2);

1.36 scmO017

Error 17: too many operands

During expression evaluation, the end of an expression was encountered, but

more than one operand was still awaiting evaluation. This message may
occur i1f an expression contained an incorrectly specified operation.

1.37 scmO018

Warning 18: non-ANSI use of operator in preprocessor condition

This message is suppressed by default, but you can enable it with the
strict, ansi, or warn=18 options. The ANSI C Standard states that the
sizeof and comma (,) operators should not be used in preprocessor
conditions. The SAS/C Compiler supports their use in preprocessor
conditions, but programs that require strict adherence to the ANSI C
Standard should not use them.

1.38 scm019

scmsg 22/140

Error 19: wunbalanced parentheses

The number of opening parentheses in an expression did not equal the number
of closing parentheses. If the expression appears correct in the C source
file, check any preprocessor macros to make sure they generate balanced
parentheses.

1.39 scm020

Error 20: invalid constant expression

An expression that did not evaluate to a constant was encountered in a
context that required a constant result. The compiler must be able to
evaluate any constant expression (for example, expressions used to
initialize static or external data) when the program is compiled. The
expression in question did not meet this criterion. You may have used an
illegal operator for a constant expression (such as ++, +=, function calls,
and so on), or you may have used a variable whose value is available only
at run time.

1.40 scm021

Error 21: illegal use of struct, union, or array type

An identifier declared as a structure, union, or array was encountered in
an expression where such types are not permitted. For example, you cannot
use the ++ postincrement operator with a structure:

struct FOO
{
int a, b, c;

}o£;

f++; /+ Error 21 =*/

1.41 scm022

Error 22: asm functions cannot accept structure or union arguments
Use pointers instead

An attempt was made to pass an instance of a structure or union to a

function declared with the __asm keyword. You must only pass pointers to
__asm functions.

1.42 scm023

scmsg 23/140
Error 23: invalid use of conditional operator (?:)

The conditional expression operator (?:) was used incorrectly. You may

have included the question mark (?) but left out the colon (:). Also,

check for an invalid expression after the operator.

1.43 scmO024

Error 24: pointer operand required

An expression required a pointer at a specific place, but a non-pointer
operand was provided. The compiler may generate this message if an
expression after the indirection operator (%) was not a pointer or array
expression or if the expression before the array indexing operators ([])
was not a pointer or array expression.

1.44 scm025

Error 25: modifiable lvalue required

You have attempted to assign a value to an expression that cannot be
modified. An lvalue is any expression that can appear on the left side of
an assignment operation. For example, the ANSI C Standard states that the
result of a cast is not an lvalue; therefore, the following statement is
invalid:

long x;
(short)x = 2; /% Error 25 x/

The following examples also generate this error message:

#define ADDONE (x) (x)++

ADDONE (12) ; /* Error 25: Cannot increment a constant =/
ADDONE (&9) ; /* Error 25: Cannot assign to an address =/
if (func(10)=3-2); /* Error 25: "==" was intended, not "=" */
&x = &y; /+ Error 25: Cannot assign to an address »*/

You may have defined a variable with the const keyword and then tried to
modify the value of that variable. The SAS/C Development System Library
Reference contains many variables defined with the const keyword,
especially pointers to strings. This keyword is required by the ANSI C
Standard and indicates that these variables will not be modified in the
library function to which they are passed. The const keyword is present in
the parameter list of the prototype that is found in the associated header
file. This prototype, not the declaration you should include in your
program, is what i1s described in the synopsis for each function in the
SAS/C Development System Library Reference. Use the synopsis as a
guideline for your declarations, but do not include the const keyword.

scmsg

24 /140

1.45 scmO026

Error 26: arithmetic operand required

An expression required an arithmetic operand, but the provided operand was
not arithmetic. An operand is arithmetic if it declared as char, short,
int, long, float, or double or the signed and unsigned variants of these
types.

Pointers, structures, unions, and functions are not arithmetic operands.

1.46 scm027

Error 27: arithmetic or pointer operand required

An expression required an arithmetic or pointer operand, but a structure or
union was provided. An operand is arithmetic if it declared as char,
short, int, long, float, or double or the signed and unsigned variants of
these types.

A pointer operand can be a pointer to any other data type, or it can be the
address of a variable or function.

1.47 scm028

Error 28: missing operand

During expression evaluation, the end of an expression was encountered but
not enough operands were available for evaluation. The compiler may
generate this message if you specified a binary operator (such as the
addition, subtraction, multiplication, or division operator) with only one
operand. Also, check for invalid preprocessor macro expansions. For
example:

int 1i;
int ary[10];

i=14+; /* Error 28 =*/
i = ary[i*]4; /* Error 28 (Among others) =*/

1.48 scm029

Error 29: operation cannot be performed on a pointer

An operation was specified that was invalid for pointer operands, such as
one of the arithmetic operations other than addition or subtraction.

scmsg 25/140

1.49 scm030

Warning 30: pointers do not point to same type of object

In an assignment statement defining a value for a pointer variable, the
expression on the right side of the assignment (=) operator did not
evaluate to NULL or to a pointer of the same type as the pointer variable
on the left side of the assignment operator. The warning is also produced
when a pointer of any type is assigned to an arithmetic object.

1.50 scmO031

Error 31: integral operand required

An expression required a given operand to be an integral type, but the
actual operand was not an integral type. An operand is integral if it is
declared as char, short, int, or long or the signed and unsigned variants
of these types.

For example, the following code generates error 31:

double d;
int ary[10];

ary[d] = 10; /* Error 31 =x/

1.51 scm032

Error 32: cannot convert to required type

The compiler was unable to convert a data item from its base type to the
type required by the operation. The compiler may generate this message if
you attempt to cast any data type to a structure, instead of casting the
type to a pointer to a structure, or if you attempt to cast a structure to
any other type. This message can also be produced for implied conversions,
such as passing a structure as a parameter to a function expecting some
other type. For example, the following code generates error 32:

struct FOO £f;
int J;

j = (int)f; /* Error 32 */

1.52 scm033

Warning 33: non-portable operation on structure or union

Your code has attempted to use an operator on a structure or union that is
illegal for that type. For example, you may have used the equality ==

scmsg

26/140

operator on two structures. The ANSI C Standard does not permit the use of
relational operators on structures or unions.

The SAS/C Compiler generates the equivalent of a memcmp call for this
construct, but it may not perform as expected. Because structures may
contain padding bytes, two structures of the same type with all identical
members may compare false. If you intend to use direct structure
comparison, make sure you declare the structure static or extern, or
initialize the structure to zeroes using a call to memset.

For example, the following code generates warning 33:

#include <proto/dos.h>
struct FileInfoBlock fibl, fib2;

if (fibl == fib2) /% Warning 33 */

1.53 scmO034

Error 34: invalid initializer expression

The expression used to initialize an object was invalid. The compiler may
generate this message if you fail to separate elements in an initializer
list with commas or if you attempt to initialize an array to a single
object, as shown in the following examples:

int a[3] = 0; /* Error 34 */
int b[3] = {1 2 3 }; /* Error 34 */

1.54 scm035

Error 35: closing brace expected

The compiler expected a closing brace (}) to terminate the definition of a
function, structure, or nested block scope, but the brace is missing. The
compiler may generate this message if:

too many elements occur in an initializer expression list

a structure member was improperly declared

the end of the source file is reached before a definition is
complete

a previous error occurred in a control statement.

1.55 scm036

Warning 36: control cannot reach this statement

A statement with no label followed a goto, return, break, or continue
statement. The statement is therefore unreachable. This warning can
sometimes be produced incorrectly if the compiler reported a previous error

scmsg

27/140

while in a control flow statement. Fix all previous errors and recompile
your program before trying to fix the error that is generating this
message.

1.56 scm037

Error 37: duplicate statement label "name"
See line number file "filename"

The specified statement label has already been defined in the current
function. You cannot define the same label more than once in the same
function.

1.57 scm038

Error 38: unbalanced braces

In a set of compound statements, the number of opening left braces ({) did

not equal the number of closing right braces (}). This error may be

produced incorrectly if the compiler reported a previous error in a control
flow statement. Fix any previous errors and recompile your program before

trying to fix the error that is generating this message.

1.58 scm039

Error 39: invalid use of keyword "keyword"

One of the C language reserved words appeared in an invalid context (for
example, as a variable name) .

1.59 scm040

Error 40: Dbreak not inside loop or switch
A break statement was detected that was not within the scope of a while,

do, for, or switch statement. This error may be produced incorrectly
because of errors in previous statements.

1.60 scmO041

Error 41: case not inside switch

A case prefix was encountered outside the scope of a switch statement.
This error may be produced incorrectly because of errors in previous
statements.

scmsg 28/140

1.61 scmO042

Warning 42: case expression not integral

The expression defining a case value did not evaluate to an integral
constant. This message is generated as an error message if the expression
could not be converted into an integral constant and as a warning if the
expression could be converted into an integral constant. For example, if
you use a variable as a case value, the compiler generates an error
message. If you use a floating-point constant as a case value, the
compiler converts the constant to an integer (thereby truncating its wvalue)
and generates a warning message.

For example, in the following code, the case value 1.6 is truncated to 1,
and the value -1.6 is truncated to -1.

switch (1)
{
case 1.6: /% Warning 42 x/
break;

case -1.6: /x Warning 42 x/
break;

1.62 scm043

Error 43: duplicate of case value
See line number file "filename"

You have used the same case value more than once within the same switch
statement. Check for possible preprocessor macro definitions that expand
to the same value.

For example, both of the following case statements evaluate to zero:

#define FOO 0
#define BAR 2

switch (1)
{
case FOO:
break;
case (FOOxBAR) : /* Error 43 x/
break;

1.63 scmO044

Error 44: continue not inside loop

A continue statement was detected that was not within the scope of a while,

scmsg

29/140

do, or for loop. This error may be produced incorrectly because of errors
in previous statements.

1.64 scm045

Error 45: default not inside switch
A default label was encountered outside the scope of a switch statement.

This message may be produced incorrectly because of errors in previous
statements.

1.65 scmO046

Error 46: duplicate default
See line number file "filename"

A default label was encountered within the scope of a switch statement in
which a default label had already been encountered.

1.66 scm047

Error 47: while missing from do statement

A while clause did not follow the body of a do statement. This message may
be produced incorrectly because of errors in previous statements.

1.67 scm048

Error 48: 1invalid while expression

The expression defining the looping condition in a while or do loop was
void or was missing. If you intend for a loop to be infinite, you must
supply a constant (such as 1) for the while condition. The error may be
produced because of a preprocessor macro that expands to invalid code. 1In
many cases, fixing a previous error eliminates this message.

1.68 scm049

Error 49: else not associated with if

An else keyword was detected that was not in the scope of a preceding if
statement. This message may be caused by an error in a preceding
statement, especially if the previous error occurred while processing the
if statement with which the else statement is associated.

scmsg

30/140

1.69 scm050

Error 50: label missing from goto

The compiler expected a statement label to follow the goto keyword but the
label was missing. This message may be produced incorrectly because of
errors in previous statements.

1.70 scmO051

Warning 51: C++ comment detected

This message is suppressed by default, but you can enable it with the
strict, ansi, or warn=51 options. In C++, comments begin with two slashes
(//) and terminate at the end of the line on which they begin. The SAS/C
Compiler accepts comments entered in this way for convenience and for

compatibility with other implementations, but they are not part of the ANSI

C Standard.

1.71 scm052

Error 52: invalid if expression

The expression following the if keyword on an if statement was void,
invalid, or missing. This error may be caused by a preprocessor macro
expanding to inappropriate values or may be the result of an expression
with an invalid result type (such as a structure type). In many cases,
fixing a previous error eliminates this message.

1.72 scmO053

Error 53: invalid return expression

The expression following the return keyword was void, invalid, or missing.
The compiler may generate this message if a preprocessor macro expands to
inappropriate values. In many cases, fixing a previous error eliminates
this message.

1.73 scm054

Warning 54: switch expression not integral

The expression defining the test value for a switch statement did not
define an integral value as required by the ANSI C Standard. The wvalue
supplied is converted to int before any attempt is made to use it. If the
switch value is a floating-point value, this conversion may truncate the
value. This warning can also be generated as an error if the wvalue could
not be converted to int.

scmsg 31/140

1.74 scmO055

Warning 55: no case values for switch statement
The statement defining the body of a switch statement did not define any

case statements. This warning may be produced incorrectly because of
previous errors.

1.75 scm056

Error 56: colon expected

The compiler expected but did not find a colon (:). This message may be
generated if a case expression was improperly specified or if the colon was
omitted following a label to a statement. Because the compiler scans past
newlines, blanks, and comments looking for the colon, this message is
usually produced at the beginning of the line following the actual error.

1.76 scm057

Error 57: semi-colon expected

The compiler expected but did not find a semi-colon (;). This error can be
generated if you use too many right parentheses or right curly braces (}).
Because the compiler scans past spaces and tabs looking for the semicolon,

this message is usually produced at the beginning of the line following the
actual error.

1.77 scm058

Error 58: missing parenthesis

A required parenthesis is missing. This error is often caused by previous
errors.

1.78 scm059

Error 59: invalid storage class
Possible storage classes are denoted by the keywords _ _near, _ far, __ chip,
register, auto, extern, and static. Some of these keywords are invalid for

certain types of data. For example, you cannot declare an external
variable with the register keyword, and you cannot declare an automatic
(local) variable with the __ _chip, _ near, or _ far keywords. Your code
attempted to use a storage class keyword incorrectly. This error often
occurs because of previous errors.

scmsg

32/140

1.79 scm060

Error 60: incompatible struct, union or array types
Incompatible structure, union, or array types were used in an expression.
struct A {int x;} a;

struct B {double d;} b;
a =Db; /x Error 60 =%/

1.80 scmO061

Error 61: wundefined struct/union tag "tag-name"

Your code has used a structure or union tag that has not been declared.
Check for misspelled structure names. You may want to compile your program
with the pponly option or the list option and look at the output produced.

This message is produced as an error if you attempt to refer to the members
of an undefined structure or union and as a warning if you only use

pointers to the structure or union. The warning is suppressed by default,
but you can enable it with the warn=61 option. The error cannot be
suppressed.

1.81 scm062

Warning 62: constant number out of range for type "type"
Valid range is low to high

The constant value indicated is not in the range of possible values for the
type to which the value is being assigned. This message may occur if you
are assigning a hexadecimal constant with the uppermost bit set to a signed
variable. By definition, a hexadecimal constant is a positive value;
therefore, the assignment to the variable reinterprets the constant as a
negative number.

For example, the following lines generate warning 62:

signed char c = 0x80; /* Warning 62 =/
short s = 100000; /+ Warning 62 =*/
unsigned short uc = -1; /* Warning 62 x/

Unless you use the unschar compiler option, variables of type char are
signed and produce this warning if you assign any constant to them with the
high bit set (that is, any value between 128 and 255.) You can suppress
this warning for a specific case by casting the constant to the appropriate
type.

Out-of-range constants can cause problems in your code that are hard to
debug. For example, the following code does not behave as intended:

scmsg

33/140

int 1 = 0Oxff;
signed char ¢ = Oxff; /+ Warning 62 */

if (1 == ¢)
{

/* Not executed =*/

The constant initializer Oxff is the decimal number 255. When assigned to
the integer variable i, this value is preserved, and i gets the value 255.
When assigned to the signed character variable ¢, the value of ¢ becomes
-1 because a signed character cannot represent numbers higher than 127,
and the constant 0xff overflows. Therefore, the comparison in the if
statement results in the value false.

1.82 scm063

Warning 63: item "name" already declared
See line number file "filename"

The named item was previously declared at the cited location. This warning

is produced when two different members of the same structure, union, or
enum are given the same name.

1.83 scmO064

Error 64: structure contains no members
A structure declaration did not contain any members. This error can be

produced by errors encountered during the structure’s declaration. Fixing
a previous error may eliminate this message.

1.84 scm065

Error 65: invalid function definition
Your code tried to define a function body inside another function body,
inside a structure declaration, or inside a list of static initializers.

This message may be produced incorrectly because of errors in previous
statements.

1.85 scm066

Error 66: invalid array limit expression

The expression defining the size of the subscript in an array declaration
did not evaluate to a positive integral constant.

scmsg

34/140

For example:

int x[10.7];

1.86 scm067

Error 67: illegal object

Your code attempted to define an illegal item. For example, you may be
declaring an array of functions (instead of an array of function pointers)
or a function that returns an array (instead of a function that returns a
pointer). You may also be attempting to declare something other than a
function as type void.

For example:

void x; /x Error 67 =%/

1.87 scm068

Error 68: illegal object for structure
A structure (or union) included a function as a member. You cannot include

a function as a member of a structure or union, although you can include a
function pointer.

1.88 scm069

Error 69: struct name includes instance of self

The named structure or union contains an instance of itself. Although it
is legal for a structure or union to include a pointer to its own type, the
structure or union cannot contain an instance of itself. If the structure

or union does not have a name, the name field is not printed in the
message.

For example, the following code generates error 69:

struct FOO
{

int a, b, c;
struct FOO x; /% Error 69 «*/
bi

1.89 scm070

scmsg 35/140

Warning 70: unrecognized escape sequence

By default, this message is suppressed, but you can enable it with the
strict, ansi, or warn=70 options. Escape sequences in string and character
constants begin with a backslash (\) and contain one or more characters
after the backslash. The ANSI C Standard defines some escape sequences and
reserves others for future expansion and for implementation-defined
extensions. The SAS/C Compiler ignores the backslash on any such undefined
escape sequences. Other compilers may take different action.

For example, the following line prints the character g followed by a
newline (\n) to stdout:

printf ("\g\n"); /% Warning 70 */

Other ANSI-conforming compilers may substitute any other character for the
\g escape sequence.

1.90 scmO071

Error 71: formal declaration error "name"

A variable was declared before the left curly brace of an old-style
function definition, but the variable did not appear in the list of
identifiers in parentheses following the function name.

For example, the declaration of j in the following code generates error 71:
int func (i)
int 1i;
int j; /* Error 71 «/

{
}

You may have misspelled one of your formal parameters or forgotten to add
the parameter to the parameter list.

1.91 scm072

Error 72: conflict with previous declaration
See line number file "filename"

A variable or function was declared that conflicts with a previous
declaration for the variable or function in the same scope. The message

indicates the filename and line number of the original declaration. If no
prototype exists for a function, the first use of that function implicitly
declares the function as returning an int. If the actual definition of the

function follows the first use of the function and declares a different
return type, the compiler produces this message.

This message is produced as a warning message instead of an error message

scmsg

36/140

if the only difference between the declarations is that one is a function
with the const keyword on a parameter and the other does not have the const
keyword on that parameter. Error 72 may be produced incorrectly if you
forget to declare a variable in an earlier location and, therefore,
received a previous error message about an undefined identifier with the
same name. Fixing the previous error may eliminate this message.

1.92 scmO073

Warning 73: declaration expected

The compiler expected to find the declaration of a data object or function

but did not. This message can also occur if you enter too many or too few
curly braces. This message may be produced incorrectly because of errors
in previous statements. Fixing the previous errors may eliminate this
message.

1.93 scm074

Warning 74: 1initializer data truncated

A static initializer expression contained more elements than the data item
being initialized, as in the following example:

char b[3] = "abcd"; /+ Warning 74 «*/
String constants always have an implied NULL byte at the end. This byte is
not counted when producing this warning. If you have a character array
with three elements, you may initialize it as follows:

char b[3] = "abc";
The three elements receive the values a, b, and c. If there is room, the
NULL terminator byte is also copied:

char c[4] = "abc";

The elements of the above array are assigned the values a, b, ¢, and \O.

1.94 scmO075

Error 75: invalid sizeof expression

The expression passed to the sizeof operator was invalid. This message may
be produced if an attempt is made to take the size of a function, bitfield,
or incomplete type, or if the result of the expression used is of type
void.

For example, in the following code, a is an incomplete type because its

scmsg

37/140

size is not specified when it is declared:

extern int al];
int 1i;

i = sizeof(a); /* Error 75 =%/

1.95 scmO076

Error 76: left brace expected
The compiler expected but did not find an opening left brace. For example,

you may have omitted the opening brace on a list of initializer expressions
for an aggregate.

1.96 scmO077

Error 77: identifier expected

The compiler expected to find the name of an identifier to be declared.

The compiler may generate this message if the prefixes to an identifier in
a declaration (parentheses and asterisks) are incorrectly specified or if a
sequence of declarations is listed incorrectly, as in the following

example:

int ; /% Error 77 */

1.97 scmO078

Error 78: wundefined statement label "name"
A goto statement referred to the named label, but the label does not exist
in the function that referred to it. Check the spelling of your label and

the goto reference. Make sure the label is in the same function as the
goto statement.

1.98 scm079

Warning 79: duplicate of enumeration value on line line

When declaring an enumeration type, more than one enumeration constant was
assigned the same value, as in the following example:

enum COLORS
{RED=1, BLUE=2, GREEN=1}; /* RED and GREEN are identical =x/

Any enumeration constants that are not assigned an explicit value are

scmsg 38/140

assigned values one higher than the previous constant in that enumeration.
If the constant is the first constant in that enumeration, it is assigned
the value zero. Therefore, the following enum generates warning 79:

enum COLORS {RED, BLUE, GREEN=1}; /% Warning 79 =/

RED is the first constant, so it is assigned a value of 0. BLUE is
assigned a value of 1. GREEN is explicitly assigned a value of 1, which
conflicts with BLUE.

1.99 scm080

Warning 80: invalid bit field or misplaced ’:’

This warning is commonly produced if you type a colon (:) when a semicolon
(;) was expected. This warning can also be produced if you are actually
declaring a bitfield and give an improper expression for the number of bits
in the bitfield.

1.100 scmO081

Error 81: preprocessor symbol loop
macro expansion too long

When using the oldpp compiler option, a preprocessor symbol expanded to a
value that contains a circular reference back to the symbol itself, thereby
creating an infinite loop in the preprocessor. Check the definition of the
macro being expanded on the line in question. This message cannot occur if
the oldpp compiler option is not used because the ANSI C Standard prohibits
the expansion of preprocessor macros that occur as a result of expanding a
previous instance of the same macro.

1.101 scm082

Error 82: maximum object/storage size exceeded
Size limit for this class is n

Your code attempted to declare a data item that exceeded the maximum size
of objects in its storage class, or the last object declared caused the
total size of declared objects in that storage class to exceed the maximum,
as in the following example:

char _ near a[30000];
char _ _near b[30000];
char _ near c[30000];

Because there is a limit of 65536 bytes on the amount of near data allowed,
the above request for 90000 bytes of near data will not work. If you are
compiling with data=near (the default), the _ near keyword is implied on
all data items. Fix this warning by declaring some large data items with

scmsg

39/140

the _ far keyword or by compiling with the data=far option.

1.102 scm083

Warning 83: reference beyond object size

Your code used an address beyond the size of the object used as the base
for the address calculation. This warning usually occurs when you refer to
an element beyond the end of an array, as follows:

char c[10];
void myfunc (void)
{
c[11l] = 0; /x Warning 83 x/

This message can be produced only when the compiler can determine the value
of the subscript at compile time, that is, the subscript is a constant.

1.103 scm084

Warning 84: redefinition of pragma or preprocessor symbol "name"
See line number file "filename"

Your code is redefining the preprocessor symbol or #pragma originally
defined at the indicated file and line number.

1.104 scm085

Warning 85: return value mismatch for function "name"
Expecting "typel", found "type2"

The expression specifying the value to be returned from a function was not
the same type as the function itself. If possible, the value specified is
converted to the appropriate type. You can suppress this warning by
casting the return expression to the appropriate type.

Some pre-ANSI C code produces many of these warnings when functions
declared as int (either explicitly or implicitly) do not return a value.
Before the ANSI committee approved the void keyword, declaring functions as
returning an int was the correct way to handle functions that returned
nothing. You can compile with the nowarnvoidreturn option to suppress
these warnings when a function that is declared as returning an int
actually returns nothing.

For example, the following two functions generate warning 85:
functionl (x)

int x;

{

scmsg

40/140

} /* Warning 85 */

int function2 (x)
int x;
{
char xp = NULL;
return (p); /* Warning 85 =/

You can suppress the warning 85 for functionl by compiling with the nowvret
option. The nowvret option does not affect function2, which is attempting
to return a pointer from a function declared as returning int.

1.105 scmO086

Warning 86: formal parameters conflict with prototype
See line number file "filename"

The types of the parameters to the function do not match the types given in
the prototype for the function. Check the prototype at the file and line
indicated against your definition.

1.106 scmO087

Warning 87: argument count incorrect, expecting number arguments
See line number file "filename"

Your code invoked a function with an incorrect number of arguments,
according to that function’s prototype. Check the prototype at the
indicated file and line number against your usage of the function and the
actual function definition.

1.107 scm088

Warning 88: argument type incorrect
Expecting "typel", found "typel2"

Your code invoked a function with an argument whose type conflicts with the
corresponding parameter as declared in the function’s prototype. The type
of the argument expected is given as typel, and the type of the argument
actually provided is type2. If possible, the argument is converted to the
appropriate type as if it were cast to that type. If the argument cannot
be converted, an error message is produced.

1.108 scm089

scmsg

41/140

Warning 89: constant converted from "typel" to "type2"
Your code supplied a constant that conflicted with the expected type. The
constant was converted, but the conversion may have caused a loss of

precision or lost values.

For example, in the following code, the prototype for the function foo
specifies an int, but the function is passed a double constant:

void foo(int);
void myfunc (void)

{
foo(10.67); /* Warning 89 x/

The double constant is converted to an integer, resulting in an integer
argument of 10, and the compiler generates warning 89 to inform you of the
conversion.

1.109 scm090

Error 90: invalid argument type specifier

An error was made in declaring an argument in a function or prototype
declaration.

For example, the following declaration does not specify a type for the
parameter y:

void foo(int x, y) /% Error 90 =*/

{
}

1.110 scmO091

Error 91: illegal void operand

One of the operands in an expression was of type void. The void type
represents no value and is, therefore, illegal in most expressions.

1.111 scm092

Warning 92: statement has no effect

An expression statement did not produce an assignment, function call, or
other action. Such a statement serves no useful purpose and can be

eliminated. This warning is often generated when a typographical error has

been made in coding the statement.

scmsg 42 /140

For example, you might enter the equality (==) operator when you intended
to enter the assignment (=) operator:

int 1i;

i == 5; /* Warning 92 x/

In this example, the user intended to assign the value 5 to the integer
variable i, but because of the extra equals sign, the statement does
nothing.

1.112 scm093

Warning 93: no reference to identifier "name"

Your code declared an automatic (local) variable but never used the
variable. However, the variable might be used by code that has been
excluded from the object module with #if or #ifdef statements. If so, you
should enclose your declaration of the local variable in the same #if or
#ifdef statement as the code that references the variable.

If you want to suppress warning 93, #pragma msg 93 ignore must be in effect
when the compiler reaches the line containing the last closing brace (})
for the function. If you turn the warning off only for the line containing
the declaration of the variable, the compiler will still generate message
93 when it reaches the last line of the function. The line number
displayed for the message will be the number of the last line in the
function.

1.113 scm094

Warning 94: wuninitialized auto variable "name"

An automatic (local) variable was used in an expression before it was given
a value. Automatic variables are not guaranteed to have any specific value
when a function is entered, so an uninitialized automatic variable can
create seemingly random bugs. It is possible for this warning to not be
produced when appropriate or to be produced incorrectly because the
compiler does not check all possible execution paths. In rare cases, the
message is produced incorrectly if the variable is used in a loop construct
and initialized later in the same loop construct, as shown:

void myfunc (void)
{
int 1, J;
for (1i=0; i<10; i++)
{
if(i > 0) printf("%d\n", j); /* Warning 94 =/
N

scmsg 43/140

Without doing detailed loop analysis, the compiler cannot tell that j is
not referenced by the call to printf until after it is initialized. Some
cases that use uninitialized variables may not produce the warning.

For example, no warning is produced for the following code even though j is
not initialized if x is greater than 5:

void myfunc (int x)
{

int j;

if(x<5) j = x;

if(j < 5) /x J might be uninitialized */
{

1.114 scm095

Warning 95: unrecognized #pragma operand
The keyword following a #pragma statement was not recognized as a SAS/C

pragma keyword. Version 6 of the SAS/C Compiler supports the #pragma
libcall, amicall, regcall, flibcall, syscall, tagcall, and msg statements.

1.115 scm096

Error 96: missing name for #pragma

In a libcall, flibcall, syscall, or tagcall #pragma statement, the name of
the routine to be called was omitted or incorrect.

1.116 scmO097

Error 97: Dbad library base for #pragma

In a libcall, flibcall, or tagcall #pragma statement, the library base was
omitted or incorrect.

1.117 scm098

Error 98: 1invalid data for #pragma

In a libcall, flibcall, syscall, or tagcall #pragma statement, the offset
or magic number fields were invalid. In a #pragma msg statement, a syntax
error was made specifying the message number or the action to be taken.

scmsg

441140

1.118 scm099

Error 99: attempt to change a const wvalue

Your code attempted to modify a variable declared with the const keyword.
Variables declared with the const keyword are read-only and cannot be
modified.

1.119 scm100

Warning 100: no prototype declared for function "name"

Your code called the named function, but the compiler did not find a
prototype for that function. Without a prototype, the compiler cannot
perform parameter type checking. Remember, a function that takes no
parameters still needs a prototype with void as its parameter list:

int func (void) ; /+ "func" returns "int" and takes no parms */

If the function is a SAS/C function, the SAS/C Development System Library
Reference tells you which header file to #include to get the correct
prototype for the function. If the function is an AmigaDOS function, its
prototype is in the include:clib directory in the file for its library.
For more information, you can refer to the Amiga ROM Kernel Reference
Manual: Libraries, 3rd Edition (Commodore-Amiga, Inc. 1992) or use the
grep command to search the header files in the include:clib directory for
the prototype.

1.120 scm101

Warning 101: redundant keywords in declaration

The same storage class keyword was specified multiple times when declaring

a variable, function, or prototype. For example, you may have specified
the const or __chip keyword twice.

However, you can specify a typedef with a storage class keyword. Any
variables declared with this typedef are automatically assigned to that
specified storage class. Therefore, you may get a Warning 101 for
specifying the keyword explicitly on a variable declared with the typedef,
as in the following example:

typedef int _ far farint;

A

farint x; /* Declares a far integer called "x" «/

farint __far y; /+ Error 101 =/

1.121 scmi02

scmsg 45/140

Error 102: conflicting keywords in declaration

You have specified two mutually incompatible storage class keywords when
declaring a variable, function, or prototype. For example, you may have
specified the _ _near and __ far keywords on a variable definition.

However, you can specify a typedef with a storage class keyword. Any
variables declared with this typedef are automatically assigned to that
specified storage class. Therefore, you may get an Error 102 for
specifying a keyword explicitly on a variable which conflicts with the
keyword declared with the typedef, as in the following example:

typedef int __ far farint;
farint x; /* Declares a far integer called "x" =/

farint _ near y; /% Error 102 x/

1.122 scm103

Warning 103: wuninitialized constant "name"

The named variable was declared const, indicating that the variable is
read-only, but you have not initialized the wvariable. If the variable is
declared static or extern, it is initialized to zero for you but is
probably not useful unless explicitly initialized.

1.123 scm104

Warning 104: conversion from pointer to const/volatile to pointer to
non-const/volatile

A pointer to a const or volatile object is being converted to a pointer to
a normal object. For example, you may be passing the address of a const
variable to a function that takes a normal pointer. After the pointer has
been converted, the const or volatile attribute is lost. Therefore, your
const data might get modified, or your volatile data might be kept in a
register.

In the following example, warning 104 is produced when the function foo is
called with the const array data as an argument.

void foo (char «*);

void myfunc (void)

{
const char data[] = "Hello, World!\n";
foo(data); /* Warning 104 =x/
printf ("$s\n", data);

scmsg

46 /140

void foo(char *p)

The function foo actually modifies its data by writing to it. Therefore,
printf prints the value Hallo, World! instead of Hello, World! because
the constant array has been modified.

1.124 scm105

Warning 105: module does not define any externally-known symbols
The C source file and all of its included headers were compiled, but no
externally-visible functions or data items were defined. 1In this case, a

valid object file is produced, but it contains nothing that can be
accessed, and the file can be removed from your link step if you desire.

1.125 scm106

Error 106: postfix expression not allowed on a constant

Your code attempted to apply a postfix ++ or —-- operator to a constant.

This message may be generated because of an incorrect macro expansion. You

can use the pponly option to generate a preprocessed file and check the
macro expansion.

1.126 scmi107

Error 107: too many initializers

A data item was being initialized, but too many initializer elements were
provided, as in the following example:

struct FOO
{
int 1, 3;

i

struct FOO foo = {10, 20, 30}; /* Error 107 =x/

1.127 scmi08

Warning 108: zero-length arrays are not an ANSI feature

This message is suppressed by default, but you can enable it with the
strict, ansi, or warn=108 options. You have declared an array of size

scmsg 47 /140

zero, probably as a member of a structure to allow variable-sized
structures. While using zero-length arrays is a common extension to the
ANSI C Standard and is supported by the SAS/C Compiler, the ANSI C Standard
does not allow the use of zero-length arrays.

1.128 scm109

Error 109: invalid use of type name or keyword

A type name (possibly a typedef) has been encountered where it was not
expected. You may have attempted to declare a variable with the same name
as a keyword.

1.129 scm110

Warning 110: enum constant expression is wrong type
Expecting "typel", found "typel2"

An enumeration constant value was explicitly assigned that did not match
the type of the enum being declared. For example, specifying a double
constant when defining an enum or specifying a long constant when the
shortint option is active will generate this message.

Example:

enum COLORS { RED=1.0 }; /* Warning 110 =/

1.130 scmiit

Warning 111: non-portable enum type specified

This message is suppressed by default, but you can enable it with the
STRICT, ANSI, or WARN=11l1l options. As an extension to the ANSI C Standard,
the SAS/C Compiler supports short, char, and long enum types with the
syntax short enum, char enum, and long enum. To improve the portability of
your code, enable this warning.

1.131 scm112

Warning 112: include file "filename" not in GST

This message is suppressed by default, but you can enable it with the
WARN=112 option. This message lets you know if your code #includes a
header file that is not present in the GST. This option helps you
determine which files should be added to your GST to speed up compilation.

scmsg

48 /140

1.132 scm113

Error 113: invalid structure reference
"<op>" operator is invalid for type "<type>"

You have attempted to use the "." structure reference operator
with an object that is not a structure, or you have attempted
to use the "->" structure pointer dereference operator with an
object that is not a pointer. The most common mistake in this
area is using "->" on a structure or "." on a pointer to a
structure:

struct FOO *pFoo;
struct FOO Foo;

Foo->x = 10; // ERROR! Foo is a struct, not a pointer!
pFoo.x 10; // ERROR! pFoo is a pointer, not a struct!

1.133 scm1ii4

Warning 114: negative shift or shift too big for type
shifts for type "type" must be between 0 and number bits

Your code attempted to shift an integral value by a constant number of
bits, but the constant was either negative or higher than the number of
bits in the value being shifted, as shown in the following examples:

int 1 = 1;
i =1 > 33; /x Warning 114 x/
i << -1; /% Warning 114 «/

i

In the first example, i is 32 bits (an int) but is being shifted 33 bits.
Shifting a value by a number of bits higher than the number of bits in the
value generates a zero for the result. In the second example, i is being
shifted by a negative number of bits. Attempting to shift a value by a
negative number of bits usually generates a zero for the result (although
this result is undefined by the ANSI C Standard).

1.134 scm115

Error 115: enum constant value "number" out of range for enum type

Your code specified a value for an enum constant while defining an
enumerated type which is out of range for the type of enum being declared.
Remember that enum constants that are not explicitly assigned a numerical
value are given the value of the previous constant defined in the same enum
incremented by one. This increment might place the constant’s value out of
the acceptable range, as in the following example:

char enum COLORS

{
RED=254, /+ Numeric value is 254 */

scmsg 49/140

GREEN, /% Numeric value 1is 255 (254+41) x/
BLUE /+ Numeric value is 256 - too big for char =/
}; /+ Error 115 is issued =/
The enum constant RED is assigned a value of 254. GREEN does not have an
explicit value, so it is assigned 254+1, or 255. BLUE does not have an
explicit value, so its value would normally be 255+1, or 256. However, the

enum is declared as being a char enum, so 256 is too big and error 115 is
issued.

1.135 scm116

Warning 116: undefined enum tag "name"

This message is suppressed by default, but you can enable it with the
warn=116 option. A reference was made to an enum that has not yet been
declared. The compiler may generate this message as a warning if only a

pointer to the enum is used, but the compiler generates this message as an
error i1f any other use is made of the enum.

1.136 scmi17

Error 117: enum contains no members
An attempt was made to define an enumerated type, but no member names were

specified. Use the pponly option to generate a preprocessed file if you
have problems eliminating this message.

1.137 scm118

Error 118: conflicting use of enum/struct/union tag "name"
An attempt was made to define an enum, struct, or union that has the same
name as a previously defined enum, struct, or union in the same scope. You

cannot define an enum with the same name as a struct, union, or another
enum.

1.138 scm119

Error 119: identifiers missing from definition of function "name"
A prototype-style function definition was encountered, but the names of the
parameters were missing. You can omit the parameter names from a

prototype, but the names must be present in the actual function definition.

For example the following code generates error 119:

scmsg 50/140

void func(int, int, double); /* Legal prototype =/
void func(int, int, double) /+ Illegal function definition =*/
{ /% Error 119 x/

}

1.139 scm120

Warning 120: Integral type mismatch: possible portability problem
Expecting "typel", found "typel2"

This message is suppressed by default, but you can enable it with the
strict or warn=120 options. The wrong integral type was passed as a
parameter. This error may be a problem on another compiler or another type
of computer if the size of an int is different from the size of an int on
the Amiga computer. This warning is not a problem if your code needs to
compile with the SAS/C Compiler only.

In the following example, the SAS/C Compiler promotes the short integer to
a long integer even if you compile with the shortint option:

#pragma msg 120 warn
void func(long);

void main (void)
{
short s = 10;
func (s) ; /* Warning 120 =%/

However, pre-ANSI compilers on machines that define the int type to be the
same as short may not perform the conversion or may perform the conversion
and issue a warning message. In addition, if you remove the prototype,
this code will not work on any machine where int is the same as short.

1.140 scmi21

Warning 121: hex/octal constant "constant" too large for char
High bits may be lost

Warning 121 is generated if a hexadecimal or octal constant specifies more
digits than will fit into a single char. According to the ANSI C Standard,
hexadecimal bytes may be specified in a quoted string using the \xhh escape
sequence. The ANSI C Standard also states that the escape sequence
consumes all valid hexadecimal characters in the string following the \x,
even if all the characters consumed will not fit into a single byte, which
may not be what you want. For example, in the case of \xabcdefgh, you may
want the character Oxab first, followed by the string cdefgh. According to
the ANSI C Standard, this escape sequence evaluates to the character Oxef
followed by the string gh, because the \x consumes all valid hexadecimal
characters. A single byte cannot hold the hexadecimal number Oxabcdef, so
the top bits are lost and Oxef is the result. The best way to get the

scmsg

51/140

character Oxab followed by the string cdefgh is to use ANSI string
concatenation to terminate the escape sequence:

"\xab" "cdefgh".

The two strings are concatenated to form the desired sequence.

1.141 scm122

Warning 122: missing ellipsis

A function or function prototype was encountered that attempted to specify
variable arguments with a trailing comma in the argument list. According
to the ANSI C Standard, variable arguments must be specified by a trailing
comma followed by an ellipsis (...). The SAS/C Compiler accepts the form
without the ellipsis as if the ellipsis had been specified, but other
ANSI-conforming compilers may require the ellipsis, as in the following
example:

void foo(int x, ...); /* Right =*/
void bar (int x,); /* Wrong =*/

1.142 scm123

Warning 123: no tag defined for enumeration
Cannot construct prototype

The genproto option was active, but a prototype could not be generated for
a function because an enum was used as a parameter to the function and that
enum had no tag, as shown in the following example.

void myfunc(colors)

enum {RED, GREEN, BLUE} colors;
{

}

The tag is the name normally appearing immediately after the keyword enum
in the enum declaration. This message is produced only if the genproto
compiler option is used to produce prototypes.

1.143 scmi125

Error 125: invalid number

The numerical constant specified cannot be represented on the Amiga
computer. The constant is probably an integer that is too large or too
small (negative) to be represented in four bytes. This error can also be
produced if a floating-point number is specified incorrectly or if invalid
digits are provided to an octal constant.

scmsg 52/140

The following lines all produce error 125:

double d = 10.3.2; /* Error 125 x/
int 1 = 123456789123456789; /* Error 125 %/
int j = 099; /* Error 125 */

In the first line, the value assigned to the floating-point variable has
been incorrectly specified. In the second line, the value contains too
many digits to fit into an int. In the third line, the value begins with a
zero, which makes the value an octal constant, but it contains the digit 9,
which is invalid for octal constants.

1.144 scm126

Warning 126: #endif, #else, or #elif out of order

A #endif, #else, or #elif was encountered but no #if or #ifdef was active.

1.145 scmi127

Error 127: operand to # operator must be a macro argument

If a preprocessor macro parameter is preceded with the # operator, that
parameter is replaced with the literal string consisting of the
corresponding argument to the macro. For example, if you pass the argument
FOO to a macro, and that argument in the macro definition is preceded by
the # operator, that argument expands to the string "FOO". The # operator
can be applied only to macro arguments.

1.146 scm128

Error 128: text-from-#error
This message is the result of a #error preprocessor directive in the source

code being compiled. The text of the message is taken from the #error
line.

1.147 scm129

Error 129: ambiguous structure or union member "name"

Your code referred to a structure or union member that did not exist. 1In
an attempt to resolve the name, the compiler examined the names of all
members of substructures or subunions. Two or more members of

subaggregates matched the name you provided, so the compiler was unable to
determine which member you intended to specify.

scmsg

53/140

Suppose you have the following code:

void main (void)
{
struct FOO
{
int x, vy, z;

}i

struct BAR
{
int a, b, x;

}i

struct COMBO
{
struct FOO foo;
struct BAR bar;
} combo;

combo.a = 10; /* Warning 193 x/
combo.x 10; /x Error 129 =/

The reference to combo.a succeeds, although it generates a warning 193
(implicit reference to structure member), because the full reference should
be combo.bar.a. The reference to combo.x generates error 129, because both
substructures of combo contain a member called x. The compiler cannot tell
whether you mean combo.foo.x or combo.bar.x, so it issues the error message
129.

See Chapter 11, "Using SAS/C Extensions to the C and C++ Languages," for
more information on implicit structure references.

1.148 scm131

Error 131: maximum temporary or formal storage exceeded

The compiler must allocate stack storage to allow you to pass and receive
structures or other parameters to and from functions.

Your function used more stack space than one function is allowed to use.
Parameters are copied onto the stack for each function call, so if you are

passing large structures, your code will run very slowly. Consider passing
a pointer to your structure instead of the entire structure.

1.149 scm132

Warning 132: extra tokens after valid preprocessor directive

The ANSI C Standard does not allow extra text on a preprocessor line, but

scmsg

54/140

this extra text may be allowed by some C compilers. For example, many
programmers put a descriptive word after a #endif directive indicating the
#1if to which the #endif belongs. To make your code ANSI-compatible, you
should place such descriptive words in comments, as shown in the following
example:

#ifdef SOMETHING
#fendif SOMETHING /* Warning 132 */

#ifdef SOMETHING
#endif /% SOMETHING x/ /% No warning x*/

1.150 scm133

Error 133: cannot redefine macro "name"

An attempt was made to redefine a built-in preprocessor macro, like
__FILE___ or __LINE__. You cannot redefine built-in preprocessor macros.

1.151 scm134

Warning 134: too many arguments

A macro definition was encountered with more than the allowable number of
arguments. The current ANSI limit for macro arguments is 31, and the SAS/C
Compiler does not allow more than 31 arguments. If message 134 is issued,
the macro is not successfully defined. Any use of the macro in your code
produces a warning for a function with no prototype and possibly a linker
error when the name of the macro cannot be resolved by the linker.

1.152 scm135

Error 135: argument count incorrect for macro "name", expecting number
arguments
See line number file "filename"

Your code invoked a macro with too few or too many arguments. The macro is
defined at the specified file and line number.

1.153 scm136

Error 136: invalid use of register keyword

Your code used one of the register keywords inappropriately. The register
keywords are register, __ a0, __d0, __al, __dl, and so on.

scmsg

55/140

1.154 scmi137

Warning 137: ANSI limits #line numbers to between 1 and 32767

This message is suppressed by default, but you can enable it with the
STRICT, ANSI, or WARN=137 options. The ANSI C Standard states that line
numbers specified with a #line directive should be between 1 and 32767.
However, the SAS/C Compiler accepts any number that will fit into a signed
four-byte integer.

1.155 scm138

Error 138: operation invalid for pointer to void

Your code attempted to perform an operation on a void * pointer that is not
valid for void x. Such operations include addition, subtraction, array
indexing, and dereferencing (unary * operator).

For example, the following code attempts to perform addition on a void =
pointer:

void xp = NULL;

p=p + 1; /* Error 138 x/

1.156 scm139

Warning 139: missing #endif
See line number file "filename"

The compiler encountered an #if, #ifdef, or #elif statement for which there
is no matching #endif. The file and line number of the unmatched directive
is specified in the message. This message occurs only at the end of the
source file, so large portions of your program may have been ignored
because of a stray #if or #ifndef with no matching #endif.

1.157 scm140

Warning 140: sizeof operator used on array that has been converted to
pointer

Use of the sizeof operator on an array name gives the size of the array.
However, if the array name has been converted (cast) to a pointer, the
resulting size is the size of the pointer (4 bytes), not the size of the
array. Almost any use of an array name in an expression implicitly casts
the array name to pointer. To determine the actual size of the array, pass
only the array name to the sizeof operator.

In the following example, in the first assignment statement, i gets the

scmsg

56 /140

value 4 (the size of a pointer to a character). 1In the second assignment

statement, i1 gets the wvalue 10.

char ary[10];
int 1i;

sizeof (ary+1); /+* Warning 140 */
i = sizeof (ary);

1.158 scm142

Error 142: array size never given for "name"

You can declare an array as extern and not specify the first subscript.

However, when you define the array, you must specify the subscript.
Storage is allocated when you define an array, not when you declare an
array as extern. For example:

extern char aryl[][10]; /* Legal =/

char ary2[]1[10]; /% Error 142 x/

1.159 scm143

Error 143: object has no address

An attempt was made to take the address of something that has no address.

You may be attempting to take the address of a register variable or an
expression.

1.160 scm146

Warning 146: case value out of range for switch type

A case value was specified in a switch statement that can never be taken.
For example, if you compile with the shortint option and a switch statement
is switching on a short or int value, case values too big to be stored in

16 bits will generate this warning:

/* The SHORTINT compiler option is on. x/
int 1 = 10;

switch(i) /» 1 is a 16-bit integer =/
{
case 0x08000000: /* Warning 146 =/
break;
case 65000: /+ Warning 146 «/

break;

scmsg

577140

1.161 scmi47

Warning 147: conversion between function and data pointers

Your code has cast or otherwise converted a pointer that points to a
function to a pointer that points to data. The ANSI C Standard states that
this conversion is not legal. This conversion works with the SAS/C
Compiler in most circumstances, but you should use the absfuncpointer
compiler option if your code is larger than 32K.

1.162 scm148

Warning 148: wuse of incomplete struct/union/enum tag "name"
See line number file filename

This message is suppressed by default, but you can enable it with the
warn=148 option. An incomplete tag is one for which no definition has been
seen. The ANSI C Standard allows use of an incomplete tag (for declaring
pointers, for example). If you want to know when an incomplete tag is
being used, enable this warning. You may also want to enable warning 149.

1.163 scm149

Warning 149: tag "tag-name" was incomplete in prototype
See line n file "filename"

This message is suppressed by default, but you can enable it with the
warn=149 option. An incomplete tag was discovered in a prototype and the
function is defined in the same module. An incomplete tag is one for which
no definition has been seen. The ANSI C Standard requires the incomplete
tag’s scope to end at the end of the prototype. Therefore, any definition
of the function later, even if the tag in question has been defined, may
generate an error message and terminate the compilation. You may want to
turn on warning 148 to get more information about incomplete tags. If you
do not want to see all the incomplete tag information, you can identify
most problems by enabling only warning 149.

In Version 6.0, this warning was produced any time a prototype contained an
incomplete tag, regardless of whether the function was defined later in the
same module.

The following function definition produces an error on many ANSI-conforming
compilers because the structure FOO referred to in the definition is
considered to be a different structure FOO than the one referred to in the
prototype.

void func(struct FOO x);

struct FOO
{
int x, vy, z;

}i

scmsg

58 /140

/+ Many compilers issue an error here. x/
void func(struct FOO =*foo)

{

}

This error could be fixed by moving the definition for the structure FOO
before the prototype.

1.164 scmi50

Warning 150: the keyword "name" is meaningless for itemtype

When declaring a function or data item, you have used a keyword that is
meaningless for that type of item. For example, you cannot specify the
following:

void _ chip foo(int); /* Warning 150 =/
It is meaningless to say that a function is to be allocated in __chip
memory.

The _ _near and __ _far storage class keywords are valid on both functions and

data items, but have slightly different meanings. See the descriptions of
the data=near and code=near options in Chapter 8, "Compiling and Linking
Your Program," for more information.

Some keywords that are valid on functions are also valid on data items
because the data items may be pointers to functions of the designated type.

For example, you may have a function that returns a pointer to a __ regargs
function. Keywords in this category include __stdargs, __regargs, __asm,
and __interrupt.

Other keywords need to be present only on the function definition. You do
not need to add them to function pointers and function prototypes.
Keywords in this category include __ stackext and __saveds. If these
keywords appear on a data item, warning 150 is generated and the extra
keyword is ignored. For more information on specifying keywords, see
Chapter 11, "Using SAS/C Extensions to the C and C++ Languages."

1.165 scm152

Error 152: cannot define function via typedef name

Your code attempted to define a function using a typedef, as shown below:
typedef int foo(int);
foo bar /x Error 152 «/

{
}

scmsg 59/140

According to the ANSI C Standard, you cannot define a function using a
typedef. The SAS/C Compiler does not accept such a definition.

1.166 scm154

Warning 154: no prototype declared for function pointer

Function pointers require prototypes just like functions. To declare a
prototype for a function pointer, enter the parameter list instead of the
empty parentheses in the definition, as shown in the following example:

void (xfuncl) (); /% Warning 154 =/
void (xfunc2) (int, double, long); /* No warning =*/

Remember that a pointer to a function that takes no parameters still
requires a prototype:

void (xfunc3) (void); /+* Function pointer takes no parms =/

1.167 scm155

Warning 155: no statement after label

The C language does not allow a label immediately before the curly brace
ending a block (}). If you enter a label in this position, the SAS/C
Compiler generates this warning. Enter a semicolon (representing a NULL
statement) after the label to suppress the warning, as shown in the
following example:

void funcl (void)
{
goto foobar;
/+ more code =*/
foobar: /+ Warning 155 =/

void func2 (void)

{
goto foobar;
/* more code */
foobar: ; /* No warning x/

1.168 scm156

Warning 156: operation with/comparison of types "type-1" and "type-2"

Your code attempted to use pointers to two different types in an operation
or comparison. Examine your code carefully; if it seems correct, cast one

scmsg 60/140

of the pointers to the other pointer’s type.

1.169 scm158

Error 158: invalid type name

The compiler expected a type name for a cast or offsetof operation, but the
provided name was not recognized as a valid type name. Check the
preprocessed output to make sure you are providing the correct information.

1.170 scm159

Warning 159: wuse of unary minus on unsigned value

This message is suppressed by default, but you can enable it with the
strict or warn=159 options. Your code has used the unary minus operator
(=) on an unsigned variable. Using this operator on an unsigned variable
may not produce the expected result because the result is still a
non—-negative number.

1.171 scm161

Warning 161: no prototype declared at definition for function "name"

An old-style function definition was encountered, and no prototype was in
scope. The prototype must appear in the C file or a header file before the
definition of the function, or the function definition itself must be a
prototype-style definition.

1.172 scmi162

Warning 162: non-ANSI use of ellipsis punctuator

This message is suppressed by default, but you can enable it with the
strict, ansi, or warn=162 options. You have declared a function with the
ellipsis punctuator (...) but the function has no arguments. The ANSI C
Standard requires functions that take a variable number of arguments to
take at least one fixed argument.

1.173 scm163

Warning 163: initialization of auto struct, union, or array

This message is suppressed by default, but you can enable it with the
strict or warn=163 options. Your code has initialized an automatic

scmsg 61/140

structure, union, or array. The ANSI C Standard allows you to initialize
automatic structures, union, and arrays, but many pre-ANSI compilers do
not.

1.174 scm164

Warning 164: & applied to array

This message is suppressed by default, but you can enable it with the
strict or warn=164 options. Your code has used the address (&) operator on
an array name. You should instead take the address of the first element in
the array, or use the array name without the address operator.

For example:

int ary[10];
int xiptr;

iptr = &ary; /+ warning 165 =/
iptr = ary; /* OK */
iptr = &ary[0]; /* OK */

1.175 scm165

Warning 165: wuse of narrow type in prototype

This message is suppressed by default, but you can enable it with the
warn=165 option. This warning is provided for detecting situations that
may cause problems on other compilers if your code mixes function
prototypes and old-style function definitions. See Chapter 13, "Writing
Portable Code," for information on using narrow types in function
declarations. See also the descriptions of messages 176 and 179.

1.176 scm166

Error 166: unrecoverable error or too many errors
Terminating compilation

Your program has exceeded the default or specified maxerr or maxwarn
values, or an error has occurred that prevents the compiler from producing

meaningful results.

The default maximum number of errors is 50. By default, any number of
warnings may be generated.

1.177 scmi169

scmsg 62/140

Warning 169: incompatible operands of conditional operator (?:)
"typel" conflicts with "type2"

The operands of the ?: conditional operator must be of compatible types.
Your code supplied types to the ?: operator that were not compatible.

For example, the following code generates warning 169:

int func(void)
{
int 1 = 0;
struct FOO xfoo = NULL;

return (int) (i > 0 ? foo : 1); /» Warning 169 x/

The expression following the question mark (?) is of type struct FOO .
The expression following the colon (:) is of type int.

This message can be an error if it is not possible to convert the types in
question. This can occur if one of the types is a structure or union.

1.178 scm170

Warning 170: overflow during operation on constants

A constant expression overflowed the limits of the type in which it was
being calculated. Perhaps you have added or multiplied two large integers,
thereby resulting in a number too large to represent in a four-byte
integer.

1.179 scm176

Warning 176: implicitly promoted formal "name" conflicts with prototype
See line number file "filename"

This message is suppressed by default, but you can enable it with the
strict, ansi, or warn=176 options. You are defining a function using an
old-style definition, which means that any narrow types (char, short, and
float) in your definition are implicitly widened to their non-narrow
equivalents (int, int, and double, respectively). However, a prototype is
in scope that gives the narrow version of the type.

Functions that call your function will not know that your function is using
an old-style definition and, with some compilers, may pass an incorrect
value. An incorrect value 1is never passed using the SAS/C Compiler on the
Amiga hardware. See Chapter 13, "Writing Portable Code," for information
on using narrow types in function declarations. See also the descriptions
of messages 165 and 179.

scmsg

63 /140

1.180 scm178

Warning 178: indirect call without indirection operator

This message is suppressed by default, but you can enable it with the
strict or warn=178 options. You called a function using a function
pointer, but did not use the indirection (%) operator to dereference the
pointer first. The SAS/C Compiler generated correct code, but on pre-ANSI
compilers this code may not work.

Example:
void (xfuncptr) (int);

funcptr (10); /+ Warning 178 */
(«funcptr) (10); /+* No warning =/

1.181 scm179

Warning 179: narrow type used in old-style definition

This message is suppressed by default, but you can enable it with the
strict or warn=179 options. Your code has used a narrow type (char, short,
or float) in an old-style definition. See Chapter 13, "Writing Portable
Code," for information on using narrow types in function declarations. See
also the descriptions of messages 165 and 176.

1.182 scm180

Warning 180: no space between macro name and its replacement list

This message is suppressed by default, but you can enable it with the
strict, ansi, or warn=180 options. Your code is defining a preprocessor
macro that takes arguments but does not have at least one blank after the
closing parentheses of the argument list. The ANSI C Standard requires
white space after the closing parentheses.

For example:

#pragma msg 180 warn
#define ADD(a,b) (a+b) /* Warning 180 =/

1.183 scm181

Warning 181: "name" was declared both static and external
See line number file "filename"

Your code has declared a function or a global variable as both static and
external at different places. Both the function and its prototype must
agree on whether the function is static.

scmsg

64 /140

1.184 scm182

Warning 182: static function "name" declared but not defined
See line number file "filename"

Your code had a prototype for a function declared static but never defined

the function. The function definition may be hidden with #if or #ifdef
statements.

1.185 scm183

Warning 183: inline function "function" declared but not defined
See line number file "filename"

Your code had a prototype for a function declared __inline but never

defined the function. The function definition may be hidden with #if or
#ifdef statements.

1.186 scm184

Warning 184: unterminated character constant

Your code has specified a multibyte character constant (such as ’'ab’), and
you did not compile your code with the mbchar option; or, if you compiled
your code with the mbchar option, the multibyte character is larger than
the permitted four bytes.

1.187 scm185

Error 185: comma expected
The compiler expected a comma but did not find one. This error may be
produced because of errors in previous statements. Fix all previous errors

before fixing this one.

1.188 scm186

Warning 186: implicit conversion between pointer and scalar

Your code has converted a pointer to an integer while doing static
initialization. You can suppress this warning by casting the pointer to
the appropriate type.

scmsg 65/140

1.189 scmi187

Warning 187: negative value assigned to unsigned type

This message is suppressed by default, but you can enable it with the
strict or warn=187 options. Your code has assigned a negative constant to
an unsigned variable. In doing so, your code is in effect assigning a very
large positive number to the variable, which may or may not be the action
you intended.

1.190 scm188

Error 188: Function and data definitions not allowed when creating a GST
NEW WITH VERSION 6.55

You enabled the MAKEGST option to create a Global Symbol Table, but your
header files attempt to define a function or variable. You cannot have

function or data definitions in a header file that you want to add to a

GST.

A definition differs from a declaration in that it actually allocates
storage. For example, the following are definitions:

int x;
void func (void)
{
return;
}
__inline int add(int x, int vy)
{

return x + y;

but these are only declarations:

extern int x;
void func(void);

You can have only one definition per function or data item, but you
can have as many declarations as you like. ANSI C says that if you
declare an item and include an initializer, the declaration becomes
a definition:

extern int x = 10;

In this case, the "extern" keyword is ignored because an initializer
is present.

You can often remove definitions from your header files by replacing
them with declarations, then moving the definition to one of your

C or C++ source files.

For more information on GSTs, please see page 29 of your Library

scmsg

66 /140

Reference Manual, Version 6.50.

1.191 scm189

Warning 189: <option> option differs from the one used to build the
NEW WITH VERSION 6.55

You are trying to use a Global Symbol Table, but your default or
specified options to the SC command do not match the ones used to
build the GST.

Certain compiler options are very fundamental and must be the same
between the creator and the user of a GST. These options include
the MATH= option, the SHORTINT option, and the UNSIGNEDCHAR option.
You may need to recreate your GST if you have modified one of these
options.

The compiler produces this message as an error if the values used
for the SHORTINT option do not match between the compilation and
the GST, or if either the compilation or the GST used MATH=FFP and
the other uses any other math option (or no math option). It is
produced as a warning if the MATH= options do not match exactly

or i1f the UNSIGNEDCHAR option does not match. If produced as a
warning, the message is suppressed by default, but may be enabled
with the WARN=189 or STRICT compiler options.

1.192 scm190

Warning 190: #include ignored because header already included
See line number file "filename"

This message is suppressed by default, but you can enable it with the

warn=190 option. The nomultipleincludes compiler option is active, a
your code included the same header file more than once. The compiler
ignores the additional #include statement. You can use this message

locate all such multiple includes if you want to modify your header files

to not include the same file more than once.

You can get even more information about which header files were included by

using the listincludes compiler option.

1.193 scmi192

Error 192: wrong size for enum

An enum variable was declared to be of a different type than the base enum

was when it was defined. Suppose you have the following code:

char enum COLORS = {RED, GREEN, BLUE};

GST

nd

to

scmsg 67 /140

enum COLORS color; /x Warning 192 x/
char enum COLORS color2; /* correct =*/

The enum variable color should be declared the same size as the base enum
type, which is char enum. The base enum type overrides the enum variable’s
type definition.

1.194 scm193

Warning 193: implicit reference to struct/union member
Reference assumed to be "reference"

Your code has referred to a struct or union member name that is actually a
member of a substructure or subunion of the original. The compiler has
searched all substructures and subunions and determined that exactly one
member matches the name you specified, so it is using that member. The
reference printed in the message text is the fully expanded name of the
member that it is using. If you intend to take advantage of this feature
of the SAS/C Compiler, you may disable this warning with the ignore=193
option. If you choose to disable this warning, your code may not work on
other compilers.

For more information on using implicit structure references, see Chapter
11, "Using SAS/C Extensions to the C and C++ Languages."

1.195 scm194

Warning 194: too much local data for NEAR reference,
some changed to FAR

You have declared more than 32K of static data. The compiler can address
up to this amount using 16-bit offsets. Amounts greater than 32K must be
addressed using 32-bit offsets. You may have compiled with the

data=faronly option and declared some data with the __ _near keyword. If
your entire project is in one source file or is compiled with data=faronly,
you can ignore this warning unless you get an error later in the
compilation or link. Otherwise, you must eliminate some near data in one
of four ways:

Compile your program with the strmerge compiler option. This
option moves all string constants to the code section, thereby
moving them out of the near data section.

Declare read-only data as static const. When you compile with
the stringmerge option, this data will also be moved to the code

section.
Add the ___far keyword to some of your larger external or static
data items to move those items from the near section to the far
section.

Specify the data=far compiler option to move all data items
except those declared with the __near keyword to the far section.

NOTE: The second line of message 194 is not printed unless you compiled

scmsg 68 /140

with the data=auto option, or you compiled with the data=faronly option and
declared data with the _ near keyword.

1.196 scm195

Warning 195: nested comment detected

This message is suppressed by default, but you can enable it with the
warn=195 option. The compiler found the start of a comment (/+*) inside of
a comment. Some compilers allow comment nesting and others ignore the
start of the second comment. The ANSI C Standard does not allow nested
comments. If you choose to use nested comments, you should specify the

comnest compiler option. However, using the comnest option prevents your
code from running on most ANSI-compliant compilers.

1.197 scm196

Warning 196: specified include directory not found: "name"

The named directory does not exist or could not be accessed.

1.198 scm198

Warning 198: __ regargs and __asm cannot be used on a varargs function
Functions that take variable numbers of parameters always pass their

parameters on the stack. The _ _regargs and __asm keywords are invalid for
these functions.

1.199 scmi199

Error 199: unbalanced comment
See line number file filename

Your code has a comment open (/%) with no corresponding comment close (*/).
This condition is not detected until the end of the C source file.

1.200 scm200

Warning 200: No register specified for parameter to _ _asm function

You have declared a function with the __asm keyword, but you did not select
a register for one or more of the parameters.

For example:

scmsg 69/140

int _ _asm foo(int x); /* WRONG! ©No register for ’'x’! */
int __asm bar(register __dO0 int x); /* RIGHT! =/

1.201 scm202

Warning 202: relational comparison between unsigned and zero

Your code compared an unsigned value with zero in such a way that the
expression will always be true or always be false.

For example:

unsigned int x;
if(x < 0) /x Never true! =/

if (sizeof(x) >= 0) /* Always true! x/

This message is suppressed by default, but you can enable it with the
strict or warn=202 option.

1.202 scm204

Warning 204: invocation of macro "macro-name" too large or not terminated
g

Your code invoked a macro but did not supply enough closing parentheses to
terminate the invocation. Also, check any of the macros that are invoked
by the macro that you invoked directly in your code.

1.203 scm209

Warning 209: macro name invocation may have multiple side effects

You have passed an expression with a side effect as an argument to a macro,
and that macro has evaluated the argument more than once. Operators with

side effects are ++, ——, +=, /=, *x=, -=, >>=, <<=, |=, &=, and =.
For example, the max and min macros evaluate each argument twice. If you
invoke the max macro as MAX(i++, j), the first argument is evaluated twice,

and two post-increments take place.
A typical definition of the max macro is as follows:
#define MAX (x,y) ((x) > (y) ? x : y)

int 1 = 0;

scmsg

70/140

i = MAX (i++, 0); /* Warning 209 «/
The macro expands to:
i = ((i4++) > (0) 2 i++ : 0);

The expansion contains the expression i++ twice, so if that branch of the
?: operator is executed, the variable i is incremented twice.

This warning may sometimes be produced incorrectly, but you should examine
each case to determine whether there is an error.

Function calls are also considered side effects, but function calls produce
warning 217 instead of warning 209.

1.204 scm212

Warning 212: item "name" already declared
See line number file "filename"

This message is suppressed by default, but you can enable it with the
warn=212 option. You have declared an item twice. For example, you may
have specified the prototype for a function twice, or you may have declared
an extern twice. The declarations do not conflict, or the compiler would
generate error 72, but code is harder to maintain if it defines the same
item in more than one place. You may want to use the nomultipleincludes
option to suppress multiple #includes of the same file if you enable
warning 212.

1.205 scm213

Warning 213: empty argument to preprocessor macro "macro—-name"

This message is suppressed by default, but you can enable it with the
strict, ansi, or warn=213 options. Your code calls a preprocessor macro
with no argument text. This action is accepted by the SAS/C Compiler but
is not permitted by the ANSI Standard.

For example:

#define FOO(a,Db) a

FOO (10,)

1.206 scm216

Warning 216: symbol "name" found

You have compiled with the fsym compiler option, and the compiler has found
a definition of one of the symbols that you specified as the parameter to

scmsg

71/140

the fsym option.

1.207 scm217

Warning 217: macro invocation may call function multiple times

You have passed a function call as an argument to a macro that evaluates
its arguments more than once. This action may cause incorrect results.

See also the description of message 209.

1.208 scm218

Error 218: declaration found in statement block

The compiler found a declaration where it expected a statement. You may
have a statement in the middle of your declaration block, or vice-versa.
Any declarations found after this error are added as external variables,
which suppresses warnings about undefined variables but may create

additional errors later if your code declares a variable of the same name.

In the following example, the variable y is declared after the first
statement of the function:

void func (void)
{
int x;
x = 10;
int y; /* Error 218 «/

1.209 scm220

Warning 220: old-fashioned assignment operator
taken as "operators"

This message is suppressed by default, but you can enable it with the
strict or warn=220 options. Older compilers allowed the operators =-, =+,

and so on. In ANSI C, these operators are specified as -=, +=, and so on.

The older specification is ambiguous when assigning certain expressions
(for example, x=-5; and x= -5;). To resolve this ambiguity, newer
compilers use —-=, and some pre-ANSI compilers use =-. Therefore, you
should enter at least one space between the equals (=) sign and whatever
operator follows it to ensure portability.

1.210 scm223

scmsg 72/140

Error 223: "filename" is not a valid GST file

The specified filename was supplied using the gst compiler option as a
Global Symbol Table file, but it is not a valid GST file. Delete the bad
file and try re-creating it.

1.211 scm224

Warning 224: item "name" already defined
See line number file "filename"

This message indicates that a variable, function, or typedef is being
defined for the second time in a given scope. This message is normally an
error, but if the redefinition is harmless, the compiler allows it and
issues the message as a warning instead. As shown in the following
example, the compiler allows redefinition of typedef names in the same
scope if the new type is identical to the old type. The compiler does not
allow redefinition of functions or variables in the same scope.

typedef int foo;
typedef int foo; /* Warning 224 x/

void func (void)
{
}

void func (void) /% Error 224 x/
{
}

1.212 scm225

Warning 225: pointer type mismatch
"typel" does not match "type2"

Your code has performed an assignment or some other operation on two
incompatible different pointer types or on a pointer type and an arithmetic
type.

For example:

struct FOO
{
int x, vy, z;
} foo;
int *ip;

ip = &foo; /* Warning 225 x/

scmsg 73/140

1.213 scm226

Error 226: cannot convert "typel" to "type2"
The compiler was unable to perform a requested or implicit conversion. For
example, if one of the types is an instance of a structure, the structure
cannot be cast to another structure type or to an arithmetic type.
For example:

struct FOO

{

int x, vy, z;
} foo;

int 1i;

i = (int) foo; /* Error 226 x/

1.214 scm301

Warning 301: Indirect reference through NULL pointer.
The program being optimized contained code to dereference a pointer with a

NULL value. The results of such a dereference are undefined but may
include an addressing exception or a system crash.

1.215 scm302

Warning 302: Type punning involves representation change symbol
A variable defined with one type was used with a different type. This
practice is known as type punning. This message can occur, for example,

when an assignment is made to a member of a union and then the wvalue is
accessed from a different member of the union.

1.216 scm303

Warning 303: Reference has overlapped definition symbol

The indicated identifier has at least two definitions that partially
overlap its storage.

1.217 scm304

Warning 304: Dead assignment eliminated symbol

symbol was assigned a value on the indicated line, but the value was never
used. The assignment was eliminated.

scmsg

74 /140

1.218 scm305

Warning 305: Uninitialized variable symbol

The named identifier was not initialized before it was used. The
identifier’s value is unpredictable.

1.219 scm306

Note 306: reason function inlined: function name {from line n}

The named function was expanded inline at the line associated with the
message. The reason is __inline, complexity = ¢, or local, depending on
which inline option caused the inlining to occur. ¢ is the complexity of
the function (not the value of the complexity option). The section {from
line n} is only included when the location at which the call was expanded
differed from the location of the call. This message happens when levels
of inlining are occurring. The value n is the line number of the call.

1.220 scm307

Warning 307: return value missing in inline function

Your code is defining an inline function, but the function does not return
the required type. A common cause of this is omitting the "void" return
type from functions that return nothing:

__inline func(int a, int Db)
{

...code...

If the function really returns nothing, add the "void" keyword:

void __inline func(int a, int b)
{

...code...

If it should return a value, make sure that all paths return values:

int _ _inline func(int a, int b)
{
if (a>b)
return a-b;
/+ Note: This path does not return a value =/

1.221 scm308

scmsg 757140

Note 308: inline function does not use formal parameter <symbol>
You have defined an inline function that does not refer to the
specified formal parameter. This may be acceptable programming
practice; if it is, turn off this warning with a #pragma msg or
the NWARN 308 option. To turn off the message for just this
function, surround the function definition with

#pragma msg 308 ignore push

<function definition>

#pragma msg 308 pop

1.222 scm402

Error 402: Wrong number of parms to builtin function

The wrong number of parameters were passed to a builtin function. The
builtin function will not be used.

1.223 scm403

Error 403: Argument (s) to function-name must be int type

The builtin function requires an integer parameter.

1.224 scm404

Error 404: _ builtin_fpc requires MATH=68881 option

The _ _builtin_ fpc function was used without the math=68881 option.

1.225 scm405

Error 405: Floating point opcode must be a constant.

The parameter to __builtin_fpc must be a constant, since it is the opcode
for a 68881 instruction.

1.226 scm406

Error 406: Offset from library base must be a constant

A #pragma libcall statement was declared with a variable for the offset for
the Jjump vector.

scmsg 76 /140

1.227 scm407

Error 407: Offset from library base must be negative

Jump vectors are always negative from the library base.

1.228 scm408

Error 408: Insufficient parameters for library call

The number of parameters to a #pragma libcall does not match the magic
number in the #pragma statement.

1.229 scm409

Error 409: Too many parameters for library call

The number of parameters to a #pragma libcall does not match the magic
number in the #pragma statement.

1.230 scm4i10

Error 410: 1Invalid register specification for getreg/putreg

The register number is out of range. Refer to the header file dos.h for a
list of registers.

1.231 scmd4it

Error 411: Value for getreg/putreg must be an integral type

The register must be a constant.

1.232 scm4di2

Error 412: FP register used without co-processor

You must specify the math=68881 option to use floating-point registers in
fpragma flibcall statements.

scmsg

777140

1.233 scmd4i5

Error 415: Same register used twice for parameters
The same register was specified for more than one parameter in an asm
function.

1.234 scm416

Error 416: No register specified for ASM call

A parameter was specified without a register in an asm function.

1.235 scm41i17

Error 417: No Data register available to reach far formals.
Reduce the size of auto variables or reduce the
number of register parameters.
If you have more than 32K of auto variables and formal parameters, the

compiler needs an extra register to reach the formal parameters. If all
registers are used as parameters, you will get this message.

1.236 scmi1101

Error 1101: TIllegal token.

A symbol that is not recognized as a valid token has been detected in the
input. For example, you may have a symbol that you intended to be a C++
identifier, but it contains a character not permitted in identifiers. For

instance, symbols cannot have a number as the first character of the
identifier.

1.237 scmi1102

Error 1102: Can’t find file: filename.

The file specified in a #include directive cannot be found.

1.238 scm1103

scmsg 78/140

Error 1103: 1Invalid file name.
The filename in a #include directive must be enclosed in double quotes ("")
or angle brackets (<>). See "F.3.13 Preprocessing Directives" in Appendix

3, "Implementation Defined Behavior," for information on when to use quotes
or brackets.

1.239 scm1104

Error 1104: End of file encountered in comment.

The end of the source file has been detected while a comment was being
processed (and before the comment terminator was seen).

1.240 scm1105

Warning 1105: Invalid escape sequence.
An invalid escape sequence has been detected.

An invalid escape sequence is a backslash (\) followed by a character not
valid in such a context. For example, \z is not a valid escape sequence.

1.241 scmi1106

Error 1106: 1illegal preprocessor directive.

A # character followed by a symbol not recognized as a valid preprocessor
directive has been detected. You may have misspelled the directive.

1.242 scmi1107

Warning 1107: Extra token(s) after preprocessor directive.

A #if, #else, or #endif directive has been followed by some text not within
a comment.

1.243 scmi1108

Error 1108: Missing identifier in preprocessor context.

An identifier is required in the given preprocessor context but is not
present. For example, if your program says #if defined instead of #if
defined myfunc, this message is issued.

scmsg

79/140

1.244 scm1109

Error 1109: Redefinition of preprocessor symbol: symbol.
A previously defined symbol has been redefined. This message is produced

as a warning if the new definition is the same as the old definition, but
it is produced as an error if the two definitions are different.

1.245 scmi1110

Error 1110: Missing ')’ in macro call.

A prior occurrence of a left parenthesis has been detected in a macro call
but has not been matched by a right parenthesis.

1.246 scmiiii

Error 1111: Missing argument to preprocessor macro.
A preprocessor macro has been called with fewer arguments than the macro

requires. Check the definition of the macro to determine which arguments
are missing.

1.247 scm1112

Error 1112: Missing comma in preprocessor expression.

A comma is required to separate the arguments in the definition or call of
a function-like preprocessor macro.

1.248 scm1113

Error 1113: 1Illegal operator in preprocessor context.
The preprocessor has detected an operator that it cannot understand.

Examples of operators that are illegal in the preprocessor context are:
++, -—, ., and —->.

1.249 scm1114

Error 1114: Missing operand in preprocessor context.

An operand was expected but not found.

scmsg

80/140

1.250 scm1115

Error 1115: Illegal expression in preprocessor context.
The preprocessor has encountered an expression that it cannot understand.

For example, an operand may be expected but is not present, or the operand
is of a non-integral type (for example, a floating-point constant).

1.251 scm1116

Error 1116: Preprocessor number not a true number.
A token beginning with a digit resembles an integer or floating-point

constant, but is not correct. For example, you may have mistyped a digit
in a hexadecimal constant or mistyped a floating-point exponent field.

1.252 scmi1117

Error 1117: 1Integer required in preprocessor expression.
A non-integer operand has been detected in a preprocessor expression. The
logical operators (!, ||, and &&) require integral operands.

1.253 scm1118

Error 1118: Extra #else or #elif.

A f#else or #elif directive has been found without a matching #if directive.

1.254 scm1119

Error 1119: Extra #endif.

A #endif directive has been found without a matching #if directive.

1.255 scmi121

Error 1121: 1Invalid #line format.

The preprocessor has encountered an invalid #line directive. The form of
the #line directive is

#line number "string"

number must be an integer constant and string must be enclosed in double
quotes.

scmsg 81/140

1.256 scm1122

Error 1122: Missing parenthesis in preprocessor expression.

A beginning left parenthesis has been detected in an expression but was not
matched by a right parenthesis.

1.257 scm1123

Error 1123: TIllegal use of # operator.

The identifier following the # operator is not an argument to the macro
being defined.

1.258 scmi124

Error 1124: #error directive.

The preprocessor has encountered a #error directive. This message is
issued whenever a #error directive is encountered.

1.259 scmi1125

Error 1125: Illegal ## expression.

Either the first or second operand of the ## operator is missing. This may
happen if the ## expression begins or ends the line.

1.260 scm1126

Error 1126: Illegal operand of ## operator.

An operand of the ## expression is not an identifier. You may have
misspelled the identifier.

1.261 scmi1127

Error 1127: Unterminated string or character constant.

A string (starting with a double quote) or a character constant (starting
with a single quote) was begun but not terminated.

scmsg

82/140

1.262 scm1129

Error 1129: Character literals must contain at least one character.
Two consecutive single quotes were found with no intervening characters.

Character literals must have at least one character between the single
quotes.

1.263 scmi1130

Error 1130: Unterminated preprocessor conditional.
The end of the source file was reached while a conditional preprocessor

directive (such as the #elif directive) was pending. One or more #endif
directives are missing.

1.264 scm1200

Error 1200: Syntax error more-explanation.
A syntax error has been detected. There are many forms of message number

1200. The amount of information provided in these messages is dependent
upon the context in which the error occurs.

1.265 scm1205

Error 1205: Newline within string or character literal.

The newline character (indicating an end of line) has been found within a
string literal or character literal. Usually this occurs when a
terminating single quote or double quote has been omitted from the literal.
To cause a newline character to appear in the output, use the \n escape
sequence, as in "Hi\n".

1.266 scm1206

Error 1206: Bad character in input (hex—-number).

The specified character has been detected in the input and is not an
acceptable character for a token. Normally this condition occurs only if

your source file has had odd characters inserted in it, perhaps as a result

of uploading or downloading the file from one machine to another.

scmsg

83/140

1.267 scm1208

Warning 1208: C style comment starting on line line-number never ends.
There is no terminating */ sequence to the comment. Either you have

forgotten the comment terminator or you intended the comment to be a C++
comment .

1.268 scm1319

Error 1319: "identifier’ not declared.

The specified identifier is not declared. It may be misspelled.

1.269 scmi1320

Error 1320: No such class: ’'identifier’.
The specified identifier is not a class, but is used in a place where a

class name is required, such as before the :: operator or in a
base-specifier-1list.

1.270 scm1321

Error 1321: "struct’ or ’'class’ used on ‘enum identifier’.

The specified identifier is an enum tag, but the keyword struct or class
was used instead of enum.

1.271 scm1322

Error 1322: "enum’ used on ’class identifier’.

The specified identifier is a class tag, but the keyword enum was used
instead of struct or class.

1.272 scm1323

Error 1323: '’'identifier’ previously declared to be a type-name.

The specified identifier was previously declared to have some other type.

scmsg

84/140

1.273 scm1324

Error 1324: "identifier’ redefined.

The specified identifier was previously defined in this scope.

1.274 scm1325

Error 1325: Scoped declaration in parameter list.

The :: operator cannot be used in parameter lists.

1.275 scm1326

Error 1326: Label ’label-name’ not defined.

The specified label appeared as the target of at least one goto statement

in the previous function, but the label was never defined in the function.

Labels are defined in a function using the label: statement notation.

1.276 scm1327

Error 1327: Label ’label-name’ previously defined.

The specified label was defined more than once in the same function.

1.277 scm1328

Error 1328: Repeated keyword or type name: ’'keyword’.

A keyword or type name was used more than once within a single declaration.

1.278 scm1329

Error 1329: Conflicting keywords or type names: 'keyword-1’ and
"keyword-2".

An illegal combination of keywords or type names was used in this
declaration.

scmsg 85/140

1.279 scm1330

Error 1330: Must be integral, pointer, or member pointer.
An expression of a non-testable type was used where a testable value is
required. Testable types are all the integral, pointer and member-pointer

types. Testable values are required as the first expression of a ?:
operator and as the test for the if, while, do while, and for statements.

1.280 scmi1331

Error 1331: Must be integral.
An expression of a non-integral type was used where an integral valued

expression is required. An integral value 1is required in a case label and
in the test expression of a switch statement.

1.281 scm1332

Error 1332: No such conversion.

An illegal conversion was specified in a cast operator.

1.282 scm1334

Error 1334: Expression is not modifiable.
You have attempted to assign a value to an expression that cannot be
modified. An lvalue 1is any expression that can appear on the left side of

an assignment operation.

For example, the result of a cast is not an lvalue; therefore, the
following statement is invalid:

long x;
(short)x = 2; /x Error 1334 =/

The following examples also generate this error message:

#define ADDONE (x) (x)++

ADDONE (12) ; /* Cannot increment a constant =/
ADDONE (&Q) ; /+ Cannot assign to an address */
if (func(10)=73-2); /* "==" was intended, not "=" */

&X = &y; /% Cannot assign to an address x/
Yy g

scmsg 86 /140

1.283 scm1335

Error 1335: 1Invalid use of ’&’ address-of operator (object).
The address-of operator (&) was applied to an object that was not
addressable. Examples of nonaddressable objects are bitfields and register

variables. Also, you cannot take the address of an overloaded function
except as an initializer.

1.284 scm1336

Error 1336: Cannot initialize (variable) with (initializer).

The initializer is of a type that cannot be converted to a type required by
the variable it is initializing.

1.285 scm1337

Error 1337: Preprocessor error.

The preprocessor has encountered an error that is beyond its capabilities
to diagnose.

1.286 scm1338

Error 1338: Unexpected end of file.

The parser reached the end of the input source before it expected to. This
may result during error recovery from a previous syntax error in the input
source. Otherwise, it usually indicates that a closing brace (}) or

semicolon (;) has been omitted at the end of your source.

1.287 scm1339

Warning 1339: A non-lvalue array was converted to a pointer.

Only arrays that are lvalues can be converted to pointers. (See message
1334 for an explanation of lvalue.) Because the array is not converted to a
pointer, operator [] should not be applied to it because operator []
requires a pointer. Also the array should not be assigned to a pointer
variable. 1If you want only to access the array, you may ignore this
warning. However, if you want to alter the value of an array element, you
should treat this message as an error.

scmsg 87 /140

1.288 scm1340

Error 1340: The base name ’class-1’ is ambiguous in class ’‘class-2'.

The class class-1 occurs more than once as a base of the second class,
class-2.

1.289 scm1342

Error 1342: Conversion from a virtual base class (’class—-name’) to a
derived class 1s not allowed.

Virtual base classes cannot be converted, either explicitly or implicitly,
to derived classes.

1.290 scm1343

Error 1343: Ambiguous conversion to integral type from ’‘class class—name’.

The class has defined multiple conversions to an integral type.

1.291 scmi1344

Error 1344: Ambiguous conversion to pointer from ’‘class class—name’.

The class has defined multiple conversions to pointer.

1.292 scm1345

Error 1345: Ambiguous conversion to testable from ’‘class class—name’.

The class has defined multiple conversions to one or more of arithmetic,
pointer, or member-pointer types.

1.293 scmi1346

Error 1346: Ambiguous conversion to derived member pointer.

An ambiguous reference to the derived member-pointer has been found.
Resolve the ambiguity by qualifying the pointer name with its class name.

scmsg 88/140

1.294 scm1347

Error 1347: Ambiguous conversion of overloaded function pointer.
An ambiguous reference to the overloaded function pointer has been found.

Resolve the ambiguity by qualifying the function pointer name with its
class name.

1.295 scm1348

Error 1348: Ambiguous conversion to class.
An ambiguous reference to the class to which conversion is being made has
been found. For example, you may have a file-scope function that has the

same name as a class (and hence, the same name as the conversion function
of that class).

1.296 scm1349

Error 1349: Ambiguous conversion.

An ambiguous conversion has been specified. For example, a constructor and
a function cannot have the same name.

1.297 scm1350

Error 1350: Ambiguous function call.

The function name used in the call is ambiguous. For example, two classes
may both have a function of the same name and a class name has not been
used to qualify the function name in the call.

1.298 scm1351

Error 1351: Overloaded functions (’function-1’ and ’function-2’) used
ambiguously in conditional expression.

Two overloaded functions were used as the second and third operands to a
conditional operator (?:). These overloaded functions have more than one
function type in common. Cast one or both operands to the desired function
pointer or member function pointer type.

scmsg 89/140

1.299 scm1352

Error 1352: Ambiguous common base class: class—name.

The reference to the base class is ambiguous. Resolve the ambiguity by
further qualifying each occurrence of this name.

1.300 scmi1353

Error 1353: Ambiguous member name: member—name.
The expression used to refer to the member refers to more than one

function, object, type, or enumerator. Resolve the ambiguity by qualifying
the member name with its class name.

1.301 scm1i1354

Error 1354: Non-static member ’'member-name’ must be used with dot, arrow,
or address-of operator.

Non-static members must be used only in the following contexts:
after a dot or arrow operator
as a member-pointer (as in &class-—-name::member—name)
within a sizeof or offsetof expression

within a non-static member function of a class that contains or
inherits the member (where the this-> operation is implied).

1.302 scm1355

Error 1355: Value of an undefined class cannot be used.

You have tried to dereference a pointer to an undefined class. A solution
is to include the definition of the class before it is used.

1.303 scmi1356

Error 1356: An array may not be the target of an assignment.

Array assignment (that is, assignment of an array name) is not supported in
C or C++.

scmsg

90/140

1.304 scm1357

Error 1357: A function may not be the target of an assignment.

Function assignment (that is, assignment to a function name) is not
supported in C or C++.

1.305 scmi1358

Error 1358: Cannot operation a pointer to type.
You cannot add to or subtract from a pointer to void, a function pointer,
or a pointer to an undefined class. Nor can you use the indirection

operator (x) on a pointer to void or a pointer to an undefined class. The
error message explains which of these mistakes you have made.

1.306 scmi1359

Error 1359: Typedef names cannot be declared in parameter lists.

A typedef name has been encountered in a parameter list. Move the

definition of the typedef name outside the parameter list (that is, to file

scope) .

1.307 scm1361

Error 1361: Cannot take the address of a member of virtual base class.

The & operator cannot be applied to a member of a virtual base class.

1.308 scm1362

Error 1362: Invalid initializer.

The initializer is of a type that cannot be converted to a type required by

the variable it is initializing.

1.309 scmi1363

Error 1363: Invalid use of void.

Only functions or pointers can be declared void.

scmsg 91/140

1.310 scm1364

Error 1364: Cast to undefined class not allowed.

The class to which a cast is made must be previously defined.

1.311 scm1365

Error 1365: Cannot find offset into non-class.

Only members of classes can have offsets.

1.312 scm1366

Error 1366: Cannot find offset into undefined class.

A class must be defined before the offset of one of its members can be
taken.

1.313 scm1367

Error 1367: 1Invalid use of the scope operator.
The scope operator (::) can be used only in such expressions as C3::mem or

Cl::C2::C3::mem where Clis a class in which class C2 is declared, C3 is a
class declared in C2, and mem is a member of C3.

1.314 scm1368

Error 1368: Cannot find the offset of ’'object’.

It is illegal to take the offset of a member function, a static member or a
bitfield member. 1In particular, because the number of bits in a bitfield
may be less than the number of bits in a char, or its number of bits may
not comprise an integral number of chars, a bitfield in C++ has no size.

1.315 scm1369

Error 1369: Cannot find offset because class 'class-name’ has no member
named ’'member-name’ .

The second argument to the offset operation must be a member of the class
specified in the first argument.

scmsg

92/140

1.316 scm1370

Error 1370: Cannot take the size of an undefined class.

A class must be defined before its size can be determined.

1.317 scm1371

Error 1371: Cannot dereference pointer to undefined class.

A class must be defined before a pointer to an object of its type can be
dereferenced.

1.318 scm1372

Error 1372: No such constructor.

The constructor referred to does not exist.

1.319 scm1373

Error 1373: ’'identifier’ previously declared as type-1. Cannot be defined
as type-2.

A name declared using the union specifier cannot be defined using struct or
class. Similarly, a name declared as struct or class cannot be defined
using union.

1.320 scm1i1374

Error 1374: No such member ’'member-name’ .

The identifier referred to is not a class member.

1.321 scmi1375

Error 1375: Member ’'member-name’ redeclared.

The specified member of the class has been declared more than once.

scmsg 93/140

1.322 scm1376

Error 1376: "identifier’ not a definable member.

Only functions and static data members can be defined outside the class
declaration.

1.323 scm1377

Error 1377: ’this’ may occur only in a (non-static) member function.

You cannot use the this keyword outside the context of a non-static member
function.

1.324 scmi1378

Error 1378: Cannot create a new value of a function.

The new operator cannot be applied to a function type. Functions cannot be
allocated by means of the new operator, although function pointers can.

1.325 scm1i1379

Error 1379: Cannot create a new value of a reference.
The new operator cannot be applied to a reference type. Because a

reference type is not an object, a pointer to it could not be returned by
operator new.

1.326 scm1380

Error 1380: Cannot create a new instance of an undefined class.

A class must be fully defined before the new operator can be used to create
a new instance of the class.

1.327 scm1382

Error 1382: Missing array size in expression.

One or more dimensions of the given array have not been specified.

scmsg

94 /140

1.328 scm1383

Error 1383: Class ’‘class—name’ has no default constructor.

You cannot use operator new to allocate an array of class objects if the
class does not have a default constructor.

1.329 scm1384

Error 1384: Cannot initialize new array.

An array created by means of the new operator cannot be initialized by
specifying a brace-enclosed initializer list.

1.330 scm1385

Error 1385: Cannot delete an object of an undefined class.

The delete operator cannot be applied to an object whose class has not been
defined.

1.331 scm1386

Error 1386: Length expression of array must be integral.

The size of an array cannot be specified as a floating-point number.

1.332 scm1387

Error 1387: ©No match for call to function or overloaded operator.

The argument list given for a function call did not match any of the
possible parameter lists.

1.333 scm1388

Error 1388: Missing constructor body.

A constructor declaration was followed by a colon (:), but no constructor
body ({) was found after the colon.

scmsg

95/140

1.334 scm1389

Error 1389: Non-virtual functions ('’ function—-name’) cannot be declared
pure.
Only virtual functions can be declared pure. For more information, refer

to section r.10.3 in The C++ Programming Language, Second Edition.

1.335 scm1391

Error 1391: ©Uninitialized const identifier.

A const identifier must have an explicit initialization.

1.336 scm1392

Error 1392: Uninitialized const identifier or reference: identifier.

A const identifier must be initialized explicitly. The declaration of a
reference must contain an explicit initializer unless one of the following
is true:

the extern specifier has been used

the reference declaration is a class member declaration within a
class declaration

the reference declaration is a declaration of a function
parameter or function return type.

1.337 scm1393

Error 1393: Const identifier or reference member ’'member—-name’ must be
initialized.

A const identifier or reference must be initialized explicitly. This
message 1is caused by a constructor for a class with a const or reference
member where the const or reference member is not initialized with a
mem—initializer in the constructor. For more information, refer to section
r.12.6.2 in The C++ Programming Language, Second Edition.

1.338 scm1394

Error 1394: Member ’'member-name’ must have initializer, class ’class—-name’
has no default constructor.

If a class has a constructor (but does not have a default constructor),
objects of that class must be initialized. A member is initialized by
including a mem—-initializer for it on each constructor for the class

scmsg

96 /140

containing the member. For example, if the type of X::a is a class with a
constructor (but no default constructor) you receive this message if you
omit the a(1l0) in the following code:

X::X() : a(l0), b(11l)

1.339 scmi1395

Error 1395: Base ’'class—-name’ must have initializer, class ’'class—name’
has no default constructor.

If a class has a constructor (but does not have a default constructor), it
must be initialized. A base class is initialized by including a
mem—initializer for it on each constructor for the derived class.

For example, if b is a base class of X and a class with a constructor (but
no default constructor), you receive this message if you omit the b(l1l) in

the following code:

X::X() : a(l0), b(1l1l)

1.340 scm1396

Error 1396: Virtual base class ’'class—name’ must have initializer since
class has no default constructor.

If a class has a constructor (but does not have a default constructor) it
must be initialized. A virtual base class is initialized by including a
mem—-initializer for it on each constructor for the derived class. The
example in the explanation of Error 1395 is applicable in the virtual base
class case as well.

1.341 scm1397

Error 1397: "identifier’ is not a base class or member of class
"class—name’ .

The specified identifier is not a member or base class of the class being
constructed.

1.342 scm1398

scmsg 97 /140

Error 1398: Member access through protected base class not allowed for
"member—-name’ .

The specified member cannot be accessed because it has been inherited from
a protected base class, and the function or initializer using the member is
not a friend or member of a class derived from that base.

1.343 scm1399

Error 1399: Member access through private base class not allowed for
"member—-name’ .

The specified member cannot be accessed because it has been inherited from
a private base class, and the function or initializer using the member is
not a friend or member of the class that is derived directly from that
base.

1.344 scm1400

Error 1400: Base access through protected base class not allowed.

The expression that is attempting to access the base class is not in a
function or initializer that has access to it. Because the base class is
protected, only functions of the following types have access to the base
class:

members or friends of the class that declared the base class
members or friends of classes derived from the class declaring
the base class.

Initializers for members of a class have the same access privileges as
functions of that class. For more information, refer to section r.11.2 in
The C++ Programming Language, Second Edition.

1.345 scm1401

Error 1401: Base access through private base class not allowed.

The expression that is attempting to access the base class is not in a
function or initializer that has access to it. Because the base class is
private, only functions that are members or friends of the class that
declared the base class have access to the base class. Initializers for
members of a class have the same access privileges as functions of that
class. For more information, refer to section r.11.2 in The C++
Programming Language, Second Edition.

scmsg 98/140

1.346 scm1402

Error 1402: Cannot access protected member ’'member-name’.
The expression that is attempting to access the member mem is not in a
function or initializer that has access to it. Because mem is protected,

only functions of the following types have access to mem:

members or friends of the class that declared mem
members or friends of classes derived from the class declaring mem.

Initializers for members of a class have the same access privileges as

functions of that class. For more information, refer to section r.11 in
The C++ Programming Language, Second Edition.

1.347 scm1403

Error 1403: Cannot access private member ’'member-name’.

The expression that is attempting to access the member mem is not in a
function or initializer that has access to it. Because mem is private,
only functions that are members or friends of the class that declared mem
have access to mem. Initializers for members of a class have the same

access privileges as functions of that class. For more information, refer
to section r.l1ll in The C++ Programming Language, Second Edition.

1.348 scm1404

Error 1404: Virtual function ’function-name’ declared in virtual base
"class—name’ must be overridden.

The virtual function is declared in a virtual base class. It is also
overridden in at least two classes derived from the base class and

inherited by the class that caused this message. The specified virtual
function must be declared in the class that caused this message.

1.349 scm1406

Error 1406: Parameter of type ’'void’.

Parameters to functions cannot be declared to be of type void.

1.350 scm1407

Error 1407: Default argument expression missing.

If a formal parameter has a default argument value, then all the parameters
after this one must also have default argument wvalues.

scmsg

99/140

1.351 scm1408

Error 1408: Multiple declarations of function specifying default
arguments.

The default argument for a formal parameter can be given in only one
function declaration.

1.352 scm1409

Error 1409: Arrays cannot contain elements of type ’void’.

Array elements must be of some type other than void.

1.353 scm1410

Error 1410: Arrays cannot contain bitfields.

Array elements must be of some type other than bitfield.

1.354 scmi411

Error 1411: Arrays cannot contain functions.

You can define an array of function pointers, but not an array of
functions.

1.355 scm1412

Error 1412: Functions cannot return functions.

A function can return a function pointer, but it cannot return a function.

1.356 scm1413

Error 1413: Functions cannot return arrays.

A function can return a pointer, but it cannot return an array.

1.357 scm1414

Error 1414: Functions cannot return bitfields.

Bitfields cannot be returned by functions.

scmsg 100/ 140

1.358 scm1415

Error 1415: Functions cannot return undefined classes.

If a function is intended to return a class, that class must first be
defined.

1.359 scm1416

Error 1416: Pointers cannot point to references.

References are not addressable and so cannot be referenced by pointers.

1.360 scm1417

Error 1417: Pointers cannot point to bitfields.

Bitfields are not addressable and so cannot be referenced by pointers.

1.361 scmi1418

Error 1418: References cannot refer to references.

A reference whose value is a reference is not permitted.

1.362 scm1419

Error 1419: References cannot refer to bitfields.

A reference cannot refer to a bitfield.

1.363 scm1420

Error 1420: References cannot refer to objects of type ’'void’.

There are no void objects, so there cannot be a reference to one.

1.364 scmi421

Error 1421: Member pointers cannot point to bitfields.

Bitfields cannot be referenced by member-pointers.

scmsg 101 /140

1.365 scm1422

Error 1422: Member pointers cannot point to references.

A reference cannot be referred to by a member-pointer.

1.366 scm1423

Error 1423: Member pointers cannot point to objects of type ’void’.

Because there are no void objects, a pointer cannot point to one.

1.367 scm1424

Error 1424: Bitfields must be of integral type.

Bitfields cannot be of floating-point type.

1.368 scm1425

Error 1425: Overloaded functions with indistinguishable arguments.

Two functions have the same name and the same parameter list. Either
delete one of the functions, or change its definition.

1.369 scm1426

Warning 1426: K&R C style function definition.

A Kernighan and Ritchie (K&R) C style function definition has been
encountered. C++ requires function definitions to be of prototypical form,
but K&R style function definitions are permitted as an extension. This
message is only to warn you about the use of this extension. If you do not
want to see this warning, use the ignore compiler option to turn it off.

1.370 scmi1427

Error 1427: K&R C style functions cannot return classes with constructors
or destructors.

If a function is to return a class with a constructor and destructor, it
must be defined by means of a prototypical function definition, as opposed
to using a Kernighan and Ritchie (K&R) C style function definition.

scmsg

102 /140

1.371 scm1428

Error 1428: Conversion function must be a member function.

A conversion function for a class must be defined as a member function.

1.372 scm1429

Error 1429: Destructor function must be a member function.

The destructor for a class must be defined as a member function.

1.373 scm1430

Error 1430: Conversion function ’function-name’ not correctly declared.

A return type was specified for a conversion function, or formal parameters
were given for a conversion function. Declarations of conversion functions
do not specify the return type in the usual way. The return type is part
of the name of the function. Also, conversion functions cannot take
arguments.

1.374 scmi1431

Error 1431: Destructor function ’'destructor’ not correctly declared.

A destructor has been declared to be something other than a function, or a
return type was specified for a destructor. Destructors must be functions
and declarations of destructors cannot specify a return type (not even
void) .

1.375 scm1432

Error 1432: Copy constructor for a class may not take an argument whose
type is that class.

Copy constructors cannot take an argument whose type is the class of which

the copy constructor is a member. Typically, you can copy objects of class
ABC by declaring a copy constructor of the form ABC::ABC(const ABC&). For

more information, refer to section r.12.1 in The C++ Programming Language,

Second Edition.

scmsg 103/140

1.376 scm1433

Error 1433: Operator function ’function-name’ not correctly declared.

An operator function must be either a member function or have at least one
parameter of type class.

1.377 scm1434

Error 1434: 1Invalid linkage specifier.

The extern keyword must be followed by a string literal containing either

"C" or "C++". This error may also be caused by an extra or misspelled
token after an extern keyword. "C" and "C++" must be specified in
uppercase.

1.378 scm1435

Error 1435: Linkage differs from prior declaration.

The linkage specified is not the same as that specified in a prior
declaration of the function.

1.379 scm1436

Error 1436: Unknown linkage convention.

SAS/C C++ implements only the "C" and "C++" linkage conventions. Linkage
to other languages must be specified using the SAS/C language keywords.

1.380 scm1437

Error 1437: Missing class name.

A class name was expected but not found. This may be caused by a misplaced
comma.

1.381 scm1438

Error 1438: Repeated base class.

A base class can be mentioned only once in the base-list. For more
information, refer to section r.10.1 in The C++ Programming Language,
Second Edition.

scmsg 104 /140

1.382 scm1439

Error 1439: Objects of abstract classes (’object-name’) cannot be
declared.

Classes that have pure virtual functions (abstract classes) can be used
only as base classes; they cannot be used to declare variables or members

of other classes. It is permissible to declare pointers to abstract
classes.

1.383 scmi1440

Error 1440: Object of type ’'void’.

Only a function can be declared to be of type void. A pointer can be of
type void =*.

1.384 scmi1441

Error 1441: Static members (’'member-name’) of a local class may not be
initialized.
This is one of the limitations of local classes. All static data members

of local classes are automatically initialized to zero.

1.385 scmi1442

Error 1442: Cannot use undefined enum ’identifier’.

Enumerations must be defined before they can be used.

1.386 scm1443

Error 1443: Enum constants (’identifier’) must be initialized with
integral values.

The values of an enumeration must be integral values (rather than, for
example, floating-point values).

1.387 scm1444

Error 1444: A class cannot be a member of itself.

No member of a class can be of the same type as that class (although a
class can have as a member a pointer or reference to that type of class).

scmsg 105/140

1.388 scm1445

Error 1445: Cannot declare members of an undefined class.

A class must be defined before any of its members can be declared.

1.389 scm1446

Error 1446: Cannot declare arrays of an undefined class.

If an array of instances of a given class is to be declared, the class must
first be defined.

1.390 scm1447

Error 1447: Cannot declare variables of an undefined class.

Classes must be defined before objects of that class can be declared.

1.391 scm1448

Error 1448: Cannot initialize data members in member declaration.
Data members cannot be initialized within the class definition. Non-static
data members must be initialized in the mem—-initializer of each constructor
function; for more information, refer to section r.9.4 in The C++
Programming Language, Second Edition. static data members must be

initialized outside the class; for more information, refer to section
r.12.6.2 in The C++ Programming Language, Second Edition.

1.392 scm1449

Error 1449: Member function of a local class must be defined within that
class: class—name.

A member function of a local class must be defined within that class and
not merely declared within the class.

1.393 scm1450

Error 1450: Member ’'member-name’ declared ’'void’.

A member cannot be of type void.

scmsg 106 /140

1.394 scm1451

Error 1451: "friend’” used on non-function.

The friend keyword has meaning only in function declarations inside a
class.

1.395 scm1452

Error 1452: 'friend’ can only be used inside a class.

The friend keyword has meaning only in function declarations inside a
class.

1.396 scmi1453

Error 1453: 1Invalid syntax for access declaration.

A member declaration contains inconsistent information. Friend function
declarations require the friend keyword. Access declarations cannot
specify any type information. Member declarations inside the class
definition cannot specify the class using the scope operator. Either add

the friend keyword, remove the type information, or remove the class name
and scope operator, depending upon which type of declaration you intended.

1.397 scm1454

Error 1454: 1Invalid access adjustment: ’'member-name’.

Access to a base class member cannot be adjusted in a derived class that
defines a member of the same name.

1.398 scm1i1455

Error 1455: Access cannot be changed, but only reinstated.

Access declarations must declare the inherited member to have the same
access as the member in the class from which it is inherited.

1.399 scm1456

Error 1456: Previously declared as a member in this class.

An access declaration cannot specify a name defined in the derived class.

scmsg 107 /140

1.400 scm1457

Error 1457: "class::member’ is not a member of a base class.

The specified member is not a member of any base class.

1.401 scmi1458

Error 1458: Access declaration names class that is not a base of this
class.

You have tried to adjust the access to a member of a base class by using an
access declaration, but the base class name you have used is not truly a
base class of the derived class. You may have misspelled the base class
name.

1.402 scm1460

Error 1460: Constructor function ’constructor’ not correctly declared.

An incorrectly declared constructor has been found. Perhaps you have
specified a return type for a constructor, or the name used in the
declaration of the constructor is not the same as the name of the class.
Declarations of constructors cannot specify a return type (not even void)
and the name of the constructor must be the same as the class name.

1.403 scm1461

Error 1461: Destructor function ’'destructor’ not correctly declared.

An incorrectly declared destructor has been found. Perhaps you have
declared it to be something other than a function, or specified a return
type for the destructor. Destructors must be functions and declarations of
destructors cannot specify a return type (not even void). The name of the
destructor must be a tilde (~) followed by the class name.

1.404 scm1462

Error 1462: Operator function ’function-name’ not correctly declared.

An incorrectly declared operator function has been found. Perhaps you have
declared it with the wrong number of arguments. Unary operators take only
one argument and binary operators take two arguments. Also, member
functions have an implicit this argument, which counts against this limit.
So, for example, a unary operator declared as a member function has no
explicit formal parameters.

scmsg 108 /140

1.405 scm1463

Error 1463: Static functions ('’ function-name’) cannot be virtual.

static functions cannot be virtual. Remove the virtual keyword from the
declaration of the static function.

1.406 scm1464

Error 1464: Constructors (’constructor’) cannot be virtual.

Constructor functions cannot be virtual. Remove the virtual keyword from
the declaration of the constructor function.

1.407 scm1465

Error 1465: Static functions ('’ function—-name’) cannot be used to override
virtual functions.

A static member function was declared to have the same name and argument

types as a virtual function inherited from a base class. Use a different
name for the static function.

1.408 scm1467

Error 1467: Linkage specification cannot be used in a member declaration
(" member—name’) .

Linkage declarations can be used only in file-scope declarations of
non-members.

1.409 scm1468

Error 1468: Cannot define classes or enums in return types or parameter
lists.

Classes and enumerations cannot be defined in parameter lists (prototypes)
or in return type declarations.

1.410 scm1469

Error 1469: Invalid parameter name ’parameter’.

Parameter names cannot be operator function names, operator conversion
names, or destructor names.

scmsg 109/ 140

1.411 scm1472

Error 1472: Formal ’"argument’ is not listed in function declaration.

All arguments to a function must be listed in the parameter list of the
function.

1.412 scm1473

Error 1473: 1Initialized local extern ’variable’.
External variables declared inside a function cannot be initialized in the

function. 1Instead, they must be initialized by another declaration outside
the function.

1.413 scm1474

Error 1474: Type names (name) cannot be initialized.

Declarations of typedef names cannot contain initializers.

1.414 scm1475

Error 1475: Class with constructors must have an initializer.

Variables declared to be of classes that have constructors must be
initialized.

1.415 scm1476

Error 1476: Cannot define classes or enums in type names.

Classes and enumerations cannot be defined in cast operators, new
operators, sizeof expressions, or offsetof expressions.

1.416 scm1477

Error 1477: Not a function.

A file-scope declaration followed by a mem-initializer or a function body
must declare a function.

scmsg 110/ 140

1.417 scm1478

Error 1478: A mem-initializer may be used only within constructor
functions.

This message occurs when a colon follows a function declarator, but the
function is not a constructor.

1.418 scmi1479

Error 1479: Base or member ’'identifier’ re-initialized.
The same base class or member was initialized by two mem-initializers in

the same constructor function. For example, the following code generates
this message because the a(l0) part appears twice:

X::X() : a(l0), a(10)

1.419 scm1i1480

Error 1480: O0Old style base initializer cannot be used on class with no
bases.

An old style base initializer is a mem-initializer with no specified name.
They can be used only for classes with a single base class. For example,
if X has no base classes, the following code tries to initialize a
non-existent base and generates this message:

X::X() : (10)

To correct the error, delete the (10) part. For more information, refer to
section r.18.3.2 in The C++ Programming Language, Second Edition.

1.420 scmi1481

Error 1481: O0Old style base initializer cannot be used on class with
multiple base classes.

An old style base initializer is a mem-initializer with no specified name.
They can be used only for classes with a single base class. For example,
if class X has more than one base, the following code is ambiguous and
generates this message:

X::X() : (10)

scmsg 111/140

To correct the error, insert the name of a specific base class before the
(10) . For more information, refer to section r.18.3.2 in The C++
Programming Language, Second Edition.

1.421 scm1i1482

Warning 1482: Statement is unreachable.

The statement flagged will never be executed. You may want to check your
program logic.

1.422 scm1483

Error 1483: "case’ label must be within a switch statement.

case labels are not allowed outside of a switch statement.

1.423 scmi1484

Error 1484: "default’ label must be within a switch statement.

The default label is not allowed outside of a switch statement.

1.424 scm1485

Error 1485: "continue’ must be within a loop ('do’, ’'for’, or ’'while’)
statement.

The continue statement is not allowed outside of a loop statement.

1.425 scm1486

Error 1486: ’'break’ must be within a switch or loop (’do’, "for’, or
"while’) statement.

The break statement is valid only within switch or loop statements.

1.426 scm1487

Error 1487: Missing return value.

The return value of the function was not specified.

scmsg 112/140

1.427 scm1489

Error 1489: Return value given for constructor, destructor, or void
function.

A return value is not allowed in a constructor, destructor, or void
function.

1.428 scm1490

Error 1490: Missing function name in function declaration.

A function name was expected but not found. You may have misspelled the
name of a constructor function.

1.429 scm1491

Error 1491: 1Illegal formal declaration list in prototype function
definition.

A function definition included both a prototype and one or more Kernighan

and Ritchie (K&R) C style argument declarations. These two styles cannot
be mixed in a single definition.

1.430 scm1492

Error 1492: Formal (’argument’) must be declared in function header
identifier list.

In Kernighan and Ritchie (K&R) C style function definitions, formals

declared in the formal declaration list must have already been specified in
the identifier list of the function.

1.431 scm1493

Error 1493: Expression in array declarator must be constant expression.

Array declarations that specify a size must specify it as a non-negative
integral constant expression.

1.432 scmi1494

Error 1494: Expression in array declarator must be integral.

Array declarations that specify a size must specify it as a non-negative
integral constant expression.

scmsg 113/140

1.433 scm1495

Error 1495: Expression in array declarator must be positive.

Array declarations that specify a size must specify it as a non-negative
integral constant expression.

1.434 scm1498

Error 1498: 1Invalid bitfield size.

Bitfield sizes must be a non-negative constant expression less than or
equal to the size of the specified allocation unit.

1.435 scmi1499

Error 1499: Cannot use undefined class ’‘class—-name’ as base class.

The specified class must be defined before it can be used as a base class
for another class.

1.436 scm1i1500

Error 1500: Missing declaration-specifier.

Declaration specifiers are required in all non-function declarations. They
are also required in function declarations in parameter lists.

1.437 scmi1501

Error 1501: Illegal use of ’'item’ in local member function.
Local member functions can use type names, static variables, extern

variables and functions, and enumeration constants only from the enclosing
scope.

1.438 scm1502

Error 1502: A class cannot be derived from a union (’union-name’).

A class cannot be derived from a union.

scmsg 114 /140

1.439 scm1503

Error 1503: A union (’'union-name’) cannot be derived from another class.

A union cannot be derived from another class.

1.440 scm1504

Error 1504: Constant expression contains a division by zero (0).

Constant expressions cannot contain division by zero.

1.441 scm1506

Error 1506: Cannot take the size of a function.

Functions have no size, although function pointers do.

1.442 scm1507

Error 1507: Cannot take the size of a bitfield.

Bitfield sizes are not expressible in bytes.

1.443 scm1508

Error 1508: Cannot take the size of void.

Because there are no void objects, you cannot take the size of one.

1.444 scmi1509

Error 1509: Cannot take the size of array with unspecified length.

The array was declared without giving its length, so its size cannot be
determined.

1.445 scm1510

scmsg 115/140

Warning 1510: Cannot Jjump into a block to a label after a declaration
having an initializer.

It is prohibited to jump into a block (using a goto statement) if the
destination label occurs after a declaration in the same block that has an
initializer. Should such a Jjump occur, the object in question would not be
initialized but could be referenced in subsequent code.

1.446 scm1511

Error 1511: Overloaded member functions (’function-name’) may not be both
static and non-static.

All member functions of the same name must be either static or non-static.

1.447 scmi512

Error 1512: Function hides a virtual function from base class.

Because the function hides a virtual function, the virtual function is not
called.

1.448 scmi1513

Error 1513: Overriding virtual function has different return type.

An overriding virtual function cannot change the return type.

1.449 scm1514

Error 1514: Arrays cannot contain references.

Arrays of references are not allowed.

1.450 scm1515

Error 1515: Previous declaration of function had different return type.

An earlier declaration of the function specified a different return type.

scmsg

116/140

1.451 scm1516

Error 1516: Cannot have two extern "C" functions with same name (’name’).

In a program, only one of a set of overloaded functions of a given name can
be declared extern "C".

1.452 scm1517

Error 1517: Previous declaration differed in the use of _ builtin.

All declarations of a function must be consistent in the use of the
__builtin keyword. All must have it, or none may have it.

1.453 scm1518

Error 1518: object-type (’expression’) cannot be used in default argument
expressions.

Non-static members, formal parameters, and automatic variables cannot be
used in default argument expressions.

1.454 scm1522

Error 1522: Keyword can only be used on functions.
A keyword that can be used only in function declarations has been used in a

declaration of some other type. For example, virtual and inline can be
used only in function declarations.

1.455 scm1523

Warning 1523: 'keyword’ cannot be applied to object-type.

It is invalid or meaningless to apply the keyword in the specified context.
For example, it is meaningless to apply a storage class keyword such as
auto to the definition of a class (although auto can be applied to the
definition of an object whose type is that class). Depending upon the
combination of keywords in question, this may be treated as a warning or an
error.

1.456 scm1524

Error 1524: Previous declaration was not static.

A function was first declared non-static and later declared static.

scmsg

117 /140

1.457 scm1525

Error 1525: Function declared ’'inline’ after first use.

A function was used prior to its declaration as an inline function.

1.458 scm1528

Error 1528: Member functions must be C++ functions.

Only C++ functions (and not functions in C or in other languages) can occur
as member functions.

1.459 scm1530

Error 1530: Previous errors prevent continuation.

The source program has one or more errors that prevent the compilation from
continuing.

1.460 scmi1531

Error 1531: A declaration must declare something.
An empty declaration has been encountered. This message usually is caused

by the omission of a variable name in a declaration (leaving only a
sequence of keywords or type symbols).

1.461 scmi1532

Error 1532: function-name cannot have ’storage-type’ storage class.

A member function declared const or volatile cannot also be declared
static.

1.462 scmi1533

Warning 1533: Extra comma at end of enumeration list.

An enumeration list has an extraneous comma after its last member.

scmsg 118/140

1.463 scm1534

Warning 1534: Enum value: value 1is used for both ’'enum-1’ and ’"enum-2'.
An enumeration value has been repeated. This warning is given if two enum
constants in the same enumeration type have the same value. This may be

what you intended; the warning is given in case it is not intended.

1.464 scmi1535

Error 1535: Cannot overload ’'main’.

main can not be overloaded.

1.465 scmi1536

Error 1536: Cannot call or take the address of 'main’.

The function main cannot be called, nor can its address be taken.

1.466 scm1537

Error 1537: ’'main’ cannot be ’storage-type’.

The function main cannot be declared static or inline.

1.467 scm1538

Error 1538: Anonymous classes cannot have constructors or destructors.

An anonymous (unnamed) class cannot have a constructor or a destructor.

1.468 scm1539

Error 1539: Destructor names (’'destructor’) must be the same as their
class name (’class’).

The tilde (~) can be used only to declare a destructor if that destructor
has the same name as the class for which it is a destructor.

scmsg

119/140

1.469 scm1540

Error 1540: Expression in array declarator must not be negative.

In C++, an array must be declared to be of a positive size. As an
extension, SAS/C C++ allows the declaration of zero-length arrays.

1.470 scm1541

Error 1541: Cannot allocate array of class ’class—-name’ with no default
constructor.

In order to allocate an array of a class with the new operator, the class
must have a default constructor.

1.471 scm1542

Error 1542: 1Invalid constructor given for member ’'member-name’.

An invalid constructor has been encountered. This happens in two
circumstances:

in constructors that do not give an explicit member initializer
for a member that is an array of classes without a default
constructor

in constructors that give a multi-argument member initializer for
a non-class member.

1.472 scm1543

Error 1543: 'operand-1’ and ’'operand-2’ are not compatible types for
conditional operator.

The two operands are not of compatible type for use with the conditional
operator.

1.473 scm1544

Error 1544: (type-1) operator (type-2): 1Invalid type for binary operator.

One of the types displayed is inappropriate for the operator in question or
is incompatible with the other type in this context.

scmsg

120/ 140

1.474 scm1545

Error 1545: 'operand’ is of invalid type for postfix operator ’operator’.
The postfix operator (++ or —--) cannot be applied to an object of the given
type.

1.475 scm1546

Warning 1546: 'operator’ is invalid for operand type ’'operand’.
The operator cannot be applied to an operand of this type. Depending upon

the operator/operand pair in question, this may be either a warning or an
error.

1.476 scmi1547

Error 1547: 'object’ is of invalid type for call operator.

The call operator, (), cannot be applied to an object of the given type.

1.477 scm1548

Error 1548: 1Invalid pointer conversion from ’'type-1’ to 'type-2'.

It is not possible to convert a pointer to an object of the given type.

1.478 scm1549

Warning 1549: ©Non-const and/or non-volatile member function called with
const and/or volatile object.

It is an error to call a non-const member function for a const object or a
non-volatile member function for a volatile object, but because many other
compilers fail to diagnose this error, SAS/C C++ treats it as a warning.
Ignoring this warning allows non-const functions to change data declared as
const.

1.479 scm1550

Warning 1550: Non-constant reference ’'reference-object’ initialized with a
non-lvalue.

The reference in question is to a non-const but has been initialized with
something that is not an lvalue. See Error 25 for a description of
lvalues.

scmsg

121/140

1.480 scmi1551

Error 1551: Cannot take size of pointer to overloaded function
" function—-name’ .

Because an overloaded function name does not uniquely determine the
function designated, a pointer to such a function likewise is not uniquely

determined and consequently its size may be indeterminate as well.
Accordingly, sizeof cannot be applied to such a pointer.

1.481 scmi1553

Error 1553: Error writing to output file: filename.
An error has been encountered in writing to the output file. This could be

caused by a variety of environmental factors (such as a lack of disk
space) .

1.482 scm1554

Error 1554: Inline member function does not end.

The end of the input file has been encountered before the closing brace (})
was seen for a member function.

1.483 scm1555

Error 1555: Static function ’function—-name’ was not defined.

The specified function was declared static but has not been defined in this
source file.

1.484 scm1556

Error 1556: Global anonymous unions must be static.

An anonymous union declared at file scope must be declared as static.

1.485 scm1557

Error 1557: Anonymous unions may not have function members.

You cannot define an anonymous union that contains function members. If
you want function members, use another construct, such as a plain union,
struct, or class.

scmsg 122 /140

1.486 scm1558

Error 1558: Anonymous unions may not have private or protected members.
You cannot define an anonymous union that contains private or protected

members. If you want private or protected members, use another construct,
such as a plain union, struct, or class.

1.487 scm1559

Error 1559: ’identifier’ redeclared in anonymous union.

The specified identifier was previously declared to have some other type.

1.488 scm1560

Error 1560: An anonymous union cannot be declared as a static member.

An anonymous union has no name for linkage to the definition.

1.489 scm1562

Error 1562: Conflicting declaration of name ’identifier’ reserved for
purpose.

You have inadvertently used a name that the compiler reserves for its own
uses. Choose another name.

1.490 scm1564

Error 1564: Cannot initialize a function ('’ function—-name’).

You cannot initialize a function. You can initialize only variables.

1.491 scmi1565

Error 1565: Static members (member-name) cannot be initialized by a
mem-initializer.

Static members should be initialized by the definition of the static member
outside the class. For example, this message is issued if you use the

following code and a is a static member:

X::X() : a(l0)

scmsg 123 /140

1.492 scm1566

Error 1566: Enum constants (identifier) cannot be initialized by a
mem-initializer.

Enum constants should be initialized inside the enum declaration, as they
are in C.

For example, this message is issued if a is an enumeration constant:

X::X() : a(lo0)

1.493 scmi1567

Error 1567: Types must match in a delete expression: type-1l->~type-2.

When calling a destructor for a built-in type, it is required that the two
types specified in the call be the same.

1.494 scm1568

Error 1568: Cannot create a new value of a void.

The new operator cannot be applied to void. Because void is not an object
type, a pointer to it could not be returned by operator new.

1.495 scm1569

Error 1569: Loop in —-> operators.

The pointed-to expression uses a user-defined operator —-> that either
returns the class that contains the operator, or returns a class that
contains another operator —-> which in turn returns the class containing the
original operator ->. The loop might be more complicated, but in any event
the sequence leads back to the original operator ->.

1.496 scmi1570

Error 1570: A linkage-specification may occur only in file scope.

Linkage-specifications are not permitted in block scopes, class scopes, or
function scopes.

scmsg

124 /140

1.497 scm1571

Error 1571: Cannot define a type in return or argument types.

A type (for example a struct tag) cannot be defined in an argument list or
in the specification of the return type.

1.498 scm1572

Error 1572: object may not have the same name as its class.
A static data member, enumeration, member of an anonymous union, or a

nested type cannot have the same name as its class. For more information,
refer to section r.9.2 in The C++ Programming Language, Second Edition.

1.499 scm1573

Error 1573: An overloaded operator cannot have default arguments.
It is illegal to declare overloaded operators with default arguments. For
example, int operator +(int=3,int=4) is not a valid declaration. For more

information, refer to section r.8.2.6 in The C++ Programming Language,
Second Edition.

1.500 scm1574

Error 1574: Invalid use of abstract class: class—-name.

An abstract class cannot be used as an argument type, a function return
type, or the type of an explicit conversion.

1.501 scm1575

Error 1575: An object of a class with a object-type may not be a member of
a union.

An object of a class with constructors, destructors, or user-defined

assignment operators cannot be a member of a union. For more information,
refer to section r.9.5 in The C++ Programming Language, Second Edition.

1.502 scm1i1576

scmsg 125/140

Error 1576: Error declaring ’'new’: reason.

operator new must have a return type of voidx. Its first argument is
required and must be of type size_t. For more information, refer to
section r.12.5 in The C++ Programming Language, Second Edition.

1.503 scm1577

Error 1577: Error declaring ’'delete’: reason.

The delete function must have return type void. Its first argument must be
of type voidx and if there is a second argument, it must be of type size_t.
No more than two arguments are permitted. For more information, refer to
section r.12.5 in The C++ Programming Language, Second Edition.

1.504 scmi1578

Error 1578: 1Initializer-clause cannot be used for class having a
object-type.

A class having a constructor, a private or protected member, a base class,
or a virtual function is not an aggregate and cannot be initialized by
means of an initializer-clause (for example, ={10,2,10.2}). For more
information, refer to section r.8.4.1 in The C Programming Language, Second
Edition.

1.505 scm1579

Error 1579: Conversion to a virtual base class (’class-name’) from a
derived class is not allowed for member pointers.

Virtual base classes cannot be converted, explicitly or implicitly, from
derived classes.

1.506 scm1580

Error 1580: Cannot return (attempted-return-type) from function returning
(declared-return—-type) .

The return value is of a type that cannot be converted to a type required
by the function’s return type.

scmsg 126 /140

1.507 scm1581

Error 1581: Function ’function-name’ has an initializer.

Functions cannot be initialized, although function pointers can be
initialized.

1.508 scm1582

Error 1582: Character array (array-name) too short for string of length
(string—-length) .

A character array cannot be initialized by a string that has more
characters than the array has elements.

1.509 scm1583

Error 1583: Too many initializers for (array-name): found n initializers.

No array can be initialized with more initializers than the array has
elements.

1.510 scm1584

Error 1584: Too many initializers for (class—-name).

No class can be initialized with more initializers than the array has
members.

1.511 scm1585

Error 1585: Left operand of ’'operator’ must be type.

The left operand of the dot operator (.) must be a class object.

1.512 scm1586

Error 1586: Type ’'type’ is invalid for the left operand of ’operator’.

The left operand of the arrow operator (->) must resolve to a class
pointer.

scmsg

127 /140

1.513 scm1587

Error 1587: Case label value must be a constant expression.

You have used a non-constant expression as a case label.

1.514 scm1588

Error 1588: Duplicate case label value.

The same case label occurs more than once within a switch statement.

1.515 scm1589

Error 1589: More than one default.

There is more than one default label in a single switch statement.

1.516 scm1590

Error 1590: symbol-name is not an enum.

The specified symbol was used after the enum keyword, but is not an
enumeration.

1.517 scm1591

Error 1591: symbol-name is not a class, struct, or union.

The specified symbol was used after a class, struct, or union keyword, but

is not a class, struct, or union.

1.518 scm1592

Warning 1592: Wide and narrow character strings concatenated, using width.

Wide characters strings are of the form L"abc", narrow characters strings
are the usual "abc". These two types of strings should not be concatenated

together.
For example, neither of the following statements is wvalid:

"abc" L"def" /x wrong x/

scmsg

128 /140

L"abc" "def" /% wrong */

If the first string in the concatenation is wide, the result is wide.
Similarly, if the first string is narrow, the result is narrow.

1.519 scm1593

Warning 1593: Missing return statement.

A return statement is missing at the end of the outer block of a function,
and a return value is required.

1.520 scmi1594

Warning 1594: Zero-length array used.
Zero—-length arrays are allowed in classes (types class, struct, and union)
as an extension of standard C and C++. This message is only to warn you

about the use of this extension. If you do not want to see this warning,
use the ignore compiler option to turn it off.

1.521 scm1597

Warning 1597: ’%s’ assigned to ’'%s’.

A longer data type has been assigned to a shorter data type. For example,

a long has been assigned to a short. 1If the value assigned is a constant
which is too large to be represented by the shorter type, this is an
error. If the assigned type is a variable, this is a warning. (If the

value of an assigned constant can be represented by the shorter type,
neither a warning nor an error will be diagnosed.)

1.522 scm1610

Error 1610: Previous declaration of ’symbol’ was 'attribute’, this
declaration is ’'attribute’.

An attribute of a symbol was declared differently in a previous

declaration. For example, the previous declaration may have been declared
with _ _near, but this declaration of the same symbol specified __far. Make
the declarations consistent. \em For some attributes, C++ applies a

default if the attribute was not explicitly specified in the declaration.

A declaration with a specific keyword may conflict with a previous
declaration with no keyword depending on the current defaults. The default
attributes applied by C++ depend upon the specific attribute and any
compiler options you specify.

scmsg 129/140

1.523 scm1611

Error 1611: Previous declaration of ’symbol’ differed in the use of
"keyword’ .

An attribute of a symbol was declared differently in a previous
declaration. Either the previous declaration used a keyword that is not
present in this declaration or did not use a keyword that is present in
this declaration. For example, the previous declaration may have been
__aligned, and this declaration is not. Make the declarations consistent.
\em For some attributes, C++ applies a default if the attribute was not
explicitly specified in the declaration. A declaration with a specific
keyword may conflict with a previous declaration with no keyword depending
on the current defaults. The default attributes applied by C++ depend upon
the specific attribute and any compiler options you specify.

1.524 scm1612

Error 1612: Asm function has parameter without a register.

All parameters to a function declared with __ _asm must be passed in an
explicitly specified register.

1.525 scm1613

Error 1613: Asm function uses register ’'%s’ more than once.
More than one parameter to an __asm function used the same register. C++

uses some registers to pass internal arguments to functions declared with
__asm. If there is a conflict between the registers you specify and the
registers needed by the translator, this message is displayed with an
explanation of the conflict.

1.526 scm1614

Error 1614: Previous declaration of asm function used different registers,
was ’"%s’, now "%s’.

Functions declared with __ _asm must specify the same registers each time the
function is declared.

1.527 scmi1615

Error 1615: Explicit register ’'register’ keyword used in non-asm function.

Explicit registers can only be used on parameters for functions declared
with the __asm keyword.

scmsg

130/ 140

1.528 scm1616

4

Error 1616: Vararg functions cannot be ’'__asm

Variable argument functions

cannot be declared with the __ _asm keyword.

Variable argument functions are those functions that take an
ellipsis (. . .) in their prototype.

1.529 sIim103

Error 103: Out of memory!!

slink has run out of memory. By default, slink attempts to cache the

object modules in memory between pass 1 and pass 2. If slink runs out of
memory, 1t attempts to free the cached object modules. In some cases,
slink cannot find enough contiguous memory. Try adding bufsize 4096 to the

slink command. This option turns off object module caching.

1.530 sim425

Error 425: Cannot find library library-name

The linker cannot find the specified library. Usually, SAS/C libraries are
located in the LIB: directory. You may have misspelled the library name
in your slink command.

1.531 sim426

Error 426: Cannot find object name

The linker cannot find the specified object.

1.532 sim443

Error 443: filename is an invalid file name

The linker found an invalid character in a filename.

1.533 sim444

Error 444: Hunk_Symbol has bad symbol-type symbol symbol-name

The object module is corrupt. Try recompiling the object module.

scmsg

131/140

1.534 sim445

Error 445: 1Invalid HUNK_SYMBOL symbol-name

The object module is corrupt. Try recompiling the object module.

1.535 sIim446

Error 446: Invalid symbol type symbol-type for symbol-name
Either the object module is corrupt, or slink has found a symbol type that
it does not recognize. Try recompiling the object module. For a list of

valid symbol types, refer to the description of object file structure in
The AmigaDOS Manual, 3rd Edition.

1.536 sIim447

Error 447: filename is a load file

The file specified is an executable module instead of and object module.

1.537 sim448

Error 448: filename is not a valid object file

The file specified is not an object module. The file may be a C source
file or a corrupt object module.

1.538 sIim449

Error 449: No hunk_end seen for filename

The object module is corrupt. Try recompiling the object module.

1.539 sIim450

Error 450: Object file filename is an extended library

A library file was specified as an object module. Add the library keyword
in front of the library name.

scmsg

132/140

1.540 sIim501

Error 501: 1Invalid Reloc 8 or 16 reference

An 8- or 16-bit relocation address cannot reach its destination. The SAS/C
Compiler does not generate 8-bit relocation records, but third party
products may use them. The object module is probably corrupt. Try
recompiling your source file. TIf recompiling the file does not correct the
error, contact the Technical Support Division.

1.541 sIim502

Error 502: function-name symbol - Distance for Relocl6 greater than 32768

The distance from the point where the function is called to the function
itself is greater than 32767 bytes. The function cannot be referenced with
a 16-bit address field. Normally, slink tries to insert an ALV (Automatic
Link Vector) at the end of the calling module, but if the module has more
than 32K of code, the relocation may not reach the ALV. An ALV is the
instruction used to reach functions that would otherwise be too far away.
Compile the file with code=far, or declare the function with the __ far
keyword.

1.542 sIim503

Error 503: function-name symbol - Distance for Reloc8 greater than 128

The distance from the point where the function is called to the function
itself is more than 128 and so the function cannot be referenced with an
8-bit address field. The SAS/C Compiler does not generate 8-bit relocation
records, but third party products may use them.

1.543 sIm504

Error 504: variable—-name symbol - Distance for Data Reloc 16 greater than
32768

The distance for the 16-bit relocation is too far. You may see this
message if a data item (such as a structure or an array) 1is larger than 64K
or if the total amount of data in your program is greater than 64K. To
correct the problem, you can either break the data item down and make it
smaller than 64K, or you can place the _ far keyword on the definitions of
one or more data items to force all references to those items to be
32-bits. Using the __far keyword reduces the amount of data in the near
data section to less than 64K. You can also compile your program with the
data=far option. However, using data=far increases code size and execution
time.

scmsg 133/140

1.544 sIm505

Error 505: variable-name symbol - Distance for Data Reloc8 greater than
128

The distance for the 8-bit relocation is too far. The SAS/C Compiler does
not generate 8-bit relocation, but third party products may use them.

1.545 sIm506

Error 506: Can’t locate resolved symbol symbol-name
If this message appears, please contact the Technical Support Division.

See Chapter 3, "Getting Help," for a complete list of items that you need
to provide to the Technical Support staff.

1.546 sIm507

Error 507: Unknown Symbol type symbol-type, for symbol symbol-name

Either the object module is corrupt, or slink has found a symbol type that
it does not recognize. Try recompiling your source file. For a list of
valid symbol types, see the description of object file structure in The
AmigaDOS Manual, 3rd Edition.

1.547 sIm508

Error 508: Symbol type symbol-type unimplemented

Either the object module is corrupt, or slink has found a symbol type that
it does not recognize. Try recompiling your source file. For a list of
valid symbol types, see the description of object file structure in The
AmigaDOS Manual, 3rd Edition.

1.548 sIm509

Error 509: Unknown hunk type symbol-type in Pass2

If this message appears, please contact the Technical Support Division.
See Chapter 3, "Getting Help," for a complete list of items that you need
to provide to the Technical Support staff.

scmsg 134 /140

1.549 sim510

Error 510: symbol-name symbol - Near reference to a data item not in near
data section

The linker expected the specified symbol to be in the near data section,
but the symbol is located in either the far data section, chip memory, or
the code section.

You may have defined a variable as __ far with the _ far keyword in one
module and externally declared the same variable in another module without
the _ far keyword. If so, the module with the external declaration
attempted to reference the data as near. To correct the problem, the
definition and all declarations of the data item must be specified with the
same keywords.

If you compiled your file with the data=auto option, the compiler can place
variables into the far data section if necessary. The compiler may have
placed a variable in one module in the far section and a variable in
another module in the near section. To correct this situation, either stop
using the data=auto option, or use the _ far keyword (if necessary) on the
definition and all declarations of the variable that caused the error.

1.550 sIim512

Error 512: 1Invalid branch to function-name in overlay node module-name
The linker detected a branch in an overlay node that calls another overlay

node at the same level. This type of branch is not supported by the
overlay manager.

1.551 sim513

Error 513: Multiple NTRYHUNK segments not permitted

The NTRYHUNK is the root overlay node. ©No other hunks should have this
name.

1.552 sIm514

Error 514: Overlay manager _ovlyMgr is undefined

This _ovlyMgr function is located in SAS/C libraries. To use the SAS/C
overlay manager, link with sc.lib or scs.lib. You can also write your own
overlay manager. See Chapter 8, "Compiling and Linking Your Program," for
information on creating your own overlay manager.

scmsg

135/140

1.553 sIm515

Error 515: An ALV was generated pointing to data variable-name symbol

A 16-bit relocation could not reach its destination, so slink inserted an
ALV (Automatic Link Vector) instruction, and then determined that the
destination is not in a code hunk. To correct the problem, make the

reference a 32-bit reference. This error may be generated for object code
produced by third-party assemblers and compilers

1.554 sIim516

Error 516: Attempt to merge BSS with CODE or CODE/DATA

Either you have attempted to merge the far BSS section with the far data
section, or you have attempted to merge the near or far BSS section with
the code section. You can merge a BSS section with the _ MERGED section
only. You will see this message if you have assigned the same name to
either the far BSS section and the far data section or the far BSS section
and the code section.

If you get this error in another situation, please call the Technical
Support Division.

NOTE: Do not name the code section _ MERGED.

1.555 sIm600

Error 600: 1Invalid option command

The option listed is not a valid slink option.

1.556 sIlm601

Error 601: option option specified more than once

The option has been specified twice.

1.557 sIim602

Error 602: Unable to open output file filename

slink cannot open the output file for write access. Another program such
as CodeProbe may have left a lock on the file. Alternatively, the
protection bits may prohibit write access to the file, or the name
specified may be a directory.

scmsg

136 /140

1.558 sIm603

Error 603: string is not a wvalid number

The linker found a non-numerical character in a field where it expected to

find a number.

1.559 sIm604

Error 604: with file is not readable

The with file may contain binary characters or may be locked.

1.560 sIm605

Error 605: Cannot open with file filename

The with file does not exist or may be locked.

1.561 sIm607

Error 607: No FROM/ROOT files specified

You did not specify an object module, or if you are using overlays, the
root node did not contain any objects.

1.562 sIm608

Error 608: Premature EOF encountered

The object module is corrupt. Try recompiling the source file.

1.563 sIim609

Error 609: Error seeking in file filename

The object module is corrupt. Try recompiling the source file.

1.564 sIim610

Error 610: module-name has no parent in overlay tree

The with file specifies an overlay with no parent node.

scmsg

137 /140

1.565 sIm611

Error 611: Reloc found with odd address for symbol symbol-name, file
filename
The linker has found a relocation record with an odd address. This message

can only be generated if your program is written in assembler and is
usually caused by placing an odd length character string in the code
section.

1.566 sIm612

Error 612: MERGED Data relocation to non-code section in Overlay node
Reference at offset hex—-address in module-name, To Unit
module—name

The linker found a relocation from the near data section, which is placed

in the root node, to the data section of an overlay node. This type of
relocation is illegal.

1.567 sIlm613

Error 613: MERGED Data relocation to static function is not resolvable by
Overlay Manager.
Reference at offset hex—-address in filename, To Unit filename

The overlay manager cannot resolve an indirect function call from the root

node to a static function in a overlay node. To correct the problem,
remove the static keyword from the function declaration.

1.568 sIm614

Error 614: More than one MERGED data section found
Only one near data section is allowed. This error occurs only when using
slink to strip debug information from an executable generated by a third

party linker. If you get this message, do not use slink to strip debug
information from this executable.

1.569 sIim615

Error 615: Code hunk named _ MERGED

slink merges all hunks with the name __ MERGED and performs relocations to
this hunk relative to register A4. Do not name the code hunk __MERGED

scmsg 138/140

1.570 sIim616

Error 616: ALVs were generated
You have linked with the noalvs linker option, but the linker could not
resolve all relocations without generating ALV instructions. Either the

total code size is greater than 32K, or there are multiple code hunks. The
executable will run, but the code section is not totally PC-relative.

1.571 slm617

Error 617: MERGED data section greater than 64K
If your program does not generate any additional messages, then the program

will still run. However, a 16-bit data relocation record may not be able
to reach its target, and if this happens, slink will generate an error.

1.572 slm618

Error 618: Multiple OVERLAY usage—-—-previous occurrences were ignored

You can only specify one overlay manager.

1.573 sIim619

Error 619: Ignoring null OVERLAY list

You did not specify any files in the overlay list.

1.574 sIm620

Error 620: Missing '#’ at end of OVERLAY list
Enter a pound sign (#) at the end of the overlay tree. For more

information on creating overlay trees, see Chapter 8, "Compiling and
Linking Your Program."

1.575 sIim621

Error 621: Conflicting integer sizes found

Some modules were compiled using short integers and some were compiled
using long integers. You cannot mix integer sizes in an executable.
Alternatively, you may have linked in the wrong version of the library.

scmsg 139/140

1.576 sIim622

Error 622: Conflicting math types found

You may have compiled the various object modules with conflicting math
options. All object modules must be compiled with the same math library.
Alternatively, you may have linked in the wrong math library.

1.577 sIlm623

Error 623: Regargs function function called through overlay manager.
Parameters passed in registers to this function will be destroyed. Use
NEWOCV option.

The regargs function passes parameters in scratch registers, but the
overlay manager does not preserve scratch registers. You cannot call a
regargs function across an overlay node, unless you use the newer
alternative overlay manager, which is invoked with the NEWOCV option to
slink.

1.578 sim624

Warning 624: Absolute reference to symbol module: file filename

If you reference far data in a module linked with cres.o or when you are
generating a shared library, your program may function improperly unless
the data are read-only. slink cannot determine if the reference is
read-only, so it generates this warning.

1.579 sIm625

Error 625: Proper math library has not been included

You have not linked in the math library that is needed for the current math
options.

If you compile with the link option, you need to include the appropriate
math option to specify the math library with which you want to link. If
you are using the slink command to link your file, you need to link with a
math library as well as sc.lib.

1.580 sIm626

Error 626: Libcode used on module module

You have compiled the module with the libcode compiler option, but the
module is being linked into an executable. Use the libcode option for
generating shared libraries only.

scmsg 140/ 140

1.581 sIm627

Error 627: Near references found in executable that has a module compiled
with FARONLY option

You cannot mix modules compiled with data=faronly and modules that refer to
near data.

1.582 HELP

You have reached this Help window by either clicking on the Help
button or by hitting the Help key within the SAS/C Help utility.
Unlike other help topics present in the SAS/C Help utility, the Help
help topic opens its own window. You must close this window by
clicking on the close gadget or hitting escape before returning to
the SAS/C help utility. You cannot hit the Retrace button to return.

To quit the SAS/C Help utility, select Quit from the Project menu or
click on the close gadget. You may also hit escape.

Most help screens will display one or more buttons as part of the text.
Clicking on these buttons will provide further information on the topic
listed on the button. You can also reach these help topics through the
main Contents screen or one of its sub-screens.

In addition, double-clicking in the help window will bring up a help
screen for the word under the mouse cursor, if such a help screen
exists.

While in the SAS/C Help utility, you may retrace your steps through the
help screens you have selected by clicking on the Retrace button.

The Browse buttons will move you forward and backwards between help
screens. The help screens are usually arranged alphabetically by
command or topic.

	scmsg
	SAS/C Error/Warning Messages
	compiler
	linker
	cplusplus
	strict
	ANSI COMPILER FLAG
	scmxx1
	scmxx2
	scmxx3
	scmxx4
	scmxx5
	scmxx6
	scmxx7
	scmxx8
	scmxx9
	scmx10
	scmx11
	scmx12
	scmx13
	scm001
	scm002
	scm003
	scm004
	scm005
	scm006
	scm007
	scm008
	scm009
	scm010
	scm011
	scm012
	scm013
	scm014
	scm015
	scm016
	scm017
	scm018
	scm019
	scm020
	scm021
	scm022
	scm023
	scm024
	scm025
	scm026
	scm027
	scm028
	scm029
	scm030
	scm031
	scm032
	scm033
	scm034
	scm035
	scm036
	scm037
	scm038
	scm039
	scm040
	scm041
	scm042
	scm043
	scm044
	scm045
	scm046
	scm047
	scm048
	scm049
	scm050
	scm051
	scm052
	scm053
	scm054
	scm055
	scm056
	scm057
	scm058
	scm059
	scm060
	scm061
	scm062
	scm063
	scm064
	scm065
	scm066
	scm067
	scm068
	scm069
	scm070
	scm071
	scm072
	scm073
	scm074
	scm075
	scm076
	scm077
	scm078
	scm079
	scm080
	scm081
	scm082
	scm083
	scm084
	scm085
	scm086
	scm087
	scm088
	scm089
	scm090
	scm091
	scm092
	scm093
	scm094
	scm095
	scm096
	scm097
	scm098
	scm099
	scm100
	scm101
	scm102
	scm103
	scm104
	scm105
	scm106
	scm107
	scm108
	scm109
	scm110
	scm111
	scm112
	scm113
	scm114
	scm115
	scm116
	scm117
	scm118
	scm119
	scm120
	scm121
	scm122
	scm123
	scm125
	scm126
	scm127
	scm128
	scm129
	scm131
	scm132
	scm133
	scm134
	scm135
	scm136
	scm137
	scm138
	scm139
	scm140
	scm142
	scm143
	scm146
	scm147
	scm148
	scm149
	scm150
	scm152
	scm154
	scm155
	scm156
	scm158
	scm159
	scm161
	scm162
	scm163
	scm164
	scm165
	scm166
	scm169
	scm170
	scm176
	scm178
	scm179
	scm180
	scm181
	scm182
	scm183
	scm184
	scm185
	scm186
	scm187
	scm188
	scm189
	scm190
	scm192
	scm193
	scm194
	scm195
	scm196
	scm198
	scm199
	scm200
	scm202
	scm204
	scm209
	scm212
	scm213
	scm216
	scm217
	scm218
	scm220
	scm223
	scm224
	scm225
	scm226
	scm301
	scm302
	scm303
	scm304
	scm305
	scm306
	scm307
	scm308
	scm402
	scm403
	scm404
	scm405
	scm406
	scm407
	scm408
	scm409
	scm410
	scm411
	scm412
	scm415
	scm416
	scm417
	scm1101
	scm1102
	scm1103
	scm1104
	scm1105
	scm1106
	scm1107
	scm1108
	scm1109
	scm1110
	scm1111
	scm1112
	scm1113
	scm1114
	scm1115
	scm1116
	scm1117
	scm1118
	scm1119
	scm1121
	scm1122
	scm1123
	scm1124
	scm1125
	scm1126
	scm1127
	scm1129
	scm1130
	scm1200
	scm1205
	scm1206
	scm1208
	scm1319
	scm1320
	scm1321
	scm1322
	scm1323
	scm1324
	scm1325
	scm1326
	scm1327
	scm1328
	scm1329
	scm1330
	scm1331
	scm1332
	scm1334
	scm1335
	scm1336
	scm1337
	scm1338
	scm1339
	scm1340
	scm1342
	scm1343
	scm1344
	scm1345
	scm1346
	scm1347
	scm1348
	scm1349
	scm1350
	scm1351
	scm1352
	scm1353
	scm1354
	scm1355
	scm1356
	scm1357
	scm1358
	scm1359
	scm1361
	scm1362
	scm1363
	scm1364
	scm1365
	scm1366
	scm1367
	scm1368
	scm1369
	scm1370
	scm1371
	scm1372
	scm1373
	scm1374
	scm1375
	scm1376
	scm1377
	scm1378
	scm1379
	scm1380
	scm1382
	scm1383
	scm1384
	scm1385
	scm1386
	scm1387
	scm1388
	scm1389
	scm1391
	scm1392
	scm1393
	scm1394
	scm1395
	scm1396
	scm1397
	scm1398
	scm1399
	scm1400
	scm1401
	scm1402
	scm1403
	scm1404
	scm1406
	scm1407
	scm1408
	scm1409
	scm1410
	scm1411
	scm1412
	scm1413
	scm1414
	scm1415
	scm1416
	scm1417
	scm1418
	scm1419
	scm1420
	scm1421
	scm1422
	scm1423
	scm1424
	scm1425
	scm1426
	scm1427
	scm1428
	scm1429
	scm1430
	scm1431
	scm1432
	scm1433
	scm1434
	scm1435
	scm1436
	scm1437
	scm1438
	scm1439
	scm1440
	scm1441
	scm1442
	scm1443
	scm1444
	scm1445
	scm1446
	scm1447
	scm1448
	scm1449
	scm1450
	scm1451
	scm1452
	scm1453
	scm1454
	scm1455
	scm1456
	scm1457
	scm1458
	scm1460
	scm1461
	scm1462
	scm1463
	scm1464
	scm1465
	scm1467
	scm1468
	scm1469
	scm1472
	scm1473
	scm1474
	scm1475
	scm1476
	scm1477
	scm1478
	scm1479
	scm1480
	scm1481
	scm1482
	scm1483
	scm1484
	scm1485
	scm1486
	scm1487
	scm1489
	scm1490
	scm1491
	scm1492
	scm1493
	scm1494
	scm1495
	scm1498
	scm1499
	scm1500
	scm1501
	scm1502
	scm1503
	scm1504
	scm1506
	scm1507
	scm1508
	scm1509
	scm1510
	scm1511
	scm1512
	scm1513
	scm1514
	scm1515
	scm1516
	scm1517
	scm1518
	scm1522
	scm1523
	scm1524
	scm1525
	scm1528
	scm1530
	scm1531
	scm1532
	scm1533
	scm1534
	scm1535
	scm1536
	scm1537
	scm1538
	scm1539
	scm1540
	scm1541
	scm1542
	scm1543
	scm1544
	scm1545
	scm1546
	scm1547
	scm1548
	scm1549
	scm1550
	scm1551
	scm1553
	scm1554
	scm1555
	scm1556
	scm1557
	scm1558
	scm1559
	scm1560
	scm1562
	scm1564
	scm1565
	scm1566
	scm1567
	scm1568
	scm1569
	scm1570
	scm1571
	scm1572
	scm1573
	scm1574
	scm1575
	scm1576
	scm1577
	scm1578
	scm1579
	scm1580
	scm1581
	scm1582
	scm1583
	scm1584
	scm1585
	scm1586
	scm1587
	scm1588
	scm1589
	scm1590
	scm1591
	scm1592
	scm1593
	scm1594
	scm1597
	scm1610
	scm1611
	scm1612
	scm1613
	scm1614
	scm1615
	scm1616
	slm103
	slm425
	slm426
	slm443
	slm444
	slm445
	slm446
	slm447
	slm448
	slm449
	slm450
	slm501
	slm502
	slm503
	slm504
	slm505
	slm506
	slm507
	slm508
	slm509
	slm510
	slm512
	slm513
	slm514
	slm515
	slm516
	slm600
	slm601
	slm602
	slm603
	slm604
	slm605
	slm607
	slm608
	slm609
	slm610
	slm611
	slm612
	slm613
	slm614
	slm615
	slm616
	slm617
	slm618
	slm619
	slm620
	slm621
	slm622
	slm623
	slm624
	slm625
	slm626
	slm627
	HELP

