SC



SC

COLLABORATORS

TITLE :
SC
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2025
‘ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME




SC

Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29

sc.guide . .

mainpanel .

compilerpanel . . . ..o e e e e

messagepanel . . . ... L. L e e e e e e e e

codepanel .

listpanel . .

optimizerpanel . . . . .. L e

prototypepanel . . . . .. L e e e e e e e e e e e e e e

linkerpanel

mappanel .

custom . . .

absfunCpoInter . . . . . . . . . L e e e e e e e

addsymbols

argumentsize

assembler .

bssmemory
bssname . .
buildproject
checkabort .




SC

1.30 codename . . . . . . .. e e e e e 10
131 commentnest . . . . . . . .o e e e e e e e e e e e e 10
1.32 common . . . ... e e e e e e 11
1.33 constlibbase . . . . . . . . e e e 11
1.34 coverage . . . . . . oL e e e 11
135 CPU. . o e e e e 12
1.36 CSOUICE . . . . o o ot e 12
L.37 exXOnly . . . o e e e e 12
1.38 CXXSOUICE . . . . v o o e o e e e e e e e e 13
139 data . . . . . e 13
1.40 datamemory . . . . . . .o L e e e e e e e e e 14
141 dataname . . . . . . . L. L e e e e 14
1.42 debug . . . . e e 15
143 define . . . . . e e 15
1.44 disassemble . . . . . .. e e 16
1.45 dollarok . . . . . . . e e 16
146 ITOT . . . . . o o 16
LAT errorconsole . . . . . . . .. e e e 17
1.48 errorhighlight . . . . . . . . . . . 17
1.49 errorlist . . . . L L e e e 17
1.50 eITOITeXX . . . o v o o e e e e e e e e e e 17
151 @ITOTSOUICE . . . . v v v ot e e e e e e e e e e e e e e 17
1.52 externaldefs . . . . . . . . e 18
1.53 findsymbol . . . . L e e e 18
1.54 from . . . . 18
1.55 genprotodataitems . . . . . . . . ... e e e e e e e e e e e e e e e e e e e 18
1.56 enprotOXLeInNS . . . . . . . o v v it e e e e e e e e e e e e e e e e e e e 19
1.57 genprotofile . . . . . . . L e e e e e 19
1.58 genprotoparameters . . . . . . . . ... e e e e e e e e 19
1.59 genprotos . . . . . L e e e e e e e e e 19
1.60 genprotostatiCs . . . . . . . ... L. e e e e 20
1.61 genprototypedefs . . . . . . . . L e e e e e e e 20
1.62 globalsymboltable . . . . . . . . ... e 21
1.63 gSt . o o e 21
1.64 gstimmediate . . . . . . . .. e e 21
1.65 ICOMS . . . o o o e e e e 21
1.66 identifierlength . . . . . . . ..o e 22
167 IgNOTE . . . . . o o e e e e e e 22
1.68 includedirectory . . . . . . . . ... e 22




sc v
1.69 keepline . . . . . . . e 23
170 libcode . . . . . o o e e 23
L71 Tbfd . . o o 23
172 Tbprefix . . . . o o e e e 24
173 Tbrary . . . . . o o e 24
174 Tbrevision . . . . . . . L. e e e e e e e 24
175 TBVErsion . . . . . . o o e e e 25
176 Iink . . o o e e e 25
1.77 linkerdefine . . . . . . . . . L L e 25
1.78 HNKeroptions . . . . . . . o v v i e e e e e e e e e e e e e e e e 25
1.79 linkerwith . . . . . . . . e 26
L8O LISt . . . o o e 26
1.81 listfile . . . . . . o e 26
1.82 listheaders . . . . . . . . . . e e e e 27
1.83 listincludes . . . . . . . . . e e 27
1.84 LiStmMacros . . . . . . . ot e e e e e e 27
1.85 LStNArroW . . . . . . . . . e e e 27
1.86 TiStSYSIEIM . . . . . . o o e e e e e e e e e e e e 28
1.87 makeglobalsymboltable . . . . . . . . ... 28
1.88 map . . . . e e e 28
1.89 mapfile . . . . . . 28
1.90 maphunk . . . . . L e e 29
191 maplib . . . . . o 29
1.92 mapoverlay . . . . . .. e e e 29
1.93 mapsymbols . . . . ... e 29
1.94 mapxreference . . . . . . . .. L e e e e e e e e e e e 29
1.95 math . . . . . 30
1.96 Maximumerrors . . . . . . . . . . it e e e e e e e e e e e e e e e e e e 31
1.97 maximumwarnings . . . . . . .. ... e e e e 31
1.98 mMemorysize . . . . . . . L e e e e e e e e e e e e 31
1.99 modified . . . . . . .. 32
1.100multiplecharacterconstants . . . . . . . . . . . . o e e e e e e e e e e e e 32
1.10Imultipleincludes . . . . . . . . . . L e 33
1.1020bject . . . . o e e 33
1.1030bjectlibrary . . . . . . . . e e 34
1.1040bjectname . . . . . ... e e e 34
1.10501dpreprocessor . . . . . . oL e e e 34
L106ONEITOr . . . . . o o o e e e e e e 35

1.1070ptimize . . . . . . . . L e e 36




SC

vi

1.108optimizeralias . . . . . . . . .. e e 36
1.1090ptimizercomplexity . . . . . . . . .. e e e e e e e e e e e e 36
1.110optimizerdepth . . . . . . . L L e e 37
L.111optimizerglobal . . . . . . . . . e e e e e 37
1.1120ptimizerinline . . . . . . . . L L. e e 37
L.113optimizerinlocal . . . . . . . . . e e e e e e e e 37
L114optimizerloop . . . . . . . o L e e 38
L.115optimizerpeephole . . . . . . . . . . . e e e e e e e 38
1.1160ptimizerrecurdepth . . . . . . . . . .. e 38
LITTOPUHMIZETSIZE . . . . . o o o e i e e e e e e e e e e e e e e e e e e e e e e e e 38
L118optimizZertime . . . . . . . . . oo i e e e e e e e 38
I.119optimizerschedule . . . . . . . . . . . e e e e e 39
1120parameters . . . . . . .. e e e e e e e e e e 39
LA21Precision . . . . . . . o o e e e e e e e e 40
1.122preprocessorbuffer . . . . . . .. L L L 40
1.123preprocessoronly . . . . . ... e e e e e e e e e e e e e e e e e e 41
1.124profile . . . . . . 41
L125programname . . . . . . . ... e e e e e e e e e e e e e e e e e e e e e e 41
1.126pubscreen . . . . . . L. e e e e e e e 41
LA271estOptionS . . . . . v v o e e e e e e e e e e e e e e e e e e e 42
1A28saveds . . . . o L e e e 42
LI29ShOrtintegers . . . . . . . o o o e e e e e e e e e e e e e e e e 42
1.130smallcode . . . . . . . . e 43
1.131smalldata . . . . . . . . e e e 43
LA32S0UICEIS . .« . v v o e e e e 43
1.133stackcheck . . . . . L . e e 43
1.134stackextend . . . . . .. e e e e e 44
1.135standardio . . . . . L L L e e 44
LA36Startup . . . . . e e e e e 44
LABTSHACE . . o o o e e e e e 44
LA38Stringsconst . . . . . . . e e 45
LA39SNgmerge . . . . . o o o e e e e e e e e e e e e e e e 45
1.140stripdebug . . . . . . . e 46
LIATStringsection . . . . . . . o ot e e e e e e e e e e e e e e e e 46
1.142structureequivalence . . . . . . . L. oL L e e e e e e e e e 47
L14310 . . o e 47
1.144trigraph . . . . L L e e 48
1.145underscore . . . . ... e e e 48

1.146unsignedchar . . . . . . . .. e 48




SC

Vii

L147utilitylibrary . . . . . . . L e 48
L148verbose . . . . . o e 49
L14OVersion . . . . . . . L 49
LASOWArn . . . . . o e e e e 49
LASTwarnvoidreturn . . . . . . . L L e e e e e 50
LAS2with . . o o e e e 50
LAS3xref . . . 50
LIS4xreference . . . . . . . ... e e e 50
1.155xreferenceheaders . . . . . . . . L L e 51
L156XreferencesyStem . . . . . . . . o e e e e e e e e e e e e e e e e e e 51
LASTHELP . . o 51
LIS8addsym . . . . e e e 52
1.159chkabort . . . . . . o 52
L160datamem . . . . . . ... e e e e e e 52
LA61dISassem . . . . . . . o . e e 53
1162errorlisting . . . . . . . o e e e e e e e e e 53
1.163genprotodataitem . . . . . . . ... ... e e e e e 53
L1164 ZeNprotOeXtern . . . . . . o v v i e e e e e e e e e e e e e e e e e e e e e e 53
1.1658enprotoparm . . . . . . . . Lo e e e e e e e e e 53
1166Zenproto . . . . . . o o e e e e e e e e e e e 54
1.167genprotostatic . . . . . . . . ... e e e e e e e e 55
1.168genprototypedef . . . . . . L L e e e e 55
LI6OLbraries . . . . . . . . . e e e 55
LAT0Lbrev . . . o o o e e e e 56
LATIHbVEr . . . o o e 56
LAT2H0KEropts . . . o o o o e e e e e e e e e e e e e e 56
1.173makegst . . . . ... e 56
L174maplibraries . . . . . . . . L e e e e e e e e e 57
L175mapxref . . . . Lo e 57
L176Maxerror . . . . . . . . e e e e e e e e 57
LI77TmMaxwarn . . . . . oo e e e e e e e e e e e e 58
LA78mMemsize . . . . . . . . e e 58
1.179meconstants . . . . . .. L e e e e e e e e e e e e e 59
1.1800bjectlib . . . . . . L e 59
L.18loptalias . . . . . . .. e e 60
LAB20PICOMP . . . . o o o e e e e e e e e e e e e e 60
1.1830ptdepth . . . . . . L e e 60
1.184optimizeglobal . . . . . . . . L e e e 61

1.1850ptinline . . . . . ... e e 61




SC

viii

1.186optinlocal . . . . ... e 61
LABToptloop . . . . o e 61
LASBOPUMIZEPEED . . . o o o v o o e e e e e e e e e e e e e e e e e e e 61
1.18%0optrdepth . . . . . L e 62
LI90OPESIZE . . . . o o o e e e e e 62
LI9T0pttime . . . . . . o e e e e e e e e 62
1.1920optimizeschedule . . . . . . . . L e e e e 62
1.193parms . . . . .o e e 63
1.194preprocessonly . . . . . . e e e e 64
LIOSSIISECt . . . o o o e 64
1.196structequivalence . . . . . . .. L. L L e 65
LI97utillib . . . oo 65
1.198xrefheaders . . . . . . . L 66

LA9OXrefSyStem . . . . . . o o e e e e e e e e e e e e e e 66




SC

1/66

Chapter 1

SC

1.1 sc.guide

AbsFuncPointer
ANSI

Assembler
Batch

BSSName
CheckAbort
CodeMemory
CommentNest
ConstLibBase
CPU

CxxOnly

Data

DataName
Define
DollarOK
ErrorConsole
ErrorList
ErrorSource
FindSymbol
GenProtoDataltems
GenProtoFile
GenProtos
GenProtoTypedefs
GST

Icons

Ignore
KeepLine

LibFD

Library
LibVersion
LinkerDefine
LinkerWith
ListFile
ListIncludes
ListNarrow
MakeGlobalSymbolTable
MapFile

MapLib

AddSymbols
ArgumentSize
AutoRegister
BSSMemory
BuildProject
Code

CodeName

Common

Coverage

CSource
CxxSource
DataMemory

Debug
DisAssemble
Error
ErrorHighlight
ErrorRexx
ExternalDefs
From
GenProtoExterns
GenProtoParameters
GenProtoStatics
GlobalSymbolTable
GSTImmediate
IdentifierLength
IncludeDirectory
LibCode
LibPrefix
LibRevision

Link
LinkerOptions
List

ListHeaders
ListMacros
ListSystem

Map

MapHunk
MapOverlay




sc 2/66
MapSymbols MapXreference

Math MaximumErrors
MaximumWarnings MemorySize

Modified MultipleCharacterConstants
MultipleIncludes Object
ObjectLibrary ObjectName
OldPreprocessor OnError

Optimize OptimizerAlias
OptimizerComplexity OptimizerDepth
OptimizerGlobal OptimizerInline
OptimizerInLocal OptimizerLoop
OptimizerPeephole OptimizerRecurDepth
OptimizerSize OptimizerTime
OptimizerSchedule Parameters
Precision PreprocessorBuffer
PreprocessorOnly Profile

ProgramName PubScreen
ResetOptions Saveds
ShortIntegers SmallCode

SmallData Sourcels

StackCheck StackExtend
StandardIO StartUp

Strict StringsConst
StringMerge StripDebug
StringSection StructureEquivalence
To Trigraph

Underscore UnsignedChar
UtilityLibrary Verbose

Version Warn

WarnVoidReturn With

XREF XReference
XReferenceHeaders XReferenceSystem

1.2 mainpanel

GenProtos
Link

List

Map
Optimize
ProgramName
SPECIAL
Verbose
Version
Xref

Save

Save Default
Cancel

1.3 compilerpanel




sc 3/66
CommentNest aCxxOnly

Debug Define

GST GSTImmediate

Icons IncludeDirectory
MakeGST MemSize

Modified MultipleCharacterConstants
MultipleIncludes PreProcessOnly
ShortIntegers StringsConst
StringMerge UnsignedChar
WarnVoidReturn

OK
1.4 messagepanel

ANST Error

ErrorConsole ErrorHighlight
ErrorList ErrorRexx
ErrorSource Ignore

MaximumErrors MaximumWarnings
OnError PubScreen

Strict StructureEquivalence
Warn

OK

1.5 codepanel

AbsFuncPointer
BSSName
CodeName
ConstLibBase
CPU
DataMemory
DisAssemble
Math
ObjectName
Precision
Saveds
StackCheck
StringSection

OK

1.6 listpanel

ErrorList
ListFile
ListIncludes

AutoRegister
Code

Common
Coverage

Data

DataName
LibCode
ObjectLibrary
Parameters
Profile
Sourcels
StackExtend
UtilityLibrary

List
ListHeaders
ListMacros




SC

4 /66

ListNarrow
XReference
XReferenceSystem

OK

1.7 optimizerpanel

Optimize
OptimizerComplexity
OptimizerGlobal
OptimizerInLocal
OptimizerPeephole
OptimizerSize
OptimizerSchedule

OK

1.8 prototypepanel

GenProtoDataltems
GenProtoFile
GenProtos
GenProtoTypedefs

OK

1.9 linkerpanel

AddSymbols
Batch
CheckAbort
Custom
LibCode
LibFD
LibPrefix
Library
LibRevision
LibVersion
Link
LinkerOptions
SmallCode
SmallData
StartUp
StripDebug

OK

ListSystem
XReferenceHeaders

OptimizerAlias
OptimizerDepth
OptimizerInline
OptimizerLoop
OptimizerRecurDepth
OptimizerTime

GenProtoExterns
GenProtoParameters
GenProtoStatics




SC

5/66

1.10 mappanel

Map

MapFile
MapHunk
MapLib
MapOverlay
MapSymbols
MapXreference

OK

1.11 save

Clicking over this gadget will create (or update) a file named SCOPTIONS
in the current directory.

1.12 save default

Clicking over this gadget will create (or update) a global SCOPTIONS file,
which resides in the ENV:SC directory.

1.13 cancel

Clicking over this gadget will cancel any changes made, and will exit the
SCOPTS program without modifying any files.

1.14 special

This string gadget may be used for any option not directly supported
through gadgets in the SCOPTS program.

1.15 ok

Accept changes on this subpanel and return to Main panel.

1.16 custom

This string gadget is used to enter the name of a user-created startup
file. This gadget is only active if STARTUP =<user>.




SC 6/66

1.17 absfuncpointer

AbsFuncPointer

generates 32-bit references to functions when loading function
pointers. The default value is noabsfuncpointer. The minimum
acceptable abbreviation is afp.

If you specify noabsfuncpointer and you take the address of a
function that is more than 32k away, the linker generates an ALV
(automatic link vector) jump instruction that allows your code to
work. However, if you compare the address of the function to a
function pointer assigned elsewhere, you may get a different value.
Specify absfuncpointer if your code hunk is larger than 32K or in
multiple code hunks and you compare function pointers. Specifying
absfuncpointer may increase the size of your executable.

1.18 addsymbols

AddSymbols

tells the linker to add symbol information to the executable module.
The default value is noaddsymbols. The minimum acceptable
abbreviation is addsym.

This option is automatically enabled if you specify the debug
option. This option is ignored if you do not specify the 1link
option.

For more information, refer to the description of AddSymbols
in the linker options documentation.

1.19 ansi

ANSI

enforces the strictest interpretation of the ANSI C standard. The
default value is noansi.

Specifying ansi does the following:

> suppresses warning 95 , promotes warning 193 to an error,
and produces many additional warning messages. For a complete
list of messages that are enabled by the ansi option, see
"Enabling Suppressed Messages," in Appendix 2.

> prevents the definition of certain preprocessor symbols. For a
list of these symbols, see "Using Preprocessor Symbols Defined by
the Compiler," in the Compiler Options chapter.

> disallows the initialization of variables declared with the
extern keyword. For example, the following statement is not




SC 7 /66

allowed:
extern int i = 7;
> disables the far, near, and chip keywords. However, __ far,

__near, and __chip are still wvalid.

To be completely ANSI -compliant (that is, if you require a pure ANSI
namespace), you should also define the preprocessor symbol

_STRICT_ANSI to 1 before including any header files. For more
information about _STRICT_ANSI , refer to Chapter 7, "C Library
Reference," in SAS/C Development System Library Reference. If you
require support for ANSI trigraphs, specify the trigraph option
also.

For more information about improving the portability of your code,
see Chapter 13, "Writing Portable C Code."

This option is ignored when compiling C++ files.

1.20 argumentsize

ArgumentSize=n

sets the size of the maximum argument to a C preprocessor macro.

The minimum acceptable abbreviation is argsiz. This option does not
have a negative form. The default value is 512. However, the
memorysize option sets the argumentsize (and other internal limits)
to different default values if you do not specify argumentsize.

See the description of the memorysize option for more information.

This option is ignored when compiling C++ files.

1.21 assembler

Assembler=filename (s)

specifies assembly-language files that are to be assembled and, if
you specify the 1link option, linked into the program. The minimum
acceptable abbreviation is asm. This option does not have a
negative form.

You can use AmigaDOS wildcard characters to specify filenames. To
specify several filenames or wildcard patterns, separate each
filename with a plus (+) sign or a comma (,). You can specify the

assembler option as many times as necessary.

If you are assembling a disassembly that was generated with the
disassemble compiler option, specify the underscore compiler option
also. (If you assemble a disassembly by calling the assembler
directly, specify the -u assembler option.)




SC

8/66

See also the descriptions of the c¢source , object , and library
options.

1.22 autoregister

AutoRegister

enables automatic register selection by the code generator. The
default value is autoregister. The minimum acceptable abbreviation
is autoreg.

If you specify autoregister, the compiler attempts to add register
variables to the variables that have already been chosen by the
global optimizer or declared with the register keyword.

1.23 batch

Batch

tells the linker not to prompt for definitions of undefined symbols.
The default value is nobatch. This option is ignored if you do not
specify the 1link option. See also the description of the Dbatch
linker option.

1.24 bssmemory

BSSMemory=type

specifies the type of memory into which uninitialized external data
items should be loaded. You can specify any, chip, or fast for
type. You can abbreviate these values as a, c, or f. The default
value is any. This option does not have a negative form.

This option affects code generated by both the compiler and the
assembler. See also the descriptions of the datamem and codemem
options.

1.25 bssname

BSSName=name

names the uninitialized data section. The default value is udata.
You can specify bssname=none or nobssname if you want an unnamed BSS
section. The linker automatically merges all sections with the same
name. See also the descriptions of the codename and dataname




SC 9/66

options. See Chapter 12, "How the Compiler Works" for information
on data and code sections.

1.26 buildproject

BuildProject
rebuilds the current project. The minimum acceptable abbreviation
is bldprj. This option does not have a negative form.

This option compiles and links the source files specified on the

command line or in the scoptions file. This option turns on the

modified , link , and errorrexx options.

Entering sc buildproj from the Shell is equivalent to entering:
sc #?2.c #?2.a #?.cxx #?.cpp #?.cc modified errorrexx link

Entering sc filename buildproj is equivalent to entering:

sc filename modified errorrexx link

1.27 checkabort

CheckAbort

enables Control-C in your program. The default value is checkabort.
The minimum acceptable abbreviation is chkabort. This option is
ignored if you do not specify the 1link option.

If you compile with checkabort, your program will check for
Control-C interrupts whenever I/0 is performed. If you specify
nocheckabort, the compiler passes the following option to the
linker:

define @__chkabort=Q__dummy
dummy is a function provided in the link libraries that simply
returns. Specifying nocheckabort makes all calls to the __ chkabort

function do nothing, thereby removing Control-C checking.

Do not specify nocheckabort if you are redefining the library
function ___chkabort in your own code.

1.28 code

Code=reference-type

specifies whether you want 16-bit or 32-bit references to functions
not declared in the current file. You can specify near or n for




SC 10/ 66
16-bit references or far or f for 32-bit references. The default
value is near. This option does not have a negative form.

Most programs do not need this option even if they are very large,
because the linker creates a Jjump instruction (an ALV) for any
references to functions that are out of range. See also the
description of the data option.

1.29 codememory

CodeMemory=type

specifies the type of memory into which code should be loaded. You
can specify any, chip, or fast. You can abbreviate these values as
a, c, or £f. The default value is any. This option does not have a
negative form.

This option affects code generated by both the compiler and the
assembler. See also the descriptions of the bssmem and datamem
options.

1.30 codename

CodeName=name

names the code section. The default value is text. You can specify
codename=none or nocodename if you want an unnamed code section.

The linker automatically merges all sections with the same name.

See also the descriptions of the bssname and dataname options. See
Chapter 12, "How the Compiler Works" for information on data and

code sections.

1.31 commentnest

CommentNest

allows nested comments. The default value is nocommentnest. The
minimum acceptable abbreviation is cnest.

Nested comments occur when one comment is totally contained inside
another. The ANSI Standard prohibits nested comments, so in

ANSI -compliant code, the first comment end sequence (*/)

terminates both comments. For example, the statement below generates

an error with nocommentnest, but compiles successfully with commentnest.

/* i = i+1; /% This is a comment =*/ x/

The statement below compiles successfully with nocommentnest, but
generates an error with commentnest.




SC

11/66

/* i = i+1; /+ This is a comment =/

1.32 common

Common

tells the compiler to use the relaxed reference-definition model for

external data. If you specify nocommon, the compiler uses the
strict reference-definition model. The default value is nocommon.

The section "Using Relaxed Ref-Def Model External Data" in Chapter
11, "Using SAS/C Extensions to the C and C++ Languages," describes
relaxed and strict reference-definition models.

1.33 constlibbase

ConstLibBase

tells the compiler that library base pointers are set once then
remain constant throughout your entire program. The default value
is constlibbase. The minimum acceptable abbreviation is constlib.

If you change the value of your library bases after setting them,
you should specify the noconstlibbase option. Specifying
constlibbase allows the compiler to prevent extra register loading
when making a series of calls to library functions through an
external variable containing the library base.

1.34 coverage

Coverage

tells the compiler to generate code to collect coverage analysis
information. The default value is nocover. The minimum acceptable
abbreviation is cover.

Coverage analysis information allows you to determine which lines of

your program have been executed by your test cases. For more
information, refer to the description of the cover utility in SAS/C
Development System User’s Guide, Volume 2: Debugger, Utilities,
Assembler.

Unlike Version 6.0, the necessary coverage initialization and
termination routines are in the standard link library. You do not
have to link with a special object file.




SC

12 /66

1.35 cpu

CPU=processor

generates code specific to the specified processor. You can specify
any, a, or 68000 to generate code for any processor. You can also
specify 68010, 68020, 68030, or 68040 to generate code for a
specific processor. The default value is any. This option does not
have a negative form.

This option defines one or more preprocessor symbols. See the
section "Using Preprocessor Symbols Defined by the Compiler," later

in this chapter for a list of those symbols.

This option affects code generated by both the compiler and the
assembler.

1.36 csource

CSource=filename

specifies C source files that are to be compiled and, if you specify
the 1link option, linked into the program. The minimum acceptable
abbreviation is csrc. This option does not have a negative form.

You can use AmigaDOS wildcard characters to specify filenames. To
specify several filenames or wildcard patterns, separate each
filename with a plus (+) sign or a comma (,). You can specify the
csource option as many times as necessary. See also the

descriptions of the assembler , cxxsource , object , and library
options.

1.37 cxxonly

CxxOnly

tells sc to translate the C++ source files into C source files
without compiling them. The default value is nocxxonly.

The filename for the generated C file is

root—-filename. .c

root-filename is the filename of the C++ file. For example, if your
C++ file is named foo.cxx, the C source file generated is named
foo..c. If you do not specify the cxxonly option, the ..c file is

created, compiled, and then deleted.




SC

13 /66

1.38 cxxsource

CxxSource=filename

specifies C++ source files that are to be compiled and, if you
specify the 1link option, linked into the program. The minimum
acceptable abbreviation is cxxsrc. This option does not have a
negative form.

You can use AmigaDOS wildcard characters to specify filenames. To
specify several filenames or wildcard patterns, separate each
filename with a plus (+) sign or a comma (,). You can specify the
cxxsource option as many times as necessary. See also the
descriptions of the assembler , csource , object , and library

1.39 data

Data=reference-type

specifies whether you want the compiler to generate 16-bit or 32-bit
references to external and static data items. You can specify any of
the following:

near or n
tells the compiler to use 16-bit references. If you specify near,
all data not declared with the __ far or _ chip keyword are placed
into the near data section. The default value is near.

far or £
tells the compiler to use 32-bit references. Register A4 is still
reserved to point to the near data section so that you can mix
code compiled with data=near and data=far.

faronly or fo

tells the compiler that your program never uses near data. If you
specify faronly, the compiler generates 32-bit references and may
use register A4 as an additional register variable. If you

compile with the data=faronly option, and you declare data with
the __near keyword, the compiler displays the warning message 194:

too much local data for NEAR reference,
some changed to FAR

If your entire project is in one source file or is compiled with
data=faronly, you can ignore this warning unless you get an error
later in the compilation or link.

auto or a
indicates that the first 32k of external data should generate

16-bit references and the remaining external data should generate
32-bit references. If your module has more than 32k of external

options.




SC

14 /66

data, the compiler displays the warning message 194:
too much local data for NEAR reference,

some changed to FAR

If your entire project is in one source file or is compiled with
data=faronly, you can ignore this warning unless you get an error
later in the compilation or link.

You should not use data=auto if you have multiple modules that
share data.

This option does not have a negative form.

You can override this option on individual data items by using the

_ near, _ far, or __ _chip keywords. _ near forces the compiler to
generate a 16-bit reference, and __ _far forces the compiler to
generate a 32-bit reference. __chip forces the compiler to place

the data item into chip memory. For more information, refer to the
section "Using Special Keywords" in Chapter 11, "Using SAS/C
Extensions to the C and C++ Languages."

See also the description of the code option.

1.40 datamemory

DataMemory=type

specifies the type of memory into which initialized static or
external data should be loaded. You can specify any, chip, or fast.
You can abbreviate these values as a, ¢, or f. The default value is
any. This option does not have a negative form.

This option affects code generated by both the compiler and the
assembler. See also the descriptions of the bssmem and codemem
options.

1.41 dataname

DataName=name

names the initialized data section. The default value is data. You
can specify dataname=none or nodataname if you want an unnamed data
section.

The linker automatically merges all sections with the same name.

See also the descriptions of the Dbssname and codename options. See
Chapter 12, "How the Compiler Works" for information on data and

code sections.




SC 15/66

1.42 debug

Debug=level

sets the debugging level of the compiler. If you do not want the
compiler to generate debugging information, specify nodebug. The
default value is nodebug. The minimum acceptable abbreviation is
dbg.

To generate debugging information, specify debug=level, where level
is one of the following:

line or 1
produces line number information only.

symbol or s
produces line number information, information on automatic and
formal variables, and information on external and static symbols
that are referenced in the module being compiled.

symbolflush or sf
produces the same information as symbol, and flushes any
non-register variables being held in registers to memory at each
line boundary to allow the debugger to accurately display their
values in C source mode.

full or £
produces the same information as symbol. However, debug=full
produces information on all symbols whether or not the module
references the symbol.

fullflush or ff
produces the same information as full, and flushes any
non-register variables being held in registers to memory at each
line boundary to allow the debugger to accurately display their
values in C source mode.

Any debug option except nodebug adds the -d assembler option to any
assembled files to force debugging line number information on
assembler output. Also, if you specify the 1link option and any
debug option except nodebug, the addsym option is passed to the
linker.

1.43 define

Define[=]symbol [=value]

defines the specified preprocessor symbol to be used by the
compiler. This option works as if you defined the symbol with a
#define statement. The minimum acceptable abbreviation is def. This
option does not have a negative form.

Do not enter a space between the symbol name and the following equal




SC 16/ 66

sign. If the value contains a space, enclose the entire argument in
double quotes ("). As with all other compiler options, the equal
sign between the define option and the symbol name is optional, so
both of the following examples are acceptable:

define foo=bar
define=foo=bar

You can specify the define option as many times as necessary.

Any symbols defined with the define option are defined in the
assembler as well.

NOTE: The define compiler option does not affect the linker. Do
not confuse this option with the define linker option.

1.44 disassemble

DisAssemble=filename

tells the compiler to disassemble the code as it is generated and to
send the disassembly to the file you specify. The default value is
nodisassemble. The minimum acceptable abbreviation is disasm.

To send the disassembly to standard output, use disasm=x.

1.45 dollarok

DollarOK

allows dollar signs ($) as valid characters in identifiers in both C
and C++ programs. The default value is nodollarok because the ANSI
C Standard does not allow dollar signs in identifiers. The minimum
acceptable abbreviation is dolok.

1.46 error

Error=n

tells the compiler to treat the specified message as an error. You
can specify all or a to promote all enabled warnings to errors, or
you can specify one or more message numbers to promote only those
messages. The minimum acceptable abbreviation is err. This option
does not have a negative form.

To specify several message numbers, separate each number with a plus
(+) sign or a comma (,). You can specify the error option as many

times as necessary. See also the descriptions of the warn and
ignore options.




SC 17 /66

1.47 errorconsole

ErrorConsole

enables printing of diagnostics to the console (stdout). The
default value is errconsole. The minimum acceptable abbreviation is
errcon.

1.48 errorhighlight

ErrorHighlight

highlights the token that caused the error using ANSI escape
sequences in diagnostic output that is sent to the console. The
default value is errorhighlight. The minimum acceptable

abbreviation is errhigh.

This option is ignored when compiling C++ files.

1.49 errorlist

ErrorList
prints diagnostic messages to the listing file. The default value
is errorlist. The minimum acceptable abbreviation is errlist. This

option is ignored if you do not specify the list option.

1.50 errorrexx

ErrorRexx

sends diagnostic messages from the compiler to the scmsg utility.
The default value is noerrorrexx. The minimum acceptable
abbreviation is errrexx.

For more information, refer to the description of the scmsg utility

in Chapter 10, "Utility Reference," of SAS/C Development System
User’s Guide, Volume 2.

1.51 errorsource

ErrorSource

prints lines from the C source file with the diagnostic messages
that are sent to the console. The default value is errorsource.
The minimum acceptable abbreviation is errsrc.




SC 18 /66

1.52 externaldefs

ExternalDefs
treats all external definitions as definitions. The default value
is externaldefs. The minimum acceptable abbreviation is extdef.

If you specify noexternaldefs, all external definitions are treated
as external declarations. This action has the same effect as if you
had declared each variable with the extern keyword. For example,
int 1 is treated as extern int i, and it would need to be defined in
a file compiled without noexternaldefs.

1.53 findsymbol

FindSymbol=symbol-name

tells the compiler to print a warning message each time the
specified symbol is defined. The minimum abbreviation is fsym.
This option does not have a negative form. You can specify the
findsymbol option as many times as necessary.

If you specify the findsymbol option, a message is produced for any
definition of the symbol, including #define statements, structure
and union declarations, prototypes, and extern, static, and local
variable definitions. Use the fsym option to quickly determine
where a given preprocessor symbol or prototype is coming from.

This option is ignored when compiling C++ files.

1.54 from

From

is included only for compatibility with the slink command. The
compiler ignores this option. This option does not have a negative
form.

1.55 genprotodataitems

GenProtoDataltems

generates external declarations for variables defined in the source
files that are not defined as static. The minimum abbreviation is
gpdata. The default value is gpdata. This option is ignored if you
do not specify the genprotos option.




SC 19/66

1.56 genprotoexterns

GenProtoExterns

generates prototypes for externally-known routines. The default
value is genprotoexterns. The minimum acceptable abbreviation is
gpext.

This option is ignored if you do not specify the genprotos option.

1.57 genprotofile

GenProtoFile=filename
specifies the name of the file in which to place the generated
prototypes. The default value is filename_protos.h. The minimum

acceptable abbreviation is gpfile.

This option is ignored if you do not specify the genprotos option.

1.58 genprotoparameters

GenProtoParameters

generates prototypes using the __ _PARMS macro. The default value is
nogenprotoparameters. The minimum acceptable abbreviation is
gpparm.

This option allows your C code to compile successfully on compilers
that support prototypes and on those that do not. On ANSI
compilers, the __PARMS macro expands to the parameter list for the
function, thereby creating a prototype. On non- ANSI compilers, the
__PARMS macro expands to an open-close parentheses pair, which
declares the function’s return type without defining a prototype.
This option is ignored if you do not specify the genprotos option.

1.59 genprotos

GenProtos

generates prototypes and data declarations instead of compiling your
file. The default value is nogenprotos. The minimum acceptable
abbreviation is gproto.

This option defines the preprocessor symbol _GENPROTO . If you
specify a filename with the genprotofile option, the prototypes are
written to the specified file. Otherwise, the prototypes are written
to the file filename_protos.h.




SC 20/ 66

While generating prototypes, the compiler suppresses most warnings
automatically, because many of the warnings may be due to incorrect
or missing prototypes. The compiler also checks all #include
statements as they are reached. If your file #includes the same
prototype file that is being generated, the compiler skips that
#include statement. This feature allows you to use this option to
maintain declarations for all externally-known symbols in each C
source file and regenerate the declarations as the files change.

To set up your project so that you can use this option to maintain
prototype files, do the following:

1. Create a header file that contains #include statements for
each of the files in your project, as follows:

#include "filel_protos.h"
#include "file2_protos.h"

#include "filen_protos.h"

2. Include this header file in each file in your project.

3. Compile your entire project with the genproto option.
As each .c file is compiled, the compiler creates the corresponding
_protos.h file. The compiler suppresses the header file not found

warnings that would normally be produced.

This option is ignored when compiling C++ files.

1.60 genprotostatics

GenProtoStatics
generates prototypes for static routines. The default value is
nogenprotostatics. The minimum acceptable abbreviation is gpstat.

This option is ignored if you do not specify the genprotos option.

1.61 genprototypedefs

GenProtoTypedefs

tells the compiler to use typedefs instead of resolved types when
generating prototypes for any functions using typedefs for
parameters or return values. The default value is genprototypedefs.
The minimum acceptable abbreviation is gptdef.

This option is ignored if you do not specify the genprotos option.




SC

21/66

1.62 globalsymboltable

GlobalSymbolTable=gst

tells the compiler to use the specified GST (Global Symbol Table).
The default value is noglobalsymboltable. The minimum acceptable
abbreviation is gst.

The GST must have been created using the makeglobalsymboltable
option during a previous compilation. The gst option is ignored if
you specify the makeglobalsymboltable option. Therefore, you can
enter the makeglobalsymboltable in the sc command even if your
scoptions file contains the gst option.

This option defines the preprocessor symbol _GST

This option is ignored when compiling C++ files.

1.63 ¢gst

GST=gst—-filename

is a synonym for the GlobalSymbolTable option.

1.64 gstimmediate

GSTImmediate

is included for compatibility with projects using precompiled header
files as implemented in Version 5 of the compiler. This option
makes the contents of the GST you specify with the gst option
immediately available to the program. The default value is
nogstimmediate. The minimum acceptable abbreviation is gstimm.

Normally, symbols defined in a specific header file in the GST are
available to your program only after you have included the header
file with a #include statement. This option makes the contents of

the GST you specify with the gst option immediately available to the

program, even if your program does not contain #include statements
for the header file. With Version 5 precompiled header files, all
symbols in the precompiled header files were available to your
program even if your program did not contain #include statements for
the header file.

1.65 icons

Icons




SC 22/ 66

tells the compiler to create icons for files that it creates,
including listing files, preprocessor output files, prototype files,
and object files. The default value is icon.

If you specify icons, then each time the compiler generates a file,
it looks in the drawer sc:icons for an icon named def_extension,
where extension is the filename extension of the file it created.

If the compiler finds an icon file appropriate to the file
extension, it copies the icon to the directory in which the file was
created. If the compiler cannot find sc:icons or cannot find an

icon with the appropriate extension, it does not create an icon. If
you specify noicons and link, the noicons option is also passed to
the linker. For more information, see the section "Using Icons" in

Chapter 2, "Using Your SAS/C Development System."

1.66 identifierlength

IdentifierLength=n

specifies the maximum number of significant characters in an
identifier. The default wvalue is 31.

The minimum acceptable abbreviation is idlen. This option does not
have a negative form.

Identifiers longer than n are truncated without warning.
Identifiers longer than n bytes that differ after the first n bytes

are treated as identical.

This option is ignored when compiling C++ files.

1.67 ignore

Ignore=n

tells the compiler to ignore the specified warning message. The
minimum acceptable abbreviation is ign. This option does not have a
negative form.

You cannot ignore error messages. You can specify all or a to
ignore all warning messages, or you can specify one or more message
numbers to ignore only those messages. To specify several message

numbers, separate each number with a plus (+) sign or a comma (,).
You can specify the ignore option as many times as necessary.

See also the descriptions of the error and warn options.

1.68 includedirectory




SC

23/66

IncludeDirectory=directory

adds a directory to the list of directories to search for include
files. The default list is the current directory and include:. The
minimum acceptable abbreviation is idir. This option does not have
a negative form. You can specify the incdirectory option as many

times as necessary.

Any directories you specify with includedirectory are also passed to
the assembler as header file search directories.

1.69 keepline

KeepLine

generates #line directives in the preprocessor output file that
correspond to the lines in the original source files. The default
value is nokeepline. The minimum abbreviation is kline.

This option allows you to compile the preprocessed source and get
error and warning messages that refer you to the correct line in the

nonpreprocessed version of the file.

This option is ignored if you do not specify the pponly option.

1.70 libcode

LibCode

tells the compiler that the compiled code will be linked into a
shared library. The default value is nolibcode.

Any functions compiled with libcode and either the ___saveds keyword
or the saveds option load their near data section from a point
relative to the library base register A6 instead of from an absolute

address.

libcode also guarantees that the current library base will be in
register A6 whenever A6 is referenced or an internal call is made.

This option is for use when creating a shared library. Do not use
this option when creating an object module for a normal executable.

1.71 libfd

LibFD=filename

specifies the name of a function description (.fd) file. The
compiler passes this option to the linker. This option does not




SC

24 /66

have a negative form and is ignored if you do not specify the link
option.

This option is for use when creating shared libraries. Do not use
this option when creating an object module for a normal executable.

1.72 libprefix

LibPrefix=prefix

specifies the prefix that you want added to the functions listed in
the function description (.fd) file. The compiler passes this
option to the linker. This option does not have a negative form and
is ignored if you do not specify the 1link option.

This option is for use when creating shared libraries. Do not use
this option when creating an object module for a normal executable.

1.73 library

Library=link-library-filename (s)

specifies the link libraries that are to be passed to the linker.
The minimum acceptable abbreviation is lib. This option does not
have a negative form.

You can use AmigaDOS wildcard characters to specify filenames. To
specify several filenames or wildcard patterns, separate each
filename with a plus (+) sign or a comma (,). You can specify the

library option as many times as necessary. Any libraries you
specify are passed to the linker before the SAS/C libraries. This
option is ignored if you do not specify the 1link option.

For more information, refer to the description of library
in the linker options documentation.

See also the description of the csource , cxxsource , oObject , and
options.

1.74 librevision
LibRevision=n

specifies a minor revision number for the shared library that you
are creating. The compiler passes this option to the linker. This
option does not have a negative form and is ignored if you do not
specify the 1link option.

This option is for use when creating a shared library. Do not use
this option when creating an object module for a normal executable.

asm




SC

25/66

1.75 libversion

LibVersion=n

sets the version number of the shared library that you are creating.
The compiler passes this option to the linker. This option does not
have a negative form and is ignored if you do not specify the link
option.

This option is for use when creating a shared library. Do not use
this option when creating an object module for a normal executable.

1.76 link
Link

tells the compiler to invoke the linker to produce a final
executable module. The default value is nolink.

If you do not specify link, the compiler ignores any object files
and link libraries that you specify.

The options passed to the linker are placed into the file
program.lnk, and the linker is invoked using this file as a with
file. To see which linker options were generated, look at the .1lnk
file after sc runs the linker.

1.77 linkerdefine

LinkerDefine[=] symbol [=value]

defines a symbol to be used in the linking process. You can specify
as many LinkerDefine options as you like. The compiler passes each
LinkerDefine option to the linker as the define option. The minimum

acceptable abbreviation is linkdef. This option does not have a
negative form and is ignored if you do not specify the 1link option.

1.78 linkeroptions

LinkerOptions=option (s)

passes the provided parameter to the linker’s command line. The
default value is nolinkeroptions. The minimum acceptable
abbreviation is linkopt.

If you want to specify more than one option, or if the option you
want to specify contains a blank, surround the entire option string




SC

26 /66

with double quotes ("), as in the following example:

sc "linkeroptions=bufsize 10000 maxhunk 64000" link myprog.c
Any options specified in the options string are passed to the linker
after any compiler options that are identified as valid only if you
specify link. Therefore, the linkeroptions values override the

values passed by the sc options.

This option is ignored if you do not specify the 1link option.

1.79 linkerwith

LinkerWith=filename

specifies the name of a file containing linker options. You can
specify as many LinkerWith options as necessary. The compiler

passes each LinkerWith option to the linker as the with option. The
minimum acceptable abbreviation is linkwith. This option does not
have a negative form and is ignored if you do not specify the link
option.

1.80 list

List

tells the compiler or assembler to produce a listing file. The
default value is nolist.

The compiler writes the output to the filename you specify with the
listfile option. 1If you do not specify an output filename, the
compiler uses the name of the first source file you specify but with

the extension .lst.

This option is ignored when compiling C++ files.

1.81 listfile

ListFile=filename

names the listing and/or cross reference file. The default filename
is the same filename as the source file but with the extension .lst.
The minimum acceptable abbreviation is 1lfile.

This option is ignored if you do not specify the 1list or xreference
options.




SC 27 / 66

1.82 listheaders

ListHeaders
tells the compiler or assembler to include user header files in the
listing. The default value is listheaders. The minimum acceptable

abbreviation is lhead.

This option is ignored if you do not specify the list option.

1.83 listincludes

ListIncludes
lists the names of all included .h files in the listing file. The
default value is listincludes. The minimum acceptable abbreviation
is linc.
This option is useful for determining:

— .h file dependencies for smake

- the exact path of each .h file used

- exactly which .h files are included by other .h files.
The hierarchy of files is indicated by indention levels; a file
included by another file is indented one level deeper than the

parent file. This option is ignored if you do not specify the list
option.

1.84 listmacros

ListMacros
tells the compiler or assembler to expand macros in the listing.
The default value is nolistmacros. The minimum acceptable

abbreviation is lmac.

This option is ignored if you do not specify the list option.

1.85 listnarrow

ListNarrow
tells the compiler or assembler to produce a narrow listing (less
than 80 columns wide). The default value is listnarrow. The

minimum acceptable abbreviation is lnarr.

This option is ignored if you do not specify the list option.




SC

28 /66

1.86 listsystem

ListSystem
tells the compiler to include system header files in the listing.
The default value is nolistsystem. The minimum acceptable

abbreviation is lsys.

This option is ignored if you do not specify the list option.

1.87 makeglobalsymboltable

MakeGlobalSymbolTable=gst-filename

creates a GST (Global Symbol Table). The minimum acceptable
abbreviation is mgst.

If you specify the gst and makegst options, the gst option is
ignored. Therefore, you can enter the makegst in the sc command
even if your scoptions file contains the gst option. This option
automatically enables the nomultipleincludes and noexternaldefs
options. For more information on creating and using GSTs, refer to
SAS/C Development System Library Reference.

This option defines the preprocessor symbol _MGST

This option is ignored when compiling C++ files.

1.88 map

Map

produces a map of the executable module. The default value is
nomap. This option is ignored if you do not specify the 1link
option.

For more information, refer to the description of map
in the linker options documentation.

1.89 mapfile

MapFile=filename

names the map file. The default value is executable.map. The
minimum acceptable abbreviation is mfile.

This option is ignored if you do not specify the 1link and map
options.




SC 29/ 66

1.90 maphunk

MapHunk
maps all output hunks by size and originating function. The default
value is maphunk. The minimum acceptable abbreviation is mhunk.

This option is ignored if you do not specify the 1link and map
options.

1.91 maplib

MapLib

generates a list of hunks by library symbol in the map. The default
value is nomaplib. The minimum acceptable abbreviation is mlib.

This option is ignored if you do not specify the 1link and map
options.

1.92 mapoverlay

MapOverlay
includes a list of hunks in each overlay in the map. The default
value is nomapoverlay. The minimum acceptable abbreviation is

movly.

This option is ignored if you do not specify the 1link and map
options.

1.93 mapsymbols

MapSymbols
includes a list of defined symbols and the location at which they
are defined. The default value is nomapsymbols. The minimum

acceptable abbreviation is msym.

This option is ignored if you do not specify the 1link and map
options.

1.94 mapxreference




SC 30/66

MapXreference

writes a symbol cross-reference to the map file that lists each
symbol definition and the places each symbol is used. The default
value is nomapxreference. The minimum acceptable abbreviation is
mxref.

This option can generate a lot of output, but it is useful when you
are trying to track down where an unresolved symbol is referenced.
This option is ignored if you do not specify the 1link and map
options.

1.95 math

Math=type

chooses a format for floating-point math and, if you also specify
the 1link option, links with the appropriate math library. The
default value is nomath.

You can specify one of the following as the type:

standard or s
links with the library scm.lib, scms.lib or scmnb.lib, depending
on the value of the data and shortint options. The math format
is IEEE.

ffp or £
generates code to call the FFP shared library provided by
Commodore. The math format is FFP. This option links with
scmffp.lib. This option is not supported for C++ files.

68881, 68882, or 8
generates inline code for the 68881 and 68882 coprocessors. If
you specify one of these coprocessor options, your program will
not run if a coprocessor is not available. coprocessor is a
synonym for these options. The math format is IEEE. This option
links with scm881.1ib.

ieee or 1
generates code to call the IEEE shared library provided by
Commodore. The math format is IEEE. This option links with
scmieee.lib.

Some math options define preprocessor symbols. See the section
"Using Preprocessor Symbols Defined by the Compiler," later in this
chapter, for a list of those symbols.

For additional information about compiling and linking with math
libraries, refer to Chapter 3, "Using the SAS/C Libraries," in SAS/C
Development System Library Reference.




SC

31/66

1.96 maximumerrors

MaximumErrors=n

sets the limit on the number of errors for a single compilation.
The default value is 50. The minimum acceptable abbreviation is
maxerr.

If a single compilation generates more than n errors, the compiler
aborts the compilation. nomaxerr removes any limits.

1.97 maximumwarnings

MaximumWarnings=n

sets the limit on the number of warnings for a single compilation.
The default value is nomaxwrn. The minimum acceptable abbreviation
is maxwrn.

If a single compilation generates more than n warnings, the compiler
aborts the compilation. nomaxwrn removes any limits.

1.98 memorysize

MemorySize=size

tells the compiler approximately how much memory you have on your
system. You can specify one of the following:

- tiny or t

- small or s
- medium or m
- large or 1
- huge or h

The default value is large. The minimum acceptable abbreviation is
memsize. This option does not have a negative form.

Larger sizes allow sc to compile more complex programs and to
compile faster. Smaller sizes allow sc to continue to work under
low-memory conditions. If the compiler runs out of memory during a
compilation, it displays the message **x*xFreeing Resources, attempts
to free up memory, and automatically drops to a lower memorysize
value.

If you specify 1link and either memorysize=tiny or memorysize=small,
the compiler passes the bufsize=4096 option to the linker.

memorysize affects how and where the compiler stores any debugging
information. If the compiler begins to run out of memory, it starts
writing debugging information to a disk file. This file is referred
to as a debug side file.




SC

32/66

memorysize also affects the disposition and buffering of the
compiler intermediate file. This option tells the compiler how much
initial memory space to reserve for the intermediate information.
For large and huge, the intermediate file is kept totally in memory
(when the memory is available), which is much faster than writing it
to disk. At smaller values, the intermediate file is written to
disk, but the memorysize value affects the amount that is buffered.

In addition, if you do not specify the preprocessorbuffer (ppbuf)
and/or argumentsize (argsize) options, the memorysize option sets
these values for you. If you specify the preprocessorbuffer and/or

argumentsize options, the values you specify override the values set
by memorysize.

The following table lists the default values for argumentsize and
preprocessorbuffer by memorysize. It also lists the buffer size of
the compiler intermediate file.

Intermediate Debug Side
memsize argsize ppbuf File Buffer File Buffer
tiny 127 1024 1024 2K
small 255 2048 4096 8K
medium 511 4096 8192 32K
large 1023 8192 no limit 64K
huge 4800 16384 no limit 128K

See also the descriptions of the preprocessorbuffer and argumentsiz
options.

1.99 modified

Modified

tells the compiler to process only files that are out of date with
respect to their output files. The default value is nomodified.
The minimum acceptable abbreviation is mod.

This option is useful if you are compiling several files with a
single sc command and only some of the files need to be recompiled.
This option also works when you are generating prototypes or
preprocessor output. If you also specify the 1link option, all
object files are included in the link, even if their source files
were not recompiled.

1.100 multiplecharacterconstants

MultipleCharacterConstants

allows up to four bytes to appear within single quotes as a




sc 33/66
character constant. This option is included only for compatibility

with previous releases of the compiler, and its use is not

recommended. The minimum acceptable abbreviation is mccons. The

default value is nomccons.

If you specify mccons, a single constant of type int is generated.
If fewer than four bytes are provided, they are padded on the left
with zeroes, as in the following example:

#include <stdio.h>

void main (void)
{
long 1 "abcd’;
long m = "\x01\x02\x03’;
printf ("1=0x%081x, m=0x%081x\n", 1, m);

This example program prints the following:
1=0x61626364, m=0x00010203

This option is ignored when compiling C++ files.

1.101 multipleincludes

MultipleIncludes

tells the compiler to include header files that are included more
than once. The default value is multipleincludes. The minimum
acceptable abbreviation is minc.

This behavior is required by the ANSI Standard. However, many
projects do not need this behavior, and specifying nominc can save
compilation time.

Specifying nomultipleincludes has no effect when compiling C++
files.

1.102 object

Object=filename (s)

lists the object files that are to be linked into the program. The
minimum acceptable abbreviation is obj. This option does not have a
negative form.

The object files must have been created during a previous
compilation. Do not specify object files that will be created by
the same sc command in which you specify the object option. You can




SC

34 /66

use AmigaDOS wildcard characters to specify filenames. To specify
several filenames or wildcard patterns, separate each filename with
a plus (+) sign or a comma (,). You can specify the object option
as many times as necessary.

This option is ignored if you do not specify the 1link option. See
also the descriptions of the c¢source , library , and assembler
options.

1.103 obijectlibrary

ObjectlLibrary=link-library-name

specifies that any resulting object files are to be placed in the
named link library. The minimum acceptable abbreviation is objlib.

Do not specify this option if you also specify the 1link option.

1.104 objectname

ObjectName=file-or—-directory—name

specifies the name of the file or directory to hold compiler and
assembler output (including temporary ..c files). The minimum
acceptable abbreviation is objname.

If you are compiling or assembling only one source file, you can use
this option to specify the file where you want the compiler or
assembler output. If you are compiling or assembling more than one
file, you can use this option to specify a directory where you want
the output, and sc uses the same filename as the source file but
replaces the extension with .o. The directory name must end with a
forward slash (/) or a colon (:). If you do not use the objectname
option, sc uses the same filename with the extension of .o, but it
places the files in the same directory as the source file.

The C++ translator will generate the temporary .c file into the same
path as specified by the ObjectName option.

1.105 oldpreprocessor

OldPreprocessor

is provided for compatibility with pre- ANSI style preprocessors.
The default value is nooldpreprocessor. The minimum acceptable
abbreviation is oldpp.

The oldpp option does the following:

- allows old-style token pasting using comments




SC 35/66

— substitutes values for parameters specified as quoted strings
in macro definitions.

For example, suppose you have the following program:
#define FOO (bar) "bar"

void main (void)
{
printf ("$s\n", FOO (test));

If you compile this program with oldpp, the program prints test. If
you compile this program with nooldpp, the program prints bar. To
make this program work with the ANSI features and the nooldpp
option, substitute the following for the #define:

#define FOO (bar) #bar
As an additional example, suppose you have the following program:
#define FOO (bar) foo_/+*x/bar
void main (void)
{

int foo_test;
int foo_xxx;

FOO (test) = 10;
FOO (xxx) 20;
printf ("$d %d\n", foo_test, foo_xxx);

If you compile this program with oldpp, the #define concatenates the
text of the argument after the string foo_ and the program prints 10
20. If you compile this program with nooldpp, the program produces
a compilation error. To make this program work with the ANSI
features and the nooldpp option, substitute the following for the
#define:

#define FOO (bar) foo_##bar

This option is ignored when compiling C++ files.

1.106 onerror

OnError=x
tells sc what action to take if a source file generates an error.
The minimum acceptable abbreviation is onerr. This option does not

have a negative form.

You can specify one of the following:




SC

36 /66

stop or s
tells sc not to process any more source files. The default value
is stop.

continue or c
tells sc to process the next source file.

If you specify the 1link option, but your program generates errors,
your program is not linked even if you specify onerr=continue.

1.107 optimize

Optimize

enables the global optimizer (unless you specify nooptglobal) and
peephole optimizer (unless you specify nooptpeep). The default
value is nooptimize. The minimum acceptable abbreviation is opt.

1.108 optimizeralias

OptimizerAlias
disables type-based aliasing assumptions in the optimizer. The
default value is nooptimizeralias. The minimum acceptable

abbreviation is optalias.

If you specify optimizeralias, the global optimizer uses worst-case
aliasing. Specifying optimizeralias can significantly reduce the
amount of optimization that can be performed. This option is
ignored if you do not specify the optimize and optglobal options.

1.109 optimizercomplexity

OptimizerComplexity=n

defines the maximum complexity level of functions to be
automatically inlined. The default value is 0. The minimum
acceptable abbreviation is optcomp.

The parameter n represents the relative complexity of the function
to be inlined and is a count of the number of discrete operations in
the function. Try different values for this number until you get
the results you want. The higher the number, the more functions you
can inline, but the size of your code will grow significantly as
well.

If you specify nooptcomp, no complexity-based inlining occurs. This
option is ignored if you do not specify the optimize , optglobal ,
optimizerinline options.

and




SC 37 /66

1.110 optimizerdepth

OptimizerDepth=n
defines the maximum nesting depth of automatically inlined
functions. The default value is 0. The minimum acceptable

abbreviation is optdep.

This option is ignored if you do not specify the optimize ,
optglobal , and optimizerinline

1.111 optimizerglobal

OptimizerGlobal
enables the global optimizer. The default value is optimizerglobal.

The minimum abbreviation is optgo. This option is ignored if you do
not specify the optimize option.

1.112 optimizerinline

OptimizerInline
allows inlining of functions, including functions defined with the
__inline keyword. The default value is optimizerinline. The

minimum acceptable abbreviation is optinl.

This option is ignored if you do not specify the optimize and
optglobal options.

If you specify nooptinline, the optinlocal , optdepth , optcomplexity ,
and optrdepth options are ignored.

1.113 optimizerinlocal

OptimizerInLocal

inlines single-use static functions. The default value is
nooptimizerinlocal. The minimum acceptable abbreviation is
optinlocal.

This option is ignored if you do not specify the optimize ,
optglobal , and nooptimizerinline options.




SC 38 /66

1.114 optimizerloop

OptimizerLoop

enables loop optimizations. The default value is optimizerloop.
The minimum acceptable abbreviation is optloop.

This option is ignored if you do not specify the optimize and
optglobal options.

1.115 optimizerpeephole

OptimizerPeephole

enables the peephole optimizer. The default value is
optimizerpeephole. The minimum acceptable abbreviation is optpeep.

This option is ignored if you do not specify the optimize option.

1.116 optimizerrecurdepth

OptimizerRecurDepth=n
defines the maximum depth of recursion of automatically inlined
functions. The default value is 0. The minimum acceptable

abbreviation is optrdep.

This option is ignored if you do not specify the optimize ,
optglobal , and optinline options.

1.117 optimizersize

OptimizerSize

generates smaller code, possibly increasing execution time. The
default value is nooptsize. The minimum acceptable abbreviation is
optsize.

This option is ignored if you do not specify the optimize and

optglobal options. Do not specify both the optimizersize and
optimizertime options.

1.118 optimizertime




SC 39/66

OptimizerTime

generates code that will run faster but may be larger. The default
value is nooptimizertime. The minimum acceptable abbreviation is
opttime.

This option is ignored if you do not specify the optimize and
optglobal options. Do not specify both the optimizersize and
optimizertime options.

1.119 optimizerschedule

OptimizerSchedule

runs the instruction scheduler. The default value is nooptschedule.
The minimum acceptable abbreviation is optsched.

The scheduler reorders instructions to make them run faster on
higher-order processors, like the 68040 and 68882, without
sacrificing the ability to run on lower-order processors. Running
the scheduler may take additional compilation time.

This option is ignored if you do not specify the optpeep and
optimize options.

1.120 parameters

Parameters=method

indicates how parameters should be passed. The minimum acceptable
abbreviation is parm. This option does not have a negative form.

You can specify one of the following:

stack or s
indicates parameters should be passed on the stack. The default
value is stack.

register or r
indicates parameters should be passed in registers.

both or b
generates a combination prolog that allows parameters to be passed
on the stack or in registers.

If your program has prototypes for all routines, you should probably
use parameters=register for increased efficiency. If you are
placing code into a link library, specify parms=both so that your
library functions accept registerized parameters and parameters that
are passed on the stack.




SC

40/66

If you write a function that has the same name as a SAS/C library
function, you need to add the __ _regargs keyword to your function or
compile with the parms=both or parms=register option. For example,
you may want to replace the SAS/C library function malloc with your
own version of malloc. If you compile with the parms=stack option
or define your version of malloc with the _ stdargs keyword, then
two versions of malloc are linked into your executable. If you use
other SAS/C library functions that call malloc, these functions use
the version of malloc in the SAS/C libraries. However, your
functions that call malloc use your version of malloc. To make sure
that all calls to malloc are using your version of malloc (including
calls from library routines), define your version with __ regargs or
compile with the parms=both or parms=register option.

With C++ functions, only functions with "C" linkage obey the value
you specify with the parameters option. All C++ functions behave as
if you specified parameters=register unless you explicitly declare
them with ___stdargs or __asm.

For information about passing parameters between C language
functions and assembly language functions, refer to Chapter 11,
"Using Assembly Language with the C and C++ Languages," in SAS/C
Development System User’s Guide, Volume 2.

1.121 precision

Precision=precision

specifies the size of floating-point wvariables. You can specify
double or mixed. The default value is mixed. The minimum
acceptable abbreviation is prec. This option does not have a
negative form.

If you specify double, data declared as float are treated as if they
were declared as double. If you specify mixed, data declared as
float and data declared as double are different sizes.

1.122 preprocessorbuffer

PreprocessorBuffer=n

sets the maximum number of bytes to which a macro can be expanded by
the preprocessor. The default value is 8192 unless set differently

by the memorysize option. The minimum acceptable abbreviation is

ppbuf. This option does not have a negative form.

If a macro expands to greater than n bytes, the compiler issues an
error message and aborts the compilation. See the description of

the memorysize option for more information.

This option is ignored when compiling C++ files.




SC 41 /66

1.123 preprocessoronly

PreprocessorOnly

tells the compiler to run only the preprocessor on the source files.
The default value is nopreprocessoronly. The minimum acceptable
abbreviation is pponly.

If you specify a filename with the objectname option, the compiler
writes the output to the file you specify. If you do not specify an
output filename, the compiler writes the output to the same filename
as the source file but with the extension .p.

This option defines the preprocessor symbol _PPONLY

1.124 profile

Profile

generates code at the entry and exit of each function that calls
library functions _PROLOG and _EPILOG, respectively. _PROLOG and
_EPILOG note the time the function was entered and exited and pass
this information to sprof, which produces a report telling you how
much time was spent in each function. The default value is
noprofile. This option defines the preprocessor symbol _PROFILE

1.125 programname

ProgramName=output-module-name

specifies the name of the executable module. The default value is
the root name of the first source file specified in the sc command.
The minimum acceptable abbreviation is pname. This option does not

have a negative form.

This option is ignored if you do not specify the 1link option.

1.126 pubscreen

PubScreen=name

specifies the name of the public screen to use when sc invokes
scmsg. The minimum abbreviation is pubscr. This option does not




SC

42 /66

have a negative form.
The pubscreen option overrides any public screen specification in

the scmsg options file. The scopts utility uses any pubscreen
specification set in the scoptions file or on the command line.

1.127 resetoptions

ResetOptions
resets all options to their default values. The minimum acceptable
abbreviation is resopt. This option does not have a negative form.

If you specify this option as the first option in the sc command, it
resets any option specified in the scoptions file. TIf you specify
this option after other options or filenames in the sc command, it
resets the options preceding it, including the filenames.

1.128 saveds

Saveds

generates code as if you had defined all functions in the source

files with the __ _saveds keyword. The default value is nosaveds.
The __saveds keyword loads the near data pointer in register A4 at
each function entry point. You should specify this option if you

are compiling code that is used as an interrupt routine, called with
the AddTask function, used in a shared library, or called from
another process. This option does not work if your code is linked
with the cres.o or catchres.o startup modules.

1.129 shortintegers

ShortIntegers

enables 16-bit integers. The default value is noshortintegers. The
minimum acceptable abbreviation is sint.

If you specify shortintegers, types int and short are the same size.
If you specify noshortintegers, types int and long are the same

size. If you are running the assembler, this option defines the
symbol shortint. This option also defines the preprocessor symbol
_SHORTINT

This option is illegal when compiling C++ files.




SC 43/ 66

1.130 smallcode

SmallCode

tells the linker to merge all code hunks into a single hunk. The
default value is nosmallcode. The minimum acceptable abbreviation
is scode.

This option is ignored if you do not specify the 1link option. See
also the description of the smallcode 1linker option.

1.131 smalldata

SmallData

tells the linker to merge all data and bss sections into a single
hunk. The default value is nosmalldata. The minimum acceptable
abbreviation is sdata.

This option is ignored if you do not specify the 1link option. See
also the description of the smalldata linker option.

1.132 sourceis

Sourcels=filename

sets the name of the C source file in the object file and in
debugging information to the specified value instead of the actual
name of the C source file. The minimum acceptable abbreviation is
srcis.

You can use this option if you plan to rename or move the source
file before using the debugger to debug your program. If you are
compiling or assembling exactly one source file, sourceis can
specify the name of the file to be placed into the debug
information. If you are compiling or assembling multiple files,
sourceis should specify a directory name (ending with a forward
slash or colon).

1.133 stackcheck

StackCheck

generates stack overflow checking code at each function entry. The
default value is stackcheck. The minimum acceptable abbreviation is
stkchk.

When a program is about to run out of stack space, the program
displays a requestor and terminates gracefully. For a complete




SC 44 / 66

description of the stackcheck option, see Chapter 11, "Using SAS/C
Extensions to the C and C++ Languages."

1.134 stackextend

StackExtend
generates stack extension code at each function entry. The default
value is nostackext. The minimum acceptable abbreviation is stkext.

When a program runs out of space in the current stack, a new stack
is allocated, and your program continues to run. For a complete
description of the stackext option, see Chapter 11, "Using SAS/C
Extensions to the C and C++ Languages."

1.135 standardio

StandardIO
is included for compatibility with previous releases of the

compiler. This option has no effect. The libraries in Version 6.50
and later automatically initialize standard I/O if it is used.

1.136 startup

StartUp=module—name

specifies which startup module to use. The default value is c¢ (for

c.0). The minimum acceptable abbreviation is strt.

If the module name that you specify does not contain a colon (:),
forward slash (/), or period (.), the compiler adds lib: to the
beginning and .o to the end of the name you specify. If you do not

want to compile with a startup module, specify nostartup. This
option is ignored if you do not specify the 1link option.

If you specify libinit or libinitr, then the compiler also uses
LIB:libent.o before the specified startup file and tells the linker
to generate a shared library. If you specify devinit or devinitr,
then the compiler also uses LIB:devent.o before the specified
startup file and tells the linker to generate a device.

1.137 strict




SC 45/ 66

Strict

enables a large number of diagnostics dealing with portability and
questionable situations in your code. The default value is
nostrict.

Specifying strict may produce warning messages for situations that
are not a problem.

For more information on improving the portability of your code, see
Chapter 13, "Writing Portable C Code."

This option is ignored when compiling C++ files.

1.138 stringsconst

StringsConst

tells the compiler to consider all string constants to be of type
const char x. The default value is nostringsconst. The minimum
acceptable abbreviation is strcons.

If you do not specify stringsconst, the compiler considers string
constants to be of type char x. If you specify stringsconst,
passing a string constant to a function that expects the type char *
generates a warning message indicating that the function may modify
the string constant.

This option is ignored when compiling C++ files.

1.139 stringmerge

StringMerge

merges all identical string constants in the C source file and
changes the default value of the stringsection option to
stringsection=code. The default value is nostringmerge. The
minimum acceptable abbreviation is strmer.

If you specify stringmerge, the compiler examines each string
constant defined in the code and checks for duplicates. If the
compiler finds a duplicate string constant, it forces both
references to refer to the same memory location.

If you specify stringmerge and you modify a string constant, the
constant is modified in all locations. For example, suppose you
have the following program:

#include <stdio.h>

void modifyme (char «);




SC

46 /66

void main (void)

{
modifyme ("Hello, World!\n");
printf ("Hello, World!\n");

void modifyme (char =xmsqg)
{

strcpy (msg, "Foobar\n");

If you compile the program with stringmerge, the program prints

Foobar. If you compile the program with nostringmerge, the program

prints Hello, World!.

1.140 stripdebug

StripDebug

strips all debugging information from the final executable. The

default value is nostripdebug. The minimum acceptable abbreviation

is stripdbg.
This option is ignored if you do not specify the 1link option.

For more information, refer to the description of stripdebug
in the linker options documentation.

1.141 stringsection

StringSection=section

indicates where to place strings, data declared static const, and
initializers for automatic structures, unions, and arrays.

The minimum acceptable abbreviation is strsect. This option does
not have a negative form.

You can specify one of the following:

default
stores data according to the following rules:

1. If you specify strmerge, the code section is used.

2. If you specify data=far or data=near, the named section is
used.

3. Otherwise, the near section is used.

The default value is default.

near oOor n




SC

47 /66

stores the data in the near data section.

far or £
stores the data in the far data section.

code or c
stores the data in the code section.

If you specify a value other than default, the strings and static
const data are placed in the specified section regardless of whether
you specify strmerge or data.

This option allows you to merge strings and place them in the far
section for residentable programs or shared libraries. Since the
strings are read-only, they can be placed safely into far data;
placing them in the far section frees up more near data space for
your read/write external variables.

The stringsection option has two useful side effects. Because some
data are placed in the code section:

— Less data needs to be placed into the near data section. If
you have more than 64k of data, you can use the stringsection
option to try to reduce the amount of data and allow your
code to continue to use the near data model.

— The string constants are addressed relative to the PC
(program counter) instead of the beginning of the near data
section. Therefore, it is possible to generate programs with
no near or far data.

For more information on the code and near data sections, see Chapter
12, "How the Compiler Works"

1.142 structureequivalence

StructureEquivalence

tells the compiler not to issue messages if a pointer to one
structure type is passed to a function when the function expects a
pointer to a different type, if the type passed is equivalent to the
type expected. The default value is nostructureequivalence. The
minimum acceptable abbreviation is streq.

For information on using equivalent structures, see Chapter 11,

"Using SAS/C Extensions to the C and C++ Languages." This option is
ignored when compiling C++ files.

1.143 to




SC 48/ 66

To=filename

is included only for compatibility with the slink command. to is a
synonym for the programname option. This option does not have a
negative form.

1.144 trigraph

Trigraph

specifies whether to use ANSI trigraphs in your programs. The
default value is notrigraph. The minimum acceptable abbreviation is
trig. Specifying trigraph slows down the compiler.

1.145 underscore

Underscore

adds underscores to the beginning of all external names defined in
any assembler source files assembled. The default value is
nounderscore. The minimum acceptable abbreviation is uscore.

The underscores allow you to refer to these names in assembly
language in the same way you do in C and C++ source files. This
option is ignored if you do not specify any assembly-language files
in the sc command. For more information, refer to Chapter 11,
"Using Assembly Language with the C and C++ Languages," in SAS/C
Development System User’s Guide, Volume 2.

1.146 unsignedchar

UnsignedChar

makes the default type of char variables unsigned instead of signed.
The default value is nounsignedchar. The minimum acceptable
abbreviation is uchar. This option defines the preprocessor symbol
_UNSCHAR

1.147 utilitylibrary

UtilityLibrary

generates inline calls to the AmigaDOS 2.0 ROM-resident library
utility.library to do integer multiplication and division instead of
calling SAS/C library functions to do these operations. The default
value is noutilitylibrary. The minimum acceptable abbreviation is




SC 49/ 66

utillib.

Specifying utilitylibrary makes your executable smaller and faster

by taking advantage of 68020 instructions if they are available, but
your program runs only under AmigaDOS 2.0. If you link using the sc
command and the utilitylibrary and 1link options, sc defines all the
SAS/C library integer conversion stub routines to stubs that call
utility.library. This action prevents the SAS/C library routines
that use integer conversion routines from using the SAS/C versions

of the routines. 1If you link using the slink command, you need to
specify the following define linker options:

define __ CXM33=__ UCXM33
define _ CXD33=__UCXD33
define _ CXM22=__ UCXM22
define _ CXD22=_ UCXD22

These define options are in the file LIB:utillib.with, so you can
link with the following command:

slink with LIB:utillib.with options

1.148 verbose

Verbose

displays messages about each stage of compiling and linking. The
default value is noverbose.

1.149 version

Version

prints a banner containing the compiler version number and a
copyright message. The default value is version. The minimum
acceptable abbreviation is ver.

1.150 warn
Warn=n
enables the specified compiler warning message. The minimum

acceptable abbreviation is wrn. This option does not have a
negative form.

You can specify all or a to enable all warning messages, or you can
specify one or more message numbers to enable only those messages.
To specify several message numbers, separate each number with a plus
(+) sign or a comma (,). You can specify the warn option as many




SC

50/ 66

times as necessary.

See also the description of the error and ignore options.

1.151 warnvoidreturn

WarnVoidReturn

issues a warning message if a function declared as returning an
integer actually returns no value. The default value is
warnvoidreturn. The minimum acceptable abbreviation is wvret.

The nowarnvoidreturn option suppresses the return value mismatch
warning message for functions declared as returning an integer, but
that do not contain a return statement or that do not include an

expression in the return statement.

This option is ignored when compiling C++ files.

1.152 with

With=filename

specifies the name of a file containing additional options. The
additional options are read immediately, as 1f they were specified
in the sc command at the position occupied by the with option.
Options specified after the with option may override options
specified in the with file. This option does not have a negative
form. You can specify the with option as many times as necessary.

NOTE: Do not confuse this option with the with linker option.

1.153 xref

XREF

is a synonym for the xreference option.

1.154 xreference

XReference

produces a cross-reference. The default value is noxreference. The

minimum acceptable abbreviation is xref.

The compiler writes the output to the filename you specify with the
listfile option. If you do not specify an output filename, the




SC

51/66

compiler uses the name of the first source file you specify but with
the extension .lst.

This option is ignored when compiling C++ files.

1.155 xreferenceheaders

XReferenceHeaders

generates a cross-reference of user header files. The default value
is xreferenceheaders. The minimum acceptable abbreviation is xhead.

This option is ignored if you do not specify the xreference option.

1.156 xreferencesystem

XReferenceSystem

includes symbols defined in system header files in the
cross—-reference. The default value is xreferencesystem. The
minimum acceptable abbreviation is xsys.

This option is ignored if you do not specify the xreference option.

1.157 HELP

You have reached this Help window by either clicking on the Help
button or by hitting the Help key within the SAS/C Help utility.
Unlike other help topics present in the SAS/C Help utility, the Help
help topic opens its own window. You must close this window by
clicking on the close gadget or hitting escape before returning to

the SAS/C help utility. You cannot hit the Retrace button to return.

To quit the SAS/C Help utility, select Quit from the Project menu or
click on the close gadget. You may also hit escape.

Most help screens will display one or more buttons as part of the text.
Clicking on these buttons will provide further information on the topic
listed on the button. You can also reach these help topics through the

main Contents screen or one of its sub-screens.

In addition, double-clicking in the help window will bring up a help
screen for the word under the mouse cursor, if such a help screen
exists.

While in the SAS/C Help utility, you may retrace your steps through the

help screens you have selected by clicking on the Retrace button.

The Browse buttons will move you forward and backwards between help




SC 52 /66

screens. The help screens are usually arranged alphabetically by
command or topic.

1.158 addsym

AddSymbols

tells the linker to add symbol information to the executable module.
The default value is noaddsymbols. The minimum acceptable
abbreviation is addsym.

This option is automatically enabled if you specify the debug
option. This option is ignored if you do not specify the 1link

option.

For more information, refer to the description of AddSymbols
in the linker options documentation.

1.159 chkabort

CheckAbort
enables Control-C in your program. The default value is checkabort.
The minimum acceptable abbreviation is chkabort. This option is

ignored if you do not specify the 1link option.

If you compile with checkabort, your program will check for

Control-C interrupts whenever I/0 is performed. If you specify
nocheckabort, the compiler passes the following option to the
linker:

define @__chkabort=Q@__dummy
dummy is a function provided in the link libraries that simply
returns. Specifying nocheckabort makes all calls to the __chkabort

function do nothing, thereby removing Control-C checking.

Do not specify nocheckabort if you are redefining the library
function __chkabort in your own code.

1.160 datamem

DataMemory=type

specifies the type of memory into which initialized static or
external data should be loaded. You can specify any, chip, or fast.
You can abbreviate these values as a, c¢, or f. The default value is
any. This option does not have a negative form.

This option affects code generated by both the compiler and the




SC 53 /66

assembler. See also the descriptions of the Dbssmem and codemem
options.

1.161 disassem

DisAssemble=filename
tells the compiler to disassemble the code as it is generated and to
send the disassembly to the file you specify. The default value is

nodisassemble. The minimum acceptable abbreviation is disasm.

To send the disassembly to standard output, use disasm=x.

1.162 errorlisting

ErrorList
prints diagnostic messages to the listing file. The default value
is errorlist. The minimum acceptable abbreviation is errlist. This

option is ignored if you do not specify the list option.

1.163 genprotodataitem

GenProtoDataltems

generates external declarations for variables defined in the source
files that are not defined as static. The minimum abbreviation is
gpdata. The default value is gpdata. This option is ignored if you
do not specify the genprotos option.

1.164 genprotoextern

GenProtoExterns

generates prototypes for externally-known routines. The default
value 1is genprotoexterns. The minimum acceptable abbreviation is
gpext.

This option is ignored if you do not specify the genprotos option.

1.165 genprotoparm




SC 54 /66

GenProtoParameters

generates prototypes using the __PARMS macro. The default value is
nogenprotoparameters. The minimum acceptable abbreviation is
gpparm.

This option allows your C code to compile successfully on compilers
that support prototypes and on those that do not. On ANSI
compilers, the __PARMS macro expands to the parameter list for the
function, thereby creating a prototype. On non- ANSI compilers, the
__PARMS macro expands to an open-close parentheses pair, which
declares the function’s return type without defining a prototype.
This option is ignored if you do not specify the genprotos option.

1.166 genproto

GenProtos

generates prototypes and data declarations instead of compiling your
file. The default value is nogenprotos. The minimum acceptable
abbreviation is gproto.

This option defines the preprocessor symbol _GENPROTO . If you
specify a filename with the genprotofile option, the prototypes are
written to the specified file. Otherwise, the prototypes are written
to the file filename_protos.h.

While generating prototypes, the compiler suppresses most warnings
automatically, because many of the warnings may be due to incorrect
or missing prototypes. The compiler also checks all #include
statements as they are reached. If your file #includes the same
prototype file that is being generated, the compiler skips that
#include statement. This feature allows you to use this option to
maintain declarations for all externally-known symbols in each C
source file and regenerate the declarations as the files change.

To set up your project so that you can use this option to maintain
prototype files, do the following:

1. Create a header file that contains #include statements for
each of the files in your project, as follows:

#include "filel_protos.h"
#include "file2_protos.h"

#include "filen_protos.h"
2. Include this header file in each file in your project.
3. Compile your entire project with the genproto option.

As each .c file is compiled, the compiler creates the corresponding




SC

55/66

_protos.h file. The compiler suppresses the header file not found
warnings that would normally be produced.

This option is ignored when compiling C++ files.

1.167 genprotostatic

GenProtoStatics
generates prototypes for static routines. The default wvalue is
nogenprotostatics. The minimum acceptable abbreviation is gpstat.

This option is ignored if you do not specify the genprotos option.

1.168 genprototypedef

GenProtoTypedefs

tells the compiler to use typedefs instead of resolved types when
generating prototypes for any functions using typedefs for
parameters or return values. The default value is genprototypedefs.

The minimum acceptable abbreviation is gptdef.

This option is ignored if you do not specify the genprotos option.

1.169 libraries

Library=link-library-filename (s)

specifies the link libraries that are to be passed to the linker.
The minimum acceptable abbreviation is lib. This option does not
have a negative form.

You can use AmigaDOS wildcard characters to specify filenames. To
specify several filenames or wildcard patterns, separate each
filename with a plus (+) sign or a comma (,). You can specify the
library option as many times as necessary. Any libraries you

specify are passed to the linker before the SAS/C libraries. This
option is ignored if you do not specify the 1link option.

For more information, refer to the description of 1library
in the linker options documentation.

See also the description of the c¢source , cxxsource , object , and
options.

asm




SC 56 /66

1.170 librev

LibRevision=n

specifies a minor revision number for the shared library that you
are creating. The compiler passes this option to the linker. This
option does not have a negative form and is ignored if you do not

specify the 1link option.

This option is for use when creating a shared library. Do not use
this option when creating an object module for a normal executable.

1.171 libver

LibVersion=n

sets the version number of the shared library that you are creating.
The compiler passes this option to the linker. This option does not
have a negative form and is ignored if you do not specify the link

option.

This option is for use when creating a shared library. Do not use
this option when creating an object module for a normal executable.

1.172 linkeropts

LinkerOptions=option (s)
passes the provided parameter to the linker’s command line. The
default value is nolinkeroptions. The minimum acceptable
abbreviation is linkopt.
If you want to specify more than one option, or if the option you
want to specify contains a blank, surround the entire option string
with double quotes ("), as in the following example:

sc "linkeroptions=bufsize 10000 maxhunk 64000" link myprog.c
Any options specified in the options string are passed to the linker
after any compiler options that are identified as wvalid only if you
specify link. Therefore, the linkeroptions values override the

values passed by the sc options.

This option is ignored if you do not specify the 1link option.

1.173 makegst

MakeGlobalSymbolTable=gst-filename




SC

57 /66

creates a GST (Global Symbol Table). The minimum acceptable
abbreviation is mgst.

If you specify the gst and makegst options, the gst option is
ignored. Therefore, you can enter the makegst in the sc command
even if your scoptions file contains the gst option. This option
automatically enables the nomultipleincludes and noexternaldefs
options. For more information on creating and using GSTs, refer to
SAS/C Development System Library Reference.

This option defines the preprocessor symbol _MGST

This option is ignored when compiling C++ files.

1.174 maplibraries

MapLib

generates a list of hunks by library symbol in the map. The default
value is nomaplib. The minimum acceptable abbreviation is mlib.

This option is ignored if you do not specify the 1link and map
options.

1.175 mapxref

MapXreference

writes a symbol cross-reference to the map file that lists each
symbol definition and the places each symbol is used. The default
value is nomapxreference. The minimum acceptable abbreviation is
mxref.

This option can generate a lot of output, but it is useful when you
are trying to track down where an unresolved symbol is referenced.
This option is ignored if you do not specify the 1link and map
options.

1.176 maxerror

MaximumErrors=n

sets the limit on the number of errors for a single compilation.
The default value is 50. The minimum acceptable abbreviation is
maxerr.

If a single compilation generates more than n errors, the compiler
aborts the compilation. nomaxerr removes any limits.




SC 58 /66

1.177 maxwarn

MaximumWarnings=n

sets the limit on the number of warnings for a single compilation.
The default value is nomaxwrn. The minimum acceptable abbreviation
is maxwrn.

If a single compilation generates more than n warnings, the compiler
aborts the compilation. nomaxwrn removes any limits.

1.178 memsize

MemorySize=size

tells the compiler approximately how much memory you have on your
system. You can specify one of the following:

- tiny or t

- small or s
- medium or m
- large or 1
- huge or h

The default value is large. The minimum acceptable abbreviation is
memsize. This option does not have a negative form.

Larger sizes allow sc to compile more complex programs and to
compile faster. Smaller sizes allow sc to continue to work under
low-memory conditions. If the compiler runs out of memory during a
compilation, it displays the message **x*xFreeing Resources, attempts
to free up memory, and automatically drops to a lower memorysize
value.

If you specify 1link and either memorysize=tiny or memorysize=small,
the compiler passes the bufsize=4096 option to the linker.

memorysize affects how and where the compiler stores any debugging
information. If the compiler begins to run out of memory, it starts
writing debugging information to a disk file. This file is referred
to as a debug side file.

memorysize also affects the disposition and buffering of the
compiler intermediate file. This option tells the compiler how much
initial memory space to reserve for the intermediate information.
For large and huge, the intermediate file is kept totally in memory
(when the memory is available), which is much faster than writing it
to disk. At smaller values, the intermediate file is written to
disk, but the memorysize value affects the amount that is buffered.

In addition, if you do not specify the preprocessorbuffer (ppbuf)
and/or argumentsize (argsize) options, the memorysize option sets
these values for you. If you specify the preprocessorbuffer and/or

argumentsize options, the values you specify override the values set




SC 59 /66

by memorysize.

The following table lists the default values for argumentsize and
preprocessorbuffer by memorysize. It also lists the buffer size of
the compiler intermediate file.

Intermediate Debug Side
memsize argsize ppbuf File Buffer File Buffer
tiny 127 1024 1024 2K
small 255 2048 4096 8K
medium 511 4096 8192 32K
large 1023 8192 no limit 64K
huge 4800 16384 no limit 128K

See also the descriptions of the preprocessorbuffer and argumentsiz
options.

1.179 mcconstants

MultipleCharacterConstants

allows up to four bytes to appear within single quotes as a
character constant. This option is included only for compatibility
with previous releases of the compiler, and its use is not
recommended. The minimum acceptable abbreviation is mccons. The
default value is nomccons.

If you specify mccons, a single constant of type int is generated.
If fewer than four bytes are provided, they are padded on the left
with zeroes, as in the following example:

#include <stdio.h>

void main (void)

{

long 1 "abcd’;
long m = "\x01\x02\x03’;
printf ("1=0x%081x, m=0x%081x\n", 1, m);

This example program prints the following:
1=0x61626364, m=0x00010203

This option is ignored when compiling C++ files.

1.180 objectlib

Objectlibrary=link-library-name




SC

60 /66

specifies that any resulting object files are to be placed in the
named link library. The minimum acceptable abbreviation is objlib.

Do not specify this option if you also specify the 1link option.

1.181 optalias

OptimizerAlias
disables type-based aliasing assumptions in the optimizer. The
default value is nooptimizeralias. The minimum acceptable

abbreviation is optalias.

If you specify optimizeralias, the global optimizer uses worst-case
aliasing. Specifying optimizeralias can significantly reduce the
amount of optimization that can be performed. This option is
ignored if you do not specify the optimize and optglobal options.

1.182 optcomp

OptimizerComplexity=n

defines the maximum complexity level of functions to be
automatically inlined. The default value is 0. The minimum
acceptable abbreviation is optcomp.

The parameter n represents the relative complexity of the function
to be inlined and is a count of the number of discrete operations in
the function. Try different values for this number until you get
the results you want. The higher the number, the more functions you
can inline, but the size of your code will grow significantly as
well.

If you specify nooptcomp, no complexity-based inlining occurs. This

option is ignored if you do not specify the optimize , optglobal , and
optimizerinline options.

1.183 optdepth

OptimizerDepth=n

defines the maximum nesting depth of automatically inlined
functions. The default value is 0. The minimum acceptable
abbreviation is optdep.

This option is ignored if you do not specify the optimize ,
optglobal , and optimizerinline




SC 61/66

1.184 optimizeglobal

OptimizerGlobal
enables the global optimizer. The default value is optimizerglobal.
The minimum abbreviation is optgo. This option is ignored if you do

not specify the optimize option.

1.185 optinline

OptimizerInline
allows inlining of functions, including functions defined with the
__inline keyword. The default value is optimizerinline. The

minimum acceptable abbreviation is optinl.

This option is ignored if you do not specify the optimize and
optglobal options.

If you specify nooptinline, the optinlocal , optdepth , optcomplexity ,
and optrdepth options are ignored.

1.186 optinlocal

OptimizerInLocal

inlines single-use static functions. The default value 1is
nooptimizerinlocal. The minimum acceptable abbreviation is
optinlocal.

This option is ignored if you do not specify the optimize ,
optglobal , and nooptimizerinline options.

1.187 optloop

OptimizerLoop

enables loop optimizations. The default value is optimizerloop.
The minimum acceptable abbreviation is optloop.

This option is ignored if you do not specify the optimize and
optglobal options.

1.188 optimizepeep




SC

62 /66

OptimizerPeephole

enables the peephole optimizer. The default value is
optimizerpeephole. The minimum acceptable abbreviation is optpeep.

This option is ignored if you do not specify the optimize option.

1.189 optrdepth

OptimizerRecurDepth=n
defines the maximum depth of recursion of automatically inlined
functions. The default value is 0. The minimum acceptable

abbreviation is optrdep.

This option is ignored if you do not specify the optimize ,
optglobal , and optinline options.

1.190 optsize

OptimizerSize

generates smaller code, possibly increasing execution time. The
default value is nooptsize. The minimum acceptable abbreviation is
optsize.

This option is ignored if you do not specify the optimize and

optglobal options. Do not specify both the optimizersize and
optimizertime options.

1.191 opttime

OptimizerTime

generates code that will run faster but may be larger. The default
value is nooptimizertime. The minimum acceptable abbreviation is
opttime.

This option is ignored if you do not specify the optimize and

optglobal options. Do not specify both the optimizersize and
optimizertime options.

1.192 optimizeschedule




SC 63 /66

OptimizerSchedule

runs the instruction scheduler. The default value is nooptschedule.
The minimum acceptable abbreviation is optsched.

The scheduler reorders instructions to make them run faster on
higher-order processors, like the 68040 and 68882, without
sacrificing the ability to run on lower-order processors. Running
the scheduler may take additional compilation time.

This option is ignored if you do not specify the optpeep and
optimize options.

1.193 parms

Parameters=method

indicates how parameters should be passed. The minimum acceptable
abbreviation is parm. This option does not have a negative form.

You can specify one of the following:

stack or s
indicates parameters should be passed on the stack. The default
value is stack.

register or r
indicates parameters should be passed in registers.

both or b
generates a combination prolog that allows parameters to be passed
on the stack or in registers.

If your program has prototypes for all routines, you should probably
use parameters=register for increased efficiency. If you are
placing code into a link library, specify parms=both so that your
library functions accept registerized parameters and parameters that
are passed on the stack.

If you write a function that has the same name as a SAS/C library
function, you need to add the __regargs keyword to your function or
compile with the parms=both or parms=register option. For example,
you may want to replace the SAS/C library function malloc with your
own version of malloc. If you compile with the parms=stack option
or define your version of malloc with the __ stdargs keyword, then
two versions of malloc are linked into your executable. If you use
other SAS/C library functions that call malloc, these functions use
the version of malloc in the SAS/C libraries. However, your
functions that call malloc use your version of malloc. To make sure
that all calls to malloc are using your version of malloc (including
calls from library routines), define your version with __regargs or
compile with the parms=both or parms=register option.




SC

64 /66

With C++ functions, only functions with "C" linkage obey the value
you specify with the parameters option. All C++ functions behave as
if you specified parameters=register unless you explicitly declare
them with ___stdargs or __asm.

For information about passing parameters between C language
functions and assembly language functions, refer to Chapter 11,

"Using Assembly Language with the C and C++ Languages," in SAS/C
Development System User’s Guide, Volume 2.

1.194 preprocessonly

PreprocessorOnly

tells the compiler to run only the preprocessor on the source files.
The default value is nopreprocessoronly. The minimum acceptable
abbreviation is pponly.

If you specify a filename with the objectname option, the compiler
writes the output to the file you specify. If you do not specify an
output filename, the compiler writes the output to the same filename

as the source file but with the extension .p.

This option defines the preprocessor symbol _PPONLY

1.195 strsect

StringSection=section

indicates where to place strings, data declared static const, and
initializers for automatic structures, unions, and arrays.

The minimum acceptable abbreviation is strsect. This option does
not have a negative form.

You can specify one of the following:

default
stores data according to the following rules:

1. If you specify strmerge, the code section is used.

2. If you specify data=far or data=near, the named section is
used.

3. Otherwise, the near section is used.

The default value is default.

near or n
stores the data in the near data section.

far or £




SC

65 /66

stores the data in the far data section.

code or c
stores the data in the code section.

If you specify a value other than default, the strings and static
const data are placed in the specified section regardless of whether
you specify strmerge or data.

This option allows you to merge strings and place them in the far
section for residentable programs or shared libraries. Since the
strings are read-only, they can be placed safely into far data;
placing them in the far section frees up more near data space for
your read/write external variables.

The stringsection option has two useful side effects. Because some
data are placed in the code section:

- Less data needs to be placed into the near data section. If
you have more than 64k of data, you can use the stringsection
option to try to reduce the amount of data and allow your
code to continue to use the near data model.

- The string constants are addressed relative to the PC
(program counter) instead of the beginning of the near data
section. Therefore, it is possible to generate programs with
no near or far data.

For more information on the code and near data sections, see Chapter
12, "How the Compiler Works"

1.196 structequivalence

StructureEquivalence

tells the compiler not to issue messages if a pointer to one
structure type 1s passed to a function when the function expects a
pointer to a different type, 1if the type passed is equivalent to the
type expected. The default value is nostructureequivalence. The
minimum acceptable abbreviation is streq.

For information on using equivalent structures, see Chapter 11,

"Using SAS/C Extensions to the C and C++ Languages." This option is
ignored when compiling C++ files.

1.197 utillib

UtilityLibrary

generates inline calls to the AmigaDOS 2.0 ROM-resident library




SC 66 / 66

utility.library to do integer multiplication and division instead of
calling SAS/C library functions to do these operations. The default
value is noutilitylibrary. The minimum acceptable abbreviation is
utillib.

Specifying utilitylibrary makes your executable smaller and faster

by taking advantage of 68020 instructions if they are available, but
your program runs only under AmigaDOS 2.0. If you link using the sc
command and the utilitylibrary and 1link options, sc defines all the
SAS/C library integer conversion stub routines to stubs that call
utility.library. This action prevents the SAS/C library routines
that use integer conversion routines from using the SAS/C versions

of the routines. If you link using the slink command, you need to
specify the following define linker options:

define __ CXM33=__UCXM33
define _ CXD33=_ UCXD33
define _ CXM22=__ UCXM22
define __ CXD22=__UCXD22

These define options are in the file LIB:utillib.with, so you can
link with the following command:

slink with LIB:utillib.with options

1.198 xrefheaders

XReferenceHeaders

generates a cross-reference of user header files. The default value
is xreferenceheaders. The minimum acceptable abbreviation is xhead.

This option is ignored if you do not specify the xreference option.

1.199 xrefsystem

XReferenceSystem
includes symbols defined in system header files in the
cross—reference. The default value is xreferencesystem. The

minimum acceptable abbreviation is xsys.

This option is ignored if you do not specify the xreference option.




	sc
	sc.guide
	mainpanel
	compilerpanel
	messagepanel
	codepanel
	listpanel
	optimizerpanel
	prototypepanel
	linkerpanel
	mappanel
	save
	save default
	cancel
	special
	ok
	custom
	absfuncpointer
	addsymbols
	ansi
	argumentsize
	assembler
	autoregister
	batch
	bssmemory
	bssname
	buildproject
	checkabort
	code
	codememory
	codename
	commentnest
	common
	constlibbase
	coverage
	cpu
	csource
	cxxonly
	cxxsource
	data
	datamemory
	dataname
	debug
	define
	disassemble
	dollarok
	error
	errorconsole
	errorhighlight
	errorlist
	errorrexx
	errorsource
	externaldefs
	findsymbol
	from
	genprotodataitems
	genprotoexterns
	genprotofile
	genprotoparameters
	genprotos
	genprotostatics
	genprototypedefs
	globalsymboltable
	gst
	gstimmediate
	icons
	identifierlength
	ignore
	includedirectory
	keepline
	libcode
	libfd
	libprefix
	library
	librevision
	libversion
	link
	linkerdefine
	linkeroptions
	linkerwith
	list
	listfile
	listheaders
	listincludes
	listmacros
	listnarrow
	listsystem
	makeglobalsymboltable
	map
	mapfile
	maphunk
	maplib
	mapoverlay
	mapsymbols
	mapxreference
	math
	maximumerrors
	maximumwarnings
	memorysize
	modified
	multiplecharacterconstants
	multipleincludes
	object
	objectlibrary
	objectname
	oldpreprocessor
	onerror
	optimize
	optimizeralias
	optimizercomplexity
	optimizerdepth
	optimizerglobal
	optimizerinline
	optimizerinlocal
	optimizerloop
	optimizerpeephole
	optimizerrecurdepth
	optimizersize
	optimizertime
	optimizerschedule
	parameters
	precision
	preprocessorbuffer
	preprocessoronly
	profile
	programname
	pubscreen
	resetoptions
	saveds
	shortintegers
	smallcode
	smalldata
	sourceis
	stackcheck
	stackextend
	standardio
	startup
	strict
	stringsconst
	stringmerge
	stripdebug
	stringsection
	structureequivalence
	to
	trigraph
	underscore
	unsignedchar
	utilitylibrary
	verbose
	version
	warn
	warnvoidreturn
	with
	xref
	xreference
	xreferenceheaders
	xreferencesystem
	HELP
	addsym
	chkabort
	datamem
	disassem
	errorlisting
	genprotodataitem
	genprotoextern
	genprotoparm
	genproto
	genprotostatic
	genprototypedef
	libraries
	librev
	libver
	linkeropts
	makegst
	maplibraries
	mapxref
	maxerror
	maxwarn
	memsize
	mcconstants
	objectlib
	optalias
	optcomp
	optdepth
	optimizeglobal
	optinline
	optinlocal
	optloop
	optimizepeep
	optrdepth
	optsize
	opttime
	optimizeschedule
	parms
	preprocessonly
	strsect
	structequivalence
	utillib
	xrefheaders
	xrefsystem


