LES Debugger AmigaGuide Documentation

LES Debugger AmigaGuide Documentation

COLLABORATORS

TITLE :

LES Debugger AmigaGuide Documentation

ACTION

NAME DATE

SIGNATURE

WRITTEN BY

March 29, 2025

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

LES Debugger AmigaGuide Documentation iii

Contents

1 LES Debugger AmigaGuide Documentation 1
1.1 Main Menu 1
1.2 Thelndex Page e |
1.3 Disclaimer, Copyright Notice & Public Domain Notice 2
1.4 Aboutthe debugger L e e 2
1.5 Windows In The Debugger e 3
1.6 Program Control Window L e e 3
1.7 Register window L e e 4
1.8 Source WINdow L 4
1.9 Memory WIndows L e e 5
1.10 Object Trace WIndows L . it s e e e 5
I.11 Variable Trace Window o e 6
1.12 680x0 Disassembly window L. 6
1.13 Copper Disassembly Window L 7
1.14 Search Memory Window L e e e e e 7
1.15 Array Window oL e e 7
1.16 Debugger Menus e e e e 8
1.17 Installation/How To Use 9
1.18 Defining Structures o it e e e e e e e e 10
1.19 New Stuff for VI.41 11
1.20 GOSUD SEPPINg o o o e e e e e e e e 11
1.21 Bump Prefs 11
1.22 New Stuff for V1.3 . . . o o 12
1.23 Custom Chip Registers e 12
1.24 Screen Mode Selection L e e 12
L.25 Structures L e 13
1.26 Locking e e e 14
1.27 STEP enhancement i ittt e e e e e e e 14
1.28 Memory WIndows o . e e e e e e e e e 14
1.29 Breakpoints L e 15

LES Debugger AmigaGuide Documentation iv

1.30 New Stuff o L 16
1.31 Problems... e e 22
1.32 Version history o o e e e e e 23
1.33 Communications L. e e e e e e e e e e e e e 27
1.34 Leading Edge Software e e 29

1.35 Thanx gotothe following e e e e e 29

LES Debugger AmigaGuide Documentation 1/30

Chapter 1

LES Debugger AmigaGuide Documentation

1.1 Main Menu

Written by Stephen McNamara
of
Leading Edge Software

Original debugger by
Mark Sibly of Acid Software

Release Date:
19/10/1995

Notex
See the section New Stuff for additions and changes in this release

of the debugger.

This program is 0S2.0+ only and requires
the reqtools.library v38+

1.2 The Index Page

LES Debugger v2.1

Please select the topic you wish to read

Legal stuff

About the debugger
Debugger windows
Debugger menus
Installation

New stuff for v2.1/1.41
New stuff for v1.3

New stuff for v1.21-1.0

LES Debugger AmigaGuide Documentation 2/30

Problems...

Version history
Communications
Leading Edge Software
Thanx to...

IMPORTANT NOTE:

Installing the Debuglib.obj file into BlitzLibs:System/ is no longer
optional. IT MUST BE INSTALLED there. See the section on Installation
for more information.

1.3 Disclaimer, Copyright Notice & Public Domain Notice

Disclaimer, Copyright Notice & Public Domain Notice

God I hate formality................ here we go anyway..........

This program is public domain. People may spread it to anyone they like,
as long as all the relevant files are included when it is spread. Relevant
files include the actual program and all documentation files supplied with
the program. PD libraries etc may not charge more than a reasonable price
for copying and disks. This program may not be distributed in a commercial
package without the permission of the author (Stephen McNamara) .

This program, and all associated files are the work of Stephen McNamara.
The main debugger program is based on code by Mark Sibly of Acid Software
and is used with permission. This program file may not be disassembled or
modified in anyway and the docs must not be altered.

The author will not be held liable for any damage, however caused, whether
indirect or direct as a result from the (mis)use of this software.

This program uses the reqtools library which is (C) Nico Francois.

1.4 About the debugger

About the debugger

This program replaces the default debugger supplied with B.U.M. 7. It
is only of use for people who have version 1.9 of Blitz2 (which was supplied
with B.U.M. 7) or later. It cannot be run stand-alone - it can only run
from inside Blitz2.

The standard debugger supplied with Blitz2 is very basic in that it
only allows you to step programs and evaluate variables. It opened a
window on the Workbench screen, in which it had program listing and some
program control gadgets. This debugger goes for a full MonAm (the
disassembler/debugger supplied with Devpac) approach in that it opens its
own screen. On this screen are a series of windows that allow you to

LES Debugger AmigaGuide Documentation 3/30

watch what you’re program is doing whilst running it, see the section
WINDOWS for information on them.

There are a few things that should be pointed out about using this
program. Firstly, it is big and memory hungry, thus you will need to have
at least lmeg to use it alongside Blitz2. Also, at the moment anyway, the
program uses the ReqgTools library via Neil O’Rourke’s blitz library. You
will thus have to have reqtools.library installed on your machine.

1.5 Windows In The Debugger

Windows In The Debugger

The debugger can have a very large number of windows open at once, each
with different functions and uses. Note though that having a large number
of windows open at once can cause your programs performance to degrade
during trace operations. Since the debugger does no window updating whilst
you are RUNning your program, this is not effected.

The windows that can be opened.

Program Control Window
Register window

Source Window

Memory Windows

Object Trace Windows
Variable Trace Window
680x0 Disassembly window
Copper Disassembly Window
Search Memory Window
Array Window

Stucture

Custom Chip Registers

1.6 Program Control Window

Program Control Window

This window contains the gadgets that were found in the
original debugger plus a few extra. The extra ones are:

BLTZ : Click to view blitz mode display (if program is in
blitzmode). Press a mouse button to return to
debugger.

REGS : Toggle register window (open/closed)

MEM1 : Toggle memory window 1 (open/closed)

MEM2 : Toggle memory window 2 (open/closed)

VARS : Toggle variable trace window (open/closed)

ASM : Toggle disassembly window (open/closed)
COP : Toggle the copper disassembly window (open/closed)

LES Debugger AmigaGuide Documentation 4/30

GS : Toggle gosub stepping on/off (highlighted=on)
See New Stuff 1.41 for information.

PS : Toggle procedure control on/off (highlighted=on)
See New Stuff for information.

BC : Toggle Blitz mode control on/off

See New Stuff for information.

0ld gadgets are:

STOP : Causes program execution to stop and the debugger
top take over

STEP : Execute the current instruction (whilst program
stopped)

SKIP : Ignore current instruction and move to the next one

TRACE: Trace the program (like running, except the
debuggers windows are updated. Your program will
run very slowly in trace mode, but you’ll be able
to see exactly what is going on.

RUN : Resume normal speed execution of the program
< : Move backwards through history buffer
> : Move forwards through history buffer

EXEC : Execute a basic instruction
EVAL : Evaluate a value (e.g. variable, addition etc)

Note: All gadgets have keyboard shortcuts associated
with them. See the menu option ’Keyboard Shortcuts’
inside the debugger for the list of keys.

Closing the program control window causes the debugger to
quit and your program to end.

*V1.2x%
This window now displays the current mode of your program

inside its title bar. Possible modes are: AMIGA, QAMIGA
and BLITZ.

1.7 Register window

Register window

This window allows you to view the contents of the 8 data
and address registers. It will mainly be of use to people
who have a little knowledge of assembler. As well as the
register contents, you are also shown the 6 words that the
address registers point to. The status register flags are
also shown in this window, as is the program counter (which
will be mainly used to make the disassembly window open at
the current instruction).

1.8 Source Window

LES Debugger AmigaGuide Documentation 5/30

Source Window

This window shows you the source code of the program
currently being traced. Whilst it is active, you can use
the cursor keys to move up and down through your code.

*V1.2x This window now shows free memory in its title

1.9 Memory Windows

Memory Windows

This windows allow you to look through memory. They are both
identical in that they show memory in both hex and ascii form,
there are two so that you can keep tabs on different addresses

at the same time.

The windows can be moved through memory be using the cursor

keys (and shift for page scroll). You can also press the 'm’

key to enter an address to jump to (or any blitz command that will
a numeric result).

*V1.2x You can now edit memory directly inside the Memory
windows. See New Stuff for more information.

*V1.3x You can now edit memory in both hex and ascii.
You can also resize memory windows horizontally now.
See New Stuff 1.3 for more information.

1.10 Object Trace Windows

Object Trace Window (s)

These windows allow you to keep tabs on particular objects
whilst your program is being traced or single-stepped.

They hold the structure of an object and will show you

the objects items in the relevant format (e.g. strings will
appear as actual strings, not addresses).

Open another object window by selecting a new one from the
object menu strip.

Change the object number being traced by dragging the slider
which is located on the right side of this window.

*V1.2x You can have upto 10 object windows. You must now
close them yourself - they are nor automatically closed
when you select a new object. See New Stuff for more
information

*V1.3% You can now open object windows containing

LES Debugger AmigaGuide Documentation 6/30

structures that you have defined manually.

A bug has been found that caused object windows to corrupt
if the "maximum’ number of objects for the type was over
127. This has now been fixed.

See New Stuff 1.3 for more information.

1.11 Variable Trace Window

Variable Trace Window

This window allows you to trace different variables whilst

your program is running. It has been completely fixed to
work fine with all variable types (strings now work all the
time!) .

Add variables to the trace list by selecting the Add Trace...
menu item. You’ll be asked to enter the name of the variable
to trace, then the type, and then the output mode (if relevant
to your type). Output mode is either DECimal, HEX or BINary.
Variables can be added whilst this window is closed, but you
must open it yourself before tracing will start.

Variables can also be added directly by the program being
traced by using the AddVarTrace library command (see
documentation for the RIDebug Library).

*NOTE*x Variables must be added xafter* they have been
defined.

New option: there is now a menu option that sorts all
variables added into alphabetical order.

*V1.2x As of this version, you can define the type of
a variable with its name, doing this xvalidlyx causes
the type requester to be skipped. The following are
now valid in the name requester (after the name of a
variable) :

$

hma T oo

1.12 680x0 Disassembly window

680x0 Disassembly window

This window displays disassembly of memory into 680x0
instructions. See New Stuff for more information
(specifically: V1.0 new stuff).

LES Debugger AmigaGuide Documentation 7/30

*V1.3x Disassembly window is now laid out slightly
differently to allow displaying of breakpoint information
All breakpoint readouts are in hex.

The disassembly window is now locked to PC-2, meaning that
it always displays disassembly of the next basic
instruction to be executed.

See New Stuff 1.3 for more information

1.13 Copper Disassembly Window

Copper Disassembly Window

*V1.2%

This window displaya dissassembly of memory into copper
instructions. The following 3 instructions will be
shown:

MOVE <S$SVALUE> <REGISTER>
WAIT <Sxx,Syy> MASK <$xx, Syy>
SKIP <$xx,$yy> MASK <$xx,Syy>

The WAIT and SKIP instructions will sometimes have [BFD]
written after them. If present, this means that the

instruction has "blitter finish disable’ on.
See New Stuff for more information.

1.14 Search Memory Window

Search Memory Window

V1.21
This window allows you to control the debuggers memory
searching facilities. From here, you can enter the start

and end addresses for the search, the value to search for
and the type of the value. You can search for the all 6
basic variable types: byte, word, longword, string, quick
and float.

1.15 Array Window

Array Window

*V1.3%

This window allows you to easily view the contents of a
one or two dimensional array of bytes,words or longwords.
The display is in hexadecimal, with array indexes shown

LES Debugger AmigaGuide Documentation 8/30

across the top and down the left side of the window.
Scroll bars are positioned in the window borders for when
the array is too big to fully display.

1.16 Debugger Menus

Debugger Menus

Here is a the menu structure for the debugger, along with an explanation
of the items.

[ITEM] [KEY] [DESCRIPTION]
<Project>
Status Register Display flags for the status register
About debugger Display program information
About LES Display info about Leading Edge

Save configuration W Saves out the current debugger setup,
including screen info, window positions
and window status (open/closed & size)

Screen mode... Allows control over screen mode

Window height... Allows selection of maximum window height

Quit End the debugger and the program being
debugged

Quit & Die End the debugger - leaving debug process
active (ONLY USE AFTER A DERUG PROCESS
CRASH!)

<Windows>

REGS D Open the Register window

MEM1 M Open Memory window 1

MEM2 N Open Memory window 2

VAR V Open Variable trace window

ASM 6 Open Disassembly window

COoP C Open Copper disassembly window

GS Toggle gosub stepping ON/OFF

PS P Toggle procedure stepping ON/OFF

BC B Toggle blitz control ON/OFF

Search Memory S Open the memory search window

Array window... R Open the array window (with prompt for
array to open as)
Structure... T Open an object window as a structure.

You will be prompted for the name of
structure to find.

Custom chips... Open the custom chip window
<Object>

<Object name> Open the selected object inside a window
<Misc>

Add Trace... A Add a variable trace

Del Trace... Delete a variable trace

LES Debugger AmigaGuide Documentation 9/30

Del All... Delete all traces

Auto EVAL... Enter a string to EVALuate after every
line of code is stepped.

Add breakpoint... [Add a breakpoint
Delete...] Delete a breakpoint

Delete All... Delete all breakpoints
List... List all current breakpoints

1.17 Installation/How To Use

Installation/How To Use

Installing is done is two parts, these being installing the debugger
executable and installing the library object files needed to let your basic
programs communicate with the debugger.

Installing the debugger program couldn’t be easier. Just copy the
defaultdbug file into your Blitz2:Dbug/ drawer and load up Blitz2. Before
you do this, though, copy the original version of the defaultdbug file to a
storage area (or rename it to something like olddbug). Do this in case you
don’t like this debugger, or find it unusable for some reason (tell me
about this though!). Now whenever the debugger is invoked (by running a
program that crashes, or by pressing Ctrl-Alt-C) the new debugger will pop
up and offer you its services.

There are two library objects that need to be installed, they both need
to be copied to folders in your Blitzlibs: volume. The files are:

RIDebugLib.obj — copy to Blitzlibs:Userlibs/. This library gives
you the commands that allow you to order the
debugger about.

Debuglib.obj - copy to Blitzlibs:System/. This library in an
Acid Software one that has been extended. It is
required by the debugger. If you do not install
this library, the debugger will not function at
all.

switchlib.obj - copy to Blitzlibs:System/. This library in an
Acid Software one that has been extended. It is
required by the debugger. If you do not install
this library, the debugger will not function at
all.

When both these objects have been copied to the relevant folders, you
should run the program MakeDeflLibs which can be found on your original
Blitz 2 disks. This will remake your Blitz2:deflibs file based on the
contents of the Blitzlibs: volume. You should be aware that on floppy this
will be very slow. When MakeDeflLibs has finished just load blitz and
you’1ll have access to the new debugger and the additional commands supplied
by the RIDebug library. Please see the additional docs for the RIDebuglLib

LES Debugger AmigaGuide Documentation

10/30

library for information about commands.

1.18 Defining Structures

Defining Structures

When using structures the debugger requires an extra file to hold
information about offsets into an ascii file which itself defines all the
structures. This ’'offset’ file is produced by using the program
MakeOffsets.bb2 (which can be found withing the Debugger archive). This
program allows you to select files to be included in a single offset file.
The debugger can only have one offset file, so you must include all your
structure files inside this.

An offset file looks like this:

!Assembly:Development/structure.offset = —-——————- Source file
00000000 AChain —=—————— File offsets

000000DD AmigaGuideHost (hex) and

000001DE AmigaGuideMsg structure names

0000032D AnalogSignallInterval
000003AC AnchorPath
000004F3 AnimComp

The offset file can contain multiple lines starting with !, meaning that
you can have multiple structure files indexed from inside one offset file.

There must be **xxNOxxx comments inside this file though.

Structure files are defined in the same format as the Amiga Includes file

structure.offsets. This file has a strict layout as follows:
MYStructure: ——— name of structure
$0024 36 sizeof (MYStructure) -—-- must be in!
$0000 0 4 pointer —-—— first item in structure
$0004 4 4 another —-—— next item

The items are in order:

50000 - HEX offset from start of structure for
this item
0 - DECIMAL offset from start of structure
for this item
4 - DECIMAL size of this item

Your structure file must be written out in this format. When finished you
should use the MakeOffsets.bb2 program to build an offset file for it.

Supplied with the debugger is an offset file for V40 of the Amiga
Includes. Unfortunately since the actual file structure.offsets is
copyrighted it cannot be supplied along with the debugger.

LES Debugger AmigaGuide Documentation

11/30

1.19 New Stuff for V1.41

New Stuff for v1.41

This version has had loads of minor bugs that were found (by myself and
other LES members) in V1.3 of the debugger. This version, though, may
still itself not be completely sound on all systems — it is relatively
untested (due to the fact that people who took copies of V1.3 never
reported back about it).

Note that this version now identifies itself as V2.1 of the debugger,
this is to keep in line with Acids current numbering system.

The following are changes made between versions 1.3 (beta version) and
1.41 of this program.

Gosub Stepping
Bump Prefs

1.20 Gosub Stepping

Gosub Stepping

The debugger now allows you to step over calls to subroutines via the
GOSUB instruction as if they were a single instruction. Control of this
mode of operation is via the ’'GS’ gadget/menuitem. If on, STEPping a gosub
command will cause the debugger to run the program being debugged until the
subroutine RETURNS back to the calling routine.

Note that if you step a subroutine whilst in blitz mode, the blitz mode
display is redrawn - even if you have Blitz Control on (via the BC
gadget/menuitem). Also note that with this function on, you can only step
one line of code at a time.

1.21 Bump Prefs

Bump Prefs

The executable inside the debugger directory named BumpPrefs can be used
by users of previous versions of the debugger to make their saved
configuration information usable by this version of the debugger. The
versions it can handle are:

V1.38
V1.4
v1.41

These versions can and will be bumped to version 2.1 of the debugger.

LES Debugger AmigaGuide Documentation 12/30

1.22 New Stuff for V1.3

New Stuff for v1.3

There have been quite a lot of behind the scenes changes to the debugger
since the last general release. For a start, none of the debuggers windows
are gimme-zero-zero windows. For those of you who don’t know what this
means, all you have to know is that less memory is now taken up and redraw
times are better on some windows.

An extra feature has been added to all windows that accept the use of the
"m’ key to enter a base address for them. As of this version, pressing
<Shift>+'m’ will take the value held in the display part of the Source
Window and use it as the base address of the window. Thus if you had just
EVALuated the value of variable ’'address’ you could make a memory window
point to the value given just by activating it and pressing <Shift>+'m’.
Leading on from this is a slight extension to the object windows that
allows you to set their base object number by pressing 'm’” or <Shift>+'m’.

Screen Mode Selection
Structures

Locking

STEP enhancement
Memory Windows
Breakpoints

Custom Chip Registers

1.23 Custom Chip Registers

Custom Chip Registers

This window allows you to easily fine the address of a custom chip and
vice versa, allows you to find the custom chip name that an address refers
to.

The window contains two string requesters:

Address$ Enter an address here. NOTE that the number should
be given in HEX. The number can either be in the
form of a full address (e.g. dff002) or just as an
offset from $dff000 (e.g. 2).

Name The name of the custom chip. Type a name in here
to get the address of a custom chip register.

1.24 Screen Mode Selection

Screen Mode Selection

LES Debugger AmigaGuide Documentation 13/30

The debugger now supports control of its screen mode by the user.
Previously the user did not have any control over the type of screen the
debugger opened, the screen was always ’Like Workbench’” on 0S3 machines or
640xdispheight on 0S2 machines. Now the debugger sports a screen mode
requester that allows you to select the size and resolution of the screen
to open. You have three options with regards to screen mode:

"Workbench’ - you can now select to open directly onto the
Workbench screen. This saves memory and is more
convenient if the program being debugged opens
on Workbench itself.

"Like Workbench’- the debugger opens up a screen that matchs the
display mode, width and height of your Workbench
screen. The depth is always set to 2 bitplanes
(4 colours).

"Custom’ - when you select this a screen mode requester will
open allowing you to select a display mode and
screen size for the debugger.

After changing the screen mode you **x*MUST#*** save your configuration,
otherwise your changes will be lost. Changes do not come into effect until
the debugger is run again. Note that the minimum allowable screen size is
640x200.

As an extra for those users with lovely multisync monitors, you can now
specify the maximum height of the debuggers windows. This is done after
you have selected a screen mode from the mode window. This option allows
you to change the internal buffer that the debugger keeps to allow fast
printing and window updating - the bigger the height, the more chip mem this
buffer will take up. The minimum height of the buffer is 200 pixels, the
maximum is 1024 pixels.

1.25 Structures

Structures
Now to a big update... This one is mainly for use of people who do a lot
of work with the operating system and need access to the 0S defined
structures detailed in the Amiga Include files. Inside the includes is one
big file called ’structure.offsets’ which contains an entire list of all
the structures. This file has a very specific layout, meaning that the
debugger can easily interpret its contents. So what we now have is an

extension to the object windows that lets you open an OS structure inside
an object window. The structure is displayed in exactly the same way as
the standard object windows but there is a slight difference. If you click
on any value inside the window a request will open asking you if you wish
to move the base address of the window to the address given in the value.
This is ideal for when you are trying to navigate round a device or library
list, just click on ’'next’ or ’'prev’ to move backwards and forwards through
the list.

This extension to the object windows can be controlled by the user of
the debugger, who can specify his own structures if he so desires. The
structure details need to be formated and placed inside a file where the

LES Debugger AmigaGuide Documentation

14 /30

debugger can find them.

See Defining structures for more information.

1.26 Locking

Locking
It is now possible to lock the memory windows to an expression. This
expression is made up of numeric values and register names. You CANNOT
lock windows onto a variables value. The debugger uses a complex

expression evaluater, which can except the following tokens:

Note that float values cannot be used. You can use parenthesis
(brackets) to group arguments together.

W
|

The following number is hexadecimal
The following number is binary
Add two operands

- — Subtract two operands

- Multiple two operands

Divide two operands

— Test for equality between operands
- Test for less than

Test for greater than

- Power operation

& — Logically AND two operands

| - Logically OR two operands

o
|

>~ * +
| |

>V A
|

This function will mainly be useful for assembly programmers since it

allows you to trace code and have a window continuously pointing to a wvalue

held in a register.
The disassembly window now uses this ’lock’ function to lock onto the

address PC-2 - meaning that it always displays the disassembly of the next

Blitz instruction to be executed.

1.27 STEP enhancement

STEP enhancement

A little quick one, now if you press the <CTRL> key whilst stepping (by
using the gadget or the keyboard shortcut) you will be asked to enter how

many instructions to step. Thus you can step through 50 instructions in

one good - without having to repeatedly press ’'STEP’. ©Note that when you

use this feature Auto-EVAL will not function.

1.28 Memory Windows

LES Debugger AmigaGuide Documentation

15/30

Memory Windows

Memory windows can now be sized horizontally as well as vertically. When
the width changes the debugger evaluates how much it can display inside the
window and adjusts its contents accordingly. The debugger can only display
multiples of four bytes in the window.

Memory Editing

It is now possible to edit memory in hex and ascii. The initial mode
when the debugger first runs will be hex, to change to ascii just press
<TAB> whilst in edit mode (go into edit mode by activating a memory window
and pressing <SPACE>). When in ascii mode an characters you type will be
written directly to memory. <SPACE> and <TAB> are interpreted differently
to other keys though, since <SPACE> exits edit mode and <TAB> changes from
ascii to hex mode and vice versa. To write the characters <SPACE> and
<TAB> to memory you should hold down the <CTRL> key whilst pressing them.
This overrides their functions and writes them directly to memory.

Memory Window Locking

Memory windows can now be locked to an expression. See Locking for more
information.

1.29 Breakpoints

Breakpoints

For those of you not familiar with MonAm, breakpoints are a way of
stopping your program when a certain instruction is executed. They are
equivalent to a STOP instruction placed in your source code.

Breakpoints are set up via the Disassembly window. To set up a
breakpoint on an instruction you just have to click on the basic line of
code inside the disassembly window.

The debugger allows you to set up 3 different types of breakpoint on your
code:

Countdown: these breakpoints have a counter which says how
many times they can be passed before the program
is stopped. Thus you can have a breakpoint stop
you program after a specific line of code has
executed a specific number of times.
After the counter has reached 0 the breakpoint
will be cleared.

Permanent: these always stop your program when they are
reached. They are not though cleared when your
program is stoped by them.

LES Debugger AmigaGuide Documentation

16 /30

Counter: these don’t actually stop your program, instead
they just count how many times your program went
passed them.

Breakpoints are displayed in the disassembly window in the following way:

Countdown: [xx] <Source code>
Permanent: [*] <Source code>
Counter: [=xxxx] <Source code>

These displays replace the standard ’'>>>’ which precedes a basic

instruction in the disassembly window. Breakpoints can only be set up on
basic instructions - they cannot be setup on the assembly code of basic
instructions.

The debugger allows you to set up upto 5 different breakpoints inside your
program. Each breakpoint xmust* be set at an unique address. You should
note that breakpoints slow your program down slightly - have as few as
possible going at once if you want maximum speed.

1.30 New Stuff

New Stuff for v1.21

This version is a slight update to v1.2 (which was a beta version) that
fixes some problems found. There were somw problems regarding blitz mode
control that have been sorted out, as well as some library problems.

One major update has been made to the debugger in that you can now search
memory for values and strings. This is done via the search window, which
is opened by selecting the Search option from the menus.

There has also been an extension to the save configuration function that
lets you save the position, size and status of every window in the debugger
except object trace windows.

Finally, there are now several example programs that show off a few
features of the debugger to you.

New Stuff for v1.2

Quite a few additions and improvements have been made to this version of
the debugger. New features have been added as well as improvements and
bugs fixes (which have come about from reports by people who’ve tried the
debugger out) .

Summary of new features:
Procedure control
Blitz mode control
Coplist Object tracing
Copperlist Disassembly

LES Debugger AmigaGuide Documentation

17 /30

Multiple Object Windows
Configuration Saving
Memory Edit Mode
Data/Address register edit
Program mode display

Improvements made:
Loads of bug fixes
Speed improved for redrawing etc

Procedure Control

This function allows you to skip over procedures as if they were single
instructions when either STEPing or TRACEing your program. When running,
this function has no effect. When you use this function, the procedure
runs exactly the same except that it no longer causes the debugger to
update its windows whilst it is executing.

In effect, what this function does it to, at the start of a procedure,
which the debugger into RUN mode, and then at the end chuck it back into
its previous mode.

Blitz mode control

This function is for all those people who’re getting annoyed at the
debugger constantly rebuilding the blitz mode display every time they step
an instruction or evaluate an expression. With this function on, singular
calls to the debugger like evaluating and execing no longer cause Blitz to
redraw the display.

To understand this you have to have a little knowledge of what blitz does
when it goes into blitz mode. When blitz mode is activated, Blitz disables
multitasking, sets up a custom copperlist and owns the blitter. What this
function does is to stop blitz setting a custom copperlist. The program
being debugged *IS* in blitz mode, it Jjust doesn’t have the display. This
may not be useful at times (for when you need, for example, to check to see
where a blit is occuring) - you must decide yourself when and where to
enable/disable it (default is disabled). That said, this function is very
useful, since it stops all flashing, including flashes for opening object
windows etc.

Coplist Object Tracing

The Coplist object type (used in the Display library) has been added to
the debuggers list. The whole object could not be included, as it is
fairly massive, so the object holds *mostx of the object definition (all
the important bits are in). This object was added mainly for use with
copperlist disassembly.

Copperlist Disassembly

You can now disassemble copperlists directly from inside the debugger.

LES Debugger AmigaGuide Documentation 18/30

Just select the option and you’ll be given a nice window, where you can use
cursors to scroll up and down, plus use the 'm’ key to enter a start
address. All this comes in useful when combined with the Coplist object,
and some custom copperlist coding. Now its possible to check what Blitz is
doing with your custom commands in the display library.

Multiple Object Windows

You can now have upto 10 independent object windows opened at once inside
the debugger. This should be more than enough for everyone. A quick
warning, though, with this many windows open, unless you have an
accelerated Amiga, you will slow the debugger down a great deal. Like all
the windows in the debugger, you should only have open the windows that you
are actually using.

Because of the additional object windows, selecting a new object from the
menu strip *willx not replace any current windows. You must close
individual object windows yourself after you have finished with them. Also
note that it is perfectly allowable to have, for example, two bitmap
windows open. Thus allowing you to trace more than one object of each type
at once.

Configuration Saving

A default config file for the debugger can be saved now from inside the
debugger. Inside the config file, are size, position and status
information for the following windows:

Source - MUST BE OPEN!
Registers
Control - MUST BE OPEN!
Memoryl
Memory?2
When the debugger first runs, it will look for the volume ENV:. If

it finds it it’1ll then attempt to load the file ENV:BB_DBug.prefs. If
it can find this, your prefered window layout will be loaded, otherwise the
default layout will be used.

Please note that the debugger will not bring up any requesters if it
cannot find the file. When the debugger saves its preferences file, it
saves to both ENV: and ENVARC: so both of these should be made available if
you want to save your config (this will probably mean floppy users having
to put there boot disk into a drive).

At the moment, the configuration file is 64 bytes in size.

Memory Edit Mode

Whilst a memory window is active, pressing <SPACE> will put you into edit
mode. Here you can move a cursor round the windows hex display, and edit
using 0-9/A-F on the keyboard. Press <SPACE> again to exit, or deactivate
the window by selecting another (or pressing TAB).

LES Debugger AmigaGuide Documentation

19/30

NOTE: You should be careful what you change in the edit window. Only
change/edit memory that your program owns! Do not go messing around
through memory as you could cause a crash.

Register Edit

Clicking on registers d0-d7/a0-a6 in the register window will now bring
up a requester into which you can type a replacement value for the
register. The value can be typed in as a number or as a 4 character
string, surrounded by quotes. Thus the following are allowed:

SEff0

12466
%$1001111111100000
"CMAP"

" ANHD "

Program Mode Display

The current mode of your program is now shown in the title of the Program
Control Window. The mode will be one of AMIGA, QAMIGA or BLITZ.

SPEED........
Speed improvements have been made to several areas of the debugger. The
main improvements have been in text printing and window updating. By using

the Configuration Saving, though, you can speed up debugger initialisation
by closing extra windows.

Odd Addresses

Odd addresses can now be displayed properly in the register window and
the two memory windows. Also the memory windows can be moved one byte at a
time using the left and right cursor keys.

Variable Window

You can now sort all currently traced variables into alphabetical order
by selecting the ’Sort Names’ menu item.

Bug Fixes

Just a few bugs that have been fixed:

o Hex display in memory and register window was sometimes displayed

LES Debugger AmigaGuide Documentation 20/30

incorrectly due to a mistake in conversion. This effected odd
addresses only.

o BLITZ gadget has been sorted so that clicking out of the BLITZ
screen will not immediately reactivate the gadget.

o Loads of 0S2.0/68000 compatibility problems sorted (e.g. peek.l
at an odd address).

o Wrong font used inside the Object window (used default WB font
rather than topaz.8).
Problems with string printing inside the object window sorted

New Stuff for v1.0

So whats new in this release of the debugger? Well there are loads of
changes and updates that have been made to the debugger, these being:

680x0 Disassembly

You can now disassemble your blitz basic programs directly into 680x0
(68000 to 68020) instructions. When runtimes are on in a blitz basic
program, the TRAP instruction is used before every basic instruction in the
program. When the disassembler finds the correct trap (#1 is used by
blitz) it automatically replaces this instruction, plus the 8 data bytes
after it, with the line of blitz basic code that the following 680x0

belongs to. This doesn’t always work, though (for some reason - I’'1l1l blame
blitz for this :)) so you *mightx not always display the correct line of
source (multiple commands on one line, plus blank or commented lines bugger
up) .

The cursor keys, plus [SHIFT] can be used to move up and down through
memory when the disassembly window is active. Also, pressing 'm’ will
bring up a requester where you can enter an address to move the disassembly
window to.

Blitz Gadget

Clicking this gadget allows you to view the blitzmode display of the
program being traced. When you have finished viewing the display, press
the mouse button to return to the debugger.

AutoEVAL

The EVAL button in the debugger allows you to evaluate any variables,
find label addresses etc. AutoEVAL takes this a step further and allows
you to enter a line that will be evaluated after »EVERY* instruction is
single stepped (using the STEP gadget). To enter a line to AutoEVAL just
select the menu option, when a non-null string is entered, the AutoEVAL
will be enabled and will display its output after every step at the bottom
of the source window.

An example of how this can be used is to evaluate an expression like
mymap (x,y) after every instruction is stepped. This can be used to easily
keep track of what your program is doing. The output of AutoEVAL for this
example instruction will look like this:

LES Debugger AmigaGuide Documentation 21/30

mymap (%, y) =50

You can only AutoEVAL one line at a time. Also, you should note that the
AutoEVAL does degrade the speed of your program, since the EVAL command
itself is slow.

Remove the AutoEVAL by selecting the menu option and clearing the command
string.

Standard Gadgets

The menu items that mirror the standard gadgets in the program control
window have been removed. They have been replaced with keyboard shortcuts
for the gadgets that do not require the right amiga to be pressed to
activate them.

New Objects

The list of objects that can be traced inside the debugger has been
extended to include all the main objects I could think of. The full list
of objects is:

Bitmap (extended to hold the xfullx bitmap definition)
Blitzfont
Buffer
File
Intuifont
Module
Palette
Queue
Slice
Sound
Sprite
Shape
Stencil
Tape
Window

RIDebug Library

This library allows you to give the debugger 4 basic instructions. It
mainly allows you control over the variable tracing facilities inside the
debugger. Please see the RIDebuglLib docs for more information about how to
use the library.

Bug Fixes

Too many to mention :)

LES Debugger AmigaGuide Documentation

22/30

1.31 Problems...

Problems. ..

A couple problems that I know of that people have had with the debugger
in the recent past. As more problems are reported, I’ll extend this list
so that it becomes like a FAQ for the debugger.

A quick plea to possible bug reporters:

When you report bugs to me about this program, can you please
include details of the machine the debugger is running on, including amount
of memory and an ’add-ons’ you may have, and the operating system version
number you are using. The more I know about what situation the debugger is
running in, the easier it’1ll be for me to track down possible bugs or help
you with setting it up.

Prob 1: I cannot trace any variables. The debugger always responds with
"Variable not found" when I do.

Solution: There are two main reasons for this happening:

a) You are typing the variable name wrong. Remember that Blitz
names are case sensitive, also make sure that any strings defined with a
"$’ instead of ’.s’ must be added with ’$’ after there name.

b) You are being affected by a bug in the current version of Blitz.
The debugger uses the EVAL function (the gadget on the debugger screen)
that Blitz provides to locate a variable in memory. What happens, though,
is that if a particular library is not included in your program when you
compile, you CANNOT access the EVAL function. Thus the debugger gets 0
back from its locate request, and tells you the variable doesn’t exist.

To get round this bug, you must have a command like Print used

in your program. The command DOESN’T have to run, it is only there to make
sure that Blitz includes the correct library when compiling your program.

What you can do is just add ’'Print ""’ to the end of your program (this is
what I do)
Prob 2: I cannot trace objects. I just get an ’'No object found’ message in

the object window.
Solution: Again, this problem is caused by one of two things:

a) The objects don’t actually exist in your program. For example,
if you never use the Blitz Slice library to create Blitz displays, you
won’t be able to look at slice objects since there won’t be any in your
program.

b) The Blitz bug crops up again. This function is effected in
exactly the same way as Variable tracing by a bug in the EVAL function.
Add a print command to your program to solve this problem.

See Problem 1 for more info about this bug.

Prob 3: CTRL-ALT-C doesn’t make the debugger pop up.

LES Debugger AmigaGuide Documentation

23/30

Solution: Quite a few for this one:

a) Your program may have crashes. Check this by going to the
debugger screen (is possible) and trying to evaluate an expression or
variable. If you don’t get an answer back - your program has gone
bye-byes.

b) The debugger has crashed. This may or may not cause your
program to crash. Most likely a crash will result eventually.

c) You have a ZAPPO CD-ROM drive installed (like me!). I have had
problems with using programs that want to allocate CIA resources with the
driver software loaded. I get a lot of ’'Resource already in use’ messages
when I run particular software. When I have the drive installed, Blitz
refuses to acknowledge any keyboard responses (except through windows).

I have tracked down the fault to the fact that the CD driver software is in
memory, but I do not know what is causing the problem.

Prob 4: Debuggers menus all appear in the same colour and are unreadable.
Solution:

The debugger defaultly opens it window ’like workbench’, but it
does not mimmick the Workbench screens depth. Meaning that if you have
your Workbench screen in more than two bitplanes AND have default screen pens
that use these extra colours you will be a confused debugger screen. The
answer to this is to either have the debugger open on the Workbench screen
by default or to adjust your screen pens back down into the bottom four
colours of your palette.

1.32 Version history

Version history

For those interested in the development of this program, here’s the version
history for it as taken from the top of the source code. Pretty pointless
putting it here but what the hell - somone might read it ;-).

If you have a bug to report can you please first check through this section
to make sure that it hasn’t already been sorted. Thank you.

Last change: 16:25, 17/4/95
17/4/95
— Added breakpoints. Can only be placed on basic instructions

(no breakpointing the asm code of instructions).
Can have upto 5 breakpoints ATM, 3 diff. types of breakpoint
supported.
16/4/95
- Revision bump: .3
- Register window now shows PC-2 (now points to TRAP inst.)
— Added Screenmode requester, can select either

LES Debugger AmigaGuide Documentation 24/30

"Workbench’
"Like Workbench’
or ’Custom’.
— Added a maxheight option for windows - from 200 to 1024 tall
— Memory can now be edited in ASCii. [TAB] swaps between
editing in HEX & ASCii. Pressing <CTRL> and <SPACE> or <TAB>
allows you to write these to memory (instead of them being
interpreted as commands) .
- Structure window now remembers the name of the last structure
opened.
15/4/95
— Pressing <CTRL> whilst clicking STEP or pressing S allows
you to enter number of commands to step
— Memory windows can now be sized horizontally

- Fixed bug in mem window edit - stopped cursor left working
if address=0
14/4/95

— Can now lock memory windows to any register
Can also use an offset, e.g. lock window on PC+8
or A6-4.

- Fixed setting register values - was not setting address
registers properly

11/3/95
— DisAsm window is now locked to current source instruction
27/2/95
— Fixed Disassembly window — now properly prints the command
text

— Can not now enter value for register without the debugger
being STOP mode.
- Going into edit mode in memory windows now delays to stop
key repeat from exiting edit straight away.
23/2/95
- Debugger now understands the structure.offsets file format
and can scan through for a structure + open it in a window.

17/2/95

— Now use M and SHIFT-M on object windows
9/2/95

— bitmap object now has xcurs + ycurs items
6/2/95

— Press SHIFT-M to grab the currently display EVAL result
as the start address for mem/disassembly windows.
— Removed printing of return values from procedure control,

also removed forbid_ and permit_. These were responsible
for blitzmode cockups when procedure stepping.
1/2/95

— Object definitions now have sizeof.type word at front end
— Object windows store base address of type so that the debugger
can locate the address of each object number itself.
31/1/95
- Object windows are no longer gimmezerozero windows
29/1/95
— Maxobject for object windows was being held as a byte instead
of a word - PRATT! IDIOT! TWAT! =)
18/1/95
- Release VERSION: 1.21
17/1/95
- Fixed bug: when pressing escape to quit the memory search,

LES Debugger AmigaGuide Documentation

25/30

the program exited - the ESC key hit was being sent as an
event. Fixed by flushing all keyboard events (1024) from
the event list.

11/1/95
— Search memory in and mostly working.
Searches for: Bytes, Words, Longs, Quicks & Floats. Strings

are to be added.
- Windows automatically activate when opened AFTER end_init
goes non-zero (at the end of initialisation)
— CTRL \ now closes the current window (except: #_winSource,
#_winBackdrop & #_winControl)
— Slight changes to RedrawVarWin{} - now uses FPrint instead
of window printing
— Config file now saves Var/Cop/680x0 windows so these can
now be open by default.
— Bug fixes in blitz mode handling
7/1/95
— BETA TEST: Version 1.2
- Config file now 2 bytes bigger. Saves ProcStatus and
blitzcontrol at end of file.
- NEW BLITZ MODE HANDLING! Can now stop Blitz mode display
being recreated whilst stepping/tracing/EXECing/EVALing
6/1/95
— Procedure stepping now controlled by debuglib library. The
library will call d_prochandler if variable procstatus is
non-zero
- Extra gadget PS: procedure tracing status. If highlighted,
procedures are treated as a single command.
5/1/95
- New debug command causes copper disassembly window to
open at the given address
— When adding a variable trace from the debugger you can
now specify the type directly, e.g. a.s,b$,d.q etc
- Debug messages have changed: addresses are given as one
longword rather than a hex string
4/1/95
- VERSION: V1.2
— Edit mode toggled by pressing <SPACE> xWHILST=*
a memory window is active
- Program running mode now shown in control window title
- Exiting MemEdit mode now redraws both windows (in case
the windows’ addresses overlap)
— COPPER gadget added - Copper Dis... menu item removed
— PREFERENCES FILE NOW SAVED TO ENV: and ENVARC:
Loaded from ENV: (if available!)
— Preferences file now has a program version number
in first byte and revision number in second byte.
Then two byte pad before window data (could hold number
of window definitions?)
1/1/95
- d_eval{} and d_exec{} now increment stepcnt themselves
31/12/94
- Bug when moving mem window to label address. Was only
adjusting MEM1 instead of MEM1 and MEM2
- TAB key now cycles all windows properly
- MemEdit now exits when window gets deactivated
- Can now move mem windows into negative numbers from 0

LES Debugger AmigaGuide Documentation 26 /30

30/12/94
- Menustate command was trying to deactivate an unitialised
menu item. Command has been removed
— Fucked up .xtra file..... causing gurus (not enough
windows.......)
26/12/94
- Trial custom font printing
24/12/94

- VERSION: V1.1
- Object window: data types now shown on left of central
line and are not rewritten every refresh (only during
full redraw)
— Added copper instruction disassembling
- New command in library: GetCopIns$ - convert copper
instructions into strings
— Library changes:
— D_CheckNMove now takes an optional count parameter
— Changed the way D_GetSR works
- Fixed BLITZ gadget disable/enable (AGAIN!)
— Capital letter for object names
- Objects can now contain gquick and float types
— Added coplist object type - whole definition won’t fit
inside a 256 tall screen though :)
— Added checks in NewTypeWindow{} to make sure the window
will never be larger than can fit on the screen
21/12/94
— CheckNMove syntax change: now GIVE address to take 4 bytes
from rather than giving the actual longword of data
20/12/94
— Added ’Sort names" menu item for variable window - sorts
names into alphabetical order
- Click in register window to modify d0-d7/a0-a6
— Memory window have been widened to 208 pixels to allow
odd addresses to be displayed properly
- Left/Right cursor now move memory windows 1 byte at a
time
19/12/94
— Bug when workbench screen was 640 wide:
Control window was opened at x=#_winControl rather than x=0
17/12/94
LOADS of stuff :)
— Bug fixed in "hexwordodd - wrong mask values
— All windows now use the winstatus() array to say whether
they are open or not
- Default window layout can be saved into
Blitz2:Dbug/dbug.prefs. Only windows 0-5 though
15/12/94
— Trial thingy: mybuffer is loaded from SetHandler{} rather
than the Statehandler_ as before
- NOTE: Register window contents aren’t always valid when

program is first run. The statehandler_ routine MUST be
called before they become valid
14/12/94
- RELEASE 1.0
- Removed ’'Disassemble...’ menu item
- Fixed "Del Trace...’ to make it update the variable window

- Fixed font cockup in Object window - printing was being

LES Debugger AmigaGuide Documentation 27/30

done with default font rather than topaz8.
Thanx to Rupert Henson for the bug report
12/12/94
— Fixed UpdateDisAsm{} to show blitz2 code properly
2/12/94
- Removed standard nine gadgets from menu strip - keyboard
shortcuts stay the same (but obviously minus the RAmiga)
- Removed all occurences of CPUCls
— Added checks in RedrawMem and HexWord{} for odd addresses
(for 68000 compatibility) - thanx S.Le for the help with
identifying that as a prob.
— "Bumped’ OS version number to 39 for use of ScreenTags
command.
24/11/94
— Added load of new object types
— Added option to display extra info for string tracing
(can display length and maxlen of string,
AddVarTrace: use output=2 for extra info)
- STRING tracing is now sound :)

20/11/94
— Added Del Trace... menu option
— Added Auto EVAL - does an auto evaluation after every STEP
16/11/94
— Added DisAssembly window. Can be moved with cursors [+shift]
or positioned using the EVAL function
15/11/94
— Changed HexWord{} to improve efficiency ;-)
6/11/94
— Added menutitle: Variables with options to add/del traces
5/11/94

— Variable trace window put in - no definable traces yet

1.33 Communications

Communications

The debugger has a communications channel that can be made use of by the
Blitz program it is currently debugging. This channel is invoked in one of
two ways, depending on the situation:

AlibJsr $d509 - if the code is inside of a Blitz library

TokeJdsr $d509 — if the code is inside a Blitz program

*xx NOTE %% Multitasking must be enabled before you call this channel - do
not call it in Blitz mode.

This input channel expects register a0 to point to a data array, laid out
in the following format:

+0 Command number
+1 Data byte 1
+2 Data byte 2

+3 pad

LES Debugger AmigaGuide Documentation

28/30

+4 Data longword 1
+8...255 String area

Valid commands at the moment, and the parameters they expect are:
addtrace: Add a variable trace

Command number =255

Data byte 1 =variable type (debugger format)

Data byte 2 =output preferences

Data longword l=address of variable

String area =string to display in variable window

NOTE: This command could be used to trace internal variables inside
libraries. E.g. setting up a trace on an important ’‘dc.l’ed variable.
deltrace: Delete a variable trace

Command number =254
String area =name of trace to kill
varwindow: Open the variable trace window

Command number =253

diswindow: Open the disassembly window at an address

Command number =252
Data longword l=address to open at

copperlist: Open the copper disassembly window at an address
Command number =251
Data longword l=address to open at

proccontrol: Toggle procedure control
Command number =250
Data byte 1 = -1 for ON, 0 for OFF (OPTIONAL
Data byte 2 =Mode select:

—-1=Data byte 1 holds new mode
0=Toggle current mode

memwindowmove
Command number =249
Data longword l=address to move to

It may in the future be possible for the user to add their own

functions to this channel by implemation of external debug modules for the

debugger

LES Debugger AmigaGuide Documentation 29/30

1.34 Leading Edge Software

Leading Edge Software

This program is part of the Leading Edge Software Development Suite of
programs. Other programs within this family are:

ShapeZ II - shape grabber/editor/manipulator
LES Map Editor - block based map editor

Leading Edge Software are:

Steven Matty
Stephen McNamara
Nigel Hughes
Steven Innell
Mike Richards
Steven Green

Send any mail regarding this program to:

Stephen McNamara
17 Mayles Road
Southsea

Hants

PO4 8NP

England

Email to the blitz-1list may still filter down to me if anyone wants to
contact me by email. My email address is no longer active - so mail to it
will either bounce back or get no reply.

1.35 Thanx go to the following

Thanx go to the following

0S52.0/68000 testing and fixing:
Son H. Le

Suppling the disassembler code:
Simon Armstrong (Acid software)

Help and criticism:
Steven Matty
Steven Innell
And loads of chappies on the Blitz-list

For feedback and bug reports:
Son H. Le
Rupert Henson
And the others I’'ve forgotten :)

LES Debugger AmigaGuide Documentation 30/30

Quick hello’s to:
Martin ’it doesn’t work with StarWoids’ Kift
Jurgen ’'AmigaGuide’ Valks
Mark ’Virtual Worlds’ Tiffany
Nigel ’Cascade’ Hughes
And everyone on famiga/Blitz-1list

	LES Debugger AmigaGuide Documentation
	Main Menu
	The Index Page
	Disclaimer, Copyright Notice & Public Domain Notice
	About the debugger
	Windows In The Debugger
	Program Control Window
	Register window
	Source Window
	Memory Windows
	Object Trace Windows
	Variable Trace Window
	680x0 Disassembly window
	Copper Disassembly Window
	Search Memory Window
	Array Window
	Debugger Menus
	Installation/How To Use
	Defining Structures
	New Stuff for V1.41
	Gosub Stepping
	Bump Prefs
	New Stuff for V1.3
	Custom Chip Registers
	Screen Mode Selection
	Structures
	Locking
	STEP enhancement
	Memory Windows
	Breakpoints
	New Stuff
	Problems...
	Version history
	Communications
	Leading Edge Software
	Thanx go to the following

