
 Listing 1: MemOvrly.Inc

 (***
 * *
 * Turbo Pascal Memory Overlay Routines *
 * *
 * Copyright (C) 1986 by Steve McMahon *
 * *
 * All Rights Reserved. *
 * *
 ***)

 (*

 Limitations:

 These routines have been tested only for Turbo 3.01A (both
 PC-DOS and generic MS-DOS). They may not work under 3.0
 (the celebrated FileSize bug may cause trouble) and will
 certainly not work under 2.0XX.

 Memory overlay files must be < 64k in size!

 NORMAL overlays nested inside memory overlays should work, but
 trying to nest memory overlays inside memory overlays would
 be disasterous!

 OvrPath will not work in conjunction with memory overlays!
 (Writing a replacement routine would be simple if the code
 below makes sense to you.)

 I/O testing in InitOverlay is just Turbo's Native. Anyone
 really needing memory overlays will probably wish to install
 their own I/O error checking.

 *)

 CONST
 RequiredHeap = $1000; {Paragraphs of Heap Required by Program
 for other purposes than memory overlays.
 Change this to suit your needs for dynamic
 storage.}

 TYPE
 {Type used in both InitOverlay and DisposeOverlayStorage}
 OverlayProcedure = RECORD
 CASE Boolean OF
 True :
 (OldCall : ARRAY[1..3] OF Byte;
 OldOffset : Integer;
 FileName : ARRAY[1..13] OF Char;
);
 False :
 (NewCallInstruction : ARRAY[1..3] OF Byte;
 NewCallAddress : Integer;
 CurrentOffset : Integer;

 OverlayCodeLoc : ^Byte;
 NewRoutineLoc : Integer;
 OverlaySize : Integer;
)
 END;

 PROCEDURE NewOverlayHandler;
 BEGIN
 INLINE(
 {When this routine receives control, AX contains the
 number of bytes in the desired overlay & BX contains the
 offset (in pages) of the desired overlay within the
 overlay file (now on the heap).}

 {First, check to see if the desired overlay is already in
 place by comparing DX with the offset recorded in memory
 immediately after the call instruction. If they match,
 no load is necessary}

 $5E/ {POP SI }
 $2E/$3B/$14/ {CMP DX,CS:[SI] }
 $74/$1B/ {JZ RUN_OVERLAY}

 {Save vital registers}
 $56/ {PUSH SI }
 $1E/ {PUSH DS }

 {Load ES:DI with destination address (the point the
 code will run at). Displace to account for header.}
 $0E/ {PUSH CS }
 $07/ {POP ES }
 $8B/$FE/ {MOV DI,SI }
 $83/$C7/$0D/ {ADD DI,0DH }

 {Fetch heap address of source overlay code from memory
 position two bytes after first byte after call to this
 routine. Store it in DS:SI}
 $46/ {INC SI }
 $46/ {INC SI }
 $2E/$C5/$34/ {LDS SI,CS:[SI] }

 {Multiply overlay page by 100H to get number of bytes code
 is displaced from start of overlay code area (on heap).
 Add to source offset in SI.}
 $8A/$F2/ {MOV DH,DL }
 $32/$D2/ {XOR DL,DL }
 $03/$F2/ {ADD SI,DX }

 {Put number of bytes to move in CX}
 $8B/$C8/ {MOV CX,AX }

 {Copy CX bytes from DS:SI to ES:DI}
 $FC/ {CLD }
 $F3/$A4/ {REPZ MOVSB }

 {Recover mauled registers}

 $1F/ {POP DS }
 $5E/ {POP SI }

 {RUN_OVERLAY:}
 $83/$C6/$0D/ {ADD SI,0DH }
 $FF/$E6 {JMP SI }
);
 END;

 PROCEDURE InitOverlay(OverlayCallOffset : Integer);
 VAR
 OverlayCallPtr : ^OverlayProcedure;
 TestSize, i : Integer;
 s : STRING[13];
 f : FILE;
 BEGIN
 OverlayCallPtr := Ptr(CSeg, OverlayCallOffset);
 WITH OverlayCallPtr^ DO
 BEGIN
 {Obtain overlay file name}
 i := 1;
 s := '';
 WHILE FileName[i] <> #0 DO
 BEGIN
 s := s + FileName[i];
 i := i + 1;
 END;
 {Open overlay file as untyped file}
 Assign(f, s);
 Reset(f);
 {determine file size in $80-byte sectors}
 TestSize := FileSize(f);
 {Check to see if there's enough space on the heap.}
 {If there isn't, leave the overlay on disk}
 IF (MemAvail > (RequiredHeap + TestSize * 8)) AND
 (MaxAvail >= TestSize * 8) THEN {there's enough space}
 BEGIN {install overlay}
 OverlaySize := TestSize;
 GetMem(OverlayCodeLoc, OverlaySize * $80);
 BlockRead(f, OverlayCodeLoc^, OverlaySize, i);
 NewCallInstruction[1] := $2E; {CS:}
 NewCallInstruction[2] := $FF;
 NewCallInstruction[3] := $16; {indirect near call}
 NewCallAddress := Ofs(NewRoutineLoc);
 NewRoutineLoc := Ofs(NewOverlayHandler) + 7;
 {extra 7 bytes skips turbo's procedure overhead}
 CurrentOffset := $FFFF; {force load on first call}
 END;
 Close(f);
 END;
 END;

 PROCEDURE DisposeOverlayStorage(OverlayCallOffset : Integer);

 VAR
 OverlayCallPtr : ^OverlayProcedure;
 BEGIN
 OverlayCallPtr := Ptr(CSeg, OverlayCallOffset);
 WITH OverlayCallPtr^ DO
 IF NewCallInstruction[3] = $16 THEN {Overlay is in memory}
 FreeMem(OverlayCodeLoc, OverlaySize * $80);
 END;

PROGRAM OverlayTest;

 (* Memory Overlay Demonstration Program. *)

 {$I MEMOVRLY.INC}

 VAR
 c : Char;

 OVERLAY PROCEDURE One;
 BEGIN
 WriteLn('This is Overlay Procedure One.');
 END;
 OVERLAY PROCEDURE Two;
 BEGIN
 WriteLn('This is Overlay Procedure Two.');
 END;

 BEGIN

 {Install the new overlay handler by passing it the address
 offset of ONE procedure or function from the overlay group.
 Multiple invocations for multiple overlay groups should be
 no problem.}

 InitOverlay(Ofs(One));

 REPEAT
 Write('Hit any key to run the overlays (^Z to stop): ');
 Read(Kbd, c);
 WriteLn;
 IF c <> ^Z THEN
 BEGIN
 One;
 Two;
 END;
 WriteLn;
 UNTIL c = ^Z;

 {Free up the heap space used by the replacement overlay
 handler by passing the same offset as above to the

 DisposeOverlayStora

