
GCC for the Atari ST, TT & Falcon

Using the GNU C-Compiler on the Atari ST, TT & Falcon computers

25 October 1997

by Frank Ridderbusch

Copyright
c

 1988, 1989, 1990 Free Software Foundation, Inc.

Copyright
c

 1990, 1991, 1992, 1993 Frank Ridderbusch

Permission is granted to make and distribute verbatim copies of this manual provided the

copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the

conditions for verbatim copying, provided also that the section entitled \GNU CC General

Public License" is included exactly as in the original, and provided that the entire resulting

derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-

guage, under the above conditions for modi�ed versions, <except that the section entitled

\GNU CC General Public License" and this permission notice may be included in transla-

tions approved by the Free Software Foundation instead of in the original English.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright
c

 1989, 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your

freedom to share and change free software|to make sure the software is free for all its users.

This General Public License applies to most of the Free Software Foundation's software

and to any other program whose authors commit to using it. (Some other Free Software

Foundation software is covered by the GNU Library General Public License instead.) You

can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies

of free software (and charge for this service if you wish), that you receive source code or

can get it if you want it, that you can change the software or use pieces of it in new free

programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must give the recipients all the rights that you have. You must make sure that they, too,

receive or can get the source code. And you must show them these terms so they know

their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modi�ed by

someone else and passed on, we want its recipients to know that what they have is not the

original, so that any problems introduced by others will not re
ect on the original authors'

reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in

e�ect making the program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

GNU GENERAL PUBLIC LICENSE 2

TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General

Public License. The \Program", below, refers to any such program or work, and a

\work based on the Program" means either the Program or any derivative work under

copyright law: that is to say, a work containing the Program or a portion of it, either

verbatim or with modi�cations and/or translated into another language. (Hereinafter,

translation is included without limitation in the term \modi�cation".) Each licensee is

addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work based

on the Program (independent of having been made by running the Program). Whether

that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and give

any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option o�er warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modi�cations or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you

changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

whole at no charge to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright notice

and a notice that there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these conditions, and telling

the user how to view a copy of this License. (Exception: if the Program itself is

interactive but does not normally print such an announcement, your work based

on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections

of that work are not derived from the Program, and can be reasonably considered

independent and separate works in themselves, then this License, and its terms, do not

apply to those sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based on the Program,

the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 3

for other licensees extend to the entire whole, and thus to each and every part regardless

of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to

work written entirely by you; rather, the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)

in object code or executable form under the terms of Sections 1 and 2 above provided

that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source distri-

bution, a complete machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

c. Accompany it with the information you received as to the o�er to distribute cor-

responding source code. (This alternative is allowed only for noncommercial dis-

tribution and only if you received the program in object code or executable form

with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�-

cations to it. For an executable work, complete source code means all the source code

for all modules it contains, plus any associated interface de�nition �les, plus the scripts

used to control compilation and installation of the executable. However, as a spe-

cial exception, the source code distributed need not include anything that is normally

distributed (in either source or binary form) with the major components (compiler,

kernel, and so on) of the operating system on which the executable runs, unless that

component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from

a designated place, then o�ering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or

distribute the Program is void, and will automatically terminate your rights under this

License. However, parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such parties remain in full

compliance.

6. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore,

GNU GENERAL PUBLIC LICENSE 4

by modifying or distributing the Program (or any work based on the Program), you

indicate your acceptance of this License to do so, and all its terms and conditions for

copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute

or modify the Program subject to these terms and conditions. You may not impose

any further restrictions on the recipients' exercise of the rights granted herein. You are

not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they

do not excuse you from the conditions of this License. If you cannot distribute so as

to satisfy simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not distribute the Program at all. For

example, if a patent license would not permit royalty-free redistribution of the Program

by all those who receive copies directly or indirectly through you, then the only way

you could satisfy both it and this License would be to refrain entirely from distribution

of the Program.

If any portion of this section is held invalid or unenforceable under any particular

circumstance, the balance of the section is intended to apply and the section as a

whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has the

sole purpose of protecting the integrity of the free software distribution system, which

is implemented by public license practices. Many people have made generous contri-

butions to the wide range of software distributed through that system in reliance on

consistent application of that system; it is up to the author/donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries

not thus excluded. In such case, this License incorporates the limitation as if written

in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the

present version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a

version number of this License which applies to it and \any later version", you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation. If the Program does not specify a

GNU GENERAL PUBLIC LICENSE 5

version number of this License, you may choose any version ever published by the Free

Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-

bution conditions are di�erent, write to the author to ask for permission. For software

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-

dation; we sometimes make exceptions for this. Our decision will be guided by the two

goals of preserving the free status of all derivatives of our free software and of promoting

the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-

CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS

IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THEQUALITY AND PERFORMANCEOF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST

OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 6

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source �le to most e�ectively convey the exclusion of warranty; and each �le

should have at least the \copyright" line and a pointer to where the full notice is found.

one line to give the program's name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c'

for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of

the General Public License. Of course, the commands you use may be called something

other than `show w' and `show c'; they could even be mouse-clicks or menu items|whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,

to sign a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the

names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program `Gnomovision'

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

Contributors to GNU CC 7

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to permit

linking proprietary applications with the library. If this is what you want to do, use the

GNU Library General Public License instead of this License.

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts of GNU CC.

� The idea of using RTL and some of the optimization ideas came from the U. of Arizona

Portable Optimizer, written by Jack Davidson and Christopher Fraser. See \Register

Allocation and Exhaustive Peephole Optimization", Software Practice and Experience

14 (9), Sept. 1984, 857-866.

� Paul Rubin wrote most of the preprocessor.

� Leonard Tower wrote parts of the parser, RTL generator, RTL de�nitions, and of the

Vax machine description.

� Ted Lemon wrote parts of the RTL reader and printer.

� Jim Wilson implemented loop strength reduction and some other loop optimizations.

� Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for

the SONY NEWS machine.

� Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

� Michael Tiemann of MCC wrote most of the description of the National Semiconductor

32000 series cpu. He also wrote the code for inline function integration and for the

SPARC cpu and Motorola 88000 cpu and part of the Sun FPA support.

� Jan Stein of the Chalmers Computer Society provided support for Genix, as well as

part of the 32000 machine description.

� Randy Smith �nished the Sun FPA support.

� Robert Brown implemented the support for Encore 32000 systems.

� David Kashtan of SRI adapted GNU CC to the Vomit-Making System.

� Alex Crain provided changes for the 3b1.

� Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX for the 9000

series 300.

� William Schelter did most of the work on the Intel 80386 support.

� Christopher Smith did the port for Convex machines.

� Paul Petersen wrote the machine description for the Alliant FX/8.

Aside from Michael Tiemann, who worked out the front end for GNU C++, and Richard

Stallman, who worked out the back end, the following people (not including those who have

made their contributions to GNU CC) should not go unmentioned.

� Doug Lea contributed the GNU C++ library. This includes support for streams, ob-

stacks, structured �les, and other public service objects.

� Doug Schmidt has spent countless hours pursuing bugs in this compiler for sport. He

also wrote a perfect hash function generator in GNU C++ which was used to generate

Contributors to GNU CC 8

a replacement for the keyword recognizer in the lexical analyzer for both GNU CC and

GNU C++.

� Marc Shapiro and Phillipe Gautron helped me implement features needed for the SOR

distributed object management environment.

� Dirk Grunwald made the collect program usable under COFF.

� Angel Li adapted GNU C++ to VMS.

� Ron Cole provided additional help getting GNU C++ working on COFF-based systems.

� James Clark wrote a name demangler for the GNU C++ naming scheme, and integrated

it with the linker.

� Michael Powell and Jim Mitchell helped design the GNU C++ exception handling mech-

anism.

The following people contributed specially to the version for the Atari ST & TT.

� John R. Dunning did the original port to the Atari ST.

� Jwahar R. Bammi improved the port and the libraries.

� Eric R. Smith wrote lots of code for the libraries.

� David Boyce ported G++ 1.39.1 and the libg++ 1.39.0 to the ST.

� The following is a not necessarily complete list of people who either contributed code

or bug�xes to the libraries: Michal Jaegermann, Scott Kolodzieski, Andreas Schwab,

Frank Celler, Edgar Roeder, Kai-Uwe Bloem, Allan Pratt, Jens Tingle�, Thomas

Koenig, Markus Nick. Apologies to those I forgot to mention.

� Frank Ridderbusch compiled this manual specially for the Atari ST.

Introduction 9

Introduction

This manual documents how to install and run the GNU C compiler on the Atari ST &

TT computers. It does not give an introduction in C or M68000 assembler. There is enough

material on both subjects available. The user, who is familiar with a C compiler, that runs

on a U**x system, should have no trouble at all to get GNU C running on the Atari ST.

This manual was compiled from existing GNU manuals and various bits and pieces from

John R. Dunning and Jwahar R. Bammi.

The sections, which describe the compiler driver, the preprocessor and the G++ compiler

driver are nearly verbatim copies of sections in the respective manuals. The original man-

uals (Using and Porting GNU CC and The C Preprocessor), were written by Richard M.

Stallman and Michal D. Tieman (User's Guide to GNU C++). All of these three documents

are copyright
c

 The Free Software Foundation. I modi�ed these sections by removing

material, which described features of GNU C for systems like Vaxen or Suns. To keep this

manual reasonably compact, I extracted only the sections, which describe the supported

command options (and prede�ned macros in case of the preprocessor). If the user is inter-

ested in the extensions and details, which are implemented in GNU C, he has to refer to the

original manuals. Whether all described options are useful on the Atari has to be decided.

The facts, which are presented in the assembler and utility sections are mostly derived

from the sources of the respective programs (from a cross compiler kit by J. R. Bammi

based on GNU C 1.31), which were available to me. Other facts were gathered by try and

error. So, these sections may be a bit shaky.

The �rst version of this manual was based on GCC 1.37.1. Then, GCC 1.40 and G++

1.39.1 became available. The most noticeable di�erences were some new options (`-mint',

`-G', `-z') and the extended symbol table format. In the beginning of 1992 the FSF released

GCC 2.x. In this release GCC and G++ were merged into one large package. At the time of

this writing the current version for the Atari is 2.4.5 with patchlevel 1. This manual doesn't

cover all new command line options from GCC 2.3.3, but only the most valuable (in the

authors opinion). The coverage of GCC 2.x is not yet complete. Also, GAS 1.92 is pending.

Patchlevel 4 of GCC 2.2.2 and later versions in connection with MiNT 0.96 pl14 allow the

creation of executables, whose text sections can be shared. This means, if multiple copies

of the same program are running, the actual program code is memory only once, while each

running program has it private data section.

Additionally two
avours of libraries are present. One version, which is now mostly main-

tained by J.R.Bammi, is for the ST running the native TOS operating system. The other

avour was originally maintained by E.R.Smith, since Eric moved to Atari to continue de-

velopment of MultiTOS Nick Castellano (Email: entropy@terminator.rs.itd.umich.edu) took

over. This version is specially modi�ed to support MiNT, the multitasking TOS extension,

also from E.R.Smith. BTW, MiNT has now become the base of Atari's multitasking TOS.

It is the aim of both maintainers to keep the libraries in sync as much as possible and

possibly merge them together in the future.

The best place to look for all the components (binaries and sources) is at the moment the

Atari archive at terminator. The internet address for anonymous ftp is atari.archive.umich.edu.

Also a mail server called BART is active. Send a message with the word `help' in it to

the address atari@atari.archive.umich.edu and BART will explain himself. The maintainers

Introduction 10

of this archive post a monthly message to the USENET newsgroup `comp.sys.atari.st',

which explains, how to get things from the archive. The packaging of the �les may be

di�erent as it is explained below.

If you �nd any errors or typos in this manual or have any other comments, please let me

know. My email address is (the SNI addresses are prefered):

ridderbusch.pad@sni-usa.com

(Amerika (North & South))

ridderbusch.pad@sni.de

(Rest of world)

Frank Ridderbusch@pb.maus.de

(MausNet, a FIDO like network in Germany)

Chapter 1: Installing GCC 11

1 Installing GCC

There are basically three components, which make up a basic compiling system and

which have to be installed. Each component is accessed via an environment variable. This

three components are:

The executables

These are accessed via the normal PATH variable, by which all other programs

are found and the variable GCCEXEC.

The header �les

The preprocessor accesses the header �les via the variable GNUINC. Any C++

header �les are accessed via GXXINC

The libraries

The linker �nds the startup �le and the required libraries via the variable

GNULIB. The C++ library also belongs into this directory.

All this stu� basically assumes that you're using a CLI (command line interpreter). A

really good choice is Gulam, which has very nice set of features, but there are quite a

number of other CLI's around, which also might do the job. If want as much U**x feeling

as possible, you might consider either `ash', which is compatible to the Bourne shell (ported

by Stefan Neuhaus), or E.R.Smiths port of `tcsh' or Scott Kolodzieskis port of BASH 1.12.

Apart from the CLI you de�nitely should get yourself amake utility. Again, good choices

here are either the GNU Make, which o�ers nearly the complete U**x make functionality

on the ST or the PDMAKE, which has only the core make functionality, but has on the

other hand the advantage, that it requieres fewer system resources.

I suggest the following directory structure on your disk partition:

`\gnu\bin'

for all executable programs. The compiler driver �nds the executables in this

directory by looking up the environment variable GCCEXEC.

`\gnu\lib'

for the startup object modules and the libraries. The linker �nd the startup

code and the libraries in this directory by looking up the variable GNULIB.

`\gnu\include'

for the header �les. The preprocessor �nds the include �le in this directory by

looking up the environment variable GNUINC.

With earlier versions of GNU CC it was only allowed to put one path into the variables

GNULIB and GNUINC. GCC 1.37 and later allows you to put several paths into these variables,

which are separated by either a `,' or a `;'. All the mentioned paths are searched in order

to locate a speci�c �le. However the startup module `crt0.o' is only looked for in the �rst

directory speci�ed in GNULIB. If the preprocessor can't �nd a include �le in one of the

directories speci�ed by GNUINC, it will also search the paths listed in GNULIB.

Chapter 1: Installing GCC 12

1.1 Installing the Executables

The compressed archive of the GNU C compiler binary distribution contains the 'com-

mon' executables of the GNU compiler. That means the compiler driver (`gcc.ttp'), the

preprocessor (`gcc-cpp.ttp'), the main body (`gcc-cc1.ttp'), the assembler (`gcc-as.ttp')

and the linker (`gcc-ld.ttp'), but depending from where you got your GCC the packaging

might be di�erent. The just mentioned programs are the absolute minimum, if you want

to write C programs. To be comfortable, you should get the following support programs:

`gcc-ar.ttp'

is the object library maintainer.

`gdb.ttp' is the GNU debugger 2.6 modi�ed for the Atari ST. John Dunning did the

original port to the Atari. Since then Jwahar Bammi has extensively hacked it.

GDB now uses DBX debugging information in the object �les. This requires

an assembler with version 1.36 or greater. The latest version is patchlevel 18.

In the meantime a new gdb port is available. This port is based on GDB 3.5 and

requires MiNT 0.96 pl14 or later or MultiTOS. This port was done by Andreas

Schwab (MiNT 0.96 needs a little patch, which is included).

Some time later Andreas announced the port of GDB 3.6, which is only available

in source form at the time of this writing.

`sym-ld.ttp'

creates the symbol �le needed with GDB.

`gcc-nm.ttp'

prints the symbols of a GNU object library or an object �le.

`cnm.ttp' prints the symbol table of a GEMDOS executable.

`fixstk.ttp'

`printstk.ttp'

are used to modify and print the current stack size of an executable.

`toglclr.ttp'

TOS 1.4 users can toggle the clear above BSS to end of TPA
ag for the

GEMDOS loader. A newer version of `toglclr.ttp' also allows to toggle the

loader bits, that were introduced with TOS versions 2.x and 3.x.

`size68.ttp'

This program list the values of the TEXT, DATA, and BSS sections of a ready

to run executable.

`xstrip.ttp'

removes the symbol table from an executable.

All this �les should go in `\gnu\bin\' directory on your gnu disk. I personally keep my

executables in the directory `e:\gnu\bin'. You should than extend the search path of your

CLI to include this directory or you move the compiler driver `gcc.ttp' and the �les, which

are not invoked by `gcc.ttp' (`gcc.ttp' calls `gcc-cpp.ttp', `gcc-cc1.ttp', `gcc-as.ttp'

and `gcc-ld.ttp') into the directory, where you keep your other executables. The next

step is to actually de�ne GCCEXEC. `gcc.ttp' uses this variable to locate the preprocessor,

Chapter 1: Installing GCC 13

compiler, assembler and the linker. GCCEXEC contains a device/dir/partial-pathname, which

not only consists of the directory, where the executables are kept, but also a common pre�x,

which is `gcc-'. Assuming you also put the executables in the directory as described above,

GCCEXEC would contain `e:\gnu\bin\gcc-'. The value is the same, you would give the

compiler driver with the `-B' option.

Then you should de�ne a variable called TEMP. During compilation the output of the

various intermediate stages is kept here. The variable must not contain a trailing backslash.

If you have enough memory, TEMP should point to a ramdisk.

There is another set of executables. They are de�nitely available from atari.archive.umich.edu,

somewhere in the `Mint' directory. Other ftp archive in Europe also have them. This set is

compiled with the `-mbaserel' option and linked with the MiNT libraries. They functional

identical to the above described programs, except they behave a little better when MiNT

is running (they can be interupted better and can work on a Minix �le system).

1.2 Installing the libraries

The next thing to do is to install the libraries. The distributed archive contains the

following libraries (again, the packaging may vary):

`crt0.o'

`gcrt0.o' are the startup object modules. The �le `gcrt0.o' instead of `crt0.o' is used,

if the sources �les are compiled for execution pro�ling (the `-pg' option).

`gnu.olb'

`gnu16.olb'

are the standard libraries, the usual `libc' on other systems.

`curses.olb'

`curses16.olb'

are ports of the BSD curses.

`gem.olb'

`gem16.olb'

contain the Atari ST Aes/Vdi/FSM-GDOS bindings.

`iio.olb'

`iio16.olb'

contain the integer only `printf' and `scanf' functions.

`pml.olb'

`pml16.olb'

are the portable math libraries.

`termcap.olb'

`termcap16.olb'

are for the pure `termcap' support.

`widget.olb'

`widget16.olb'

are a small widget based on `curses'

Chapter 1: Installing GCC 14

All these libraries go to a place described by the environment variable GNULIB. Again

this variable must not contain a trailing backslash. Staying with the above example, I've set

the variable to `e:\gnu\lib'. The libraries, which have a 16 in their names were compiled

with the `-mshort' option. This makes integers the same size as shorts.

If you like to write programs for MiNT, the TOS multitasking extension from E.R.Smith,

you might consider to replace `gnu.olb', `gnu16.olb', `iio.olb' and `iio16.olb' with the

libraries supplied by Eric Smith. The source and the binaries of these libraries can also

be retrieved from the Atari archive at terminator. The �les are `mntlibxx.zoo' for the

sources and `mntolbxx.zoo' for the binaries. They are found in the `mint' directory. xx is

the version number, currently 24. Programs written with this libraries will also run under

TOS, as long no MiNT speci�c features have been used. (See Chapter 4 [The C-Compiler

Driver], page 21, for more info on compiling programs for MiNT (the `-mint' option))

Another option is to have both sets of libraries installed. For this you have to rename

the MiNT libraries according to the following scheme:

� `crt0.o'

)

`mcrt0.o'

� `gcrt0.o'

)

`mgcrt0.o'

� `gnu.olb'

)

`mint.olb'

� `gnu16.olb'

)

`mint16.olb'

To select these �les instead of the standard TOS versions and to activate the MiNT

speci�c portions of the header �les you have to include the `-mint' option in the `gcc.ttp'

command line.

With GCC 2.2.2 pl4 and later it is possible to have another set of libraries of either the

standard TOS or the MiNT libs. These new sets are named as above plus a leading `b'. The

`b' indicates, that these �les have been compiled with the `-mbaserel' option. To actually

make use of these new libraries, you have to be running MiNT 0.96 patchlevel 14. They are

totally useless under plain TOS. Additionally you need a linker with at least patchlevel 32.

With the option `-mbaserel' it is possible under MiNT to create executables, whose text

(program code) section may be shared. (See Chapter 4 [The C-Compiler Driver], page 21,

for more info on compiling programs for with shared text section (the `-mbaserel' option).)

The following table gives an overview over the various �les, which are used for linking

depending on the compiler options.

The following startup modules used:

`bcrt0.o' if `-mbaserel' and no `-mint'.

`bmcrt0.o'

if `-mbaserel' and `-mint'

`bgcrt0.o'

if `-mbaserel' and no `-mint' and `-pg'

`bmgcrt0.o'

if `-mbaserel' and `-mint' and `-pg'

The library �les are used as follows (from the linker):

`-lbgnu16'

if `-mbaserel' and `-mshort' and no `-mint'.

Chapter 1: Installing GCC 15

`-lbgnu' if `-mbaserel' and no `-mshort' and no `-mint'

`-lbmint16'

`-lbgnu16'

if `-mbaserel' and `-mshort' and `-mint'

`-lbmint'

`-lbgnu' if `-mbaserel' and no `-mshort' and `-mint'

If you have trouble with the correct setup run `gcc -v' and see, what GCC is trying to

do.

1.3 Installing the Header Files

The last bit to install are the header �les. They are contained in an archive of their

own. The preprocessor now knows about the variable GNUINC. Earlier version had to use

the `-Ipre�x' option, to get to the header �les. According to the above examples, the �les

would be put in the directory `e:\gnu\include'. GNUINC has to be set accordingly.

If you like to write programs for MiNT, apart from the libraries you also need the

MiNT speci�c include �les (also from the Atari archive). These are found in the archive

`mntincxx.zoo' in the `mint' directory. xx matches the version number of the library. (See

Chapter 4 [The C-Compiler Driver], page 21, for more info on compiling programs for MiNT

(the `-mint' option)).

If you choose to have both sets of libraries installed you can keep the TOS speci�c header

�les since they are compatible with the MiNT ones.

1.4 Gulam Notes

The programs, which come with the GCC distribution also understand �lenames, which

use the slash (`/') as a separator. When Gulam is your favorite CLI you will stick to the

backslashes, since you otherwise lose the feature of command line completition.

If you are using Gulam, you can de�ne `aliases' to reach the executables under more

common names.

alias cc e:\gnu\bin\gcc.ttp

alias ar e:\gnu\bin\gcc-ar.ttp

alias as e:\gnu\bin\gcc-as.ttp

alias ld e:\gnu\bin\gcc-ld.ttp

: : :

Now you should be able to say `cc foo.c -o foo.ttp' and the obvious thing should

happen. If you still have trouble, compare your settings with the ones from the sample �le

`gulam.g'. That should give you the right idea.

One additional note to Gulam. `crt0.o' is currently set up to understand the MWC/Atari

convention of passing long command lines (except it doesn't look into the _io_vector part).

Gulam users should set `env_style mw', if you want to give long args lines to `gcc.ttp'.

To summarize the above, here are the settings from my `gulam.g' initialization �le. The

usage of UNIXMODE environment variable is explained in the �le `unixmode.doc', which is

part of the library sources. The GXXINC variable is for G++.

Chapter 1: Installing GCC 16

set env_style mw

setenv TEMP i:

setenv PATH e:\gnu\bin;<your other search paths here>

setenv GCCEXEC e:\gnu\bin\gcc-

setenv GNULIB e:\gnu\lib

setenv GNUINC e:\gnu\include

setenv GXXINC e:\gnu\g++-inc

setenv UNIXMODE 'd/brG'

Chapter 2: Installing G++ 17

2 Installing G++

For the G++ installation apply the same rules as for the GCC installation. The G++

compiler driver `g++.ttp' and the actual compiler `gcc-cc1+.ttp' belong into the same

directory as the GCC executables. The preprocessor is shared between G++ and GCC.

The library `g++.olb' goes into the same directory as all the other libraries. Since G++

has a complete set of include �les of it's own, they all should be copied into the directory

`\gnu\g++-inc'. To let the preprocessor know, where it can �nd the include �les, the

variable GXXINC is used.

The above is valid for G++ 1.xx. Since GCC and G++ were merge into one large package

with version 2.x, there is no longer a special compiler driver for G++. `gcc.ttp' deter-

mines from the �le extension, whether the C or C++ compiler should be invoked. The

�le `gcc-cc1plus.ttp' is the actual C++ compiler. This �le name is usually truncated to

`gcc-cc1p.ttp' in the 8+3 TOS �le system. What is said about the include �les and the

variable GXXINC is also true for G++ 2.x.

To actually use G++, some requirements have to be ful�lled. You need the GCC include

�les and libraries with at least patch level 72. Additionally the linker `gcc-ld.ttp' must

have at least patch level 22.

The library `g++.olb' is at the moment not 100% 16bit clean. That means, there is at

the moment no version, which is compiled with the `-mshort' option.

Chapter 3: Memory Requirements 18

3 Memory Requirements

GCC loves memory. A lot. It loves to cons structures. Lots of them. Earlier versions

probably won't run at all in less than 1 Meg; the version 1.36 of GCC will probably need

2 Meg. The `gcc-cc1.ttp' had 1/2 meg stack, and needs it for compiling large �les with

optimization turned on. Happily, it doesn't need all that stack for smaller �les, or even

big �les without the `-O' option, so it should be feasible to make a compiler with a smaller

stack (with `fixstk.ttp').

GCC versions 1.37 and later uses another scheme for memory allocation. The programs

`gcc-cpp.ttp' and `gcc-cc1.ttp' are setup for _stksize == -1L. This means, that an

executable will use all available memory, doing mallocs from internal heap (as opposed to

the system heap via Malloc), with SP initially set at the top, and heap starting just above

the BSS. So if the compiler runs out of memory, you probably need more memory (or get

rid of accessories, tsr's etc and try).

During my compilation of T

E

X 3.1 on my ST, I found that the size of a source �le is

not main the limiting factor, but the size of a function. At that time my ST was equipped

with 2.5 megs of memory. About 512 Kb was used for ramdisk, cache and some auto

folder programs. With this con�guration the maximum size of a function, which could be

compiled, was about 14-20 KB depending on how much code was inlined. Additionally I

was able to compile GCC 1.40 and GAS 1.38 on my ST, but for this I had to disable nearly

every program in the auto folder. So, with GCC 1.40 you're doing �ne with 2 or 2,5 Mb.

With GCC 2.2 and later you de�nitly need more memory. The compiler executable itself

is about 850 Kb in size. The C++ compiler is even larger (about 1.1 Mb). So, with GCC 2

you should have atleast 4 Mb.

The above described scheme, how GCC allocates memory from the heap is not so nice

in a multitasking environment (MiNT or MultiTOS). Once the comiler has grabed all the

available memory, it is practically impossible to start another process. You can the improve

the situation by changeing the value of _stksize, when you compile under MiNT. You can

set _stksize for `gcc-cc1.ttp' to approx 350 - 512 Kb. This gives the compiler enough

stack space to run comfortably. For the preprocessor the situation is slightly more com-

plicated. Since `gcc-cpp.ttp' allocates nearly all memory through the routine alloca(),

which in turn allocates it's memory from the stack, you have to set _stksize to a pretty

high value. The value directly corresponds to size of the source �le, you want to preproccess,

since the whole �le is slurped into memory and then processed. In my opinion a good rule

of thumb would be to multiply the size of the largest �le you want to compile by 2 or 2.5

and set _stksize to this value.

Below is a snapshot from my system (SST68030 with 8MB), while compiling the �le

`makeinfo.c' from the Texinfo 2.16 distribution. This �le has a size of about 207Kb.

`_stksize' of `gcc-cc1.ttp' is set to 512 Kb. The preprocessor (`_stksize' set to 768Kb)

used about 1.5 Mb of memory.

PID PPID STATUS SIZE COMMAND

...

000 000 Wait 724480 (idle)

002 000 Wait 1024 GEM

003 002 Run 557056 GEM

Chapter 3: Memory Requirements 19

005 000 Sleep 359936 TCSH

149 000 Sleep 1557760 EMACS

150 149 Sleep 29184 wakeup 60

158 149 Wait 99072 sh -c gmake -f makefile.st CC=gcc makeinfo

159 158 Wait 175616 gmake -f makefile.st CC=gcc makeinfo.o

160 159 Wait 69632 gcc -c -O2 -Wall -DDOTS -fomit-frame-point

161 005 Run 78336 top

163 160 Run 1981184 gcc-cc1 c:/clipbr/cc1600.i -quiet -dumpbas

Another topic, which frequently comes up on comp.sys.atari.st and which also loosely

�ts into this section is "Why are GCC compiled binaries so big". The reason is simply

maximum U**x compatiblity and not bad code quality. There is quite a bit of code in

the libraries, which emulates certain U**x features, which are alway automatically linked

into the executable. Apart from other minor compatiblity functions, the features, which

implement most of the overhead, are the signal() emulation and the functionality of the

extended �le system, directed through the UNIXMODE environment variable.

The extended �lesystem in the TOS libraries is a layer in between the open() and all

the other �le descriptor based i/o routines and the actual systemcalls in the TOS kernel

(fopen(), fwrite(), etc.). This extended �le system allows �le names with upto 32 charac-

ters and symbolic links. The just mentioned layer takes care of the mapping from the long

to a unique �le name in the standard 8+3 TOS �le system, by maintaining an additional �le

(`.dir'), which holds the mapping from long to short name. The setting of the UNIXMODE

environment variable determines, which of the available features in extended �le system

layer are used at runtime.

Chapter 3: Memory Requirements 20

user land +----------------+

-+- | Long file name |

^ +----------------+

| |

| V

| +----------------+

| STDIO fopen() |

L +----------------+

i |

b V

r +----------------+

a | open() |

r +----------------+

y |

V

| +--------------------------+

| |extended file system layer|-->-+

| +--------------------------+ |

| | |

-+- V |

+----------------+ |

kernel land | TOS fopen() | |

+----------------+ |

| |

V V

+----------------+ +------+

TOS file system | 8+3 file name | | .dir |

+----------------+ +------+

Now, with that in mind you will probably understand, why executables, which are

linked with the TOS libs are so much bigger compared to executables from other Atari

compilers. All this compatility stu� adds up. What you get for this increased executable

size is maximum U**x compatiblity. You often have to change only a hand full of lines to

succesfully compile a source �le from an U**x environment.

If you know a bit about operating systems in general, you will know, that stu� like the

above doesn't belong into a library into the hands of a user. This stu� belongs into the

kernel. All this is implemented in the MiNT kernel (through the loadable �le system). The

executables, which are linked with the MiNT libs are therefore smaller, than their TOS

equivalents, since a lot of compatibily hacks are no longer present.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 21

4 Controlling the C-Compiler Driver (`gcc.ttp')

The GNU C compiler uses a command syntax much like the U**x C compiler. The

`gcc.ttp' program accepts options and �le names as operands. Multiple single-letter options

may not be grouped: `-dr' is very di�erent from `-d -r'.

When you invoke GNU CC, it normally does preprocessing, compilation, assembly and

linking. File names which end in `.c' are taken as C source to be preprocessed and compiled;

�le names ending in `.i' are taken as preprocessor output to be compiled; compiler output

�les plus any input �les with names ending in `.s' are assembled; then the resulting object

�les, plus any other input �les, are linked together to produce an executable.

Command options allow you to stop this process at an intermediate stage.

For example, the `-c' option says not to run the linker. Then the output consists of

object �les output by the assembler.

Other command options are passed on to one stage of processing. Some options control

the preprocessor and others the compiler itself. Yet other options control the assembler and

linker; these are not documented here, but you rarely need to use any of them.

Here are the options to control the overall compilation process, including those that say

whether to link, whether to assemble, and so on.

`-o �le' Place output in �le �le. This applies regardless to whatever sort of output is

being produced, whether it be an executable �le, an object �le, an assembler

�le or preprocessed C code.

If `-o' is not speci�ed, the default is to put an executable �le in `a.out', the

object �le `source.c' in `source.o', an assembler �le in `source.s', and prepro-

cessed C on standard output.

`-c' Compile or assemble the source �les, but do not link. Produce object �les with

names made by replacing `.c' or `.s' with `.o' at the end of the input �le names.

Do nothing at all for object �les speci�ed as input.

`-S' Compile into assembler code but do not assemble. The assembler output �le

name is made by replacing `.c' with `.s' at the end of the input �le name. Do

nothing at all for assembler source �les or object �les speci�ed as input.

`-E' Run only the C preprocessor. Preprocess all the C source �les speci�ed and

output the results to standard output.

`-v' Compiler driver program prints the commands it executes as it runs the pre-

processor, compiler proper, assembler and linker. Some of these are directed to

print their own version numbers.

`-s' The executable is stripped from the DRI compatible or extended symbol table.

Certain symbolic debuggers like `sid.prg' work with this symbol table. Also the

programs `printstk.ttp' and `fixstk.ttp' (See See Chapter 8 [The Utilities],

page 53, for more info) lookup the symbol `_stksize' in this table.

`-x' This option directs the linker to discard all local labels while creating the symbol

table and write only those labels, which are marked global.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 22

`-G' Instead of the standard DRI compatible symbol table, an extended symbol table

is written, which allows symbol names to be up to 22 characters long. Most of

the utility programs have been updated to work with this format. The most

bene�t you get with `gprof.ttp' and `adb' (the adb-like debugger, originally

written for the Sozobon C compiler by Johann Rueg and Don Dugger and later

improved by Michal Jaegermann (See See Chapter 9 [Debugging], page 62, for

additional info about debugging)).

`-Bpre�x' The compiler driver program tries pre�x as a pre�x for each program it tries

to run. These programs are `gcc-cpp.ttp', `gcc-cc1.ttp', `gcc-as.ttp' and

`gcc-ld.ttp'.

For each subprogram to be run, the compiler driver �rst tries the `-B' pre�x, if

any. If that name is not found, or if `-B' was not speci�ed, the driver tries two

standard pre�xes, which are `/usr/lib/gcc-' and `/usr/local/lib/gcc-'. If

neither of those results in a �le name that is found, the unmodi�ed program

name is searched for using the directories speci�ed in your `PATH' environment

variable.

You can get a similar result from the environment variable GCCEXEC. If it is

de�ned, its value is used as a pre�x in the same way. If both the `-B' option

and the GCCEXEC variable are present, the `-B' option is used �rst and the

environment variable value second.

`-z' This option directs all output from `stderr' to the �le `compile.err'. So, all

error messages and warnings, which are printed during a compile run are written

to this �le. The redirection is done by the compiler driver and is therefore only

valid for those programs, which are subsequently invoked by `gcc.ttp'. The

`-z' option was introduced only very lately, so not every executable
oating

around might have it.

These options control the details of C compilation itself.

`-ansi' Support all ANSI standard C programs.

This turns o� certain features of GNU C that are incompatible with ANSI C,

such as the asm, inline and typeof keywords, and prede�ned macros such as

unix and vax that identify the type of system you are using. It also enables

the undesirable and rarely used ANSI trigraph feature.

The `-ansi' option does not cause non-ANSI programs to be rejected gratu-

itously. For that, `-pedantic' is required in addition to `-ansi'.

The macro __STRICT_ANSI__ is prede�ned when the `-ansi' option is used.

Some header �les may notice this macro and refrain from declaring certain

functions or de�ning certain macros that the ANSI standard doesn't call for;

this is to avoid interfering with any programs that might use these names for

other things.

`-traditional'

Attempt to support some aspects of traditional C compilers. Speci�cally:

� All extern declarations take e�ect globally even if they are written inside

of a function de�nition. This includes implicit declarations of functions.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 23

� The keywords typeof, inline, signed, const and volatile are not rec-

ognized.

� Comparisons between pointers and integers are always allowed.

� Integer types unsigned short and unsigned char promote to unsigned

int.

� Out-of-range
oating point literals are not an error.

� All automatic variables not declared register are preserved by longjmp.

Ordinarily, GNU C follows ANSI C: automatic variables not declared

volatile may be clobbered.

� In the preprocessor, comments convert to nothing at all, rather than to a

space. This allows traditional token concatenation.

� In the preprocessor, macro arguments are recognized within string con-

stants in a macro de�nition (and their values are stringi�ed, though with-

out additional quote marks, when they appear in such a context). The

preprocessor always considers a string constant to end at a newline.

� The prede�ned macro __STDC__ is not de�ned when you use `-traditional',

but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are

not a�ected by `-traditional'). If you need to write header �les that

work di�erently depending on whether `-traditional' is in use, by testing

both of these prede�ned macros you can distinguish four situations: GNU

C, traditional GNU C, other ANSI C compilers, and other old C compilers.

`-O' Optimize. Optimizing compilation takes somewhat more time, and a lot more

memory for a large function. Without `-O', the compiler's goal is to reduce

the cost of compilation and to make debugging produce the expected results.

Statements are independent: if you stop the program with a breakpoint between

statements, you can then assign a new value to any variable or change the

program counter to any other statement in the function and get exactly the

results you would expect from the source code.

Without `-O', only variables declared register are allocated in registers. The

resulting compiled code is a little worse than produced by PCC without `-O'.

With `-O', the compiler tries to reduce code size and execution time.Some of

the `-f' options described below turn speci�c kinds of optimization on or o�.

`-g' Produce debugging information in the operating system's native format (for

DBX or SDB). GCC on the Atari produces the DBX debugging format. GDB

also works with this debugging information.

Unlike most other C compilers, GNU CC allows you to use `-g' with `-O'.

The shortcuts taken by optimized code may occasionally produce surprising

results: some variables you declared may not exist at all;
ow of control may

brie
y move where you did not expect it; some statements may not be executed

because they compute constant results or their values were already at hand;

some statements may execute in di�erent places because they were moved out

of loops. Nevertheless it proves possible to debug optimized output. This makes

it reasonable to use the optimizer for programs that might have bugs.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 24

`-gg' Produce debugging information in GDB's own format. This option is no longer

supported. Do not use it.

`-w' Inhibit all warning messages.

`-W' Print extra warning messages for these events:

� An automatic variable is used without �rst being initialized.

These warnings are possible only in optimizing compilation, because they

require data
ow information that is computed only when optimizing. They

occur only for variables that are candidates for register allocation. There-

fore, they do not occur for a variable that is declared volatile, or whose

address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do

not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to

compute a value that itself is never used, because such computations may

be deleted by the
ow analysis pass before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough

to see all the reasons why the code might be correct despite appearing to

have an error. Here is one example of how this can happen:

{

int x;

switch (y)

{

case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;

}

foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU

CC doesn't know this. Here is another common case:

{

int save_y;

if (change_y) save_y = y, y = new_y;

: : :

if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare as volatile all the

functions you use that never return.

� A nonvolatile automatic variable might be changed by a call to longjmp.

These warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp

will be called; in fact, a signal handler could call it at any point in the code.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 25

As a result, you may get a warning even when there is in fact no problem

because longjmp cannot in fact be called at the place which would cause

a problem.

� A function can return either with or without a value. (Falling o� the end of

the function body is considered returning without a value.) For example,

this function would inspire such a warning:

foo (a)

{

if (a > 0)

return a;

}

Spurious warnings can occur because GNU CC does not realize that certain

functions (including abort and longjmp) will never return.

� An expression-statement contains no side e�ects.

In the future, other useful warnings may also be enabled by this option.

`-Wimplicit'

Warn whenever a function is implicitly declared.

`-Wreturn-type'

Warn whenever a function is de�ned with a return-type that defaults to int.

Also warn about any return statement with no return-value in a function whose

return-type is not void.

`-Wunused'

Warn whenever a local variable is unused aside from its declaration, and when-

ever a function is declared static but never de�ned.

`-Wswitch'

Warn whenever a switch statement has an index of enumeral type and lacks a

case for one or more of the named codes of that enumeration. (The presence

of a default label prevents this warning.) case labels outside the enumeration

range also provoke warnings when this option is used.

`-Wcomment'

Warn whenever a comment-start sequence `/*' appears in a comment.

`-Wtrigraphs'

Warn if any trigraphs are encountered (assuming they are enabled).

`-Wall' All of the above `-W' options combined. These are all the options which pertain

to usage that we recommend avoiding and that we believe is easy to avoid, even

in conjunction with macros.

The other `-W: : :' options below are not implied by `-Wall' because certain kinds

of useful macros are almost impossible to write without causing those warnings.

`-Wshadow'

Warn whenever a local variable shadows another local variable.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 26

`-Wid-clash-len'

Warn whenever two distinct identi�ers match in the �rst len characters. This

may help you prepare a program that will compile with certain obsolete, brain-

damaged compilers.

`-Wpointer-arith'

Warn about anything that depends on the \size of" a function type or of void.

GNU C assigns these types a size of 1, for convenience in calculations with void

* pointers and pointers to functions.

`-Wcast-qual'

Warn whenever a pointer is cast so as to remove a type quali�er from the target

type. For example, warn if a const char * is cast to an ordinary char *.

`-Wwrite-strings'

Give string constants the type const char[length] so that copying the address

of one into a non-const char * pointer will get a warning. These warnings will

help you �nd at compile time code that can try to write into a string constant,

but only if you have been very careful about using const in declarations and

prototypes. Otherwise, it will just be a nuisance; this is why we did not make

`-Wall' request these warnings.

`-p' Generate extra code to write pro�le information suitable for the analysis pro-

gram prof. This is useless on the Atari ST. Use -pg instead.

`-pg' Generate extra code to write pro�le information suitable for the analysis pro-

gram gprof.

`-llibrary ' Search a standard list of directories for a library named library, which is actually

a �le named `$GNULIB\library.olb'. The linker uses this �le as if it had been

speci�ed precisely by name.

The directories searched include several standard system directories plus any

that you specify with `-L'.

Normally the �les found this way are library �les|archive �les whose members

are object �les. The linker handles an archive �le by scanning through it for

members which de�ne symbols that have so far been referenced but not de�ned.

But if the �le that is found is an ordinary object �le, it is linked in the usual

fashion. The only di�erence between using an `-l' option and specifying a �le

name is that `-l' searches several directories.

`-Ldir' Add directory dir to the list of directories to be searched for `-l'.

`-nostdlib'

Don't use the standard system libraries and startup �les when linking. Only

the �les you specify (plus `gnulib') will be passed to the linker.

`-mmachinespec'

Machine-dependent option specifying something about the type of target ma-

chine. These options are de�ned by the macro TARGET_SWITCHES in the machine

description. The default for the options is also de�ned by that macro, which

enables you to change the defaults.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 27

These are the `-m' options de�ned in the 68000 machine description:

`-m68000'

`-mc68000'

Generate output for a 68000. This is the default on the Atari ST.

`-m68020'

`-mc68020'

Generate output for a 68020 (rather than a 68000).

`-m68881' Generate output containing 68881 instructions for
oating point.

`-msoft-float'

Generate output containing library calls for
oating point.

`-mshort' Consider type int to be 16 bits wide, like short int and causes

the macro __MSHORT__ to be de�ned. Using this option also causes

the library `library16.olb' to be linked. (Also See Section 6.2 [Pre-

de�ned Macros], page 41, for more info)

`-mint' Compile for MiNT (MiNT is not TOS). The macro __MINT__ is

de�ned and the linker links with the mint library `-lmint' before

linking with the normal C library `-lgnu'. Also, the linker uses the

startup �le `mcrt0.o' instead of the normal `crt0.o'. If `-mshort'

is also speci�ed, then both the macros __MSHORT__ and __MINT__

are de�ned and the linker links with `-lmint16 -lgnu16'.

`-mbaserel'

`-mpcrel' This is no op at the moment.

`-mnobitfield'

Do not use the bit-�eld instructions. `-m68000' implies `-mnobitfield'.

`-mbitfield'

Do use the bit-�eld instructions. `-m68020' implies `-mbitfield'.

This is the default if you use the unmodi�ed sources.

`-mrtd' Use a di�erent function-calling convention, in which functions that

take a �xed number of arguments return with the rtd instruction,

which pops their arguments while returning. This saves one in-

struction in the caller since there is no need to pop the arguments

there.

This calling convention is incompatible with the one normally used

on U**x, so you cannot use it if you need to call libraries compiled

with the U**x compiler.

Also, you must provide function prototypes for all functions that

take variable numbers of arguments (including printf); otherwise

incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a func-

tion with too many arguments. (Normally, extra arguments are

harmlessly ignored.)

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 28

The rtd instruction is supported by the 68010 and 68020 proces-

sors, but not by the 68000.

`-f
ag ' Specify machine-independent
ags. Most
ags have both positive and negative

forms; the negative form of `-ffoo' would be `-fno-foo'. In the table below,

only one of the forms is listed|the one which is not the default. You can �gure

out the other form by either removing `no-' or adding it.

`-ffloat-store'

Do not store
oating-point variables in registers. This prevents

undesirable excess precision on machines such as the 68000 where

the
oating registers (of the 68881) keep more precision than a

double is supposed to have.

For most programs, the excess precision does only good, but a few

programs rely on the precise de�nition of IEEE
oating point. Use

`-ffloat-store' for such programs.

`-fno-asm'

Do not recognize asm, inline or typeof as a keyword. These words

may then be used as identi�ers.

`-fno-defer-pop'

Always pop the arguments to each function call as soon as that

function returns. Normally the compiler (when optimizing) lets

arguments accumulate on the stack for several function calls and

pops them all at once.

`-fstrength-reduce'

Perform the optimizations of loop strength reduction and elimina-

tion of iteration variables.

`-fcombine-regs'

Allow the combine pass to combine an instruction that copies one

register into another. This might or might not produce better code

when used in addition to `-O'. I am interested in hearing about the

di�erence this makes. (Only GCC and G++ 1.40).

`-fforce-mem'

Force memory operands to be copied into registers before doing

arithmetic on them. This may produce better code by making all

memory references potential common subexpressions. When they

are not common subexpressions, instruction combination should

eliminate the separate register-load. I am interested in hearing

about the di�erence this makes.

`-fforce-addr'

Force memory address constants to be copied into registers before

doing arithmetic on them. This may produce better code just as

`-fforce-mem' may.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 29

`-fomit-frame-pointer'

Don't keep the frame pointer in a register for functions that don't

need one. This avoids the instructions to save, set up and restore

frame pointers; it also makes an extra register available in many

functions. It also makes debugging impossible.

On some machines, such as the Vax, this
ag has no e�ect, be-

cause the standard calling sequence automatically handles the

frame pointer and nothing is saved by pretending it doesn't exist.

The machine-description macro FRAME_POINTER_REQUIRED controls

whether a target machine supports this
ag.

`-finline-functions'

Integrate all simple functions into their callers. The compiler

heuristically decides which functions are simple enough to be worth

integrating in this way.

If all calls to a given function are integrated, and the function is

declared static, then the function is normally not output as as-

sembler code in its own right.

`-fcaller-saves'

Enable values to be allocated in registers that will be clobbered by

function calls, by emitting extra instructions to save and restore

the registers around such calls. Such allocation is done only when

it seems to result in better code than would otherwise be produced.

This option is enabled by default on certain machines, usually those

which have no call-preserved registers to use instead.

`-fkeep-inline-functions'

Even if all calls to a given function are integrated, and the function

is declared static, nevertheless output a separate run-time callable

version of the function.

`-fwritable-strings'

Store string constants in the writable data segment and don't

uniquize them. This is for compatibility with old programs which

assume they can write into string constants. Writing into string

constants is a very bad idea; \constants" should be constant.

`-fcond-mismatch'

Allow conditional expressions with mismatched types in the second

and third arguments. The value of such an expression is void.

`-fno-function-cse'

Do not put function addresses in registers; make each instruction

that calls a constant function contain the function's address explic-

itly.

This option results in less e�cient code, but some strange hacks

that alter the assembler output may be confused by the optimiza-

tions performed when this option is not used.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 30

`-fvolatile'

Consider all memory references through pointers to be volatile.

`-fshared-data'

Requests that the data and non-const variables of this compi-

lation be shared data rather than private data. The distinction

makes sense only on certain operating systems, where shared data

is shared between processes running the same program, while pri-

vate data exists in one copy per process.

`-funsigned-char'

Let the type char be the unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is ei-

ther like unsigned char by default or like signed char by default.

(Actually, at present, the default is always signed.)

The type char is always a distinct type from either signed char

or unsigned char, even though its behavior is always just like one

of those two.

Note that this is equivalent to `-fno-signed-char', which is the

negative form of `-fsigned-char'.

`-fsigned-char'

Let the type char be signed, like signed char.

Note that this is equivalent to `-fno-unsigned-char', which is the

negative form of `-funsigned-char'.

`-ffixed-reg '

Treat the register named reg as a �xed register; generated code

should never refer to it (except perhaps as a stack pointer, frame

pointer or in some other �xed role).

reg must be the name of a register. The register names accepted

are machine-speci�c and are de�ned in the REGISTER_NAMES macro

in the machine description macro �le.

This
ag does not have a negative form, because it speci�es a three-

way choice.

`-fcall-used-reg '

Treat the register named reg as an allocatable register that is clob-

bered by function calls. It may be allocated for temporaries or

variables that do not live across a call. Functions compiled this

way will not save and restore the register reg.

Use of this
ag for a register that has a �xed pervasive role in

the machine's execution model, such as the stack pointer or frame

pointer, will produce disastrous results.

This
ag does not have a negative form, because it speci�es a three-

way choice.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 31

`-fcall-saved-reg '

Treat the register named reg as an allocatable register saved by

functions. It may be allocated even for temporaries or variables

that live across a call. Functions compiled this way will save and

restore the register reg if they use it.

Use of this
ag for a register that has a �xed pervasive role in

the machine's execution model, such as the stack pointer or frame

pointer, will produce disastrous results.

A di�erent sort of disaster will result from the use of this
ag for a

register in which function values may be returned.

This
ag does not have a negative form, because it speci�es a three-

way choice.

`-pedantic'

Issue all the warnings demanded by strict ANSI standard C; reject all programs

that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this

option (though a rare few will require `-ansi'). However, without this option,

certain GNU extensions and traditional C features are supported as well. With

this option, they are rejected. There is no reason to use this option; it exists

only to satisfy pedants.

These options control the C preprocessor, which is run on each C source �le before actual

compilation. If you use the `-E' option, nothing is done except C preprocessing. Some of

these options make sense only together with `-E' because they request preprocessor output

that is not suitable for actual compilation.

`-C' Tell the preprocessor not to discard comments. Used with the `-E' option.

`-Idir' Search directory dir for include �les.

`-I-' Any directories speci�ed with `-I' options before the `-I-' option are searched

only for the case of `#include "�le"'; they are not searched for `#include

<�le>'.

If additional directories are speci�ed with `-I' options after the `-I-', these

directories are searched for all `#include' directives. (Ordinarily all `-I' direc-

tories are used this way.)

In addition, the `-I-' option inhibits the use of the current directory as the

�rst search directory for `#include "�le"'. Therefore, the current directory is

searched only if it is requested explicitly with `-I.'. Specifying both `-I-' and

`-I.' allows you to control precisely which directories are searched before the

current one and which are searched after.

`-nostdinc'

Do not search the standard system directories for header �les. Only the di-

rectories you have speci�ed with `-I' options (and the current directory, if

appropriate) are searched.

Between `-nostdinc' and `-I-', you can eliminate all directories from the search

path except those you specify.

Chapter 4: Controlling the C-Compiler Driver (`gcc.ttp') 32

`-M' Tell the preprocessor to output a rule suitable for make describing the depen-

dencies of each source �le. For each source �le, the preprocessor outputs one

make-rule whose target is the object �le name for that source �le and whose

dependencies are all the �les `#include'd in it. This rule may be a single line

or may be continued with `\'-newline if it is long.

`-M' implies `-E'.

`-MM' Like `-M' but the output mentions only the user-header �les included with

`#include "�le"'. System header �les included with `#include <�le>' are omit-

ted.

`-MM' implies `-E'.

`-Dmacro' De�ne macro macro with the empty string as its de�nition.

`-Dmacro=defn'

De�ne macro macro as defn.

`-Umacro' Unde�ne macro macro.

`-T' Support ANSI C trigraphs. You don't want to know about this brain-damage.

The `-ansi' option also has this e�ect.

Chapter 5: Controlling the C++-Compiler Driver (`g++.ttp') 33

5 Controlling the C++-Compiler Driver (`g++.ttp')

The GNU C++ compiler uses a command syntax much like the AT&T C++ compiler.

The g++.ttp program accepts options and �le names as operands. Multiple single-letter

options may not be grouped: `-dr' is very di�erent from `-d -r'.

When you invoke GNU C++, it normally does preprocessing, compilation, assembly and

linking. File names which end in `.c', `.cc', or `.C' are taken as GNU C++ source to be

preprocessed and compiled; compiler output �les plus any input �les with names ending

in `.s' are assembled; then the resulting object �les, plus any other input �les, are linked

together to produce an executable.

Unlike C++, there is no `-F' option. This is because GNU C++ is a native-code C++

compiler, not a front-end pre-processor. The advantages of this organization are faster

compilation speed, better error-reporting capabilities, better opportunity for compiler op-

timization, and true source-level debuggability with the GDB debugger (version 3.4 or

higher).

Command options allow you to stop this process at an intermediate stage. For example,

the `-c' option says not to run the linker. Then the output consists of object �les output

by the assembler.

Other command options are passed on to one stage. Some options control the prepro-

cessor and others the compiler itself. Yet other options control the assembler and linker;

these are not documented here because the GNU assembler and linker are not yet released.

Here are the options to control the overall compilation process, including those that say

whether to link, whether to assemble, and so on. The options, which don't have any text,

behave exactly as their GCC counterparts.

With GCC 2.x there is no independend compiler driver for C++. `gcc.ttp' handles

both cases. One major di�erence between `g++.ttp' from version 1.xx and `gcc.ttp' from

version 2.x is, that you have to explicitly link with `g++.olb'. Therefore when you compile

C++ programs with GCC 2.x you alway have to include -lg++ on the command line, when

you create the �nal executable.

`-o �le'

`-c'

It is intended that the compiler driver of GNU C++ will invoke the appropriate

translator (or series of translators) for a given source �le. Currently, the trans-

lators are selected on the basis of their �le extension. So that one driver can

be used for many di�erent translators, it is important that these extensions be

distinct. It is strongly suggested that users become accustomed to using a `.cc'

�le extension for GNU C++ code, to distinguish it from the `.c' �le extension

already used for GNU CC code.

`-S'

`-E'

`-v'

`-s'

Chapter 5: Controlling the C++-Compiler Driver (`g++.ttp') 34

`-x'

`-G'

These options control the details of GNU C++ compilation itself.

`-ansi'

With this option enabled, di�erences between GNU C++ and AT&T C++ are

also
agged. Because the C++ language de�nition and the ANSI draft di�er on

the interpretation of syntactically identical constructs, it is unlikely that this

ag could possibly be of any real use. (For this reason, this
ag is currently not

fully implemented).

`-traditional'

� The other aspects of `-traditional' are equivalent to GCC.

� The prede�ned macro __cplusplus is de�ned to identify compilation for

C++ 2.0. C++ version 1.2 uses c_plusplus as its identifying macro. Since

GNU C++ implements version 2.0 semantics, the former is de�ned, while

the latter is not. The macro __GNUG__ is also de�ned, so that features

speci�c to GNU C++ can be used conditionally.

`-O'

`-g'

`-w'

`-W'

`-Wimplicit'

`-Wreturn-type'

`-Wunused'

`-Wswitch'

`-Wcomment'

`-Wtrigraphs'

`-Wall'

`-Wshadow'

`-Wid-clash-len'

`-Wpointer-arith'

`-Wcast-qual'

`-Wwrite-strings'

`-p'

`-pg'

`-llibrary '

`-Ldir'

`-nostdlib'

Chapter 5: Controlling the C++-Compiler Driver (`g++.ttp') 35

`-mmachinespec'

`-m68020'

`-mc68020'

`-m68000'

`-mc68000'

`-m68881'

`-msoft-float'

`-mshort'

`-mint'

`-mnobitfield'

`-mbitfield'

`-mrtd'

`-f
ag '

`-ffloat-store'

`-fno-asm'

`-fno-defer-pop'

`-fstrength-reduce'

`-fcombine-regs'

`-fforce-mem'

`-fforce-addr'

`-fomit-frame-pointer'

`-finline-functions'

`-fdefault-inline'

If this option is enabled then member functions de�ned inside class

scope are compiled inline by default, i.e., you don't need to add

inline in front of the member function name. By popular demand,

this option is now the default. To keep GNU C++ from inlining

these member functions, specify -fno-default-inline.

`-fcaller-saves'

`-fkeep-inline-functions'

`-fwritable-strings'

`-fcond-mismatch'

`-fno-function-cse'

`-fvolatile'

`-fshared-data'

`-funsigned-char'

`-fsigned-char'

`-ffixed-reg '

Chapter 5: Controlling the C++-Compiler Driver (`g++.ttp') 36

`-fcall-used-reg '

`-fcall-saved-reg '

`-fstrict-prototype'

Consider the declaration int foo ();. In C++, this means that the function

foo takes no arguments. In ANSI C, this is declared int foo(void);. With

the
ag `-fno-strict-prototype', declaring functions with no arguments is

equivalent to declaring its argument list to be untyped, i.e., int foo (); is

equivalent to saying int foo (...);.

`-felide-constructors'

Using this option instructs the compiler to be smarter about when it can elide

constructors. With out this
ag, GNU C++ and cfront both generate e�ectively

the same code for:

A foo ();

A x (foo ()); // x is initialized by `foo ()', no ctor called here

A y = foo (); // call to `foo ()' heads to temporary,

// y is initialized from the temporary.

Note the di�erence! With this
ag, GNU C++ initializes `y' directly from the

call to `foo ()' without going through a temporary.

`-fall-virtual'

When the `-fall-virtual' option is used, all member functions (except for

constructor functions and new/delete member operators) declared in the same

class with a \method-call" operator method have entries made for them in the

vtable for the given class. In e�ect, all of these methods become \implicitly

virtual."

This does not mean that all calls to these methods will be made through the

vtable. There are some circumstances under which it is obvious that a call to

a given virtual function can be made directly, and in these cases the calls still

go direct.

The e�ect of making all methods of a class with a declared `operator->()()'

implicitly virtual using `-fall-virtual' extends also to all non-constructor

methods of any class derived from such a class.

`-fthis-is-variable'

The incorporation of user-de�ned free store management into C++ has made

assignment to this an anachronism. Therefore, by default GNU C++ treats the

type of this in a member function of class X to be X *const. In other words, it is

illegal to assign to this within a class member function. However, for backwards

compatibility, you can invoke the old behavior by using `-fthis-is-variable'.

`-fsave-memoized'

`-fmemoize-lookups'

These
ags are of use to get the compiler to compile programs faster using

heuristics. They are not on by default since they only do so about half the

time. They other half of the time programs compile more slowly (and take

more memory).

Chapter 5: Controlling the C++-Compiler Driver (`g++.ttp') 37

The �rst time the compiler must build a call to a member function (or reference

to a data member), it must (1) determine whether the class implements member

functions of that name (2) resolve which member function to call (which involves

�guring out what sorts of type conversions need to be made), and (3) check the

visibility of the member function to the caller. All of this adds up to slower

compilation. Normally, the second time a call is made to that member function

(or reference to that data member), it must go through the same lengthy process

again. This means that code like this

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a software cache, a \hit"

signi�cantly reduces this cost. Unfortunately, using the cache introduces an-

other layer of mechanisms which must be implemented, and so incurrs its own

overhead. The `-fmemoize-lookups' enables the software cache.

Because access privileges (visibility) to members and member functions may

di�er from one function context to the next, may need to be
ushed. With

the `-fmemoize-lookups'
ag, the cache is
ushed after every function that is

compiled. With the `-fsave-memoized'
ag, when the compiler determines that

the context of the last function compiled would yield the same access privileges

of the next function to compile, it preserves the cache. This really helps when

de�ning many member functions for the same class: with the exception of

member functions which are friends of other classes, each member function has

exactly the same access privileges as every other, and the cache need not be

ushed.

`-pedantic'

Attempt to support strict ANSI standard C. Since C++ invalidates a number

of ANSI constructions, this switch is of dubious value. Some attempt has

been made to warn about non-standard C++ features, however, even this is of

uncertain value, as there are two C++ standards currently in existence: the

standard as documented by AT&T, and the standard as implemented by the

AT&T C++ compiler. Valid C++ programs should compile properly with or

without this switch. However, without this switch, certain useful or traditional

constructs banned by the standard are supported. With this switch, they are

rejected. There is no reason to use this switch; it exists only to satisfy curious

pedants.

The options, which control the behaviour of the C preprocessor are the same as for GCC

(See Chapter 4 [The C-Compiler Driver], page 21, last section).

Chapter 6: The Preprocessor 38

6 The Preprocessor

6.1 Invoking the C Preprocessor

Most often when you use the C preprocessor you will not have to invoke it explicitly:

the C compiler will do so automatically. However, the preprocessor is sometimes useful

individually.

The C preprocessor expects two �le names as arguments, in�le and out�le. The prepro-

cessor reads in�le together with any other �les it speci�es with `#include'. All the output

generated by the combined input �les is written in out�le.

Either in�le or out�le may be `-', which as in�le means to read from standard input

and as out�le means to write to standard output. Also, if out�le or both �le names are

omitted, the standard output and standard input are used for the omitted �le names.

Here is a table of command options accepted by the C preprocessor. Most of them can

also be given when compiling a C program; they are passed along automatically to the

preprocessor when it is invoked by the compiler.

`-P' Inhibit generation of `#'-lines with line-number information in the output from

the preprocessor. This might be useful when running the preprocessor on some-

thing that is not C code and will be sent to a program which might be confused

by the `#'-lines

`-C' Do not discard comments: pass them through to the output �le. Comments

appearing in arguments of a macro call will be copied to the output before the

expansion of the macro call.

`-T' Process ANSI standard trigraph sequences. These are three-character se-

quences, all starting with `??', that are de�ned by ANSI C to stand for single

characters. For example, `??/' stands for `\', so `'??/n'' is a character constant

for Newline. Strictly speaking, the GNU C preprocessor does not support all

programs in ANSI Standard C unless `-T' is used, but if you ever notice the

di�erence it will be with relief.

You don't want to know any more about trigraphs.

`-pedantic'

Issue warnings required by the ANSI C standard in certain cases such as when

text other than a comment follows `#else' or `#endif'.

`-pedantic-errors'

Like `-pedantic', except that errors are produced rather than warnings.

`-Wtrigraphs'

Warn if any trigraphs are encountered (assuming they are enabled).

`-Wcomment'

Warn whenever a comment-start sequence `/*' appears in a comment.

`-Wall' Requests both `-Wtrigraphs' and `-Wcomment' (but not `-Wtraditional').

Chapter 6: The Preprocessor 39

`-Wtraditional'

Warn about certain constructs that behave di�erently in traditional and ANSI

C.

`-I directory '

Add the directory directory to the end of the list of directories to be searched

for header �les. This can be used to override a system header �le, substituting

your own version, since these directories are searched before the system header

�le directories. If you use more than one `-I' option, the directories are scanned

in left-to-right order; the standard system directories come after.

`-I-' Any directories speci�ed with `-I' options before the `-I-' option are searched

only for the case of `#include "�le"'; they are not searched for `#include

<�le>'.

If additional directories are speci�ed with `-I' options after the `-I-', these

directories are searched for all `#include' directives.

In addition, the `-I-' option inhibits the use of the current directory as the

�rst search directory for `#include "�le"'. Therefore, the current directory is

searched only if it is requested explicitly with `-I.'. Specifying both `-I-' and

`-I.' allows you to control precisely which directories are searched before the

current one and which are searched after.

`-nostdinc'

Do not search the standard system directories for header �les. Only the di-

rectories you have speci�ed with `-I' options (and the current directory, if

appropriate) are searched.

`-nostdinc++'

Do not search for header �les in the C++-speci�c standard directories, but do

still search the other standard directories. (This option is used when building

`libg++'.)

`-D name' Prede�ne name as a macro, with de�nition `1'.

`-D name=de�nition'

Prede�ne name as a macro, with de�nition de�nition. There are no restrictions

on the contents of de�nition, but if you are invoking the preprocessor from a

shell or shell-like program you may need to use the shell's quoting syntax to

protect characters such as spaces that have a meaning in the shell syntax.

`-U name' Do not prede�ne name. If both `-U' and `-D' are speci�ed for one name, the

`-U' beats the `-D' and the name is not prede�ned.

`-undef' Do not prede�ne any nonstandard macros.

`-d' Instead of outputting the result of preprocessing, output a list of `#define'

commands for all the macros de�ned during the execution of the preprocessor.

`-dM' Instead of outputting the result of preprocessing, output a list of `#define'

commands for all the macros de�ned during the execution of the preprocessor,

including prede�ned macros. This gives you a way of �nding out what is pre-

de�ned in your version of the preprocessor; assuming you have no �le `foo.h',

the command

Chapter 6: The Preprocessor 40

touch foo.h; cpp -dM foo.h

will show the values of any prede�ned macros.

`-dD' Like `-dM' except in two respects: it does not include the prede�ned macros,

and it outputs both the `#define' commands and the result of preprocessing.

Both kinds of output go to the standard output �le.

`-M' Instead of outputting the result of preprocessing, output a rule suitable for make

describing the dependencies of the main source �le. The preprocessor outputs

one make rule containing the object �le name for that source �le, a colon, and

the names of all the included �les. If there are many included �les then the rule

is split into several lines using `\'-newline.

This feature is used in automatic updating of make�les.

`-MM' Like `-M' but mention only the �les included with `#include "�le"'. System

header �les included with `#include <�le>' are omitted.

`-i �le' Process �le as input, discarding the resulting output, before processing the

regular input �le. Because the output generated from �le is discarded, the only

e�ect of `-i �le' is to make the macros de�ned in �le available for use in the

main input.

`-MD' Like `-M' but the dependency information is written to �les with names made

by replacing `.c' with `.d' at the end of the input �le names. This is in addition

to compiling the �le as speci�ed|`-MD' does not inhibit ordinary compilation

the way `-M' does.

In Mach, you can use the utility md to merge the `.d' �les into a single depen-

dency �le suitable for using with the `make' command.

`-MMD' Like `-MD' except mention only user header �les, not system header �les.

`-H' Print the name of each header �le used, in addition to other normal activities.

`-imacros �le'

Process �le as input, discarding the resulting output, before processing the

regular input �le. Because the output generated from �le is discarded, the only

e�ect of `-imacros �le' is to make the macros de�ned in �le available for use

in the main input.

`-include �le'

Process �le as input, and include all the resulting output, before processing the

regular input �le.

`-lang-c'

`-lang-c++'

`-lang-objc'

`-lang-objc++'

Specify the source language. `-lang-c++' makes the preprocessor handle C++

comment syntax, and includes extra default include directories for C++, and

`-lang-objc' enables the Objective C `#import' directive. `-lang-c' explicitly

turns o� both of these extensions, and `-lang-objc++' enables both.

Chapter 6: The Preprocessor 41

These options are generated by the compiler driver gcc, but not passed from

the `gcc' command line.

`-lint' Look for commands to the program checker lint embedded in comments,

and emit them preceded by `#pragma lint'. For example, the comment `/*

NOTREACHED */' becomes `#pragma lint NOTREACHED'.

This option is available only when you call cpp directly; gcc will not pass it

from its command line.

`-$' Forbid the use of `$' in identi�ers. This is required for ANSI conformance. gcc

automatically supplies this option to the preprocessor if you specify `-ansi',

but gcc doesn't recognize the `-$' option itself|to use it without the other

e�ects of `-ansi', you must call the preprocessor directly.

6.2 Prede�ned Macros

The standard prede�ned macros are available with the same meanings regardless of the

machine or operating system on which you are using GNU C. Their names all start and

end with double underscores. Those preceding __GNUC__ in this table are standardized by

ANSI C; the rest are GNU C extensions.

__FILE__ This macro expands to the name of the current input �le, in the form of a C

string constant. The precise name returned is the one that was speci�ed in

`#include' or as the input �le name argument.

__LINE__ This macro expands to the current input line number, in the form of a decimal

integer constant. While we call it a prede�ned macro, it's a pretty strange

macro, since its \de�nition" changes with each new line of source code.

This and `__FILE__' are useful in generating an error message to report an

inconsistency detected by the program; the message can state the source line

at which the inconsistency was detected. For example,

fprintf (stderr,

"Internal error: negative string length "

"%d at %s, line %d.",

length, __FILE__, __LINE__);

A `#include' command changes the expansions of `__FILE__' and `__LINE__' to

correspond to the included �le. At the end of that �le, when processing resumes

on the input �le that contained the `#include' command, the expansions of

`__FILE__' and `__LINE__' revert to the values they had before the `#include'

(but `__LINE__' is then incremented by one as processing moves to the line

after the `#include').

The expansions of both `__FILE__' and `__LINE__' are altered if a `#line'

command is used.

__INCLUDE_LEVEL__

This macro expands to a decimal integer constant that represents the depth

of nesting in include �les. The value of this macro is incremented on every

`#include' command and decremented at every end of �le.

Chapter 6: The Preprocessor 42

__DATE__ This macro expands to a string constant that describes the date on which the

preprocessor is being run. The string constant contains eleven characters and

looks like `"Jan 29 1987"' or `"Apr 1 1905"'.

__TIME__ This macro expands to a string constant that describes the time at which the

preprocessor is being run. The string constant contains eight characters and

looks like `"23:59:01"'.

__STDC__ This macro expands to the constant 1, to signify that this is ANSI Standard

C. (Whether that is actually true depends on what C compiler will operate on

the output from the preprocessor.)

__GNUC__ This macro is de�ned if and only if this is GNU C. This macro is de�ned

only when the entire GNU C compiler is in use; if you invoke the preprocessor

directly, `__GNUC__' is unde�ned.

__STRICT_ANSI__

This macro is de�ned if and only if the `-ansi' switch was speci�ed when GNU

C was invoked. Its de�nition is the null string. This macro exists primarily to

direct certain GNU header �les not to de�ne certain traditional U**x constructs

which are incompatible with ANSI C.

__BASE_FILE__

This macro expands to the name of the main input �le, in the form of a C string

constant. This is the source �le that was speci�ed as an argument when the C

compiler was invoked.

__VERSION__

This macro expands to a string which describes the version number of GNU

C. The string is normally a sequence of decimal numbers separated by periods,

such as `"1.18"'. The only reasonable use of this macro is to incorporate it

into a string constant.

__OPTIMIZE__

This macro is de�ned in optimizing compilations. It causes certain GNU header

�les to de�ne alternative macro de�nitions for some system library functions.

It is unwise to refer to or test the de�nition of this macro unless you make very

sure that programs will execute with the same e�ect regardless.

__CHAR_UNSIGNED__

This macro is de�ned if and only if the data type char is unsigned on the target

machine. It exists to cause the standard header �le `limit.h' to work correctly.

It is bad practice to refer to this macro yourself; instead, refer to the standard

macros de�ned in `limit.h'.

__MSHORT__

This macro is de�ned, if `gcc.ttp' is invoked with the `-mshort' option, which

causes integers to be 16 bit. Please carefully examine the prototypes in the

`#include <>' headers for types before using `-mshort'.

__MINT__ This macros is de�ned, if `gcc.ttp' is invoked with the `-mint' option. This

macros activates some portions of the header �les, which are MiNT speci�c. Up

Chapter 6: The Preprocessor 43

to version 8 of the MiNT libraries and headers the header �les of J.R.Bammi's

libraries are compatible with the ones from Eric Smith's library. Therefore if

you were writing programs for MiNT you could stick to Bammi's headers and

use the `-mint' option. I don't know, if header �les are still compatible with

version 10 of the MiNT libraries.

__MBASE__

__MBASESTR__

hudli wirz

Apart from the above listed macros, there are usually some more to to indicate what

type of system and machine is in use. For example `unix' is normally de�ned on all U**x

systems. Other macros describe more or less the type of CPU the system runs on. GNU

CC for the Atari ST has the following macros prede�ned.

� `atarist'

� `gem'

� `m68k'

Please keep in mind, that these macros are only de�ned, if the preprocessor is invoked

from the compiler driver `gcc.ttp'.

These prede�ned symbols are not only nonstandard, they are contrary to the ANSI stan-

dard because their names do not start with underscores. However, the GNU C preprocessor

would be useless if it did not prede�ne the same names that are normally prede�ned on the

system and machine you are using. Even system header �les check the prede�ned names

and will generate incorrect declarations if they do not �nd the names that are expected.

The `-ansi' option which requests complete support for ANSI C inhibits the de�nition

of these prede�ned symbols.

Chapter 7: The GNU Assembler (GAS) 44

7 The GNU Assembler (GAS)

Most of the time you will be programming in C. But there may certain situations, where

it is feasible to write in assembler. Time is usually a main reason to dive into assembler

programming, when you have to squeeze the last redundant machine cycle out of your

routine, to meet certain time limits. Another reason might be, that you have to do very

low level stu� like �ddling with bits in the registers of a peripheral chip. An example for

low level stu� is the startup module `crt0.o', which is written in assembler.

If you already have some experience in assembler programming, you might miss the

feature of creating macros. This is not really a lack given the fact, that the assembler

originated from an U**x environment. Under this operating system there is a tools for

nearly every purpose. If you were in the need of an extensive macros facility, you would use

the M4 macro processor. A GNU version of the M4 macro processor exists. It should be

no problem to port it to the Atari with GCC. For some macro processing tasks you just as

well use the C preprocessor. What I personally miss is the ability to produce a listing, but

this will be �xed with GAS 1.92.

One command line option was introduced only very lately. The changes for the option

`-m68040' were part of update 20, which Bammi released around end of April 1992. The

assembler identi�es itself, when invoked with the `-v' option with the string `GNU assembler

version 1.38 atariST PatchLevel 2'.

7.1 Invoking the Assembler

`gcc-as.ttp' supports the following command line options. The output is written to

`a.out' by default.

`-G' assembles the debugging information the C compiler included into the output.

Without this
ag the debugging information is otherwise discarded.

`-L' Normally all labels, that start with a `L' are discarded and don't show up as

symbols in the object code module. They are local to that assembler module.

If the `-L' option is given, all local labels will be included in the object code

module.

`-m68000'

`-m68010'

`-m68020'

`-m68040' These options modify the behavior of assembler in respect of the used CPU.

The M68020, for example, allows relative branches with 32-bit o�set.

`-o�lename'

writes the output to �lename instead of `a.out'.

`-R' The information, which normally would be assembled into the data section of

the program, is moved into the text section.

`-v' displays the version of the assembler.

`-W' suppresses all warning messages.

Chapter 7: The GNU Assembler (GAS) 45

7.2 Syntax

The assembler uses a slightly modi�ed syntax from the one you might know from other

68000 assemblers, which use the original Motorola syntax. The next sections trys to describe

the syntax, GAS uses.

The most obvious di�erences are the missing `.' and the usage of the at sign (`@'). The

original Motorola syntax uses the `.' to separate the size modi�er (b, w, l) from the main

instruction. In Motorola syntax one would write `move.l #1,d0' to move a long word with

value 1 into register d0. With GAS you simple write `movel #1,d0'. The `@' is used to mark

an indirection equivalent to the Motorola parentheses. To move a long word of value 1 to

the location addressed by a0, you have to write `movel #1,a0@'. The equivalent instruction

expressed in Motorola syntax is `move.l #1,(a0)'. The `#' indicates immediate data in

both cases.

7.2.1 Register Names and Addressing Modes

The register mnemonics are d0: : :d7 for the data registers and a0: : :a7 or sp for address

register and the stack pointer. pc is the program counter, sr the status register, ccr the

condition code register and usp the user stack pointer.

The following table shows the operands GAS can parse. (The �rst part part describe

the used abbreviations. The second part show the addressing modes with a equivalent C

expression.)

numb: a 8 bit number

numw: a 16 bit number

numl: a 32 bit number

dreg: data register 0: : :7

reg: address or data register

areg: address register 0: : :7

apc: address register or PC

num: a 16 or 32 bit number

num2: a 16 or 32 bit number

sz: w or l; if omitted, l is assumed.

scale: 1 2 4 or 8. If omitted, 1 is assumed.

Addressing Modes:

Immediate Data

#num --> NUM

Data- or Address Register Direct

dreg --> dreg

areg --> areg

Address Register Indirect

Chapter 7: The GNU Assembler (GAS) 46

areg@ --> *(areg)

Address Register Indirect with Postincrement or Predecrement

areg@+ --> *(areg++)

areg@- --> *(--areg)

Address Register (or PC) Indirect with Displacement

apc@(numw) --> *(apc+numw)

Address Register (or PC) Indirect with Index (8-Bit Displacement)

(M68020 only)

apc@(num,reg:sz:scale) --> *(apc+num+reg*scale)

apc@(reg:sz:scale) --> same, with num=0

Memory Indirect Postindexed

(M68020 only)

apc@(num)@(num2,reg:sz:scale) --> *(*(apc+num)+num2+reg*scale)

apc@(num)@(reg:sz:scale) --> same, with num2=0

apc@(num)@(num2) --> *(*(apc+num)+num2)

(previous mode without an index reg)

Memory Indirect Preindexed

(M68020 only)

apc@(num,reg:sz:scale)@(num2) --> *(*(apc+num+reg*scale)+num2)

apc@(reg:sz:scale)@(num2) --> same, with num=0

Absolute Address

num:sz --> *(num)

num --> *(num) (sz L assumed)

7.2.2 Labels and Identi�ers

User de�ned identi�ers are basically de�ned by the same rules as C identi�er. They may

contain the digits 0: : :9, the letters A: : :z and the underscore and must not start with a

digit. Identi�er, which end with a `:' are labels. A special form of labels starts with a `L'

or consists of only a digit. Both types are local labels, which disappear, when the assembly

is complete (unless the `-L' option was speci�ed). They can't be used to resolve external

references. The `L' type label are referenced by their name, just as any other label. The digit

type labels form a special kind of local labels. You might also call them temporary labels.

They are especially useful when you have to create small loops, which poll a peripheral or

�ll a memory area. They are referenced by appending either a `f', for a forward reference,

or a `b', for a backward reference, to the digit. Lets look at the following example, which is

used to split a memory area starting at 0x80000. All data on an even addresses is copied

to the area starting at 0x70000; all data from odd addresses goes to the area starting at

0x78000.

start:

lea 0x80000,a0

lea 0x70000,a1

lea 0x78000,a2

movel #0x7fff,d5

0: | label `0' is defined

Chapter 7: The GNU Assembler (GAS) 47

moveb a0@+,a1@+

moveb a0@+,a2@+

dbra d5,0b | reference of label `0'

: : :

The label `0' is referenced 3 lines later by `0b', since the reference is backward. You can

use the label `0' again at a later time to construct more such loops. Since this temporary

labels are restricted to one digit in length, you can only build constructs, which use 10

temporary labels at the same time.

7.2.3 Comments

The above example also shows, that comments start with a `|'. `#' is also used to mark

a comments. The C compiler and the preprocessor generate lines, that start with a `#'.

7.2.4 Numerical and String Constants

Numerical values are given the same way as in a C programs. By default number are

taken to be decimal. A leading `0' denotes an octal and a `0x' a hexadecimal value. Floating

point numbers start with a `0f'. The optional exponent starts with a `e' or `E'.

String constants are equivalent to C de�ned. They are enclosed in `"'. Some special

character constants are de�ned by `\' and a following letter. These characters are possible:

\b Backspace, Code 0x08

\t Tab, Code 0x09

\n Line Feed, Code 0x0a

\f Form Feed, Code 0x0c

\r Carriage Return, Code 0x0d

\\ Backslash itself

\" Double Quote itself

\number were number is a octal number with up to 3 digits specifying the character

code.

7.2.5 Assignments and Operators

A `=' is used to assign a value to a Symbol.

Lexp_frame = 8

This is equivalent to the `equ' directive other assemblers use.

GAS supports addition (+), subtraction (-), multiplication(*), division (/), right shift

(>), left shift (<), and (&), or (|), not (!), xor (^) and modulo (%) in expressions. The order

of precedence is

Rank Examples

lowest 0 operand, (expression)

1 + -

Chapter 7: The GNU Assembler (GAS) 48

2 & ^ ! |

3 * / % < >

Parentheses are used to coerce the order of evaluation.

7.2.6 Segments, Location Counters and Labels

A program written in assembler language may be broken into three di�erent segments;

the TEXT, DATA and BSS sections. Pseudo opcodes are used to switch between the

sections. The assembler maintains a location counter for each segment. When a label is

used in the assembler input, it is assigned the current value of the active location counter.

The location counter is incremented with every byte, that the assembler outputs. GAS

actually allows you to have more than one TEXT or DATA segment. This is so to ease

code generation by high level compilers. The assembler concatenates the di�erent sections

in the end to form continuous regions of TEXT and/or DATA. When you do assembly

programming by hand you would stick to the pseudo opcodes `.text' or `.data', which use

text or data segment with number 0 by default.

7.2.7 Types

Symbol and Labels can be of one of three type. A Symbol is absolute; when it's values is

known at assembly time. A assignment like `Lexp_frame = 8' gives the symbol `Lexp_frame'

the absolute value 8. A symbol or label, which contains an o�set from the beginning of a

section, is called relocatable. The actual value of this symbol can only be determined after

the linking process or when the program is running in memory. The third type of symbols

are unde�ned externals. The actual value of this symbol is de�ned in an other program.

When di�erent types of symbols are combined to form expressions the following rules

apply: (abs = absolute, rel = relocatable, ext = unde�ned external)

abs + abs => abs

abs + rel = rel + abs => rel

abs + ext = ext + abs => ext

abs - abs => abs

rel - abs => rel

ext - abs => ext

rel - rel => abs

(makes only sense, when both relocatable expression are relative to

same segment)

All other possible operators are only useful to form expressions with absolute values or

symbols.

7.3 Supported Pseudo Opcodes (Directives)

All pseudo opcodes start with a `.'. They are followed by 0, 1 or more expressions

separated by commas (depending on the directive). The following table omits the pseudo

opcodes, which include special information for debugging purposes (for GDB).

.abort aborts the assembly on the point.

Chapter 7: The GNU Assembler (GAS) 49

.align integer

aligns the current segment in size to integer power of 2. The maximum value

of integer is 15. The lines

.text

some code : : :

.align 10 | 2^10 = 1024

.data

some more code : : :

.align 10 | 2^10 = 1024

will create text and data sections, which both have the size 1024, although the

actual code, that goes into the sections may be smaller.

.ascii string[,string,: : :]

includes the string('s) in the assembly output.

.asciz string[,string,: : :]

This directive is the same as above, but additionally appends a `\0' character

to the string.

.byte expr[,expr,: : :]

puts consecutive bytes with value expr into the output.

.comm identi�er,integer

creates a common area of integer bytes in the current segment, which is refer-

enced by identi�er. The identi�er is visible from the outside of the module. It

can therefore be used to resolve external reference from other modules.

.data [integer]

switches to DATA section integer. If integer is omitted, data section 0 is se-

lected.

.desc Whatsit good for ???

.double double[,double,: : :]

puts consecutive doubles with value double into the output.

.even sets the location counter of the current segment to the next even value.

.file

.line If a �le is assembled, which was generated by a compiler or preprocessed by the

C preprocessor, the input may contain lines like `# 132 stdio.h'. These lines

are change by the assembler to the form

.line 132

.file stdio.h

.fill count,size,expr

puts count areas with size into the output. Each area contains the value expr.

size may be an even number up to or equal to 8. The line

.fill 3, 4, 0xa5a

would put the following byte sequence in the output (`|' is only used to mark

the size of the area.)

Chapter 7: The GNU Assembler (GAS) 50

00 00 0a 5a | 00 00 0a 5a | 00 00 0a 5a

.float
oat[,
oat,: : :]

puts consecutive
oats with value
oat into the output.

.globl identi�er[,identi�er,: : :]

When labels or identi�ers are assigned, they are only locally de�ned. The

.globl directive gives identi�er external scope. The label can therefore be

used to resolve external references from other modules. identi�er don't have to

be assigned in the current module, but can be de�ned in another module.

.int expr[,expr,: : :]

puts consecutive integers (32 bit) with value expr into the output.

.lcomm identi�er,integer

is basically the same as .comm, except that area is allocated in the BSS segment.

The scope of identi�er is only local (only visible in the module, where it is

de�ned).

.long expr[,expr,: : :]

same as int.

.lsym identi�er,expr

sets the local identi�er to the value of expr. The identi�er is referenced by

preceding it with a `L'. (Lidenti�er) (When I tried this, the linker threw a

bomb. Trying again crashed the system.)

.octa Whatsit good for ???

.org expr sets the location counter of the current segment to expr.

.quad Whatsit good for ???

.set identi�er,expr

sets identi�er to the value of expr. If identi�er is not explicitly marked external

by the .globl directive, is has only local scope.

.short expr[,expr,: : :]

puts consecutive shorts (16 bit) with value expr into the output.

.space count, expr

puts count consecutive number of bytes with value expr into the output. The

line

.space 5,3

is equivalent to

.byte 3, 3, 3, 3, 3

The space directive is a special form of the fill directive.

.text [integer]

switches to TEXT section integer. If integer is omitted, text section 0 is se-

lected.

.word expr[,expr,: : :]

same as .short.

Chapter 7: The GNU Assembler (GAS) 51

7.4 Converting Motorola Assembler Syntax

There is a utility, which is part of the MiNT source distribution since around 0.96 pl14.

It is called `asmtrans.ttp'. This utility is used to convert some of MiNT's source �les,

which are written in standard Motorola assembler syntax into GAS syntax. Eric R. Smith

wrote this little utility, so that he doesn't have to maintain the assembler �les in more than

on syntax versions.

The general syntax to invoke `asmtrans.ttp' is:

asmtrans [options] in�le

The following options are possible:

`-gas' converts the input �le into GAS syntax, also known as MIT syntax. Apart from

the modi�cation of the standard assembler intructions the following pseude

opcodes or assembler directives are mapped:

� `XREF'

)

`.globl'

� `XDEF'

)

`.globl'

� `TEXT'

)

`.text'

� `DATA'

)

`.data'

� `BSS'

)

`.data'

� `END'

)

`| END'

� `dc.l'

)

`.long'

� `dc.w'

)

`.word'

� `dc.b'

)

`.byte'

`-asm' converts the input �le into ASM syntax (I think the assembler of the Lattice

compiler is meant). This option only causes some assembler directives to be

changed.

� `TEXT'

)

`SECTION TEXT'

� `DATA'

)

`SECTION DATA'

� `BSS'

)

`SECTION BSS'

`-purec' converts the input �le into Pure C syntax for the assembler from the Pure C

compiler. As far as I can tell, the only e�ect, that this option has is, that a

leading underscore is removed from every label.

`-o out�le'

writes the output into the �le out�le.

`asmtrans.ttp' supports some simple directives to allow conditional processing. The

directives are very similar to the ones of standard C preprocessor except that they don't

start with `#' but with `%'. The following directives are supported.

%define name

%include �le

%ifdef name

%ifndef name

Chapter 7: The GNU Assembler (GAS) 52

%else

%endif

The directives behave equivalent to their cpp counter parts. The de�nition name may

consist of the same characters as any C symbol. It may begin with a `_' or a letter and

continue with either `_', letter or digit.

Chapter 8: The Utilities 53

8 The Utilities

This chapter describes the programs, which don't actually convert the source code into

object code, but instead combine several object code modules to a runnable program or an

object code library. Other programs can be used to print symbol information from either

the object code or the executable. The last group of utility programs modify the executables

in terms of memory usage and startup time.

8.1 The Linker `gcc-ld.ttp'

A linker combines several object modules and extracts modules from a library to produce

a runnable program. During this process all unde�ned symbol references are resolved.

Additionally all sections from the object modules, which belong to either the TEXT, DATA

or BSS are moved to the correct program segment. For example, all areas of all the object

code modules, which have the type TEXT, are moved to form one large TEXT section.

The same applies to the DATA and BSS sections.

For the most time you don't have invoke the linker explicitly. The compiler driver does

the job for you. But in case you have to, the general syntax is:

gcc-ld [options] $GNULIB\crt0.o �le.o -llibrary

The above syntax assumes, that the executable is produced from C source code, which

normally makes is necessary to link a startup module and a library. If an executable from a

self contained assembler text is to be created, the startup module `crt0.o' and the library

might be missing. `gcc-ld.ttp' creates a �le `a.out' by default. The linker can also append

a DRI compatible or an extended symbol table to the executable.

`gcc-ld.ttp' supports the following command line options. The options `-f' and `-h'

were introduced with update 29, which brought the utilites to patchlevel 34 (March 1993).

`-fload
ags'

Set the program load
ags to load
ags. The default program load
ags is 7

(run and malloc in/from TT ram, fastload). (See Section 8.3.6 [toglclr.ttp],

page 58 for additional info)

`-haltheap size'

Set the minalt size in the executable header to altheap size. The default value

is zero. Remember that value is speci�ed in 128k units. What this means

is (quoting mintsrc/mem.c): If (
ags & F ALTLOAD == 1), then we might

decide to load in alternate RAM if enough is available. "enough" is: if more alt

ram than ST ram, load there; otherwise, if more than (minalt+1)*128K alt ram

available for heap space, load in alt ram ("minalt" is the high byte of
ags).

`-llibrary ' Search library to satisfy unresolved references. The environment variable

GNULIB is used to locate the library. GNULIB contains a `,' or `;' separated list

of paths, each path without a trailing slash or backslash.

`-Ldirectory '

Includes directory in the search path to locate a library.

Chapter 8: The Utilities 54

`-M' During the linking process extensive information about the encountered symbols

is displayed.

`-n'

`-G' Instead of the standard DRI compatible symbol table, an extended symbol table

is written, which allows symbol names to be up to 22 characters long. Most

of the other utility programs have been updated to work with this format.

The most bene�t you get with `gprof.ttp' and `szadb' (the adb-like debugger,

originally written for the Sozobon C compiler by Johann Rueg and Don Dugger

and later signi�cantly improved by Michal Jaegermann).

`-o�lename'

The resulting output of the linking process is written to �lename instead to

`a.out'.

`-s' prevents the linker from attaching a symbol table to the executable.

`-t' During the linking process the �les loaded and the modules extracted from a

library are displayed.

`-x' This option discards all local symbols from the DRI symbol table. All global

symbols are left in place.

`sym-ld.ttp'

`sym-ld.ttp' is a special version of the linker. His sole purpose is to create a special

symbol �le used by the GNU debugger. The following example show the usage. (`$' is the

prompt of a CLI, `*' is the GDB prompt, `#' marks a comment)

$ gcc -c -g foo.c # compile `foo.c'

$ gcc -o foo.prg foo.o -lgnu # link with normal `gcc-ld.ttp'

$ sym-ld -o foo.sym $(GNULIB)\crt0.o foo.o -lgnu

(or -lgnu16 if you use -mshort)

link with `sym-ld.ttp' to get symbol file

$ gdb

* exec-file foo.prg # executable (`gcc-ld.ttp' linked Atari

executable)

* symbol-file foo.sym # symbols file (`sym-ld.ttp' `-o' linked)

* run

* <start doing gdb commands here>

: : :

* q

$ # back

Note the line in the example, where `sym-ld.ttp' is invoked. A library `gnugdb.olb'

is used to create the symbol �le. This is just like the normal library `gnu.olb' except,

that is was compiled with the `-g' option. If you don't have this library, use the normal

library (`-lgnu'). In this case you can't single step through library functions at the source

level. Also note, that `sym-ld.ttp' is invoked without the `-r' option. This option was

only necessary for some very early versions of `gdb'.

For a bit more detailed info about debugging with `gdb' turn to chapter See Chapter 9

[Debugging], page 62.

Chapter 8: The Utilities 55

8.2 The Archiver `gcc-ar.ttp'

The archivers main purpose is to make things in programming life easier. The archiver

combines several object modules into one large library. At a later time the linker will then

retrieve the modules needed to resolve all references. Without the library you would have

to supply all modules by hand on the command line or the linker would have to search

through all the �les to resolve the references (The library `gnu.olb' contains around 150

modules).

The general syntax for invoking `gcc-ar.ttp' is:

gcc-ar option [position] library [module]

The option speci�es the action to be taken on the library or a module of that library.

option also includes modi�ers for the action. The optional position argument is a member

of the library. It is used, to mark a speci�c position in the library ; an `add' operation

would than place a new module before or after that position. The next argument speci�es

the library. The recommended naming convention for the creation of a new libraries is

`library.olb'. If you don't use this convention, the compiler driver `gcc.ttp' will have

trouble to �nd them. module is usually an object code �le generated by the compiler.

`gcc-ar.ttp' supports the following command line options. If you don't use a position

the named module is appended or moved to the end of the library

`a' The `add', `replace' or `move' operation should place the module after position.

`b' The `add', `replace' or `move' operation should place the module before posi-

tion.

`c' If the speci�ed library does not exist, it is silently created. Without this option

`gcc-ar.ttp' would give you a notice, that it created a new library.

`d' deletes module from the library.

`i' This is the same as option `b'.

`l' This option is ignored. (Why is there in the �rst place ??)

`m' Move a member around inside the library.

`o' preserves the modi�cation time of a module, that is extracted from the library.

`p' This option pipes the speci�ed module directly to `<stdout>'.

`q' A quick append is performed.

`r' causes module to be replaced. If the named module is not already present, it

is appended. This is also the default action, when no option is given.

`s' creates special member in the library called `__.SYMDEF', which contains a di-

rectory of the external names de�ned by all the other members.

`t' lists the members, that are currently in the library. If the option `v' is also

given, additional information about �le permissions, user- and group-id's and

last modi�cation date of the members are displayed. Of course, �le permissions

and user- and group-id's don't make much sense on the Atari ST.

Chapter 8: The Utilities 56

`u' If this option is given, an existing module in the library is only replaced, if the

modi�cation time of the new module is newer than the modi�cation time of the

one already in the library.

`v' gives you some additional information depending on the operation, that cur-

rently performed.

`x' Extract module from the library.

8.3 Miscellaneous Utilities

There are some additional utility programs, which are used to either modify an exe-

cutable, or which give you some info about either object �les, object libraries or executables.

Some programs, which are described in the following sections can only work correctly, if

the symbol table is still attached to the executable. So, if you want to modify the memory

usage of a program (with `fixstk.ttp') at a later time, you should keep the unstripped

executables around or use the command `xstrip.ttp' and keep only the _stksize symbol.

8.3.1 `gcc-nm.ttp'

`gcc-nm.ttp' generates a listing about the symbols found in a GNU object �le or library.

To list the symbols, which are attached to a TOS executable use `cnm.ttp'.

The output of `gcc-nm.ttp' looks like the following sample:

00000870 b _Lbss

U _alloca

000003b4 t _glob_dir_to_array

00000532 T _glob_filename

00000248 T _glob_vector

U _malloc

0000086c D _noglob_dot_filenames

U _opendir

U _readdir

00000000 t gcc_compiled.

The �rst column displays the relative address of that symbol in the object �le. If the

symbol has the type U (unde�ned external) the space in left blank. The next column shows

the type of the symbol. In general, symbols, which have an external scope (visible for other

object module) are marked with an uppercase letter. Symbols, which are local to the object

�le are marked with lowercase letters. The following letters are possible:

`C' marks variables, which are de�ned in that source module, but not initialized.

A declaration like

int variable;

would create a line marked with a `C'. The �rst column would show the size of

that variable in bytes instead of the relative address in the object module.

`b' Variables, which are declared with

static int variable;

are displayed with a `b'.

Chapter 8: The Utilities 57

`D' marks variables, which are initialized at declaration time. A declaration like

int variable = 1;

would show as a line with a `D' in it.

`d' Variables, which are initialized at declaration time declared are displayed with

a `d'. A declaration like

static int variable = 1;

would create a line marked with a `d'.

`t,T' mark text (in other words: actual program code). Functions in your C source,

which have the storage class static, would be displayed with a `t'. All other

functions in that source module, which are visible to other modules, would show

up with a `T'.

`U' All functions, which are de�ned in other modules and referenced in this module,

are displayed with a `U'.

The last column shows the symbol name.

`gcc-nm.ttp' supports the following command line options.

`-a' In case a �le is compiled with the `-g' or `-gg' option, special information for

debugging purposes is included in the object code. This information is listed

by supplying the `-a' option.

`-g' This option restricts the output to include only symbols, which have an external

scope.

`-n' Without any options the output is sorted in ascii order. By supplying the `-n',

the listing is sorted in numerical order by the addresses in �rst column.

`-o' If this option is given, every output line is preceded by a �lename in the form

`�le:', naming the �le in which the symbol appears. If the �le to be listed, is

an archive, the line begins in the form `library(member):'.

`-p' The symbols are listed in the order as they appear in the object code module.

`-r' The output is sorted in reverse ascii order.

`-s' Archives may contain a special member called `__.SYMDEF'. Don't ask me about

it purpose. Anyway, using this option show the content of this member.

`-u' Only unde�ned symbols are listed.

8.3.2 `cnm.ttp'

`cnm.ttp' prints the symbols which are attached to an executable. This can be either a

standard DRI or an extended symbol table. To list the symbols in an object �le or library

use `gcc-nm.ttp'. The following options are supported by `cnm.ttp':

`g' List only those symbols, which are
agged as global.

`u' List the symbols in the order as they appear in the symbol table (unsorted).

Without any options, all symbols, which appear in the symbols table, are listed and

sorted according to their value.

Chapter 8: The Utilities 58

8.3.3 `gcc-size.ttp'

`gcc-size.ttp' reports the sizes of the sections (text, data and bss) in an GNU object

�le or library. `gcc-size.ttp' has no additional options.

The following example shows the output, when `gcc-size.ttp' is executed with an

object �le and an object library as arguments:

c:\gnu\lib => gcc-size crt0.o iio.olb

text data bss dec hex

960 12 8 980 3d4 crt0.o

1580 0 0 1580 62c iio.olb(idoprnt.o)

1884 0 0 1884 75c iio.olb(iscanf.o)

116 0 0 116 74 iio.olb(fprintf.o)

164 0 0 164 a4 iio.olb(sprintf.o)

164 0 0 164 a4 iio.olb(fscanf.o)

144 0 0 144 90 iio.olb(sscanf.o)

The name in braces in the last column is the member of the library.

8.3.4 `printstk.ttp'

`printstk.ttp' works basically the same way as `fixstk.ttp', but displays the current

value at the location _stksize or _initial_stack. The usage is:

printstk �lename : : :

If `printstk.ttp' is used on some of the executables of the GCC distribution, you should

see a value of `-1', which means that all available memory is used by the program (at least

for the programs `gcc-cpp.ttp' and `gcc-cc1.ttp').

8.3.5 `fixstk.ttp'

`fixstk.ttp' is used to modify the current stacksize of an executable. It does this by

looking up the symbol _stksize in the symbol table portion of the �le and than changes

the values of the location where _stksize points to. The usage is:

fixstk size �le : : :

size is the stacksize in Bytes, KBytes or MBytes. To specify size in Kbytes or Mbytes,

append a `K' or a `M' to the integer number.

For dumping applications like Scott Kolodzieski's port of GNU Emacs 18.57 `fixstk.ttp'

looks up the symbol _initial_stack instead of _stksize.

fixstk 128K gcc-as.ttp

sets the stacksize of `gcc-as.ttp' to 128 Kbytes.

8.3.6 `toglclr.ttp'

The general syntax to invoke `toglclr.ttp' is:

toglclr [options] �le : : :

`toglclr.ttp' supports the following options:

`-fload' Toggle the `fast load'
ag.

Chapter 8: The Utilities 59

`-frun' Toggle the `fast run'
ag.

`-fram' Toggle the `fast ram malloc'
ag.

`-fshare' Toggle the `shared text'
ag.

`-private'

Set memory protection to Private. Only the process itself and the AES have

access to the process's memory. This is the normal state.

`-global' Set memory protection to Global. Every process has unrestricted access to

the process's memory.

`-super' Set memory protection to Super. Every process in supervisor mode has unre-

stricted access to the process's memory.

`-readable'

Set memory protection to Private/Readable. Every process has access to

the process's memory, but only for read operations.

The last four option are not yet part of the o�cial `toglclr.ttp'. I've send the changes

to J.R.Bammi. They will probably be part of an future update.

If TOS launches an application, it clears all memory starting from the BSS section to the

end of the TPA.With earlier TOS versions (pre TOS 1.4) this could take quite a considerable

amount of time. The clearing algorithm was improved during the di�erent TOS releases,

but it is still used, although most of the existing programs don't need a cleared memory.

Well, most is not all; therefore for compatibility sake the feature will stay in place.

With TOS 1.4 you can keep the GEMDOS loader from clearing all memory. The long

word with o�set 0x16 in the program header is used to determine whether the memory

should be cleared or not. Setting the bit 0 of this longword to 1 prevents the loader from

clearing all memory. `toglclr.ttp' serves exactly that purpose, namely toggling this long

word.

TOS 2.x and 3.x gave another two bits in the above mentioned longword a meaning. The

`fast run' bit 1 is used to determine, if a program should be started in ordinary ST-ram

(bit 1 = 0) or in alternate ram. In case of the TT or the SST68030 from Dave Small, this

is ram which is not slowed down by any video hardware.

The `fast ram malloc' bit 2 determines, if any subsequent malloc's, which a program

might do, should be satis�ed from slow ST-ram (bit 2 = 0) or from alterate ram. All these

ags have been introduced to increase compatibility between the di�erent TOS versions.

To toggle the `shared text' bit only makes sense, if you'r using MiNT 0.96 pl14 and

higher or MultiTOS. An additional requirement is, that the program is compiled with the

GCC `-mbaserel' option and linked with the corresponding libraries. In essence this means,

if the `shared text' bit is set, multiple processes of the same program execute on the same

text (program code) segment in memory.

Using the options, which modify the memory protection of the program shows only e�ect,

if you're running MultiTOS on a machine with MMU (M68030).

Chapter 8: The Utilities 60

8.3.7 `xstrip.ttp'

`xstrip.ttp' removes the symbol table from a TOS executable �le. The default be-

haviour, which is to completely remove the symbol table (except the symbol _stksize), may

be modi�ed by specifying additional command line optione. The systax for the `xstrip.ttp'

command is:

xstrip [-a] [-g] [-k] [-l names] [-t] �le : : :

`-a' Specifying this option completely removes the symbol table.

`-g' This option causes `xstrip.ttp' to keep all global symbols.

`-k' keeps the _stksize symbol, so that the stack size can be adjusted even for a

nearly-stripped GCC produced executables.

`-l names'

keeps all symbols listed in a �le names (one symbol per line).

`-t' to strip TurboC / PureC style executables.

Both `-k' and `-l' options convert the extended symbols into regular ones (DRI com-

patible).

8.3.8 `size68.ttp'

`size68.ttp' is used to print information, which is found in the the header of an exe-

cutable program �le. A sample output is shown in the following lines.

c:\ => size68 temacs

temacs:

text size 255448

data size 161044

bss size 7684

symbol size 38388

File is relocatable.

BSS and high mem cleared on startup.

File is loaded into alternate ram

and allocates memory from alternate ram.

File runs with `private' memory protection (under MultiTOS).

The value of `text size' is the actual size of the program code; the TEXT segment. The

value of `data size' gives the size of initialized data; the DATA segment. For example, if

you de�ne a variable `char array[10] = "foobar";', the string `foobar' is moved to the

data segment during the linking process. The value of `bss size' is the size of the BSS

segment. If you de�ne a global variable `char array[10];', this variable `array' would end

up the BSS segment. The BSS segment is initialized to zero from the GEMDOS loader,

when the program is loaded into memory. The memory usage during the programs runtime

can't simply be calculated by adding the three values, since this doesn't take into account

the memory, which might be dynamically allocated.

The value of `symbol table' is the size of the symbol table, which is appended to the

three segments. The symbol table is only used, when the program is invoked under the

control of a debugger. The symbol table doesn't use up any memory, when the program is

Chapter 8: The Utilities 61

launched from the desktop or a CLI. The next line says, that the program �le is relocatable.

As far as I know is every program �le relocatable on the ST. The follwoing line indicates,

that the BSS section and the all available memory (`high mem') is cleared upon startup. On

systems with lots of memory, this can take quite a bit of time. You can keep the GEMDOS

loader from clearing all memory by toggling a bit in the header. See `toglclr.ttp' for

more info.

Chapter 9: Debugging Programs 62

9 Debugging Programs

In general, you have two choices for debugging; machine and source level debugging.

Most of the time you will prefer the source level debugging.

This chapter is not ready yet. If you have some ideas, what should go into this section,

please tell me.

Mention GDB 3.5 here.

Concept Index 63

Concept Index

(Index is nonexistent)

Index of all Command Line Options 64

Index of all Command Line Options

(Index is nonexistent)

i

Table of Contents

GNU GENERAL PUBLIC LICENSE 1

Preamble . 1

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 2

How to Apply These Terms to Your New Programs 6

Contributors to GNU CC . 7

Introduction . 9

1 Installing GCC . 11

1.1 Installing the Executables . 12

1.2 Installing the libraries . 13

1.3 Installing the Header Files . 15

1.4 Gulam Notes . 15

2 Installing G++ . 17

3 Memory Requirements . 18

4 Controlling the C-Compiler Driver (`gcc.ttp')

. 21

5 Controlling the C++-Compiler Driver

(`g++.ttp') . 33

6 The Preprocessor . 38

6.1 Invoking the C Preprocessor . 38

6.2 Prede�ned Macros. 41

7 The GNU Assembler (GAS) 44

7.1 Invoking the Assembler . 44

7.2 Syntax . 45

7.2.1 Register Names and Addressing Modes 45

7.2.2 Labels and Identi�ers . 46

7.2.3 Comments . 47

7.2.4 Numerical and String Constants 47

7.2.5 Assignments and Operators . 47

ii

7.2.6 Segments, Location Counters and Labels 48

7.2.7 Types . 48

7.3 Supported Pseudo Opcodes (Directives) 48

7.4 Converting Motorola Assembler Syntax 51

8 The Utilities . 53

8.1 The Linker `gcc-ld.ttp' . 53

`sym-ld.ttp' . 54

8.2 The Archiver `gcc-ar.ttp' . 55

8.3 Miscellaneous Utilities . 56

8.3.1 `gcc-nm.ttp' . 56

8.3.2 `cnm.ttp' . 57

8.3.3 `gcc-size.ttp' . 58

8.3.4 `printstk.ttp' . 58

8.3.5 `fixstk.ttp' . 58

8.3.6 `toglclr.ttp' . 58

8.3.7 `xstrip.ttp' . 60

8.3.8 `size68.ttp' . 60

9 Debugging Programs . 62

Concept Index . 63

Index of all Command Line Options 64

