Programmer Guidelines for the MAEstro Multimedia Authoring
Environment
George D. Drapeau

Stanford University
drapeau @sioux.stanford.edu

October 8, 1991

Contents

1 Introduction

2

3

System Overview

The MAEstro Messaging System

3.1 MAEStro Messageso e e
3.2 The Sender Object
33 Sender Methods
34 TheReceiver Object

34.1 Creating ANew Receiver L Lo

342 Listening For Incoming Messages

343 Destroying AReceivero oL
35 DispatchTables L
3.6 Using Your Own Message Handling Routines
3.7 Receiver Methods
3.8 Ports
3.9 The PortArray Structure L
3.10 Communicating With Other Applications
The Port Manager

Data Structures

Compilation

Programmer’s Checklist

Application Behavior

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Key Concepts
Document, Selection, and Performance,
Which Messages Are Sent When?o o000 Lo
SynchronizationRuleso oL
Handling Multiple Documents L e
Consider The Network Interface As Important As the User Interface
Handling Bad Messages From Other Applications

Sample Program

18

19

20

21

1 Introduction

The purpose of this document is to help programmers write applications for the MAEstro authoring environment.
The document gives an overview of the environment, describes the tools available to the application programmer, and
shows how to correctly use these tools.

The MAEstro project was created in an effort to allow simple, widespread access to new media in the computing
environment. The focus of the MAEstro project is authorship — the environment should be simple and complete
enough for any student or faculty member to be able to author his own multimedia documents.

The MAEstro environment consists of a suite of applications and an inter-application messaging system. There
is one application for each medium in the authoring environment; In addition, there is one application responsible for
authorship; it generally does not control media directly, but sends messages to the other applications in the environment
via the network protocol, effectively controlling media by “remote control”. The network protocol is inserted into
each application, enabling all applications in the environment to communicate with each other.

2 System Overview

The MAEstro environment is a distributed, network-transparent, multimedia authoring environment. One of the basic
assumptions underlying the design of MAEstro is that an authoring application (i.e., an application that facilitates the
creation of multimedia documents) should not need any specific knowledge of any media included in the document.
This assumption allows the authoring application to incorporate new media without rewriting the authoring application.
To allow the authoring application complete flexibility with regard to the media included in its documents, a messaging
system was designed to allow the authoring application to send messages to other applications in the environment.
During authorship, the authoring application sends messages to the other applications asking them what they are doing.
For example, the authoring application might ask the CD editor what selection of music it is playing so that section of
music can be included in the multimedia document. During playback, the authoring application sends messages to the
other applications telling them to replay the selections it earlier asked them about.
The authoring environment described above consists of the following components:

e Media editors. These are applications that directly control media. Each application is responsible for one
medium; for example, the CD editor deals only with CD audio and does not concern itself with the control of
videodiscs; likewise, the videodisc editor knows nothing of CD audio.

o The authoring application. This is the key application in the environment; it sends messages to the media
editors to coordinate their actions and to play segments of those media at the appropriate times. It may or may
not deal directly with any media; the environment is designed so that the authoring application can control any
medium via “remote control”, that is, by sending messages to the media editors, making the the media editors
perform on behalf of the authoring application.

o A network protocol. This is a program library consisting of a set of functions that facilitate inter-application
communication. Included are a standard set of messages to request that remote applications open a document,
to ask the remote application for the name of its currently opened document, to select part of a document, to ask
for the current selection within a document, and to tell the remote application to perform the document’s current
selection.

o The Port Manager application. This is a program that starts when the computer boots and remains running at
all times. It serves as a central authority with which applications register themselves; by registering themselves,
applications announce that they are ready to receive requests from other applications. The Port Manager helps
applications make initial contact with each other.

For more explanation of these components, see [Usenix].

3 The MAEstro Messaging System

The MAEstro Messaging System is a program library that facilitates communication among applications over the
network. The protocol has a relatively small set of messages designed to support simple operations on documents,
plus messages for establishing, confirming, and ending communications with other applications.

The two objects “Sender” and “Receiver” handle all of the message delivery in the MAEstro Protocol. They in
turn make use of several key data structures, the most important of which is the Port.

The remainder of this section will describe the messages comprising the MAEstro Protocol, operation of the
Sender object, operation of the Receiver object, and the components of the Port data structure.

3.1 MAEstro Messages

The MAEstro protocol consists of the following set of messages:

e OpenDocument

o GetCurrentDocName
o GetSelection

o SetSelection

e PerformSelection

o ConnectWithPortMgr
o GetOpenApps

o GetPortFromName

¢ DisconnectFromPortMgr
e Ping

o HaltSelection

o PauseSelection

o ResumeSelection

o HideApplication

o ShowApplication

e GetApplcon

The Sender and Receiver objects have a corresponding method for each of these messages. For example, there is a
SenderOpenDocument () method and a ReceiverOpenDocument () method. SenderOpenDocument ()
is used to send a request to another application to open a particular document; ReceiverOpenDocument () is used
to fulfill an OpenDocument request sent from another application.

Any application that uses the Sender and Receiver messaging objects is eligible to send and receive the above
messages. The messages are briefly described here; subsequent sections on Senders and Receivers will describe the
arguments used by each method.

The following messages are sent from one application to another application:

e OpenDocument
An application sends this message to ask another application to open a particular document.

¢ GetCurrentDocName
An application sends this message to ask another application for the name of its currently open or “active”
document.

e GetSelection
An application sends this message to ask another application for information about its current selection. The
format of this information, called a Selection, will be described later.

e SetSelection
An application sends this message to ask another application to select part of a current document. The requesting
application sends a Selection indicating what part of a document is to be selected.

e PerformSelection
An application sends this message to ask another application to “perform” the current selection. For a text editor,
this may mean something as simple as highlighting a region of text; for a CD player, it may mean to play a
particular section of the CD.

e HaltSelection
An application sends this message to ask another application to halt performance of its current selection. For a
CD player, this may mean to stop the audio and park the playback head.

e PauseSelection
An application sends this message to ask another application to pause performance of its current selection.
The semantics are different than those of Halt Selection; the assumption made by a PauseSelection
message is that the interrupted selection will soon be resumed. For a CD player, this may mean to pause the CD
but leave the playback head in place so the audio can quickly be resumed.

e ResumeSelection
An application sends this message to ask another application to resume performance of its current selection.
This assumes that there is a current selection and that performance of that selection has just been interrupted (via
PauseSelection).

e HideApplication
An application sends this mesasge to ask another application to hide itself (i.e., to remove its windows from the
screen, most likely by “iconifying” itself). An authoring application might send this message to clear screen
space taken by several applications.

e ShowApplication
An application sends this message to ask another application to show itself (for example, if the application were
“iconified”). An authoring application might send this message to bring a particular media editor to the front of
the window stack, allowing the author to work with that editor.

e GetAppIcon
An application sends this message to ask another application for an icon that should uniquely identify it. An
authoring application might ask for the media editors’ icons so that it could present a palette of those icons to
the author, showing the author which media are currently available for editing.

The following messages are sent to the Port Manager:

e ConnectWithPortMgr
This function initiates a connection with the Port Manager, telling the Port Manager about the application’s name,
port number, and hostname. By doing this, an application tells the world that it is ready to receive messages
from other applications. An application usually does not explicitly call this function; it is usually called by the
NewReceiver () method.

e GetOpenApps
This function asks the Port Manager to return a list of the applications currently advertising their services. This
is how applications find out about the existence of other applications.

¢ GetPortFromName
An application sends this message to the Port Manager when the application wants to communicate with a
particular application. The Port Manager will return the Port information for the requested application if
possible. If necessary, the requested application will be launched.

e DisconnectFromPortMgr
An application sends this message to the Port Manager when it is no longer willing to listen for network messages.
Usually this is called just before the application quits.

The remaining message is used primarily by the Port Manager, but any application can use it:

e Ping
This message is used to check if the receiving application is still listening for messages.

3.2 The Sender Object

A Sender is an object used to send messages to other applications. You create one Sender for each application with
which you will communicate. Since every application registers itself with the PortManager, every application has at
least one Sender (the one that’s responsible for communicating with the PortManager).

To create a Sender through which to send messages, use the NewSender () method. NewSender () takes a
pointer to a Port as its only argument; the Port tells the Sender where the remote application is (see the section on
3.8).

Here’s an example showing how an application would create a connection with the Port Manager:

Sender* sender;
Port senderPort;
senderPort.hostName = ‘‘localhost’’;

senderPort.portNumber = PortMgrPortNumber;
sender = NewSender (&senderPort);

The Port senderPort is filled in with information about what host and port number to connect with. The defined
constant PortMgrPortNumber is provided by the library. After the call to NewSender (), the variable sender
should be checked for a NULL value. If sender is NULL (i.e., if sender == (Sender*)NULL), then the
NewSender method was unable to establish a connection with the remote application (in this case, the Port Manager).
If the Sender returned by NewSender () is non-NULL, then a connection to the remote application was successfully
established.

Now that a new Sender has been created, the application can now send messages to the PortManager. If your
application needs to send messages to other applications, it must create a new Sender for each application with which
it will communicate.

When your application is finished with a Sender, call DestroySender (). This method will close the network
connection to the remote application and free the space taken by the Sender object.

3.3 Sender Methods

Every Sender method (with the exception of NewSender* () and DestroySender ())returns an int. A return
value of zero always means that the method completed successfully (i.e., that the network message was successfully
delivered).

Each Sender method (with the exception of NewSender () takes a Sender* as its first argument. The Sender*
points to a Sender containing information about the remote application’s network address. In other words, each Sender
method needs information about the application to which the message should be sent.

e int SenderOpenDocument (Sender* sender, char* documentName)
This method is used to ask another application to open the document named in the string passed in as argument.
For example, to ask the “TextEditor” application to open the document “/tmp/letterToMom”, your application
would do the following:

result = SenderOpenDocument (textEditSender, *‘/tmp/letterToMom’"’) ;

¢ int SenderGetCurrentDocName (Sender* sender, char** documentNameReturn)
This method is used to ask another application for the name of its currently open document. The space needed to
hold documentNameReturn is allocated for you; your application should free the space taken by the string
when it is no longer needed.

e int SenderSetSelection (Sender* sender, Selection* selection)
This method is used to ask another application to select part of its currently open document. The semantics
of this method are explained in section 8.2. Your application passes in a pointer to a Selection structure; your
application must have already initialized the space for that Selection.

The SenderSetSelection () method can be used to set a complete selection or part of a selection.
Two fields in the Selection structure, the duration and offset fields, determine the semantics of the
SetSelection () message. To understand the semantics of the message, consider a selection of duration
1000 milliseconds. The following cases cover the semantics possible with SenderSetSelection ():

1. Offset is 0, duration is 1000. This defines a complete Selection, the default semantics most often used
by the protocol.

2. Offset is 500, duration > 500. An application sending these as Selection parameters is asking the
remote application to play part of its current selection, beginning 500 milliseconds from the beginning of
the selection and ending at the default end point.

3. Offset is -500, duration is 1500. This means to perform more than the original selection, beginning 500
milliseconds before the original selection and ending at the default end point.

4. Offset is 0, duration is 1500. This means to perform more than the original selection, beginning at the
default start point and extending 500 milliseconds beyond the default end point.

These cases show that the combination of the two fields of £set and duration can specify partial selections,
complete selections, and selections of greater length than originally intended. It is up to the receiving application
to decide how to interpret these parameters, but the receiving application should do its best to satisfy the request
sent by the calling application.

e int SenderGetSelection (Sender* sender, Selection** selectionReturn)
This method is used to ask another application to return information about its current selection within its
currently active document. The semantics of this method are explained in section 8.2. The space needed to hold
the Selection in selectionReturn is allocated for you; your application should free the space taken by the
Selection when itis nolonger needed. Here’s a code fragment showinghow touse SenderGetSelection ():

Selection* theSelection = (Selection*)NULL;
int result = 0;
result = SenderGetSelection (anAppSender, &theSelection);

printf ()‘Selection duration is %d\n.’’,theSelection->duration);

Remember to pass the address of the Selection* to SenderGetSelection ();if the function completes
successfully, theSelection will point to a newly-allocated Selection structure that your application may use
in whatever manner necessary.

int SenderPerformSelection (Sender* sender)
This method is used to ask another application to “perform” its current selection. The semantics of this method
are explained in section 8.2.

int SenderConnectWithPortMgr (Sender* sender, Port* receivingPort)

This method is described above, in section 3.1. This method is not usually called directly from within an
application; it is usually called by the NewReceiver () method. This method tells the receiving application
(usually the PortManager) about the Port on which the calling application is listening for messages. The calling
application fills in the receivingPort field before calling this function.

int SenderGetOpenApps (Sender* sender, PortArray** openAppsReturn)

This function is used to ask another application (usually the Port Manager) which applications are currently
listening for messages. The space needed to hold the list of Ports returned in openAppsReturn is allocated
for you; your application should free this space (using the DestroyPortArray () method) when no longer
needed. See the section on 3.9 for more information on the DestroyPortArray () method.

int SenderGetPortFromName (Sender* sender,

Port* appNameAndHost,

PortArray** matchingPortsReturn)

This method is used to ask another application (usually the Port Manager) to fill in Port information about a
specific application.

The calling application asks for an remote application’s address by setting the appNameAndHost ->appName
field to the name of the remote application being sought, and setting the appNameAndHost->hostName
field to the defined constant AnyHost. If the host on which the remote application runs is also important
(usually this is not the case), the calling application should fill in the hostName field with the name of the host
on which the remote application should be running.

For example, if an authoring application needed to communicate with “cdEdit” but the host was not relevant,
the calling application would fill in the appNameAndHost argument as follows:

appNameAndHost->appName = ‘‘cdEdit’’;
appNameAndHost—->hostName = AnyHost;

If the calling application needed to communicate with the “cdEdit” running on the host named “crow”, the
calling application would fill in the appNameAndHost argument as follows:

appNameAndHost->appName = ‘‘cdEdit’’;
appNameAndHost—->hostName = ‘‘crow’’;

The calling application should allocate space for the appNameAndHost argument. If the application being
sought is currently registered with the Port Manager, the mat chingPortsReturn field will be filled with a
list of Ports that match the information being requested. This space will be allocated for you; your application
should free this space using the DestroyPortArray () method when done. See the section on 3.9 for more
information on the DestroyPortArray () method.

Further semantics of the SenderGetPortFromName () method are described in section 3.10.

int SenderPortNumber (Sender* sender)

This convenience function is used to get the port number of the application to which the Sender passed in as
argument is connected. For example, if the Sender created by a call to NewSender () was connected to an
application listening on port 3648, this method would return 3648.

e int SenderDisconnectFromPortMgr (Sender* sender, Port* appPort)
This method is used to tell the Port Manager that the application is no longer listening for messages from other
applications. This method is not usually called directly by the application programmer; it is usually called by
the DestroyReceiver () method.

e int SenderPing(Sender* sender)
This method is used to ask another application if it is still listening for messages from other applications. If the
remote application is still listening, this method will return 0; if the remote application is no longer listening for
some reason, this method will return —1. If this method returns -1, the Sender passed in as argument should
be destroyed, as the network connection used by the Sender is no longer valid.

e SenderHaltSelection(Sender* sender)
This method is used to ask another application to halt performance of its current selection.

e SenderPauseSelection (Sender* sender)
This method is used to ask another application to pause performance of its current selection.

e SenderResumeSelection (Sender* sender)
This method is used to ask another application to resume performance of its current selection.

e SenderHideApplication (Sender* sender)
This method is used to ask another application to hide itself.

e SenderShowApplication (Sender* sender)
This method is used to ask another application to show itself.

e SenderGetAppIcon (Sender* sender, IconData** iconDataReturn)
This method is used to ask another application for its application icon. The space needed to hold the IconData
in iconDataReturnis allocated for you. Your application should free the space taken by the IconData when
it is no longer needed.

3.4 The Receiver Object

A Receiver is an object that handles incoming messages from other applications. When a message arrives, the Receiver
determines which message it was and calls the appropriate function. You can tell the Receiver to call your own function
for each type of message it recognizes. If you don’t specify your own functions, the Receiver will call default routines.

Applications need create only one Receiver; all incoming messages will be handled by that Receiver. However,
your application may create more than one Receiver if there is some reason that the application should be listening for
messages on more than one port.

34.1 Creating A New Receiver

To create a Receiver with which to listen for incoming messages, use the NewReceiver () method. By creating a
new Receiver, an application advertises its services NewReceiver does this advertising by registering itself with the
Port Manager; the information sent to the Port Manager will be discussed in section 3.8. In order for NewReceiver
to register itself with the Port Manager, NewReceiver first needs a Sender with which to communicate to the
Port Manager. Therefore, before creating a new Receiver, your application must first create a Sender setup to
communicate with the Port Manager.

NewReceiver() is declared as follows:

Receiver* NewReceiver (Sender* portMgrSender,
char¥* appName,
int receivingPort)

The first argument is the Sender connected to the Port Manager with which the Receiver will register itself.
The second argument is the name with which the Receiver will register itself. The third argument is the port number
on which the Receiver is listening for messages. This argument is usually specified with the defined constant
AnyPort, meaning that the NewReceiver method will assign a port number to the Receiver for you.

NewReceiver () will allocate the space for a Receiver and return a pointer to the new Receiver.

Here’s an example showing how an application would advertise that it is listening for messages. For this example,
assume that the sender was created as in the example from section 3.2. In this example, the name of the program
under which the Receiver registers is “TestProgram”.

Receiver* receiver;
receiver = NewReceiver (sender, ‘‘TestProgram’’,AnyPort);
if (receiver == (Receiver*) NULL)

exit (1);

The NewReceiver () method uses the method SenderConnectWithPortMgr () to register itself with the
Port Manager. One result of this is that the application will register itself with only one Port Manager. If your application
will be registering with more than one Port Manager (for example, if your application provides a service that you’d like to
offer across a large number of computers), your application may explicitly call SenderConnectWithPortMgr ()
after creating a new Receiver. Remember, to register with a different Port Manager, your application must first
create a new Sender to communicate with that Port Manager. So if your application will be registering with ten Port
Managers, your application will need to create ten Sender’ s.

3.4.2 Listening For Incoming Messages

Now that a new Receiver has been created, the application can now begin receiving incoming messages. For now
this discussion will assume that it is not necessary to override the default Receiver message handling methods; the
section 3.5 will discuss this.

There are several ways to begin listening for incoming messages:

e Some toolkits have built-in support for Sun RPC’s (the message delivery system upon which MAEstro is
written). Sun’s XView toolkit is an example. To begin listening for incoming messages from other applications
in XView, put the following line of code in your application:

(void) notify_enable_rpc_svc (TRUE);

o If your application is doing nothing but listening for messages (for example, if your application does not have
to deal with graphics or input from users, etc. — this is the traditional “server” model of computing), you can
simply call the Sun RPC function svc_run (). This function never returns, so it should be the last line in your
program’s “main()” function.

o If your application deals with a window system and is using some sort of programmer’s toolkit, there is
probably some provision in the toolkit for calling a function at regular intervals. The NeXTStep, Motif, and
XView toolkits all provide this functionality. For toolkits that do not have direct support for Sun RPC’s but
can call work procedures at regular intervals, the ReceiverListenForMessages () method is provided.
ReceiverListenForMessages () takes no arguments; it scans its network ports for incoming messages
and calls the appropriate message handlers if necessary.

Your application should try to call ReceiverListenForMessages () at least once per second. The
application may call the method as often as it wishes, but more than ten times per second is probably too
often; the overhead of the method alone will probably begin to have a noticeable impact on the application’s
performance.

3.4.3 Destroying A Receiver

When your application will no longer be listening for incoming messages, call Dest royReceiver (). This method
will send a message to the Port Manager requesting that its information be removed from the list of active applications.
The method will then close down the incoming network port, then free the space taken by the Receiver.

The DestroyReceiver () method calls the Sender method SenderDisconnectFromPortMgr (). If
your application has registered itself with more than one Port Manager, your application should explicitly call
SenderDisconnectFromPortMgr () for every Port Manager with which it has registered except for one. Then
the application should call Dest royReceiver () for the last Port Manager connection.

DestroyReceiver () is declared as follows:

void DestroyReceiver (Sender* portMgrSender, Receiver* receiver)

The first argument is the connection to the Port Manager with which the application is disconnecting. The second
argument is the Receiver being destroyed.
The remaining Receiver object methods will be discussed in section 3.7.

3.5 Dispatch Tables

As provided by the MAEstro library, the Receiver methods don’t do any useful work. The Receiver methods
were meant to be overridden by the programmer so that the application can provide its own services and make them
available to the network. Further discussion of which messages to override and for what purpose is in section 8.

To use your own methods instead of those provided by the library, use the data type DispatchTable and the
method BuildDispatchTable (). The datatype DispatchTable is a structure of pointers to functions, one for
each method provided by the Receiver that has to do with processing incoming messages from other applications.
DispatchTable is declared as follows:

typedef struct _DispatchTable
{

void *openDocumentPtr) (char**);
char** *getCurrentDocNamePtr) (void¥*);
Selection* *getSelectionPtr) (void*);

void *setSelectionPtr) (Selection*);
void *performSelectionPtr) (void*);
void *connectWithPortMgrPtr) (Port¥*);
PortArray* *getOpenAppsPtr) (void¥*);
PortArray* *getPortFromNamePtr) (Port¥*);

(
(
(
(
(
(
(
(
void (*dispatchMessagePtr) (struct svc_reqg*, SVCXPRT*);
(
(
(
(
(
(
(
(

void *disconnectFromPortMgrPtr) (Port*);
void *pingPtr) (void¥*);

void *haltSelectionPtr) (void*) ;

void *pauseSelectionPtr) (void*);

void *resumeSelectionPtr) (void*) ;

void *hideApplicationPtr) (void*);

void *showApplicationPtr) (void*);
IconData* *getAppIconPtr) (void¥*);

} DispatchTable;

To override any of these methods with your own, create a variable of type DispatchTable and assign individual
fields of that variable to the individual functions you have written. After filling in your own DispatchTable, call
the method BuildDispatchTable () to use your functions.

Here’s an example showing how your application would override the default Receiver methods to use your
own. For the following code fragment, this discussion assumes that the functions OpenDoc (), GetDoc (),

10

GetSelection(), SetSelection(), and PerformSelection () have been declared and written else-
where in your application. The fields that are filled in as NULL are services not provided by your application.

static DispatchTable dispatchTable =
{
OpenDoc,
GetDoc,
GetSelection,
SetSelection,
PerformSelection,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
HaltSelection,
PauseSelection,
ResumeSelection,
HideApplication,
ShowApplication,
GetAppIcon,
}i

BuildDispatchTable (&dispatchTable);

Note that the first field in the DispatchTable variable above is a pointer to a function called “OpenDoc”;
it corresponds with the declaration of DispatchTable.openDocumentPtr above. Likewise, the “GetDoc”
function overrides the default method ReceiverGetCurrentDocName (), and so on.

3.6 Using Your Own Message Handling Routines

If your application is to override any of the default Receiver methods, your application’s functions must be declared
in the same manner as the default Receiver methods (the declarations are discussed next) and the pointers to your
application’s function must be filled in the correct fields of the DispatchTable structure. For example, if your
application is going to provide its own OpenDocument function, the pointer to that function must be filled in the first
field of the DispatchTable structure, as in the example above.

Many of the Receiver methods have void as their return type; however, three of the methods available to be
overridden return pointers to information. For example, the GetOpenDoc () method returns a pointer to a string.

Note: When overriding methods that return pointers to information, your functions must declare
those return values as static.

For example, if your application overrides the Get OpenDoc () method, it would be written in this way:

char** GetDoc ()

{

static char* returnValue;

returnValue = GetMyCurrentDocumentName () ;
return (&returnValue) ;

11

The important part of this example is the declaration of the variable “returnValue” as a static string. This
limitation is imposed by the Sun RPC messaging system and must be strictly followed.

3.7 Receiver Methods

Here are the declarations of all the Receiver methods:

e Receiver* NewReceiver (Sender* portMgrSender,
char* appName,
int receivingPort)
This method registers an application with a Port Manager. The Port Manager with which to register is specified
by the portMgrSender passed in as the first argument. The portMgrSender must therefore first be created
by calling NewSender () ; see section 3.2 for details.

NewReceiver () allocates space for a Receiver and returns a pointer to the new Receiver. The second
argument is a string indicating the name with which the application will register itself with the Port Manager. The
third argument is the port number on which the Rece iver willlisten for messages. To make NewReceiver ()
allocate a port number for you, use the defined constant AnyPort as the third argument.

If the method fails for some reason, it will return (Receiver*) NULL.

e void DestroyReceiver (Sender* portMgrSender, Receiver* receiver)
This method is used to “unregister” an application with a Port Manager; that is, to tell a Port Manager that the
Receiver is no longer listening for incoming messages. The Port Manager with which the application was
registered is specified by the portMgrSender passed in as the first argument. The portMgrSender must
have already been created by calling NewSender () ; see section 3.2 for details.

DestroyReceiver () frees the space pointed to by the method’s second argument and closes the Sun RPC
message service associated with that Receiver.

e void ReceiverlListenForMessages ()
This method is used to check for any incoming network messages from other applications. If this method detects
such a message, it will call the appropriate message handling routine. If your application has registered its own
message handling routines as described in Section 3.5, ReceiverListenForMessages () will call your
application’s message handling routines when appropriate.

This method is a convenience function to be used by toolkits that do not have built-in support for Sun RPC’s. If
your toolkit has support for Sun RPC’s, there is no need to use this method.

ReceiverListenForMessages () will return after processing one incoming message; it will also return if
no messages are pending. Therefore, if your application is using this method to handle incoming messages, your
application should repeatedly call this function, for example as part of a while loop that performs other tasks.

e int ReceiverGetReceiverSocket (Receiver* receiver)
This is a convenience function, returning the socket through which incoming messages are being received.

e void ReceiverOpenDocument (char** docName)
This method is called when a remote application sends a SenderOpenDocument () message. The semantics
associated with this message usually involve the receiver of the message opening the document specified by the
argument, but any semantics could be imposed. See section 8.2 for further discussion of the semantics of this
message.

The method takes one argument, a pointer to a string. To gain access to the string being sent, de-reference the
pointer (e.g., char* theDocToOpen = *docName). The space taken by this string will be freed after this
method exits, so if your application needs to keep track of this string, your application should make a copy of
the string before exiting the method.

12

e char** ReceiverGetCurrentDocName (void* unusedArg)
This method is called when a remote application sends a SenderGetCurrentDocName () message, asking
your application for its currently active document. The semantics associated with this message usually involve
the receiver of this message returning the filename of the application’s currently open document (e.g., the name
of a text file currently being edited in a word processor), but any semantics could be imposed. See section 8.2
for further discussion of the semantics of this message.

The one argument to this method is a “dummy”” argument necessary for the Sun RPC library, and should not be
referenced. This method should return a pointer toa static char*:

static char* stringPointer = ‘Untitled’’;
return (&stringPointer);

This space will not be freed, so your application should either recycle the space or free the space and re-allocate
space the next time this method is called. For example, your Get CurrentDocName () method might look
like this:

char** GetCurrentDocName (void* unusedArgq)

{
static char* theString = (char*)NULL;

if (theString != (char*)NULL)
{
free (theString);
theString = malloc (NumberOfBytesNeededHere) ;

return (&theString);

e Selection* ReceiverGetSelection (void* unusedArg)
This method is called when a remote application sends a SenderGetSelection () message, asking your
application for its currently active selection within its currently active document. The semantics associated with
this message usually mean that the application should return information about the part of a document that the
user has selected (e.g., the starting and ending byte numbers of selected text within a word processing document),
but any semantics could be imposed. See section 8.2 for further discussion of the semantics of this message.

The one argument to this method is a “dummy”” argument necessary for the Sun RPC library, and should not be
referenced. This method should return a pointer to a static Selection:

static Selection theSelection;
return (&theSelection);

This space will not be freed, so your application should either recycle the space or free the space and re-allocate
space the next time this method is called.

e void ReceiverSetSelection(Selection* selection)
This method is called when a remote application sends a SenderSetSelection () message, asking your
application to select part of the currently active document. The selection information is passed as the method’s
only argument. The semantics associated with this message usually mean that the application should use the

13

information passed in the selection argument to select part of the currently opened document (e.g., using
the start and end fields as the starting and ending byte numbers of a word processing document), but any
semantics could be imposed. See section 8.2 for further discussion of the semantics of this message.

The space taken by the selection argument will be freed after the method exits, so if your application needs
to keep track of the Selection information, the application should make a copy of the Selection before
exiting the method.

void ReceiverPerformSelection (void* unusedArgq)

This method is called when a remote application sends a SenderPerformSelection () message, asking
your application to “perform” the current selection within the currently active document. The interpretation of
what “performance” means is left to the developer of each application. For example, performing a selection in
a video editing application might mean to play a segment of video.

The one argument to this method is a “dummy”” argument necessary for the Sun RPC library, and should not be
referenced.

void ReceiverConnectWithPortMgr (Port* app)

This method is called when a remote application sends a SenderConnectWithPortMgr () message. This
message is usually sent by an application only to a Port Manager; at present, the only application that does
anything useful upon receiving this message is the Port Manager. However, it is possible for your application to
provide its own handling routine for this message.

The app argument passed to this method contains information about the application advertising its services.
The space taken by this argument will be freed after the method exits, so if your application needs to keep track
of the Port information, the application should make a copy of the Port before exiting the method.

PortArray* ReceiverGetOpenApps (void* unusedArg)

This method is called when a remote application sends a SenderGetOpenApps () message. This message is
usually sent by an application only to a Port Manager; at present, the only application that does anything useful
upon receiving this message is the Port Manager. However, it is possible for your application to provide its own
handling routine for this message.

The one argument to this method is a “dummy”” argument necessary for the Sun RPC library, and should not be
referenced.

This method should return a pointer to a static PortArray:

static PortArray openAppsList;
return (&openAppslList) ;

The space pointed to by the PortArray’s portArray field will not be freed, so your application should
either recycle the space or free the space (using DestroyPortArray () ; see 3.9 for details) and re-allocate
space the next time this method is called. For example, your ReceiverGetOpenApps () method might look
like this:

PortArray* GetOpenApps (void* unusedArg)

{
static PortArray listOfOpenApps = { (Port*)NULL, 0};

if (listOfOpenApps.portArray != (Port*)NULL)

{
DestroyPortArray (&1istOfOpenApps.portArray) ;
1istOfOpenApps.numberOfPorts = 0;

14

return (&1istOfOpenApps) ;

PortArray* ReceiverGetPortFromName (Port* appPort)

This method is called when a remote application sends a SenderGetPortFromName () message. This
message is usually sent by an application only to a Port Manager; at present, the only application that does
anything useful upon receiving this message is the Port Manager. However, it is possible for your application to
provide its own handling routine for this message.

As performed by the Port Manager, this method returns a list of Port’s in a PortArray* structure. This list
represents the list of currently open applications that match the specifications passed in as the method’s only
argument. See the explanation of SenderGetPortFromName () for more information on the semantics of
this message.

void ReceiverDispatchMessage (struct svc.reg* requestPtr,

SVCXPRT* transport)

This method is responsible for parsing incoming messages and calling the appropriate message handling routines.
Your application will likely never have to override this method.

The two arguments to this method are both Sun RPC arguments. The first argument is a pointer to information
about the incoming message. The second argument is a pointer to information used by the Receiver object
as a communication channel to and from the calling application.

For more information about writing your own dispatching mechanism, refer to [SunRPC].

void ReceiverDisconnectFromPortMgr (Port* appPort)

This message is called when a remote application sends a SenderDisconnectFromPortMgr () message.
This message is usually sent by an application only to a Port Manager; at present, the only application that does
anything useful upon receiving this message is the Port Manager. However, it is possible for your application to
provide its own handling routine for this message.

The appPort passed in as argument contains information about the application that will no longer offer its
services. The space taken by this argument will be freed after the method exits, so if your application needs to
keep track of the Port information, the application should make a copy of the Port before exiting the method.

void ReceiverPing(void* unusedArgq)
This method is called when a remote application sends a SenderPing () message, asking your application if
it is still listening for messages.

Since the purpose of this method is simply to check if an application is still alive, no data is passed between the
sending and receiving applications. Your application will not likely need to override this method, but if it does,
the method should spend as little time as possible to assure a quick reply to the calling application.

The one argument to this method is a “dummy”” argument necessary for the Sun RPC library, and should not be
referenced.

void ReceiverHaltSelection (void* unusedArg

This method is called when a remote application sends a SenderHaltSelection () message, asking your
application to halt performance of its current selection. If your application is not currently performing a selection,
it should ignore this message.

void ReceiverPauseSelection (void* unusedArg)
This method is called when a remote application sends a SenderPauseSelection () message, asking your
application to pause the performance of its current selection. If your application is currently performing a

15

selection, it should stop the performance immediately in such a way that performance could quickly resume. For
example, a videodisc player would enter still-frame mode, so that the read head would be immediately ready to
pick up where it left off.

If your application is not currently performing a selection, it should ignore this message.

void ReceiverResumeSelection (void* unusedArg)

This method is called when a remote application sends a SenderResumeSelection () message, asking
your application to resume performance of its current selection. If your application is currently performing a
selection and performance is paused, your application should resume performance as quickly as possible from
the place the performance left off; it should not resume from the beginning of the selection.

If your application is currently performing a selection but the performance is not paused, your application should
ignore this message. Likewise, if your application is not currently performing a selection, your application
should ignore this message.

void ReceiverHideApplication (void* unusedArg)

This method is called when aremote applicationsends a SenderHideApplication () message, asking your
application to hide itself. The recommended action to take upon receipt of this message is for your application
to “iconify” itself.

void ReceiverShowApplication (void* unusedArg)

This method is called when a remote application sends a SenderShowApplication () message, asking
your application to show itself. If your application is currently “iconified”, it should now do whatever it needs to
do to “de-iconify” itself. If your application is not iconified but perhaps occluded by other application windows,
your application should raise its windows to the front of the window stack, so that no other windows occlude
your application’s windows.

IconData* ReceiverGetAppIcon (void* unusedArq)

This method is called when a remote application sends a SenderGetAppIcon () message, asking your
application for its application icon. All applications in the MAEstro environment should have an icon to
represent themselves.

This method should return a pointer to a static IconData:

static IconData appIcon;
return (&applIcon) ;

This space will not be freed, so your application should either recycle the space or free the space and re-allocate
space the next time this method is called.

void BuildDispatchTable (DispatchTable* table)

This method replaces a Receiver’s default set of message handling routines with those specified inthe table
passed in as argument. Only those fields that have been filled in as non-NULL will override the default handling
routines; if you want your application to override one of the default routines with a routine that does nothing,
filling in NULL as one of the fields in the talble will not do the trick.

For example, the default action when your application gets a Ping message is to print a statement to stdout
saying that the Ping function was called. If you not want your application to print this message, you should
override the default ReceiverPing () with one like this:

void MyPingProc (void* unusedArqg)

{

return;

}

16

When you are filling in your own DispatchTable, fill in the pingPtr field to point to this routine, like this:
myDispatchTable.pingPtr = MyPingProc;

3.8 Ports

A Port is the address used to open a communication link with another application. The Port structure is defined as
follows:

struct Port

{
char* hostName;
char* appName;
int portNumber;

}i

The hostName field contains the name of the computer on which the application is running. The portNumber
field contains the specific port number on which the application is listening. The appName field contains the name
the application uses to register itself with the PortManager.

When your application advertises its services with the Port Manager, your application registers its services under
a particular application name. For example, a video editing application might register itself as “VideoEdit”. In this
case, your application will create a new Port and assign the string * *“VideoEdit’’ to the appName field.

When your application registers itself with the Port Manager, the application usually only need fill in the appName
field of a Port; the hostName and portNumber field are usually filled in automatically by the Sender and Receiver
methods. If for some reason your application must explicitly fill in the other two fields, your application is allowed to
do so. If your application is not going to fill in the hostName field, however, it should set the field to (char*) NULL.

3.9 The PortArray Structure
3.10 Communicating With Other Applications

To send messages to other applications, your application must first create a new Sender through which to send
messages to the remote application. To create a new Sender, your application must pass in a Port describing the
address of the remote application.

If your application will be communicating with a specific remote application, it can ask the Port Manager for
the address of the remote application by using the SenderGetPortFromName () method. Your application must
create a Port and fill in at least the appName field, and possibly also the hostName field. If your application
needs to communicate with a specific application but the host on which that application is running doesn’t matter, your
application should only fill in the appName field and should set the hostName field to the defined string constant
AnyHost. However, if your application needs to communicate with a specific application on a specific host (for
example, if your application must communicate with a database on a specific machine when a local copy won’t do),
the application should also fill in the hostName field, specifying where the remote application is running.

When your application fills in the Port information and sends the SenderGetPortFromName () message to
the Port Manager, the Port Manager will check its list of currently registered applications for all possible matches. The
more specific the information your application passes in, the more specific the Port Manager will be in searching for
matches.

For example, consider a Port Manager that has two applications currently registered as follows:

Application 1:

appName: TextDataBase
hostName: sioux.stanford.edu
portNumber: 2525

17

Application 2:

appName: TextDataBase
hostName: crow.stanford.edu
portNumber: 3042

If your application had filled in the Port information in the following way:

Port myPort;

myPort.appName = ‘‘TextDataBase’’;
myPort.hostName = (char*)NULL;

the Port Manager would return a PortArray* that contained the Port information for both copies of the
TextDataBase application.
However, if your application had filled in the Port information in the following way:

Port myPort;
myPort.appName = ‘‘TextDataBase’’;
myPort.hostName = ‘‘crow.stanford.edu’’;

the Port Manager would return only information about the second Port, connecting your application to the second
instantiation of the “TextDataBase” application since your application requested a “TextDataBase” from a
specific host.

If the application you request is not currently registered with the Port Manager with with your application is
communicating, SenderGetPortFromName () will attempt to launch the application for you. If successful,
SenderGetPortFromName () will block for a few seconds while the new application launches, then will return
the Port information for the newly-launched application. If unsuccessful, SenderGetPortFromName () will
return a NULL PortArray* and an error code of —1 as the return value of the function.

Note: SenderGetPortFromName () will notnottry to launch an application on another machine. For example,
if your application is running on host “sioux” sends the SenderGetPortFromName () message asking for an
application running on “crow”, SenderGetPortFromName () will not try to launch the new application on crow.

4 The Port Manager

The PortManager maintains a list of applications that have advertised themselves as alive and listening for messages
from other applications. When your application creates a new Receiver object (by calling the NewReceiver() function),
your application registers itself with the PortManager and thereby advertises its willingness to listen for messages.

The PortManager should always be running; ideally, it is started when the computer is turned on (usually the
/etc/rc.local script will start the PortManager). There is exactly one PortManager per computer, and your
application may register itself with any PortManager it deems necessary. For example, your application may be
running on host "A", but it can register itself with the PortManager on host "B". How to do this will be explained later.

Applications should always create a Receiver. Think of the PortManager as directory assistance: creating a Receiver
sends a message to the PortManager "publishing" your address should another application wish to communicate with
you. When you make your address available to the PortManager, other applications can ask the PortManager for your
address (as friends can call directory assistance to get your phone number). If your application does not register itself
with the PortManager, other applications cannot find your address since the PortManager will have no record of it (just
as directory assistance cannot give numbers not listed in the phone book).

Since the PortManager keeps a list of currently open applications, your application should be able to ask the
PortManager for that list. The method SenderGetOpenApps () does exactly this: when your application calls

18

this method, the PortManager will give your application a list of all currently open applications that have registered
themselves with that PortManager.

To find the address of a specific application, use the SenderGetPortFromName () method. You may be as
specific or as general as you like when asking for an application’s address; the amount of information you put in the
Port passed into the function determines limits of the search.

For example, if your application wants to send messages to an application called "TextEditor" but doesn’t care
which host TextEditor is running on, the Port structure passed into SenderGetPortFromName () would be filled
in as follows:

Port myPort;

PortArray* appsOpen;

int result;

Sender* applicationSender;
myPort .appName = "TextEditor";

myPort.hostName = AnyHost;
myPort .portNumber = 0;
result = SenderGetPortFromName (portMgrSender, &myPort, &appsOpen) ;

if (result != 0) // non-zero means that the PortManager...
exit (-1); //...couldn’t get an address for the...
//...information you gave it.

if (appsOpen->numberOfPorts > 0)

{
myPort.hostName = appsOpen->portArray[0].hostName;
applicationSender = NewSender (&myPort) ;

}

If your application wants to send messages to "TextEditor" but needs to speak specifically to the TextEditor running
on the computer named "sioux", your application would use the same code as above, except that it would fill in the
myPort .hostName field as follows:

myPort.hostName = "sioux";

Your application need not fill in the portNumber field before calling SenderGetPortFromName (), since
applications almost always get their port numbers dynamically (that is, they listen on a different port number each time
they are launched).

After you get the address of the application with which you wish to communicate, your application should
now create a new Sender to send messages directly to that application, using the Port information returned by
SenderGetPortFromName (). The last line of the sample code above illustrates this point

S Data Structures

There are seven data structures commonly used in an application in the MAEstro environment. They are:
1. Port
2. Selection

3. DispatchTable
4. Sender

19

5. Receiver
6. PortArray

7. IconData

Including the files <Sender.h> and <Receiver.h> will include the definitions for these data structures so
that your application can use them.

The manipulation of the Sender and Receiver structures is all done through the methods described above; the
programmer need know nothing more about the data internal to these two structures.

The use and manipulation of the Port structure is explained in section 3.8.

The use and manipulation of the DispatchTable structure is explained in section 3.5.

The use and interpretation of the Selection structure is explained in section 8.2.

6 Compilation
There are a few simple steps to follow when compiling applications for the MAEstro environment:

1. Define an environment variable NetworkSource to point to the directory in which the <Sender.h> and
<Receiver.h> files reside.

setenv NetworkSource /home/sioux/collab/Source/NetworkSource

2. If you are using a Makefile to compile your application, add the following definition to your CPPFLAGS variable,
or whatever variable is appropriate on your system for adding include directories:

CPPFLAGS += -IS$ (NetworkSource)

3. In the same Makefile, add the following to your LDFLAGS variable, or whatever variable is appropriate on your
system for adding program libraries:

LDFLAGS += $ (NetworkSource)/libMAEstro.a

4. Be sure to link the Sun RPC library routines with your application; if you are using a Makefile, add the following
to your LDLIBS variable or whatever variable is appropriate on your system:

LDLIBS += —-lrpcsvc

If you are compiling your application manually (i.e., if you are not using a Makefile or other such tool), make
sure that you link the MAEstro library before the Sun RPC library:

$ (NetworkSource) /1libMAEstro.a —lrpcsvce

Make sure that you are using an ANSI-compliant C compiler when you compile your application (the GNU C
Compiler, gcc, is such a compiler). If your code is not ANSI-compliant, you may still use gcc to compile your
code. To do so, put the following line in your Makefile:

CC = gcc —-traditional

At this point, you should be ready to compile your application.

20

In our environment, we have chosen to link our applications with shared libraries instead of static linking. Because
gcc does not support shared libraries, we do the link step with cc. To do this, define a rule in your Makefile as
follows:

LINK.c = cc $(CFLAGS) $(CPPFLAGS) $ (LDFLAGS)

Notice that the link step explicitly uses cc instead of gcc. Using shared libraries will greatly decrease the size of
your application binaries.

7 Programmer’s Checklist

This section has yet to be completed.

8 Application Behavior
8.1 Key Concepts

The MAEstro environment assumes that applications in the environment have an internal notion of document, selection,
and performance (including an estimated duration of the performance). Your application may interpret the notions of
“selection” and “performance” any way it wishes, but the notion of a selection’s performance duration has a concrete
interpretation shared by all MAEstro applications, and is measured in milliseconds.

These three concepts are encapsulated in the following messages of the MAEstro protocol:

e OpenDocument

o GetCurrentDocName
o GetSelection

o SetSelection

e PerformSelection

o HaltSelection

o PauseSelection

e ResumeSelection

8.2 Document, Selection, and Performance

The best way to explain the interpretation of the concepts above is by pointing out how different applications would
incorporate these concepts. The ability of applications to interpret MAEstro messages in whatever way suits them
best is one of the advantages of the MAEstro protocol, giving the environment a great deal of flexibility.

o Consider a word processing application integrated into the MAEstro environment. The notion of a document
for a word processor is obvious; a document is the paper, memo, letter, etc. typed in by the author. When
the word processor receives an OpenDocument message from another application, the word processor would
interpret the string passed to it as the name of a file to open. If such a file does not exist, the word processor
would likely return an error code.

For a word processor, the concept of a selection might mean the starting and ending bytes of a sequence of
text within the current document. When the word processor receives a Set Selection message, the word

21

processor might try to highlight the range of bytes specified by the incoming message, within the current
document. If there is no current document, the word processor would likely return an error code.

However, for a word processor, the concept of how long a selection might take to perform is less clear. A word
processor doesn’t normally associate time with the text in a document. However, since the protocol requires an
application to return an estimate of how long the current selection will take to “perform”, a word processor might
return a hard-coded value of zero milliseconds (or whatever value seems suitable), or the word processor might
use a nmemonic like “based on an average reading speed of 250 words per minute and the length of the current
selection (25 words), the current selection should take an average of six seconds to read.” The application can
come up with the estimated time any way it sees fit (this is up to the application developer), but it should be a
reasonable estimate if at all possible.

The notion of “performing” a selection is unclear for a word processor; the application developer might choose
to show just the selected text in a separate window, or the application might simply show the selected text
highlighted.

e Now consider an application that controls the operation a videodisc player that can search to any frame on the
disc, play a single frame or any part of the video disc. The concept of a document may mean nothing to this
type of application; in this case, the application could return (char*)NULL or a dummy document name like
“Untitled”. Whenever the application receives an OpenDocument message, the application would simply
ignore it. In this case, your application probably doesn’t need to override the default OpenDocument message
handler.

For this videodisc application, the notion of Selection might be defined as follows: the start and end fields of
the Selection structure might contain the starting and ending frame numbers of a segment of video to play.
The duration field would be the time necessary to play the segment. A still frame would be represented by
the same value in both the start and end fields. In this case, the question of how long the frame lasts is up to
the application developer; the application might decide that still frames should last for at least two seconds, or
a still frame might only last as long as it would normally take to play (one thirtieth of a second, since there are
thirty frames of video per second), or the application might allow the author to drag a knob specifying how long
a still frame should last.

The notion of performing a selection is clear for this application: performing a selection would mean playing
the segment of video specified by the current selection. If the PerformSelection message is received but
there is no current selection, the application might return an error code and do nothing else.

e There are many ways this core set of messages might be interpreted by an application. An application that uses
edit lists as documents (e.g., for a video editing system that stores lists of start and stop points to be used later
when recording onto another videotape) might use only the start field of the Selection structure as an
index into the edit list. Another application might use a special document name (e.g., “CommandMode”) that
puts the application into “command mode”; any Set Selection messages that are received from this point on
might be used to set hardware parameters for a device (e.g., setting the value of a start field of a Selection
to 3 means to change the Volume setting of a CD player; the CD application would get the volume from the
end field). Another application might ignore Get Selection and SetSelection message altogether and
interpret OpenDocument and Get Current DocName messages as command sequences instead of filenames.

As long as the application can parse anything that it sends to the requester, any interpretation is possible. As-
sume that the calling application knows nothing about the data in the Selection structures and return values
of GetCurrentDocName. In other words, an application will send a GetCurrentDocName message and a
GetSelection message; later the same application will send a OpenDocument message with the string your
application previously returned via GetCurrentDocument, then the application will send a SetSelection
message using the same Selection data your application returned via the Get Selection message. The only
data the remote application is safe to interpret is the duration field of Selection data.

22

8.3 Which Messages Are Sent When?

MAEstro was designed for the authorship of multimedia documents. In a typical authoring situation, an author
will open your application to create documents for that medium (e.g., a word processor to create text documents, a
video editor to create video edit lists, a music editor to create musical scores, etc.). After the application’s current
document has been saved, an authoring application will typically send pairs of messages. The first message will be the
GetCurrentDocName message, asking your application for the name of the currently active and open document.
The second message will be the Get Selection message, asking your application for the current selection within
the current document. The author will then go to your application and select a different part of your application’s
currently opened document, then use the authoring application to send a new pair of GetCurrentDocName and
GetSelection messages.

During the “playback” phase (when somebody is viewing a multimedia document), the authoring tool will typically
send messages in groups of threes. The first message will be an OpenDocument message, asking your application
to open a particular document named during the authorship phase. The second message will be SetSelection,
asking your application to select part of the current document (ideally the document just opened as a result of the
OpenDocument message). The third message will be a PerformSelect ion message, asking your application to
do whatever it takes to “perform” the current selection within the currently active document.

Any message may be sent to your application from any other application at any time. Therefore, if your application
will be providing its own message handling routines, you must make sure that they always return valid data that won’t
cause your application to crash when later given the same data. For example, if you application has just launched
and another application sends a Get CurrentDocName message, your application might return “Untitled”, a special
name known by your application to mean “There is no current document; don’t do anything when asked to open this
document.”

Messages will not necessarily come in the order described above, but the MAEstro protocol was designed with
the above scenario in mind.

8.4 Synchronization Rules

In a typical multimedia document, an author might want to play audio and video from different sources together. This
requires some sort of synchronization of applications, which may or may not be possible. However, applications in
the MAEstro environment will help alleviate synchronization problems if they follow a few simple rules:

1. When your application receives a SetSelection message, it should do everything it needs to do to get
that media segment ready to “perform”. For example, when a videodisc player receives the SetSelection
message it should spin up the disc and seek to the beginning frame of video. A word processor might jump to
the page on which the selected text appears.

2. When a PerformSelection message is sent, your application should be ready to perform its selection
immediately; this should already be the case if your application’s Set Selection routine was written correctly.

3. Your application’s PerformSelection routine should take as little time as possible, so it can return to the
calling application immediately. For a videodisc application, this might mean to send the brief command “Play
the segment I already loaded in your memory”, which would return immediately.

When an authoring application is performing a segment of a multimedia document that contains segments from
several applications at once, it should first send OpenDocument messages to each of the applications, waiting
for each application to respond. Then the authoring application should send SetSelection messages to each
application, waiting for each to sync their media and respond when ready. Then the authoring application will send
PerformSelection messages; if the other applications follow the rules listed above, each application should
respond quickly enough that all the media start at roughly the same time, close enough that the delay between start
times will not be noticed by the author.

For some applications, it might be difficult to do much pre-processing work in the Set Selection routine. For
example, a Mandelbrot generator might consider the generation of an image itself as the “performance”. In such a

23

case, your application should be written so that the PerformSelect ion routine begins the performance and returns
as quickly as possible, perhaps setting a flag indicating that the application’s main event loop should be interrupted to
do a little bit of computation. That way the PerformSelection message exits quickly and your application can
still do work that might take a while to complete.

8.5 Handling Multiple Documents

Your application should be able to handle more than one open document at a time, with one of them being the currently
active document. Your application should always keep track of the currently active document, if possible.

An authoring application may ask your application to open several documents, including documents your appli-
cation already has opened. If your application receives a request to open a document that is already opened, your
application need not re-open the document but should make that document the currently active document, so that
proceeding Set Selection, GetSelection, and PerformSelection messages apply to that document.

If your application receives an OpenDocument message but the requested document is already opened and has
been modified since it was opened, your application has several options:

1. Use the already opened and modified document for the proceeding Selection requests;
2. Clear the modified document and revert to the last saved version on disk;

3. Mark the already opened document with a different temporary name, then open the requested document from
disk. This way, both the last saved version and modified versions are available to the author (one for playback
and one for modification). This solution might be confusing to the author, however, so take extreme care if your
application will use this technique.

The application should avoid prompting the author for action in this case, since it will likely upset playback of
a multimedia document. If your application will be doing any error handling, it should do it silently and without
intervention by the author.

8.6 Consider The Network Interface As Important As the User Interface

When designing your application, consider the network interface to be as important as the user interface. For example,
there are at least two ways for a document to be opened: the author might type in the name of a document to open,
and another application might request your application to open a document. The same concept applies to setting and
performing a selection. This means that your routines for opening a document, selecting part of a document, and
performing part of a document should be callable both from the network and interactively.

8.7 Handling Bad Messages From Other Applications

Your application should be able to deal with ill-formed messages from other applications. For example, if an application
sends a GetCurrentDocName message and your application has no currently active document, your application
should return an error code or a “dummy”” name indicating that there is no currently opened document.

Your application should check Set Selection requests to see that the start and end fields are valid and that
there is a currently active document for which the Selection applies.

When your applicationreceives aPerformSelect ion message, it should check if there is something to perform.
If there is nothing to perform, the application should return as quickly as possible.

In short, your application should be robust enough that it reacts gracefully to errors. It is critical in a real-
time performance environment such as MAEstro that applications do not delay or stop a performance because of
unrecoverable errors. Your application should do everything it can to insure that “the show must go on.”

24

9 Sample Program

The following program is about the simplest program that can be written in the MAEstro environment. The purpose
of the program is to show how an application will register itself with the PortManager.

This program first fills in a Port with information for the PortManager’s address (host name and port number —
the PortManager listens on a well-known port defined by the constant “PortMgrPortNumber”). The program then uses
this information to create a new Sender, thereby creating a communication link with the PortManager.

If successful, the program will next try to register itself with the PortManager, using the NewReceiver ()
method. The Sender* passed in as argument is the Sender* used to communicate with the PortManager. The
NewReceiver () call also creates a network connection on which the program would listen for incoming messages;
however, the purpose of this sample program is to show how to create a connection with the PortManager, so this
program does not contain code to listen for incoming messages.

If the call to NewReceiver () is successful, the program will immediately destroy the receiver using the
DestroyReceiver () method. This method will inform the PortManager that the program is no longer advertising
its services. The method also closes down the incoming message link, and frees space taken by the Receiver*
passed in argument.

#include <stdio.h>
#include <Sender.h>
#include <Receiver.h>

/* Usage: connectWithPortMgrTest <hostName>

* where "hostName" is the name of the host on which the
* PortManager is running.
*/

main (int argc, char** argv)

{

Sender* sender;
Receiver* receiver;
Port senderPort;
int result;

printf ("The Port Manager should be listening on port number %d.\n",
PortMgrPortNumber) ;

senderPort.hostName = argv[1l];

senderPort.portNumber = PortMgrPortNumber;

sender = NewSender (&senderPort) ;

if (sender == (Sender*) NULL)

exit (1);
receiver = NewReceiver (sender,argv([0],AnyPort);
if (receiver == (Receiver*) NULL)

exit (1);

printf ("Connected with the Port Manager.\n");
DestroyReceiver (senderPort, receiver);
exit (0);

25

References

[Usenix] George D. Drapeau and Howard Greenfield, “MAEstro — A Distributed Multimedia Authoring Environ-
ment”, Proceedings of the 1991 Summer USENIX Conference, Nashville, Tennessee, June, 1991.

[SunRPC] Network Programming Guide, Sun Microsystems, Inc., Mountain View, CA.

[NeXT] NeXT System Reference Manual — Release 1.0 Edition, NeXT Computer, Redwood City, CA.

26

