
Video Object — A Library for Controlling Video Devices

Wee Lee Lim

George D. Drapeau

MAEstro Project

Stanford University

maestro@sioux.stanford.edu

October 30, 1992

0

Contents

1 Introduction 2

2 Objectives 2

3 Definition of the Video Object 2

3.1 The Config Structure — Video Device Configuration : 2

3.2 Notes on Configuration Settings : 3

3.3 Notes on Changing the Configuration : 4

3.4 Definition of Video Object Functions : 5

3.5 Status Codes and Error Codes : 9

4 Writing an Application to use the Video Library 9

4.1 Using the Video Object Functions : 9

4.2 Status codes : 10

4.3 Additions to the Application’s Makefile : 10

4.4 Changes to videoObjects.c : 10

5 Adding New Drivers to Your Application 10

5.1 Files in the Video Library : 10

5.2 Stub Files and Functions for Use by the Video Library : 11

5.3 Incorporating the New Video Object into the Video Library : 12

5.4 Incorporating the New Video Object into the Application : 12

5.5 Notes on Writing the Video Object : 13

6 Enumerated Types 13

A ASCII value table 14

1

1 Introduction

For a single application to provide support for a variety of computer-controlled videodisc and videotape players, the

application needs to include serial-line drivers for a potentially large number of those devices. For this purpose, we

have created a generic "Video Object" that supports features common to a number of video devices.

The purpose of this file is to instruct application programmers how to use the Video Object library in their own

applications, and to provide help in adding new devices to the library.

If you find this object useful and write support for players other than those supported here, we would be grateful if

you would send us a copy of your source code so that we can add your driver to the publicly distributed VideoObject.

We hope that you find this code useful in your applications. If you have any comments, questions, suggestions, or

source code you would like to add, please send mail to maestro@sioux.stanford.edu.

2 Objectives

The Video Library was created with the following objectives :

1. To allow programmers to write applications that support a variety of video devices (such as videodisc and

videotape players) without having to write device-specific code. The application program calls a generic

Dev<Function> regardless of what device is being used, and the video library is able to call the correct

<Function> for the particular device currently being used.

2. To allow programmers to be able to easily add on to the suite of device drivers currently available.

3 Definition of the Video Object

The Video Library consists of device-specific code to support a number of video devices. A generic "object" is

provided to the application programmer; this structure contains pointers to functions that represent the device specific

routines for common actions such as ’play’, ’pause’, ’stop’, ’search’, etc. In addition to these function pointers, the

object contains information about the currently-used video device (such as the serial line used for communication with

the device, the serial line attributes for the device, its performance characteristics, and so on). This information (device

’configuration’) is stored in the data structure called Config, which is stored as part of the Video Object.

This section will describe the following components of the Video Object in detail:

� Config — Data structure containing device-specific serial line and performance attributes

� Video Functions — The various functions supported by the Video Object and their semantics.

This section ends with a note on status codes, outlining the differences between the status codes returned by the

devices, and the status codes that are returned from the Video Object to the application.

3.1 The Config Structure — Video Device Configuration

The Config data structure stores the configuration of a particular video device, and is defined as follows:

typedef struct _Config
{

char modelName[MaxNameLength];
char serialPort[15];
int baudRate;
int eolChar;
int charSize;

2

enum Parity parity;
enum Boolean igParError;
enum Boolean flowControl;
int maxSpeed;
int fd;

} Config;

The modelName field is a String that denotes the name of the device. This will be the name used by the application

and the library.

The serialPort field is a String that denotes the serial port to which the device is physically attached. This

field is likely to be different for different machines (and users). To let applications to use a different value for this field

easily without having to change and recompile their code, the Video Object calls XGetDefault() to determine the

user’s default serial port to use for the device.

XGetDefault() is called with the modelName field as its second argument, and serialPort as its third

argument. Therefore the form for storing serial port defaults as an X resource is as follows:

<modelName>.serialPort: <serial port>

The baudRate field is an Integer that denotes the baud rate at which data transfer is carried out.

The eolChar field is an Integer that represents the ASCII value (decimal) of the character sent by the device

denoting the end of a line and that a read() should be performed.

There are two reasons why theeolChar field is necessary. Firstly, this field distinguisheswhether the Video Object

should use canonical input processing (the value of eolChar is non- negative) or non-canonical input processing (the

value of eolChar is negative) to communicate with the device. Canonical input processing is used for devices that

return a special character to denote the end of a line, while non-canonical input processing is used for those devices

that do not return a special end-of-line character. [For more information, please read the man pages on termio(4). For

an example of a device that does canonical input processing, please look at the source code for the Pioneer4200 Video

Object (Pioneer4200Driver.c). For an example of a device that uses non-canonical input processing, please look at the

source code for the Sony1550 Video Object (Sony1550Driver.c).]

Secondly, with canonical input processing, Unix recognizes a line by the NEWLINE (ASCII LF) character or

the EOF (ASCII EOT) character, or two other user-specified characters. Because different devices have different

end-of-line characters, the Video Object requires that the device specifies explicitly its end-of-line character in this

eolChar field.

The charSize field is an Integer that denotes the size in bits of a data character. Valid values can be 5, 6, 7 or 8.

The parity field is an Enum Parity that can be either Odd, Even, NoParity or Any.

The igParError field is an Enum Boolean that is Yes if the Video Object wants to ignore parity errors, and No
if the Video Object does not want to ignore parity errors.

The flowControl field is an Enum Boolean that is Yes if the flow control is desired for the device with which

the Video Object is communicating, and No if the device does not use flow control.

The maxSpeed field is an Integer that denotes the maximum speed in terms of frames/second that the device is

capable of playing.

The fileDescriptor field is an Integer that denotes the file descriptor for the device, after the serial port

connection has been made. Its initial value can be set to any negative number.

3.2 Notes on Configuration Settings

1. If the device does not return an end-of-line character, enter a negative number in the eolChar field. It is

assumed that non-canonical input processing will be used if a negative number is entered for the end-of-line

character. See description of eolChar field above.

2. In non-canonical input processing, the initial values for MIN and TIME are:

3

c_cc[VMIN] = 1 and c_cc[VTIME] = 0

This means that the read() function blocks until at least 1 character is received. Please read the man pages on

termio(4) for more details.

Here are two sample device configurations, both taken from the videoObjects.c file for the VideoEdit

application. The first describes the Pioneer 4200 videodisc player. The second configuration describes the Sony 1550

videodisc player. A table for ASCII values can be found in A.

static Config Pioneer4200Config =
{

"Pioneer4200", <= modelName
"/dev/ttya", <= serial Port
4800,
10, <= NL (ASCII 10) is the eolChar
8, for Pioneer4200
Even,
Yes,
120,
-1
}
;

static Config Sony1550Config =
{

"Sony1550",
"/dev/ttyb",
2400,
-1, <= non-canonical input processing
8,
Even,
Yes,
90,
-1
}
;

3.3 Notes on Changing the Configuration

videoObjects.c is the file that stores the configurations for each device in an application (see 5.1). To use the

Video Library, copy this file into your own directory and compile it with the rest of your application. Any changes

you wish to make to video device configurations can be made in your copy of the videoObjects.c file. If you

are using one of the already-supplied devices, the only setting you might likely change is the serial port to which the

device is connected, and even this may not be necessary.

See the end of the videoObj.h file for a list of device configurations for currently-supported devices.

The serial line is set by SetSerialLine(), a function supplied by the Video Library. SetSerialLine()
has two arguments:

1. Device configuration structure

2. Serial port

4

Because the serialPort field is likely to differ from machine to machine, the Video Object chooses the serial

port to connect with by using the following procedure:

� Use the second argument to SetSerialLine() if it is not NULL. SetSerialLine() should, in general,

be called with NULL as the second argument, because in the most cases, the serial port is not explicitly chosen.

The second argument should be non-NULL, only when the user specifies from within the application a particular

serial port to use.

� Call XGetDefault(). If it returns a non-NULL value for the serial port for this device, then use this value.

� Use the value set in the configuration structure.

Thus, to change serial port without modifying any code, it is easiest to set the default serial port in /.Xdefaults.

Here is an example X resource showing how a user might set the default serial port used by the Pioneer4200 device

driver:

Pioneer4200.serialPort: /dev/ttya <= Pioneer4200 player
is on /dev/ttya

3.4 Definition of Video Object Functions

The Video Object has at present 23 basic functions. Not all devices will be able to perform all 23 functions; such

devices will have NULL function pointers for those functions they cannot perform.

The VideoObject data structure is defined as follows:

typedef struct _VideoObject
{

Config* DevConfig;
int (*DevPlayPtr) (VideoObject*);
int (*DevPlayFromToPtr) (VideoObject*, int, int, int);
int (*DevFastForwardPtr) (VideoObject*);
int (*DevReversePtr) (VideoObject*);
int (*DevCalcSpeedPtr) (VideoObject*, int, int);
int (*DevPlayAtSpeedDirPtr) (VideoObject*, int, enum Direction);
int (*DevStepPtr) (VideoObject*, enum Direction);
int (*DevStillPtr) (VideoObject*);
int (*DevStopPtr) (VideoObject*);
int (*DevSetDefaultsPtr) (VideoObject*, int, int, int, int);
int (*DevSetAudioPtr) (VideoObject*, int);
int (*DevSetVideoPtr) (VideoObject*, int);
int (*DevSetAddModePtr) (VideoObject*, int);
int (*DevSetAddressDisplayPtr) (VideoObject*, int, int);
int (*DevEjectPtr) (VideoObject*);
int (*DevPowerPtr) (VideoObject*, int);
int (*DevQueryFramePtr) (VideoObject*);
int (*DevQueryChapterPtr) (VideoObject*);
int (*DevQueryAudioPtr) (VideoObject*);
int (*DevQueryVideoPtr) (VideoObject*);
int (*DevQueryMediumPtr) (VideoObject*, char*);
int (*DevQueryStatusPtr) (VideoObject*);
int (*DevPingPtr) (VideoObject*);
int (*DevRecordPtr) (VideoObject*);
int (*DevRecordFromToPtr) (VideoObject*, int, int, int);

} VideoObject;

5

By compounding different functions, applications will be able to achieve most of the operations commonly desired

of a video device. The following are the descriptions of what each function should do.

The functions return a status code, unless otherwise stated. For a description of the status codes, please see 3.5.

1. int (*DevPlayPtr) (VideoObject* theObject)

Pointer to function that sets theObject in ’playback’ mode.

2. int (*DevPlayFromTo) (VideoObject* theObject, int startAddress,
int endAddress, int speedInFramesPerSecond)

Pointer to function that plays a segment, from startAddress to endAddress.

startAddress and endAddress are in terms of frames if the player is in frame mode, and in terms of

chapters if the player is in chapter mode.

For devices that have indices rather than chapters, and only have relative search of indices, endAddress is

used to indicate direction. As usual, 0 is Forward, 1 is Reverse.

This function is used in 4 different ways:

(a) startAddress == endAddress
Searches to startAddress and stills. This is a request for a non-blocking search; in other words,

DevPlayFromTowill send the search command to the specific device then will return as soon as possible

(for some players, it is possible to read an acknowledge message indicating that the command has begun

execution, then a completion message indicating that the command has completed execution. The VISCA

protocol follows this type of communications).

(b) startAddress != NULL, endAddress == NULL
Searches to startAddress and stills. This is a request for a blocking search; in other words, the

DevPlayFromTo function will wait until the device completes its search before returning to the calling

application.

(c) startAddress == NULL, endAddress != NULL
Play from current position (no search) until endAddress at speedInFramesPerSecond.

(d) startAddress != endAddress, startAddress != NULL, endAddress != NULL
Play fromstartAddress toendAddress atspeedInFramesPerSecond. However, ifstartAddress
is greater than endAddress, then the function should return an error.

3. int (*DevFastForwardPtr) (VideoObject* theObject) Pointer to function that plays forward

at higher than normal (device-dependent) speed.

It may continue to play at this speed until some other command is issued (the usual case for VCRs), or it may

return to normal playback after scanning a certain number of frames (usually the case for videodisc players).

4. int (*DevReversePtr) (VideoObject* theObject) Pointer to function that plays reverse at

higher than normal (device-dependent) speed.

It may continue to play at this speed until some other command is issued (the usual case for VCRs), or it may

return to normal playback after scanning a certain number of frames (usually the case for videodisc players).

5. int (*DevCalcSpeedPtr) (VideoObject* theObject, int inputValue,
int playMode) Pointer to function that returns speed (in number of frames per second) that can be played

by theObject.

inputValue is the actual speed in frames per second at which the user would like to play. playMode is 0

for normal playback and 1 for segment play (ie playback from one address to another), since it is found in some

cases that devices are able to play at special speeds only in normal playback mode.

6

6. int (*DevPlayAtSpeedDirPtr) (VideoObject* theObject,
int speedInFramesPerSecond,
enum Direction direction)

Pointer to function that plays at speedInFramesPerSecond in direction, where direction can be

Forward or Reverse.

This function should callDevCalcSpeed() so as to obtain the device-specific speed based onspeedInFramesPerSecond.

7. int (*DevStepPtr) (VideoObject* theObject, enum Direction direction)

Pointer to function that steps one frame in direction.

8. int (*DevStillPtr) (VideoObject* theObject)

Pointer to function that puts theObject into still mode, meaning the frame is frozen, but video is not

muted.

This function should be able to execute in any mode, which means that if segment play (ie playback from one

address to another) is not interruptible by a normal pause command, an interrupt command should be used to

implement pause.

An example of a device that cannot pause segment play is the NEC PC-VCR. In order to implement a pause in

this mode, the driver sends out an interrupt command before it sends out its pause command.

9. int (*DevStopPtr) (VideoObject* theObject)

Pointer to function that puts theObject into stop mode, meaning that playback is stopped and video is

muted.

This function does NOT shut down the disc motor. This function should be able to execute in any mode, which

means that if segment play is not interruptible by a normal stop command, an interrupt command should be used

to implement stop. See similar comments for DevStillPtr, above.

10. int (*DevSetDefaultsPtr) (VideoObject* theObject, int audio,
int addressingMode,
int addressDisplayOnOff, int displayMode)

Pointer to function that puts theObject into desired mode when starting it up.

� audio
One of Mute, Left, Right, Stereo. Others can be assigned by the programmer for other modes,

but this might not be implemented uniformly across all video objects!

� addressingMode
Either PlayerFrameMode = Normal (usually means frame addressing) or PlayerChapterMode
= Indexing (or Chapters).

� addressDisplayOnOff
Either FeatureOff (No address display on screen) or FeatureOn (Address display on screen).

� displayMode
One of DisplayFrame (Display frame address on screen), DisplayChapter (Display chapter on

screen), or DisplayFrameAndChapter (Display frame and chapter on screen).

The #define’s for these parameters are in PlayerStatus.h.

11. int (*DevSetAudioPtr) (VideoObject* theObject, int mode)

Pointer to function that sets audio to mode (see definition of DevSetDefaultsPtr, above).

12. int (*DevSetVideoPtr) (VideoObject* theObject, int mode)

Pointer to function that sets video to mode, either FeatureOn or FeatureOff.

7

13. int (*DevSetAddModePtr) (VideoObject* theObject, int mode)

Pointer to function that sets addressing mode to mode (see definition of DevSetDefaultsPtr, above).

14. int (*DevSetAddressDisplayPtr) (VideoObject* theObject, int onOff,
int mode)

Pointer to function that either turns on-screen address display to on or off depending on value of onOff and

sets the display to mode (see definition of DevSetDefaultsPtr, above).

15. int (*DevEjectPtr) (VideoObject* theObject)

Pointer to function that ejects the medium from the player. Returns status code.

16. int (*DevPowerPtr) (VideoObject* theObject, int mode)

Pointer to function that turns power either on or off, depending on mode.

17. int (*DevQueryFrame) (VideoObject* theObject)

Pointer to function that asks the player for the current address of the medium. Returns the address in terms of

frames.

18. int (*DevQueryChapter) (VideoObject* theObject)

Pointer to function that asks the player for the current chapter of the medium. Returns the chapter number.

19. int (*DevQueryAudio) (VideoObject* theObject)

Pointer to function that asks the player for status of audio output. Returns audio status.

20. int (*DevQueryVideo) (VideoObject* theObject)

Pointer to function that asks the player for status of video output. Returns video status.

21. int (*DevQueryMedium) (VideoObject* theObject, char* result)

Pointer to function that asks the player for medium ID, where the medium is either a videotape or a videodisc.

Returns the medium ID if integer, or if a string, returns medium ID in result, and returns 0.

22. int (*DevQueryStatus) (VideoObject* theObject)

Pointer to function that asks the player for its status, eg play, pause, search, etc.

23. int (*DevPing) (VideoObject* theObject)

Pointer to function that sends a command to the player that is guaranteed to elicit some response from the player.

It returns the number of characters read. This function is used only during the installation of a driver, by the

Video Library function PlayerVerified() so that the application can attempt to verify that if the player is

correctly selected.

The verification is not guaranteed to be foolproof, because a command may be recognized by many different

players. The programmer can make the Ping() function more intelligent by returning a positive number of

characters read only when the response corresponds to what the current player will return. This eliminates some

cases of misidentification, but is again not foolproof and it can be difficult to enumerate all possible responses

in the case of some drivers.

24. int (*DevRecord) (VideoObject* theObject)

Pointer to function that begins normal recording on the player. In video terminology, this is known as "assemble

edit".

8

25. int (*DevRecordFromTo) (VideoObject* theObject, int startAddress,
int endAddresss,
int speedInFramesPerSecond)

Pointer to function that records a segment of video, from startAddress to endAddress. This function is

used for insert editing, and is currently used in 2 different ways:

(a) startAddress == NULL, endAddress == NULL

Puts player into "Insert Edit" mode, allowing precise time-code recording to occur.

(b) startAddress == 0, endAddress != 0

Records from current position (no search) until endAddress is reached.

Notes on DevRecordFromTo:

(a) Although speedInFramesPerSecond field is here, as with DevPlayFromTo(), it is unlikely that

players will allow recording at other than 1x speed. This field is here to accommodate the possibility of

future devices that can record at other than normal speed.

(b) To do insert editing from, for example, frame 100 to frame 500, use the VideoObject by first calling

DevPlayFromTo(theObject, 100, 100, 0). Next, callDevRecordFromTo(theObject, 0, 0, 0)
to turn on the insert editing function of the player. Finally, callDevRecordFromTo(theObject, 0, 500, 0)
to do the actual recording.

It was decided to separate the semantics of putting a deck into insert edit mode from the semantics of

actually doing the recording in order to help achieve better synchronization between playback and record

decks. Some devices suffer a long setup time when requested to be put into insert edit mode; by separating

the two functions, application programmers can better schedule editing functions for synchronized use.

(c) To record a single frame of video (e.g., frame 100), call DevRecordFromTo() in this manner:

DevRecordFromTo(theObject, 100, 100, 30).

3.5 Status Codes and Error Codes

Almost all the functions above return a status code. These codes are listed inPlayerStatus.h so that the application

program gets a uniform status code for a particular condition across all the devices.

If you are writing code to support a new video device, please make sure that you map whatever status codes your

device returns into the common status codes defined in PlayerStatus.h. That way, the application programmer

will only need to code for one set of status codes.

Sometimes, the device will return an error code. If you are writing code to support a new video device, you should

write the function within the driver that writes commands out to the serial line and waits for acknowledgments from

the serial line such that it always detects when an error is returned. It then should decode the error and either display

the appropriate error message, by calling DisplayError() or take the appropriate corrective measures. The error

code should not be returned to the application. Instead, use PlayerReturnError.

4 Writing an Application to use the Video Library

This section explains how your application can use the Video Library.

4.1 Using the Video Object Functions

The application uses the generic Video Object functions to perform the desired function for a particular object, by

passing into these generic functions a pointer to the instance of the particular video object. The application must

therefore obtain this pointer somehow.

9

The way the application does this is by calling DevInit(), passing in the name of the device to be controlled.

DevInit() will return a pointer to an instance of the device.

It may be necessary for your application to control several devices at a time; to do so you may repeatedly call the

DevInit() function with the appropriate parameters as necessary to create as many video device controllers as your

application needs. If any two use the same serial port, then these two control the same physical device. If they are set up

with different serial ports (this can be done after DevInit() has set up the object, by calling SetSerialLine()),

then they control different devices.

The actual function called depends on the video object passed to the generic Dev<Function> calls.

4.2 Status codes

In order that applications get a uniform status code for a particular condition, some common status codes have been

defined in PlayerStatus.h that will allow the application to check the status of the player. However, not all

devices will be able to return all status codes.

The application program does not need to check for any error code from the driver in any situation, since errors will

be reported to the application and displayed using DisplayError(). However, the application may check for the

status of the device and anticipate if an error will occur (by knowing what is permissible and what is not, for example,

the NEC PC-VCR cannot pause unless in playback mode), then take steps to help avoid the error (using the above

case as an example, the application can set the NEC PC-VCR into playback mode before calling the DevPause()
function).

4.3 Additions to the Application’s Makefile

1. Include videoObjects.c in SOURCES or SOURCES.c.

2. Define VideoObjectSourceDir as the directory where the Video Library files are stored.

3. Add $(VideoObjectSourceDir)/VideoLib.a to LDLIBS before the X library (-lX or -lX11).

4. Add -I$(VideoObjectSourceDir) to CPPFLAGS.

Note: Remember to declare the 4 functions in videoObjects.c in your application.

4.4 Changes to videoObjects.c

1. Include the header files of your application.

2. Modify DisplayError() and DisplayChoice() for the application.

Recompile!

5 Adding New Drivers to Your Application

This section is for programmers who wish to write their own serial line drivers. It explains the various files in the video

library, and sets out the steps to take when writing a new video object for the library for use in an existing application.

5.1 Files in the Video Library

The Video Library is made up of the following files. None of them should be changed, unless you really know what

you are doing.

� videoObj.c

This file contains the core functions to :

10

1. Set up the video object for use by an application program.

VideoObject* BuildVideoObject(VideoObject* deviceType) returns an instance of a

video object for a device of deviceType.

2. Set the serial line for the device. int SetSerialLine(Config* configuration, char*
newSerialPort) returns a file descriptor for the device set to configuration.

3. Check if a particular function has been implemented for a particular object.

enum Boolean CheckImplemented(VideoObject* anObject, int aFunction) returns

either Yes or No, depending on whether anObject has aFunction implemented or not. aFunction
is #defined in videoObj.h.

This function is useful when an application program must decide when to provide a function that is not

common for a specific device.

4. Test if the player and serial port are correctly selected. int PlayerVerified(VideoObject*
theObject, char* serialPort) returns either 1 (player and port are OK), or -1 (either the

player or the serial port is wrong).

As this function uses the DevPing function to verify the device and DevPing is not foolproof (see

description of DevPing in 3.4), this test is not guaranteed to be correct in all cases.

5. Direct the generic Dev<Function> calls made to the correct <Function> for the particular device:

int Dev<Function>(VideoObject* theObject, <OtherParameters>)

6. Perform default <Function> for non-implemented Dev<Function> calls.

int Default<Function>(VideoObject* theObject, <OtherParameters>)

7. Get the maximum speed in frames per second that a device can play:

int GetDeviceMaxSpeed(VideoObject* theObject)

� videoObj.h

Header file for the Video Object, containing the relevant files, declarations, data structures and data types.

� PlayerStatus.h

Header file for definitions of status codes returned by the device.

� Device Driver.c files

These are files containing the code for controlling the devices currently supported.

� Device Driver.h files

These are the header files for the corresponding Driver files, containing the declarations for the Video Object

functions, and the definitions for the error codes recognized by the particular driver. Also, specific status codes for

the device that is used only internally within the driver code can be specified here, in addition to the status codes

provided in PlayerStatus.h. These codes should not clash with the codes defined in PlayerStatus.h!

� Makefile

A Makefile is supplied with the video library that compiles the component drivers and builds a library out of it.

5.2 Stub Files and Functions for Use by the Video Library

The Video Library supplies a stub file that contains 4 stub functions to aid the use of the Video Objects by the application

programs, as well as the configuration of each Video Object, and the structures of the Video Objects.

The stub file is videoObjects.c, and the 4 stub functions are:

11

1. VideoObject* DevInit(char* deviceName, char* serialPort)
Matches deviceName with the correct static variable defining the appropriate videoObject, and returns

a pointer to an instance of the desired video object, by calling BuildVideoObject(). Then it calls

SetSerialLine() to set the serial port to serialPort.

2. void DisplayError(char* errorMsg1, char* errorMsg2)
Takes the 2 strings returned by the driver that explains the error, and displays it appropriately to the user.

Application programs should rewrite this function to best suit their needs. Two strings are provided in the case

of long error messages.

3. void PrintDiagnostics(char* msg)
If global enum Boolean variable diagMode is Yes, then the diagnostic messages from the application and the

drivers will be printed (either to standard output, or wherever you might want to send the messages). This is a

useful feature, because the applications can hang easily if the wrong messages were sent, or if there are timing

problems, and the diagnostics from the drivers would help identify the cause of any device-related problems.

4. int DisplayChoice(char* msg1, char* msg2,
char* choiceMsg1, char* choiceMsg2)
Takes the 2 strings returned by the driver that explains the choice to be made, and displays it appropriately to

the user. The choice made is returned as an integer. Application programs should rewrite this function to best

suit their needs. Two strings are provided in the case of long explanation messages.

5.3 Incorporating the New Video Object into the Video Library

This section describes how to add a new video device to the Video Library.

When you have written your own driver code and wish to add it to the Video Library, do the following to add the

driver to the library:

1. Add<DeviceName>Driver.cand<DeviceName>Driver.h toSOURCES in the Video Library’s Make-

file.

2. Add <DeviceName>Driver.o to OBJECTS in the Video Library’s Makefile.

3. Recompile the Video Library.

5.4 Incorporating the New Video Object into the Application

This section describes how to add the new device supported into your own application. The changes to be made are

all in videoObjects.c.

1. Include the appropriate header file for your device. For example, for the Pioneer4200 player:

#include <Pioneer4200Driver.h>

2. Add the configuration of your new object as a static variable, named <modelName>Config. If you want to

keep a copy of the configuration as reference, copy the configuration as a comment at the end of videoObj.h.

An example with the Pioneer4200 player:

static Config Pioneer4200Config =
{

"Pioneer4200",
"/dev/ttya",
4800,

12

13,
8,
Even,
Yes,
120,
-1
}
;

3. Add the name of your device (as it is in the modelName field) into the allDevices array and increment

numDevices by 1.

4. Write the video object for the device, naming the static variable <modelName>Obj. For the functions that are

not implemented for the device, put a NULL in its place.

5. In functionDevInit, add another else-if statement to callBuildVideoObject()with&<modelName>Obj
if deviceName matches <modelName>.

Naming convention: Name your driver code<DeviceName>Driver.c and its header file,<DeviceName>Driver.h.

The device name should be unique.

5.5 Notes on Writing the Video Object

� Implement each relevant video object function for the new video device, following the description of what each

function is supposed to do in 3.4 above.

� The functions in <DeviceName>Driver.c that read and write from the serial line should take care of error

handling, and if error display is necessary, should call DisplayError() in videoObjects.cwhile still in

<DeviceName>Driver.c. Do not return error codes specific to each device back to the application program.

These should only be used within <DeviceName>Driver.c and defined in <DeviceName>Driver.h.

� To aid tracking down of communication problems with the device, the functions that send and receive commands

from the serial line should call PrintDiagnostics() (implemented in videoObject.c) with descriptive

messages about what is being sent and received, so that if so desired, the user can see the communication between

the device and the computer.

� Please use the status codes in PlayerStatus.hwhen returning from the Video Object functions. Do not use

any other status codes that you define yourself. If a status code is returned that is not in PlayerStatus.h,

please pick the closest match. Please see 3.5 above.

� In <DeviceName>Driver.h, include PlayerStatus.h and videoObj.h.

Recompile!

6 Enumerated Types

The following enumerated types are defined in videoObj.h and can be freely used in any application using the

Video Library.

enum Parity {Odd, Even, Any};
enum Boolean {No, Yes};
enum Direction {Forward, Reverse};

13

A ASCII value table

ASCII value table (Decimal) - Character

0 NUL	1 SOH	2 STX	3 ETX	4 EOT	5 ENQ	6 ACK	7 BEL	
8 BS	9 HT	10 NL	11 VT	12 NP	13 CR	14 SO	15 SI	
16 DLE	17 DC1	18 DC2	19 DC3	20 DC4	21 NAK	22 SYN	23 ETB	
24 CAN	25 EM	26 SUB	27 ESC	28 FS	29 GS	30 RS	31 US	
32 SP	33 !	34 "	35 #	36 $	37 %	38 &	39 ’	
40 (41)	42 *	43 +	44 ,	45 -	46 .	47 /	
48 0	49 1	50 2	51 3	52 4	53 5	54 6	55 7	
56 8	57 9	58 :	59 ;	60 <	61 =	62 >	63 ?	
64 @	65 A	66 B	67 C	68 D	69 E	70 F	71 G	
72 H	73 I	74 J	75 K	76 L	77 M	78 N	79 O	
80 P	81 Q	82 R	83 S	84 T	85 U	86 V	87 W	
88 X	89 Y	90 Z	91 [92 \	93]	94 ˆ	95 _	
96 ‘	97 a	98 b	99 c	100 d	101 e	102 f	103 g	
104 h	105 i	106 j	107 k	108 l	109 m	110 n	111 o	
112 p	113 q	114 r	115 s	116 t	117 u	118 v	119 w	
120 x	121 y	122 z	123 {	124		125 }	126 ˜	127 DEL

14

