
(Ed. Note - I didn't include Part I which is actually Shepherd's excellent file "Assembly
for Cracking" because its over 300k    - its still in the complete kit though)

`Beta Notes: 10/17/91

The following bold entries constitute a tentative outline for topics to dicuss in detail.   
Some of these topics will require a fair amount of research on my part - in particular, the
Eve and Encryption sections will take some time.    After this section come the live
cracks.    These represent an attempt to take a novice cracker through every step of the
cracking process detailing choices and decisions that I would make as I go and why I
would make them.

Any feedback would be greatly appreciated - especially from any novice crackers who
find parts of this document incomprehensible.    Note that this is a rough draft - there are
bound to be errors although hopefully no logical ones (just syntactical and/or spelling).

Determining where to start looking

1) Types of protection

a) Serial number schemes

b) Registration codes

c) Network serial checks [AppleTalk driver stuff]

d) Hardware plugs - see below

e) Encryption - see below

f) Time stamps

g) Key disk

How to break into programs

1) Trap interrupts

a) Dialog/Alert traps

b) MenuSelect

c) InitFonts etc.
2) Manual entrance of TMON [Good luck]
3) Automatic TMON entrance via code modification [_Debugger trap insertion]

a) Determining an address with Nosy

b) Determining an address from the Jump Table

c)

Using TMON, Nosy, and ResEdit together

 1) Determining address offsets
2) Nosy vs TMON

a) Why Nosy "feels better"

b) Why TMON is virtually omniscient

TMON Tricks

1) TMON tricks with register values, flags, and instruction modification
2) One step ModalDialog hassles [Serial number schemes]
3) TMON Pro shortcuts

Determining the type of crack to apply

1) Bypasses vs cracks
2) Finding the key code
3) Branch switching

a) Mention something about branch op-codes - 2 and 4 byte instructions and offsets
4) Flag/variable modification
5) Code modification

Everything you always wanted to know about the CODE 0 Jump Table.

1) What it is and how it works
2) Locating an entry point
3) Modifications

Hardware plugs

1) General tips [Device Manager stuff]
2) Eve bullshit

Encrypted Code

Unless you are one hell of a genius at cryptology and have lots of time to kill, the
encrypted CODE resources will have to be de-crypted and written back to the program.   

Here is why:    to decrypt itself, a program will usually either take a known seed number
and use it on each encrypted byte of the code or else it will start with some byte in the
code and do a forward decrypt,    i.e. the first byte decrypts the second byte, the new
second byte decrypts the third byte, and so on.    A simple method might be to have some
code that looks like this:

MOVE
#1000,D0

LEA
encryptedshit,A0

LEA
encryptedshit-1,A1
loop1
EOR.L
 (A1)+,(A0)+

DBRA
D0,loop1
encryptedshit
Here is where the encrypted gibberish begins.

This is a simple example, but note how it functions.    D0 gets the number of longwords to
decrypt, A0 is the destination (where the decrypted stuff will go - which is right back over
the encrypted stuff) and A1 gets the decrypting key which is the long word that was
previously decrypted.    Then the code simply loops D0 times writing over the encrypted
code with the decrypted code.    After this code has finished, the program continues
execution right where the encrypted (and now decrypted) code begins.    Now cosider:
somewhere in the encrypted stuff is the error check that you have to modify.    This will
be simple enough to locate assuming that you can run the decryption routine and then
immediately regain control in TMON.    The problem is that when you go to modify the
error check so that it always passes, the modification screws up the decryption routine.   
This is because the decryption routine requires the exact original values to run properly
since these values are the keys that the code uses.    So a crack using traditional methods
requires that you not only change the error branch, but that you also change every other
encrypted value such that the decryption routine still runs properly - no small feat!

A much more feasable method would be to decrypt the code, make the necessary
modifications to the error routine, and then disable the decryption routine (just branching
around it would do) and writing the whole mess (un-encrypted) back to the original code
resource.

So much for the theory, now if I could just crack one of these suckers...

Live Cracks

MultiClip 2.0

This program uses a network checking algorithm to determine whether multiple copies
with the same serial number are currently running - if you don't use this program on a
network, you will never see the error.

Step 1:    Where to start looking.

There are actually several good places to begin looking for the protection (especially if
you have already cracked it - but I will assume that you have not).    First of all, since the
program scans the network, it is probably using the _Open Trap somewhere early in its
code to to access the Appletalk driver.    Second, it displays an error dialog (or alert) so
we could open it up in Resedit, find the error dialog (and note its ID # for later use) and
then Nosy it and look at procedures that call ModalDialog or one of the Alert traps to try
and find the one that displays the dialog with the proper ID #.    Third, we could have
TMON trap either 1) ModalDialog if it is a dialog or 2) StopAlert, CautionAlert or
NoteAlert if it is an Alert and begin tracing from that point backwords.    Fourth, we could
just Nosy it and start from the top (the slow way).

Whenever a program displays an error dialog (not a serial number dialog which seems to
be in vogue these days) I almost always find the ID # of the dialog or alert and begin
looking at procs in Nosy, so let's start there.    In Resedit, we note that it is Dialog (and not
Alert) #128 that is the problem.    On to Nosy.    After Nosy analyzes the INIT resource,
open up the Trap Refs List under the Display menu and scroll down to GetNewDialog.   
Here you will find two listings: ASKNAME and PUTREGISTERDLOG.    Since there
are only two we can quickly check them both out (if there were a bunch, I would
probably try a different method).    First let us look at ASKNAME -    here is the listing
down to the GetNewDialog:

 42BA: QUAL ASKNAME ; b# =184 s#1
=proc54

 vdu_1 VEQU -26
 vdu_2 VEQU -18
 vdu_3 VEQU -12
 vdu_4 VEQU -10
 vdu_5 VEQU -8
 param1 VEQU 8
 funRslt VEQU 12
 42BA: VEND

 ;-refs - com_43 MYFILTERFORNAME

 42BA: 4E56 FFE6 'NV..' ASKNAME LINK A6,#-$1A
 42BE: 48E7 0318 'H...' MOVEM.L D6-D7/A3-A4,-(A7)
 42C2: 2C2E 0008 2000008 MOVE.L param1(A6),D6
 42C6: 42A7 'B.' CLR.L -(A7)

 42C8: 4EBA E642 100290C JSR proc19
 42CC: 285F '(_' POP.L A4
 42CE: 486E FFF8 200FFF8 PEA vdu_5(A6)
 42D2: A874 '.t' _GetPort ; (VAR port:GrafPtr)
 42D4: 42A7 'B.' CLR.L -(A7)
 42D6: 302C 001E '0,..' MOVE 30(A4),D0
 42DA: D07C 0014 '.|..' ADD #20,D0
 42DE: 3F00 '?.' PUSH D0
 42E0: 42A7 'B.' CLR.L -(A7)
 42E2: 70FF 'p.' MOVEQ #-1,D0
 42E4: 2F00 '/.' PUSH.L D0
 42E6: A97C '.|' _GetNewDialog ; (DlgID:INTEGER;
wStorage:Ptr; behind:WindowPtr):DialogPtr

The first thing to do is to locate the _GetNewDialog and determine its associated
parameters: actually all we care about is the first parameter, the ID #.    Tracing
backwords, we see that -1 is the third parm, 0 is the second parm, and 30(A4) + #20
(from the ADD #20,D0) is the first parm.    Well, we have a problem here.    Instead of a
nice plain ID # being passed to GetNewDialog, the ID # is hidden on the stack frame
somewhere.    At this point it is best to mark this proc as indeterminite and go on to the
next one.    If we must come back to this one then we will have to figure out if ID #128 is
valid for this proc and go from there.    So let us look at PUTREGISTERDLOG

 33AC: QUAL PUTREGISTERDLOG ; b# =141 s#1
=proc35

 vdb_1 VEQU -286
 vdb_2 VEQU -278
 vdb_3 VEQU -276
 vdb_4 VEQU -274
 vdb_5 VEQU -272
 vdb_6 VEQU -270
 vdb_7 VEQU -268
 vdb_8 VEQU -264
 vdb_9 VEQU -262
 vdb_10 VEQU -256
 param1 VEQU 8
 33AC: VEND

 ;-refs - INIT1

 PUTREGISTERDLOG
 33AC: 4E56 FEE2 'NV..' LINK A6,#-$11E
 33B0: 2F0C '/.' PUSH.L A4
 33B2: 206E 0008 2000008 MOVEA.L param1(A6),A0
 33B6: 43EE FF00 200FF00 LEA vdb_10(A6),A1
 33BA: 703F 'p?' MOVEQ #63,D0
 33BC: 22D8 '".' ldb_1 MOVE.L (A0)+,(A1)+
 33BE: 51C8 FFFC 10033BC DBRA D0,ldb_1
 33C2: 42A7 'B.' CLR.L -(A7)
 33C4: 3F3C 0080 '?<..' PUSH #128
 33C8: 42A7 'B.' CLR.L -(A7)
 33CA: 70FF 'p.' MOVEQ #-1,D0
 33CC: 2F00 '/.' PUSH.L D0
 33CE: A97C '.|' _GetNewDialog ; (DlgID:INTEGER;
wStorage:Ptr; behind:WindowPtr):DialogPtr

Once again, find the GetNewDialog and determine the parms.    Here we have -1 for the

third, 0 for the second, and lo and behold, 128 for the first.    This is definately our
procedure.    Note that this is an extremely easy example as no attempt has been made to
disguise the ID # - it is clearly 128, the value we have been looking for all along.

Determining how to implement the crack.

 The obvious place to start looking is just before the error dialog has been loaded.    Here
is that section of code from the above procedure:

LINK A6,#-$11E
PUSH.L A4
MOVEA.L param1(A6),A0
LEA vdb_10(A6),A1
MOVEQ #63,D0
ldb 1
MOVE.L (A0)+,(A1)+
DBRA D0,ldb_1

 Next comes the code we just looked at
CLR.L -(A7)
PUSH #128
CLR.L -(A7)
MOVEQ #-1,D0
PUSH.L D0
_GetNewDialog

As we look at this code, keep in mind what it is that we are looking for.    We know that
the program is capable of loading without this error, so somewhere it has to be checking
the network and then either branching to the error code (if it detects a copy of itself) or
else branching around the error code.    So we need to find the branch that is causing this
segment of code to execute.    A quick scan of the code that precedes the error dialog code
should reveal nothing of interest.    A Link followed by a 63 word Move Loop - no
branches of any consequence whatsoever.    If you are wondering why we can
immediately eliminate the DBRA    D0,ldb1 (after all, it is a branch) then ask yourself
this:    1st, where does the branch go? Answer: to the line above the branch instruction.   
2nd, what (if any) conditions is it checking? Answer: it checks to see if D0 (an obvious
loop counter in this case) is equal to zero.    If the branch does not either 1) branch
directly to the error code (in this case it would have to be branching to the CLR.L -(A7))
or 2) branch around the error code (somewhere after the GetNewDialog and the ensuing
ModalDialog and probably even an ensuing DisposeDialog) then the branch is almost
certainly a bad candidate.    You particulaly should be able to immediately eliminate loop
terminator branches like the one above.

Well, since we have eliminated the only branch in this procedure above the
GetNewDialog, we will have to look elsewhere.    The next obvious place to look is in the
procedure that called this one.    Again Nosy makes this a snap.    Take a look at the line
right above the code listing that read refs - INIT1.    The refs line tells you every
procedure that calls the one you are currently looking at.    Luckily, there is only one, so
let us look at it next.    Since this is a long procedure, I am only listing the section that
surrounds the JSR PUTREGISTERDLOG line.    I should also mention that I am writing
this with a copy that I cracked a while ago and in un-cracking it for this document, could

not remember exactly what the changed code was.    I will show you where your code
listing might differ from mine below:

 196: 4268 0004 'Bh..' CLR 4(A0)
 19A: 4228 0006 'B(..' CLR.B 6(A0)
 19E: 4228 0007 'B(..' CLR.B 7(A0)
 1A2: 43FA 036E 1000512 LEA data2,A1 ; len= 1
 1A6: 45E8 0009 'E...' LEA 9(A0),A2
 1AA: 4EBA 0392 100053E JSR proc2
 1AE: 43FA 03A2 1000552 LEA data4,A1 ; 'Multi'
 1B2: 4EBA 038A 100053E JSR proc2
 1B6: 43FA 03AC 1000564 LEA data7,A1 ; len= 2
 1BA: 4EBA 0382 100053E JSR proc2
 1BE: 4A6E FFEC 200FFEC TST vab_2(A6)
 1C2: 6756 100021A BEQ.S lab_13
 1C4: 4FEF FFFE 'O...' LEA -2(A7),A7
 1C8: 2F2E FFEE 200FFEE PUSH.L vab_3(A6)
 1CC: 4EBA 2C88 1002E56 JSR proc29
 1D0: 301F '0.' POP D0
 1D2: 6646 100021A BNE.S lab_13
 1D4: 4FEF FFCE 'O...' LEA -50(A7),A7
 1D8: 204F ' O' MOVEA.L A7,A0
 1DA: 317C FFF6 0018 '1|....' MOVE #$FFF6,ioCRefNum(A0)
 1E0: 216E FFEE 001E 200FFEE MOVE.L vab_3(A6),ioSEBlkPtr(A0)
 1E6: 317C 00FC 001A '1|....' MOVE #252,CSCode(A0)
 1EC: A004 '..' _Control ; (A0|
IOPB:ParamBlockRec):D0\OSErr
 1EE: 4FEF 0032 'O..2' LEA 50(A7),A7
 1F2: 206E FFEE 200FFEE MOVEA.L vab_3(A6),A0
 1F6: A01F '..' _DisposPtr ; (A0/p:Ptr)
 1F8: 486D FFFC -4 PEA glob1(A5)
 1FC: A86E '.n' _InitGraf ; (globalPtr:Ptr)
 1FE: A8FE '..' _InitFonts
 200: A912 '..' _InitWindows
 202: A9CC '..' _TeInit
 204: 42A7 'B.' CLR.L -(A7)
 206: A97B '.' _InitDialogs ; (resumeProc:ProcPtr)
 208: A850 '.P' _InitCursor
 20A: 42B8 0A6C $A6C CLR.L DeskHook
 20E: 487A 0302 1000512 PEA data2 ; len= 1
 212: 4EBA 3198 10033AC JSR PUTREGISTERDLOG
 216: 4EFA 0316 100052E JMP com_2
 21A: 4227 'B'' lab_13 CLR.B -(A7)
 21C: A99B '..' _SetResLoad ; (AutoLoad:BOOLEAN)
 21E: 42A7 'B.' CLR.L -(A7)
 220: 2F3C 4452 5652 '/<DRVR' PUSH.L #'DRVR'
 226: 487A 2156 100237E PEA data35 ; len= 12
 22A: A9A1 '..' _GetNamedResource ; (theType:ResType;
name:Str255):Handle
 22C: 1F3C 0001 '.<..' PUSH.B #1
 230: A99B '..' _SetResLoad ; (AutoLoad:BOOLEAN)

First off, we need to find the line that calls the error procedure we just finished looking at.
In this case the line will be either JSR PUTREGISTERDLOG or BSR
PURREGISTERDLOG.    We find the correct line just above lab 13.    Now, quickly note
the structure we are dealing with: we have JSR PUTREGISTERDLOG (which does all
the error dialog stuff) followed by a JMP instruction.    So the program is leaving the main
flow of control after doing the error dialog.    This is important because we can see that
logically, there should be a branch that skips this piece of code and continues on with lab

13.    If we scan backwords from the JSR PUT... we see a bunch of Initialization traps
preceded by some Moves - but then notice this code:

 JSR proc2
TST vab_2(A6)
BEQ.S lab_13
LEA -2(A7),A7
PUSH.L vab_3(A6)
JSR proc29
POP D0
BNE.S lab_13

Here is where I forget what the original code looked like so your listing might say BEQ.S
lab 13 (for the second branch that is).    Anyways, this code looks really good since it
branches around the error section.    At this point, we might hazard a guess and simply
make these Branch instructions always execute by changing them to BRA lab 13.    This
might be an incorrect crack since the program could be making other checks above this
code - we can eliminate this chance by continuing scanning upwards looking for
references to lab 13 until the beginning of this procedure.    What I would do in a case like
this is make a real fast check of about 50 or so lines of code above this looking for
branches refering to lab 13.    If I find one, modify it...if not, then make the crack and test
it.    If the crack fails, then I would know to keep looking.

A quick note:    The flow of the program seems to suggest that merely changing the first
branch from BEQ to BRA would suffice since this instruction always executes (it is not
branched around anywhere) and once this instruction branches to lab 13 there would be
no need to change the second branch.    However, I am writing this having already
cracked this program and the method I used was to change the second branch only.   
Since I know that this works and cannot test any other method (not having a network at
my disposal), I will proceed in this manner.    The would-be cracker could certainly try
changing the first branch and it looks to me as if this would work.

So how is the crack applied?    Well, in this case, it looks like the program branches to lab
13 only if the serial check is OK (i.e. there are no extra copies running on the network) so
we need to to make this branch always execute.    The easiest way to do this is to change
the BNE.S lab 13 to BRA.S lab 13 - branch not equal turns into branch always.    So,
simply pop over to Resedit and open the proper resource (INIT in this case).    To
determine the ID of the resource, look at the top of the procedure window in Nosy.    The
first line will contain an s# followed by a number.    This is the segment number or ID #
of the resource (in this case it is obvious since there is only one INIT resource, but for
CODE resources this is really handy).    Once the resource is open (make sure you do not
have the Resedit disassembler running - if you do, select Open Using Hex Editor from the
Resource menu) scan down to the line that most closely matches the line you want to
modify - in this case our line is 1D2 so find line 1D0 in Resedit and look over 2 bytes.   
There should be the code 6646.    Just click in front of the 66, backspace to delete it,    and
type 60 (You can find these op-code numbers in the Cracker's Guide Part 1).    Now quit
and save changes and the crack is complete.

Infini-d 1.1

This program uses the common serial number / personalize dialog scheme.

Step 1:    Where to start looking.

We have two good options here: 1) Find the Dialog ID # in Resedit and use Nosy's Trap
Refs List or 2) trap ModalDialog in TMON and start tracing from there.    I tend to use
the second method, usually because I can implement the crack on the fly in TMON and
actually run the program.    Then I go back later and figure out how do a full crack with
Nosy.    Note that withe the second method we do not have to go through every stupid
dialog in the program.    Rather we can simply find the unfriendly ModalDialog and let
TMON tell us which code resource we are in.

First, drop into TMON and set a trap intercept for _ModalDialog then exit TMON and
launch Infini-D.    TMON will proceed to stop execution at the first ModalDialog trap.   
Since it is possible for a program to have ModalDialog traps before the one that actually
does the serial number stuff my first step is to immediately exit TMON and keep track of
how many ModalDialogs occur before the serial number dialog comes up.    In this case it
is the first ModalDialog, so I would have to then quit and start over, this time not exiting
TMON when the trap occurs.

Once you are in TMON, open an Assembly window to (PC) to look at the code that is
executing.    I forget exactly, but essentially what you would see is the ModalDialog trap
followed by a couple of meaningless instructions and an RTS.    Since nothing happens
after the ModalDialog, we would need to Step through the RTS to get back to the
procedure that called this one.

I should make a quick note here:    this technique of making an on the fly crack via
TMON usually means that you are going to ruin the application, i.e. you are going to end
up with a serialized program that no longer needs to be cracked.    This is not a true crack,
rather this is a bypass - once this is done, the program is personalized and ready to run; in
a sense you are letting the program crack itself.    If you wanted to make a true cracked
copy, you would have to look at exactly which branches were modified in TMON and
then go into Resedit and change the same instructions (with an un-serialized copy of the
application).

OK, enough about that.    Here is the code you would see:

PEA
 $157A(A5)
MOVE.L $000C(A6),-(A7)
_ModalDialog
UNLK
 A6
RTS

Since the procedure ends right after the ModalDialog call, we need to step through the
RTS to see what called this procedure...and here is that code:

001E50B4: LINK.W A6,#$FFFE
001E50B8: PEA
 `FFFE(A6)
001E50BC: CLR.L
 -(A7)
001E50BE: JSR
 $1572(A5)
001E50C2: ADDQ.L #8,A7
001E50C4: CMPI.W #$0001,`FFFE(A6)
001E50CA: BEQ.S
 ^$001E50D8

001E50CC: CMPI.W
 #$0002,`FFFE(A6)
001E50D2: BEQ.S
 ^$001E50D8

001E50D4: MOVEQ
 #$00,D0
001E50D6: BRA.S
 ^$001E50DA

001E50D8: MOVEQ
 #$01,D0
001E50DA: TST.W
 D0
001E50DC: BEQ.S
 ^$001E50B8

001E50DE: CMPI.W #$0001,`FFFE(A6)
001E50E4: BNE.S
 ^$001E50EA

001E50E6: MOVEQ
 #$01,D0
001E50E8: BRA.S
 ^$001E50EC

001E50EA: MOVEQ
 #$00,D0
001E50EC: UNLK
 A6
001E50EE: RTS

Well, there is quite a bit of comparing and branching going on here so we had better see if
we can figure out what is happening.    After the Link, the dialog handle is pushed on the
stack, space for a return value (or maybe a parameter with value 0) is put on the stack and
then the ModalDialog procedure is called.    This is pretty standard.    Next, the stack is
restored to its original value and something is compared to 1, branch if so, then compare
the same thing to 2 and branch if so.    Notice an important thing here, namely that this
procedure never calls GetDItem or GetIText nor does it call any more subroutines so this
procedure cannot be the one that checks the serial number.    So it is probably a safe bet

that this procedure is testing to see what exactly the user did - hit OK? hit Cancel? Type
in a keystroke?    Assuming for the moment that this is the case, take a wild guess what
the various dialog item numbers are?    You guessed it...1 is the OK button, 2 is the Cancel
button.    Now look at the code and you can quickly see what is happening (still assuming
our item number theory is correct).    First, if the item number hit was one (OK button)
then branch down, and put a 1 in D0.    If the item number hit was 2 (Cancel button) then
do the same thing.    Otherwise put a zero in D0.    Finally, TST D0 and if it was 0 (neither
button hit) then loop back and call ModalDialog again.    At this point the program knows
one of the buttons was hit.    So, if it was not the OK button, branch down and put 0 in D0
otherwise put a 1 in D0 (so that's Cancel = 0, OK = 1).    When we look at the procedure
that called this one, we know that D0 will tell that procedure what happened (either OK
or Cancel).

Note that this is one of those problem ModalDialog calls that exits everytime you hit a
keystroke so you cannot just type in your name and serial number, hit OK to get back to
TMON, and crack the sucker.    Rather you have to either 1) settle for only typing in one
letter before you crack it or 2) set a breakpoint just past the part were it tests for the OK
button being hit, clear the ModalDialog trace, and exit - TMON won't interrupt until you
hit the OK button and the breakpoint is encountered.

Finally, here is the last piece of code - the procedure that called the above procedure:

001E4FBE: ADDQ.L #6,A7
001E4FC0:JSR
^$001E50B4

001E4FC4: MOVE.W D0,`FFFE(A6)

Here is where we returned from the above procedure. 1 = OK, 0 = Cancel
001E4FC8: CMPI.W #$0001,`FFFE(A6)
001E4FCE:BNE.S
^$001E5012

Branch if Cancel hit
001E4FD0:PEA
`FEF8(A6)
001E4FD4: MOVE.W #$000A,-(A7)
001E4FD8:JSR
^$001E4F58

001E4FDC: ADDQ.L #6,A7

001E4FDE:PEA
`FEF8(A6)
001E4FE2:JSR
^$001E52AC

001E4FE6: ADDQ.L #4,A7
001E4FE8: MOVE.W D0,`FFFC(A6)
001E4FEC:TST.W
`FFFC(A6)
001E4FF0:BNE.S
^$001E5012

001E4FF2: MOVE.W #$0001,-(A7)
001E4FF6:CLR.W
-(A7)
001E4FF8: MOVE.W
 #$0034,-(A7)
001E4FFC:JSR
$107A(A5)
001E5000: ADDQ.L #6,A7
 001E5002: MOVE.L 582(A5),-(A7)
001E5006: MOVE.W #$000A,-(A7)
001E500A:CLR.W
-(A7)
001E500C: MOVE.W #$7FFF,-(A7)
001E5010: SelIText
001E5012: CMPI.W #$0001,`FFFE(A6)
True if OK was hit
001E5018:BNE.S
^$001E5020

001E501A:TST.W
`FFFC(A6)

Unknown: returned value from JSR above
001E501E: BEQ.S
^$001E4FC0
001E5020: CMPI.W #$0001,`FFFE(A6)
001E5026:BNE.S
^$001E5070

001E5028:PEA
`FF38(A6)
001E502C: MOVE.W #$0006,-(A7)
001E5030:JSR
^$001E4F58

001E5034: ADDQ.L #6,A7

Well, there is a lot of crap here and if you decided to trace the two JSRs you would be in
for a long ride.    The first thing to try is to deduce what will happen based on what we
already know - we know that if the wrong serial number is entered, the program will go
back to ModalDialog to let you change it.    So we need to find a branch that goes back
above line 1E4FC0 (the ModalDialog JSR).    If we can find that branch and avoid it, we
should be safe.    So we will start tracing down from where the program returned, not
making any assumptions yet, but looking at where the branches go.    Right away you will
note two JSRs.    Take a look at the parameters passed, and you will note the pair of PEA
FEF8(A6) instructions.    So this same piece of information is being passed to both
subroutines - nothing to write home about, but interesting.    The real key you should
notice here is that there is a TST and BNE after the second subroutine.    This is the first
chance the program has to make any decisions (although what decisions we don't know).
Let's assume this branch does not execute (you could assume either way and wind up
with the answer) i.e. FFFC(A6) = 0 - some stuff happens that we don't care too much
about yet, some text is selected, and the button is tested.    If it was OK, the return value
from the second JSR is TSTed and if it was zero (which we are assumming), branch back
to 1E4FC0 - back to the ModalDialog JSR.    So this route is incorrect.    Going back, we
now need to assume that the branch at line 1E4FF0 did execute.    This time, we jump
right to the button check, skip the branch since OK was hit, and again TST the return

value from the second JSR.    Since the branch executed, this value cannot be zero, so
execution proceeds.    Looking down a few lines we note that there does not seem to be
any more branches back to the ModalDialog JSR so we can tentatively assume that this is
the end of the protection.

To apply the crack immediately, just make sure that branch executes.    You can do this by
typing BRA right over the BNE in TMON.    If, however, you want to make a cracked,
unserialized copy (which you can then serialize with anything you like) you need to
figure out where code will be in Resedit and change that BNE to BRA.    Unlike the
listings I have pasted into this document, TMON will tell you exactly where the code is
in the file.    Refer to the above section on TMON MacNosy and Resedit for details, but
essentially just find the Code Resource ID # and the offset from the TMON listing.   
Then Exit TMON and let Infini-d cancel out.    Next open it the proper code resource in
Resedit, scan down to the proper offset, and find the BNE (which is 66 in hex) and
change it to BRA (60 in hex).    Save changes and you are set.

