Bonus Chapter 24

Game Programming Potpoulrri

In This Chapter
Choosing data structures
Writing a good algorithm

Understanding optimization theory

Creating a demo

Writing a save-game feature

Implementing multiple players

Data

n this chapter, | cover all those little details that slip through the cracks

in any game programming book. | discuss everything from writing games
so they can be saved, to making demos, to optimization theory! | think that
this chapter will answer any further questions that you may have. If it
doesn’t, e-mail me at necron@slip.net, and I'll answer it!

Structures

Probably one of the most frequent questions I'm asked is this: What kind of
data structures should be used in a game? My answer: Use the fastest, most
efficient data structure possible for the task at hand. Note, however, that in
most cases, the task at hand doesn’t require the most advanced, complex
data structures that computer science has to offer. Rather, try to keep things
simple. When it comes to games in Windows, speed is more important than
memory these days. So sacrifice memory before you sacrifice speed!

In the following sections, | cover some of the most common data structures
used in games and give you some insight into when to use them.

CD PDF File

£y

JUFF

Static structures and arrays

The most basic of all data structures is, of course, a single occurrence of a
data item such as a single structure or class. For example:

typedef struct PLAYER_TYP // tag for forward references
{
int state; // state of player
int x,y; // position of player
// more fields here...
} PLAYER, *PLAYER_PTR;

In C++, you don’t need to use typedef on structure definitions to create a
type, as in C; a type is automatically created for you when you use the
keyword struct.

PLAYER player_1, player_2; // create a couple of players

In this case, a single data structure along with two statically defined records
does the job. On the other hand, if the game calls for three or more players,
using an array like this is probably a good idea, because you can process all
the players with a simple loop:

PLAYER players[20]; // the players of the game

Okay, great, but what if you don’t know the number of players or records
until the game runs? When this situation arises, | figure out the maximum
number of elements that the array would have to hold in the most demand-
ing case. If the number is less than or equal to 256 and each element is
reasonably small (less than 256 bytes) then | usually statically allocate it
and use a counter to count how many of the elements are active at any time.

You may think that this process is a waste of memory, and it is; but a
preallocated array of a fixed size is easier and faster for the processor to
traverse than a linked list or a more dynamic structure. My point: If you
know the number of elements ahead of time and that number is small, go
ahead and preallocate it or mal loc() the memory at start up.

Don’t get carried away with static arrays. Suppose that you have a 4K
structure and you will need from 1 to 256 static records. Allocating 1MB of
memory — in case the number may increase to 256 at some point — is a
poor strategy.

Bonus Chapter 24: Game Programming Potpourri

Figure 24-1:
Alinked list.

|
Figure 24-2:
Inserting
into a
linked list.

Linked lists

Arrays are fine for simple data structures that can be precounted or esti-
mated at compilation or start up, but data structures that can grow or
shrink during run-time should use some form of linked list. Figure 24-1
depicts a standard abstract linked list. A linked list consists of a number of
nodes, with each node containing information and a link to the next node in
the list.

Mode @ Kipde 1 Kode n

Data Iil Deta y = e Data ,il -1 1l
’-.F!em:n: k Record | k ’-Re::u:n: k

Head Tail

Linked lists are cool because you can insert or delete a node anywhere in
the list (see Figure 24-2). The capability of a linked list to insert and delete
nodes (and, therefore, information) during run-time makes them very
attractive as a data structure for games.

Head = before i nsericn Tail

26 I 4k I 141 I KRR h

Mode to inger ——— 100 null
Head = afterinsenion Tail

s e 0

Mode is i nse red

3

4

CD PDF File

The only bad thing about linked lists is that you must traverse them node-
by-node to find what you are looking for. For example, suppose that you
want the 15th element in an array; you can access it like this:

players[15]

But with linked lists, you need a traversal algorithm (which is a method to
visit each node in the list) to traverse the list to find the 15th element. In the
worst case, the searching of linked lists can take a number of iterations
equal to the length of the list, represented mathematically as O(n) — read
“big O of n.” Of course, you can employ optimizations and secondary data
structures to maintain a sorted indexed list that allows access almost as fast
as the simple array.

Creating a linked list

For an example of a simple linked list, take a look at how to create a linked
list, add a node, delete a node, and search for an item with a given key.
Here’s the basic node:

typedef struct NODE_TYP

{

int id; // 1D number of this object
int x,y; // position of object

int color; // color of object

NODE_TYP *next; // this is the link to the next node
// more fields go here
} NODE, *NODE_PTR;

Then to start the list off, you need a head pointer and a tail pointer that
points to the head and tail of the list, respectively. However, because the list
is empty, the pointers start off pointing to NULL.

NODE_PTR head = NULL,
tail = NULL;

Traversing a linked list
Ironically, traversing a linked list is the easiest of all operations. To traverse

a linked list, follow these steps:
1. Start at the head pointer.
2. Visit the node.
3. Link to the next node.
4. If the node is not NULL, then go to Step 2.

Bonus Chapter 24: Game Programming Potpourri

And here’s the code:

void Traverse_List(NODE_PTR head)

{

// this function traverses the linked list and prints out
// each node

// first test whether head is null
if (head==NULL)
{
printf(“\nLinked List is empty!”’);
return;
} 7/ end if
// traverse while nodes
while (head!=NULL)
{
// visit the node, print it out, or whatever...
printf(“\nNode Data: id=%d”, head->id);
printf(“\nx=%d, y=%d”,head->x, head->y);
printf(“\ncolor=%d\n”,head->color);
// advance to next node (simple!)
head = head->next;
} // end while
} // end Traverse_List

Pretty cool, huh? In the next subsection, | explain how to add a node.

Adding a node (insertion)

The first step in adding a node is to create it. You can use either of two
approaches:

v Send the new data elements to the insertion function and let it build up
a new node.

v+~ Build up a new node and then pass it to the insertion function.

Both methods achieve the same result. You can choose from a number of
ways to insert a node into a linked list. The brute force method is to add it
to the front or the end. This approach is fine if you don’t care about the
order; but if you want the list to remain sorted, use a more intelligent
insertion algorithm that maintains order in either ascending or descending
order. This process makes searching much faster.

For simplicity’s sake, | took the easy way out and inserted at the end of the
list, but inserting with sorting is not that much more complex. You first need
to scan the list, find the location at which the new element should be
inserted, and then insert the new element. Your only problem will be
keeping track of the pointers and not losing any nodes or links.

© CDPDFFile

Here’s the code to insert a new node at the end of the list (a bit more
difficult than the front of the list). Notice the special cases for empty lists
and lists with a single element.

// access the global head and tail to make code easier;
// in real life, you may choose to use ** pointers and
// modify head and tail in the function

NODE_PTR Insert_Node(int id, int x, int y, int color)
{

// this function inserts a node at the end of the list
NODE_PTR new_node = NULL;

// Step 1: create the new node

new_node = malloc(sizeof(NODE)); // in C++ use new operator
// fill in fields

new_node->id = id;

new_node->x = X;

new_node->y = y;

new_node->color = color;

new_node->next = NULL; // good practice

// Step 2: find the current state of the linked list
if (head==NULL) // case 1
{
// finding an empty list means using the simplest case
head = tail = new_node;
// return new node
return(new_node) ;

} // end if

else

if ((head '= NULL) && (head==tail)) // case 2
{

// you have exactly one element; this code is really
// just a little finesse...
head->next = new_node;
tail = new_node;
// return new node
return(new_node) ;
} 7/ end if
else // case 3
{
// in case 2 or more elements are in list,
// simply move to end of the list and add
// the new node

Bonus Chapter 24: Game Programming Potpourri

tail->next = new_node;
tail = new_node;
// return the new node
return(new_node) ;
} 7/ end else

} 7/ end Insert_Node

As you can see, the code is rather simple, but it is easy to mess up because
you are dealing with pointers, so be careful! Also, the astute programmer
very quickly realizes that, with a little thought, cases 2 and 3 can be com-
bined; however, the preceding code is easier to follow than the code which
combines cases 2 and 3.

Deleting a node

Deleting a node is the most complex of all linked-list operations, or at least
up there in the record books.

The problem with deletion is that in most cases you want to delete a specific
node. The node may be at the head, tail, or in the middle; therefore, you
must write a very general algorithm that takes all these cases into consider-
ation. If you’re careful, deletion isn’t a problem; but if you don’t take all the
cases into consideration and test them, you’ll be sorry!

Now that you’re scared of the linked-list police, here’s the code to delete a
node from a fictitious linked list using the id as the key:

// this function will modify the globals
// head and tail (possibly)
int Delete_Node(int id) // node to delete
{
// this function deletes a node from
// the linked list given its ID
NODE_PTR curr_ptr = head, // used to search the list
prev_ptr = head; // previous record
// test whether a linked list to delete from is present
if (Thead)
return(-1);
// traverse the list and find node to delete
while(curr_ptr->id != id)
{
// save this position
prev_ptr = curr_ptr;
curr_ptr = curr_ptr->next;
} // end while

(continued)

8 coPoFFile

(continued)

// at this point we have found either the node
// or the end of the list
if (curr_ptr == NULL)

return(-1); // couldn’t find record

// the record was found, so delete it, but be careful;
// there are a number of cases to test for

// need to test cases
// case 1: one element
if (head==tail)
{
// delete node
free(head);
// fix up pointers
head=tai I=NULL ;
// return id of deleted node
return(id);
} 7/ end if
else // case 2: front of list
if (curr_ptr == head)
{
// move head to next node
head=head->link;
// delete the node
free(curr_node);
// return id of deleted node
return(id);
} // end if
else // case 3: end of list
if (curr_ptr == tail)
{
// fix previous pointer to point to null
prev_ptr = NULL;
// delete the last node
free(curr_ptr);
// point tail to previous node
tail = prev_ptr;
// return id of deleted node
return(id);
} // end if

-

|
Figure 24-3:
A double
linked list.
|

else // case 4: node is in middle of list
{
// connect the previous node to the next node
prev_ptr->next = curr_ptr->next;
// now delete the current node
free(curr_ptr);
// return id of deleted node
return(id);
} // end else
} // end Delete_Node

Note that the code contains a lot of special cases. Each is simple, but you
have to think of every possible scenario — which | hope that | did!

Finally, you may have noticed the drama in the code when deleting nodes
from the interior of the list. The problem occurs because, once a node is
traversed, you can’t get back to it. Therefore, | had to keep track of a
previous NODE_PTR to keep track of the last node.

This problem can be solved along with others by using what is called a
double linked list (as shown in Figure 24-3). The cool thing about a double
linked list is that you can traverse in both directions from any point, and
insertions and deletions are much easier. And the only change to the data
structure is another link field, as shown (in bold) in the following code:

typedef struct NODE_TYP
{
int id; // 1D number of this object
int x,y; // position of object
int color; // color of object
NODE_TYP *next; // link to the next node
NODE_TYP *prev; // link to previous node
// more fields go here
} NODE, *NODE_PTR;

Head Tail
Kpde @ Meode 1 Kode 2 Mode n

Data 1Deta Data Date

o — -~

Formend and backaard links

Bonus Chapter 24: Game Programming Potpourri

9

10 coPoFFile

|
Figure 24-4:
Some tree
topologies.
|

|
Figure 24-5:
Athree-
level tree.
|

Trees

The next class of advanced data structures are trees. Take a look at
Figure 24-4 to see a number of different treelike data structures.

I n-1ree M trie

.l'll IIrIELII %

Trees were invented to help with searching and storing large amounts of
data. The most popular kind of tree is the binary tree or B-tree. The binary
tree is a tree data structure emanating from a single root that is composed of
a collection of nodes. Each node has one or two child nodes descending
from it — hence, the term binary. Moreover, we talk of the order or number
of levels of a tree, meaning how many layers (or levels) of nodes. For
example, the tree in Figure 24-5 is a three-level tree.

Lewel 1

=2
Lewed 2 @ @ @
Level 3 Gj

Bonus Chapter 24: Game Programming Potpourri 1 1

The interesting thing about trees is how fast the information can be
searched. Most B-trees use a single search key to order the data in the tree.
Then a searching algorithm searches the tree for the data.

For example, suppose that you want to create a B-tree that contains records
of game objects, each with a number of properties. You can use the time of

creation as the key. Here’s the data structure that you would use to hold a
single node:

typedef struct TNODE_TYP
{
int time; // time of creation
int x,y; // position of object
int color; // color of object
NODE_TYP *right; // link to right node
NODE_TYP *left; // link to left node
} TNODE, *TNODE_PTR;

Notice the similarity between the tree node and the linked-list node (cov-
ered in the earlier subsection “Linked lists”). The only difference is really
the way you use the data structure and build up the tree.

Continuing with the example, suppose that | have five objects with the
following creation times: t={0,25,3,12,10}. Figure 24-6 depicts two different
B-trees that contain this data. However, a number of topologies exist that
would maintain the properties of a B-tree.

In Figure 24-6, | use the convention that any right child is greater than or
equal to its parent and any left child is less than its parent. You can use a
different convention as long as you stick to it.

Figure 24-6:
B-tree
encoding of
data set .
(0,25,3,12,10). Bodh trees are bingrg and maintain ordersd data.

12

CD PDF File

J__1..,I. ﬂ'ﬁ"&

Unfortunately, | don’t have time to cover the code for creating, searching,
and working with B-trees, so you’ll have to get a book or do some more
research if you're interested (try Programs and Data Structures In C, by
Leendert Ammeraal, Wiley Press). But | can tell you what B-trees bring to
game programming.

Binary trees can hold enormous amounts of data, and that data can be
quickly searched by using a binary search. This property is a manifestation
of the binary structure of the tree. For example, if you have a tree with a
million nodes, then at most it will take you 20 comparisons to find any
desired record! Is that crazy or what? The reason for such a small number of
comparisons is that at each iteration of your search (as you compare the
key you are looking for against the current node you are visiting), you cut
half the nodes out of the search space.

The above statement about search time is only true for balanced trees (trees
that have an equal number of right and left children per level). If a tree is
totally unbalanced, it degrades into a linked list and search time degrades
into a linear function.

The next cool thing about B-trees is that if you take a branch (a subtree) and
process it separately, the branch maintains the properties of a B-tree.
Therefore, if you know where to look, you can search only the branch for
whatever it is you're looking for.

When do you use B-trees? | suggest that you use treelike structures when
the problem or data is treelike to begin with. If you find yourself drawing out
the problem and you see branches to the left and right, then a tree is
definitely for you. For example, in Bonus Chapter 23 on artificial intelligence,
| speak of creating memories for the game characters. A tree structure
would be perfect for memory. Each node could represent a room, and the
children off of each node could represent the various objects that exist in
each room.

Algorithmic Xtasy

Algorithm design and algorithmic analysis are complex subjects and usually
are senior-level computer science material, but | can at least touch upon
some common-sense techniques and ideas to help you out when you start
writing more complex algorithms — because brute-force, sloppy program-
ming just isn’t good enough in many cases.

A good algorithm is better than all the assembly language or optimization
in the world. For example, just by re-ordering your data, you can reduce
the amount of time necessary to search for a data element by orders of

Bonus Chapter 24: Game Programming Potpourri 13

magnitude. So the moral of the story is to select a good solid algorithm that
fits the problem and the data, but at the same time to pick a data structure
that can be accessed and manipulated with a good algorithm. | mean, if you
always use linear arrays, you’re never going to get better than linear search
time (unless you use secondary data structures); but if you use sorted
arrays, you can get logarithmic search time.

The first step to writing good algorithms is having some clue about how to
analyze them. The art of analyzing algorithms is called asymptotic analysis
and is usually calculus-based, so I'm just going to skim some of the concepts.

The basic idea of analyzing an algorithm is to compute how many times the
main loop is executed for n elements, whatever n means. Of course, how
long each execution takes plus the overhead of setup can also be important
after you have a good algorithm, but the first place to start is the general
counting of how many times. Take a look at two examples:

for (int index=0; index<n; index++)
{
// do work, 50 cycles
} // end for index

In this case, the loop is going to execute for n iterations, thus the execution
time is of the order n, or O(n). As explained in the earlier section called
“Linked lists,” Big O is a very rough upper estimate of execution time. You
can be more precise in this case because you know that the inner computa-
tion takes 50 cycles; so the total execution time is:

n*50 cycles

Right? Wrong! If you are going to count cycles, then you had better count the
cycles that it takes for the loop itself. This calculation consists of an initial-
ization of a variable, a comparison, an increment, and a jump for each
iteration. Adding in these factors, you end up with something like this:

Cyclesinitiatizationt (50+Cyc lesinctCyc leSconp+Cyc leSjunp) *n

This estimate is much more accurate. Of course, Cyclesinc, Cyclescon, and
Cyclesijump, are the number of cycles for the increment, comparison, and
jump, respectively, and are each around 1 to 2 cycles on a Pentium-class
processor. Therefore, in this case, the loop itself contributes just as much to
the overall time of the inner loop as does the work performed by the loop!

Loop overhead is a key point. For example, many game programmers write a
pixel-plotting function as a function instead of a macro or inline code.
Because a pixel-plotting function is so simple, the call to the function takes

14 coPoFFile

Figure 24-7:
Rates of
growth for
the term of
2’ n°n.

more time than the pixel plotting! So make sure that you do enough work
within your loop to warrant the usage of a loop in the first place. If the work
within the loop “drowns” out the loop mechanics, then you should be okay.

The following code example has a much worse running time than n:

// outer loop
for (1=0; i<n; i++)
{
// inner loop
for (=1; j<2*n; j++)
{
// do work
} // end for j
} // end for i

In this code block, I'm assuming that the “work” part takes much more time
than the actual code that supports the loop mechanics, so I'm not interested
in the loop mechanics. What | am interested in is how many times this loop
executes. The outer loop executes n times and the inner loop 2" n-1 times;
thus the total amount of time the inner code will be executed is:

n (2" n-1) =2" n?n

Look at these two terms for a moment. The 2" n2 term is the dominant term
and will drown out the n term as n gets larger (see Figure 24-7).

2% ' fenmm

2w - nierm

Bonus Chapter 24: Game Programming Potpourri 15

For a small n — for example, when n equals 2 — the n term is relevant:
2°(2*>-2=6

In this case, the n term contributed to subtracting 25 percent of the total
time away. But take a look at what happens when n gets larger; for example,
when n equals 1,000.

2" (1,000)%-1,000 = 1,999,000

FHLGY In this case, the n term contributes a decrease of only .05 percent; hardly
iz important. Thus, you can see that the dominant term is indeed the 2" n2
term, or more simply the n? itself. Therefore, this algorithm is O(n?). This
result is very bad. Algorithms that run in n? time will just kill you — well, at
least will kill the performance of your code — so if you come up with an
algorithm like this, then try, try again!

That'’s it for asymptotic analysis; the bottom line is that you must be able to
roughly estimate the run-time of your loops. This estimation will help you
pick out the best algorithms and recode areas that need work.

Optimization Theory

No other programming has the kind of performance requirements that
games do. Video games have always pushed the limits of hardware and
software and will continue to do so. The reason for this: Enough is never
enough. Game programmers always want to add one more creature, effect,
or sound, as well as increase or improve the Al. Therefore, optimization is of
the utmost importance. In this section, | cover some optimization tech-
niques to get you started. If you are interested in reading more about this
subject, a number of good books on the subject are available (try Black Art
of 3D Game Programming, by André LaMothe; Waite Group Press).

Using your head

The first key to writing optimized code is understanding the compiler, data
types, and the way your C/C++ is finally transformed into executable ma-
chine language. The best idea is to use simple programming and simple data
structures. The more complex and contrived your code is, the more difficult
time the compiler is going to have converting to machine code and, thus,
the slower your code is going to execute (in most cases). Here are some
basic rules to keep in mind:

16

CD PDF File

v Use 32-bit wide data as much as possible; 8-bit data may take up less
space, but Intel processors like 32-bit data are optimized to access it.

v Use inline functions for small functions that you call a lot.
v+ Use globals as much as possible without making ugly code.
v Avoid floating-point numbers for addition and subtraction.

v Use integers whenever possible, even though the floating point proces-
sor is almost as fast as the integer processor. Integers are exact, so if
you don’t need decimal accuracy, use integers.

v~ Align all data structures to 32-byte boundaries. You can do this manu-
ally or with compiler directives on most compilers.

v Never pass data to functions as value if the data is anything other than
a simple type; always use a pointer.

v Don’t use the register keyword in your code. Although Microsoft says
that this keyword makes faster loops, it starves the compiler of regis-
ters and ends up making horrible code.

v If you’re a C++ programmer, then it’s okay for you to use classes and
virtual functions; just don’t go crazy with inheritance and layers of
software.

v The Pentium-class processors use an internal data and code cache. Be
aware of this arrangement and try to keep the size of your functions
relatively small so they can fit into the cache (16K to 32K). In addition,
when you store data, store it in the way it will be accessed. This
method minimizes cache thrashing and main memory or secondary
cache access, which is ten times slower than the internal cache.

v Be aware that Pentium-class processors have RISC-like cores, and they
like simple instructions, allowing two or more instructions to execute in
more than one execution unit. Don’t write contrived code on a single
line. Writing simpler code lines is better, even though you can mash the
same functionality on the same line.

Working mathematical sorcery

Because a great deal of game programming is mathematical in nature, it pays
to know advanced ways to perform math functions. You can use a number of
general tricks and methods to enhance math performance and speed up
operations.

The first | cover briefly is fixed-point math, which is an advanced subject,
and | refer you to my other book, The Black Art of 3D Game Programming
(published by Waite Group Press) for a more complete treatise on this topic.
However, here is a list of math tricks you can use to speed up operations:

Bonus Chapter 24: Game Programming Potpourri

v With regard to data types, always use integers with integers and floats
with floats. Conversion from one to another kills performance. Hence,
hold off on the conversion of data types to the very last minute.

v Integers can be multiplied by any power of 2 by shifting to the left. And
likewise, they can be divided by any power of 2 by shifting to the right.
Multiplication and division other than by power of 2 is accomplished
by using sums or subtractions of shifts. For example, 640 is not a power
of two, but 512 and 128 are, so here’s the best way in C code to multiply
a number by 640 using shifts:

product=(n<<7) + (n<<9); // n*128 + n*512 = n*640

v If you use matrix operations in your algorithms, then make sure that
you take advantage of the sparseness of those operations.

v When you create constants, make sure that they have the proper casts,
so that the compiler doesn’t reduce them to integers or interpret them
incorrectly. The best idea is to use the C++ const directive; for example:

const float f=12.45;

v Avoid square roots, trigonometric functions, or any complex math-
ematical functions. In general, find a simpler way to accomplish the
operation by taking advantage of certain assumptions or making
approximations. However, you can always make a lookup table as
shown in the section “Appreciating lookup tables.”

v If you have to zero out a large array of floats, use a memset() like this:

memset((void*)float_array,0,sizeof(float)*num_floats);

However, you can only use memset() in this situation, because floats
are encoded in IEEE format and the only value that is the same in both
integer and float values is 0.

v When you perform mathematical calculations, see if you can reduce the
expressions manually before coding them. For example, n” (f+1)+
is equivalent to (f+1) because the multiplication and division of n
cancel out.

v If you perform a complex mathematical operation and you need it again
a few lines down in the code, then cache it; for example:

// compute term that is used in more
// than one expression
float n_squared = n*n;

// use term in two different expressions
pitch = 34.5*n_squared+100*rate;
magnitude = n*squared / length;

17

18

CD PDF File

v And last, but not least, make sure that you set the compiler options to
use the floating point processor and create code that is fast (runs the
quickest) rather than small (takes up the least amount of RAM).

Unrolling the loop

The next optimization trick is loop unrolling, which was one of the best
optimizations possible back in the 8- and 16-bit days, but today it can
backfire on you.

Unrolling the loop means to take apart a loop which iterates some number
of times and to manually code each line as the loop would have mechani-
cally. Here’s an example:

// loop before unrolling
for (int index=0; index<8; index++)
{
// do work
sum+=data[index] ;
} // end for index

The problem with this loop is that the “work” section takes less time than
the loop does for the increment, comparison, and jump. Hence, the loop
code itself doubles or triples the amount of time the code requires!

To fix this problem with the code, unroll the loop like this:

// the unrolled version
sum+=data[0];
sum+=data[1];
sum+=data[2];
sum+=data[3];
sum+=data[4];
sum+=data[5];
sum+=data[6];
sum+=data[7];

This approach is much better.
However, consider these two caveats to the code listed above:
v If the loop body is much more complex than the loop mechanics itself,
then you really don’t need to unroll it. For example, if you are comput-

ing square roots in the “work” section of the loop, then a few more
cycles in each iteration isn’t going to help you.

Bonus Chapter 24: Game Programming Potpourri 19

v Pentium processors have internal caches, and unrolling a loop too
much may cause it to be unable to fit in the internal cache. This situa-
tion is disastrous and will bring your code to a halt. | suggest unrolling
(if appropriate) 8 to 32 times, depending on the situation.

Appreciating lookup tables

This is my personal favorite optimization. Lookup tables are precomputed
values of some computation that you know you will perform during run-
time. You simply compute all possible values at startup and then run the
code.

For example, suppose that you need the sine and cosine of the angles from 0
to 359 degrees. Computing them by using sin() and cos() would kill your
math performance if you use the floating point processor; but by utilizing a
lookup table, your code can compute sin() or cos() in a few cycles
because the process involves just grabbing the number from a lookup table.
Here’s an example:

// storage for look up tables
float SIN_LOOK[360];
float COS_LOOK[360];
// create lookup table
for (int angle=0; angle < 360; angle++)
{
// convert angle to radians because the math library
// uses rads instead of degrees
// remember that 2*pi rads are in 360 degrees
float rad_angle = angle * (3.14159/180);

// fill in the remaining entries in lookup tables
SIN_LOOK[angle] = sin(rad_angle);

COS_LOOK[angle] = cos(rad_angle);

} 7/ end for angle

As an example of using the lookup table, here’s the code to draw a circle of
radius 10:

for (int ang = 0; ang<360; ang++)
{
// compute the next point on circle
X_pos = 10*COS_LOOK[angle];
y_pos = 10*SIN_LOOK[angle];
// plot the pixel
Plot_Pixel((int)x_pos+x0, (int)y_pos+y0, color);
} // end for ang

20

CD PDF File

Of course, lookup tables take up memory, but they are well worth it. If you
can precompute a set of values that you’ll need in your code, then put the

set in a lookup table. That’s my motto. (And if you have a hard time believ-
ing that the really cool and complex games today don’t use lookup tables,

think again; how do you think that Doom and Quake work?)

Using assembly language

The final optimization | want to talk about is using assembly language.

So you have the killer algorithm and all your data structures are good, but
you just want a little bit more oomph to your code’s speed. Hand-crafted
code written in assembly language doesn’t make code go 1,000 times faster
with 32-bit processors like it did with 8- and 16-bit processors, but it can get
you 2 to 10 times more speed, and that result is definitely worth it.

However, make sure that you only try to convert sections of your game that
need converting. Don’t mess with converting the menu program to assem-
bly, because that’s a waste of time. Use a profiler or similar analysis program
to see where all your game’s CPU cycles are being eaten up (probably in the
graphics sections) and then target those for conversion to assembly language.

In the old days (a few years ago), most compilers didn’t have inline assem-
blers, and if they did, the inline assemblers were awful and supported very
few features of an external assembler. Today, the inline assemblers that
come with Microsoft, Borland, or Watcom compilers are really good and just
about as full featured as a standalone assembler for small jobs that range
from a few dozen lines to a couple hundred. Therefore, | suggest using the
inline assembler in your compiler if you want to do any assembly language.

Here’s how you invoke the inline assembler in Microsoft Visual C++ 2.0+:

_asnm

{
[assembly language code here]
} // end asm

The cool thing about the inline assembler is that it enables you to use
variable names that have been defined by C/C++. For example, here’s how to
write a 32-bit memory fill function using inline assembly language:

void gmemset(void *memory, int value, int num_quads)

{

// this function uses 32-bit assembly language based

Bonus Chapter 24: Game Programming Potpourri 2 1

// on the string instructions to fill a region of memory
_asm

{

CLD // clear the direction flag

MOV EDI, memory // move pointer into EDI

MOV ECX, num_quads // ECX hold loop count

MOV EAX, value // EAX hold value
REP STOSD // perform fill
} // end asm

} // end gmemset
To use the new function, all you do is this:
gmemset(&buffer, 25, 1000);

And 1,000 quads would be filled with the value 25 starting at the address of
buffer.

T If you're not using Microsoft Visual C++, then take a look at your particular
compiler’s Help file to see the exact syntax needed for inline assembly. In
most cases, the changes to the prior code block are an underscore here and
there and nothing more.

Making Demos

So you’ve got this killer game and you need a demo mode. You can use two
main methods to implement a demo mode:

v Play the game yourself, record your own moves, and then play the
moves back.

v Use an Al player that plays the game unattended.

Recording game play turns out to be the most common choice, because
writing an Al player that can play as well as a human is difficult. In addition,
it’s difficult to let the Al demo player know that it needs to make a good
impression on potential buyers by playing the game in a “cool” way. The next
sections take a brief look at how each of these methods are implemented.

27 CDPDFFile

Prerecorded

To record a demo, follow these steps:

1. Record the state of all the input devices each cycle as you create the
demo.

2. Write the data to a file.

3. Play back the demo as if it were the input of the game.

Take a look at Figure 24-8 to see this point graphically. The idea is to create
your demo so that the game doesn’t know whether the input is from the
keyboard (input device) or from a file, so it simply plays the game back.

<L For this process to work, you need to have a deterministic game. This term
means that if you play the game again and do the exact same moves, then
the game creatures will also respond the same way. As well as recording
the input devices, you must record the initial random-number seed as well,
so that the starting state of a game is recorded as well as the input. This
step ensures that the game will play back in the exact same way as you

recorded it.
Feal-time game]
A Input stresm fom pleyer 2]
e En Input
Geme Engine Derices E;:ﬂ_'_/
B. Simulated inpit siream
Beme Eno P rerecorded
gme Engineg i Bile
C. Bet comtmlled input stream
|
o Al
Figure 24-8: Game Enging Bot
Demo
playback.

Bonus Chapter 24: Game Programming Potpourri 23

To record a game, the best approach is to not sample the input at time
intervals, but to sample the input at each frame. Therefore, if the game is
played on a slower or faster computer, the playback data won’t get out of
synchronization with the game. Here are the steps your code should follow:

1. Create a general input record.
2. Merge all the input devices into the single record each cycle.

3. As the game runs, write each input record to a file (one for each
frame).

Also, at the beginning of the file, | place any state information or random
numbers that | played the demo with, so that these values can be loaded
back in.

For example, the playback file may look something like this:

Initial State Information
Frame 1: Input Values
Frame 2: Input Values
Frame 3: Input Values . . .
Frame N: Input Values

After you have the file, you reset the game and simply start it up. Then you
read the file as if it were the input devices. The game doesn’t know the
difference and simply plays!

The single mistake that you can make in creating the demo is sampling the
input at the wrong time when you write records. Make absolutely certain
that the input you sample and record is the actual input that the game uses
for that frame. A common mistake newbies make is to sample the input for
the demo mode at a point in the event loop before or after the normal input
is read. Hence, you are sampling different data! It’s possible that the play
may have the fire button down in one part of the event loop and not in
another; thus you must sample at the same point you normally read the
input for the game.

Al controlled

The second method of recording a game is by writing an Al bot that plays,
much like people do for Internet games such as Quake. The bot plays the
game while in demo mode as if it were one of the Al characters in the game.
The only problem (other than the technical complexity) is that the bot may
not necessarily show off all the cool rooms, weapons, and so on, because it
doesn’t know that it’s making a demo. On the other hand, the cool thing
about having a bot play is that each demo is different and the attract mode
of the game will never get boring.

24

CD PDF File

Implementing a bot to play your game is like using any other Al character:
You connect it to the input port of your game and override the normal input
stream (refer to Figure 24-8). Then you write the Al algorithms for the bot
and give it some main goals, such as finding its way out of the maze or
killing everything in sight. Finally, you simply let the bot loose to demo until
the player wants to play.

Saving the Game

One of the biggest pains in the butt is writing a save-game feature. This task
is one that all game programmers do last and do by the seat of their pants,
in most cases. The key is to write your game with the idea that you want to
give the player a save-game option at some point, so that you don’t dig
yourself into a corner.

To save a game at any point in the game means to record the state of every
single variable in the game and the state of every single object in the game.
Therefore, you must record in a file all global variables along with the state
of every single object.

The best way to approach this task is by adopting an object-oriented
thought process. Instead of writing a function that writes out the state of
each object and all the global variables, teach each object how to write and
read its own state to a disk file.

Then to save a game, all you need to do is write the globals and create a
simple function that requests each game object to write its own state. To
load the game back in, all you need to do is read the globals back into the
system and load the state of all the objects back into the game.

This way, if you add another object or object type, the loading/saving
process is localized in the object itself, rather than strewn about all over the
place in your code.

Implementing Multiple Players

The last little tidbit of game programming legerdemain is implementing
multiple players. Of course, if you want to implement a networked game,
that’s a whole other story, but DirectPlay makes the communication part
easy at least. However, if all you want to do is let two or more players play
your game at the same time or by taking turns, then that flexibility requires
nothing more than extra data structures and a bit of housekeeping.

Bonus Chapter 24: Game Programming Potpourri 25

Taking turns

Implementing turn-taking is simple and difficult at the same time. The task is
simple because if you can implement one player, then implementing two or
more is nothing more than having more than one player record. But the task
is difficult because you must save the game for each player when switching
players. Hence, you need to implement a save-game option if you want to
allow for turn-taking. Obviously, the players shouldn’t know that the game is
being saved as they take turns, but that’s what’s really going on.

Here’s a list of the steps to allow two players to play, one after the other:

. Start game; player 1 begins.
. Player 1 plays until she dies.
. The state of player 1's game is saved, and player 2 begins.

. Player 2 plays until he dies.

a b~ W N B

. The state of player 2’s game is saved.
Here comes the transition.

6. The previously saved game of player 1 is reloaded and player 1
continues.

7. Go back to Step 2.

As you can see, Step 5 is where the action starts happening and the game
starts pinging back and forth between players. And if you want more than
two players, you simply play them one at a time until you’re at the end of
the list and then you start over.

Appearing on-screen at the same time

Playing two or more players on the same screen is a little more difficult than
swapping, because you have to write the game a little more generally as far
as game play, collision, and interaction between the players goes. Moreover,
now that two or more players are on the screen at the same time, you must
allocate a specific input device for each player. This device is usually a
joystick for each player, or maybe one player uses the keyboard and one
uses the joystick.

The other problem with putting two or more players on the screen at the
same time is that some games just don’t work well with two players at the
same time. For example, if the game is a scrolling game, one player may
want to go one way while the other wants to go another way. This dilemma

26

CD PDF File

can cause a conflict, and you’ll have to think about it as you program. Thus,
the best games for implementing more than one player are games that are
single-screen, such as fighting games or other games in which the players
stay relatively near each other.

If you want to allow the players to roam around freely, you can always
generate more than one view — create a split-screen display (as shown in
Figure 24-9). The only problem with a split-screen display is the split-screen
display! You must generate two or more views of the game. This step can be
technically challenging, moreover, because the players may not be able to
see what'’s going on if the screen is too small to accommodate two views.
The bottom line is this: If you can pull it off, then it’s a cool option.

[&5 Higld tiEed

Player |

|
Figure 24-9:
Split-screen
game
display.

