
Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Note: This file is also saved in Rich Text Format as APPA.RTF. We recommend that you use

APPA.RTF if you have a word processor that can read Rich Text Format files.

Appendix A

A C++ Briefing

This appendix is intended to be a briefing about C++ for C programmers.

It explains the C++ language from a C perspective so that you can

understand the code in this book. This appendix does not describe any

details about OLE itself but covers the aspects of the C++ language that I

use in the book’s samples to implement OLE features. When I use the word

object in this appendix, I mean a C++ object, not an OLE object. I do not

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 1 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

claim to be a C++ expert, so please refer to any of the plethora of C++

books available in order to understand this language more fully.

User-Defined Types: C++ Classes

Many a C application is built on top of a number of data structures. One of

these might be a typical user-defined structure of application variables such

as the following:

typedef struct tagAPP
 {
 HINSTANCE hInst; //WinMain parameters
 HINSTANCE hInstPrev;
 LPSTR pszCmdLine;
 int nCmdShow;
 HWND hWnd; //Main window handle
 } APP;

typedef APP *PAPP;

To manage this structure, an application implements a function to allocate

one of these structures, a function to initialize it, and a function to free it:

PAPP AppPAllocate(HINSTANCE, HINSTANCE, LPSTR, int);
BOOL AppInit(PAPP);
PAPP AppPFree(PAPP);

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 2 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

When another piece of code wants to obtain one of these structures, it calls

AppPAllocate to retrieve a pointer. Through that pointer, it can initialize the

structure with AppInit (which in this case might attempt to create a window

and store it in hWnd) or access each field in the structure.

By creating this structure and providing functions that know how to

manipulate it, you have defined a type. C++ formalizes this commonly used

technique into a class defined by the class keyword:

class CApp
 {
 public:
 HINSTANCE m_hInst; //WinMain parameters
 HINSTANCE m_hInstPrev;
 LPSTR m_pszCmdLine;
 int m_nCmdShow;
 HWND m_hWnd; //Main window handle
 public:
 CApp(HINSTANCE, HINSTANCE, LPSTR, int);
 ~CApp(void); BOOL Init(void);
 };

typedef CApp *PCApp;

The name after class can be whatever name you want. Although we

could have used APP, paralleling the C structure, CApp conforms to a C++

convention of using mixed-case names for classes prefixed with a C for

class. Another convention in C++ classes—at least around Microsoft—is to

name data fields with an m_ prefix to clearly identify the variable as a

member of a class.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 3 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

To use this class, another piece of code must instantiate a C++ object

of the class. In C terms, CApp is a structure. To use the structure, you still

have to allocate it. In C++, we do not need separate functions to allocate

the structure, nor do we use typical memory allocation functions. Instead

we use C++’s new operator, which allocates an object of this class and

returns a pointer to it, as follows:

PCApp pApp;

pApp=new CApp(hInst, hInstPrev, pszCmdLine, nCmdShow);

In a 32-bit memory model, new allocates far memory and returns a far

pointer. (In 16-bit Windows, this requires the keyword __far before CApp in

the class declaration with Microsoft compilers or __huge for Borland

compilers.) If the allocation fails, new returns NULL. But this is not the

whole story. After the allocation is complete and before returning, new calls

the class constructor function, which is the funny-looking entry in the

following class declaration:

 public:
 CApp(HINSTANCE, HINSTANCE, LPSTR, int);

To implement a constructor, you supply a piece of code in which the

function name is <class>::<class> (<argument list>), where :: means

“member function of,” as in the following:

CApp::CApp(HINSTANCE hInst, HINSTANCE hInstPrev
 , LPSTR pszCmdLine, int nCmdShow)

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 4 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

 { //Initialize members of the object.
 m_hInst=hInst;
 m_hInstPrev=hInstPrev;
 m_pszCmdLine=pszCmdLine;
 m_nCmdShow=nCmdShow;
 }

The :: notation allows different classes to have member functions with

identical names because the actual name of the function known to the

compiler internally is a combination of the class name and the member

function name. This allows programmers to remove the extra characters

from function names that are used in C to identify the structure on which

those functions operate.

The constructor, which always has the same name as the class, can

take any list of arguments. Unlike a C function, however, it has no return

value because the new operator will return regardless of whether the

allocation succeeded. Because the constructor cannot return a value, C++

programmers typically avoid placing code that might fail in the constructor,

opting instead for a second function to initialize the object after it has been

positively instantiated.

Inside the constructor, as well as inside any other member function of

the class, you can directly access the data members in this object

instantiation. Again, the m_ prefix on data members is the common

convention used to distinguish their names from other variables, especially

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 5 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

because the names of data members often conflict with argument names.

Implicitly, all the members (both data and functions) are dereferenced

off a pointer named this, which provides the member function with a pointer

to the object that’s being affected. Accessing a member such as m_hInst

directly is equivalent to writing this->m_hInst; the latter is more verbose, so

it is not often used.

The code that calls new will have a pointer through which it can

access members in the object, just as it would access any field in a data

structure:

UpdateWindow(pAV->m_hWnd);

What is special about C++ object pointers is that you can also call the

member functions defined in the class through that same pointer. In the

preceding class declaration, you’ll notice that the functions we defined

separately from a structure are pulled into the class itself. The caller does

not have to call a function and pass a structure pointer, as is illustrated in

the following:

//C call to a function that operates on a structure pointer
if (!AppInit(pAV))
 {
 [Other code here]
 }

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 6 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Instead, the caller can dereference a member function through the

following pointer:

//C++ call to an object's member function
if (!pAV->Init())
 {
 [Other code here]
 }

The Init function is implemented with the same :: notation that the

constructor uses:

BOOL CApp::Init(void)
 {
 //Code to register window class might go here.

 m_hWnd=CreateWindow(...); //Create main application window.

 if (NULL!=m_hWnd)
 {
 ShowWindow(m_hWnd, m_nCmdShow);
 UpdateWindow(m_hWnd);
 }

 return (NULL!=m_hWnd);
 }

Again, because a constructor cannot indicate failure through a return value,

C++ programmers typically supply a second initialization function, such as

Init, to perform operations that might be prone to failure.

You could, of course, still provide a separate function outside the class

that took a pointer to an object and manipulated it in some way. However,

one great advantage of using member functions is that you can call

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 7 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

member functions in a class only through a pointer to an object of that

class. This prevents problems that occur when you accidentally pass the

wrong pointer to the wrong function, an act that usually brings about some

very wrong events.

Finally, when you are finished with this object, you’ll want to clean up

the object and free the memory it occupies. Instead of calling a specific

function for this purpose, you use C++’s delete operator:

delete pApp;

The delete operator frees the memory allocated by new, but before doing

so it calls the object’s destructor, which is that even funnier-looking function

in the class declaration (with the tilde, ~) but which comes with an

implementation like any other member function:

//In the class
public:
 ~CApp(void);

.

.

.

//Destructor implementation
CApp::~CApp(void)
 {
 //Perform any cleanup on the object.
 if (IsWindow(m_hWnd))
 DestroyWindow(m_hWnd);

 return;
 }

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 8 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

The destructor has no parameters and no return value because after

this function returns, the object is simply gone. Therefore, telling anyone

that something in here worked or failed has no point because there is no

longer an object to which such information would apply. The destructor is a

great place—your only chance, in fact—to perform final cleanup of any

allocations made in the course of this object’s lifetime.

Of course, you can define classes and use constructors, destructors,

and member functions in many other ways than I’ve shown here. However,

this reflects the way I’ve implemented all the sample code in this book.

Access Rights

You probably noticed those public labels in the class definitions and might

by now be wondering what they’re for. In addition to public, two variations

of public can appear anywhere in the class definition: protected and private.

When a data member or a member function is declared under a public

label, any other piece of code with a pointer to an object of this class can

directly access those members by means of dereferencing, as follows:

PCApp pApp;
HINSTANCE hInst2;

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 9 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

pApp=new CApp(hInst, hPrevInst, pszCmdLine, nCmdShow);

hInst2=pApp->m_hInst; //Public data member access

if (!pApp->Init()) //Public member function access
 {
 [Other code here]
 }

When data members are marked public, another piece of code is allowed

to change that data without the object knowing, as in the following:

pApp->m_hInst=NULL; //Generally NOT a good idea

This is a nasty thing to do to some poor object that assumes that

m_hInst never changes. To prevent such arbitrary access to an object’s

data members, you can mark such data members as private in the class,

as in the following:

class CApp
 {
 private:
 HINSTANCE m_hInst; //WinMain parameters
 HINSTANCE m_hInstPrev;
 LPSTR m_pszCmdLine;
 int m_nCmdShow;

 HWND m_hWnd; //Main window handle

 public:
 CApp(HINSTANCE, HINSTANCE, LPSTR, int);
 ~CApp(void);
 BOOL Init(void);
 };

Now code such as pApp->hInst=NULL will fail with a compiler error

because the user of the object does not have access to private members of
© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 10 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

the object. If you want to allow read-only access to a data member, provide

a public member function to return that data. If you want to allow write

access but would like to validate the data before storing it in the object,

provide a public member function to change a data member.

Both data members and member functions can be private. Private

member functions can be called only from within the implementation of any

other member function. In the absence of any label, private is used by

default.

If a class wants to provide full access to its private members, it can

declare another class or a specific function as a friend. Any friend code has

as much right to access the object as the object’s implementation has. For

example, a window procedure for a window created inside an object’s

initializer is a good case for a friend:

class CApp
 {
 friend LRESULT APIENTRY AppWndProc([WndProc parameters]);

 private:
 [Private members accessible in AppWndProc]

 .
 .
 .

 };

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 11 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Any member declared after a protected label is the same as private as

far as the object implementation or the object’s user is concerned. The

difference between private and protected manifests itself in derived

classes, which brings us to the subject of inheritance.

Single Inheritance

A key feature of the C++ language is code reusability through a mechanism

called inheritance—one class can inherit the members and implementation

of those members from another class. The inheriting class is called a

derived class; the class from which the derived class inherits is called a

base class.

Inheritance is a technique used to concentrate code common to a

number of other classes in one base class—that is, to place the code

where other classes can reuse it. Applications for Windows written in C++

typically have some sort of base class to manage a window, as in the

following CWindow class:

class CWindow
 {
 protected:
 HINSTANCE m_hInst;
 HWND m_hWnd;

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 12 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

 public:
 CWindow(HINSTANCE);
 ~CWindow(void);

 HWND Window(void);
 };

The CWindow member function Window simply returns m_hWnd, allowing

read-only access to that member.

If you now want to make a more specific type of window, such as a

frame window, you can inherit the members and the implementation from

CWindow by specifying CWindow in the class definition, using a colon to

separate the derived class from the base class, as follows:

class CFrame : public CWindow
 {
 //CFrame gets all CWindow’s variables.
 protected:
 //We can now add more members specific to our class.
 HMENU m_hMenu;

 public:
 CFrame(HINSTANCE);
 ~CFrame(void);

 //We also get CWindow's Window function.
 };

The implementation of CFrame can access any member marked

protected in its base class CWindow. However, CFrame has no access to

private members of CWindow.

You will also see a strange notation in constructor functions:

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 13 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

CFrame::CFrame(HINSTANCE hInst) : CWindow(hInst)

This notation means that the hInst parameter to the CFrame constructor is

passed to the constructor of the CWindow base class first, before we start

executing the CFrame constructor.

Code that has a pointer to a CFrame object can call

CWindow::Window through that pointer. The code that executes will be the

implementation of CWindow. The implementation of CFrame can, if it

wants, redeclare Window in its class and provide a separate

implementation that might perform other operations, as follows:

class CFrame : public CWindow
 {

 .
 .
 .

 HWND Window(void);
 };

CFrame::Window(void)
 {
 [Other code here]

 return m_hWnd; //Member inherited from CWindow
 }

If a function in a derived class wants to call the implementation in the

base class, it explicitly uses the base class’s name in the function call. For

example, we could write an equivalent CFrame::Window as follows:
© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 14 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

CFrame::Window(void)
 {
 return CWindow::Window();
 }

In programming, it is often convenient to typecast pointers of various

types to a single type that contains the common elements. In C++, you can

legally typecast a CFrame pointer to a CWindow pointer because CFrame

looks like CWindow. However, calling a member function through that

pointer might not do what you expect, as in the following:

CWindow *pWindow;
HWND hWnd;

pWindow=(CWindow *)new CFrame(); //Legal conversion
hWnd=pWindow->Window();

Whose Window is called? Because it is calling through a pointer of type

CWindow *, this code calls CWindow::Window, not CFrame::Window.

Programmers would like to be able to write a piece of code that knows

about only the CWindow class but that is also capable of calling the

Window member functions of the derived class. For example, a call to

pWindow->Window would call CFrame::Window if, in fact, pWindow is

physically a pointer to a CFrame. To accomplish this requires what is

known as a virtual function.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 15 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Virtual Functions and Abstract Base Classes

To solve the typecasting problem described in the previous section, we

have to redefine the CWindow class to make Window a virtual function

using the keyword virtual, as follows:

class CWindow
 {

 .
 .
 .

 virtual HWND Window(void);
 };

The virtual keyword does not appear in the implementation of

CWindow::Window.

If CFrame wants to override CWindow::Window, it declares the same

function in its own class and provides an implementation of Window, as

shown in the following:

class CFrame : public CWindow
 {

 .
 .
 .

 virtual HWND Window(void);
 };

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 16 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

CFrame::Window(void)
 {
 [Code that overrides default behavior of CWindow]
 }

Such an override might be useful in a class that hides the fact that it

actually contains two windows; the implementation of Window would then

perhaps return one or the other window handle, depending on some

condition.

With CWindow::Window declared as virtual, the piece of code we saw

earlier has a different behavior:

pWindow=(CWindow *)new CFrame(); //Legal conversion
hWnd=pWindow->Window();

The compiler, knowing that CWindow::Window is virtual, is now responsible

for figuring out what type pWindow actually points to, although the program

itself thinks it’s a pointer to a CWindow. In this code, pWindow->Window

calls CFrame::Window. If pWindow actually points to a CWindow, the same

code would call CWindow::Window instead.

C++ compilers implement this mechanism by means of a virtual

function table (sometimes referred to as a vtable or vtbl) that lives with

each object. The function table of a CWindow object will contain one

pointer to CWindow::Window. If CFrame overrides the virtual functions in

CWindow, its table will contain a pointer to CFrame::Window. If, however,
© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 17 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

CFrame does not override the Window function, its table contains a pointer

to CWindow::Window.

A pointer to any object in certain implementations of C++ (at least

Visual C++ and Borland C++) is really a pointer to a pointer to the object’s

function table. Whenever the compiler needs to call a member function

through an object pointer, it looks in the table to find the appropriate

address, as shown in Figure A-1. So if the virtual Window of the CWindow

class and of all derived classes always occupies the first position in the

table, calls such as pWindow->Window are actually calls to whatever

address is in that position.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 18 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 19 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Figure A-1.

C++ compilers call virtual functions of an object by means of a function table.

Virtual functions can also be declared as pure virtual by appending =0 to the

function in the class declaration, as follows:

class CWindow
 {
 .
 .
 .
 virtual HWND Window(void)=0;
 };

Pure virtual means “no implementation defined,” which renders CWindow into an

abstract base class—that is, you cannot instantiate a CWindow by itself. In other

words, pure virtual functions do not create entries in an object’s function table, so

C++ cannot create an object through which someone might try to make that call.

As long as a class has at least one pure virtual member function, it is an abstract

base class and cannot be instantiated, a fact compilers will kindly mention.

An abstract base class tells derived classes, “You must override my pure

virtual functions!” A normal base class with normal virtual functions tells derived

classes, “You can override these if you really care to.”

You might have noticed by now that an OLE interface is exactly like a C++

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 20 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

function table, and this is intentional. OLE’s interfaces are defined as abstract base

classes, so an object that inherits from an interface must override every interface

member function—that is, when implementing an object in C++, you must create a

function table for each interface, and because interfaces themselves cannot create a

table, you must provide the implementations that will. OLE, however, does not

require that you use C++ to generate the function table; although C++ compilers

naturally create function tables, you can just as easily write explicit C code to do

the same.

Multiple Inheritance

The preceding section described single inheritance—that is, inheritance from a

single base class. C++ allows a derived class to inherit from multiple base classes

and thus to inherit implementations and members from multiple sources. The

samples in this book do not use multiple inheritance, although no technical reasons

prevent them from doing so. They use single inheritance only to remain

comprehensible to C programmers who are just beginning to understand the

concept. In any case, multiple inheritance is evident in the following class

declaration:

class CBase
 {
 public:
 virtual FunctionA(void);
 virtual FunctionB(void);

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 21 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

 virtual FunctionC(void);
 };

class CAbstractBase
 {
 public:
 virtual FunctionD(void)=0;
 virtual FunctionE(void)=0;
 virtual FunctionF(void)=0;
 };

//Note comma delineating multiple base classes.
class CDerived : public CBase, public CAbstractBase
 {
 public:
 virtual FunctionA(void);
 virtual FunctionB(void);
 virtual FunctionC(void);
 virtual FunctionD(void);
 virtual FunctionE(void);
 virtual FunctionF(void);
 };

An object of a class using multiple inheritance actually lives with multiple function

tables, as shown in Figure A-2. A pointer to an object of the derived class points to

a table that contains all the member functions of all the base classes. If this pointer

is typecast to a pointer to one of the derived classes, the pointer actually used will

refer to a table for that specific base class. In all cases, the compiler dutifully calls

the function in whatever table the pointer referenced.

Of course, there are limitations to using multiple inheritance, primarily when

the base classes have member functions with the same names. In such cases, the

object can have only one implementation of a given member that is shared between

all function tables, just as each function in Figure A-2 is shared between the base

class table and the derived class table.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 22 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 23 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 24 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Figure A-2.

Objects of classes using multiple inheritance contain multiple tables.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 25 of 13

