
Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Note: This file is also saved in Rich Text Format as APPB.RTF. We recommend that you

use APPB.RTF if you have a word processor that can read Rich Text Format files.

A P P E N D I X B

The Details of Standard

Marshaling

Chapter 6 briefly mentioned the architecture of COM’s standard

marshaling. Figure 6-3 on page 291 illustrates how a proxy and its facelets

communicate with a stub and its stublets through an RPC Channel object,

which itself communicates with a system RPC service. This appendix

explores the overall architecture of standard marshaling. We’ll look at the

interfaces on these objects and their role in making Local/Remote

Transparency work its magic, using a typical object creation sequence

involving IClassFactory::CreateInstance as the focal point.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 1 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

The information here applies to objects provided by local or remote

servers and does not apply at all to in-process servers, for which no

marshaling is necessary. As a convenience, the following text uses remote

to refer to both local and remote objects and servers.

Architectural Objects

In Figure 6-3 on page 291, you can see the five separate object types that

make up COM’s remoting architecture for each remote object:

n The RPC Channel, which implements IRpcChannelBuffer and

performs the low-level RPC necessary to transmit information

between processes and machines

n The proxy manager, which forms the shell of the overall proxy and

controls which interfaces a client can access through

QueryInterface

n Any number of facelets contained in the proxy, each of which

implements one specific interface exposed to the client as well as

IRpcProxyBuffer, which is exposed only to the proxy manager

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 2 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

n The stub manager, which forms the shell of the overall stub and

controls the remote object’s lifetime

n Any number of stublets, one for each remote object interface that a

client has requested (each stublet implements IRpcStubBuffer and

maintains a single interface pointer to the remote object)

Let’s look at these objects in more detail as well as the interfaces they

implement. This will let us see how they fit into the overall architecture.

New from CBS! It’s the RPC Channel!

No, it’s not one of those 500 new cable-TV channels that shows you

nothing but hex dumps of RPC packets all day long.1 (Now there’s true nerd

TV!) As you can discern from Figure 6-3, the RPC Channel is an object that

implements the interface IRpcChannelBuffer:

interface IRpcChannelBuffer : IUnknown
 {
 HRESULT GetBuffer(RPCOLEMESSAGE *pMessage, REFIID riid);
 HRESULT SendReceive(RPCOLEMESSAGE *pMessage, ULONG *pStatus);
 HRESULT FreeBuffer(RPCOLEMESSAGE *pMessage);
 HRESULT GetDestCtx(DWORD *pdwDestContext, void **ppvDestContext);
 HRESULT IsConnected(void);
 };

typedef struct tagRPCOLEMESSAGE
 {
 void *reserved1;
 RPCOLEDATAREP dataRepresentation; //An unsigned long
 void *Buffer;

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 3 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

 ULONG cbBuffer; //Size of buffer to allocate
 ULONG iMethod; //Method being called
 void *reserved2[5];
 ULONG rpcFlags;
 } RPCOLEMESSAGE;

You can probably speculate about the sequence of calls that a facelet

would make to this interface in order to generate a remote interface call.

The facelet first obtains a marshaling packet from the RPC Channel using

IRpcChannelBuffer::GetBuffer, in which the riid argument identifies the

interface being called. The RPCOLEMESSAGE structure is also an in-

parameter to GetBuffer that causes the facelet to initialize all fields except

Buffer so that the channel can allocate the correct structures internally.

Besides the self-explanatory cbBuffer and iMethod fields, rpcFlags

indicates the type of call, such as synchronous or asynchronous, and

dataRepresentation indicates specific information about the data structure,

which includes character size (ANSI, Unicode, EBCDIC), floating-point

format (IEEE, VAX, Cray, IBM), and big endian vs. little endian. Data

representation is obviously critical for interface remoting between different

hardware architectures! Fortunately, COM is designed expressly with that

in mind.

On return from GetBuffer, the facelet fills Buffer with the arguments to

the member function. Once the buffer is filled, the facelet invokes

IRpcChannelBuffer::SendReceive to send the function call across the wire,

so to speak, to the corresponding stublet. (Although there’s no wire, of

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 4 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

course, in the strictly local case.) Every single consideration about how the

interprocess or intermachine communication happens is encapsulated

within SendReceive.

On the other side of the universe, in the remote process, the call

shows up in the stublet that receives both the RPCOLEMESSAGE

structure and the IRpcChannelBuffer pointer. The stublet reads arguments

from the buffer and calls the remote object. When the remote object

returns, the stublet changes the cbBuffer and dataRepresentation fields in

the RPCOLEMESSAGE structure and calls IRpcChannelBuffer::GetBuffer

to allocate the necessary space for return values and out-parameters. It

then fills the buffer and returns from the call. The RPC Channel sends this

new structure back to the facelet.

When IRpcChannelBuffer::SendReceive returns, the contents of the

buffer into which the arguments were originally marshaled have been

replaced by the return values and out-parameters from the remote object.

The facelet unpacks these from the buffer, stores them in the proper places

in memory, calls IRpcChannelBuffer::FreeBuffer to clean up, and returns to

the client.

The other two member functions in IRpcChannelBuffer provide useful

information for facelets. GetDestCtx returns the MSHCTX flags appropriate
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 5 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

to the nature of the RPC connection. IsConnected indicates whether the

connection to the remote object is still active—that is, whether a

SendReceive call will even work. This can save a lot of time that would

otherwise be spent waiting for the channel to time out before returning from

SendReceive. IsConnected will always give a definite negative answer if

the connection is dead, but a positive response is not so final: the server

might die after the call returns, in which case the time-out will still occur. But

subsequent calls to IsConnected will return the definite negative.

Keep in mind that regardless of what you might implement as a

custom interface, the RPC Channel is always implemented inside COM

and is the core of standard marshaling. There is no COM API to create or

access an RPC Channel itself—a facelet is explicitly given the RPC

Channel’s pointer when it’s told to connect to a remote stublet. A stublet is

always given a pointer to the RPC Channel whenever it’s asked to invoke a

member function in the remote object. Having access to an instantiation of

this channel outside this context is simply not necessary.

The Proxy Manager and Facelets

The proxy manager is an aggregation of any number of facelets. Whereas

the proxy exposes an IUnknown along with IMarshal (its initialization

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 6 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

interface), each facelet exposes one public interface to the client through

aggregation with the proxy.

This collection of facelets in one proxy is entirely a matter of proxy

implementation—the client doesn’t care at all how that implementation is

accomplished. The interfaces available through the proxy’s QueryInterface

are what matter to the client. The proxy’s QueryInterface has to provide a

pointer to whatever supported interface the client might request. Each

pointer to each different interface comes from an individual facelet for each

interface. QueryInterface is, in fact, the part of a proxy that creates a new

facelet when any given IID is requested the first time.2 What the client then

sees in the proxy is a single object with IUnknown and any other number of

interfaces. The proxy implements IUnknown internally but obtains its other

interfaces through aggregation on individual facelets.

A facelet itself is a small object that implements only two interfaces:

IRpcProxyBuffer and whatever interface it knows how to marshal. Figure 6-

3 shows one facelet with IAnimal and one with IKoala; both have

IRpcProxyBuffer. IRpcProxyBuffer is rather special because it also acts as

the controlling IUnknown implementation for the facelet and is the interface

that the proxy obtains when it first creates a new facelet. This bends the

aggregation rules slightly (by which the outer object must ask for IUnknown

when creating the inner object), but because IRpcProxyBuffer is never
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 7 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

exposed outside the proxy-facelet relationship, and because this

relationship is specifically defined, this minor variation is not a problem.

Also, the proxy can ask IRpcProxyBuffer::QueryInterface for a pointer to

the other interface on that facelet. This other interface’s IUnknown

functions, as you would expect, delegate to the proxy’s IUnknown, as

defined by normal aggregation rules. Thus, the client sees the proper

IUnknown behavior through any interface pointer it can get from the proxy.3

Marshaling a single interface is the life purpose of any given facelet

implementation. It is how a facelet knows which member functions in its

public interface require a new proxy entirely. The problem that remains is

how the facelet becomes aware of the IRpcChannelBuffer pointer through

which it can communicate with the remote stub. This is the purpose of the

IRpcProxyBuffer interface, which contains only two specific member

functions:

interface IRpcProxyBuffer : IUnknown
 {
 HRESULT Connect(IRpcChannelBuffer *pRpcChannel);
 HRESULT Disconnect(void);
 };

A new proxy maintains a pointer to its RPC Channel, which it received

through its IMarshal::Unmarshal interface. When the proxy creates a new

facelet in its QueryInterface, it obtains an IRpcProxyBuffer pointer in return.

It then calls Connect, passing to the facelet the proxy’s IRpcChannelBuffer

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 8 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

pointer. Whenever a facelet subsequently receives a call from a client to

one of its member functions, it uses this IRpcChannelBuffer pointer to

marshal arguments and to make the remote call. Simple! Of course, sooner

or later the client will call Release often enough to destroy the remote

object and tear down all the magic in between, which means destruction of

the proxy. (The client’s Release calls will decrement the proxy’s reference

count to 0 along with the remote object’s.) During destruction, the proxy

calls IRpcProxyBuffer::Disconnect to ensure that the facelet is finished with

the RPC Channel.

The Stub Manager and Stublets

Now that we understand a little more about how a client talks to a proxy

and how a proxy talks to the RPC Channel, let’s see how the RPC Channel

talks to the stub to complete an interface call to a remote object.

The stub manager is a collection of stublets, although aggregation is

not used, as it is with the proxy. The stub as a whole manages the

individual stublets, telling them when to connect to an interface in the

remote object and when to delete themselves. Because a stub is used only

in standard marshaling, COM provides the implementation internally in all

cases. There is no direct access to this code.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 9 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

COM creates a stub within CoMarshalInterface for any object that is

using standard marshaling. In creating the stub, COM hands it the object’s

IUnknown pointer. The stub holds this pointer as is illustrated in Figure 6-3

on page 291. Now it waits until the RPC Channel (created in response to

client-side actions) informs it of a client’s call to some interface. At this

point, the most the client can do is call some IUnknown member function

because the client has not yet requested any other interface pointer. What

happens when the client does call QueryInterface is the interesting part.

Any QueryInterface call from the client ends up in the RPC Channel on the

server side, which then privately informs the stub of the request. “Privately”

here means that there is no set interface on the stub itself through which

the RPC Channel communicates—such implementation is entirely internal

to COM, so this is likely some call to a C++ member function.

In any case, the stub receives the QueryInterface request. In

response, it creates a stublet appropriate for the IID being requested, and

the stublet implements the single interface IRpcStubBuffer:

interface IRpcStubBuffer : IUnknown
 {
 HRESULT Connect(IUnknown *pUnkServer);
 void Disconnect(void);
 HRESULT Invoke(RPCOLEMESSAGE *pMessage
 , IRpcChannelBuffer *pChannel);
 BOOL IsIIDSupported(REFIID riid);
 ULONG CountRefs(void);
 };

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 10 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

After creating this object, the stub calls Connect, passing the remote

object’s IUnknown. The stublet then calls QueryInterface to check whether

the object actually supports the interface in question. If that query fails, the

stublet returns E_NOINTERFACE to the stub, which returns it to the RPC

Channel and back across to the client.

If the query is successful, the stublet has an interface pointer of type

IID, which it stores internally before returning NOERROR from Connect. A

successful QueryInterface is returned to the proxy, which then creates a

new facelet for the same interface, but this facelet is not effectively

connected to the newly created stublet.

Eventually the client will make a call to a member function in this

newly obtained interface. That call enters the facelet that marshals

arguments in the RPC Channel and calls

IRpcChannelBuffer::SendReceive. This call is picked up by the server-side

RPC Channel, which internally informs the stub that a call has occurred.

Remember that the proxy passed to IRpcChannelBuffer::GetBuffer is the

IID of the interface being called. This IID shows up in the channel’s private

call to the stub, so the stub knows which stublet needs to handle the call

and returns that stublet’s IRpcStubBuffer pointer to the channel. The

channel then calls IRpcStubBuffer::Invoke, passing the

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 11 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

RPCOLEMESSAGE structure and its own IRpcChannelBuffer pointer,

which gives the stublet all the information it needs to generate the call into

the real remote object.

The other member functions in IRpcStubBuffer are rather trivial

compared to Invoke. Disconnect tells the stublet to release the interface

pointer it holds to the remote object: the stub itself will instruct all stublets to

release their holds when the client has released all of its references to the

remote object. IsIIDSupported is usually a simple function that returns

TRUE if the stublet handles the given IID; otherwise, it returns FALSE. This

function must also, however, verify that the remote object itself supports the

interface. Most often this has already happened through a call to Connect,

but if not, the stublet can perform such a check here. Finally, CountRefs

returns to the remote object the number of reference counts that the stublet

holds.

How Everything Comes into (and out of) Memory

Having learned a little about the objects involved in remoting and their

functionality, we can put the pieces together to see when and how each

piece is brought into memory and how the pieces are connected to one

another. As a beginning point, consider the following client code:
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 12 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

HRESULT hr;
IClassFactory *pIClassFactory;
IProvideClassInfo *pIPCI;
ITypeInfo &pITypeInfo;

hr=CoGetClassObject(CLSID_Local, CLXCTX_LOCAL_SERVER, NULL
 , IID_IClassFactory, (void **)&pIClassFactory);

if (FAILED(hr))
 <error handling>;

hr=pIClassFactory->CreateInstance(NULL, IID_IProvideClassInfo
 , (void **)&pIPCI);
pIClassFactory->Release();

if (FAILED(hr))
 <error handling>;

hr=pIPCI->GetClassInfo(&pITypeInfo);

if (SUCCEEDED(hr))
 pITypeInfo->Release();

pIPCI->Release();

The calls to CoGetClassObject and IClassFactory could be combined

into CoCreateInstance, which we’d usually do in writing concise code, but

here we want to see all calls explicitly. This is a typical sequence involving

one call to a fundamental COM API function and calls to interfaces:

CoGetClassObject
IClassFactory::CreateInstance
IClassFactory::Release
IProvideClassInfo::GetClassInfo
ITypeInfo::Release
IProvideClassInfo::Release

A total of three server objects are involved here: the class factory, the

object with IProvideClassInfo, and the object with ITypeInfo. This gives us

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 13 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

the opportunity to explore how COM creates the proxy and stub for the first

object (the class factory), how the proxies and stubs for the other two

objects come into being, and how all of it is removed from memory as well.

From the client’s perspective, this process involves only a few simple

function calls. But COM is doing a tremendous amount of work to make

transparent the remoting of three interfaces on three different objects. This

work happens in the following phases:

Phase 1 CoGetClassObject causes the local server to be launched. The server

calls CoRegisterClassObject, making that object appear in COM’s global

class factory registration table. CoRegisterClassObject creates the stub for

this class factory as well.

Phase 2 Still in CoGetClassObject, COM creates a proxy and an RPC Channel for

the class factory. At this point, only that object’s IUnknown interface is

available to the client process.

Phase 3 CoGetClassObject requests an IClassFactory pointer from the class

factory, causing the creation of a facelet in the proxy manager and a stublet

in the stub manager. The resulting client-side pointer, which is implemented

on a facelet, is returned to the client.

Phase 4 The client calls IClassFactory::CreateInstance, which creates a new

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 14 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

object as well as a new proxy with a facelet for IProvideClassInfo, a new

stub with a stublet for the same interface, and a new RPC Channel for the

new object.

Phase 5 The client calls IClassFactory::Release, which destroys the proxy and

RPC Channel for the class factory but not the stub.

Phase 6 The client calls IProvideClassInfo::GetClassInfo to obtain an ITypeInfo

pointer. This creates a new object, which means the creation of a new

proxy, stub, and RPC Channel.

Phase 7 The client calls ITypeInfo::Release, which destroys that object and its

remoting support but nothing else.

Phase 8 The client calls IProvideClassInfo::Release, destroying the object in the

server and also terminating the server because this is the only remaining

server object and no locks exist. The server starts shutdown and calls

CoRevokeClassObject. This destroys the class factory and its stub (which

were not destroyed in Phase 5).

After all of this is complete, no server will be in memory, no proxies,

no stubs, no RPC Channels—just as it should be. Nothing will be in

memory that wasn’t there before the client executed its code. Of course,

each phase in itself has a complex series of operations, so let’s look at

each one in turn.
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 15 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Phase 1: Launching the Server and Registering the Class Factory

As we learned in Chapter 5, CoGetClassObject delegates responsibility for

locating and launching a server for some CLSID to the SCM (Service

Control Manager). CoGetClassObject also checks for the TreatAs key (by

calling CoGetTreatAsClass) to determine the correct CLSID to give to the

SCM. For whatever local server CLSID is used, the SCM launches that

server and returns some sort of connection information. This information

can be thought of as an RPC handle, but as we’ll see, that’s not entirely

accurate: there’s much more to it than that, most of which happens in the

server process. CoGetClassObject, once it has asked the SCM to locate a

server, waits patiently for the server to start and for it to register its class

factory. Let’s leave the client process spinning in this little loop while we

look at the server process.

When the server is launched to service a component, it sees

-Embedding on its command line. In response, it initializes COM and

creates its class factory object. At this point, nothing else is in memory

except the COM Library, the server EXE itself, and its newly created class

factory, to which the server has, say, an IUnknown pointer. The problem

that Local/Remote Transparency solves is the creation of the structures

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 16 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

necessary to allow a remote client to call member functions in this

IUnknown interface. Fortunately for the server, COM makes the process

simple: the server needs only to pass the IUnknown pointer to its class

factory to CoRegisterClassObject and wait for calls to happen.

So what does happen when the server passes a pointer to

CoRegisterClassObject? The COM Library loaded into the server’s process

maintains a table of class factories registered in that process. Each entry in

this table includes an identifier for the class factory (an integer called an

object identifier [OID], not a GUID) and a pointer to the stub for that object.

The stub itself manages the object’s real interface pointer passed to

CoRegisterClassObject.

Obviously, a task-specific table of registered class factories doesn’t do

us much good, especially considering that there are other registration

mechanisms as well, such as the running object table. For that reason,

COM also maintains a single global object table in shared memory, which is

accessible to all instances of the COM Library in all processes and is used

for the registration of any objects whatsoever. In this table, COM stores a

pointer to the object’s stub manager along with a process identifier (task

handle) that associates this information with a machine-unique OID.

We can see where these tables come into play through the following
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 17 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

sequence of steps performed in CoRegisterClassObject:

1. Check whether a multiple-use class factory for the

CLSID is already registered, in which case fail with

CO_E_OBJISREG. Otherwise, call AddRef to safeguard the

object. (The reference count is now 1 as far as COM is

concerned.)

2. Call CoMarshalInterface to determine whether the

object wants custom marshaling or whether standard

marshaling should be used. In the latter case,

CoMarshalInterface will create an instance of the generic

stub and retrieve from it a generic marshaling packet.

3. Create an entry in the global object table storing the

marshaling packet (regardless of the form of marshaling). If

standard marshaling is used, also store the stub pointer and

its task handle, assigning an OID to the entry.

4. If standard marshaling is used, connect the stub to

the class factory by passing it the factory’s IUnknown

pointer as passed to CoRegisterClassObject. The stub

holds this pointer and calls AddRef. (The reference is now
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 18 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

2.)

5. In the class factory table, store the OID, the

marshaling packet, the server CLSID, and the proxy CLSID

(also the stub pointer if standard marshaling is used).

Include as well the dwUsage and dwContext flags passed

to CoRegisterClassObject. This act creates the registration

key returned to the server.

6. Call Release to reverse the safeguard AddRef call

in step 1. (The reference count is now 1; the AddRef was

called in step 4.)

At the end of this process, we have a new entry in the class factory

table that identifies the stub for the object and the flags and proxy CLSID

necessary to manage it. In addition, an entry in the global object table

identifies the stub and the server task with a machine-unique OID. All that

we’ve built so far is shown in Figure B-1. CoRegisterClassObject is

complete and returns to the server, which completes its initialization and

enters its message loop. The class factory is now available to the client, still

waiting inside CoGetClassObject.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 19 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 20 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-1.

The server-side results of CoRegisterClassObject.

Phase 2: Creation of the First Proxy and RPC Channel

While all the business of Phase 1 is going on, CoGetClassObject, and thus

the client as a whole (at least that one thread), waits patiently for the new

class factory to appear in the global object table. It is entirely possible,

however, that the server is already running and that its class factory is

already registered when the client calls CoGetClassObject, in which case

the client doesn’t have to wait. What really happens in this function is that it

first checks whether the class factory is already registered, and if not, it

waits until any new registration occurs in the global object table, checks

again, and then continues to wait until a time-out occurs (5–30 minutes or

so).

Because this example started from scratch, the first check for a class

factory failed, and CoGetClassObject is simply waiting until a new

registration happens. When that event occurs, CoGetClassObject checks

whether that new registration is the CLSID it wants. This basically involves

walking through the global object table to find an OID for a class factory

matching the CLSID. (There can be multiple single-use factories in the
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 21 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

table, mind you.)

CoGetClassObject now has the OID for the remote object, and with

that OID, the function can retrieve the proxy CLSID and marshaling packet

necessary to connect the proxy to the stub (or to the object if custom

marshaling is used). The process, which occurs in CoUnmarshalInterface,

is as follows:

1. Create a proxy object through

CoCreateInstance(CLSCTX_INPROC_HANDLER |

CLSCTX_INPROC_SERVER) using the CLSID obtained

from the stub. (Because CLSCTX_INPROC_* is used, there

is no chance of winding up back in this process again with a

different remote class factory.) This call creates either a

custom proxy or the standard generic proxy using

CLSID_StdMarshal (00000017-0000-0000-C000-

000000000046).

2. CoCreateInstance calls CoGetClassObject, which,

for CLSIDs internal to COM (such as CLSID_StdMarshal),

creates the object using its own internal means. Otherwise,

CoGetClassObject and CoCreateInstance proceed to

instantiate the proxy exactly as they would for any other in-
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 22 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

process object, as we saw in Chapter 5.

3. Connect the new proxy to the remote object by

passing it the marshaling packet that points to

IMarshal::UnmarshalInterface. When standard marshaling is

involved, the packet includes the necessary

IRpcChannelBuffer pointer, which the proxy then holds (calling

AddRef) until destroyed (when it calls Release).

After this process, CoGetClassObject (effectively client code because

we’re outside the proxy itself) now has in hand an IUnknown pointer to the

new proxy object. By this time, we’ve created, in both processes, all that is

shown in Figure B-2 below. CoGetClassObject can call an IUnknown

function through this pointer, and the proxy will marshal that call through

the RPC Channel to the stub. The stub unmarshals the call and sends it to

the object. Or does it? This is true for QueryInterface, as we’ll see below,

but for AddRef and Release, the generic proxy does not forward every call

to the stub. The simple reason is that a single reference count, which the

stub has already by virtue of its existence, will keep the remote object alive

and the server running. Therefore, any number of additional calls to

AddRef and matching calls to Release really don’t accomplish anything—

only the last call to Release matters. The proxy doesn’t bother to forward

every AddRef and Release call, and this is, as we discovered in Chapter 5,
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 23 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

the reason why the reference count returned from AddRef and Release for

a local or remote object is some large and meaningless number unless the

return value is 0. COM’s generic proxy simply implements it that way.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 24 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 25 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-2.

Objects in memory by the time CoGetClassObject obtains an

IUnknown pointer.

Phase 3: Creation of an Interface Proxy and Stub for IClassFactory

CoGetClassObject is almost ready to return a pointer to the client. In this

example, the client originally asked for IClassFactory, but

CoGetClassObject has only an IUnknown pointer, implemented in the

proxy. All it needs to do is to call QueryInterface; the proxy has to get an

IClassFactory pointer. This involves quite a bit of new processing in the

proxy and the stub because at the moment the only open communication

path is through IUnknown. To handle this, the proxy must create a new

IClassFactory facelet and hand it the IRpcChannelBuffer pointer through

which that facelet can make its calls. At the same time, a new

IClassFactory stublet in the remote stub must be created, with the stublet

maintaining a pointer to the remote object’s actual interface.

The implementations of the facelet and stublet for any particular

interface are now provided through a proxy/stub server, as mentioned in

Chapter 6. The server is an in-process server registered as follows

(ProxyStubClsid is used on 16-bit systems):
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 26 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

\
 Interface
 {<IID>} = <name of interface>
 NumMethods = <total number of interface members>
 BaseInterface = <{IID} of base interface>
 ProxyStubClsid32 = <{CLSID} of a server for the marshaler>

These entries map an IID to a CLSID whose server implements the

specific marshalers for this interface. The BaseInterface entry frees these

marshalers from having to implement marshalers for every member

function when other marshalers already exist for those members of the

base interface. COM will use the marshaler for the base interface for any of

its members. In any case, the class factory in the server identified with

ProxyStubClsid32 implements the interface IPSFactory through which the

proxy or stub can create either a facelet or a stublet:

interface IPSFactoryBuffer : IUnknown
 {
 HRESULT CreateProxy(IUnknown *pUnkOuter, REFIID riid
 , IRpcProxyBuffer *ppProxy, void **ppv);
 HRESULT CreateStub(REFIID riid, IUnknown *pUnkServer
 , IRpcStubBuffer **ppStub);
 }

With this interface, you can see that a Proxy/Stub Factory, or simply,

PSFactory, can create both an interface proxy and an interface stub for a

single interface. When a proxy or a stub needs a new facelet or stublet, it

goes to the registry, looks up the ProxyStubClsid32 for the IID in question,

and then calls CoGetClassObject(IID_IPSFactoryBuffer,

CLSCTX_INPROC_HANDLER | CLSCTX_INPROC_SERVER). When an
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 27 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

IPSFactoryBuffer pointer is returned, the proxy calls CreateProxy and the

stub calls CreateStub in that interface. Both these member functions take

an IID argument that identifies the interface in question. This argument

serves the same purpose as the CLSID passed to DllGetClassObject. In

this latter case, the CLSID allows an in-process server to handle multiple

CLSIDs. In the PSFactory case, the IID allows that factory to create a

different object for each different interface, as it really must anyway.

The CreateProxy function actually returns two interface pointers. (Both

have AddRef called through them, of course.) One is a pointer to the

facelet’s IRpcProxyBuffer, and the other is a pointer to the interface that the

proxy exposes to the client. This second interface must be of the type

matching the riid argument. In a sense, CreateProxy has a built-in

QueryInterface because the proxy always needs both pointers at the same

time. As we’ve seen, the proxy calls IRpcProxyBuffer::Connect shortly after

this to make the facelet aware of the RPC Channel to the stub.

On the other hand, CreateStub only returns the IRpcStubBuffer

pointer to the new stublet—there’s no other interface to worry about. As

we’ve also seen, the stub calls IRpcStubBuffer::Connect shortly after this,

passing the remote object’s IUnknown. In Connect, the stublet calls

QueryInterface through that pointer to obtain the one it holds on to for later

handling of IRpcStubBuffer::Invoke.
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 28 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

The remaining argument to both CreateProxy and CreateStub is an

IUnknown pointer, but keep in mind that CreateProxy takes a pUnkOuter,

whereas CreateStub takes a pUnkServer. The pointer given to

CreateProxy is the outer proxy’s IUnknown, the controlling unknown for the

whole proxy. The facelet must delegate all IUnknown calls made to its

public—and only its public—interface. This allows the proxy to control the

interfaces available to the client. The facelet does not delegate any

IUnknown calls to its IRpcProxyBuffer interface because that acts as the

controlling IUnknown for the facelet.

The pUnkServer passed to CreateStub is entirely different and is the

same pointer that can be passed to IRpcStubBuffer::Connect later on; in

either case, it is the remote object’s IUnknown. This argument to

CreateStub can be NULL, meaning that the stub must call the stublet’s

Connect before ever calling IRpcStubBuffer::Invoke. If the stub passes the

object’s IUnknown to CreateStub, the stublet calls its own Connect

internally so that the stub can call Invoke without calling Connect itself.

Now that we understand how facelets and stublets come into memory,

spelling out the sequence of operations that makes it happen is fairly

simple. It begins with a call from CoGetClassObject into the proxy’s

QueryInterface with IID_IClassFactory:
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 29 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

1. The proxy’s QueryInterface checks whether the IID

is IID_IUnknown and, if so, returns its own pointer.

2. Otherwise, QueryInterface checks whether a facelet

for the IID is already present in this proxy. If so, it retrieves

that facelet’s public interface, calls AddRef through it, and

returns that pointer.

3. If the facelet is not present, the proxy first verifies

that the remote object itself supports the IID being

requested. The proxy marshals the necessary arguments

into the RPC Channel and calls

IRpcChannelBuffer::SendReceive, which is picked up in the

server process and sent to the stub.

4. The stub unmarshals the arguments and calls the

remote object’s QueryInterface. If that function returns

E_NOINTERFACE, the same error code is propagated all

the way back to the client, eventually becoming the value

returned from CoGetClassObject.

5. If QueryInterface succeeds, the stub instantiates a
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 30 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

stublet for the IID using the PSFactory entries in the registry

as described above. It calls IPSFactoryBuffer::CreateStub

followed by IRpcStubBuffer::Connect, handing the stublet

that object’s IUnknown.

6. The stublet calls QueryInterface to obtain and save

a pointer to the appropriate interface on the object and

returns to the stub. With the stublet fully created and

initialized, the stub returns from the RPC Channel’s call.

7. The proxy’s call to

IRpcChannelBuffer::SendReceive returns successfully, so

the proxy knows that a remote stublet has been created. It

then creates a corresponding facelet inside itself using

aggregation through IPSFactoryBuffer::CreateProxy.

8. The proxy calls IRpcProxyBuffer::Connect, passing

the IRpcChannelBuffer pointer that COM passed the proxy

during its own connection. The facelet stores this pointer

and considers itself connected.

9. The proxy now knows that both stublet and facelet

exist, and it has in hand the correct interface pointer, in this
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 31 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

case an IClassFactory pointer, which it returns to

CoGetClassObject.

We’re now back inside CoGetClassObject, just after its call to

QueryInterface(IID_IClassFactory). If all was successful,

CoGetClassObject now returns the IClassFactory pointer to the client.

Everything we need to make local or remote calls through the interface is

now in memory, as shown in Figure B-3.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 32 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 33 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-3.

Objects in memory by the time CoGetClassObject returns an

IClassFactory pointer to the client, ready for making cross-process

or cross-machine calls.

Phase 3½: Intermission

Wow! We’ve really covered a lot of the Local/Remote Transparency

architecture in the previous pages. It’s worth it to take a short break to

realize just how far we’ve come. Starting from scratch, with nothing in

memory but the client’s code and its instance of the COM Library, we’ve

seen how a simple call to CoGetClassObject spawns a flurry of activity

inside COM: launching the server, registering the class factory in object

tables, instantiating proxies and stubs and facelets and stublets, and

connecting everything together through the RPC Channel. That’s a lot of

work! What we now have after all this work is a client with an IClassFactory

pointer, and any call through that pointer winds up as a call to an object that

exists in another process or on another machine. This, my friends, is way

hot technology.

Well, let’s see now. I need to go to the post office and mail a package.

I’ll be back shortly. Let me pop in a CD for you while you’re waiting.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 34 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Take a walk outside myself

In some exotic land

Greet a passing stranger

Feel the strength in his hand

Feel the world expand

Hand Over Fist, from the “Presto” CD by Rush (the band)

OK, I’m back. Sorry I took a little longer than I expected, but there was

a long line at the post office.4 Anyway, let’s explore what happens as we

execute the rest of the client code.

Phase 4: Creation of a New Object and Its Remoting Support

Now that the client has an IClassFactory pointer, it calls CreateInstance,

asking for an IProvideClassInfo pointer in return. This call goes directly to

the proxy’s IClassFactory facelet because that’s the object implementing

the interface. Well, “implement” is the wrong word—this facelet actually

marshals this interface, relying on the remote object for the complete

implementation. Once again, this is why a proxy is often called a handler.

Inside its implementation of CreateInstance, the facelet takes

whatever arguments are required in the remote object and marshals them

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 35 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

in an RPC Channel buffer. The only argument that really needs marshaling

is the riid, which contains IProvideClassInfo; the pUnkOuter is unimportant

because aggregation is in-process only, and the pointer stored in ppv will

be that or some new facelet in the client process. So riid is all that the

facelet stuffs into the RPC Channel before calling

IRpcChannelBuffer::SendReceive.

Let me point out how this example of an interface such as

IClassFactory illustrates why standard marshaling needs interface-specific

facelets and stublets—only small pieces of code that understand an

interface can know which arguments to marshal and which ones to

manipulate solely on the client side. Marshaling is different for every

method of every interface; the facelets and stublets encapsulate that

intelligence.

To continue, the facelet’s SendReceive call is picked up by the RPC

Channel in the server process and sent to the stub connected to that

channel. The RPC Channel privately tells the stub which interface is being

called so that the stub passes the call to the correct stublet through

IRpcStubBuffer::Invoke. The IClassFactory stublet is told to invoke

CreateInstance, in which it knows that the RPC Channel buffer holds the

IID to request. It unmarshals that single argument, allocates a variable to

hold the new pointer (probably a temporary stack variable), and calls the
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 36 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

real class factory’s CreateInstance with NULL, the IID, and the pointer to

the pointer variable.

If CreateInstance returns successfully, the IClassFactory stublet now

holds a brand-new interface pointer—IProvideClassInfo in our example

here—attached to a brand-new object that is unrelated to the class factory

that already exists. The stublet, by virtue of understanding what

CreateInstance does, knows that it must marshal this pointer to the new

object. At this point, the stublet is in the same situation as

CoRegisterClassObject: it has a pointer to a server-process object, which it

now makes available to the client process by calling CoMarshalInterface,

which then creates the new stub as needed.

Now the original IClassFactory stublet is satisfied that it has built the

necessary server-side structures, so it returns from SendReceive, storing

NOERROR as the HRESULT as well as the new object’s OID. Because the

stublet cannot marshal the new object’s interface pointer to the facelet, it

must marshal the OID to identify the new object. After we’re back in the

client process, the facelet unmarshals the HRESULT; if that code indicates

failure, the facelet returns failure to the client. Otherwise, it takes the new

OID and repeats the process of creating a new proxy for the remote object

through CoUnmarshalInterface. The facelet now has the proxy’s IUnknown

pointer in hand and can call QueryInterface with IID_IProvideClassInfo to
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 37 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

have the proxy create a new facelet for this new interface and connect that

facelet to the RPC Channel. Again, this uses the same mechanisms we’ve

already explored.

The IClassFactory facelet’s calls to QueryInterface result in a new

client-side interface pointer (to the IProvideClassInfo facelet in the new

proxy) that it can now, finally, return from the client’s original call to

IClassFactory::CreateInstance. The necessary remoting architecture now

exists in memory for both the class factory and the object it created, as

illustrated in Figure B-4. You can also picture the intermediate stages that

were shown in Figures 6-3 and 6-4 on pages 291 and 307, respectively;

here it’s the same process for another object.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 38 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 39 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-4.

Objects in memory after IClassFactory::CreateInstance returns with

a new IProvideClassInfo pointer.

Phase 5: Releasing the Class Factory and Destroying Its Proxy

Now that the client has obtained the IProvideClassInfo pointer it wanted

from IClassFactory::CreateInstance, it is finished with the class factory and

calls IClassFactory::Release. Because the facelet was created as an inner

object in the proxy’s aggregation, this call is delegated to the proxy’s

IUnknown::Release implementation. The proxy maintains the total number

of reference counts that the client believes it has on the remote object. If

this count is nonzero after the decrement in Release, the proxy returns

some meaningless nonzero number (not the actual internal count).

In our example, the client’s IClassFactory pointer is the only

reference, so the proxy’s Release decrements this count to 0. The proxy

thus knows that it has to start its self-destruction process, which proceeds

as follows:

1. The proxy iterates over all of its contained facelets,

calling each IRpcProxyBuffer::Disconnect (which calls

IRpcChannelBuffer::Release) followed by
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 40 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

IRpcProxyBuffer::Release, causing the facelet to delete

itself.

2. The proxy sends an IUnknown::Release over the

RPC Channel to the stub, which removes the only reference

between the two processes.

3. The stub picks up this IUnknown::Release call and

decrements an internal count of the number of client

connections to this stub.

4. If the last connection is being removed, the stub

iterates over all of its contained stublets, calling each

IRpcStubBuffer::Disconnect (which calls the real object’s

Release) followed by IRpcStubBuffer::Release, which

deletes the stublet.

5. If the stub maintains its own pointer to the object’s

IUnknown—in other words, a strong connection—both the

object and the stub remain alive. This is true for a registered

class factory, which remains registered and available to

other clients that might call CoGetClassObject to connect to

this already running class factory. If the stub does not
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 41 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

maintain such a pointer—a weak connection—the object

may well be dead, and the stub deletes itself because it no

longer has any references to that object, alive or dead.

Some of the issues surrounding cases in which the stub

disappears are described in “Strong and Weak

Connections” in Chapter 6.

6. The stub returns from IUnknown::Release, and

we’re back in the proxy, which now knows that its

responsibility is taken care of. The proxy calls

IRpcChannelBuffer::Release to remove the last reference to

the channel.

7. The RPC Channel closes the RPC connection

between the two processes and deletes itself.

8. The proxy finally deletes itself and is removed from

memory.

At the end of all this, nothing is left in the client process but the client,

regardless of whether that object is still running. The class factory’s proxy is

gone, along with the RPC Channel and all facelets, as it should be.

However, the class factory and its stub still exist in the server process, as
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 42 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

shown in Figure B-5.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 43 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 44 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-5.

Objects in memory after a client calls IClassFactory::Release. The

class factory remains in memory because the server must call

CoRevokeClassObject to destroy it.

Phase 6: Obtaining a Pointer to Yet Another Object

After releasing the class factory, the client still has a pointer to the second

object’s IProvideClassInfo interface, so a proxy for that object is still in

memory. The client now calls IProvideClassInfo::GetClassInfo, which

returns an ITypeInfo pointer to yet another separate object. Just as the

IClassFactory facelet and stublet recognize that CreateInstance creates a

new and separate object, so do the IProvideClassInfo facelet and stublet

recognize that GetClassInfo does exactly the same thing.

In fact, as far as the creation of a new proxy and stub for the new

object is concerned, CreateInstance and GetClassInfo involve the same

operations that we’ve already seen. This is true generally: any interface

function that creates a new object and returns an interface pointer to that

new object necessitates the creation of a new proxy and stub in client and

server processes, including a facelet in the proxy and a stublet in the stub.

Same problem, same solution. A function such as CoGetClassObject is

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 45 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

special only in that it is the first time any of this happens; afterward, the

same process occurs from within interface calls themselves.

Phase 7: Releasing an Object and Removing Its Complete

Remoting Support

Having obtained the ITypeInfo pointer it was looking for all along, the client

does whatever it needs to with that interface and eventually calls its

Release. The proxy called knows that this is the client’s only reference to

the remote object, so it performs the same steps as described earlier in

Phase 5. In this situation, however, the remote object itself is destroyed

because the stub’s only reference to that object is through its contained

ITypeInfo stublet. Thus, the object deletes itself, the stub deletes itself, the

proxy deletes itself and all its stublets, and the RPC Channel disappears,

leaving no trace of the object, stub, or proxy anywhere in memory. Cleanup

is complete.

The server, however, is still running because it still has at least one

active object, the one with IProvideClassInfo, so its object count is still 1.

The memory snapshot is the same as that shown in Figure B-5. The

remoting objects for ITypeInfo came into memory and went right back out

again.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 46 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Phase 8: Terminating the Server and Revoking the Class Factory

The final act in this show is the client’s call to IProvideClassInfo::Release.

As with any other object, this last call to Release destroys the proxy and

the facelets on the client side along with the object, the stub, and the

stublets on the server side. This leaves only the few server-side objects in

memory, exactly as is shown in Figure 6-3 on page 291. However, because

this was the last object being maintained in the server, its termination

conditions are met, and the server begins its shutdown process.

As we saw in Chapter 5, part of this process is the server’s call to

CoRevokeClassObject. This function performs the following steps:

1. Removes the class factory from the class factory table.

2. Tells the stub to disconnect from the class factory,

which calls that class factory’s Release. This will be the final

Release for that object, which now deletes itself.

3. Removes the object from the global object table,

making it completely unavailable.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 47 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

4. Deletes the stub object.

CoRevokeClassObject then returns to the server, which completes its

shutdown by calling CoUninitialize before exiting its message loop and

WinMain, thus unloading itself completely and terminating the entire

process (which unloads the COM Library in that process as well).

If we now looked in memory, we would see no server process, no

server or COM Library in such a process, no stubs, no stublets, no proxies,

no facelets, and no entries in the global object table. In fact, there would be

nothing, absolutely nothing that was not there before the client made its

first call to CoGetClassObject, which is exactly as it should be.

Q.E.D. (Aren’t you glad you didn’t have to implement all of this

yourself?)

1 This CBS is the COM Broadcasting Service, which, well, can’t be real or else a few trademark
lawyers from the real CBS might come a knockin’ and a litigatin’!

2 A proxy can either maintain any previously instantiated facelets or allow facelets to delete
themselves when their internal reference counts go to 0. In this case, the proxy’s QueryInterface
may need to re-create them later. This is a proxy implementation decision and does not affect client
or facelet implementation.

3 You can prove to yourself that a client cannot access IRpcProxyBuffer by modifying Chapter 5’s

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 48 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

ObjectUser to query one of the EKoala servers for IID_IRpcProxyBuffer. The call will always come
back E_NOINTERFACE.

4 Really, I mailed a package to a new baby cousin. I did go to the post office today (1/17/95), and I
did put in this particular CD, and I did play this particular song. Whaddya mean you didn’t hear it?

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 49 of 23

