
Notes Concerning OLE 1

OLE 2 has greatly matured since its first release in April 1993. As a result, its

compatibility with OLE 1 is less an issue than it used to be. This edition of Inside

OLE does not include information about OLE 1 in the printed text. Instead, this

document contains any relevant information.

OLE 2 provides an OLE 1 compatibility layer that sits between a container and a

local server. Either the server or the container can be written to OLE 1 specifications

and the other to OLE 2 specifications without either knowing the difference.

Essentially, OLE 2 translates the OLE 1 interfaces on one side into OLE 2 interfaces

on the other. Therefore, OLE 2 containers have full access to all OLE 1 servers, and

all OLE 2 servers are usable from OLE 1 containers. This allows you to upgrade an

OLE 1 application to OLE 2 and know that you will not alienate OLE 1 applications.

The situation is not perfect, however, because of in-process handlers and servers.

Because an OLE 2 container talks directly to a handler, it cannot use an OLE 1

handler. (This is not too unfortunate because there are very few OLE 1 handlers.

Windows 3.1 Paintbrush is one of the few.) Likewise, an OLE 2 in-process handler

server cannot be used by an OLE 1 container. The design differences between version

1 and version 2 simply do not allow it.

There is also a limitation with certain kinds of link sources. OLE 1 allowed links

to at most a single item within a file--that is, a File!Item link. If a source provides a

moniker any more complex than File or File!Item, linking by an OLE 1 container

application will not be possible.

Page 2

Converting object classes between OLE 2 servers is similar to converting an OLE

1 embedded object to an OLE 2 embedded object. For the most part, the process is the

same as converting an OLE 2 embedded object to a different CLSID. The version of

the Cosmo sample in Chapters 18 and beyond supports conversion and emulation of

the OLE 1 version of Cosmo, which you can find in CHAP18\COSMO1 if you are

interested.

This document also looks briefly at some defensive coding for containers such as

Patron (Chapters 17 and beyond). This can prevent a few problems with respect to

working with a few OLE 1 servers. In addition, this document discusses some support

functions that help containers convert old files that contain OLE 1 objects to a

compound file that contains OLE 2 objects.

OLE 1 Embedded Object Conversion and Emulation

Converting an OLE 1 embedded object to an OLE 2 embedded object or having an

OLE 1 object emulate an OLE 2 object is merely a special case of the conversion and

emulation support otherwise present in OLE 2. OLE 2 presents an OLE 1 embedded

object to an OLE 2 server in a storage object through IPersistStorage::Load, and

when the server is asked to save the embedded object in IPersistStorage::Save, it

simply writes data back to the storage. If the server writes OLE 2 data, it performs

conversion; if it writes OLE 1 data, it performs emulation. OLE 2 then takes care of

sending that data to whatever container is concerned regardless of version.

Page 3

To mark an OLE 2 server as capable of converting and emulating an OLE 1

server, you have to make additions to the registry under Conversion, as you do for

any other server. But because OLE 1 servers had no concept of how to write clipboard

formats to the object’s storage, what do you store under the format? The answer is

that you store the OLE 1 server’s ProgID (its short class name) as the format. These

are written in addition to any other formats you support for another OLE 2 server:

Conversion
 Readable
 Main = Cosmo1.0,Polyline Figure
 Readwritable
 Main = Cosmo1.0,Polyline Figure

All the work happens in IPersistStorage. A server must first remember that it read

from a storage that contained an OLE 1 object so that it can remember to write that

OLE 1 version if emulation is being used. Usually a single Boolean flag such as

m_fReadFromOLE10 is sufficient, which Cosmo stores in its CPolyline class. If you

use C++, make this member public so that any implementation class for

IPersistStorage can access it easily because the flag matters only for that interface.

This flag is, of course, initially FALSE. It is set to TRUE only when

IPersistStorage::Load discovers that the storage contains an OLE 1 object instead of

the expected OLE 2 object:

STDMETHODIMP CImpIPersistStorage::Load(LPSTORAGE pIStorage)
 {
 [Variables and other initialization]

 //Try to open expected OLE 2 storage contents.
 hr=pIStorage->OpenStream("CONTENTS", 0, STGM_DIRECT
 | STGM_READWRITE | STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 /*

Page 4
 * Failing that, look for OLE 1 data, which OLE 2 will put
 * in a stream named "\001Ole10Native"
 */
 if (FAILED(hr))
 {
 hr=pIStorage->OpenStream("\001Ole10Native", 0, STGM_DIRECT
 | STGM_READWRITE | STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 if (FAILED(hr))
 return ResultFromScode(STG_E_READFAULT);

 m_pObj->m_pPL->m_fReadFromOLE10=TRUE;
 }

 //Go read the data in whatever format we found it.
 m_pObj->m_pPL->ReadFromStream(pIStream);
 .
 .
 .
 }

Here IPersistStorage::Load initially tries to open expected OLE 2 data, and

failing that, it tries to open a stream named "\001Ole10Native", which will contain

the OLE 1 object data. (The \001 is an ASCII 1 preceding "Ole10Native"; it notes a

special stream, as described in Chapter 7.) If Load finds the OLE 1 stream, it sets

m_fReadFromOLE10 to TRUE so that we can do a few chores later in

IPersistStorage::Save.

The OLE 1 stream format contains a DWORD count of bytes at the beginning of

the stream, which is then followed by the exact native data representation as created

by the OLE 1 server. CPolyline::ReadFromStream handles this case correctly:

LONG CPolyline::ReadFromStream(LPSTREAM pIStream)
 {
 [Variables and other initialization]

 if (m_fReadFromOLE10)
 {
 DWORD dw;

 /*

Page 5
 * Skip the DWORD length at the beginning of the
 * Ole10Native stream.
 */
 pIStream->Read((LPVOID)&dw, sizeof(DWORD), &cb);
 }

 //Read version numbers and seek back to file beginning.
 hr=pIStream->Read((LPVOID)&pl, 2*sizeof(WORD), &cb);

 //If we read OLE 1, seek back but skip the size header.
 if (m_fReadFromOLE10)
 LISet32(li, sizeof(DWORD));
 else
 LISet32(li, 0);

 pIStream->Seek(li, STREAM_SEEK_SET, NULL);

 [Read data in appropriate version and set it for editing.]

 .
 .
 .
 }

Because Cosmo knows exactly how long data from its earlier version is (96

bytes), we simply skip this value here. (You might, of course, be more interested in

it.) In our doing so, the stream’s seek pointer is positioned at the beginning of the

data, which will always contain version numbers for either version 1 or version 2

data. Cosmo then simply reads those version numbers to determine how much data to

read, repositions the seek pointer to the top of the data, reads it, and sets it as the

active data ready for editing.

This code looks simple because Cosmo was already set to handle data from its

version 1 files. In converting files, we had the version 1 file data in a stream named

"CONTENTS", as created by StgOpenStorage with STGM_CONVERT. In

converting an embedded object, we get the data from the "\001Ole10 Native" stream,

which, with the exception of the DWORD header, contains exactly what a version 1

converted file would contain. You might, of course, have to do much more work to

Page 6

read your version 1 embedded object data.

So now let’s wrap up the story by looking at IPersistStorage::Save when we’re

dealing with an OLE 1 embedded object. There are two cases here again: conversion

and emulation. If we are converting, we write our OLE 2 object data to the storage,

setting the appropriate class, format, and type in the storage. (When your server is

initially run to convert the OLE 1 object to your current version, you’ll be asked only

to load the object and generate a new presentation. Only when the object is next

activated, modified, and closed will your IPersistStorage::Save be called, at which

time you’ll write your new data.)

But as described in Chapter 18, as far as conversion is concerned, anytime you

write a different data structure to the storage you need to clean up any elements that

are now unused. In the conversion case, the "\001Ole10Native" stream will no longer

be used because the storage now contains an OLE 2 object. Cosmo takes care of this

in IPersistStorage::Save:

if (m_pObj->m_pPL->m_fReadFromOLE10 && m_fConvert && (1Ret >= 0))
 pIStorage->DestroyElement("\001Ole10Native");

This code will probably look very similar to the code for your own application.

The additional condition (lRet>=0) ensures that we destroy only the OLE 1 element

in the storage if and only if writing the OLE 2 information worked, which this extra

condition indicates.

That leaves us with looking at the final case of emulating an OLE 1 embedded

object. This requires a slight change to our IPersistStorage::Save implementation:

Page 7

STDMETHODIMP CImpIPersistStorage::Save(LPSTORAGE pIStorage
 , BOOL fSameAsLoad)
 {
 LONG lVer=VERSIONCURRENT;

 .
 .
 .

 if (!m_fConvert && m_pObj->m_pPL->m_fReadFromOLE10)
 lVer=0x00010000;
 .
 .
 .
 [Determine stream in which to write data.]
 lRet=m_pObj->m_pPL->WriteToStream(pIStream, lVer);
 .
 .
 .
 }

If the m_fConvert flag is FALSE and we read from an OLE 1 object (which we

determine by peeking into the public m_fReadFromOLE10 flag in CPolyline), we

know we’re emulating an OLE 1 embedded object. Therefore, in

IPersistStorage::Save, we need to write to the "\001Ole10Native" stream instead of

our usual "CONTENTS" stream. If fSameAsLoad is TRUE within Save and we’re

emulating an OLE 1 object, we can simply write the version 1 data back to the current

stream that we hold open from Load. Otherwise, we need to create the correct stream

with the correct name, and if it is an OLE 1 stream, we must remember to write the

DWORD header in the stream to indicate the size of the remaining data:

//In IPersistStorage::Save

if (!m_fConvert && m_pObj->m_pPL->m_fReadFromOLE10)
 {
 hr=pIStorage->CreateStream("\001Ole10Native", STGM_DIRECT
 | STGM_CREATE | STGM_WRITE | STGM_SHARE_EXCLUSIVE
 , 0, 0, &pIStream);
 }
else

Page 8
 {
 hr=pIStorage->CreateStream("CONTENTS", STGM_DIRECT
 | STGM_CREATE | STGM_WRITE | STGM_SHARE_EXCLUSIVE
 , 0, 0, &pIStream);
 }

After creating these streams, Cosmo simply writes its data in the appropriate

version to whatever is in pIStream. And with this, our modification of Cosmo to

handle conversion and emulation is complete.

Notes on OLE 1 Compatibility for Containers

There are a number of considerations for OLE 1 compatibility as far as containers are

concerned. OLE 2 provides a compatibility layer so that OLE 2 containers can work

with OLE 1 servers (linked or embedded objects) transparently, but the compatibility

layer is not perfectly transparent. The first consideration is how to deal with OLE 1

servers that don’t quite behave as expected. In my experience, I have come across

only two major quirks in servers that can cause a container to behave erratically. The

second consideration is important to you if you have an OLE 1 container that you

want to convert to an OLE 2 container: how to read and write old files that contain

OLE 1 objects. For this situation, we’ll briefly look at two OLE 2 API functions that

help you do this conversion.

OLE 1 Server Quirks

There are two behavioral oddities that an OLE 2 container might encounter in an OLE

1 server: it might encounter negative extents returned from IOleObject::GetExtent,

and it might not receive an IOleClientSite::OnShowWindow(FALSE) call when the

object closes.

Page 9

First, many programmers (including me) are extremely confused about the use of

HIMETRIC units in specifying extents of objects. As we’ve seen in Chapters 11 and

18, you use the scaling of the MM_HIMETRIC mapping mode to express extents, but

you do not use the mapping mode itself. That is, when you convert a vertical extent to

HIMETRIC units for the purpose of working with OLE, you do not negate this

number as you would if you were drawing in the MM_HIMETRIC mapping mode.

Therefore, all extents returned from a call such as IOleObject::GetExtent, and all the

extents that you send to IOleObject::SetExtent, must be in absolute units, expressed

in HIMETRIC. In other words, all values are positive. The confusion this caused for

OLE 1 programmers resulted in a few servers specifying a negative vertical extent, so

a container’s call to IOleObject::GetExtent might have come back with a negative y

value. Patron handles this by checking for that case and changing the extent to a

positive value, as it should be, after calling IOleObject::GetExtent:

SIZEL szl;

m_pIOleObject->GetExtent(dwAspect, &szl);

if (0 > szl.cy)
 szl.cy=-szl.cy;

This is simply a good, defensive habit for a container to practice.

The second concern is that some OLE 1 servers will not properly generate a call

to your IOleClientSite::OnShowWindow when the object closes. Remember that we

used OnShowWindow to add or remove the hatching on a container site depending on

the fShow parameter to the function. Well, for some OLE 1 servers,

OnShowWindow(FALSE), which removes the hatching, is never sent. This means that

you’re stuck with a permanently hatched object. Ugly. To protect yourself, you can

Page 10

include a redundancy by using IAdviseSink::OnClose. Patron makes the same call to

CTenant::ShowAsOpen(FALSE) in OnClose as it does in OnShowWindow:

//In ICLISITE.CPP
STDMETHODIMP CImpIOleClientSite::OnShowWindow(BOOL fShow)
 {
 m_pTen->ShowAsOpen(fShow);
 return NOERROR;
 }

//Redundancy in IADVSINK.CPP
STDMETHODIMP_(void) CImpIAdviseSink::OnClose(void)
 {
 m_pTen->ShowAsOpen(FALSE);
 return;
 }

Again, this is an excellent defensive programming technique.

File Conversion

If you programmed an OLE 1 container and you have now seen how to implement an

OLE 2 container, you will have noticed that the storage models in each are quite

different. OLE 2 containers treat all compound document objects as if they lived

inside a storage object. You can also control where the actual bytes end up by

implementing or using an alternative lockbytes object, as described in Chapter 7.

OLE 1 containers, on the other hand, treat compound document objects by means of a

data structure named OLESTREAM. This structure had one field,

OLESTREAMVTBL, in which the container stored the pointer to two functions, Get

and Put, through which the container controlled the placement of bytes within its disk

file.

So how do you reconcile the two? Most complete container applications, such as

word processors and spreadsheets, will need to be able to read and write files

Page 11

compatible with previous versions of that application. That means that an OLE 2

container must be able to read objects written using an OLESTREAM and must be

able to write OLE 2 objects into an OLESTREAM.

OLE 2 provides two API functions to accommodate these needs:

OleConvertOLESTREAMToIStorage and OleConvertIStorageToOLESTREAM. The

first function is used to read an object that was written in an OLESTREAM as if it

were in a storage object--that is, to enable your container to load the object simply by

calling OleLoad as you do for anything else in a storage. The second function is used

to take an object that your container knows through a storage and write it to a file

through an OLESTREAM. Let’s see some hypothetical code to show how this would

work. (Patron actually had an OLE 1 version, but the differences between it and the

OLE 2 version are simply too significant to try to make conversion work reasonably

well.)

The implementation and use of a typical OLESTREAM in an OLE 1 container

usually involved some variation of the OLESTREAM structure in which the

container put something like a file handle so that the Get and Put functions of the

stream would have access to it. When the container wanted to save or load an object,

it would call OleSaveToStream or OleLoadFromStream, passing a pointer to the

OLESTREAM structure. (In this context, these are OLE 1 API functions and not the

functions of the same name in OLE 2 that take IStream pointers.) The OLE 1 libraries

would then call Get and Put as necessary to write the object into the file:

//The container-specific OLESTREAM structure
typedef struct
 {

Page 12
 LPOLESTREAMVTBL pvt;
 HANDLE hFile;
 } OLE1STREAM, FAR *LPOLE1STREAM;

//The function that would write a file.
void FileSave(LPSTR pszFile)
 {
 HANDLE hFile
 OFSTRUCT of;
 LPOLE1STREAM pStream;

 hFile=OpenFile(pszFile, &of, OF_CREATE | OF_WRITE);

 [Other error checking code, and so on]

 /*
 * This is usually some function that allocates and initializes the
 * OLE1STREAM structure and its VTBL.
 */

 pStream=AllocateOLE1STREAM();
 pStream->hFile=hFile;

 [Containers typically wrote other data here.]

 [This would be called for each object saved.]
 OleSaveToStream(pObj, (LPOLESTREAM)pStream);

 .
 .
 .

 [Cleanup]
 }

//The function that would read a file
void FileLoad(LPSTR pszFile)
 {
 HANDLE hFile
 OFSTRUCT of;
 LPOLE1STREAM pStream;

 hFile=OpenFile(pszFile, &of, OF_READ);

 [Other error checking code, and so on]

 pStream=AllocateOLE1STREAM();
 pStream->hFile=hFile;

 [Containers typically read other data here.]

 [This would be called for each object loaded.]
 OleLoadFromStream((LPOLESTREAM)pStream, "StdFileEditing", ...);

Page 13
 .
 .
 .

 [Cleanup]
 }

//OLESTREAM methods
DWORD FAR PASCAL Get(LPOLE1STREAM pStream, LPBYTE pb, DWORD cb)
 {

 if (NULL==pStream->hFile)
 return 0L;

 return _hread(pStream->hFile, (void huge *)pb, cb);
 }

DWORD FAR PASCAL Put(LPOLE1STREAM pStream, LPBYTE pb, DWORD cb)
 {
 if (NULL==pStream->hFile)
 return 0L;

 return _hwrite(pStream->hFile, (void huge *)pb, cb);
 }

Generally, when a container saved a file, it opened the file, wrote whatever header

information was necessary, and then wrote headers for objects within that file, which

would position the file’s seek offset at the place at which the container wanted the

object’s data saved. It then called the OLE 1 function OleSaveToStream for each

object in the document, which called Put, in which the container wrote the data to the

file. In the same manner, the container positioned the file’s seek offset at the start of

an object and called the OLE 1 function OleLoadFromStream, which called Get to

retrieve that data previously written. All in all, the container controlled where the data

was placed in a file by positioning the seek pointer in whatever file handle was in the

OLESTREAM structure before calling the OLE 1 OleSaveToStream.

To handle such files from an OLE 2 container, we have to modify one of these

OLESTREAM instances so that it resembles a storage object. Presumably, you will

Page 14

have code in your OLE 2 container that knows how to read every other part of a file

generated from the OLE 1 version of your application. Eventually that code will come

across a record in the file that says, “What follows is an OLE 1 compound document

object”--that is, a header on an object in that file. You need to load that object and

obtain some OLE 2 interface pointer for it. You can’t use an OLE 1 API function to

do this because those functions are ignorant of interfaces and the only function that

loads an object and returns an interface pointer is OleLoad. OleLoad requires an

IStorage pointer from which to load the object, so we have to call

OleConvertOLESTREAMToIStorage to get the IStorage pointer.

To call OleConvertOLESTREAMToIStorage, you have to allocate and initialize an

OLESTREAM structure like the one you allocated and initialized in your OLE 1

application. Generally, you can use all the same code you had before. You then pass

the OLESTREAM pointer to OleConvertOLESTREAMToIStorage to obtain the

IStorage pointer, which you can then pass to OleLoad.

void ImportOldFile(LPSTR pszFile)
 {
 HANDLE hFile
 OFSTRUCT of;
 LPOLE1STREAM pStream;
 LPSTORAGE pIStorage;
 LPUNKNOWN pObj;

 hFile=OpenFile(pszFile, &of, OF_READ);

 [Other error checking code, and so on]

 pStream=AllocateOLE1STREAM();
 pStream->hFile=hFile;

 [Containers typically read other data here.]

 .
 .
 .

Page 15

 [This would be called in some loop when encountering an OLE 1 object.]
 OleConvertOLESTREAMToIStorage((LPOLESTREAM)pStream, &pIStorage, NULL);
 OleLoad(pIStorage, IID_IUnknown pIOleClientSite, (LPLPVOID)&pObj);
 pIStorage->Release();

 .
 .
 .

 [Cleanup]
 }

For the most part, importing an OLE 1 object into an OLE 2 container is a matter

of recycling all your OLE 1 code by replacing the call to OleLoadFromStream with

calls to OleConvertOLESTREAMToIStorage, OleLoad, and, of course,

IStorage::Release. (Don’t forget the Release.) OleConvertOLESTREAMToIStorage is

a function that returns a new pointer to an interface and therefore has a reference

count on that pointer.

The other half of the equation is to write an OLE 2 object--one for which you

have an IStorage pointer--into an OLE 1 file using your old OLESTREAM

implementation. For this, you call OleConvertIStorageToOLESTREAM, which calls

the OLESTREAM structure’s Put function to write the object:

void ExportOldObjectToFile(HFILE hFile, LPSTORAGE pIStorage)
 {
 LPOLE1STREAM pStream;

 pStream=AllocateOLE1STREAM();
 pStream->hFile=hFile;

 OleConvertIStorageToOLESTREAM(pIStorage, (LPOLESTREAM)pStream);

 .
 .
 .
 }

So overall, the majority of the work in reading and writing OLE 1-compatible

Page 16

files will be in re-creating your own data structures in the file, especially if your OLE

2 container is using compound files. When you hit a spot at which you have to either

save or load an OLE 1 object, you need to make only a few OLE 2 calls, as shown in

the previous code.

