OLE 2.01 User Interface Library
Topics

Data Transfer

Debug
Icon Support

Library Management
Memory Management
Message Filter
Miscellaneous

Monikers and Linking

Obiject Feedback
Registration Database
Summary Info and Properties

Storage
Transformations

Summary Info and Properties

OleStdInitSummarylnfo
OleStdFreeSummarylinfo
OleStdClearSummarylnfo
OleStdReadSummaryinfo
OleStdWriteSummarylnfo
OleStdGetSecurityProperty
OleStdSetSecurityProperty
OleStdGetStringProperty
OleStdSetStringProperty
OleStdGetStringZProperty
OleStdGetDocProperty
OleStdSetDocProperty
OleStdGetThumbNailProperty
OleStdSetThumbNailProperty
OleStdGetDateProperty
OleStdSetDateProperty

Object Feedback

Inplace Hatch Border Support
OleUIDrawHandles

OleUIDrawShading
OleUIShowObject

Inplace Support
CreateHatchWindow
GetHatchRect
GetHatchWidth
RegisterHatchWindowClass
HatchWndProc
SetHatchRect
SetHatchWindowSize

Data Transfer
Device Contexts

ObjectDescriptor
OleStdEnumFmtEtc Create

OleStdEnumFmtEtc_Destroy
OleStdGetData

OleStdGetDropEffect
OleStdGetlLinkSourceData
OleStdGetMetafilePictFromOleObject
OleStdGetOleObjectData
OleStdGetPriorityClipboardFormat
OleStdIsDuplicateFormat
OleStdQueryFormatMedium
OleStdGetObjectDescriptorFromOleObject
OleStdQueryLinkSourceData

OleStdMsgFilter

OleStdMsgFilter_Create
OleStdMsgFilter_EnableBusyDialog
OleStdMsgFilter_EnableNotRespondingDialog
OleStdMsgFile_SetHandleInComingCallbackProc
OleStdMsgFilter_GetInComingStatus
OleStdMsgFilter_SetinComingStatus
OleStdMsgFilter_SetParentWindow
OleStdMsgFilter

Debugging Macros
OLEDBG_BEGIN1
OLEDBG_BEGIN2
OLEDBG_BEGIN3
OLEDBG_BEGIN4
OLEDBG_BEGIN
OLEDBG_END1
OLEDBG_END2
OLEDBG_END3
OLEDBG_END4
OLEDBG_END
OLEDBGDATA_MAIN
OLEDBGDATA

OleDbgOut1
OleDbgOut2
OleDbgOut3
OleDbgOut4
OleDbgOutHResult
OleDbgOutNoPrefix1
OleDbgOutNoPrefix2
OleDbgOutNoPrefix3
OleDbgOutNoPrefix4
OleDbgOutNoPrefix
OleDbgOut
OleDbgOutRect1
OleDbgOutRect2
OleDbgOutRect3
OleDbgOutRect4
OleDbgOutRect
OleDbgOutRefCnt1
OleDbgOutRefCnt2
OleDbgOutRefCnt3
OleDbgOutRefCnt4
OleDbgOutRefCnt
OleDbgOutScode

Monikers and Linking
OleStdCreateTempFileMoniker
OleStdGetFirstMoniker
OleStdGetltemToken
OleStdGetLenFilePrefixOfMoniker

OleStdNoteFileChangeTime
OleStdNoteObjectChangeTime
OleStdRegisterAsRunning
OleStdRevokeAsRunning
OleStdMkParseDisplayName

Storage

OleStdCommitStorage
OleStdCreateChildStorage
OleStdCreateRootStorage
OleStdCreateStorageOnHGlobal
OleStdCreateTempStorage
OleStdOpenChildStorage
OleStdOpenRootStorage
OpenOrCreateRootStorage

ObjectDescriptor

OleStdFillObjectDescriptorFromData
OleStdGetObjectDescriptorDataFromOleObject
OleStdGetObjectDescriptorData
OleStdQueryObjectDescriptorData

Memory Management

OleStdCopyStrin
OleStdFree

OleStdFreeString
OleStdGetSize
OleStdMalloc
OleStdRealloc

Device Contexts
OleStdCreateDC
OleStdCreatelC

OleStdCreateTargetDevice
OleStdDeleteTargetDevice
ResetOrigDC

SetDCToAnisotropic
SetDCToDrawlnHimetricRect

Icon Support

GetlconOfClass

GetlconOfFile

HilconFromClass

Icon Metafile Format
OleStdCopyMetafilePict
OleStdlconl abelTextOut
OleStdSetlconInCache
OleUlIMetafilePictExtractlcon
OleUlMetafilePictExtractlconSource
OleUIMetsfilePictExtractLabel
OleUIMetafilePictFromlconAndLabel
OleUIMetafilePictlconDraw
OleUIMetafilePictlconFree

Library Management
OleUllInitialize
OleUlUnlInitialize

OleUlLockLibrary
OleUlCanUnloadNow

Registration Database
FServerFromClass
GetAssociatedExecutable
OleStdGetAuxUserType
OleStdGetDefaultFileFormatOfClass
OleStdGetMiscStatusOfClass

OleStdGetTreatAsFmtUserType
OleStdGetUserTypeOfClass
UClassFromDescription
UDescriptionFromClass

Transformations

XformHeightinHimetricToPixels

XformHeightInPixelsToHimetric
XformWidthInHimetricToPixels

XformWidthInPixelsToHimetric

Miscellaneous
Browse

ChopText
ErrorWithFile
GetTasklInfo
HourGlassOff
HourGlassOn
OleStdCreateDbAlloc
OleStdCheckVibl
OleStdDoConvert
OleStdDoTreatAs
OleStdInitVibl
OleStdIsOleLink
OleStdMarkPasteEntryList
OleStdNullMethod
OleStdQueryinterface

OleStdSetupAdvises
OleStdSwitchDisplayAspect
OleStdVerifyRelease
OpenFileError
ParseCmdLine

ReplaceCharWithNull

GetTaskInfo
BOOL GetTaskInfo(hWhnd, htask, IplpszTaskName, IplpszWindowName, IphWnd)

HWND hWhd; /* hWnd of calling window */

HTASK htask; [* hTask to retrieve information about */

LPSTR FAR* IplpszTaskName; [* pointer to location to return name of hTask */

LPSTR FAR* IplpszWindowName; /* pointer to location to return top-level window title */
HWND FAR* IphWhnd; [* pointer to location to return first top-level window handle */

GetTasklInfo returns information about the specified task and places the module name, window name and
top-level HWND for the task in the specified pointers.

Parameter Description

hWnd HWND who called this function

htask HTASK which we want to find out more info about
IplpszTaskName Location that the module name is returned

IplpszWindowName Location where the window name is returned

Returns
TRUE if top-level HWND for specified task is found, FALSE otherwise.

Comments
The two string pointers allocated in this routine are the responsibility of the CALLER to de-allocate.

OleUIMetafilePictlconFree
STDAPI_(void) OleUIMetafilePicticonFree(HGLOBAL hMetaPict)

HGLOBAL hMetaPict, /* handle of metafilepict to free */

OleUIMetafilePictlconFree deletes the metafile contained in a METAFILEPICT structure and frees the
memory for the structure itself.

Parameter Description

hMetaPict HGLOBAL metafilepict structure created in OleUIMetafilePictFromlconAndLabel
Returns

None

See Also

OleUIMetafilePicticonDraw, GetlconOfFile, GetlconOfClass

OleUlIMetafilePicticonDraw
STDAPI_(BOOL) OleUIMetafilePicticonDraw(hDC, pRect, hMetaPict, flconOnly)

HDC hDC; /* Device context to draw the metafilepict into */

LPRECT pRect; /* Bounding rectangle */

HGLOBAL hMetaPict; I* MetafilePict to draw */

BOOL flconOnly; /* TRUE to draw the icon only (no label); FALSE otherwise */

Draws the metafile from OleUIMetafilePictFromlconAndLabel, either with the label or without.

Parameter Description

hDC HDC on which to draw.

pRect LPRECT in which to draw the metafile.

hMetaPict HGLOBAL to the METAFILEPICT from OleUIMetafilePictFromlconAndLabel
flconOnly BOOL specifying to draw the label or not.

Returns

TRUE if the function is successful, FALSE if the given metafilepict is invalid.

See Also
OleUlMetafilePictFromlconAndLabel, GetlconOfFile, GetlconOfClass

OleUIMetafilePictExtractLabel
STDAPI_(UINT) OleUIMetafilePictExtractLabel(hMetaPict, IpszLabel, cchLabel, IpWrapIndex)

HGLOBAL hMetaPict; [* Metafile to extract label from */

LPSTR IpszLabel; /* Address to return label */

UINT cchLabel; /* Length of buffer pointed to by IpszLabel */

LPDWORD /pWrapindex; /* Pointer to return the index of the first character in last line */

OleUIMetafilePictExtractLabel retrieves the label string from metafile representation of an icon.

Parameter Description

hMetaPict HGLOBAL to the METAFILEPICT containing the metafile.

IpszLabel LPSTR in which to store the label.

cchLabel UINT length of IpszLabel.

IpWraplindex DWORD index of first character in last line. Can be NULL if calling function doesn't

care about word wrap.

Returns
Number of characters copied.

See Also
OleUIMetafilePictFromlconAndLabel, GetlconOfFile, GetlconOfClass

OleUIMetafilePictExtracticon
STDAPI_(HICON) OleUIMetafilePictExtractlcon(hMetaPict)

HGLOBAL hMetaPict; /* Metafile to extract icon from */

Retrieves the icon from metafile into which Drawlcon was done before.

Parameter Description
hMetaPict HGLOBAL to the METAFILEPICT containing the metafile.
Returns

HICON of icon recreated from the data in the metafile.

See Also
OleUIMetafilePictFromlconAndLabel, GetlconOfFile, GetlconOfClass

OleUIMetafilePictExtracticonSource
STDAPI_(BOOL) OleUIMetafilePictExtracticonSource(hMetaPict, IpszSource, pilcon)

HGLOBAL hMetaPict; [* Metafile to extract icon source from */
LPSTR IpszSource; [* pointer to return icon source */
UINT FAR *pilcon; [* pointer to return icon index within source */

Retrieves the flename and index of the icon source from a metafile created with
OleUIMetafilePictFromlconAndLabel.

Parameter Description

hMetaPict HGLOBAL to the METAFILEPICT containing the metafile.

IpszSource LPSTR in which to store the source filename. This buffer should be
OLEUI_CCHPATHMAX characters.

pilcon UINT FAR * in which to store the icon's index within IpszSource

Returns

TRUE if the records were found, FALSE otherwise.

See Also
OleUlMetafilePictFromlconAndLabel, GetlconOfFile, GetlconOfClass

Icon Metafile Format

The metafile generated with OleUIMetafilePictFromlconAndLabel contains the following records which
are used by the functions in DRAWICON.C to draw the icon with and without the label and to extract the
icon, label, and icon source/index.

SetWindowOrg

SetWindowExt

Drawlcon:
Inserts records of DIBBITBLT or DIBSTRETCHBLT, once for the AND mask, one for the
image bits.

Escape with the comment "IconOnly"
This indicates where to stop record enumeration to draw only the icon.

SetTextColor

SetBkColor

CreateFont

SelectObject on the font.

ExtTextOut
One or more ExtTextOuts occur if the label is wrapped. The text in these records is used to
extract the label.

SelectObject on the old font.

DeleteObject on the font.

Escape with a comment that contains the path to the icon source.

Escape with a comment that is the ASCII of the icon index.

GetlconOfFile
STDAPI_(HGLOBAL) GetlconOfFile(HINSTANCE hinst, LPSTR IpszPath, BOOL fUseFileAsLabel)

GetlconOfFile returns a hMetaPict containing an icon and label (filename) for the
specified filename.

Parameter Description
hinst Current HINSTANCE
IpszPath LPSTR path including filename to use

fUseFileAsLabel BOOL TRUE if the icon's label is the filename, FALSE if the short user type name
should be the label.

Returns

hMetaPict containing the icon and label - if there's no class in reg db for the file in IpszPath, then we use
"Document” as the label and the plain Document icon as the icon. If IpszPath is NULL, then we return
NULL.

See Also
OleUlIMetafilePictFromlconAndLabel, GetlconOfClass

GetAssociatedExecutable
BOOL FAR PASCAL GetAssociatedExecutable(LPSTR IpszExtension, LPSTR IpszExecutable)

Finds the executable associated with the provided extension

Parameter Description

IpszExtension LPSTR points to the extension we're trying to find an exe for. Does **NO**
validation.

IpszExecutable LPSTR points to where the exe name will be returned. No validation here either -

pass in 128 char buffer.

Returns
TRUE if we found an exe, FALSE if we didn't.

GetlconOfClass
STDAPI_(HGLOBAL) GetlconOfClass(HINSTANCE hinst, REFCLSID rclsid, LPSTR IpszLabel,
BOOL fUseTypeAsLabel)

Returns a hMetaPict containing an icon and label (human-readable form of class) for the specified clsid.

Parameter Description

hinst Current Hinstance

relsid REFCLSID pointing to clsid to use.
IpszLabel label to use for icon.

fUseTypeAsLabel Use the clsid's user type name as the icon's label.

Returns
hMetaPict containing the icon and label - if we don't find the clsid in the reg db then we
return NULL.

See Also
OleUlMetafilePictFromlconAndLabel, GetlconOfFile

OleUIMetafilePictFromlconAndLabel
STDAPI_(HGLOBAL) OleUIMetafilePictFromlconAndLabel(HICON hicon, LPSTR pszLabel,
LPSTR pszSourceFile, UINT ilcon)

Creates a METAFILEPICT structure that container a metafile in which the icon and label are drawn. A
comment record is inserted between the icon and the label code so our special draw function can stop
playing before the label.

Parameter Description

hlcon HICON to draw into the metafile

pszLabel LPSTR to the label string.

pszSourceFile LPSTR containing the local pathname of the icon as we either get from the user or
from the reg DB.

ilcon UINT providing the index into pszSourceFile where the icon came from.

Returns

Global memory handle containing a METAFILEPICT where the metafile uses the MM_ANISOTROPIC
mapping mode. The extents reflect both icon and label.

See Also
GetlconOfFile, GetlconOfClass

OleStdiconLabelTextOut
STDAPI_(UINT) OleStdiconLabelTextOut(HDC hDC, HFONT hFont, int nXStart, int nYStart, UINT
fuOptions, RECT FAR * IpRect, LPSTR IpszString, UINT cchString, int FAR * IpDX)

Replacement for DrawText to be used in the "Display as lcon" metafile. Uses ExtTextOut to output a
string center on (at most) two lines. Uses a very simple word wrap algorithm to split the lines.

Parameter Description

hDC device context to draw into; if this is NULL, then we don't output the text, we just
return the index of the beginning of the second line.

hFont font to use

nXStart x-coordinate of starting position

nYStart y-coordinate of starting position

fuOptions rectangle type

IpRect rect far * containing rectangle to draw text in.

IpszString string to draw

cchString length of string (truncated if over OLEUI_CCHLABELMAX)

InDX spacing between character cells

Returns

Index of beginning of last line (0 if there's only one line of text).

See Also
OleUIMetafilePictFromlconAndLabel, GetlconOfFile, GetlconOfClass

OleStdGetUserTypeOfClass
STDAPI_(UINT) OleStdGetUserTypeOfClass(REFCLSID rclsid, LPSTR IpszUserType, UINT cch,
HKEY hKey)

Returns the user type (human readable class name) of the specified class.

Parameter Description

relsid pointer to the clsid to retrieve user type of.

IpszUserType pointer to buffer to return user type in.

cch length of buffer pointed to by IpszUserType

hKey hKey for reg db - if this is NULL, then we open and close the reg db within this

function. Ifitis non-NULL, then we assume it's a valid key to the \ root and use it
without closing it. (useful if you're doing lots of reg db stuff).

Returns
Number of characters in returned string. 0 on error.

See Also
OleStdGetAuxUserType

OleStdGetAuxUserType
STDAPI_(UINT) OleStdGetAuxUserType(REFCLSID rclsid, WORD wAuxUserType, LPSTR
IpszAuxUserType, int cch, HKEY hKey)

Returns the specified AuxUserType from the registration database.

Parameter
relsid

hKey
wAuxUserType

InszUserType
cch

Returns

Description

pointer to the clsid to retrieve aux user type of.

hKey for reg db - if this is NULL, then we open and close the reg db within this
function. Ifit is non-NULL, then we assume it's a valid key to the \ root and use it
without closing it. (useful if you're doing lots of reg db stuff).

which aux user type field to look for. In 4/93 release 2 is short name and 3 is exe
name.

pointer to buffer to return user type in.

length of buffer pointed to by IpszUserType

Number of characters in returned string. 0 on error.

See Also

OleStdGetUserTypeOfClass

XformWidthinPixelsToHimetric
STDAPIL_(int) XformWidthInPixelsToHimetric(HDC hDC, int iWidthInPix)
Converts the specified width value from pixels to logical Himetric units.

Parameter Description

hDC HDC providing reference to the pixel mapping. If NULL, a screen DC is used.
iWidthInPix int containing the value to convert.

Comments

When displaying on the screen, Window apps display everything enlarged from its actual size so that it is
easier to read. For example, if an app wants to display a 1in. horizontal line, that when printed is actually
a 1in. line on the printed page, then it will display the line on the screen physically larger than 1in. This is
described as a line that is "logically” 1in. along the display width. Windows maintains as part of the
device-specific information about a given display device:

LOGPIXELSX -- no. of pixels per logical in along the display width

LOGPIXELSY -- no. of pixels per logical in along the display height

The following formula converts a distance in pixels into its equivalent logical HIMETRIC units:
DistInHiMetric = (HIMETRIC PER INCH * DistInPix)

PIXELS PER LOGICAL IN

Returns
Converted value of iWidthInPix.

See Also
XformWidthinHimetricToPixels, XformHeightinHimetricToPixels, XformHeightinPixelsToHimetric

XformWidthinHimetricToPixels
STDAPIL_(int) XformWidthiInHimetricToPixels(HDC hDC, int iWidthinHiMetric)

Converts the specified width value from logical Himetric units to pixels.

Parameter Description

hDC HDC providing reference to the pixel mapping. If NULL, a screen DC is used.
iWidthinHiMetric int containing the value to convert.

Comments

When displaying on the screen, Window apps display everything enlarged from its actual size so that it is
easier to read. For example, if an app wants to display a 1in. horizontal line, that when printed is actually
a 1in. line on the printed page, then it will display the line on the screen physically larger than 1in. This is
described as a line that is "logically" 1in. along the display width. Windows maintains as part of the
device-specific information about a given display device:

LOGPIXELSX -- no. of pixels per logical in along the display width

LOGPIXELSY -- no. of pixels per logical in along the display height

The following formula converts a distance in pixels into its equivalent logical HIMETRIC units:
DistInHiMetric = (HIMETRIC PER INCH * DistInPix)

PIXELS PER LOGICAL IN

Returns
Converted value of iWidthInHiMetric.

See Also
XformWidthInPixelsToHimetric, XformHeightinHimetricToPixels, XformHeightinPixelsToHimetric

XformHeightinPixelsToHimetric
STDAPI_(int) XformHeightinPixelsToHimetric(HDC hDC, int iHeightIinPix)

Converts the specified height value from pixels to logical Himetric units.

Parameter Description

hDC HDC providing reference to the pixel mapping. If NULL, a screen DC is used.
iHeightInPixels int containing the value to convert.

Comments

When displaying on the screen, Window apps display everything enlarged from its actual size so that it is
easier to read. For example, if an app wants to display a 1in. horizontal line, that when printed is actually
a 1in. line on the printed page, then it will display the line on the screen physically larger than 1in. This is
described as a line that is "logically" 1in. along the display width. Windows maintains as part of the
device-specific information about a given display device:

LOGPIXELSX -- no. of pixels per logical in along the display width

LOGPIXELSY -- no. of pixels per logical in along the display height

The following formula converts a distance in pixels into its equivalent logical HIMETRIC units:
DistInHiMetric = (HIMETRIC PER INCH * DistInPix)

PIXELS PER LOGICAL IN

Returns
Converted value of iHeightInPixels.

See Also
XformWidthInHimetricToPixels, XformHeightinHimetricToPixels, XformWidthInPixelsToHimetric

XformHeightinHimetricToPixels
STDAPIL_(int) XformHeightinHimetricToPixels(HDC hDC, int iHeightinHiMetric)

Converts the specified height value from logical Himetric units to pixels.

Parameter Description

hDC HDC providing reference to the pixel mapping. If NULL, a screen DC is used.
iHeightInHiMetric int containing the value to convert.

Comments

When displaying on the screen, Window apps display everything enlarged from its actual size so that it is
easier to read. For example, if an app wants to display a 1in. horizontal line, that when printed is actually
a 1in. line on the printed page, then it will display the line on the screen physically larger than 1in. This is
described as a line that is "logically" 1in. along the display width. Windows maintains as part of the
device-specific information about a given display device:

LOGPIXELSX -- no. of pixels per logical in along the display width

LOGPIXELSY -- no. of pixels per logical in along the display height

The following formula converts a distance in pixels into its equivalent logical HIMETRIC units:
DistInHiMetric = (HIMETRIC PER INCH * DistInPix)

PIXELS PER LOGICAL IN
Returns
Converted value of iHeightinHiMetric.

See Also
XformWidthInHimetricToPixels, XformWidthinPixelsToHimetric, XformHeightInPixelsToHimetric

RegisterHatchWindowClass
STDAPI_(BOOL) RegisterHatchWindowClass(HINSTANCE hinst)

Registers the hatch window class.

Parameter Description
hinst Process instance
Returns

TRUE if the window class is successfully registered; FALSE otherwise.

See Also
CreateHatchWindow, GetHatchWidth,

CreateHatchWindow
STDAPI_(HWND) CreateHatchWindow(HWND hWndParent, HINSTANCE hinst)

Creates a hatch window.

Parameter Description
hWhndParent parent of hatch window
hinst instance handle
Returns

If successful, CreateHatchWindow returns a pointer to the created hatch window. It returns NULL if the
function fails.

See Also
RegisterHatchWindowClass, GetHatchWidth,

GetHatchWidth
STDAPI_(UINT) GetHatchWidth(HWND hWndHatch)

Get width of hatch window's hatch border.

Parameter Description
hWhndHatch hatch window handle
Returns

Width of the window's hatch border.

See Also
RegisterHatchWindowClass, CreateHatchWindow, GetHatchRect, SetHatchRect

GetHatchRect
STDAPI_(void) GetHatchRect(HWND hWndHatch, LPRECT IprcHatchRect)

Get a hatch window's hatch rectangle. This is the size of the hatch window if it were
not clipped by the ClipRect.

Parameter Description

hWhndHatch hatch window handle

IprcHatchRect pointer to RECT structure to return hatch rect
Returns

None.

See Also

RegisterHatchWindowClass, CreateHatchWindow, SetHatchRect

SetHatchRect
STDAPI_(void) SetHatchRect(HWND hWndHatch, LPRECT IprcHatchRect)

Store hatch rect with HatchRect window. This rect is the size of the hatch window if it were
not clipped by the ClipRect.

Parameter Description

hWhndHatch hatch window handle

IprcHatchRect pointer to RECT structure to return hatch rect
Returns

None.

See Also

RegisterHatchWindowClass, CreateHatchWindow, GetHatchRect, SetHatchWindowSize

SetHatchWindowSize
STDAPI_(void) SetHatchWindowSize(HWND hWndHatch, LPRECT IprclPObjRect, LPRECT
IprcClipRect, LPPOINT IpptOffset)

Move/size the HatchWindow correctly given the rect required by the in-place server object window and
the IprcClipRect imposed by the in-place container. both rect's are expressed in the client coord.of the in-
place container's window (which is the parent of the HatchWindow).

Parameter Description

hWhndHatch hatch window handle

IprcIPObjRect pointer to RECT structure containing full size of in-place server object window
IprcClipRect pointer to RECT structure containing clipping rect imposed by in-place container
IpptOfiset offset required to position in-place server object window properly. caller should call:

OffsetRect(&rcObjRect,|pptOffset->x,IpptOffset->y)

Comment

The in-place server must honor the IprcClipRect specified by its in-place container. it must NOT draw
outside of the ClipRect. In order to achieve this, the hatch window is sized to be exactly the size that
should be visible (rcVisRect). the rcVisRect is defined as the intersection of the full size of the HatchRect
window and the IprcClipRect. The ClipRect could infact clip the HatchRect on the right/bottom and/or on
the topl/left. if it is clipped on the right/bottom then it is sufficient to simply resize the hatch window. but if
the HatchRect is clipped on the top/left then in-place server document window (child of HatchWindow)
must be moved by the delta that was clipped. The window origin of the in-place server window will then
have negative coordinates relative to its parent HatchWindow.

Returns
None.

See Also
RegisterHatchWindowClass, CreateHatchWindow, GetHatchRect,

HatchWndProc
LRESULT FAR PASCAL __export HatchWndProc(HWND hWnd, UINT Message, WPARAM wParam,
LPARAM IParam)

HatchWndProc is the window procedure for hatch windows.

Returns
The return value is message-dependent.

See Also
RegisterHatchWindowClass, CreateHatchWindow, GetHatchRect,

HourGlassOn
HCURSOR WINAPI HourGlassOn(void)

Shows the hourglass cursor returning the last cursor in use.

Returns
Cursor in use prior to showing the hourglass.

See Also
HourGlassOn

HourGlassOff
void WINAPI HourGlassOff(HCURSOR hCur)

Restores the hourglass cursor to a previous cursor.

Parameter Description

hCur HCURSOR as returned from HourGlassOn
Returns

None.

See Also

HourGlassOff

Browse
BOOL WINAPI Browse(HWND hWndOwner, LPSTR IpszFile, LPSTR IpszinitialDir, UINT cchFile,
UINT iFilterString, DWORD dwOfnFlags)

Displays the standard GetOpenFileName dialog with the title of "Browse." The types listed in this dialog
are controlled through iFilterString. If it's zero, then the types are filled with REVIEW TBD.
Otherwise that string is loaded from resources and used.

Parameter Description

hWndOwner HWND owning the dialog

IpszFile LPSTR specifying the initial file and the buffer in which to return the selected file.
If there is no initial file the first character of this string should be NULL.

IpszinitialDir LPSTR specifying the initial directory. If none is to set (ie, the cwd should be
used), then this parameter should be NULL.

cchFile UINT length of pszFile

iFilterString UINT index into the stringtable for the filter string.

dwOfnFlags DWORD flags to OR with OFN_HIDEREADONLY

Returns

TRUE if the user selected a file and pressed OK. FALSE otherwise, including if the user presses Cancel.

ReplaceCharWithNull
int WINAPI ReplaceCharWithNull(LPSTR psz, int ch)

Walks a null-terminated string and replaces a given character with a zero. Used to turn a single string for
file open/save filters into the appropriate filter string as required by the common dialog API.

Parameter Description

psz LPSTR to the string to process.
ch int character to replace.
Returns

Number of characters replaced. -1 if psz is NULL.

ErrorWithFile
int WINAPI ErrorWithFile(HWND hWnd, HINSTANCE hinst, UINT idsErr, LPSTR pszFile, UINT
uFlags)

Displays a message box built from a stringtable string containing one %s as a placeholder for a filename
and from a string of the filename to place there.

Parameter Description

hWhnd HWND owning the message box. The caption of this window is the caption of the
message box.

hinst HINSTANCE from which to draw the idsErr string.

idsErr UINT identifier of a stringtable string containing the error message with a %s.

IpszFile LPSTR to the filename to include in the message.

uFlags UINT flags to pass to MessageBox, like MB_OK.

Returns

Return value from MessageBox.

HiconFromClass
HICON WINAPI HiconFromClass(LPSTR pszClass)

Given an object class name, finds an associated executable in the registration database and extracts the
first icon from that executable. If none is available or the class has no associated
executable, this function returns NULL.

Parameter Description
pszClass LPSTR giving the object class to look up.
Returns

HICON Handle to the extracted icon if there is a module associated to pszClass. NULL on failure to
either find the executable or extract and icon.

See Also
GetlconOfFile, GetlconOfClass

FServerFromClass
BOOL WINAPI FServerFromClass(LPSTR pszClass, LPSTR pszEXE, UINT cch)

Looks up the classname in the registration database and retrieves the name under LocalServer.

Parameter Description

pszClass LPSTR to the classname to look up.
pszEXE LPSTR at which to store the server name
cch UINT size of pszEXE

Returns

TRUE if one or more characters were loaded into pszEXE; FALSE otherwise.

UClassFromDescription
UINT WINAPI UClassFromDescription(LPSTR psz, LPSTR pszClass, UINT cb)

Looks up the actual OLE class name in the registration database for the given descriptive name chosen
from a listbox.

Parameter Description

psz LPSTR to the descriptive name.
pszClass LPSTR in which to store the class name.
cb UINT maximum length of pszClass.
Returns

Number of characters copied to pszClass. 0 on failure.

UDescriptionFromClass
UINT WINAPI UDescriptionFromClass(LPSTR pszClass, LPSTR psz, UINT cb)

Looks up the actual OLE descriptive name name in the registration database for the given class name.

Parameter Description

pszClass LPSTR to the class name.

psz LPSTR in which to store the descriptive name.
cb UINT maximum length of psz.

Returns

Number of characters copied to pszClass. 0 on failure.

ChopText
LPSTR WINAPI ChopText(HWND hWnd, int nWidth, LPSTR Ipch)

Parse a string (pathname) and convert it to be within a specified length by chopping the least significant
part

Parameter Description

hWnd window handle in which the string resides

nWidth max width of string in pixels. If nWidth is NULL, then ChopText uses the width of
hwWnd.

Ipch pointer to beginning of the string

Returns

pointer to the modified string

OpenfFileError
void WINAPI OpenFileError(HWND hDIg, UINT nErrCode, LPSTR IpszFile)

Display message for error returned from OpenFile.

Parameter Description

hDIg HWND of the dialog.

nErrCode UINT error code returned in OFSTRUCT passed to OpenFile
IpszFile LPSTR file name passed to OpenFile

Comments

OpenFileError reports specific errors for "Access Denied", "Sharing Violation", "File/Path Not Found".

Returns
None.

OleStdGetMiscStatusOfClass
STDAPI_(BOOL) OleStdGetMiscStatusOfClass(REFCLSID rclsid, HKEY hKey, DOWORD FAR *
IpdwValue)

Returns the value of the misc status for the given clsid.

Parameter Description
relsid pointer to the clsid to retrieve user type of.
hKey hKey for reg db - if this is NULL, then we open and close the reg db within this

function. If it is non-NULL, then we assume it's a valid key to the \CLSID root and
use it without closing it. (useful if you're doing lots of reg db stuff).
Ipdword pointer to where to return the misc status.

Returns
TRUE on success, FALSE on failure.

OleStdGetDefaultFileFormatOfClass
STDAPI_(CLIPFORMAT) OleStdGetDefaultFileFormatOfClass(REFCLSIDrclsid, HKEY hKey)

Returns the default file format of the specified class. This is entered in REGDB as follows:
CLSIDV\{...\DataFormats\DefaultFile = <cfFmt>

Parameter Description
relsid pointer to the clsid to retrieve user type of.
hKey hKey for reg db- if this is NULL, then we open and close the reg db within this

function. If it is non-NULL, then we assume it's a valid key to the \ root and use it
without closing it. (useful if you're doing lots of reg db stuff).

Returns
If successful, then the default file format; otherwise, NULL.

OleUlInitialize

STDAPI_(BOOL) OleUlInitialize(HINSTANCE hinstance, HINSTANCE hPrevinst,LPSTR
IpszClassiconBox,LPSTR)

Initializes the OLE2UI library by loading resources and registering the necessary window messages and

clipboard formats.
Parameter
hinst

hPrevinst

IpszClasslconBox

IpszClassReslmage

Comments

Description
HINSTANCE to use for loading resources. If you statically link ole2ui into your
application, then this should be your application's hinstance.

HINSTANCE of the application's previous instance. If you statically link to ole2ui,
then you should use WinMain's hinstPrevious parameter.

LPSTR containing the class name for the IconBox custom control. You should use
the symbol SZCLASSICONBOX from UICLASS.H, which is generated by the
ole2ui library's makefile. This class name is used to register the IconBox custom
control; each application must use a unique name for this class.

LPSTR containing the class name for the Resultimage custom control. You should
use the symbol SZCLASSRESULTIMAGE from UICLASS.H, which is generated by
the ole2ui library's makefile. See comments below.

Applications that statically link with the OLE2UI library must call OleUlInitialize before using any library
functions; however, an application that dynamically links with the library should not call OleUllInitialize,
because it is called by the DLL's LibMain function.

The IpszClasslconBox and IpszClassResImage strings are used to register the IconBox and Resultimage
custom controls used by the library's dialogs. Since these classes are registered as global classes,
these strings must be unique to the DLL or application that is registering the class.

The hPrevinst parameter is used to determine if the library should register the custom control classes. |If
hPrevinst is NULL (called by a DLL version or by the first instance of a statically-linked version), then the
library registers the classes. If hPrevinst is non-NULL (for later instances of a statically-linked version);
then the classes are not registered.

Returns

TRUE if the library is successfully initialized; FALSE otherwise.

See Also
OleUlUninitialize

OleUlUninitialize
STDAPI_(BOOL) OleUlUninitialize()

Uninitializes the OLE2UI library.

Comments

This function is called from WEP(); so if your application uses the library as a DLL, then it does not need
to call OleUlUninitialize. If your application uses the library as a static linked library, then it must call
OleUlUninitialize before the application exits.

Returns
TRUE

See Also
OleUllnitialize

OleStdCreateDC
STDAPI_(HDC) OleStdCreateDC(DVTARGETDEVICE FAR* ptd)

Creates a DC for the specified target device.

Parameter Description
ptd Pointer to target device to create DC for.
Returns

S OK if successful; NULL if the DC couldn't be created.

See Also
OleStdCreatelC

OleStdCreatelC
STDAPI_(HDC) OleStdCreatelC(DVTARGETDEVICE FAR* ptd)

Same as OleStdCreateDC, except that information context is created, rather than a whole device context.
(CreatelC is used rather than CreateDC). OleStdDeleteDC is still used to delete the information context.

Parameter Description
ptd Pointer to target device to create an IC for.
Returns

S _OK if successfull; NULL if the DC couldn't be created.

See Also
OleStdCreateDC

OleStdCreateTargetDevice
STDAPI_(DVTARGETDEVICE FAR*) OleStdCreateTargetDevice(LPPRINTDLG IpPrintDIg)

Creates an OLE target device (DVTARGETDEVICE) based on the information in the PRINTDLG
structure.

Parameter Description

IpPrintDlg Pointer to PRINTDLG structure, containing information to use to create target
device.

Returns

Pointer to newly allocated target device, If successful.

Comments
Caller must free the returned target device using the current memory allocator (You can use OleStdFree).

See Also
OleStdDeleteTargetDevice

OleStdDeleteTargetDevice
STDAPI_(BOOL) OleStdDeleteTargetDevice(DVTARGETDEVICE FAR* ptd)

Uses OleStdFree to free the specified target device.

Parameter Description

ptd Pointer to target device to delete.
Returns

TRUE

See Also

OleStdCreateTargetDevice

SetDCToAnisotropic
STDAPI_(int) SetDCToAnisotropic(HDC hDC, LPRECT IprcPhysical, LPRECT IprcLogical, LPRECT
IprcWindowOld, LPRECT IprcViewportOld)

Setup the correspondence between the rect in device unit (Viewport) and the rect in logical unit (Window)
so that the proper scaling of coordinate systems will be calculated. set up both the Viewport and the
window as follows:

1) ———mmmmmm - (2
| |
| |
| |
| |
| |
3) —mmmmmm e (4
Origin =P3
X extent = P2x - P3x
Y extent = P2y - P3y
Parameter Description
hDC HDC to affect
IprcPhysical LPRECT containing the physical (device) extents of DC
IprcLogical LPRECT containing the logical extents
IpreWindowOld LPRECT in which to preserve the window for ResetOrigDC

IprcViewportOld LPRECT in which to preserver the viewport for ResetOrigDC

Returns
The original mapping mode of the DC.

See Also
SetDCToDrawlnHimetricRect

SetDCToDrawinHimetricRect
STDAPI_(int) SetDCToDrawlnHimetricRect(HDC hDC, LPRECT IprcPix, LPRECT IprcHiMetric,
LPRECT IprcWindowOld, LPRECT IprcViewportOid)

Setup the correspondence between the rect in pixels (Viewport) and the rect in HIMETRIC (Window) so
that the proper scaling of coordinate systems will be calculated. set up both the Viewport and the window
as follows:

1) ———mmmmmm - (2
| |
| |
| |
| |
| |
3) —mmmmmm e (4
Origin =P3
X extent = P2x - P3x
Y extent = P2y - P3y
Parameter Description
hDC HDC to affect
IprcPix LPRECT containing the pixel extents of DC
IprcHiMetric LPRECT to receive the himetric extents
IpreWindowOld LPRECT in which to preserve the window for ResetOrigDC

IprcViewportOld LPRECT in which to preserver the viewport for ResetOrigDC

Returns
The original mapping mode of the DC.

See Also
SetDCToAnisotropic

ResetOrigDC
STDAPI_(int) ResetOrigDC(HDC hDC, int nMapModeOld, LPRECT IprcWindowOlId, LPRECT
IprcViewportOld)

Restores a DC set to draw in himetric from SetDCToDrawlnHimetricRect.

Parameter Description

hDC HDC to restore

nMapModeOld int original mapping mode of hDC
IpreWindowOld LPRECT filled in SetDCToDrawlnHimetricRect

IprcViewportOld LPRECT filled in SetDCToDrawlnHimetricRect

Returns
Same as nMapModeOld.

See Also
SetDCToDrawlInHimetricRect, SetDCToAnisotropic

OleStdMkParseDisplayName
STDAPI OleStdMkParseDisplayName(REFCLSID rClsid, LPBC Ipbc, LPSTR IpszUserName,
ULONG FAR* IpchEaten, LPMONIKER FAR* Iplpmk)

Parses a string into a moniker by calling MkParseDisplayName.

Parameter Description

rClsid Original class of link source. CLSID_NULL if class of object is unknown.
other parameters the same as MkParseDisplayName API.

Ipbc Pointer to the binding context in which to accumulate bound objects.

szUserName Pointer to the display name to be parsed.

IpchEaten On exit, the number of characters of the display name that were successfully
parsed.

Iplpmk Pointer to the resulting moniker.

Returns

NOERROR if string parsed successfully, otherwise OleStdMkParseDisplayName returns the error code
returned by MkParseDisplayName.

Comments

If rClsid refers to an OLE 2.0 class, then OleStdMkParseDisplayName just calls MkParseDisplayName.
However, if rClsid refers to an OLE 1.0 class, then the class' ProglD is retrieved and a string of the form "!
IpszUserName" is created and passed to MkParseDisplayName. If that fails, then MkParseDisplayName
is called with IpszUserName.

Prefixing IpszUserName with "@ProgID!" forces MkParseDisplayName to assume the file specified by
InszUserName is of that class referred to by Prog/D. Note that this technique only works for OLE1
classes.

OleUlLockLibrary
STDAPI OleUlLockLibrary(BOOL fLock)

Increments or decrements a lock count which prevents a DLL from being prematurely unloaded or from
remaining loaded after it is no longer needed.

Parameter Description
fLock TRUE to lock the library; FALSE otherwise.
Returns

NOERRGOR if the DLL can safely unload; S_FALSE if the DLL should remain loaded.

Comments

Only In-Process (INPROC) server DLLs that use the OLE2UI library as a DLL should call
OleUlLockLibrary. In-Process server DLLs that use the OLE2UI library as a LIB should use
OleUICanUnloadNow. Servers implemented as executables do not need to use either
OleUlLockLibrary or OleUICanUnloadNow

All OLE 2.x In-Process servers (ie., servers implemented as a DLL) that use the OLE2UI library as a DLL
(ie., not a statically linked LIB) must call OleUILockLibrary. These server DLLs must call
OleUlLockLibrary(TRUE) on initialization and OleUILockLibrary(FALSE) on shutdown to prevent the
ole2ui library's DIICanUnloadNow from returning NOERROR until the server DLL shuts down.

While the INPROC server DLL is loaded, OLE2UI DLL must remain loaded, which means that ole2ui.dll's
DIICanUnloadNow must return S_FALSE. The server DLL can be unloaded by a call to
CoFreeUnusedLibraries; however the OLE2UI library must remain in use (because an enumerator
returned from OleStdEnumFmtEtc_Create still exists). Only after all explicit "OleUILockLibrary" locks and
instances of objects created have been released will the OLE2UI's DIICanUnloadNow return
NOERROR.

See Also
OleUlCanUnloadNow

OleUICanUnloadNow
STDAPI OleUICanUnloadNow()

Determines if it is safe for a DLL to unload.

Returns
NOERROR it is safe for the DLL to unload, S_FALSE if the DLL must stay loaded.

Comments

Only In-Process server DLLs that use the OLE2UI library as a LIB should use OleUICanUnloadNow. In-
Process (INPROC) server DLLs that use the OLE2UI library as a DLL should call OleUlLockLibrary.
Servers implemented as executables do not need to use either OleUILockLibrary or
OleUICanUnloadNow.

If you statically link to the OLE2UI library and you implement DIICanUnloadNow, then you must call
OleUlCanUnloadNow in your implementation of DIICanUnloadNow to determine if the server DLL can
be safely unloaded or not.

OleUlCanUnloadNow returns S_FALSE if there are any existing instance of objects created by the
OLE2UI library functions (EnumFORMATETC objects created by OleStdEnumFmtEtc_Create, for
example) which should prevent the server DLL from being unloaded.

See Also
OleUlLockLibrary

OleStdCheckVtbl
STDAPI_(BOOL) OleStdCheckVtbI(LPVOID IpVtbl, UINT nSizeOfVtbl, LPSTR Ipsziface)

Check if all entries in the Vibl are properly initialized with valid function pointers. If any entries are either
NULL or OleStdNullMethod, then this function returns FALSE. If compiled for _DEBUG this function
reports which function pointers are invalid.

Parameter Description

IpVibl Pointer to VTBL to check.

nSizeOfVtbl Number of methods in IpVtbl.

Ipsziface String containing interface name to be used in debugging message.
Returns

TRUE if all entries in Vtbl are valid; FALSE otherwise.

See Also
OleStdNullMethod

OleStdNullMethod
STDMETHODIMP OleStdNullMethod(LPUNKNOWN IpThis)

Dummy method used by OleStdInitVtbl to initialize an interface VTBL to ensure that there are no NULL
function pointers in the VTBL. All entries in the VTBL are set to this function. This function issues a debug
assert message (message box) and returns E_NOTIMPL if called. If all is done properly, this function will
NEVER be called!

See Also
OleStdCheckVibl

OleStdRegisterAsRunning
STDAPI_(void) OleStdRegisterAsRunning(LPUNKNOWN IpUnk, LPMONIKER IpmkFull, DOWORD
FAR* IpdwRegister)

Registers an object in the Running Object Table by calling GetRunningObjectTable and
IRunningObjectTable::Register.

Parameter Description

IpUnk Pointer to running object's IUnknown interface.

IpmkFull Pointer to moniker that will bind to newly running object.

IpdwRegister Pointer to return registration value to be passed later to OleStdRevokeAsRunning
Returns

None.

See Also

OleStdRevokeAsRunning

OleStdRevokeAsRunning
STDAPI_(void) OleStdRevokeAsRunning(DWORD FAR* IpdwRegister)

Revokes an object's registration in the Running Object Table by calling GetRunningObjectTable and
IRunningObjectTable::Revoke.

Parameter Description

IpdwRegister Value returned from OleStdRegisterAsRunning.
Returns

None.

See Also

OleStdRegisterAsRunning

OleStdCreateTempFileMoniker

STDAPI_(void) OleStdCreateTempFileMoniker(LPSTR IpszPrefixString, UINT FAR* IpuUnique,
LPSTR IpszName, LPMONIKER FAR* Iplpmk)

Creates a unique file moniker to be used as the name of an untitled document (eg., Document1). Useful
for applications that support linking to unsaved documents. Builds names of the form
<Prefix><UniqueNumber>. Checks the Running Object Table to find the first unused name of this form.

Parameter Description

IpszPrefixString Prefix to use to create temporary moniker.

IpuUnique Unique identifer for moniker. In/Out - the application should keep this identifier to
use repeatedly. This

IpszName Address of buffer for created moniker (<Prefix><UniqueNumber>).

Iplpmk Pointer to moniker.

Returns

None.

Comment

This function is analogous to the Windows function GetTempFileName.

OleStdGetFirstMoniker
STDAPI_(LPMONIKER) OleStdGetFirstMoniker(LPMONIKER Ipmk)

Returns the first piece of a moniker.

Parameter Description
Ipmk Pointer to moniker to return first piece of.
Returns

Pointer to moniker containing first piece of the specified moniker.

Comment
If the given moniker is not a generic composite moniker, then an AddRef'ed pointer to the given moniker is
returned.

OleStdMarkPasteEntryList
STDAPI_(void) OleStdMarkPasteEntryList(LPDATAOBJECT IpSrcDataObj, LPOLEUIPASTEENTRY
IpPriorityList, int cEntries)

Marks each entry in the PasteEntryList if its format is available from the specified source |IDataObject*.
The dwScratchSpace field of each PasteEntry is set to TRUE if available, else FALSE.

Parameter Description

IpSrcDataObj source |DataObject* pointer
IpPriorityList array of PasteEntry structures
cEntries count of elements in PasteEntry array
Returns

None.

OleStdGetPriorityClipboardFormat
STDAPI_(int) OleStdGetPriorityClipboardFormat(LPDATAOBJECT IpSrcDataObj,
LPOLEUIPASTEENTRY IpPriorityList, int cEntries)

Retrieves the first clipboard format in a list for which data exists in the source IDataObject*.

Parameter Description

IpSrcDataObj source |DataObject* pointer
IpPriorityList array of PasteEntry structures
cEntries count of elements in PasteEntry array
Returns

-1 if no acceptable match is found. Index of first acceptable match in the priority list.

OleStdIsDuplicateFormat
STDAPI_(BOOL) OleStdIsDuplicateFormat(LPFORMATETC IpFmtEtc, LPFORMATETC
arrFmtEtc, int nFmtEtc)

Determines if the cfFormat specfied in IpFmtEtc is also in arrFmtEtc.

Parameter Description

InFmtEtc Pointer to FORMATETC

arrFmtEtc Array of FORMATETC structures.

nFmtEtc Number of FORMATETC structures in arrFmtEtc.
Returns

TRUE if the IpFmtEtc->cfFormat is found in the array of FormatEtc structures; FALSE otherwise.

OleStdGetDropEffect
STDAPI_(DWORD) OleStdGetDropEffect(DWORD grfKeyState)

Converts a keyboard state into a DROPEFFECT.

Parameter Description
grfKeyState Identifies the current state of the modifier keys
Returns

DROPEFFECT value derived from the key state. The following is the standard interpretation:
no modifier Default Drop, NULL is returned
CTRL DROPEFFECT_COPY returned
SHIFT DROPEFFECT_MOVE returned
CTRL-SHIFT DROPEFFECT_LINK returned

Comments

The default drop depends on the type of the target application. This is re-interpretable by each target
application. A typical interpretation is if the drag is local to the same document (which is source of the
drag) then a MOVE operation is performed. If the drag is not local, then a COPY operation is performed.

OleStdGetltemToken
STDAPI_(ULONG) OleStdGetltemToken(LPSTR IpszSrc, LPSTR IpszDst, int nMaxChars)

Copy one token from the IpszSrc buffer to the Ipszltem buffer. It considers all alpha-numeric and white
space characters as valid characters for a token. The first non-valid character delimates the
token.

Parameter Description

IpszSrc Pointer to a source string
IpszDst Pointer to destination buffer
nMaxChars Number of characters in IpszSrc
Returns

The number of charaters preceding the first token.

OleStdCreateRootStorage
STDAPI_(LPSTORAGE) OleStdCreateRootStorage(LPSTR IpszStgName, DWORD grfMode)

Create a root-level Storage given a filename that is compatible to be used by a top-level OLE container. If
the filename specifies an existing file, then an error is returned. The root storage (Docfile) that is created
by this function is suitable to be used to create child storages for embeddings. (CreateChildStorage can
be used to create child storages.)

Parameter Description

IpszStgName Pointer to pathname of the Storage to create. If NULL, then a temporary Storage
is created with the STGM_DELETEONRELEASE flag.

grfMode Access mode to use to create the Storage.

Returns

Pointer to newly created Storage.

Comment
The root-level storage is opened in transacted mode.

OleStdOpenRootStorage
STDAPI_(LPSTORAGE) OleStdOpenRootStorage(LPSTR IpszStgName, DWORD grfMode)

Opens a root level Storage given a filename that is compatible to be used by a top-level OLE container. if
the file does not exist then an error is returned. The root storage (Docfile) that is opened by this function is
suitable to be used to create child storages for embedings. (CreateChildStorage can be used to create
child storages.)

Parameter Description
IpszStgName Pointer to pathname of the storage object to open.
grfMode Access mode to use to open the storage object. This value is OR'd with

STGM_TRANSACTED.

Comment
The root-level storage is opened in transacted mode.

OpenOrCreateRootStorage
STDAPI_(LPSTORAGE) OleStdOpenOrCreateRootStorage(LPSTR IpszStgName, DWORD grfMode)

Open a root level Storage given a filename that is compatible to be used by a top-level OLE container. If
the filename specifies an existing file, then it is opened, otherwise a new file

with the given name is created. The root storage (Docfile) that is created by this function

is suitable to be used to create child storages for embeddings. (CreateChildStorage can be used to create
child storages.)

Parameter Description

IpszStgName Pointer to the pathnmae of the storage object to open or create.
grfMode Access modue to use to open or create the storage.

Returns

Pointer to opened storage if successful; NULL otherwise.

Comment
The root-level storage is opened in transacted mode.

OleStdCreateChildStorage
STDAPI_(LPSTORAGE) OleStdCreateChildStorage(LPSTORAGE IpStg, LPSTR IpszStgName)

Creates a child Storage inside the given IpStg that is compatible to be used by an embedded OLE object.
the return value from this function can be passed to OleCreateXXX functions.

Parameter Description

IpStg Storage to create in which to create the child Storage.
IpszStgName Pointer to name of the child Storage to create.
Returns

Pointer to the newly created child Storage if successfull; NULL otherwise.

Comment
The child storage is opened in transacted mode.

OleStdOpenChildStorage
STDAPI_(LPSTORAGE) OleStdOpenChildStorage(LPSTORAGE IpStg, LPSTR IpszStgName,
DWORD grfMode)

Opens a child Storage inside the given IpStg that is compatible to be used by an embedded OLE object.
the return value from this function can be passed to OleLoad function.

Parameter Description

IpStg Storage that contains the child Storage.

IpStgName Pointer to the name of the child Storage to open.
grfMode Access mode in which the child Storage will be opened.
Returns

Pointer to the opened child storage if successful; NULL otherwise.

Comment
The child storage is opened in transacted mode.

OleStdCommitStorage
STDAPI_(BOOL) OleStdCommitStorage(LPSTORAGE IpStg)

Commits the changes to the given IStorage®. This routine can be called on either a root-level storage as
used by an OLE-Container or by a child storage as used by an embedded object.

Parameter Description
IpStg Pointer to Storage to commit.
Returns

TRUE if the Storage was committed; FALSE otherwise.

Comments
OleStdCommitStorage first attempts to perform this commit in a safe manner using (STGC_DEFAULT). If
this fails, it then attempts to do the commit in a less robust manner (STGC_OVERWRITE).

OleUIDrawHandles
STDAPI_(void) OleUIDrawHandles(LPRECT IpRect, HDC hdc, DWORD dwFlags, UINT cSize,
BOOL fDraw)

Draw handles or/and boundary around Container Object when selected.

Parameter Description

IpRect Dimensions of Container Object

hdc HDC of Container Object (MM_TEXT mapping mode)
dwFlags Exclusive flags:

OLEUI_HANDLES_ INSIDE Draw handles on inside of rect
OLEUI_HANDLES OUTSIDE Draw handles on outside of rect

Optional flags:

OLEUI_HANDLES NOBORDER Draw handles only, no rect
OLEUI_HANDLES USEINVERSE Use invert for handles and rect, o.t. use
COLOR_WINDOWTEXT

cSize size of handle box
fDraw Draw if TRUE, erase if FALSE
Returns

None.

OleUIDrawShading
STDAPI_(void) OleUIDrawShading(LPRECT IpRect, HDC hdc, DIWORD dwFlags, UINT cWidth)

Shade the object when it is in in-place editing. Borders are drawn on the Object rectangle. The right and
bottom edge of the rectangle are excluded in the drawing.

Parameter Description

IpRect Dimensions of Container Object
hdc HDC for drawing

dwFlags Exclusive flags

OLEUI_SHADE_FULLRECT Shade the whole rectangle
OLEUI_SHADE_BORDERIN Shade cWidth pixels inside rect
OLEUI_SHADE_BORDEROUT Shade cWidth pixels outside rect
Optional flags
OLEUI_SHADE_USEINVERSE Use PATINVERT instead of hex value
cWidth Width of border in pixels

Returns
None.

OleUIShowODbiject
STDAPI_(void) OleUIShowObject(LPCRECT Iprc, HDC hdc, BOOL flsLink)

Draw the ShowObject effect around the object

Parameter Description

Iprc rectangle for drawing

hdc HDC for drawing

flsLink linked object (TRUE) or embedding object (FALSE)
Returns

None.

OleStdMsgFilter
Provides a standard implementation of the IMessageFilter interface.

OleStdMsgFilter_Create

STDAPI_(LPMESSAGEFILTER) OleStdMsgFilter_Create(HWND hWndParent, LPSTR szAppName,
MSGPENDINGPROC IpfnCallback, LPFNOLEUIHOOK IpfnOleUIHook)

Creates and initializes an instance of the standard message filter.

Parameter Description

hWhndParent Window to use as the parent for the Busy dialog.

szAppName String containing name of application.

IpfnCallback Address of Message Pending Callback

IpfnOleUIHook Address of Hook Procedure used by the Busy dialog. Can be NULL.
Returns

A pointer to the newly created standard message filter.

See Also
OleStdMsgFilter_SetParentWindow

OleStdMsgFilter_SetinComingStatus
STDAPI_(void) OleStdMsgFilter_SetInComingCallStatus(LPMESSAGEFILTER IpThis, DWORD
dwinComingCallStatus)

This function sets the value that is returned from the IMessageFilter::HandleInComing method.
Parameter Description
IpThis Pointer to instance of MESSAGEFILTER

dwinComingCallStatus Value to be returned from the IMessageFilter::HandleInComing method.

Returns
None.

OleStdMsgFilter_GetinComingStatus
STDAPI_(DWORD) OleStdMsgFilter_GetInComingCallStatus(LPMESSAGEFILTER IpThis)

This function returns the currentincoming call status. It can be used to disable/enable options
in the calling application.

Parameter Description
IpThis Pointer to instance of MESSAGEFILTER
Returns

SERVERCALL ISHANDLED, SERVERCALL REJECTED, SERVERCALL RETRYLATER, if successful;
-1 otherwise

OleStdMsgFilter_EnableBusyDialog
STDAPI_(void) OleStdMsgFilter_EnableBusyDialog(LPMESSAGEFILTER IpThis, BOOL fEnable)

This function allows the caller to control whether the busy dialog is enabled. this is the dialog put up when
IMessagefFilter::RetryRejectedCall is called because the server responded
SERVERCALL_RETRYLATER or SERVERCALL REJECTED.

Parameter Description

IpThis Pointer to instance of MESSAGEFILTER

fEnable TRUE to enable the Busy Dialog; FALSE to disable it.
Returns

None.

Comments

If the busy dialog is NOT enabled, then the rejected call is immediately cancelled WITHOUT prompting
the user. In this situation OleStdMsgFilter RetryRejectedCall always returns

OLESTDCANCELRETRY, thus canceling the outgoing LRPC call. If the busy dialog is enabled, then the
user is given the choice of whether to retry, switch to, or cancel.

OleStdMsgFilter_EnableNotRespondingDialog
STDAPI_(void) OleStdMsgFilter_EnableNotRespondingDialog(LPMESSAGEFILTER IpThis, BOOL
fEnable)

This function allows the caller to control whether the app "NotResponding" (Blocked) dialog is enabled.
This is the dialog put up when IMessageFilter::MessagePending is called. If the NotResponding dialog is
enabled, then the user is given the choice of whether to retry or switch to, but NOT to cancel.

Parameter Description

IpThis Pointer to instance of MESSAGEFILTER

fEnable TRUE to enable the "Not Responding" dialog; FALSE to disable it.
Returns

None.

OleStdMsgFilter_SetParentWindow
STDAPI_(HWND) OleStdMsgFilter_SetParentWindow(LPMESSAGEFILTER IpThis, HWND
hWndParent)

This function allows caller to set which window will be used as the parent for the Busy dialog.

Parameter Description

IpThis Pointer to instance of MESSAGEFILTER
hWhndParent Window handle of parent for Busy dialog.
Returns

HWND of previous parent window.

Comment

It is important for an in-place active server to reset this to its current in-place frame window when it is in-
place activated. If the hWndParent is set to NULL, then the desktop window will be the parent of the
dialog.

OleStdEnumFmtEtc_Create
STDAPI_(LPENUMFORMATETC) OleStdEnumFmtEtc_Create(WORD wCount, LPFORMATETC
IpEtc)

Creates an instance of the standard implementation of IEnumFmtEtc.

Parameter Description

wCount Number of FORMATETC structures in IpEtc
IpEtc Array of FORMATETC structures

Returns

Pointer to the newly created enumerator.

OleStdEnumFmtEtc_Destroy
VOID OleStdEnumFmtEtc_Destroy(LPOLESTDENUMFMTETC IpEF)

Destroys the specified instance of OLESTDENUMFMTETC

Parameter Description
IPEF Pointer to enumerator to destroy.
Returns

None.

OLEDBGDATA_MAIN(szPrefix)

OLEDBGDATA

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros declare a buffer to be used with the other debugging macros
defined in olestd.h Include OLEDBGDATA_MAIN at the beginning of your application's main file, and
OLEDBGDATA at the beginning of each file in which you use the debugging macros.

Parameter Description
szPrefix Prefix to be output in debugging message. Short version of application name is
recommended.

OleDbgOutHResult(lpsz,hr)
OleDbgOutScode(lpsz,sc)

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros print a debugging message including the string specified by
Ipsz and the name of the specified Scode or Hresult.

OleDbgOut(lpsz)

OleDbgOut1(lpsz)
OleDbgOut2(lpsz)
OleDbgOut3(lpsz)
OleDbgOut4(lpsz)

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros output the text, prefixed by the prefix declared in
OLEDBGDATA_MAIN, at the specified debugging level (ie, OleDbgOut1 outputs at debugging level 1.) If
the debugging level is greater than the global debugging message level, then the message is not output.
OleDbgOut outputs the message regardless of the globa debugging message level. These macros
output at the current indentation level, and do not change it.

OleDbgOutNoPrefix(lpsz)

OleDbgOutNoPrefix1(lpsz)
OleDbgOutNoPrefix2(lpsz)
OleDbgOutNoPrefix3(lpsz)
OleDbgOutNoPrefix4(lpsz)

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros output the text at the specified debugging level (ie,
OleDbgOutNoPrefix1 outputs at debugging level 1.) If the debugging level is greater than the global
debugging message level, then the message is not output. OleDbgOut outputs the message regardless
of the globa debugging message level. These macros output at the current indentation level, and do not
change it.

OLEDBG_BEGIN(Ipsz)

OLEDBG_BEGIN1(Ipsz)
OLEDBG_BEGIN2(Ipsz)
OLEDBG_BEGIN3(Ipsz)
OLEDBG_BEGIN4(Ipsz)

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros output the text specified by Ipsz, prefixed by the string
specified by OLEDBGDATA_MAIN.

Each macro outputs text at the specified debugging level (ie, OLEDBG_BEGIN1 outputs at debugging
level 1.), and increments the Indentation level by 1. If the debugging level is greater than the global
debugging message level, then the message is not output. OLEDBG_BEGIN outputs a message
regardless of the global debugging message level (useful for crucial functions).

These macros can be used to mark the entrance to functions and methods, and should be paired with
matching calls to OLEDBG_END*.

OLEDBG_END

OLEDBG_END1
OLEDBG_END2
OLEDBG_END3
OLEDBG_END4

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros output a string composed of the prefixe sspecified by
OLEDBGDATA_MAIN and the word "End".

Each macro outputs text at the specified debugging level (ie, OLEDBG_END1 outputs at debugging level
1.), and decrements the Indentation level by 1. If the debugging level is greater than the global
debugging message level, then the message is not output. OLEDBG_END outputs a message
regardless of the global debugging message level (useful for crucial functions).

These macros can be used to mark the exit from functions and methods, and should be paired with
matching calls to OLEDBG_BEGIN*.

OleDbgOutRefCnt(lpsz,IpObj,refcnt)

OleDbgOutRefCnt1(lpsz,IpObj,refcnt)
OleDbgOutRefCnt2(lpsz,IpObj,refcnt)
OleDbgOutRefCnt3(lpsz,IpObj,refcnt)
OleDbgOutRefCnt4(lpsz,IpObj,refcnt)

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros output a message composed of the prefix declared by
OLEDBGDATA_MAIN, the string specified by Ipsz, a pointer to an object specified by IpObj, and the
object's reference count, specified by refcnt.

Each macro outputs text at the specified debugging level (ie, OleDbgOutRefCnt1 outputs at debugging
level 1.), and does not change the Indentation level. If the specified debugging level is greater than the
global debugging message level, then the message is not output. OleDbgOutRefCnt outputs a message
regardless of the global debugging message level (useful for error conditions).

OleDbgOutRect(Ipsz,IpRect)

OleDbgOutRect1(lpsz,IpRect)
OleDbgOutRect2(Ipsz,IpRect)
OleDbgOutRect3(Ipsz,IpRect)

OleDbgOutRect4(Ipsz,IpRect)

Debugging Macros defined in olestd.h. When compiled without DEBUG defined, this macros compile
away. With DEBUG defined, these macros output a message composed of the prefix declared by
OLEDBGDATA_MAIN, the string specified by Ipsz, and the values of the members (including the width
and height) of the RECT structure specified by IpRect.

Each macro outputs text at the specified debugging level (ie, OleDbgOutRect1 outputs at debugging level
1.), and does not change the Indentation level. If the specified debugging level is greater than the global
debugging message level, then the message is not output. OleDbgOutRect outputs a message
regardless of the global debugging message level (useful for error conditions).

OleStdSetupAdvises
STDAPI_(BOOL) OleStdSetupAdvises(LPOLEOBJECT IpOleObject, DWORD dwDrawAspect,
LPSTR IpszContainerApp, LPSTR IpszContainerObj, LPADVISESINK IpAdviseSink, BOOL fCreate)

Setup the standard View and Ole advises required by a standard, compound document-oriented
container. Such a container relies on OLE to manage the presentation of the OLE object. The container
calls IViewObject::Draw to render (display) the object.

This helper routine performs the following tasks:
1. Setup View advise

2. Setup Ole advise

3. Call IOleObject::SetHostNames

4. Call OleSetContainedObject

Parameter Description
IpOleObject pointer to the OLE object
dwDrawAspect Aspect for object

IpszContainerApp pointer to string containing name of container app

IpszContainerObj pointer to string

IpAdviseSink pointer to Advise

fCreate TRUE if the object is being created; FALSE if an existing object is being loaded.
See Comments below.

Comments

Normally containers do NOT need to setup an OLE advise. This advise connection is only useful for the
OLE's DefHandler and the OleLink object implementation. Some special containers might need to setup
this advise for programmatic reasons.

This advise will be torn down automatically by the server when the object is released, so the connection
ID is not stored.

Set fCreate to TRUE if the [pOleObject is being created. If [pOleObject is an existing object that is being
loaded, then set fCreate to FALSE. If fCreate is TRUE, then the ADVF_PRIMEFIRST flag is used in the
call to IViewObject::Advise so that the initial presentation will be sent immediately.

Returns
TRUE if successful; FALSE otherwise.

OleStdSwitchDisplayAspect

STDAPI OleStdSwitchDisplayAspect(LPOLEOBJECT IpOleObj, LPDWORD IpdwCurAspect,
DWORD dwNewAspect, HGLOBAL hMetaPict, BOOL fDeleteOldAspect, BOOL
fSetupViewAdvise, LPADVISESINK IpAdviseSink, BOOL FAR* IpfMustUpdate)

Switch the currently cached display aspect between DVASPECT_ICON and DVASPECT_CONTENT.

When setting up icon aspect, any currently cached content cache is discarded and any advise
connections for content aspect are broken.

Parameter Description

IpOle Obj pointer to the object whose display aspect is being changed.
IndwCurAspect pointer to object's current aspect.

dwNewAspect aspect to switch to.

hMetaPict Metafile to use as presentation for DVASPECT _ICON

fDelete OldAspect TRUE if old aspect should be deleted.
fSetupViewAdvise =~ TRUE is a View advise should be set up.

IpAdviseSink pointer for advise; used only fSetupViewAdvise is TRUE
IpfMustUpdate On exit, TRUE if the data must be updated.
Comments

If we are setting up Icon aspect with a custom icon (ie., dwNewAspect is DVASPECT_ICON and
hMetaPict is non-NULL), then we do not want DataAdvise notifications to ever change the contents of the
data cache. thus we set up a NODATA advise connection. Otherwise we set up a standard DataAdvise
connection.

If we are setting up Icon aspect with a custom icon, then we add the icon to the cache. Otherwise, the
cache is updated, running the object if necessary.

It is possible to retain the caches set up for the old aspect, but this increases the storage space required
for the object and possibly requires additional overhead to maintain the unused caches. For these
reasons the strategy to delete the previous caches is preferred. If it is a requirement to quickly switch
between Icon and Content display, then it would be better to keep both aspect caches.

Returns:

NOERRGOR if the new display aspect was set up successfully. If an error occurred during the aspect
switch, then the error return from 10leCache::Cache is returned from OleStdSwitchDisplayAspect. If an
error occurs, then the current display aspect and cache contents are unchanged.

OleStdSetlconIinCache
STDAPI OleStdSeticoninCache(LPOLEOBJECT IpOleObj, HGLOBAL hMetaPict)

SetData a new icon into the existing DVASPECT _ICON cache.

Parameter Description

IpOleObj pointer to OLE object

hMetaPict Metafile containing icon to store in cache
Returns

HRESULT returned from IOleCache::SetData

OleStdDoConvert
STDAPI OleStdDoConvert(LPSTORAGE IpStg, REFCLSID rClsidNew)

Converts the object in the specified storage to a new class.

Parameter Description

IpStg pointer to object's storage

rClsidNew Class ID of class to convert the object to.
Returns

NOERROR if successful.

Comments

OleStdDoConvert performs the container-side responsibilities for converting an object. This function would

be used in conjunction with the OleUIConvert dialog. If the user selects to convert an object then the

container must do the following:

1. Unload the object.

2. Write the NEW CLSID and NEW user type name string into the storage of the object, BUT write the
OLD format tag.

3. Force an update of the object to force the actual conversion of the data bits.

OleStdDoConvert performs step 2.

OleStdGetTreatAsFmtUserType
STDAPI_(BOOL) OleStdGetTreatAsFmtUserType(REFCLSID rclsidApp, LPSTORAGE IpStg, CLSID
FAR* Ipcisid, CLIPFORMAT FAR* IpcfFmt, LPSTR FAR* IplpszType)

Determines if the application should perform a TreatAs (ActivateAs object or emulation) operation for the
object that is stored in the storage.

Parameter Description

relsidApp Class ID of current application.

IpStg pointer to object's storage.

Ipclsid pointer to Class ID contained in object's storage.

IpcfFmt pointer to storage's clipboard format (to be returned from ReadFmtUserTypeStg)
IplpszType pointer to storage's User Type (to be returned from ReadFmtUserTypeStg)
Comments

If the CLSID written in the storage is not the same as the application's own CLSID (clsidApp), then a
TreatAs operation should take place. if so determine the format the data should be written and the user
type name of the object the app should emulate (ie. pretend to be). If this information is not written in the
storage then it is looked up in the Reg DB. If it cannot be found in the Reg DB, then the TreatAs operation
can NOT be executed.

NOTE: IplpszType must be freed by caller.

Returns

TRUE if TreatAs should be performed. If TRUE is returned, then Ipclsid, IplpszType, IpcfFmt are valid.
FALSE if TreatAs should not be performed, in which case IplpszType and IpcfFmt will be NULL, and
Ipclsid will be CLSID_NULL.

OleStdisOleLink
STDAPI_(BOOL) OleStdIsOleLink(LPUNKNOWN IpUnk)

Determines if an object is an OLE link object. OleStdIsOleLink queries to see if IOleLink interface is
supported. If so, the object is a link, otherwise it is not.

Parameter Description
IpUnk pointer to object's IlUnknown interface.
Returns

TRUE if the OleObject is an OLE link object.

OleStdQuerylinterface
STDAPI_(LPUNKNOWN) OleStdQuerylInterface(LPUNKNOWN IpUnk, REFIID riid)

Retrieves a pointer to the specified interface.

Parameter Description

IpUnk pointer to object's IlUnknown interface.

riid ID of interface to which to retrieve a pointer.
Returns

The desired interface pointer if exposed by the given object. Returns NULL if the interface is not
available.

OleStdGetData

STDAPI_(HGLOBAL) OleStdGetData(LPDATAOBJECT IpDataObj, CLIPFORMAT cfFormat,
DVTARGETDEVICE FAR* IpTargetDevice, DWORD dwAspect, LPSTGMEDIUM pMedium)

Retrieve data from an IDataObject in a specified format on a global memory block.

Parameter Description

IpDataObj object on which GetData should be called.

cfFormat desired clipboard format (eg. CF_TEXT)

IpTargetDevice target device for which the data should be composed. This may be NULL. NULL

can be used whenever the data format is insensitive to target device or when the
caller does not care what device is used.

IpMedium ptr to STGMEDIUM struct. The resultant medium from the IDataObject::GetData
call is returned.

Returns
If successful, the global memory handle of retrieved data block. NULL if not successful.

Comments

This function ALWAY'S returns a private copy of the data to the caller. if necessary a copy is made of the
data (ie. if IpMedium->pUnkForRelease != NULL). The caller assumes ownership of the data block in all
cases and must free the data when done with it. The caller may directly free the data handle returned
(taking care whether it is a simple HGLOBAL or a HANDLE to a MetafilePict) or the caller may call
ReleaseStgMedium(lpMedium). this OLE helper function will do the right thing.

OleStdMalloc
STDAPI_(LPVOID) OleStdMalloc(ULONG ulSize)

Allocate memory using the currently active IMalloc* allocator.

Parameter Description
ulSize Size, in bytes, of memory block to allocated.
Returns

Pointer to allocated memory if successful; NULL otherwise.

OleStdRealloc
STDAPI_(LPVOID) OleStdRealloc(LPVOID pmem, ULONG ulSize)

Reallocates memory using the currently active IMalloc* allocator.

Parameter Description

pmem Pointer to already-allocated memory.

ulSize Size, in bytes, of memory block to reallocate.
Returns

Pointer to reallocated memory if successful; NULL otherwise.

OleStdFree
STDAPI_(void) OleStdFree(LPVOID pmem)

Frees memory using the currently active IMalloc* allocator.

Parameter Description
pmem Pointer to memory block to free.
Returns

None.

OleStdGetSize
STDAPI_(ULONG) OleStdGetSize(LPVOID pmem)

Get the size of a memory block that was allocated using the currently active IMalloc* allocator.

Parameter Description
pmem Pointer to memory block to return the size of.
Returns

Size of specified memory.

OleStdFreeString
STDAPI_(void) OleStdFreeString(LPSTR Ipsz, LPMALLOC IpMalloc)

Frees a string that was allocated with the currently active IMalloc* allocator.

Parameter Description

Ipsz Pointer to string to free.

IpMalloc Current IMalloc*. If NULL, then OleStdFreeString will retrieve and use the active
allocator.

Returns

None.

Comments

If the caller has the current IMalloc* handy, then it can be passed as an argument, otherwise this function
will retrieve the active allocator and use it.

OleStdCopyString
STDAPI_(LPSTR) OleStdCopyString(LPSTR IpszSrc, LPMALLOC IpMalloc)

Copies a string into memory allocated with the currently active IMalloc* allocator.

Parameter Description

IpszSrc Pointer to string to copy.

IpMalloc Current IMalloc*. If NULL, then OleStdFreeString will retrieve and use the active
allocator.

Returns

Pointer to copied string.

Comments
If the caller has the current IMalloc* handy, then it can be passed as a argument, otherwise this function

will retrieve the active allocator and use it.

OleStdCreateStorageOnHGIlobal
STDAPI_(LPSTORAGE) OleStdCreateStorageOnHGlobal(HANDLE hGlobal, BOOL
DeleteOnRelease, DWORD grfMode)

Creates a memory based IStorage*.

Parameter Description

hGlobal handle to MEM_SHARE allocated memory. May be NULL and memory will be
automatically allocated.

fDeleteOnRelease controls if the memory is freed on the last release.

grfMode flags passed to StgCreateDocfileOnlLockBytes

Comments

If fDeleteOnRelease==TRUE, then the ILockBytes is created such that it will delete them memory on its
last release. The IStorage on created on top of the ILockBytes in NOT

created with STGM_DELETEONRELEASE. when the IStorage receives its last release, it will release the
ILockBytes which will in turn free the memory. it is in fact an error to specify
STGM_DELETEONRELEASE in this situation.

If hGlobal is NULL, then a new IStorage is created and STGM_CREATE flag is passed to
StgCreateDocfileOnlLockBytes. If hGlobal is non-NULL, then it is assumed that the hGlobal already has
an IStorage inside it and STGM_CONVERT flag is passed to StgCreateDocfileOnlLockBytes.

Return Value:
S OKif successful.

OleStdCreateTempStorage
STDAPI_(LPSTORAGE) OleStdCreateTempStorage(BOOL fUseMemory, DWORD grfMode)

Create a temporay IStorage* that will DeleteOnRelease. This can be either memory based or file based.

Parameter Description

fUseMemory controls if memory-based or file-based stg is created
grfMode storage mode flags

Returns

Pointer to newly created IStorage if successful; NULL otherwise.

OleStdGetOleObjectData
STDAPI OleStdGetOleObjectData(LPPERSISTSTORAGE IpPStg, LPFORMATETC
Ipformatetc,LPSTGMEDIUM IpMedium, BOOL fUseMemory)

Render CF_ EMBEDSOURCE/CF_EMBEDDEDOBJECT data on an TYMED_ISTORAGE medium by
asking the object to save into the storage. The object must support IPersistStorage. This function can be
used to implement IDataObject::GetData and IDataObject::GetDataHere.

Parameter Description

IpPStg Pointer to object's IPersistStorage interface.

Ipformatetc Pointer to FORMATETC passed to IDataObject::GetData or GetDataHere.
IpMedium Pointer to MEDIUM passed to IDataObject::GetData or GetDataHere.
fUseMemory Valid for GetData only. TRUE to allocated memory-based storage; FALSE to

attempt to allocate file-based structured storage (IStorage *).

Comments

If IpMedium->tymed == TYMED_NULL, then a delete-on-release storage is allocated (either file-based or
memory-base depending the value of fUseMemory). This is useful to support an IDataObject::GetData
call where the callee must allocate the medium.

If IpMedium->tymed == TYMED_ISTORAGE, then the data is written into the passed in IStorage. This is
useful to support an IDataObject::GetDataHere call where the caller has allocated his
own IStorage.

OleStdGetLinkSourceData
STDAPI OleStdGetLinkSourceData(LPMONIKER Ipmk, LPCLSID IpCisiD, LPFORMATETC
Ipformatetc, LPSTGMEDIUM IpMedium)

Render CF_LINKSOURCE data on an TYMED_ISTREAM medium using a moniker and Class ID as
input. This function can be used to implement IDataObject::GetData and IDataObject::GetDataHere.

Parameter Description

Ipmk Pointer to object's moniker.

IpClsID Pointer to object's Class ID.

Ipformatetc Pointer to FORMATETC passed to IDataObject::GetData or GetDataHere.
IpMedium Pointer to MEDIUM passed to IDataObject::GetData or GetDataHere.
Returns

NOERROR if successful; otherwise, it returns the error from WrteClassStm.

Comments
If IpMedium->tymed == TYMED_NULL, then a delete-on-release memory-based stream is allocated. This
is useful to support an IDataObject::GetData call where the callee must allocate the medium.

If IpMedium->tymed == TYMED_ISTREAM, then the data is written into the passed in IStream. This is
useful to support an IDataObject::GetDataHere call where the caller has allocated his
own IStream.

OleStdGetObjectDescriptorData
STDAPI_(HGLOBAL) OleStdGetObjectDescriptorData(CLSID clsid, DWORD dwAspect, SIZEL
sizel, POINTL pointl, DWORD dwStatus, LPSTR IpszFullUserTypeName, LPSTR IpszSrcOfCopy)

Fills and returns a OBJECTDESCRIPTOR structure.

Parameter Description

clsid CLSID of object being transferred

dwAspect Display Aspect of object

sizel Size of object in HIMETRIC

pointl Offset from upper-left corner of object where mouse went down for drag.
Meaningful only when drag-drop is used.

dwStatus OLEMISC flags

IpszFullUserTypeName User Type Name

IpszSrcOfCopy Source of Copy

Returns

Handle to OBJECTDESCRIPTOR structure.

See Also
OBJECTDESCRIPTOR

OleStdFillObjectDescriptorFromData
STDAPI_(HGLOBAL) OleStdFillObjectDescriptorFromData(LPDATAOBJECT IpDataObject,
LPSTGMEDIUM Ipmedium, CLIPFORMAT FAR* IpcfFmt)

Fills and returns a OBJECTDESCRIPTOR structure. The source object will offer
OF_OBJECTDESCRIPTOR if it is an OLEZ2 object, CF_ OWNERLINK if it is an OLE1 object, or
CF_FILENAME if it has been copied to the clipboard by FileManager.

Parameter Description

IpDataObject Source object

Ipmedium Storage medium

IpcfFmt Format offered by IpDataObject (OUT parameter)
Returns

Handle to OBJECTDESCRIPTOR structure.

OleStdQueryLinkSourceData
STDAPI OleStdQueryLinkSourceData(LPFORMATETC Ipformatetc)

Determines whether the requested medium in the FORMATETC is acceptable for CF_LINKSOURCE.
This function can be used to implement IDataObject::QueryGetData for format CF_LINKSOURCE.

Parameter Description
Ipformatetc Pointer to FORMATETC passed into IDataObject::QueryGetData.
Returns

NOERROR if acceptable; otherwise DATA_E_FORMATETC

OleStdQueryObjectDescriptorData
STDAPI OleStdQueryObjectDescriptorData(LPFORMATETC Ipformatetc)

Determines whether the requested medium in the FORMATETC is acceptable for CF_ EMBEDSOURCE
or CF_EMBEDDEDOBJECT. This function can be used to implement IDataObject::QueryGetData for
format CF_EMBEDSOURCE and CF_EMBEDDEDOBJECT.

Parameter Description
Ipformatetc Pointer to FORMATETC passed into IDataObject::QueryGetData.
Returns

NOERROR if acceptable; otherwise DATA_E_FORMATETC

OleStdQueryFormatMedium
STDAPI OleStdQueryFormatMedium(LPFORMATETC Ipformatetc, TYMED tymed)

Determines whether TYMED matches one of the requested mediums in the FORMATETC. This function
can be used to implement IDataObject::QueryGetData.

Parameter Description

Ipformatetc Pointer to FORMATETC passed into IDataObject::QueryGetData.
tymed Supported TYMED.

Returns

NOERROR if acceptable; otherwise DATA_E_FORMATETC

OleStdCopyMetafilePict
STDAPI_(BOOL) OleStdCopyMetafilePict(HANDLE hpictin, HANDLE FAR* phpictout)

Makes a copy of a MetafilePict.

Parameter Description

hpictin MetafilePict to copy.

phpictout Pointer to where to return copy of hpictin.
Returns

TRUE if successful, otherwise FALSE.

OleStdGetMetafilePictFromOleObject

STDAPI_(HANDLE) OleStdGetMetafilePictFromOleObject(LPOLEOBJECT IpOleObj, DWORD
dwDrawAspect)

Generate a MetafilePict by drawing the OLE object.

Parameter Description

IpOleObj Pointer to OLE object whose metafile to return.
dwDrawAspect Drawing aspect of object

Returns

Handle of allocated METAFILEPICT

OleStdVerifyRelease
STDAPI_(ULONG) (LPUNKNOWN IpUnk, LPSTR IpszMsg)

Calls Release on the object that is expected to go away. If the refcnt of the object did no go to 0 then
gives a debug message.

Parameter Description
IpUnk Pointer to object's IlUnknown interface
IpszMsg String pointer of message to display if the object's reference count was not 0 after

calling Release.

Returns
Value of the object's reference count.

OleStdInitVtbl
STDAPI_(void) OleStdInitVtbl(LPVOID IpVtbl, UINT nSizeOfVtbl)

Initializes an interface VTBL to ensure that there are no NULL function pointers in the VTBL. All entries in
the VTBL are set to a valid funtion pointer (OleStdNullMethod) that issues debug assert message
(message box) and returns E_NOTIMPL if called.

Parameter Description

IpVibl Pointer to VTBL to initialize.
nSizeOfVibl Number of methods in VTBL.
Returns

None

Comments

This function does not initialize the Vibl with useful function pointers, only valid function pointers to avoid
the horrible run-time crash when a call is made through the Vtbl with a NULL function pointer. this API is
only necessary when initializing the Vtbl's in C. C++ guarantees that all interface functions (in C++ terms
-- pure virtual functions) are implemented.

OleStdNoteFileChangeTime
STDAPI_(void) OleStdNoteFileChangeTime(LPSTR IpszFileName, DWORD dwRegister)

Notes the time a File-Based object has been saved in the RunningObjectTable. These change times are
used as the basis for I0leObject::IsUpToDate. It is important to set the time of the file-based object
following a save operation to exactly the time of the saved file. This helps I0leObject::IsUpToDate to
give the correct answer after a file has been saved.

Returns
None.

OleStdNoteObjectChangeTime
STDAPI_(void) OleStdNoteObjectChangeTime(DWORD dwRegister)

Set the last change time of an object that is registered in the RunningObjectTable. These change times
are used as the basis for 10leObject::IsUpToDate. Every time the object sends out a OnDataChange
notification, it should update the Time of last change in the ROT.

Parameter Description
dwRegister Unique identifier returned by IRunningObjectTable::Register
Comment

This function set the change time to the current time.

OleStdGetLenFilePrefixOfMoniker
STDAPI_(ULONG) OleStdGetLenFilePrefixOfMoniker(LPMONIKER Ipmk)

If the first piece of the Moniker is a FileMoniker, then return the length of the filename string.

Parameter Description
Ipmk pointer to moniker
Returns

0 if moniker does NOT start with a FileMoniker. Otherwise, the length of filename prefix of the display
name retrieved from the given (Ipmk) moniker.

OleStdDoTreatAs
STDAPI OleStdDoTreatAsClass(LPSTR IpszUserType, REFCLSID rcisid, REFCLSID rclsidNew)

Performs the container-side responsibilities for "ActivateAs" (aka.TreatAs) for an object.

Parameter Description

IpszUserType Pointer to current User Type name.
relsid Class ID of current class.
relsidNew Class ID of class to treat as.
Returns

S OKif successful.

Comments

This function would be used in conjunction with the OleUIConvert dialog. If the user selects to ActivateAs
an object then the container must do the following:

1. Unload ALL objects of the OLD class that app knows about

2. Add the TreatAs tag in the registration database by calling CoTreatAsClass().

3. Lazily it can reload the objects; when the objects are reloaded the TreatAs will take effect.

OleStdDoTreatAsClass performs step 2.

Note that if the current class is not registered in the registration database, then a minimal entry for it will
be added.

OleStdGetObjectDescriptorDataFromOleObject
STDAPI_(HGLOBAL) OleStdGetObjectDescriptorDataFromOleObject(LPOLEOBJECT IpOleOb;,
LPSTR IpszSrcOfCopy, DWORD dwAspect, POINTL pointl, LPSIZEL IpSizelHim)

Fills and returns a OBJECTDESCRIPTOR structure. Information for the structure is obtained from an

OLEOBJECT.
Parameter

IpOleObj
IpszSrcOfCopy

dwAspectDisplay
pointl

IpSizelHim

Returns

Description

Pointer to OleObject from which ONJECTDESCRIPTOR info is obtained.

String to identify source of copy.May be NULL in which case
IOleObject::GetMoniker is called to get the moniker of the object. if the object is
loaded as part of a data transfer document, then usually IpOleClientSite==NULL is
passed to OleLoad when loading the object. In this case the 10leObject:GetMoniker
call will always fail (it tries to call back to the object's client site). In this situation a
non-NULL IpszSrcOfCopy parameter should be passed.

Aspect of object

Offset from upper-left corner of object where mouse wentdown for drag. Meaningful
only when drag-drop is used.

Size of scaled object in container. [f the object is scaled in the container, then the
container should pass the extents that it uses to display the object. If the object is
not being scaled, then IpSizelHim should be set to NULL. If [pSizel/Him is NULL,
IViewObject2::GetExtent is called to retrieve the object's extents.

Handle to OBJECTDESCRIPTOR structure.

OleStdMsgFile_SetHandleInComingCallbackProc
STDAPI_(HANDLEINCOMINGCALLBACKPROC)
OleStdMsgFilter_SetHandleInComingCallbackProc(LPMESSAGEFILTER IpThis,
HANDLEINCOMINGCALLBACKPROC IpfnHandleInComingCallback)

Installs or uninstalls a callback procedure to selectively handle or reject specific incoming method calls on
particular interfaces.

Parameter Description

IpThis Pointer to message filter interface

IpfnHandleInComingCallback Pointer to callback procedure to be installed. If NULL, then the currently
installed callback procedure is uninstalled.

Returns
Pointer to previous callback procedure. NULL if there is no callback procedure was previously installed.

Comments

A callback procedure installed by calling OleStdMsgFilter_SetHandleInComingCallbackProc will override
the dwincomingCallStatus established by a call to OleStdMsgFilter_SetInComingStatus. Using
OleStdMsgFilter_SetInComingStatus allows an app to reject or accept ALL in coming calls. Using a
HandleInComingCallbackProc allows an app to selectively handle or reject particular method calls.

To uninstall a HandlelInComingCallbackProc, call
OleStdMsgFilter_SetHandlelInComingCallbackProc(NULL)

ParseCmdLine
STDAPI_(void) ParseCmdLine(LPSTR IpszLine, BOOL FAR* IpfEmbedFlag, LPSTR szFileName)

Parses a Windows command line passed to an application in WinMain. If the embedding switch ("-
Embedding" or "/Embedding") is found, then it sets *IpfEmbedFlag to TRUE. If a filename is included,
then it is copied to szFileName.

Parameter Description

IpszLine Command line from application's WinMain.

IpfEmbedFlag Pointer to BOOL to be filled on output. TRUE if the embedding switch was found,
FALSE otherwise.

szFileName Buffer to filename from command line. Filled on output; will be NULL if the

command line did not include a filename.

Returns
none.

OleStdCreateDbAlloc
HRESULT OleStdCreateDbAlloc(ULONG reserved, IMalloc** ppmalloc)

Create an instance of CDbAlloc -- a debug implementation of IMalloc.

Parameter Description
reserved ULONG reserved for future use. Must be 0.
ppmalloc IMalloc FAR* FAR* Pointer to an IMalloc interface. Points to newly created debug

allocator object on output.

Returns
NOERRGOR if an instance of CDbAlloc was successfully created, E_OUTOFMEMORY if the creation
failed.

Comments
CDbAlloc is a simple wrapping of the C runtime memory allocator that includes memory leak and
overwrite detection.

Memory leakage is detected by tracking each allocation in an address instance table, and then checking
to see if the table is empty when the last reference to the allocator is released.

Memory overwrite is detected by placing a signature at the end of every allocated block, and checking to
make sure the signature is unchanged when the block is freed.

CDbAlloc also includes additional parameter validation code, as well as additional checks to make sure
that instances that are passed to Free() were actually allocated by the corresponding instance of the
allocator.

The following code sample creates an instance of this debug allocator and uses the default output
interface:

BOOL init application instance()

{
HRESULT hresult;
IMalloc FAR* pmalloc;

pmalloc = NULL;

if ((hresult = OleStdCreateDbAlloc (0, &pmalloc)) !=NOERROR)
goto LReturn;

hresult = OleInitialize (pmalloc);

// release pmalloc to let OLE hold the only ref to the it. later
// when OleUnitialize is called, memory leaks will be reported.
if (pmalloc != NULL)

pmalloc->Release () ;

LReturn:
return (hresult == NOERROR) ? TRUE : FALSE;
}

OleStdInitSummarylinfo
STDAPI_(LPSUMINFO) OleStdinitSummaryinfo(int reserved)

Allocates a Summary Info structure.

Parameter Description
reserved INT reserved for future use; must be 0.
Returns

Pointer to newly initialized Summary Info structure.

Comments

Colnitialize MUST be called before calling OleStdInitSummaryIlnfo. Memory is allocated using the
currently active IMalloc allocator (returned by call CoGetMalloc(MEMCTX_TASK)). Each LPSUMINFO
instance must be initialized prior to use by calling OleStdInitSummaryinfo. Once a LPSUMINFO instance
is allocated by OleStdInitSummaryinfo, the user can call the Set procedures to initialize fields.

OleStdFreeSummaryinfo
STDAPI_(void) OleStdFreeSummaryinfo(LPSUMINFO FAR *Iplp)

Frees a Summary Info structure.

Parameter Description

Iplp Pointer to open Summary Info structure to free
Returns

void

Comments

Memory is freed using the currently active IMalloc allocator (returned from CoGetMalloc(MEMCTX_TASK)
). Every LPSUMINFO struct must be freed after its last use. When the OleStdFreeSummarylinfo routine
is called, all storage will be deallocated including that of the thumbnail, unless ownership of the thumbnail
has been transfered to the caller.

See Also
OleStdGetThumbNailProperty

OleStdClearSummarylinfo
STDAPI_(void) OleStdClearSummaryinfo(LPSUMINFO Ip)

Frees storage (memory) for all the properties of the specified LPSUMINFO.

Parameter Description

Ip Pointer to an open SUMINFO structure.
Returns

none.

Comments

After calling OleStdClearSummarylInfo, you must call OleStdReadSummarylinfo to load the SUMINFO
structure again.

See Also
OleStdReadSummarylinfo

OleStdReadSummaryinfo
STDAPIL_(int) OleStdReadSummaryinfo(LPSTREAM IpStream, LPSUMINFO Ip)

Reads all Summary Info properties into memory (except thumbnail
which is demand loaded).

Parameters Description

IpStream Pointer to open Summarylinfo IStream*
Ip Pointer to open SUMINFO structure
Returns

Returns 1 if all Summary Info properties (except Thumbnail) were successfully read into memory, 0
otherwise.

OleStdWriteSummaryinfo
STDAPIL_(int) OleStdWriteSummaryinfo(LPSTREAM IpStream, LPSUMINFO Ip)

Write all Summary Info properties to the specified IStream.

Parameter Description

IpStream Pointer to an open Summarylinfo IStream*
Ip Pointer to an open SUMINFO structure
Returns

Returns 1 if all Summary Info properties were successfully written to the specified 1Stream, 0 otherwise.

OleStdGetSecurityProperty
STDAPI_(DWORD) OleStdGetSecurityProperty(LPSUMINFO Ip)

Retrieves the Security Property

Parameter Description
Ip Pointer to open SUMINFO structure
Returns

DWORD specifying the security level stored in the specified SUMINFO structure. The possible values
and their meanings are listed in the table below.

AllSecurityFlagsEqNone 0 no security
fSecurityPassworded 1 password required
fSecurityRORecommended 2 read-only is recommended
fSecurityRO 4 read-only is required
fSecurityLockedForAnnotations 8 locked for annotations

Comments

By noting the (application-enforced) security level on the document, an application other than the
originator of the document can adjust its user interface according to the document's properties. An
application should not display any information about a password-protected document, and should not
allow modifications to enforced-read-only or locked-for-annotations documents. If the user attempts to
modify properties for a read-only-recommended document, the application should display a warning.

OleStdSetSecurityProperty
STDAPIL_(int) OleStdSetSecurityProperty(LPSUMINFO Ip, DWORD security)

Set the Security Property

Parameter Description

Ip Pointer to an open SUMINFO structure.

security Security level. See Comments below for values.
Returns

Always returns 1.

Comments
The security parameter should be one of the following values:

AllSecurityFlagsEqNone 0 no security
fSecurityPassworded 1 password required
fSecurityRORecommended 2 read-only is recommended
fSecurityRO 4 read-only is required
fSecurityLockedForAnnotations 8 locked for annotations

By noting the (application-enforced) security level on the document, an application other than the
originator of the document can adjust its user interface according to the document's properties. An
application should not display any information about a password-protected document, and should not
allow modifications to enforced-read-only or locked-for-annotations documents. If the user attempts to
modify properties for a read-only-recommended document, the application should display a warning.

OleStdGetStringProperty
STDAPI_(LPSTR) OleStdGetStringProperty(LPSUMINFO Ip, DWORD pid)

Retrieves a string property and returns NULL terminated string.

Parameter Description

Ip Pointer to open SUMINFO structure
pid ID of String Property

Returns

Pointer to the string stored in the specified string property.

Comments

The memory allocated for the returned string is freed by OleStdFreeSummarylinfo, so the caller should
NOT the returned string.

OleStdSetStringProperty
STDAPI_(int) OleStdSetStringProperty(LPSUMINFO Ip, DWORD pid, LPSTR Ipsz)

Set the specified string property

Parameter Description

Ip Pointer to an open SUMINFO structure

pid ID of string property

Ipsz Pointer to NULL terminated string to be set as the new value for the specified string

property. If Ipsz is NULL, then the property is cleared.

Returns
Returns 1 if the specified string property is set successfully, O otherwise, or if pid is invalid.

Comments
A copy of I[psz is stored as the string property; so the calling application can free Ipsz without invalidating
the string property.

OleStdGetStringZProperty
STDAPI_(LPSTZR) OleStdGetStringZProperty(LPSUMINFO Ip, DWORD pid)

Retrieves a string property.

Parameter Description

Ip Pointer to an open SUMINFO structure
pid ID of string property to retrieve.
Returns

NULL terminated string with leading byte count.

Comments
The returned string will be freed by OleStdFreeSummarylinfo, so the caller should NOT be freed the
returned string.

OleStdGetDocProperty
STDAPI_(void) OleStdGetDocProperty(LPSUMINFO Ip, DWORD FAR* nPage, DWORD FAR*
nWords, DWORD FAR* nChars)

Retrieves document properties

Parameter Description

Ip Pointer to an open SUMINFO structure

nPage Pointer to DWORD to return the number of pages in document. OUT parameter.

nWords Pointer to DWORD to return the number of words in document. OUT parameter.

nChars Pointer to DWORD to return the number of characters in document. OUT
parameter.

Returns

None.

OleStdSetDocProperty

Set document properties.

Parameter Description

Ip Pointer to an open SUMINFO structure
nPage Number of pages in document

nWords Number of words in document

nChars Number of characters in document
Returns

Always returns 1.

OleStdGetThumbNailProperty

STDAPI_(int) OleStdGetThumbNailProperty(LPSTREAM Ips, LPSUMINFO Ip,
DWORD FAR* clipFormatNo, LPSTR FAR* IpszZName, THUMBNAIL FAR* clip, DWORD FAR*
byteCount, BOOL transferClip)

Retrieves a Thumbnail property.

Parameter Description

Ips Pointer to an IStream.

Ip Pointer to an open SUMINFO structure

clipFormatNo Clipboard format for thumbnail. Only VT_CF_WIN is implemented, so
clipFormatNo should be set to CF_ METAFILEPICT.

InszName Format name. NOT IMPLEMENTED

clip Handle to thumbnail for VT_CF_WIN. clip will be handle to MetafilePict Only
VT_CF_WIN is currently implemented

byteCount Size of thumbnail stream. For VT_CF_WIN, this should be the sum of the size of
the Metafile and the MetafilePict structure.

transferClip Transfer ownership of thumbnail to caller. See Comments below.

Returns

OLE thumbnail selector value. Will be one of the following values.

VT_CF_WIN Windows thumbnail (clipFormatNo is interpreted as Windows clipboard format)

VT_CF_FMTID NOT IMPLEMENTED. Thumbnail format is specified by ID using clipFormatNo.
(but NOT a Windows format ID)

VT _CF_NAME NOT IMPLEMENTED. Thumbnail format is specified by name using lpszName.

VT_CF_EMPTY Blank thumbnail (clip will be NULL)

VT_CF_OOM Memory allocation failure

Comments

Currently, VT_CF_WIN is the only supported clipboard format for thumbnail properties.
OleStdSetThumbNailProperty does implement VT_CF_FMTID and VT_CF_NAME; however,
OleStdGetThumbNailProperty, OleStdReadSummaryinfo and OleStdWriteSummaryinfo only support
VT_CF_WIN.

On input, the thumbnail is read on demand; all other properties are pre-loaded. The thumbnail is
manipulated as a windows handle to a METAFILEPICT structure, which in turn contains a handle to the
METAFILE. The transferClip argument on GetThumbNail, when set to TRUE, transfers responsibility for
storage management of the thumbnail to the caller; that is, after OleStdFreeSummaryinfo has been
called, the handle is still valid.

OleStdSetThumbNailProperty
STDAPI_(int) OleStdSetThumbNailProperty(LPSTREAM Ips, LPSUMINFO Ip, int vtcfNo,
DWORD clipFormatNo, LPSTR IpszZName, THUMBNAIL clip, DWORD byteCount)

Set a thumbnail property.

Parameters Description

Ips Pointer to an open Summaryinfo IStream

Ip Pointer to an open SUMINFO structure

vicfNo OLE thumbnail selector value. See Comments below for values.
clipFormatNo Clipboard format for thumbnail used if vicfNo is VT_CF_WIN or VT_CF_FMTID.

The interpretation of cliipFormatNo depends on the vicfNo specified. In most
cases, vicfNo is VT_CF_WIN and clipFormatNo is CF_METAFILEPICT.

IpszName Format name if vicfNo is VT_CF_NAME
clip Handle to thumbnail for VT_CF_WIN clip will be handle to MetafilePict
byteCount Size of thumbnail stream. If vicfNo is VT_CF_WIN, then byteCount should be the

sum of the size of the Metafile and the size of a MetafilePict structure.

Returns
Returns 1 if the thumbnail property was set successfully; 0 otherwise.

Comments

The following table lists the possible values for vtcfNo:

VT_CF_WIN Windows thumbnail (interpret clipFormatNo as Windows clipboard format)

VT_CF_FMTID thumbnail format is specified by ID. use clipFormatNo.(but NOT a Windows
format ID)

VT_CF_NAME thumbnail format is specified by name. use IpszName.

VT_CF_EMPTY Blank thumbnail (clip will be NULL).

VT_CF_WIN is currently the only supported value for vicfNo. OleStdSetThumbNailProperty does
implement VT_CF_FMTID and VT_CF_NAME, however, OleStdGetThumbNailProperty,
OleStdReadSummarylnfo and OleStdWriteSummarylnfo only support VT_CF_WIN.

OleStdSetThumbnailProperty copies IpszName but saves the "clip" handle passed.

OleStdGetDateProperty
STDAPI_(void) OleStdGetDateProperty(LPSUMINFO Ip, DWORD pid, int FAR* yr, int FAR* mo,
int FAR* dy, DWORD FAR* sc)

Retrieves a date property.

Parameter Description

Ip Pointer to an open SUMINFO structure
pid ID of data property to retrieve

yr Pointer to where to return the year.

mo Pointer to where to return the month.
dy Pointer to where to return the day.

SC Pointer to where to return the seconds.
Returns

None.

OleStdSetDateProperty
STDAPIL_(int) OleStdSetDateProperty(LPSUMINFO Ip, DWORD pid, intyr, int mo,
hr, int mn, intsc)

Sets date property.

Parameter Description

Ip Pointer to an open SUMINFO structure
pid ID of Property

yr year

mo month

dy day

hr hours

mn minutes

sc seconds

Returns

Returns 1 if the date property was set successfully, O otherwise.

Comments

To clear a date property, set all parameters except Ip and pid to 0.

The following example sets the PID_EDITTIME property to 12:30:23 Jan 1,1993i:
OleStdSetDateProperty(IpSuminfo, PID_EDITTIME, 1993, 1, 1, 12, 30, 23);

int dy,

int

