
It’s always nice to get something for
nothing. If you are developing for Win-

dows 95 or Windows NT, there are a host
of new features you can include in your
applications for very little cost, since they
are integrated into the operating system.
These are the Windows 95 common con-
trols, and you can expect to find them in
most 32-bit Windows development lan-
guages including Visual Basic 4.0, Visual
C++ 4.0 and the forthcoming 32-bit Delphi.

Most of the new common controls are
similar to items previously available as
third-party VBXs, which is bad news for
VBX vendors who now have to think up
new gizmos. It also presents developers
with a choice: either stick with the old solu-
tions, or adapt applications to work with
the new, common equivalent.

A good example is the rich text control.
Once you needed HighEdit, AllText or
Visual Writer to include rich text support,
but now it comes as standard with VB. The
add-on vendors will argue that their con-
trols offer more features, making it possible
to migrate smoothly from 16 to 32 bits by
plugging in a code-compatible OCX. True;
but common controls slim down your appli-
cation, and as a shared resource make
more efficient use of Windows. They also
give your program the same look as other
mainstream applications, usually consid-
ered a benefit. All this assumes that you no
longer need to support 16-bit Windows.

Access to the common controls from
Visual Basic 4.0 is via two OCXs. Most of
the controls are in COMCTL32.OCX, while
the rich text box is in RICHTX32.OCX. To
show some of the possibilities, here’s a
look at using two of the most significant:
the TreeView and RichText controls.

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 3 0
P E R S O N A L C O M P U T E R W O R L D
F E B R U A R Y 1 9 9 6

The common touch
Got a nice little Windows 95 or NT application under development? Including
a few common controls can make all the difference, you know, and at very
little cost. Plus, launching DOS programs from Delphi. With Tim Anderson.

Right Rich

Text Format

in its raw

form — not a

pretty sight

Below The

RichTextBox

supports a

reasonable

range of

formatting

options, but

cannot

display

justified text

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 3 1
P E R S O N A L C O M P U T E R W O R L D

F E B R U A R Y 1 9 9 6

Windows 95 Common Controls

The following controls are support-
ed by Windows 95 and NT 3.51 or
higher, but are not available in 16-
bit Windows:

ImageList
Like the earlier PicClip control,
ImageList is a way of storing
images (bitmaps or icons) so that
they can be used by an application
without loading them individually
from disk at runtime. ImageList is
much easier to use than PicClip.

ListView
If you’ve used Explorer, you know
what to expect in ListView. Like
Explorer’s right-hand panel,
ListView enables a list of items to
be displayed as large or small
icons, or as a detailed list. A fourth
mode, Report, allows additional
text to be displayed for each item.

ProgressBar
A chunky gauge control to keep the
user amused during those long operations.

Slider
As its name implies, Slider lets the user set a value with the
mouse by dragging a sliding bar.

StatusBar
Your application can have a pre-built status bar divided into panels.
You can write text to the panels in code, or automatically set them
to display standard information such as date, time or insert/over-
write status.

TabStrip
You can create tabbed dialogues using the TabStrip control.
Because tabbed dialogues have become such an important part of
many Windows interfaces, an alternative is supplied in both 16-bit
and 32-bit form; the SSTab control.

The ImageList control lets you store bitmaps or icons in an

application for use by other controls. In this example, the

ImageList supplies bitmaps for a TreeView control

optionally, an image to display by the
mode. For instance, you might use Tree-
View to construct a multimedia viewer: the
book title is the root of the tree; chapters
are the next branches down; sections are
below each chapter.

Fig 1 shows a parameter list in which
the image parameters are unused. When
included, they refer to the index of an
ImageList control with the selected image
parameter, making it possible to change
the image when the node is selected.

Once the tree is set up, the chances

are you will want something to happen as
the user navigates through the tree. The
most useful event is NodeClick, which pro-
vides the current Node object. For exam-
ple, the following will place the text of the
current node into a RichTextBox:
Private Sub TreeView1_NodeClick
(ByVal Node As Node)
RichTextBox1.Text = Node.Text
End Sub

To develop the idea further, one
approach would be to store rich text docu-
ments in an Access database. The Key for

each node could identify a
record in the database, and
in the NodeClick event you
could write code to display
the text, and hey presto! a
multimedia document and
viewer for the price of very
little code.

Branching into TreeView
You should think of the TreeView control
as a collection of nodes. Each node is a
branch of the tree. To set up a TreeView,
you use the Add method of the Nodes
collection, the syntax for which is:
Nodesobject.Add(relative,
relationship, key, text, image,
selectedimage)

This intimidating parameter list is not
really so bad: it tells the TreeView control
where the new node fits in the hierarchy,
provides an unique identifying key and,

Dim nodeObj As Node
Set nodeObj = TreeView1.Nodes.Add(, , “Root”, “The life of the BumbleBee”)
Set nodeObj = TreeView1.Nodes.Add(“Root”, tvwChild, “Chap1”, “Habitat”)
Set nodeObj = TreeView1.Nodes.Add(“Chap1”, tvwChild, “1_1”, “In the North”)
Set nodeObj = TreeView1.Nodes.Add(“Root”, tvwChild, “Chap2”, “Varieties of BumbleBee”)
Set nodeObj = TreeView1.Nodes.Add(“Root”, tvwChild, “Chap3”, “How the BumbleBee Flies”)

Fig 1 Parameter list

BOX CONTINUES ON NEXT PAGE

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 3 3
P E R S O N A L C O M P U T E R W O R L D

F E B R U A R Y 1 9 9 6

More Windows 95 Common Controls

Toolbar
Microsoft’s off-the-peg toolbar control is
a panel object with a buttons collection,
and can be linked to an ImageList con-
trol to obtain appropriate icons. You
can define tooltips and align the bar
top, bottom, left or right. Sadly, it cannot
be made to float, or re-aligned via drag-
and-drop. The toolbar control in Visual
FoxPro is much better: why can’t those
people at Microsoft work together?

TreeView
One of the most powerful controls is the
TreeView, a hierarchical list. If ListView
is demonstrated in the right-hand pane
of Explorer, TreeView is the left-hand
pane. Microsoft must like tree views,
since the Microsoft Network online ser-
vice uses them to the point of frustra-
tion. But in the right context, a tree view
is ideal.

Get RichText quick
The RichTextBox is a superset of the
standard edit control. You should never
use a Rich Text control where the stan-
dard item will do, since it consumes more
resources. With a standard text box, prop-
erties like FontName and FontSize affect
all the text in the control. The Rich-
TextBox has SelFontName and SelFont-
Size properties instead and these alter
either any selected text, or the next char-
acters typed if no text is selected. That
makes it easy to format text in code, or
from a toolbar or menu.

You can load and save files with the
RichTextBox either in plain text or RTF

The RichTextBox is data-aware. Sim-
ply binding it to a memo field gives you the
basics of a book viewer or document
management system as it automatically
reads and writes RTF documents to the
database. Overall, this is an excellent
control, although as it lacks the ability to
justify text, display pictures or include
OLE objects, there is still space for third-
party rivals.

Zipping into Delphi
One of the most enduring DOS programs
must be PKZIP. Adam H writes:

“I’m brand new to Delphi but getting
along (I think). I have one question that is

RichTextBox
This is the heavyweight among Windows 95
controls and is the basis of the WordPad
accessory applet. Basic word processor func-
tionality is built in, including the handling of
multiple fonts and styles. For applications that
require the display of formatted text it is indis-
pensable, particularly if you want the user to
be able to edit, cut and paste.

Below Windows 95 Common Controls are

the most efficient way to jazz up a VB 4.0

application

Left TreeView: just the thing for family

trees, multimedia books or boring old

directory viewing

format. Clipboard support is automatic.
There’s also a Find method which
searches for a given character string.
Printing is carried out using the SelPrint
method. SelPrint will output selected text,
or the whole contents of the control if no
text is selected. It does not print directly
but needs a handle to a device context.
The simplest approach is to use the VB
Printer object which has an hDC property.
Note that this is not valid until something
has been printed, so you need to print an
empty string before calling SelPrint, with
code like this:
Printer.Print ““
RichTextBox1.SelPrint (Printer.hDC)

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 3 4
P E R S O N A L C O M P U T E R W O R L D
F E B R U A R Y 1 9 9 6

M
IC

R
OM

A
R
T

C
L

A
S

S
IF

IE
D

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He
can be contacted via PCW at the usual
address, or on
freer@cix.compulink.co.uk

Next month
Just arrived is Crystal Reports Professional
4.5, and new OCX versions of First Impres-
sion and Visual Speller. Look for a report in
the next issue.

What is Rich Text Format?

really bugging me. Can you launch other
applications from an app created with
Delphi, and if so, how?

I wish to create a simple application
with two buttons on — BACKUP and
RESTORE. When a button is pressed, it
will run the PKZIP program and compress
a directory onto a floppy, or vice versa.

Also, can you trap the messages
issued by the PKZIP program and place
them into the Delphi app?”

You can launch applications from
Delphi using the API functions WinExec or
LoadModule. For example, the following
runs the Windows calculator:
WinExec(‘CALC.EXE’, SW_SHOW);

In Visual Basic you can do the same

Alan wants to trap PKZIP’s messages, but
even if he uses DOS functions to redirect
PKZIP’s output to a file for parsing later,
there will still be difficulties with prompts
that need a user response. We are back to
the untidy DOS window solution. Another
problem is that WinExec is asynchronous:
the Delphi or VB application will continue
to execute at the same time PKZIP is run-
ning. The program would need to enter a
loop, calling the API function GetMod-
uleUsage with the instanceID returned by
WinExec, until it returns zero to indicate
that the program has terminated.

You can do a better job of running DOS
programs from Windows by writing a Vir-
tual Device Driver (VxD) to intercept DOS
stdout and stderr –– not exactly visual pro-
gramming. The easier solution in this case
is to use a compression library designed to
be integrated into applications. There are
several to choose from, including Micro-
help’s Compression Plus and PkWare’s
Data Compression Library.

thing with the Shell command, but this
does not achieve what Alan requires.
PKZIP is a DOS program, so to run it in
Windows will open a DOS window, exe-
cute the program, and leave the window
on the screen. You can improve on that,
for example by creating a .PIF file for
PKZIP, specifying that the DOS window
closes on termination, and using the
SW_HIDE parameter:
winExec(‘PKZIP.PIF A:\BACKUP.ZIP
C:\DOCS*.DOC’, SW_HIDE);

That works well if there are no prob-
lems, but what about error handling? What
if PKZIP produces one of its “y/n” prompts
and waits forever in a hidden window for
an answer? At this point, things get nasty.

Rich Text Format (RTF) is Microsoft’s format for transferring formatted text between pro-
grams. It includes codes to identify fonts and styles. RTF uses the backslash to begin
control words, and brace characters to identify groups of text. For example, the code “\b”
means “bold”, and “\b0” means “turn bold off”. Therefore, you can embolden a word in an
RTF document like this:
Here is a \b bold \b0 word in RTF

Because an RTF file generally uses only plain text, it is easy to transfer between dif-
ferent applications, or across different platforms like PC to Apple Macintosh. Usually it is
more reliable than using conversion routines that work on word processor formats like
those used by Word, WordPerfect or Ami Pro. RTF is particularly important in Windows,
since it is the standard clipboard format for transferring formatted text.

The RTF standard has caught on well and every self-respecting word processor or
DTP application supports it. The snag is that Microsoft controls the format and tends to
add zillions of new control words with every new version of Word. This has caused prob-
lems for the industry. An example of this is the Windows help compiler which is meant to
work with RTF documents from any source, but has a mysterious preference for those
produced by Word. For most other purposes, though, older subsets of the full RTF stan-
dard are quite adequate. RTF is documented by Microsoft, and its description, together
with code for a simple RTF reader, can be found on the Developer Network CD.

