
In last month’s column, I demonstrated
how some simple matrix algebra oper-

ations could be used to twist, turn, move
and stretch a computer representation of a
three-dimensional object. But these
manipulations would be of little interest to
anyone unless they could actually be
seen; so I also reviewed how a 3D com-
puter representation might be projected
onto a 2D screen, enabling the user to
actually see a picture of what is happen-
ing. So much for the theory — this month
we are going to tie up the project with a
practical, working Visual Basic program.

Fig 1 shows the program in action.
There are three main sets of command
buttons held in the three frames labelled
“Rotations”, “Sizes” and “Moves”. Each of
the buttons in these frames applies a
matrix operation to an underlying data
structure. Following this, the image is
redrawn from the data structure with its
new position or orientation, thus appearing
to the user as if he has directly manipu-
lated the object in the desired fashion.
The Large and Small movement options
determine the amount of movement for
each of the command buttons. The “Image
Trace On” option button simply prevents
the screen being cleared before a new
image is drawn, so that the history of pre-
vious positions can be seen. “Reset” puts
the object back into the middle of the dis-
play area at a reasonable distance and in
a standard orientation. “Exit” has the usual
effect.

The shape which is manipulated by all
these operations is supposed to be a
Stealth bomber, but it is admittedly rather

H A N D S O N ● L O W L E V E L

3 3 0
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 5

It’s time for take off

Take a Stealth bomber, apply a working Visual Basic program, and watch it
move. Mike Liardet shows you how to make it pitch, roll, yaw, and spin, and
explains the important technique of perspective projection.

Fig 1 The 3D graphics program in

action. The shape that is flashing across

the display area is supposed to be a

Stealth bomber, but is unlikely to fool

the discerning PC user

Fig 2 The effect of the “Roll-R”

command button: the shape rotates

about its longitudinal access, eventually

moving through 360 degrees and return-

ing to its original position

1

2

H A N D S O N ● L O W L E V E L

crude in appearance and somewhat closer
to a paper dart than any real aeroplane. It
is not too difficult to modify the program to
create a more realistic shape, but it is con-
venient to have a simple shape for the ini-
tial development work: it can be drawn
quickly and it’s reasonably easy to see
what is happening with it when testing the
code.

The display in Fig 1 was generated by
using various command buttons to
achieve the shape with the desired orien-
tation and size, and positioned at the far
left of the screen. At this point, the Image
Trace option was selected along with
Large Movements. Repeated presses of
the Moves “+Y” button caused the shape
to “fly” across the display area from left to
right in several large steps, each time
leaving its trace behind.

Fig 1 shows the effect of just one of the
command buttons but there are many
other possibilities. Fig 2 shows what hap-
pens when the “Roll-R” button is used.
This causes the shape to perform what is,
in effect, an “aileron roll” to the right. At
each press of the button, the shape rotates
a little further about its longitudinal access,
eventually moving through 360 degrees
and returning to its original position.

All the other rotations are possible as
well, using the other rotation command
buttons. The Pitch buttons cause the
shape to rotate about its lateral axis. From
normal horizontal flight the “Pitch Up” com-
mand makes the shape’s nose point up
and “Pitch down” makes it point down. The
yaw buttons rotate the shape about its nor-
mal axis causing it to point to the left or
right as appropriate. In a real plane, this
sort of movement would be made by the
rudder (which is controlled by the pilot’s
feet on the pedals). The pitching and
rolling rotations are effected by pushing,
pulling or turning the control column (or
joystick) in the pilot’s hands.

It’s also possible to change the shape
of the object — something that is impossi-
ble in a real aeroplane. Fig 3 shows what
can happen if the “Sizes” buttons are
used. The images numbered 1 to 4 were
produced by repeatedly using the “+Len”
button. Images 5 and 6 show the shape
getting wider (the “+Wid” button). Finally,
the shape is made taller with the aid of the
“+Ht” button.

The shape can be moved anywhere
within the three-dimensional space that it
occupies by using the “Moves” buttons.
We have already seen it moving from left
to right (the Y direction). Up and down
motion is possible using the “+Z” or “-Z”
buttons. Fig 4 shows the shape moving in

3 3 1
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 5

Fig 3 Unlike a real aeroplane, this one can

change its shape: images 1 to 4 show it getting

longer; then in 5 and 6 it becomes wider; finally,

image 7 shows it suddenly having grown a bit

taller

Fig 4 The effect of the “+X” command button:

this brings the shape nearer and nearer to the

viewer, with a larger image at each stage

Fig 5 Form design for the program: there is only

one form, with no special hidden tricks behind the

scenes other than the control arrays which are

used to simplify the processing of most of the

command buttons

3

4

5

H A N D S O N ● L O W L E V E L

3 0 6
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 5

the X direction, which moves it towards
the viewing window. At first (image 1), it
is at some distance from the window,
and it therefore appears to be fairly
small. Repeatedly pressing the “+X”
button gradually brings it nearer, and
consequently it appears larger.

If the button is pressed for long
enough, the shape eventually fills the
entire screen as it gets very near the win-
dow. Ultimately it will crash into the win-
dow, ironically crashing the system at
the same time. This is caused by an
arithmetic overflow error resulting from
the enormous co-ordinate values that
are generated as part of the calculation.
Visual Basic ought to fail gracefully when
this happens, with an appropriate error
message, but on the development
machine (a 486 with numeric processor)
it simply falls over completely, some-
times necessitating a reboot. There is a
fairly simple cure for this problem: do not
let the shape get too near the window,
for instance, by disabling the “+X” button
when the shape’s X co-ordinate exceeds
a certain value.

Perspective projection
Three-dimensional objects can be
shown on the screen using plan and ele-
vational drawings, or with axonometric
and isometric projections. These tech-
niques are primarily used for technical
drawings, and in architecture. They are
useful because they preserve much of
the original 3D information in the 2D
image, including many of the angles and
lengths. Unfortunately, they do this at the
expense of realism, and for recreational
purposes the perspective projection is

6

7

8

Fig 6 How to produce a perspective projection: simply shoot through a screen at

prominent features on the object and the bullet holes will create the drawing for

you! Fig 7 Putting the perspective projection on a less destructive and more math-

ematical footing. Fig 8 Looking straight down on the scene in Fig 7, from a position

on the object’s negative Z axis. This view shows how the (horizontal) X co-ordinate

of the perspective projection is calculated

H A N D S O N ● L O W L E V E L

preferred. This is the technique used in
the program presented here, and since it
is so important we shall take a close look
at the way in which it works.

Perspective projection provides a view
of an object which is identical to the view
that might be obtained on photographic
film, using a camera. Although art teach-
ers generally teach perspective drawing
in terms of parallel lines meeting at a sin-
gle point, using illustrations of long,
straight, railway tracks converging as
they near the horizon, this methodology is
only necessary to help human artists get
their perspectives right. Computer-gener-
ated perspectives are not built in this way.

Fig 6 shows the general principle
behind a computer-generated perspec-
tive. Imagine an object (in this instance a
tetrahedron, or four-faced “pyramid”)
lying behind a transparent screen, with a
gun pointing at it from the other side.
Imagine firing the gun through that screen
at a prominent feature in the object: the
bullet hole in the screen marks the point
where that feature is to be located in a
perspective projection of the object. But if
the bullet misses the screen altogether,
then this is an indication that part of the
object would not normally be visible
through the screen “window”. In Fig 6, the
whole object can be seen in the top right
quarter of the screen and the three bullet
holes represent the location of three of
the tetrahedron’s vertices.

To put the method onto a more math-
ematical footing we must include axes for
the object and for the screen (Fig 7). The
object is located in 3D space relative to its
X, Y and Z axes, and its 2D image is
drawn relative to the screen’s X and Y
axes. The gun is replaced by an eyeball
“viewpoint”, and the bullet paths are
replaced by straight lines drawn from the
viewpoint to points on the chosen object.

Notice that the screen axes are paral-
lel to two of the object’s axes and that the

third object axis (the X axis) is perpendic-
ular to the screen, hitting it right in the mid-
dle and then continuing on to the
viewpoint. The precise location and orien-
tation of these axes is arbitrary. For exam-
ple, we could have an angled line from the
object’s origin going through the screen’s
mid-point, and we need not even have the
screen perpendicular to it (although this
would produce distorted images). I have
set up the axes in this way simply to make
the maths as easy as possible.

Fig 8 shows the same scene as Fig 7
but in just two dimensions; looking directly
down from the direction of the object’s Z
axis. It shows how to calculate the hori-
zontal co-ordinate for the projection. We
see that one of the vertices (labelled A) in
the original object has co-ordinates (Xo,
Yo) (its Z co-ordinate is irrelevant here).
The screen and viewpoint are located at a
distance of Xs and Xv respectively from
the object origin. The vertex A is projected
onto the screen at point P, and for the hor-
izontal co-ordinate of the projection we
need to determine the value Yi for this
point in terms of the other values.

The calculation turns out to be fairly
easy. The gradient of the line VP is the
same as the gradient of VA, so we have:
AB/BV = PQ/QV

Plugging in the co-ordinate values of
the points A, B, P and so on, we get:
Yo/(Xv-Xo) = Yi/(Xv-Xs)

Some simple rearrangement of this
equation gives us:
Yi = Yo*(Xv-Xs)/(Xv-Xo)
which is the horizontal value (on the
screen) for the perspective projection.
Fig 9 shows how to work out the vertical
screen value. A similar line of reasoning

3 0 7
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 5

MICROMART
CLASSIFIED

9

Fig 9 Looking from the side of the scene

in Fig 7, from a position on the object’s

negative Y axis. Here we see how the

(vertical) Y co-ordinate of the perspective

projection is calculated

H A N D S O N ● L O W L E V E L

3 0 8
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 5

Fig 10 Visual Basic Code from the MATRIX.FRM module

Option Explicit
Dim poly As PolyXD

Sub cmdExit_Click ()
End

End Sub

Sub cmdReset_Click ()
‘Make a 1000 by 1000 by 1000 cube centred on origin
‘CuboidMake poly, 1000, 1000, 1000
PolyObjectMake poly

‘Set pic with 4000 x 4000 area and origin in middle
optOff = True
optSmall = True
pic.Scale (-2000, 2000)-(2000, -2000)
PolyDraw poly, pic, optOff

End Sub
Sub cmdRot_Click (Index As Integer)
Dim ang As Single
Static r(3, 3) As Single

If optSmall Then
ang = pi / 8

Else
ang = pi / 4

End If
Select Case Index
Case AXIS_X

MatRotate r(), ang, AXIS_X
Case AXIS_Y

MatRotate r(), ang, AXIS_Y
Case AXIS_Z

MatRotate r(), ang, AXIS_Z
Case AXIS_MX

MatRotate r(), -ang, AXIS_X
Case AXIS_MY

MatRotate r(), -ang, AXIS_Y
Case AXIS_MZ

MatRotate r(), -ang, AXIS_Z
End Select
MatApply r(), poly
PolyDraw poly, pic, optOff

End Sub

produces:
Zi = Zo*(Xv-Xs)/(Xv-Xo)

When programming the projection we
have to decide on appropriate values for
the screen position and viewpoint (the val-
ues Xv and Xs). The program contains
reasonable values for these variables,
hard-coded as constants, but there is
nothing absolute about them. It would
even be possible to arrange for these val-
ues to change dynamically if that was
appropriate to the application.

It’s important to keep the object,
screen and viewpoint in the right order, as
strange effects will be produced if the
object and viewpoint ever end up on the
same side of the screen. Assuming they

are in the right order, then the general rule
is that the further away the screen is from
the object, the smaller that object will
appear. This corresponds to the real life
observation that distant objects look
small.

On the other hand, moving the view-
point closer to the screen allows more of
the scene to be viewed, thereby corre-
sponding to the real life observation that
one can see more out of a window if one
stands close up to it. Moving the viewpoint
can also be thought of as being like the
operation of a zoom-lens on a camera:
when the viewpoint is close to the screen
one gets a wide-angle view, and when it is
distant it becomes like a telephoto image.

Theoretically, we can allow the viewpoint
to go all the way back to +infinity, and
with the aid of some mathematical chi-
canery with the aforementioned calcula-
tions, the perspective projection then
turns into a simple elevational view.

There are plenty of possibilities for
improving the program presented here.
There is no validation of user input so it is
comparatively easy to crash the program,
for example by flying the shape slap into
the viewing screen. It is also easy to lose
track of the shape altogether by sending
it out of sight of the screen. Visual Basic
itself handles the clipping of the image as
the shape moves out of range, so this is
not an error condition as such, but imple-
menting “Wraparound” space could help
here, so that the shape reappears at the
left having gone off the right-hand side
and reappears at the bottom, having van-
ished from the top.

It is a fairly straightforward matter to
set up a more interesting object by modi-
fying the code in the routine PolyObject-
Make. Indeed there is no reason why
several objects should not be set up and
dealt with simultaneously. This is not very
difficult to program, but of course the
more lines, faces and vertices in a scene,
the longer it takes to draw. So if the scene
gets too complicated, it may not be pos-
sible to see it without frustratingly long
delays.

When designing a new object it is a
good idea to first sketch it fairly accurately
on paper, labelling the vertices and
deciding on their co-ordinate values. For
very complex objects it may be worth-
while implementing some “service” rou-
tines that can set up subcomponents of
the object in one go. For example, if the
object contains a number of cube
shapes, then it might be useful to have a
subroutine that can create the vertices,
edges and faces of a cube, located in any
position.

Curved surfaces can be approximated
by a number of flat faces and these are
best built up by using special purpose
routines rather than by trying to work out
the co-ordinates by hand. For instance, a
circular cylindrical shape might be set up
as a hexagonal (or decagonal, etc) cylin-
der and it is a fairly straightforward matter
to let the computer calculate the vertex
co-ordinates for these approximations.

The program does not perform any
hidden-line removal so it always displays
all the lines in the object, whether or not
they would normally be visible from that
angle of view. With more complicated
objects this can be confusing. It is sur-

H A N D S O N ● L O W L E V E L

3 0 9
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 5

PCWContacts
Mike Liardet is a freelance programmer
and writer. He can be contacted via the
PCW editorial office or on email as
mliardet@cix.compulink.co.uk

PCW Cover Disk
The full code for this month’s Low Level is on
the cover disk given with this issue of PCW.

End Type

Global picBox As Control

Sub CuboidMake (poly As polyXD, x As Single, y As Single,
z As Single)
‘Make a Cuboid centred on the origin, sized x by y by z

‘Start with an x by y rectangle in the xy plane
poly.numDims = 2

‘poly has four ‘parts’ (the four edges)
poly.numParts = 4

‘Set up the four vertices
poly.numVerts = 4
poly.vert(0).coord(0) = -x / 2
poly.vert(0).coord(1) = -y / 2
poly.vert(1).coord(0) = x / 2
poly.vert(1).coord(1) = -y / 2
poly.vert(2).coord(0) = x / 2
poly.vert(2).coord(1) = y / 2
poly.vert(3).coord(0) = -x / 2
poly.vert(3).coord(1) = y / 2

‘Set up the four edges
poly.numEdges = 4
poly.edge(0).pt1 = 0
poly.edge(0).pt2 = 1
poly.edge(0).partof = 0
poly.edge(1).pt1 = 1
poly.edge(1).pt2 = 2
poly.edge(1).partof = 1
poly.edge(2).pt1 = 2
poly.edge(2).pt2 = 3
poly.edge(2).partof = 2
poly.edge(3).pt1 = 3
poly.edge(3).pt2 = 0
poly.edge(3).partof = 3

‘Add the third dimension
DimensionAdd poly, -z / 2, z / 2

‘Change verts to homogeneous coords
HomogCoords poly

End Sub

Fig 11 Visual Basic code from MATRIX.BAS module

Option Explicit

Const MAX_DIM = 4 ‘allows for homogeneous coords
Const LAST_DIM = MAX_DIM - 1
Const MAX_EDGES = 1000
Const LAST_EDGE = MAX_EDGES - 1
Const MAX_VERTS = 200
Const LAST_VERT = MAX_VERTS - 1

‘ID for rotations/translations, etc about the various
axes
Global Const AXIS_X = 0
Global Const AXIS_Y = 1
Global Const AXIS_Z = 2
Global Const AXIS_MX = 3
Global Const AXIS_MY = 4
Global Const AXIS_MZ = 5

Global Const PI = 3.141593

Type vertex
coord(LAST_DIM) As Single
xProj As Single
yProj As Single

End Type

Type edge
pt1 As Integer ‘index to start point of edge
pt2 As Integer ‘index of end point of edge
partof As Integer ‘ID of part that it belongs to
mark As Integer ‘used in edge elimination

End Type

Type polyXD
numDims As Integer ‘number of dimensions in use
numParts As Integer ‘number of parts in poly
numVerts As Integer
vert(LAST_VERT) As vertex
numEdges As Integer
edge(LAST_EDGE) As edge

prisingly difficult to implement hidden-line
removal, and it is computationally expen-
sive, so any implementation is likely to be
slow with a semi-interpreted language like
Visual Basic.

Adventurous souls are welcome to try
the hidden-line problem. It’s a good idea
to make all the components in the scene
convex (that is, with no cavities) as this
makes the problem slightly easier. Con-
cave objects can always be broken up into
two or more convex objects (for example,
the single polyhedron shape in the pro-
gram here could be made convex if the tail
and main body were treated separately).
Once there is hidden line capability in
place, the object can be made more inter-
esting with some clever use of Windows
APIs (Application Programmer Interfaces)

which allow the faces to be filled with
colour, rather than displaying a simple
outline drawing, as at present.

As it stands, the program makes a
rather poor flight simulator and with some
mathematical effort could be made to
work more like a real flying aeroplane.
The intention here is to simulate what is in
effect a radio-controlled plane, since the
view in the window is of the plane rather
than from the plane. Some extra effort is
needed with the matrix transformations so
that the plane always rotates about its
own axes rather than the invisible, fixed,
co-ordinate axes.

Once this has been done, it is only nec-
essary to move the plane in the direction
in which it is pointing. Obviously, real
planes (Harriers excepted) don’t fly side-

ways, backwards or vertically under nor-
mal flying conditions; so this plane could
be made to simply follow its nose, possi-
bly in conjunction with a throttle, to deter-
mine how much it moves after each
redraw.

