
Visual Basic shields the programmer
from many of the complexities of

Windows programming. This is both a
strength and a weakness in the language
— a strength because it makes Windows
application development comparatively
easy, and a weakness because it prevents
the programmer from controlling what
happens beneath the surface of the pro-
gramming environment. Or does it?

Anything to Declare?
The VB “Declare” statement is the escape
clause that allows a program to get to grips
with Windows internals. It provides a great
way to extend Visual Basic’s functionality.
In essence, “Declare” can be used to
specify a linkage to the routines in any
Dynamic Link Library (DLL) file, so that the

programming environment.
To get a better picture of what to do

with these routines, the Visual Basic Pro-
grammer’s Guide to Windows API (Daniel
Appleman, Ziff-Davis Press) makes for
ideal bedtime reading. The Microsoft
Developers Network (MSDN) CD-ROM is
another option. It is packed with hints on
useful API calls for the Visual Basic pro-
grammer, alongside a lot of other informa-
tion on C, Access, FoxPro and other
Microsoft development tools. In an
inspired move, Microsoft has extracted the
VB-specific material from the MSDN and
made it available directly to VB program-
mers by including the material on the VB
4.0 CD-ROM. Unfortunately it has been
excluded from the Standard Edition, but
Professional and Enterprise users get it.

Back to Basics
This month we will pick up on some of the
hints given on the MSDN/VB 4.0 and show
how they can be applied to a plain and
simple Visual Basic program, called
VBAPI. It is worth mentioning that there is
no need to upgrade to VB 4.0 in order to
try out these techniques. They will work
quite happily with version 3.0.

Figs 1 to 3 illustrate VBAPI in action.
Fig 1 shows how it can be used to min-
imise the Program Manager. This is some-
thing that might be required just after a
program is loaded, as it gets rid of dis-
tracting background clutter. In a real appli-
cation the code to do this would probably
be put in the Form_Load event handler.

Fig 2 shows how another application
can be terminated under VB control. In a
real application this could be a useful trick
for freeing up memory, or for preventing an
application from running alongside some

H A N D S O N ● L O W L E V E L

3 2 8
P E R S O N A L C O M P U T E R W O R L D
D E C E M B E R 1 9 9 5

DLL routines can then be called from the
VB program in the usual way. “So what?”
I hear you say. The point is that virtually
the whole of Windows is implemented on
the back of a handful of DLLs. Knowing
how to use them opens doors.

There lies the catch. Ideally, to make
full use of the DLLs you should have a
good understanding of the way Windows
works beneath the surface, and have
access to some good supporting docu-
mentation for reference and guidance.
Visual Basic (Professional)’s API (Applica-
tion Programming Interface) Help file con-
tains all the common Declares and
provides a valuable tool. There is also a
useful SDK (Software Development Kit)
Help file that gives a description of how
the routines can be used from within a C

Scratching the surface
With a little know-how, Visual Basic can give the
programmer more control over Windows’ behind-
the-scenes operations. Mike Liardet looks at ways
to access DLL files, the backbone of Windows,
through a Visual Basic program called VBAPI.

Fig 1 Minimise/Maximise PM

“Minimise PM” minimises Program Manager to an icon, and “Maximise PM” brings it back to full size. The code behind the

“Minimise PM” button would normally be put into an application’s Form_Load

H A N D S O N ● L O W L E V E L

other incompatible task — such as a
Backup application. Fig 3 shows the
manipulation of an INI initialisation file.
Just about every VB application could
make good use of an INI facility. Although
it could be implemented by using standard
VB file I/O, it is much simpler and more
elegant to use the standard Windows APIs
instead.

In pure VB terms there is nothing fancy
going on behind the scenes in VBAPI. We
just have a number of Declare statements
to provide access to the necessary API
calls, and each command button is imple-
mented with a few lines of code making

“hWnd”, “int”, “UINT” or “BOOL”, and so
on. Visual Basic has to make do with just
“integer” for all of these types, but in prac-
tice this does not cause major problems.
There is a similar variety of C types for
“strings” and “longs”, but in all cases the
API call can still be made to work in VB if
plain old “string” or “long” are used in the
declaration, as necessary. Notice that all
the parameters to API calls must be
declared in VB as “ByVal” — this just
makes sure that VB delivers the argu-
ments in the right form to the underlying C
routine.

Callbacks
Although most of the DLLs are up for
grabs, there are one or two API calls that
simply cannot be handled by Visual Basic
at all. For example, some Windows func-
tions do “callbacks”, which means that one
of their parameters takes the address of a
function. As Visual Basic functions are
compiled differently from C, they cannot be
called from it. Thus there is no meaningful
address that can be given in this case. This
means that API calls with callback cannot
be used, or at least not used directly (there
is a way round the problem but we won’t go
into it here).

Also, Visual Basic itself suppresses
some of Windows’ functionality, and this
can render some calls unusable. For
example, there are Windows functions to
change the shape of the mouse pointer,
but the VB environment has its own ideas
about mouse display. This means that in
general these functions won’t work, and
you are likely to be stuck with the dozen or
so shapes that are predefined in VB itself.

For most common Windows functions
the only awkward area is the handling of

the necessary calls. Figs 4 to 6 give the
details of the API calls needed. These
show a few of the possibilities, once you
get to grips with the Windows API. The
major Windows DLLs offer around 1,000
others, then there are other supporting
DLLs, DLLs from third-party suppliers, and
so on — thousands of calls which are just
a declaration away.

Unfortunately, information on DLLs is
usually directed at the C programmer, so
the VB coder needs to read between the
lines when figuring out a DLL’s declaration
and use. C is richer in types than VB, so a
16-bit quantity in C might be typed as

3 2 9
P E R S O N A L C O M P U T E R W O R L D

D E C E M B E R 1 9 9 5

Fig 2 The “Terminate” button

Now you see it, now you don’t! The “Terminate” button can terminate any application — just give it the window title

Accessing an INI file. The various command buttons alongside the big text box

show how sections, entries and values in the INI file can be added, deleted,

changed or accessed

Fig 3 Manipulating an INI file

routines that return strings. The problem
here is that Visual Basic and C handle
strings differently. With C, the memory for
the string needs to be allocated before the
call, whereas a VB routine can find the
space dynamically.

The GetPrivateProfileString routine
(Fig 9) is a good illustration of this. It
returns a string in its fourth argument. To
call it from VB, an appropriate-length string
must be initialised before the call and
passed to the routine in this argument
position, with the length given as its next
argument. The function itself returns the
number of characters it placed in the
string, and these characters can easily be
extracted using the VB left$() function.

Fig 4 gives a selection of the Windows
functions which are used in the VBAPI
program by both the commands that min-
imise and maximise Program Manager,
and the command that terminates other
applications. IsWindow and ShowWindow
are straightforward. IsWindow determines
whether or not the given window handle is
valid, as opposed to being some arbitrary
integer value. ShowWindow sets the given
window’s visibility state (maximised or
minimised).

Can you handle it?
Unless the windows functions are being
used to manipulate a VB application’s

H A N D S O N ● L O W L E V E L

3 3 0
P E R S O N A L C O M P U T E R W O R L D
D E C E M B E R 1 9 9 5

IsWindow

C Declaration
BOOL IsWindow(hWnd)
HWND hWnd; /* handle of window, */

VB Declaration
Declare Function IsWindow Lib “User” (ByVal hWnd As
Integer) As Integer

Parameters
hWnd: identifies a window.
Returns: non-zero if the window handle is valid, other-
wise, returns zero (false).

GetWindow

C Declaration
HWND GetWindow(hWnd, wCmd)
HWND hWnd;/* handle of original window*/
UINT wCmd;/* relationship flag, */

VB Declaration
Declare Function GetWindow Lib “User” (ByVal hWnd As
Integer, ByVal wCmd As Integer) As Integer
‘Values for wCmd...
Const GW_CHILD = 5 ‘Identifies the window’s first child
window.

Const GW_HWNDFIRST = 0 ‘Returns the first sibling win-
dow for a child window; otherwise, it returns the first
top-level window in the list.
Const GW_HWNDLAST = 1 ‘Returns the last sibling window
for a child window; otherwise, it returns the last top-
level window in the list.
Const GW_HWNDNEXT = 2 ‘Returns the sibling window that
follows the given window in the list.
Const GW_HWNDPREV = 3 ‘Returns the previous sibling
window in the list.
Const GW_OWNER = 4 ‘Identifies the window’s owner.

Parameters
hWnd: identifies the original window.
wCmd: specifies the relationship between the original
window and the returned window. It can be set to one of
the constant values given above.
Returns: the handle of the window if the function is
successful, otherwise NULL (integer 0 in VB) - indicat-
ing either the end of the system’s list or an invalid
wCmd parameter.

An extract from a selection of Windows (with a big “W”)

functions for manipulating windows (with a small “w”). With

the given declarations these can be used from Visual Basic,

either to manipulate the VB application’s own windows, or the

windows belonging to another application

Fig 4 Manipulating windows

WritePrivateProfileString

C Declaration
BOOL WritePrivateProfileString(lpAppName,lpKeyName, lpString, lpFilename)
LPCSTR lpAppName;/* address of section*/
LPCSTR lpKeyName;/* address of entry*/
LPCSTR lpString;/* address of string to add*/
LPCSTR lpFilename;/* address of initialization filename*/

VB Declaration
Declare Function GetPrivateProfileString% Lib "Kernel" (ByVal lpAppName As
String, ByVal lpKeyName As Any, Byval lpDefault as Any, ByVal
lpReturnBuffer As String, cbReturnBuffer as Integer, ByVal lpFileName As
String)

Parameters
All string parameters point to null terminated strings, which are case
independent, and so can contain any combination of upper and lower case
characters
lpAppName: specifies the section containing the entry.
lpKeyName: specifies the entry whose associated string is to be retrieved.
lpDefault: specifies the default value for the given entry if the entry
cannot be found in the initialization file- must never be NULL.
lpReturnBuffer: receives the character string.
cbReturnBuffer: receives the size, in bytes, of the buffer pointed to by
the lpReturnBuffer parameter.
lpFilename: names the initialization file.
Returns: the number of bytes copied to the specified buffer, not including
the terminating null character.
Definitions of two of the Windows “profile” functions that can be used to manipulate

INI initialisation files

Fig 5 Definitions of Windows profile functions

H A N D S O N ● L O W L E V E L

3 3 1
P E R S O N A L C O M P U T E R W O R L D

D E C E M B E R 1 9 9 5

MICROMART
CLASSIFIED

own windows (where the control’s hWnd
property can return a window handle), it is
first necessary to find the window’s handle.
FindWindow is needed here. It retrieves the
handle of a window given either its class
name (not so useful from VB) or title.
GetWindowLong retrieves extra informa-
tion on a window, as a long value at the
specified offset into the extra window mem-
ory. There are many ways of using this, but
in VBAPI this function is just used to deter-
mine whether or not a window is disabled.

It is often necessary to iterate through all
the windows to find one with a particular
attribute, or else to process them all in
some way. GetWindow can be used for
this. It retrieves the handle of a window that
has the specified relationship to the given
window, searching the system’s list of top-
level windows, their associated child win-
dows, the child windows of any child
windows, or any siblings of the owner of a
window.

Windows has several APIs for manipu-
lating INI files, but there are just two main
functions that can do almost everything

between them — WritePrivatePro-
fileString and GetPrivateProfileString
(Fig 5). WritePrivateProfileString copies
a character string into the specified entry
of a section of the specified initialisation
file. If the file does not exist, it is created.
If the section does not exist, it is created;
and (surprise, surprise) if the entry does
not exist in the specified section, then
that too is created. It is also possible to
delete information from the INI file using
this function. If the entry parameter is
given as 0, the entire section is deleted.
If the string parameter is given as 0, then
only the entry specified by the lpKey-
Name argument is removed.

INI file manipulation made easy
WritePrivateProfileString can also help
track down the INI file. If the lpFilename
argument does not contain a fully quali-
fied path and filename for the file, it
searches the Windows directory for the
file. If the file does not exist, it creates

PostMessage

C Declaration
BOOL PostMessage(hWnd, uMsg, wParam, lParam)
HWND hWnd; /* handle of the destination window*/
UINT wMsg; /* message to post, */
WPARAM wParam; /* first message parameter*/
LPARAM lParam; /* second message parameter*/

VB Declaration
Declare Function PostMessage Lib “User” (ByVal hWnd As Integer, ByVal wMsg
As Integer, ByVal wParam As Integer, ByVal lParam As Long) As Integer
‘Alterantive value for hWnd
Const HWND_BROADCAST = &HFFFF

Parameters
hWnd: identifies the window to which the message will be posted
wMsg: specifies the message to be posted.
wParam: specifies 16 bits of additional message-dependent information.
lParam: specifies 32 bits of additional message-dependent information.
Returns: nonzero if the function is successful, otherwise, zero (= false).

The PostMessage function, used for communicating with other windows or applica-

tions

Sub cmdMinPM_Click ()
Dim hWnd As Integer, I As Integer
hWnd = FindWindow(0&, “Program Manager”)
If hWnd <> 0 Then

I = ShowWindow(hWnd, SW_SHOWMINNOACTIVE)
End If

End Sub
ShowWindow can be used to minimise any application. Here is how it minimises the

Program Manager

Fig 7 ShowWindow

Fig 6 PostMessage

the file in the Windows directory. If lpFile-
name contains a fully qualified path and
filename and the file does not exist, it cre-
ates the file in that directory as long as the
directory exists. Note that it is considered
bad practice to create INI files in the Win-
dows directory, as it makes it difficult to
fully de-install an application.

GetPrivateProfileString retrieves a
character string for the specified key from
the specified section in the specified ini-
tialisation file. It searches the file for an
entry that matches the name specified by
the lpKeyName parameter under the sec-
tion heading specified by the lpAppName
parameter. If the entry is found, its corre-
sponding string is copied to the buffer. If
the entry does not exist, the default char-
acter string specified by the lpDefault
parameter is copied. If the key is given as
0, all entries in the section specified by the
lpAppName parameter are copied to the
buffer specified by the lpReturnBuffer
parameter. If the filename parameter does

H A N D S O N ● L O W L E V E L

3 3 2
P E R S O N A L C O M P U T E R W O R L D
D E C E M B E R 1 9 9 5

Sub cmdGetValue_Click ()
Dim FileName As String
Dim lpAppName As String
Dim lpKeyName As String
Dim lpDefault As String
Dim lpString As String
Dim nBytes As Integer
Dim x As Integer

FileName = app.Path & “\demo.ini”
lpAppName = “Colours”
lpKeyName = “TitleBar”
lpDefault = “Not Found!!!”
lpString = Space$(100)
nBytes = 100
x = GetPrivateProfileString(lpAppName, lpKeyName, lpDefault, lpString,

nBytes, FileName)
MsgBox “[Colours] TitleBar=” & Left$(lpString, x), 0, “Get Value”
RefreshINI

End Sub
GetPrivateProfileString can access any value in an INI file, but it’s a little tricky to use

from within VB

Sub cmdTerminate_Click ()
txtTerminee = Trim$(txtTerminee)
Select Case TaskKill(txtTerminee)
Case TASK_NOT_FOUND

MsgBox txtTerminee & “ is not running”
Case TASK_KILL_FAILED

MsgBox txtTerminee & “ is not answering”
Case TASK_WAS_DISABLED

MsgBox txtTerminee & “ is disabled”
Case TASK_WAS_ME

MsgBox txtTerminee & “ is myself”
Case TASK_KILLED_OK

MsgBox txtTerminee & “ has been killed”

PCWContacts
Mike Liardet is a freelance programmer
and writer. He can be contacted via the
PCW Editorial office or on email as
mliardet@cix.compulink.co.uk

End Select
End Sub

Function TaskKill (ByVal vsTaskTitleOrClass As String)
As Integer

(Our cover disk has full details of the remainder of this code)

End Function

Using the PostMessage API call to terminate another

application

The full code for this month’s Low Level is on
the cover disk given with this issue of
Personal Computer World.

PCW Cover Disk

Fig 8 The PostMessage API

Fig 9 Accessing an INI file value

not contain a full path, it searches for the
file in the Windows directory.

Much of the low level communication
between applications, and even within an
application, is handled by “messages”.
Windows message handling is a complex
topic, but you don’t need to know the ins
and outs in detail to use messages.
PostMessage (Fig 6) is the key routine. It
places a message in a window’s message
queue and returns without waiting for it to
process the message. Messages in a
message queue are retrieved by calls to
GetMessage or PeekMessage (neither
needed by VBAPI). If the hWnd parameter
is set to HWND_BROADCAST, the mes-
sage is posted to all top-level windows,
including disabled or invisible unowned
windows. The routine should not be used
to post a message to a control.

Figs 7 to 9 show how these functions
can be put together to implement the vari-
ous commands in VBAPI. Only the key
code is shown, but the full program is

available on the cover disk. Fig 7 shows
how to minimise Program Manager. First,
find the handle for the window whose title is
“Program Manager”, then use ShowWin-
dow with the command SW_SHOWMIN-
NOACTIVE to minimise it. This code won’t
work if the title of the Program Manager
window is changed, as it is for example
when running under Windows NT, but
there are ways around this.

Fig 8 shows how to kill a task. The main
code to do this is in the routineTaskKill,
which kills the window with the given task
or class name. Again, FindWindow is used
to find the window. There is some extra
complexity in the routine to handle the
case when the task being killed is the appli-
cation itself or if the window is disabled, but
for most cases it posts two messages,
WM_CANCELMODE and WM_CLOSE, to
the window, in order to kill it. Note the use
of DoEvents: this makes sure that the
recipient window gets a chance to clear its
message queue and process the two new
messages, when VBAPI relinquishes the
processor.

One example of the INI file manipulation
code is given in Fig 9. The other INI com-
mands are very similar to this. Notice the
RefreshINI command at the end of the rou-
tine. This is placed at the end of all the INI
commands. It reads the INI file, using stan-
dard VB file I/O, into the VBAPI form’s text
box alongside the command buttons, pro-
viding instant verification that the com-
mand is working correctly.

