
WordArt
Microsoft WordArt is a nice little add-in that
lets you embed nifty font attributes into
your programs. If you own any Microsoft
products, you probably have this program
on your computer.

To insert a WordArt object:
1. Choose Edit, Insert Object in Access (or
click the Object Frame Tool on the
Toolbox toolbar).
2. Depending on your version, choose
Create New and select Microsoft
WordArt2 (or if you only have 1.0,
choose that, and click OK).
3. Type your text. Note the toolbar and
menu is Word Art’s.
4. Click the first dropdown list, “Plain
Text”, and choose the flow you would
like your text to have. (You probably can
see the effect of this in the background
as you work.)
5. Choose Format, Stretch To Frame
(or use the 7th tool from the right) so
that the text will fit in its frame if you
resize it back in your program.
6. Choose Format, Shadow and pick a
shadow style and colour if you want
one (or click the second button from
the right).
7. Choose Format, Border or click the first
button on the right to choose a border
colour and thickness for the text.
8. To rotate or stretch the text, choose
Format, Rotation And Effect or click the
fourth button on the right. With this option
you can increase or decrease the amount
of stretch, as well as rotate your text.
9. If you want to colour your text or add a
pattern to it, choose Format, Shading or
click the third button from the right.
10. To return to your program, simply click
out of WordArt.

not at the end of the report, it brings you to
the end of the current page; the second
time you press it, you go to the end of the
report; the third time, you return to the
report writer. If you mistakenly think you’re
not at the end of the report and press
Ctrl+Break twice, you will exit the output
screen and then the report writer without
saving any changes. Take heed.

The need for speed
Microsoft recently looked at a
whole collection of databases
“from the wild” –– databases
that real users were running in a
cross-section of real
companies, not just from the

H A N D S O N ● D A T A B A S E S

3 1 2
P E R S O N A L C O M P U T E R W O R L D
F E B R U A R Y 1 9 9 6

11. To edit the WordArt object, just double
click it and you will be back in Word Art.
Paradox pause
The fastest way to get out of an operation
in Paradox is to press Ctrl+Break
(Ctrl+Pause). Fast it may be, but it’s also
very dangerous. In most cases in
Paradox, pressing Ctrl+Break will end a
task and return you to the main menu, but
nothing you were doing will be saved.
Here are some of the places you can use

this command: to exit the edit
mode without saving changes;
to exit the sort screen without
executing a sort; to exit the
Modify Restructure screen
without saving changes; and to
exit the Create mode without
saving your work.

Ctrl+Break is particularly
dangerous in the Report Writer.
When you are in the Output to
screen mode, the result of
pressing Ctrl+Break depends
upon where you are. If you are

If database users need indices to keep speed up, Mark Whitehorn asks why
70 percent of databases don’t maintain an index? Plus Query optimisation,
and using the Count function

Speed is of the essence

Left Using WordArt to create a

text object for use in Access

Below The WordArt object

embedded in the form.

Restrained and dignified, I

hope you’ll agree

H A N D S O N ● D A T A B A S E S

Fortune 500. One surprising
fact that emerged was that
about 70 percent of those
databases had no indexing
whatsoever (presumably apart
from the Primary keys). Since
indices are a vital component
in keeping a database running
rapidly, this may well account
for users’ frequent complaints
about the tardiness of their
databases.

Access 95 now boasts the
ability to create indices for you
automatically (as do some
other RDBMSs), and this is to
be applauded. However, it is
still worth knowing why an
index should make such a
difference to data retrieval
speed. Back in the December
issue I promised to cover the
general topic of speed, so here
we go.

Speed is one of a range of
factors (including usability,
data integrity and scalability)
which are all-important when
choosing an RDBMS. Speed
isn’t the be-all-and-end-all, but
it is pretty important. Speed is
influenced by a very large
number of factors which
include (not in order of
priority):
● hardware (speed of
processor, amount of
memory, etc.);
● disposition of data across
the hardware;
● query optimisation;
● size of tables;
● number of tables;
● disposition of data within
tables; and
● indexing

I don’t intend to digress into
a hardware discussion here,
but the most common advice I
hear is: “Buy more memory”.
The disposition of data across
hardware platforms is all
bound up with the machines
themselves.

Query optimisation
Query optimisation is more
germane, since it is under
software control. It is important
in consideration of speed,
because not all requests for
the same information are identical. It is
possible to express several requests for

3 1 3
P E R S O N A L C O M P U T E R W O R L D

F E B R U A R Y 1 9 9 6

Count me in

Well, I asked for tips and tricks, and here is one in the
form of a question from Stuart Elliot, which he rapidly
followed with the solution.

“I am trying to use the Count() function to return the
number of records that match the selection Criteria in a
selection Query. The function normally returns the
correct number, when at least one record matches the
Query’s selection Criteria. However, when no records
match this Criteria, the function returns an #Error code.
The Count function is being used in a “text box” on a
sub-report, based on the aforementioned Query. Is there
any way I can get the Count function to return a zero (i.e.
“0”) when no records match the Query’s selection
Criteria?” Before I could answer this, the following
arrived:

“I now have an admission to make. I found the
answer to my problem, and in the MS Access User
Guide at that [he says, embarrassed. No shame in that:
how many of us actually read all the manuals? — MW]
The information is on page 130 of the User Guide for
Access v1.1.

The answer is to create a second query that contains
the first query. Here are the steps:
1. Create a new selection query.
2. “Add” the first query to the second (instead of a table).
3. In the second query’s first “Field” cell, enter “Count(*)”
without the quotes.
4. Select “Save As” for the second query and give it a
meaningful name.

How it works: The first query selects a record set
according to its selection criteria. The second query
generates a total of the number of records
returned/selected by the first query. The * in the Count
function means count ALL records in the record set
(returned by the first query, in this instance), even those
with Null fields.”

I love problems that solve themselves.

exactly the same data in a variety of
different ways. Despite the fact that the

Using nested queries to ensure that Access can

count right down to zero. The two tables are shown

at the top of the screen. The query on the left counts

the number of times Potter has bought bolts (zero).

The query on the right counts the number of records

produced by the first query (zero as well). The result

of this second query will display properly on a form

about 20 percent
faster.

This is a simple
example of
optimisation, and most
RDBMSs would handle
it without any trouble.
Many queries of multi-
table databases are
much more complex
than this, in particular
those which involve
queries which are
nested to several
levels. For example:
“Of the employees who

have dealt with client X within the last six
months and sold her item Y, how many
have sold product Z in the last three
months to clients in countries with a GNP
greater than that of country A, and who
have a bad credit rating with more than
two of our credit sources?”

An optimiser should be able to arrange
for this request to be processed efficiently.
However, the optimiser has to do more
than simply decide the order in which the
tables are processed. For example, in a
multi-user system, an optimiser might
receive several queries at about the same
time, which require a specific table to be
queried in the same way. Clearly it is more
efficient to simply query this table once
and “share” the resulting answer between
the incoming queries.

Query optimisers are complex entities,
and you are unlikely to want to write your
own, so you might wonder why I have
included them in a list of factors which you
can look at to improve performance. The
crucial point is that not all optimisers are
equally efficient; so the choice of optimiser
can have a significant effect on speed.

What it is to be normal
The size and number of tables and the way
the data is spread among them, can clearly
have a marked effect upon performance.
However, the interaction of these effects
can be complex.

Consider a badly designed database
where little or no attempt is made to
normalise the data. It contains a small
number of tables, each stuffed full of
duplicated data; result –– a glue-like
response. Now consider a properly
normalised database. Lots of small, neat
tables, no duplicated data; result –– a
glue-like response.

What? They can’t both be bad, can
they?. Let’s consider why each of these
(admittedly extreme) examples might be
slow.

In the first, non-normalised example,
the tables are “artificially” large because of
all the repeated data, so the RDBMS has
to look at huge numbers of records in
order to find the ones you seek.

In the second example, the tables don’t
suffer from duplicated data, but there are
so many tables that the RDBMS spends
an inordinate amount of time opening and
closing them, checking the data dictionary
for join information, maintaining referential
and data integrity, that it has little time left
for the users and their queries.

This is not to say normalisation is a
waste of time. In general it’s wonderful, and
should certainly be regarded as the default
choice. Like all tools though, it doesn’t have
to be used blindly.

Two’s company
In a database which is used by several
users, some entering data and some
querying the database, those who are
querying it are generally managers, trying
to see the historical trends within the data.
The problem is that the “management”
queries are large and complex, and interact
badly with the inputting work. Essentially
there are two databases needed here ––
one which accepts data input, and the other
which is a data pool or “data warehouse”.
Once we make that momentous decision,
we should also be able to see that the need
for normalisation differs between the two.

More on this, and indexing, next issue.

H A N D S O N ● D A T A B A S E S

3 1 4
P E R S O N A L C O M P U T E R W O R L D
F E B R U A R Y 1 9 9 6

PCWContacts

Mark Whitehorn welcomes readers’
correspondence and ideas for the
Databases column. He’s on
m.whitehorn@dundee.ac.uk

answer table will be the same in all cases,
the queries can take wildly different times
to run.

If this sounds impossible, consider the
example in Fig 1 (page 314). Suppose you
have a table of 200 customers (you’ll have
to imagine the missing 196 and 39994
records respectively).

Assume that we only sell four items ––
nuts, bolts, washers and screws –– and
that they all sell equally well.

Suppose you were performing the
search manually and wanted to find all of
the orders which have been placed by
Potter for Bolts. There are several
strategies you could adopt:

You might look through the 40,000
records in the ORDER table and extract
every record which shows a sale of bolts
–– approximately 40,000 / 4 = 10,000
records. Then you could search through
the CUSTOMER table, and find out that
Potter has [Customer ID] 7. Finally, you
could extract from your table of 10,000
records all those which have [Customer
ID] = 7; perhaps 500 records.

But, of course, you wouldn’t really do

Customer ID Name Blah
1 Samenson Blah
2 Frogstat More Blah
3 Wilstein Even More
200 Potter More Blah
and their orders which number 40,000:
Order No Customer ID Item Quantity
1 2 Nut 200
2 200 Bolt 500
3 2 Washer 600
4 3 Screw 300
5 2 Nut 350
40000 1 Bolt 200

The two tables used in the discussion on

optimisation

Fig 1 Nuts and bolts

this. You would
search through the
CUSTOMER table,
and find out that
Potter has
[Customer ID] 7,
and then you would
look through the
40,000 records in
the ORDER table
and extract every
record which had
[Item] = “Bolt” and
[Customer ID] = 7.

Why would you
do it that way?
Because the first

strategy searches through a total of
50,200 records, the second only 40,200;
so the second should be (simplistically)

