
H A N D S O N ● D A T A B A S E S

3 0 6
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 5

Filleted Codd
Ted Codd’s rules are quite involved; so Mark
Whitehorn has wrapped up an easily digestible
takeaway message on the subject of RDBMSs,
with further reading recommended.

Over the past few months, I have
covered the 13 rules that Ted

Codd originally defined for RDBMSs. As I
mentioned at the start, there is a fine line
between accuracy and verbosity. Even
though I have carefully trodden this line, it
has taken a long time to cover all the rules;
so long that it may be difficult to see the
take-home message. Additionally, some
of these rules have become less meaning-
ful as the years have passed and
RDBMSs have evolved.

With this in mind, it seems worthwhile

to try to determine some of the important
characteristics we should expect from a
modern RDBMS running on the PC. This
does not include heavyweight, mission-
critical RDBMSs, but it does include the
Access, Paradox, dBase, Approach, Delta
5, dataEase, SuperBase type of products.

Before anyone asks, I’m not presenting

these as Whitehorn’s Rules (I haven’t
even numbered them from zero); they are
not definitive, neither are they complete.
View them more as a starter set designed
to promote discussion. If you think any are
wrong, incomplete, or missing, then
please let me know.

The following are not in order of impor-
tance:
• An RDBMS must store data as values in
tables and not in any other way.
• It must be possible to declare a primary
key for each and every table and it must

be possible to use multiple
fields to form a primary key.
• The RDBMS must ensure
that any field declared as a
primary key, or part of a pri-
mary key, is not allowed to
contain null values.
• Every piece of information in
a table must be accessible by
using a combination of the
table name, field name and
primary key value.
• Null values must be not be
treated as equal in joins.
• Joins on non-identical field
types must not be allowed.

• When joins are performed on tables con-
taining existing data, the referential
integrity of that existing data must be
checked and the join must fail if the data
violates the proposed join.
• An RDBMS must maintain a data dictio-
nary for each database which stores infor-
mation about the joins between the tables,
referential integrity, etc. Access to the
tables which circumvents this data dictio-
nary should be forbidden.
• Rules controlling data entry to specific

fields must be storable in the data dictio-
nary and applied at the table level.
• The RDBMS must have a comprehen-
sive control language (for example, SQL).
• In addition, the RDBMS must have a GUI
interface which allows end-users to per-
form simple tasks such as querying,
reporting etc.
• The results of queries (answer tables)
should, whenever possible, offer the
option of editing.
• It must be possible to alter multiple
records with a single command.
• The RDBMS must support referential
integrity, with cascade update, cascade
delete and so forth.
• The RDBMS must support the mainte-
nance of indices as well as sorting.

I must stress that this list merely repre-
sents a starting point for discussion so,
contributions please. Meanwhile, I can
explain some of my choices:

“An RDBMS must store data as values
in tables and not in any other way” — this
is the Same as Codd’s rule 1 (see PCW,
March 1995).

“It must be possible to declare a pri-
mary key for each and every table, and it
must be possible to use multiple fields to
form a primary key” — most Windows
RDBMSs support primary keys but not all
support the use of multiple fields as pri-
mary keys. I find this to be a mind-boggling
omission for the simple reason that if they
are not supported, it is impossible to make
a many-to-many join.

For those who aren’t familiar with the
concept: suppose you want to keep a
database which stores information about
Students and the Courses they attend.
You need a table for each, but how do you
store the information about which student
attends which course(s)? The problem is
that each attends many courses and each
course is attended by many students.
Many-to-many relationships are common
in the real world and hence they are com-
mon in databases.

If you were foolish, you might try to
include a field in the Student table for
every course that the student may attend.
But how many fields do you allow? The
average student might attend six courses
a year but the very industrious could go to
ten — an exceptionally gifted student
might want to attend 12; so what if your
system was to allow only for eight?

A much better way is to use a Students
table only to store data about the students
themselves; a Courses table to store data
relating to the actual courses; and a third
table to store information about who is
attending which course. A brief examina-

Fig 1 The gang screen in Paradox 5.0 for

Windows

H A N D S O N ● D A T A B A S E S

tion of the tables in Fig 2
should be enough to allow
you to determine that Mike
Wellington is attending
Cytogenetics and Intro. to
Polymorphism (among oth-
ers). However, Sally Jones
isn’t attending either of
those courses (despite
attending 11 others). It
should also reveal that if
she wants to add Cytoge-
netics to her list of courses,
all that is necessary is to
add a single record to the
Attend table with the entries
2 and 2.

Of course, you don’t
actually go to this table and
write these numbers in; you
use an attractive GUI inter-
face which allows you to
pick the student’s name
from one combo box and
the course from another.
Then the system writes the
numbers in for you.

So, what has all this to
do with multiple fields in pri-
mary keys? Hopefully, it is
clear that ID has to be a pri-
mary key in the Students
table to ensure that each
student has a unique num-
ber. Similarly, CODE must
be a primary key in
Courses. However, neither
ID nor CODE on its own,
can be the primary key in
the Attend table. Instead,
the primary key must be composed of both
fields, used together. If both are used, the
table can have multiple entries in the ID
field, as it can in the CODE field as follows:
ID CODE
1 2
1 3
2 2
But the following is forbidden:
ID CODE
1 2
1 2

This actually matches reality very
well since the same student, no matter
how gifted, cannot attend the same
course more than once (at least, not
simultaneously).

Any RDBMS that doesn’t support multi-
ple fields as a primary key cannot manage
many-to-many joins effectively.

Time wasting
Oh no, not another another gang screen

(Fig 1). This time it’s Paradox for Windows
5.0:
1. Turn ScrollLock on, NumLock on, and
CapsLock off.
2. Select Help, About.
3. Press Alt Shift Z (that is, the three keys
simultaneously).
4. Hold down Ctrl and Left click the logo in
the Help About box.

Assuming that the wind is from the
South, and that there are no more than
two penguins in the room with you, the
gang screen will appear (Fig 1) — note the
snide remark about ducks.

To understand this, you need to know
that: the code name for Access was Cir-
rus; and that the original Access gang
screen shows a pair of ducks (Pairodux),
which are destroyed by a lightning bolt
from a small, fluffy cloud.

3 0 7
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 5

MICROMART
CLASSIFIED

See the join?

Fig 2 (top) Using a third table to create a many-to-

many join between two others (see page 306)

Fig 3 (above) The solution to the problem of gridding

data (see page 309)

H A N D S O N ● D A T A B A S E S

3 0 9
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 5

PCWContacts
Mark Whitehorn welcomes readers’
correspondence and ideas for the
Databases column. He’s on
penguin@cix.compulink.co.uk

When I started to run through Ted Codd’s original rules some months ago, I promised a book
list of recommended texts and asked readers for suggestions. Thanks to all who
contributed — I have grouped the books below (numbering system after Ted Codd):

Group 0: Readable, informative, non-rigorous.
Title Author Publisher ISBN
The Relational Database Carter Chapman and Hall 0-412-55090-3
SQL and Relational Databases Vang Microtrend 0-915391-42-2

Group 1: Less readable, still informative, more rigorous.
Title Author Publisher ISBN
An Introduction to

Database Systems Date Addison Wesley 0-201-54329-X
Understanding Relational

Databases (with
examples in SQL-92) Pascal John Wiley & Sons 0-471-585-38-6

Group 2: Rigorous, not bedtime reading unless you’re rather weird.
Title Author Publisher ISBN
Relational Database

Writings 1985 -1989 Date Addison Wesley 0-201-50881-8
Relational Database

Writings 1989 -1991 Date with Darwin Addison Wesley 0-201-54303-6
Relational Database

Writings 1991 -1994 Date Addison Wesley 0-201-82459-0
Fundamentals of Database

systems and Navathe Elmasri Benjamin Cummings 0-8053-1753-8

Group 3: Completely turgid, totally rigorous, not worth reading unless you are a masochist,
but essential to have on your bookshelf. If you want to appear a true professional, scuff up
the book a little so that it appears well-thumbed and annotate the margin occasionally in
pencil. These annotations are better if they appear cryptic:
“!” is a good one.
“Really!” is excellent
“Really!?” is even better.
“No” is dangerously authoritative and best avoided
“Ted now considers this incorrect — Pers. Comm.” is the ultimate, as long as you think you
can carry it off.
Title Author Publisher ISBN
The Relational

Model for Database
Management Version 2 Codd Addison Wesley 0-201-14192-2

Joking apart, if you really want to know where Ted Codd’s thinking went after the original
rules, it’s all in this book. But don’t expect a light read. Incidentally, Codd deals with an inter-
esting problem in this book: in 1988, H. W. Buff published a paper entitled “Why Codd’s rule
No. 6 Must Be Reformulated” proving that Rule 6 is flawed. Rule 6 says that essentially, all
views (answer tables) should be updatable if an algorithm can show that it is “safe” to do so.
(This statement is rather simplified, but see PCW June 1995 for more detail.) Buff’s paper
shows that an RDBMS can never support this rule because “there does not exist any
algorithm which can decide, given any view, whether it is updatable or not”. In this book,
Codd has modified rule 6 by defining an algorithm which will identify a good percentage of
updatable views. I knew of the problem from Codd’s book but had never seen Buff’s paper. I
am greatly indebted to Mike Jackson, a Reader in Software Engineering at the University of
Wolverhampton, who sent me a copy. For most of us, the fact that this rule is unenforceable
under all circumstances is not crucial. What does matter is that RDBMSs like Access will let
you edit most answer tables from queries, and RDBMSs like dBase do not.

Recommended reading

Too small
“In the June issue, the screenshots con-
taining SQL code are tiny and very difficult
to read. Could you put the SQL in the text
body where it can be more easily read?”
Yes, and sorry for the problem.

On the rack
“I hope you can help me with a query
regarding Microsoft Access Reports. I
have a table of data containing a person’s
name and a grid reference (e.g Mr Jones.
A1). I would like to display a grid in a report
with column headers from A to Z, and row
headers from 1 to 24. I would then like to
place the person’s name in the corre-
sponding grid reference. For example:

A B C
1 Mr Jones
2
3
…and similarly throughout the grid.

I would be grateful if you could give me
some pointers as this is giving me some
headaches, and sleepless nights.”
I think that a query would serve you better
than a report in this instance: I have made
a small table (fig 4) and built a cross tab
query which should satisfy your needs.
The SQL for the crosstab query is:
TRANSFORM First(Grid.Name) AS
[The Value]
SELECT Grid.Row, First(Grid.Name) AS
[Row Summary]
FROM Grid
GROUP BY Grid.Row
PIVOT Grid.Column;

I have made the fields Column and
Row the joint primary key, which means
that you can only ever have a single entry
for each grid location. If you want the grid
to be complete (that is, to show every pos-
sible cell, irrespective of whether or not it
contains a person’s name), you can add
every single grid location to the table and
leave the value in the name field null. Or,
you could just add A1 to A24 and B1 to Z1
to the table, whereupon the answer table
will obligingly show every possible loca-
tion. If you don’t want to see the Row Sum-
mary (which is inserted by the Access
wizard), simply delete it from the query.

Questions & Answers

