
H A N D S O N ● D A T A B A S E S

Signalling problems
“I am writing a multi-user database appli-
cation and want to be able to signal
between two workstations, so that when
one finishes a process, the other can
start its work. How do I do this?”

Workstations on a server-based network
(which I presume this to be) don’t usually
signal to each other directly, either in a
database or any other applications.
Instead they communicate with the
server, so the best way to solve your
problem is to use the server as the chan-
nel for communication. Create a table on
the server called (for want of a better
name) SIGNAL. This should have a sin-
gle Yes/No field called FINISHED, and a
single record, default value “no”.

Cause the first workstation to write
the value “Yes” into the field when it has
finished, and get the second workstation
to poll the value UNTIL it changes to
“Yes”.

You can make this more complex. For
example, you could adapt it to create a
new record every time the process
changes hands, and store in the same
table the time/date at which hand-over
occurs. This pre-supposes that you actu-
ally want to know when the processes
swap over, but this sort of information
can be extremely useful.

Looking for lotto
“I am using MS Access for Windows. I
have a 20-record file, each record having
six numerical fields. I wish to do a search
across all fields for six numbers. I know
that it is possible to find which fields
these are in individually, but is it possible
to search across all records for a set of
six numbers and find out which records
they are in and how many are in each?
As I have just acquired Access as part of
Office, I have no experience of its func-
tions or how it works. (For the record —
a pun, MW! — this is associated with
National Lottery numbers.)”
Mark Broadbent

I regard the National Lottery as a perni-
cious influence on the nation. However,
this is an interesting database problem
applicable to more than the lottery
alone, and hence worthy of study.

Traditionally, RDBMSs assume that
information will appear in a “known”
field. Thus, if you want to find a cus-
tomer called Smith, you search in CUS-
TOMERS.LASTNAME. However, the
results of the National Lottery (about

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

2 7 9
P E R S O N A L C O M P U T E R W O R L D

N O V E M B E R 1 9 9 5

MICROMART
CLASSIFIED

Codding about
Continuing with the list of suggested rules
for modern, PC-based RDBMSs, we have:
8. An RDBMS must maintain a data dictio-
nary for each database which stores infor-
mation about the joins between the tables,
referential integrity, etc. Access to the
tables which circumvents this data dictio-
nary should be forbidden.
A “data dictionary”, also known as a “cata-
logue”, is a centralised store of information
about the database. It contains information
about the tables: their number, names, the
fields they contain, data types, primary
keys, indices and so on. However, it
should also contain information about the
joins which have been established
between those tables: foreign keys, refer-
ential integrity, cascade update, cascade
delete and so on.

Incidentally, this usage of the term “cat-
alogue” should not be confused with its
use in dBase, despite the fact that both
usages are misspent in the same way. In
dBase, a catalogue is simply a container
for all components of the database: data
files, queries, forms, programs and such
like. There is no storage of information

was no centralised area where the rela-
tionships could be examined, so mainte-
nance was difficult. If you suspected a join
was being incorrectly supported, you had
to hunt through, and understand all the rel-
evant code, to find the area which was
compromising the data.

As PC-based RDBMSs have grown up
and come of age, there is now a strong
need for a data dictionary. Sadly it has
proved, shall we say, challenging to bolt a
data dictionary onto those RDBMSs with a
large installed base of users, code and
data files. The result is that none of the
classics (dBase, Paradox, FoxPro, etc)
have acquired one, even with the major re-
writes that these products underwent in
moving to Windows. Many people (or is it
just me?) feel that this was a major oppor-
tunity missed. The result for developers is
that maintaining the integrity of the data-
base remains their responsibility, and they
probably have other things to worry about.

Some “modern” products, like Access,
maintain a data dictionary and as a result
do not inflict this extra workload on the
developer. Less serious “modern” prod-
ucts, like Approach, which have chosen to
use the dBase file format, have inherited
the problems associated with that format.
9. Rules controlling data entry to specific
fields must be storable in the data dictio-
nary and applied at the table level.
For the same reasons given above, stor-
ing this kind of information centrally can
protect data and reduce the developer’s
workload. Sadly, no RDBMS implements
this as fully as it might. Most allow, say,
input masks to be defined as part of the
field definition so they are applied globally.
However, as we have seen in this column
over the last few months, input masks are
often inadequate for controlling the input of
real data such as telephone numbers and
postcodes. Often, more sophisticated con-
trols are needed. Most RDBMSs only
allow these to be applied at the form level;
it then remains the responsibility of the
developer to make each form enforce the
controls. The whole process leads to a
waste of valuable (and hence expensive),
human time and effort.

H A N D S O N ● D A T A B A S E S

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

2 7 8
P E R S O N A L C O M P U T E R W O R L D
N O V E M B E R 1 9 9 5

Onto a winner
Mark Whitehorn considers information storage,
data dictionaries and catalogues as part of his
ongoing examination of Codd’s rules, and the
National Lottery provides an interesting problem.

Questions & Answers

Lot1 Lot2 Lot3 Lot4 Lot5 Lot6
1 2 3 4 5 47
1 2 3 4 5 45
2 3 45 46 47 49

Lot1 Lot2 Lot3 Lot4 Lot5 Lot6
1 9 30 37 45 48

Lottery: the answer

Lottery: the guesses
Here are a couple of great tips from regular
Hands On contributor Shane Devenshire, of
Walnut Creek, California:
• “In Access, if you double-click the sizing
handles on the right-hand side of a control,
the control itself will ‘best fit’ its text. That is,
it will change size to contain exactly the text
in the control when you are in design view.”
Nice one, Shane. At least in Access 2.0 it

works with all of the resizing handles.
• “You can also use the keyboard to move
and resize controls. Move a selected control
with ALT and the arrow (cursor) keys; to size
the control, use CTRL instead of ALT.

“Surprisingly, even if you have Snap-to-
Grid activated, these keyboard methods
work without activating the Snap-to facility,
making them great for fine-tuning.”

Tips & Tricks

about the joins between the tables.
One of the major functions of a true

data dictionary is to enforce the constraints
placed upon the database by the designer,
such as referential integrity and cascade
delete. In the early days of the PC, none of
the “relational” DBMSs offered a true data
dictionary, but this wasn’t a major concern
for two reasons. Firstly, the early PCs were
very slow and incapable of manipulating
large, complex, multi-table sets of data.
Instead they tended to be used for fairly
simple, single-table work (address lists, for
example) so the deficiencies in the DBMS
didn’t show up as much as they might oth-
erwise have done. Secondly, few PCs
were running truly mission-critical systems,
so if the data became a little “damaged”,
who really cared? (Well, the companies
involved cared very much indeed, but the
software world wasn’t too concerned.)

So the early PC RDBMSs passed
responsibility for this level of control to the
programmer. This meant that writing a
totally secure database was perfectly pos-
sible in, say, dBase. The snag was that
you had to be a good programmer and it
took a great deal of effort. In addition, there

Fig 1 (top) The table LOTTERY stores

your lottery guesses; in this case I

have seven. Each week, into the table

LOTTERY WINNER, you write the six

winning numbers. Note that this table

also stores the number of “Matches

which are found between the winning

number and your guesses”

Fig 2 (above) Given that this week’s

winning numbers are 1,2,3,4,5 and 6, I

simply have to press the button

labelled “Press Me!” and the number of

matches appears

H A N D S O N ● D A T A B A S E S

which I know very little) can, I believe,
consist of six numbers. So, if you have
three guesses, they might be as shown
on page 279.

Now, given this week’s answer (also
page 279), I want to know how many
matches each guess has attained. In the
example given, two of my guesses con-
tain the number one, as does the correct
answer. This is easy to test for, since the
number one always occurs in Lot1.

However, two of my guesses have
the number 45, as does this week’s
answer. The trouble is that the number
45 is in Lot6 in one guess, Lot3 in

don’t sue me — check it manually first.
If you do win vast sums of money,
please remember that I helped you to
discover that you were a winner (hint,
hint).

Horses for courses
“Is it possible (using any mainstream
database) to request the database to
find the first record whose fields meet a
particular set of criteria (say record X),
search for the next occurrence of a
record whose “name” field matches that
of record X, then return to the first record
following record X which again matches
the required criteria?

“I’ve got a database of several years’
horse-racing results and I want to be
able to search for horses who display
particular characteristics; then search
forward in the database to see firstly
whether they ran again that season and
if so, whether or not they won, etc.”
Iain Simpson

I’ve never received a question about
gambling; and then two within a week.
It’s a perfect demonstration of the
Theory of the Clumping of Rare Events.

Use two queries. The first finds the
horses that match your criteria. For
example, the HORSES table contains
some minimal data about horses and
racing. I can use a query to find the
names of all the horses which have, for
argument’s sake, come second at Lud-
low (Fig 4).

The second query again looks at the
HORSES table, and it uses the names
returned by the first query as the criteria
for its search. So, if the first query
returns the name “Penguin”, the second
query returns all of the data in the
HORSES table which relates to the
horse of that name (Fig 5).

You can set up multiple query pairs
like these which look for different criteria.
Once set up, all you need to do is run the
second query in the pair (in this case the
one called “All Info for Horses Second At
Ludlow”). These sample queries and
table are also in the same database on
the cover disk.

For non-Access users, the SQL (Fig
6, alongside) may be useful.

another, and Lot5 in the actual
answer. To calculate the number of
numbers that match the answer, I
have to compare each number in a
given guess with every number in the
answer. (Given certain sets of num-

bers, every comparison isn’t necessary,
but it is easier to write code which checks
all combinations. This is less efficient, but
deciding whether a comparison needs to
be done takes more time than simply
doing all possible comparisons).

As I said above, most RDBMSs
assume that you know which field your
data will be in — the problem here is that
we don’t. The only solution I could dream
up involved code; can anyone find a solu-
tion using a query?

The complete application is on the
cover disk as GAMB.MDB, including all of
the code. You place your guesses into the
table called LOTTERY and the winning

answer into LOTTERY WINNER.
Then you open the form LOTTERY,
move to the record containing the cor-
rect winning number, and press the
button. The number of matches
appears on the right-hand side of the
form (Figs 1 to 3).

Before you use it, a word of cau-
tion: I haven’t tested this extensively,
so if it tells you that you have won a
fortune and then turns out to be lying,

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

2 8 1
P E R S O N A L C O M P U T E R W O R L D

N O V E M B E R 1 9 9 5

PCWContacts
Mark Whitehorn welcomes readers’
correspondence and ideas for the
Databases column. He’s on
penguin@cix.compulink.co.uk

Query 1
SELECT DISTINCTROW Name, Race, Place
FROM Horses
WHERE ((Race=”Ludlow”) AND (Place=2));
Query 2
SELECT DISTINCTROW Horses.Name, Horses.Race, Horses.Place
FROM [Second At Ludlow] INNER JOIN Horses ON [Second At Ludlow].Name =
Horses.Name;

Fig 6

Fig 3 It appears that I have won the

lottery, because one of my guesses

matches all of this week’s numbers.

Whoopeee!

Fig 4 (left, top) The table contains data

about the horses and the races they

have run. The query, top right, finds

all of the horses which have ever

come second at Ludlow. At bottom

right you can see the result of that

query: only one horse matches the

criteria. Fig 5 (left) At top left is the

query that you can see in Fig 4. At

bottom left, a second query is using

the results from the first one as its

criteria

