
As you might expect from the name, the
Caldera Preview releases have had

their share of minor bugs. Pest control is
being carried out through a mailing list
which is a kind of electronic conference
that works through your regular email box.
The mail server at the far end ensures that
whenever you address a message to a
particular recipient, in this case caldera-
users@caldera.com, your missive is
automatically re-sent to all the subscribers
to the mail group.

This is a simple, elegant and downright
Unixy way of running a private conference,
but it does have one snag. If your mail-
reading app is too simple-minded, it won’t
offer any way of separating the mail list
messages from the rest of your mail traffic.
The mail reader I use, Ameol (A Most
Excellent Offline reader) doesn’t know
how to sort mail, so on signing up to the
hyperactive Caldera list, my regular daily
correspondence quickly disappeared into
a blizzard of chat about Caldera.

I’m currently running the 32-bit version
of Ameol under Windows NT. Ameol is
primarily designed as a front-end to the
CIX conferencing system, but CIX also
handles my mail and uploads it to me
automatically whenever I go on line. Yes,
I suppose I ought to be exploring purer
Unix-based mail systems, and sendmail is
definitely on my agenda. But Ameol and
CIX have been my faithful postmen for
several years now, and I’m loath to fix ’em
when they ain’t broke.

The mailing list problem, however, was
on the point of driving me to settle down
with the O’Reilly “Sendmail” book, when I
came across an Ameol add-on, written by
Martyn Lovell. Called Mailsort, it’s an
electronic filtering system that checks
incoming mail and categorises it according

company will not after
all be coming out with
an X Windows
System to accompany
the product. One of
my hopes for Portage
was that it would
eventually fulfil my
ambition to unify
Windows NT and
Linux on a single

desktop under X, but I’m now going to
have to come to that via a different route.
Pity, because judging from the email that
flooded in when I first wrote about Portage,
it’s clearly a product that fills a gap. And as
a core Unix-on-NT product it continues to
work fine if you don’t mind sticking with the
older version of Windows NT.

I expect I’ll be coming back to Portage
when the compatibility problem is fixed,
but I think Consensys would probably be
wise to skip this present version and wait
for Windows NT to settle down first. I
gather that version 3.51 was originally
intended to be distributed with the
Windows 95-like interface, but the final
build of that didn’t arrive in time for
shipment. Hopefully, by the time you read
this Windows NT will be in sync with
Windows 95 and the updated version of
Portage will be winging its way to me.

Beating the clock
In common with many laptops, my faithful
Tonto has a suspend mode that shuts
down the system when you close the lid,
then restores everything next time you
open up the machine again. This seems to

H A N D S O N ● 3 2 - B I T

3 0 0
P E R S O N A L C O M P U T E R W O R L D
F E B R U A R Y 1 9 9 6

Chris Bidmead looks at ways of bug-bashing via a mailing list on Caldera
Preview, stands his ground on Emacs evangelism, and defies the old adage:
“Time waits for no man”.

A Most Excellent pest control

The 32-bit version

of Ameol, running

on Windows NT

to rules that you program into it. The
particularly nice thing about Mailsort for
me is that like Ameol itself, it comes in 16-
bit and 32-bit flavours, so I can run it on my
OS/2 system as well as under NT.

A hitch for Portage
I’ve recently written in this column about
the Consensys product, Portage, which
bolts on to Windows NT and gives it most
of the functionality of Unix System V right
down to kernel level. Unfortunately,
Windows NT 3.51 breaks Portage,
throwing up a segmentation fault error
when it loads the Portage kernel at boot
time. I’d come to depend on Portage as a
bridge between Windows NT and my
other Unix systems. But the new version of
Windows NT now fits much more
comfortably onto my 16Mb DX2 machine,
so it’s Portage that gets the elbow, and
I’ve promised myself to seek out
interesting non-Unixy things to do with the
operating system.

What finally set the seal on Portage for
me was the discovery that despite the
promises of the Consensys brochures, the

H A N D S O N ● 3 2 - B I T

work no matter which operating system
you’re running, and it’s perfect for Linux. If
you’re set up with multiple files on the
Caldera desktop and have several other
projects in progress across the various
virtual terminals, the last thing you want to
do when it’s time to get off the train is close
all those down gracefully and have to start
them up again when you get home. With
Tonto you just close the lid. There’s just
one wee snaggette. Tonto’s desktop is set
up to display a clock, so I can keep an eye
on the time as I write. This is updated by
Linux’s own system clock, but when you
go into suspend mode, the clock does too.

So when you next open the lid, on Friday
morning, Linux still thinks it’s Thursday
evening. I decided to live with this, and
apart from the clock falling drastically
behind, everything worked fine and I let a
week go by without rebooting the system.

When I finally rebooted, I happened to
notice a system startup message which
claimed to be “setting the clock”, and once
up and running I noticed that I was indeed
back on time.

Get a grep on it
The machine’s hardware clock, which
stores its data in CMOS, was obviously

3 0 1
P E R S O N A L C O M P U T E R W O R L D

F E B R U A R Y 1 9 9 6

I stand by Emacs evangelism!

A few people have wagged fingers at me over the evangelism for the good ol’ char-based
interface I was parading last month. I retract nothing, but perhaps I should put this into
context. Last month I was rediscovering Emacs. It was a joy to be able to get on with the job
of writing without the burden of function and screen furniture that a modern word processor
like Microsoft Word for Windows heaps on you. More about Emacs in a moment. My hearty
endorsement of the character-based screen was, in retrospect, perhaps one of those
“necessity is the mother of invention” things. As I think I said, I’d taken Linux (and Emacs)
away on holiday and was stuck with a portable on which I couldn’t get X to run.

Since then, a good deal of twiddling and the indispensable help of a new version of
Caldera (Preview II, which includes the latest XFree86 version 3.1.2) has changed the
picture. XFree86 3.1.2 now properly supports the Western Digital WD90C24 video chip
used in a lot of portables, and at last I’ve been able to equip Tonto with a very handsome
640 x 480 x 256 X-based screen. In Caldera, the Motif-like GNU fvwm (feeble virtual window
manager) goes on top of X, and on top of that the distribution runs a proprietory desktop
manager called Looking Glass (note: unlike the rest of Linux, not for free distribution). It’s in
this environment that I’m currently running Emacs, writing this column in a salmon-coloured,
blue-bordered window; one of several I can have up at the same time.

For and against
Okay, arguments against using X and Emacs; really only one. Emacs is already pretty huge,
if you include all the macros, extensive documentation and tutorials that come with it (well, I
suppose 9Mb is pretty modest by current word processor standards). X adds a whole clump
more code to your hard disk and puts paid to the idea of running anything serious in less
than 8Mb of RAM.

Arguments for; lots. Most importantly, you don’t dispense with any of the simple
goodness I was raving about last month. Entering and navigating text remains as fast as
you could wish. Admittedly, the screen starts to look a little more complicated — when
Emacs detects X, it puts on its party clothes in the shape of a menu bar at the top of the
window. You can pull down sub-menus with the mouse in the usual way, and pop up menus
directly from within the windows with commands like the Control key and Left mouse button
combo (which gives you a choice of different screen fonts). I prefer the versatile keystroke
combinations for the basic stuff. I find the X Windows presentation easier on the eye than a
raw char screen, considering that you can set your choice of background colour and font.

Finger-flickin’ good
Flicking between Emacs windows (“frames”) is handy too in the X version. The char-based
Emacs supports this as well, although you don’t get to slip and slide the frames with a
mouse, just switch over between virtual screens. I’ve found it best not to use the mouse for
this, anyway. The fvwm display can be arranged to have a virtual size that’s bigger than the
physical screen can show — the actual ratio depends on how much video RAM you have.
I’ve fixed up Tonto to work with four virtual 640 x 480 screens, and the quickest way to
navigate between them is by using the cursor keys with the Control key. Fvwm provides you
with a tiny map of the full virtual display — you can see it by the top right corner of the
Emacs screen just below the desktop clock. Rodent fanciers can jump screens by clicking
on any of the four quadrants of this mini-map, but I find the Control/cursor key combo a lot
faster. You can even move diagonally by combining the North-West or South-East keys.

You can do
this by taking
advantage of a
long-standing
Unix institution,
the cron daemon,
one of several
“hidden helpers”
which chug away
in the background

getting things done for you. Cron keeps an
eye on the clock, and runs tasks at a
particular time of day, or on a particular
day of the month, or whatever. You set
these tasks up in a somewhat cryptic text
file that lives in the directory
/var/spool/cron/crontabs/ and is named
after your particular account.

The system also keeps another
crontab file in the directory/etc which is the
responsibility of root. This system crontab
takes care of things like cleaning out
temporary files regularly and running
scheduled updates on various files. For
example, the root cron is typically set up to
update the “what is” database on a regular
basis (see later).

I decided that the clock update dodge I
was about to install wasn’t really a core
system responsibility, so didn’t belong in
the main /etc/crontab file. (A decision
somewhat influenced by the fact that this
file has a slightly different format from the
user crontabs, and I didn’t want to risk
screwing up anything critical.) But on the
other hand, the clock update shouldn’t just
be associated with the Emacs user on my
system, called “elbid”. Tonto only gets
used by me, but in various capacities.

Who should I be today?
After working with a Unix system for a
while you get used to dividing yourself up
into a gang of different users, depending
on what you happen to want to do with the
machine. Root takes care of system
admin, el bid writes this column, bidmead
issues invoices, and so on. This kind of
applied schizophrenia turns out to be very
useful. I solved the dilemma by logging in
as root and editing root’s personal crontab
file, stored with the others in the
/var/spool/cron/crontabs/ directory.

You are not encouraged to edit the cron
file directly; instead there’s a combined
editor/viewer utility called crontab that

H A N D S O N ● 3 2 - B I T

3 0 2
P E R S O N A L C O M P U T E R W O R L D
F E B R U A R Y 1 9 9 6

Tonto and

Emacs, sitting

on the Caldera

desktop with

Xclock at last

showing the

right time

PCWContacts

Chris Bidmead is a consultant and
commentator on advanced technology.
He can be contacted on
bidmead@cix.compulink.co.uk

unaffected by suspend mode. Only the
Linux system clock was losing time, and
on bootup something was synchronising
them back again. The lesson I’ve learnt
from Unix in general and Linux in particular
is that you can usually find out how things
work by snooping around, and the place to
start when you’re looking at initialisations
is the etc/rc.d directory. This contains the
shell scripts that are run every time the
system powers up, and you can track
down which does what by grepping
through them, looking for the relevant
string you saw on screen during the
initialisation process.

In one of the main files, rc.sysint, I
discovered the string I was looking for and
found it was associated with a command
called “clock”. Running “man clock”
returned a definition of the programming
function clock() which wasn’t what I
wanted. If you’re looking for a user
command that happens to have the same
name as a programming function, you
have to explicitly mention the manual
volume you’re looking for, or use man with
the -a parameter, which will show you
entries in all the sections.

I happened to know that user
commands are in the eighth volume of the
manual, so I re-entered the request as
“man 8 clock” and got the following
description:
Clock manipulates the CMOS clock in
variaous (sic) ways, allowing it to be
read or written, and allowing
synchronization between the CMOS
clock and the kernel’s version of the
system time.

It turns out that the -s option updates
the Linux system clock from the CMOS
clock, so all I had to do was just run this
manually every time I returned from
Suspend mode. But in fact there’s a better
way. Why not just run “clock -s” regularly
to make sure the two stay in sync?

evokes vi and makes sure the revised file
is presented back to cron for processing.
The line I added to my crontab was:
*/3 * * * * /sbin/clock -s

The man pages for crontab will fill you
in on the fine detail; essentially the line is
divided into two fields. The first, comprised
here mostly of stars, defines when and
how often the action has to take place, and
the second field defines the action.

So now when I open the lid, the clock
on the screen is still wildly out, just for the
first minute or so. Then the cron command
kicks in, momentarily blanks the screen
(for some reason I’m calling this “a
feature”) and updates the clock.

Hello, handsome
The AIX box has finally arrived, just as I
was putting this column together. It’s a
very handsome PowerPC 604 machine,
and I’ll tell you all about it next month.

Unixes are getting more and more
similar, but AIX has its little peculiarities.
The standard way of getting up to speed
on a new system is to use the man pages,
and more particularly the apropos
command. Type something like “apropos
disk” on the shell command line and you’ll
get a short summary of every command in
the man pages relevant to the word “disk”.

Apropos works through an index
database file called “whatis”, which on
Linux systems is assembled from the man
pages by running “makewhatis”. (Other
Unixes work similarly, but may use
different commands.) On the new AIX box,
apropos kept returning “Cannot find
matching entry”, a firm indication that the
whatis database hadn’t been compiled.

Only when I got stuck into finding out
how to do that, did I discover there weren’t
any man pages on the system to index. I
went to install CD and fished about in there
for about half an hour and turned up
nothing. Eventually I contacted IBM, and
we had the following exchange:
Bidmead: “So where are the man pages,
then?”
IBM: “They’re part of our general system
information package, InfoExplorer.”
Bidmead: “Ah. So where’s InfoExplorer?”
IBM: “InfoExplorer is a cost option,
available for £310.”
Bidmead: Collapses open-mouthed in
astonishment.

