HANDS ON o

VISUAL PROGRAMMING

Table manners

You would hardly know it from the manuals, but
Delphi lets you create database tables entirely in
code. Tim Anderson shows how, checks out a
newcomer to Windows visual development, and
offers ten handy Visual Basic tips.

Borland has been so keen to empha-
sise Delphi’s ease of use that some of
its best features are almost hidden. An

example is the creation of new database
tables. The documentation encourages
you to wheel out the Database Desktop to
do this interactively; but what if you want to

el C Bt L [T

create a database in code? It is more com-
plex but has many advantages, particu-
larly for applications which will be
distributed. Users do not want to define
tables, nor should they have to struggle
with the Borland Database Engine config-
uration utility. All these operations can be
done more tidily in
Delphi code. Unfortu-
nately, the documen-

T e . .|~
e bedesal i

i im i)
e

myim fer -
Ergin

Above It is quite
possible to create
tables in Delphi code,
without using the
Database Desktop.
This example creates
a Paradox table

st weeidmy ikn belr aloemy sminia -
Thk o ETE I

tation for creating
tables on the fly is all
but hidden. Here is a
demonstration of two
ways to do it.

The first and quick-
est method is to use a
TTable component.
The step-by-step
method is as follows:
1. Start a new project

wi .ol omedy 'CENETH TANLE "HRACEET- IS |0 WEEEND
PONELLET THLRITE ERSLLET THLE

Right Running the
application creates the
data tables, fills them,

and displays the
results in a bound grid

29 4
PERSONAL COMPUTER WORLD
NOVEMBER 1995

in Delphi and place TTable, Datasource
and DBGrid components on the form. The
grid is not strictly needed to create the
table, but gives a way of viewing the
results. Next, place a button on the form
with a caption of “Create table”. The code
to do this will go in the button’s Click
procedure.

2. Double-click the button and enter the
following code. Note that this procedure
assumes the existence of a MYDBS direc-
tory on your C drive. (Fig 1.)

This code defines the fields for the new
table. There are four parameters to the
FieldDefs.Add method. The first names
the field. The second defines the field type,
and the possible values can be found in
Delphi’s online help under TFieldType
Type. The types available will vary accord-
ing to the database format used.

The third parameter is the size of the
field, and is only meaningful where the
size is not already determined by the field
type. The last parameter states whether or
not it is a required field. (Fig 2.)

Indexes are defined wusing the

IndexDefs.Add method. The first two para-
meters define the index name and field
respectively. The third parameter is a set
of type TIndexOptions. Again, not all the
options apply to all database formats. For
example, in dBase the primary key is
meaningless. (Fig 3.)
3. Now run the code. The BDE creates
and fills the table. Performance is fine, as
long as the hardware is sufficient to run the
BDE in the first place — realistically you
need an 8Mb 486 machine or better.

Another option is to use SQL. The lat-
est versions of Borland’s database engine
can use SQL on local tables as well as on
server databases. In Delphi (against intu-
ition) you use a Query component to exe-
cute SQL instructions, even when there is
no result set to return. Here is how it
works.

1. Start a new project, and add Query,
Datasource and DBGrid components.
Again, the latter two are only needed to
display the data. Finally, add a button and
open its Click method.

2. Next write code as Fig 4.

The Clear, Add, ExecSql sequence is
the fundamental technique for executing
SQL instructions on a database. In this
example the query.DatabaseName prop-
erty is set to a directory name, which tells
the BDE that it is working on a local, desk-
top database. The other problem is finding
the correct syntax for the SQL commands.
Not all SQL commands are supported for
local databases, and the main restrictions
are summarised in Appendix C of Delphi’s

HANDS ON

{set up the table name. Note that the DB extension creates a Paradox table.
To
create a dBase table instead, use a DBF extension.}
Tablei.Close;
Tablel.DatabaseName := ‘C:\MYDBS’;
Tablel.TableName := ‘CUSTOMER.DB’;

{check whether the table already exists}
If Not FileExists(‘C:\MYDBS\CUSTOMER.DB’) then
begin

with Tablel do
begin

Close;

{Define the fields}

with FieldDefs do
begin
clear;
Add(‘ID’, ftInteger, 0, True);
Add (‘FORENAME’ , ftString, 35, False);
Add (“SURNAME’ , ftString, 35, True);
Add (‘ADDRESS1’, ftString, 35, False);
end;

{now define indexes}
with IndexDefs do
begin
clear;
Add(‘ID’,’ID’,[ixPrimary, ixUniquel]);
Add (“SURNAME’ , SURNAME’ , []) ;
end;

{actually create the table and open it}
CreateTable;
Open;

{Append some records}

Table1.AppendRecord([1, ‘Brian’, ‘Smith’,’1 The Street’]);
Tablei.AppendRecord([2, ‘Joe’,’Brown’,’34 The Square’]);
Tablel.AppendRecord([3, ‘Martin’,’Wilson’,’43 The Close’]);
Close;

end;

{Display a confirming message}
Application.MessageBox(‘Table created’, ‘Personal Computer World’, mb_OK);
end;

{Display the table in the grid}
Tablei.IndexName := ‘SURNAME’;
Table1.open;

datasourcel.dataset := Tableil;
dbGrid1.Datasource := datasourcel;
dbGrid1.Refresh;

VISUAL PROGRAMMING

Database Application Developer’s Guide.
Note that double quotes are used within
the SQL string, to avoid conflict with
Delphi’s single-quote string delimiter.

The SQL shown creates a Paradox
table with a primary key. The primary key
must be defined in this statement; you
cannot add it afterwards. (Fig 5.)

So which is the best technique? There
does seem to be some performance
penalty for using local SQL, but the advan-
tage is that the same code will run if you
later convert your application to talk to a
SQL backend server. Ideally you should
try both the methods described to discover
which gives the best performance in your
particular system.

Into the Fourth Dimension?

Mac users have enjoyed an elegant
graphical interface for years. Together
with Apple’s famous Human Interface
Guidelines you might imagine this head
start gives long-standing Mac developers
an advantage over their Windows counter-
parts. In reality, the greater clout of the
Windows marketplace more than compen-
sates, and Mac development tools are
poor in comparison.

The database area is particularly weak
on the Mac, since companies almost
always use PCs for serious database
work. Although FileMaker Pro has won
many hearts as a flexible end-user data-
base, developers have been left to choose
between 4th Dimension (4D), Omnis 7 or
the Windows-like FoxPro; 4D is the
biggest fish in this relatively small pond.
ACl is now releasing a Windows version of
4D, which means that all the leading Mac
databases are now cross-platform tools.

Taking the good points first, 4D joins
Clarion, Visual Objects and Delphi in pro-
viding a compiler that creates native
machine-code. You are still saddled with a
large runtime database engine, but the
speed improvements are impressive. The
compiler can produce fat binaries that will
run either as 68000 or Power PC applica-
tions on the Mac, or even (it is claimed)
wrap Windows and Mac binaries into a
single executable. Second, there is sup-
port for multiple processes, implemented
by 4D itself on the Mac and on Windows
3.x, and by the operating system on Win-
dows 95 and NT, which support multi-
threading. Third, 4D is usable on the
desktop or as a database server, and it
has built-in referential integrity, a visual
relationship builder, and password-based
security. The server product has a version

control system for team development. I

295
PERSONAL COMPUTER WORLD
NOVEMBER 1995

HANDS ON

Queryi.Close;
Query1.DatabaseName := ‘C:\MYDBS’;
{The extension determines the data format}
If Not FileExists(‘C:\MYDBS\SQLCUST.DB’) then
begin
queryi.close;

queryl.sql.clear;

queryl.sql.add(‘CREATE TABLE “SQLCUST.DB” (ID NUMERIC(10,2),’+
‘FORENAME CHAR(35), SURNAME CHAR(35),’+
‘PRIMARY KEY(ID))’);

queryi.execsql;

Finally, the language itself is exten-
sive and like Visual Basic can
optionally be strongly typed; this
last step is essential for compiled
applications.

Evaluating a beta release
uncovered a number of less attrac-
tive features. No surprise that 4D

Above 4th Dimension has a Mac-
like programming approach, where
you can choose keywords from a
scrolling list. The impatient can
type directly Right Multitasking
comes naturally to 4th Dimension,
and each window can have its own
process even under plain Win3.1

VISUAL PROGRAMMING

looks Mac-like even under Windows, and
does not approach either the polish or the
flexibility of competing products like
Access, Delphi or Visual Basic. For exam-
ple, a 4D button can run a script when
clicked and that is its limit. A VB button
supports eleven events, including GotFo-
cus, DragOver, MouseDown, MouseMove
and MouseUp.

4D has a minimal range of screen
objects. It does not support VBX or OCX
controls, although it has its own native
components called external objects, cre-
ated in C or Pascal. The language has a
crippling limitation: you cannot directly call
functions in most DLLs or any Windows
API functions, although you can compile
special DLLs for use only by 4D. The lan-
guage is fundamentally procedural, with
no object orientation beyond the superfi-
ciality of a graphical interface builder.
Finally, 4D has a complex and expensive
range of add-ons which you have to buy to
get full functionality. These include 4D
Compiler, 4D Backup, 4D Server, 4D
Chart, 4D Open for data access from
other applications, and 4D remote for
modem access.

As ever, the next version promises to
be greatly improved. In the meantime, the
main attractions of 4D are its compiled
performance and its cross-platform fea-
tures. If you have to support a mixed Mac
and PC environment, 4D looks a reason-
able but expensive option. Unfortunately,
its numerous quirks and limitations make
it unlikely to find favour outside that
market.

297
PERSONAL COMPUTER WORLD
NOVEMBER 1995

agidissvio

HANDS ON o

VISUAL PROGRAMMING

queryl.sqgl.add(‘INSERT INTO SQLCUST
(ID,FORENAME,SURNAME) ¢ +

{Create a secondary index on Surname}
queryl.sqgl.clear;

(SURNAME) *) 5
queryi.execsql;

{Add some data using SQL INSERT}
queryi.sql.clear;

(ID,FORENAME ,SURNAME) © +

query1.execsql;

queryl.sqgl.clear;

(ID,FORENAME ,SURNAME) © +

query1.execsql;

queryl.sql.clear;

queryil.sql.add(‘INSERT INTO SQLCUST

“VALUES (1,”Tom”,”Smith”)’);

queryil.sql.add(‘INSERT INTO SQLCUST

‘VALUES(Z, »John” , ”JOnES”) 3) g

queryl.sql.add(‘CREATE INDEX SURNAME on “SQLCUST.DB”
queryi.execsql;

end;

queryl.close;

queryi.sql.clear;

{Define the query}

‘VALUES (3, ”Brian”,”Andrews”)’);

queryi1.sql.add(‘SELECT * from SQLCUST ORDER BY

SURNAME”) ;
query1.open;

{Display the data}
datasourcel.dataset
dbGrid1.Datasource

dbGrid1.Refresh;

1= Query1l;
:= datasourceil;

We shall regularly publish tips for Visual
Basic, Delphi, VBA, Visual dBase and Fox-
Pro and other popular languages. If you
have a tip others may find useful, please
post or email it to Tim Anderson at the
address below. You will also find David
McCarter’s Visual Basic Tips and Tricks
help file on this month’s cover CD, contain-
ing hundreds of tips and examples for VB
developers.

1. To make a window appear Always on
Top, use the SetWindowPos API call with
the HWND_TOPMOST flag. To remove the
setting, use the same call but with
HWND_NOTOPMOST. For example:

‘Declares (needed if you do not
include WIN31API.TXT)

Declare Sub SetWindowPos Lib “User”
(ByVal hWnd%, ByVal
hwWndInsertAfters, ByvVal X%, ByVal
%, ByVal CX%, Byval cy%, ByVal
wF1lags%)

¢ SetWindowPos Flags
Global Const SWP_NOSIZE
Global Const SWP_NOMOVE

&H1
&H2

¢ SetWindowPos() hwndInsertAfter
values

Global Const HWND_TOPMOST = -1
Global Const HWND_NOTOPMOST = -2

¢ In your program include the follow-
ing code to make Form1 always on top
Call SetWindowPos (Formi.hWnd,
HWND_TOPMOST, 0, 0, 0, O, SWP_NOMOVE
+ SWP_NOSIZE)

2. Always save forms as text for reduced risk
of corrupting your project, and compatibility
with VB add-ons like the Setup Wizard. To do
this by default, choose Options -
Environment, select Default Save As Format,
and choose the Text option.

3. When using VB to access external data-
bases, attach them to an Access MDB for
best performance. This ensures that JET
holds the table structure in a memory cache.
4. Check your code for unused constants and
declares, unused VBX controls, or even
forms that are no longer used by your
project. All these bloat to your application.

5. Don’t use VBXs where native VB code will
do. It is worth a little extra coding to get
added performance.

6. Avoid hard-coding paths into your VB
application. Sooner or later the path will be
wrong and the code will break. Use App.Path
to get the directory in which the application
resides, and the API call GetWindowsDirec-
tory to find where Windows is installed.

7. Check App.Previnstance to find if your
application is already running. For example:

Sub Main()
If App.Previnstance then

Ten Visual Basic Tips

Exit Sub
End If

8. You can make text boxes automatically
select text when they get the focus. Use the
following code:

Sub Text1_GotFocus ()
Text1.SelStart = 0
Text1.SelLength = 65000

End Sub

Since 65000 is near the maximum length
for a text box value, VB will automatically
select the whole text.

9. Use PICCLIP.VBX to store toolbar images
or other graphics that need to be displayed
quickly. It is very much faster than loading
images from disk.

10. Never use a picture box where an image
control will do. The image box is a
lightweight control which uses far less
system resources.

Tim Anderson welcomes your Visual
Programming comments and tips. He
can be contacted via PCW at the usual
address, or at
freer@cix.compulink.co.uk

4th Dimension is from ACI UK
01625 536178. Prices not yet available.

298
PERSONAL COMPUTER WORLD
NOVEMBER 1995

