
surface to present the illusion of seamless
integration. But once the OLE object is up
and running, performance should be as
good or better than a VBX. Processors are
getting quicker, and the concept of univer-
sal components has great appeal, so I
guess it’s worth it.

Another area of doubt is over compati-
bility. You would have thought that OCX
support would be all or nothing, but in fact

OCX containers vary in
the level of compatibility
they offer. For example,
Visual FoxPro does not
support the
ISimpleFrame interface,
which means that you
cannot embed one con-
trol in another. In prac-
tice, while all OCX
controls should work in
FoxPro, and in other
OCX container environ-

Fancy constructing your own PIM (per-
sonal information manager)?

Sheridan's new Calendar Widgets makes
the job easy. Calendar controls that show
a month at a time are two a penny, but
Calendar Widgets also offers yearly and
daily view controls. The daily view control
is what makes PIM construction so easy
since it provides an editable grid of
appointment slots complete with a time
selection bar, and a facility to define over-
lapping tasks. The monthly and yearly
controls can be bound to a table in an
Access .MDB. There is also a date combo
that drops down a graphical calendar,
enabling users to enter dates by point-
and-click. It’s just the thing for applications
like project management, scheduling, or
presenting date-related information.

Calendar Widgets is useful, and inter-
esting for the new tech-
niques it demonstrates.
Sheridan has hedged its
bets by supplying three
control types: version 3.0
VBXs for compatibility
with VB 3.0 (but not
Delphi), 16-bit OCXs for
the likes of Access 2.0,
and 32-bit OCXs for VB
4.0 or other OCX contain-
ers such as Visual
FoxPro. Since Calendar
Widgets plopped onto my
desk before the final ver-
sion of either FoxPro or
VB 4.0, Sheridan has
shown a touching faith in
the stability of the OCX
standard. All was well with

H A N D S O N ● V I S U A L P R O G R A M M I N G

2 9 2
P E R S O N A L C O M P U T E R W O R L D
O C T O B E R 1 9 9 5

our late beta versions.
The main benefit of OLE controls is

compatibility. The VBX standard is a way
of extending Visual Basic, and to make
VBXs work with other environments such
as Delphi or Visual C++ requires emulat-
ing VB. By contrast, OCXs use OLE 2.0
communication. There is a price to pay for
this application-independence. Some
aspects of performance may be improved,
especially in 32-bit OCXs, but other things
will be slower: for example, there is a
noticeable pause when inserting a
Calendar Widget OCX into Access or
FoxPro, and again to display its property
page, compared to the snappy perfor-
mance of the VBX equivalent in VB 3.0. It
is like working with embedded OLE
objects in documents: you sense that
Windows is running very fast under the

The OCX is designed as a universal Windows
component. Tim Anderson tries it in a calendar
application, explores DLLs in Delphi and glances
at Visual dBase.

All in a day’s work

Build your own PIM

with Calendar Widgets.

This VB 3.0 application

demonstrates the

DayView control

Calendar confusion

It is disheartening when the sample code
supplied with a product fails to run. This was
the case with Datepad, a simple PIM exam-
ple in Calendar Widgets. The reason was a
problem with international date formats. The
code that failed was like this:
sMySql = "select * from appoint

where date = #" & sSelDate & "#"
Data2.RecordSource = sMySql
Data2.Refresh

where sSelDate is the date returned from
a calendar control, converted to a string.
Because my PC is set up for UK dates, the
calendar control was correctly returning a
date in dd/mm/yy format. But JET's SQL
expects a date in mm/dd/yy format, whatev-
er the international setting in Windows. So
the application failed with an error: “Syntax
error in date in query expression."

VB and Access store dates internally as
a double-precision number. You can take
advantage of this to overcome the above
problem. The following code works on both
sides of the Atlantic:
Dim dDate as Double
dDate = DateValue(sSelDate)
sMySql = "select * from appoint

where date = " & str$(dDate)
Data2.RecordSource = sMySql
Data2.Refresh

H A N D S O N ● V I S U A L P R O G R A M M I N G

2 9 3
P E R S O N A L C O M P U T E R W O R L D

O C T O B E R 1 9 9 5

To use an OCX in Access 2.0, first place an Object Frame

on a form. From the dialogue which opens, select Insert

Control. Then you can choose from all the OCXs

registered on the system. Note that Access 2.0 can only

use 16-bit OCXs, which are likely to be less common

than the 32-bit variety

The form at runtime, showing some highlighted date

cells. The code which does the work refers to the OCX

control, laboriously, as Embedded0.Object. Access 95

supports the With ... End With construct to tidy up code

like this

Next, the control can be customised by setting

properties at design-time. The Property Sheet is a

dialogue created by the OCX control itself, normally

accessed by right-clicking on the control. That is one

reason why OCXs are larger than VBXs: they contain

their own user interface. This example adds a user-

defined styleset to the control. A styleset in Calendar

Widgets defines the appearance of a date cell

Using a Calendar Widget in Visual FoxPro requires

painting an OleControl frame on a form, then inserting

the control from a list of available OCXs. Right-click

brings up the property page; and xBase code

addresses the control in much the same way as Basic

Using OCXs in other applications

H A N D S O N ● V I S U A L P R O G R A M M I N G

2 9 5
P E R S O N A L C O M P U T E R W O R L D

O C T O B E R 1 9 9 5

M
IC

R
OM

A
R
T

C
L

A
S

S
IF

IE
D

Above John Plumbley's

demonstration that VB

has rounding problems

too

Left Prospero's

PSPNUM is a VBX to

handle fixed-length

precision numbers and

arrays

ments, they do not all offer the same func-
tionality. As another example, OCXs in
FoxPro have no data-aware capabilities. A
final problem is that Visual C++ in its cur-
rent version (2.1) has no integrated sup-
port for OCX controls. Expect this to
change soon. Borland also intends to sup-
port OCXs in future versions of Delphi,
dBase and C++. In the meantime, don't
assume that an OCX control is really plug-
and-play and check before purchase that it
will do what you need. At worst, a particu-
lar OCX could be next to useless; at best,
the vendor will have developed with each
of the main supporting environments in
mind.

Not just Delphi
Following the discussion of floating point
rounding in the August issue, thanks to
John Plumbley for the following email:

“This does not seem to be banker's
rounding — Borland (or the company that
does the tech support for them) must have
been wrong when it said it was.

It is caused by the way computers store
fractional floating point numbers and is a
well known problem for the unwary.

To see what's going on use FmtStr with
%.15f and you will see that:
1.505 is stored as 1.504999999999200
(which %.2f rounds down to 1.50);
1.515 is stored as 1.514999999999418
(which %.2f rounds down to 1.51);
2.505 is stored as 2.505000000001019
(which %.2f rounds up to 2.51);
3.505 is stored as 3.505000000001019
(which %.2f rounds up to 3.51).

A similar thing happens in C, and it also

the forms in the application. I came to use
a DLL called INPOUT.DLL with Delphi,
and after much searching in both the on-
line help and Delphi manuals I came up
with the following declaration:
procedure Out(Port, Value: integer);
far; external 'D:\DLLS\INPOUT';

“This seems to work fine, but only if
placed in the implementation part of a unit.
As soon as it is placed in the interface part,
which is where a declaration has to be in
order for other units to access it, an error
occurs. Does this mean a DLL procedure
has to be declared in every unit in which it
is used?”

You can declare a .DLL in the interface
part of a unit. For example:
unit CallDll;
interface
procedure Out(Port, Value: integer);
function DiskSpaceFree(DiskID: byte):
longint;

implementation
procedure Out; external
'D:\DLLS\INPOUT'

function DiskSpaceFree; external
'SETUPKIT';

end.
I've included a function (from the

SETUPKIT.DLL distributed with VB)
alongside your procedure. Remember,
that even though you declare the function
in the interface section, to make it
public you still need to make an entry in
the implementation section to show that its
implementation is to be found externally.
Another point is that procedures in the
interface section are implicitly far; you
don't need the “far” keyword.

The most common method is to stuff
DLL declarations into a unit on their own.
Then, any units in your application which
need to call these functions can simply
add the unit name to the “uses” clause.
That is how Delphi handles the Windows
core functions, which are defined in units
called WINTYPES and WINPROCS.

happens in VB, not only in Delphi.
In my opinion this behaviour is not a

problem, as anyone doing this kind of work
should not be using fractional real num-
bers. They should scale all numbers to
avoid fractions (i.e. work internally in pen-
nies, or tenths of a penny, instead of
pounds).”

John includes listings in Delphi, VB and
C to prove his point. So if you are rounding
matters in your application — you have
been warned. I've also received a VBX
intended to overcome exactly this kind of
problem from a small company called
Prospero. PSPNUM.VBX is a masked edit
control which allows you to work with
fixed-length precision numbers; a more
flexible version of VB's Currency data
type. It's a specialist tool which could be
valuable for accounting and business
applications.

dBase gets Visual
The word "visual" is beloved of marketing
departments worldwide, judging by the
way it pops up in new product versions.
The latest casualty is dBase, now at ver-
sion 5.5 and called Visual dBase. The
xBase language is about as non-visual as
you can get, but both Microsoft and
Borland have added object-orientated
language extensions which, combined
with visual design tools, lend some
credibility to the “Visual” tag.

I looked at a late beta of the product.
Despite the change of name, Visual dBase
is not a major upgrade, but adds signifi-
cant enhancements to the original dBase
for Windows. It is not a 32-bit product,
although it does recognise Windows 95
with limited support for long filenames.
Since neither the IDAPI database engine
nor the Crystal Reports report writer sup-
port long filenames, dBase developers

H A N D S O N ● V I S U A L P R O G R A M M I N G

2 9 6
P E R S O N A L C O M P U T E R W O R L D
O C T O B E R 1 9 9 5

should stick with 8.3 names until the
release of 32-bit versions of these prod-
ucts. OLE automation is now supported,
but not OCX controls. There are few lan-
guage changes but two are particularly
welcome: class definitions can now
include protected properties (without
which true encapsulation is impossible),
and at last SQL queries can be executed
on local tables without the need for any
special SQL mode of operation.

Borland has long been rumoured to be
working on a dBase compiler that would
create true executables in the style of
Delphi or C. Sadly, the project seems to
have been abandoned, as the compiler
now released for Visual dBase is no more
than a runtime version. It's nicely
integrated into the product and comes with
an Install Builder for creating distribution
disks. Overall, Borland has plugged many
of the gaps between dBase and
Microsoft's Visual FoxPro, arriving on the
market at about the same time. Borland's
product has a snappier, less cluttered
interface and slightly more modest system
requirements.

Despite the new features this is an
interim release, although likely to be the
last 16-bit version, and the dBase to watch
for will be the 32-bit version for Windows
95 and Windows NT. It's strange how it
always seems to be the next version that
promises to deliver the goods.

Calling DLLs in Delphi
Alan Bontoft sent the following query:

“I am a recent convert to the world of
Delphi (from VB of course) and am trying
to write software which involves the use of
third-party DLLs.

“When used with VB, one simply has to
declare the procedure/function in a .BAS
file and it can then be accessed by any of

From this

dialogue you

can build an

executable in

Visual dBase,

although in

dBase

“compiled” is

just another

word for

interpreted

PCWContacts
Tim Anderson welcomes your
feedback, tips and suggestions. Contact
him at the usual PCW address or as
freer@cix.compulink.co.uk,
or 100023.3154@compuserve.com

PSPNUM: Prospero Software Products
01624 681090
Calendar Widgets: Contemporary
Software 01727 811999
Visual dBase: Borland 01734 320022

☎
☎

☎

