
H A N D S O N ● L O W L E V E L

We have all seen the well-known chil-
dren’s puzzle that involves joining

up the dots in a picture in order to uncover
an underlying drawing. There is a com-
puter equivalent to this puzzle which
requires a sequence of points, plotted in a
display area, to be connected by a smooth
line. Although this may sound a somewhat
esoteric problem, it is surprising that there
are several well-known software applica-
tions that require an efficient solution to it.

Look no further than Windows itself.

The handling of scalable fonts involves the
manipulation of a sequence of points
which define the shape of the character —
a smooth curve is required through these
points for all possible character sizes.
Computer Aided Design needs the odd
carefully crafted line as well. Most CAD
applications allow the user to define areas
or other arbitrary shapes by a sequence of
plotted points, which must then be con-
nected by an appropriate curve. Charting
software also needs to offer the option of

drawing a smooth
line through some
points in a graph,
alongside the other
options for pie
charts, bar graphs
and so on.

In this month’s
column we will intro-
duce a powerful
technique, called
cubic splines, which
is used for drawing
extremely accurate
and smooth curves
through a sequence
of points.

To get the flavour
of the problem area,
Fig 1 shows the out-
put for the fairly sim-
ple task of drawing a
curve through just

five points. In this case, the five points are
neatly ordered so that the x coordinate of
each is greater than its predecessor. The

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

2 9 9
P E R S O N A L C O M P U T E R W O R L D

N O V E M B E R 1 9 9 5

Joining the dots

Mike Liardet introduces the handy technique of
cubic splines for drawing accurate and smooth
curves through a series of points.

Fig 1 A smooth curve drawn through

five points. Here the points are neatly

ordered and evenly spaced

points are also fairly evenly spaced, and
this makes for a simpler problem than if
the points are all over the place.

Points and polynomials
Readers with some basic maths training
will know that, in theory, given a sequence
of N points we can devise an equation
involving an N-1 degree polynomial. When
this is drawn as a graph, it passes through
each of the points. (A polynomial is an
expression in the form
a1 + a2x

1 ... + aNx
N-1

For more information see last month’s Low
Level.)

For our five-point problem this would
mean working with the equation
y = a1 + a2x

1 + a3x
2 + a4x

3 + a5x
4

and attempting to find values for
a1, a2, a3, a4 and a5
that enable it to go through each point. In
this case it is not too difficult: we plug the
values for the (x1,y1) coordinates for x and
y in the equation and end up with one lin-
ear equation with the five “a” unknowns.
The remaining four points provide four
more linear equations, and, as we saw last
month’s Low Level, there is a simple
method (Gaussian elimination) that can
solve these equations directly.

Unfortunately, this technique does not
work very well when applied to a large
number of points. Firstly, the Gaussian
elimination part of the method slows down
markedly as it is asked to handle more
than a handful of unknowns, and also the
resulting polynomials can be difficult to
compute. For example, a polynomial
equation that can thread its way through
100 points will contain a sub-expression
x99. Even for small values of x an attempt
to calculate this will cause an arithmetic
overflow error in most programming lan-
guages.

The basic idea behind cubic splines is
to dispense with the one large unwieldy
polynomial that goes through all the
points, and replace it with a number of sim-
pler polynomials that are individually
responsible for drawing a line only
between an adjacent pair of points. Not
surprisingly, given the name of the tech-
nique, we use cubic equations. The word
“spline”, by the way, is the name of a flex-
ible draughting tool which is often used for
solving the problem by hand.

To apply the cubic spline technique to
the problem given in Fig 1 we need to
devise four cubic equations to handle
each of the four segments, as shown in
Fig 2. In order to draw the spline it is first
necessary to calculate the values of the a,

H A N D S O N ● L O W L E V E L

equation manipulation it is possible to
make the equation solution process a lot
quicker. Part of the technique involves the
introduction of some new unknowns, p1 to
pN, which represent the second deriva-
tives at each point. Notice that, once these
“p” values are known, all the other
unknowns can be worked out almost
immediately. We already know p1 and pN
(they are both 0) and Fig 5 shows how we
can derive a system of equations for the
other “p”s. A close inspection of the last
equation in Fig 5 reveals that we have a tri-
diagonal system, and although these are

linear equations which could be solved by
the Gauss technique, there is a much
faster method for tri-diagonal equations,
which was given in last month’s Low
Level.

Visual Basic in practice
Having got the theory out of the way, it is
fairly easy to develop a Visual Basic pro-
gram that can draw cubic splines (Fig 6).
Interaction with the program is very sim-
ple. The points to be joined are given by
clicking with the mouse in the large picture
box. A small dot is plotted to show the

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

3 0 1
P E R S O N A L C O M P U T E R W O R L D

N O V E M B E R 1 9 9 5

MICROMART
CLASSIFIED

b, c and d coeffi-
cients in each equa-
tion — 16 unknowns
in total. Looking at
each cubic polyno-
mial in turn, we can
see that in each case
it must pass through
two points, its start
point and end point.
This gives us two
equations for each
polynomial and eight
equations in all. But
we need 16 equa-
tions to solve for the
16 unknown, so
clearly this is not
enough. The equa-
tions are under-con-
strained and we need
to come up with some extra conditions in
order to solve them.

It is not unreasonable to ask that the
slope of the line at the end of a segment
should be the same as the slope of the
next line at the beginning. Without this
requirement we could have two succes-
sive lines meeting at a point in such a way
that the end result does not look smooth at
all (Fig 3). With the five-point problem, set-
ting slopes equal for adjacent polynomials
gives us another three equations, and 11
equations in total, but this is still not
enough.

See the join?
We can further constrain the problem by
attempting to make the join between adja-
cent segments even smoother. We do this
by demanding that the rate of change of

H A N D S O N ● L O W L E V E L

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

3 0 0
P E R S O N A L C O M P U T E R W O R L D
N O V E M B E R 1 9 9 5

Fig 2 (left) The

cubic spline

method uses four

cubic polynomial

equations to draw

the curve; each

equation handles

its own segment

of the curve

Fig 3 (below) If

the slope of

adjacent lines are

not equal at the

meeting point,

each segment is

joined by a

smooth line, but

there are

discontinuities

where they meet

Fig 4

The complete set of equations used to find the cubic spline coefficients

The spline i passes through the points (xi,yi) and (xi+1,yi+1)...
ai xi

3 + bi xi
2 + ci xi + di = yi (1) (for i = 1..n-1)

ai xi+1
3 + bi xi+1

2 + ci xi+1 + di = yi+1 (2) (for i = 1..n-1)
The second derivatives of the i-1 and ith splines are equal at the point
(xi,yi). With the second derivative at (xi,yi) denoted as pi we have...
6 ai xi + 2 bi = pi (3) (for i = 1..n-1)
6 ai xi+1 + 2 bi = pi+1 (4) (for i = 1..n-1)
The first derivatives of the i-1and ith splines are equal at the point
(xi,yi)...
3 ai-1 xi

2 + 2 bi-1 xi + ci-1 = 3 ai xi
2 + 2 bi xi + ci (5) (for i =

2..n-1)
The unknowns are a1..an-1, b1..bn-1, c1.. cn-1, d1.. dn-1, p1..pn ie there
are 5n-4 in total. (1) to (5) give us 5n-6 equations, so two more equations
are needed to solve (1) to (5). For example we can specify that the second
derivative at the first and last points is zero...
0 = p1 (6)
0 = pn (7)

Fig 5

Solving for the “p”s.The preparation work done here derives an equation where the only

unknowns are “p”s. It is easy to program a fast and efficient solution to this

equation

We will eliminate ai, bi, ci and di from these equations. First eliminate di
immediately by replacing (1) and (2) with (A) = (2) - (1)
ai(xi+1

3 - xi
3) + bi(xi+1

2 - xi
2) + ci(xi+1 - xi) = yi+1 - yi (A) (for i = 1 ..

n-1)
Solve for ai and bi using (3) and (4). To solve for ai we use (4) - (3) ...
6 ai(xi+1 - xi) = pi+1 - pi ...
ai = (pi+1 - pi) / 6 (xi+1 - xi) (for i = 1 .. n-1)
To solve for bi we use xi+1(3) - xi(4) ...
2 bi xi+1 - 2 bi xi = pi xi+1 - pi+1 xi ...
bi = (pi xi+1 - pi+1 xi) / 2 (xi+1 - xi) (for i = 1 .. n-1)
We can now solve for ci by substituting for ai and bi in (A) ...
(xi+1

3 - xi
3)(pi+1 - pi) / 6 (xi+1 - xi) +

(xi+1
2 - xi

2)(pi xi+1 - pi+1 xi) / 2 (xi+1 - xi) +
(xi+1 - xi) ci = yi+1 - yi .
Using identities r3-s3 = (r - s) (r2 +rs + s2) and r2 - s2 = (r - s)(r + s)) we
obtain...
(xi+1

2 + xi+1 xi + xi
2)(pi+1 - pi) / 6 +

(xi+1 + xi)(pi xi+1 - pi+1 xi) / 2 +
(xi+1 - xi) ci = yi+1 - yi
Simplifying and rearranging we eventually get...
ci = (yi+1 - yi) / (xi+1 - xi) +
(- xi+1

2 + 2 xi+1 xi + 2 xi
2) pi+1 / 6 (xi+1 - xi) +

(- 2 xi+1
2 - 2 xi+1 xi + xi

2) pi / 6 (xi+1 - xi) (for i = 1 .. n-1)
We can now substitute for ai, ai-1, bi, bi-1, ci and ci-1 in (5). Working with
left and right hand sides of (5) separately...
RHS (5) = 3 ai xi

2 + 2 bi xi + ci = (after substitutions and much
rearrangement) =
(yi+1 - yi) / (xi+1 - xi) + (- xi+1 + xi) pi+1 / 6 + (- xi+1 + xi)
pi / 3
LHS (5) = 3 ai-1 xi

2 + 2 bi-1 xi + ci-1 = (after substitutions and much
rearrangement) =
(yi - yi-1) / (xi - xi-1) + (xi - xi-1) pi / 3 + (xi - xi-1) pi-1 / 6

Now LHS (5) = RHS (5) so...
(yi - yi-1) / (xi - xi-1) + (xi - xi-1) pi / 3 + (xi - xi-1) pi-1 / 6 =

(yi+1 - yi) / (xi+1 - xi) + (- xi+1 + xi) pi+1 / 6 + (- xi+1 + xi)
pi / 3
After further rearrangement.....
pi-1 (xi - xi-1) (xi+1 - xi) / 2 (xi+1 - xi-1) + (xi+1 - xi) pi / 6 +
(xi+1 - xi) pi+1 (xi+1 - xi) / 12 (xi+1 - xi-1) =
[(yi+1 - yi) / (xi+1 - xi) - (yi - yi-1) / (xi - xi-1)] (xi+1 - xi) / 2
(xi+1 - xi-1)

slopes (known as the second derivatives)
are also equal. This provides another
three equations — 14 in total, but still two
short. We obtain the last two equations by
adding the simple requirement that the
second derivatives at the first and last
points are zero.

Of course, we want to be able to apply
the cubic spline technique to any number
of points, and not just the five we have
been looking at so far. Fig 4 shows how
the equations can be set up for a problem
involving N points. Readers unfamiliar with
elementary calculus can take it on trust
that the slope of a cubic polynomial equa-
tion
a x3 + b x 2+ c x + d = y
is given by
3 a x2 + 2 b x + c = y’

This is known as the first derivative.
The second derivative, which is also used
in these equations, is given by
6 a x + 2 b = y’’

The unknowns in these equations are
the “a”s, “b”s, “c”s and “d”s. All the “x”s and
“y”s are known, as these are given by the
points which are to be joined by the spline.
All the equations are linear and so in the-
ory we could solve them by using the
usual Gaussian elimination. Once the val-
ues of the unknowns are determined it is
fairly easy to draw the curve as a
sequence of line segments, with each line
created by its own polynomial equation.

For a reasonable-size problem Gauss-
ian elimination is too slow. For example, a
cubic spline joining 26 points would
require the solution of over 100 equations
with over 100 unknowns, a task which
would take a considerable time on most
computers.

Fortunately, with the aid of a bit of

H A N D S O N ● L O W L E V E L

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

3 0 3
P E R S O N A L C O M P U T E R W O R L D

N O V E M B E R 1 9 9 5

position of each point. There are a couple
of simple editing command buttons which
can be used to clear the picture box or
remove the last point entered, but the
meat of the program lies in the spline-plot-
ting commands — “Spline 1”, “ Spline 2”
and “Spline - Gauss”.

The routines that underly two of these
buttons are shown in Fig 7. “Spline 1”
solves the simpler problem, where the
points are given in the correct X order
(there is no validation in it so it crashes if
you try to run it with unordered points).
Given the coordinates of the points, it first
calls the routine MakeSpline. In effect, this
uses the tri-diagonal equation-solving
technique on the equation derived in Fig 5
to calculate the the “p” values. These are
returned to this routine in the array ys().
Once the “p”s are known, the routine plots
the spline one segment at a time, working
out the “a”, “b”, “c” and “d” values for each
cubic polynomial by calling the CalcABCD
routine. The service routines for working
out the “p”s, “a”s, “b”s, “c” and “d”s are
shown in Fig 8.

The “Spline 2” routine is similar to
“Spline 1” but it can cope with points in any
order (Fig 9). Instead of using one set of
cubic polynomials that plot y values in
terms of x , it uses two sets which plot y
values in terms of “d” and x values in terms
of “d”. The “d” values are obtained by sum-
ming the overall distance to reach a partic-
ular point in the plot, summing the length
of the straight lines between each succes-
sive point. The accumulated distances to
each of the key points are calculated at the
start of the routine, using the well-known
Pythagoras formula to calculate the dis-
tance between two points. Of course, dis-
tance always gets greater as each point is
passed, no matter what its direction, and
so each individual spline works correctly.
We also know that the plotted curve will go
through each of the key points, since we

H A N D S O N ● L O W L E V E L

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

3 0 2
P E R S O N A L C O M P U T E R W O R L D
N O V E M B E R 1 9 9 5

Fig 7

The key subroutines that service the command buttons Spline 1 and Spline 2

Sub cmdSpline1_Click ()
‘Calcs and draws a spline by solving on second derivs first
‘Quick! - assumes X increasing - no error checks
Dim i As Integer
Dim AI As Single, BI As Single, CI As Single, DI As Single
Dim X As Single

MakeSpline Val(labNumKnots), xk(), yk(), ys()
‘For each segment between knots...
pic.DrawWidth = LINE_WIDTH
For i = 1 To Val(labNumKnots) - 1

DoEvents
‘Calc its cubic coeffs...
CalcABCD i, xk(), yk(), ys(), AI, BI, CI, DI

‘Plot for each half pixel
For X = xk(i) To xk(i + 1) Step .5

pic.PSet (X, AI * X ^ 3 + BI * X ^ 2 + CI * X + DI)
DoEvents

Next X
Next i
Exit SubEnd Sub

Sub cmdSpline2_Click ()
‘Modification to Spline1 which can handle curves where x is not always
increasing
Dim A As Single, B As Single, C As Single
Dim i As Integer
Dim AX As Single, BX As Single, CX As Single, DX As Single
Dim AY As Single, BY As Single, CY As Single, DY As Single
Dim t As Single, tt As Single
Dim XX As Single, YY As Single

‘Calculate accumulated distances between knots
ds(1) = 0
For i = 2 To labNumKnots

ds(i) = ds(i - 1) + Sqr((xk(i) - xk(i - 1)) ^ 2 + (yk(i) - yk(i - 1))
^ 2)

Next i

‘Make 2nd derivs for each knot, x coords and y coords separately
MakeSpline Val(labNumKnots), ds(), xk(), xs()
MakeSpline Val(labNumKnots), ds(), yk(), ys()

pic.DrawWidth = LINE_WIDTH
‘For each segment between knots...
For i = 1 To labNumKnots - 1
‘Calc its cubic coeffs...
CalcABCD i, ds(), xk(), xs(), AX, BX, CX, DX
CalcABCD i, ds(), yk(), ys(), AY, BY, CY, DY

‘Plot for each half pixel
For t = ds(i) To ds(i + 1) Step .5

‘t = tt / (ds(i + 1) - ds(i)) ‘makes t into range 0 to 1
XX = DX + CX * t + BX * t ^ 2 + AX * t ^ 3
YY = DY + CY * t + BY * t ^ 2 + AY * t ^ 3
pic.PSet (XX, YY)
DoEvents

Next t
Next i End Sub

Fig 8

Service routines for the two main command buttons

Sub MakeSpline (N As Integer, xp() As Single, yp() As Single, p() As Single)
‘Given N knots (xp(1),yp(1))..(xp(N),yp(N)) calculate
‘2nd derivs of cubic spline at each point, into P(1)..P(N)
Dim i As Integer
Static d(2 To MAX_KNOTS_M1) As Single
Static u(2 To MAX_KNOTS_M2) As Single
Static w(2 To MAX_KNOTS_M1) As Single

‘Set up arrays to represent the tri-diagonal matrix
‘d() contains values on the main diagonal...
For i = 2 To N - 1

d(i) = (xp(i + 1) - xp(i - 1)) / 3
Next i

‘u() contains values of diagonal immediately above/below it...
For i = 2 To N - 2

u(i) = (xp(i + 1) - xp(i)) / 6
Next i

‘Calc w(), the RHS values...
For i = 2 To N - 1

w(i) = (yp(i + 1) - yp(i)) / (xp(i + 1) - xp(i)) - (yp(i) - yp(i - 1))
/ (xp(i) - xp(i - 1))

Next i

‘2nd deriv of first and last knot is zero
p(1) = 0
p(N) = 0

For i = 2 To N - 2
w(i + 1) = w(i + 1) - w(i) * u(i) / d(i)
d(i + 1) = d(i + 1) - u(i) * u(i) / d(i)

Next i

For i = N - 1 To 2 Step -1
p(i) = (w(i) - u(i) * p(i + 1)) / d(i)

Next i

End Sub

Sub CalcABCD (i As Integer, xp() As Single, yp() As Single, p() As Single, A
As Single, B As Single, C As Single, d As Single)
‘Calculate A, B, C, D coeffs for cubic polynomial between knots at i to i+1,
‘given (xp(),yp()) coords of knots and p() 2nd deriv at each knot
‘There are 4 eqtns to solve..
‘First two come from the fact that cubic passes through knots at i and i+1
‘and next two from definition of p() as second deriv at these knots..
‘ A xp(i)^3 + B xp(i)^2 + C xp(i) + D = yp(i)
‘ A xp(i+1)^3 + B xp(i+1)^2 + C xp(i+1) + D = yp(i+1)
‘ 6 A xp(i) + 2 B = p(i)
‘ 6 A xp(i+1) + 2 B =p(i+1)
‘Use last two eqtns to solve for A and B first...

LinEq2 6 * xp(i), 2, -p(i), 6 * xp(i + 1), 2, -p(i + 1), A, B
‘Now feed A and B into first two and solve for C and D...

LinEq2 xp(i), 1, A * xp(i) ^ 3 + B * xp(i) ^ 2 - yp(i), xp(i + 1), 1, A *
xp(i + 1) ^ 3 + B * xp(i + 1) ^ 2 - yp(i + 1), C, d

End Sub

PCWContacts
Mike Liardet is a freelance programmer
and writer. He can be contacted via the
PCW Editorial office or on email as
mliardet@cix.compulink.co.uk

Fig 6 The Visual Basic program to plot

cubic splines through an arbitrary

number of points

PCW Cover Disk
The full code for this month’s Low Level
is on the cover disk given with this issue
of Personal Computer World.

have the correct X values and Y values
calculated at the ends of each segment.

Smoothly does it
The plotting part of this routine ties the two
cubic splines together, producing a
smooth curve on the display. With this lit-
tle dodge the points can be in any order.
It also copes well with the situation where
some points are very close together and
others are more distant. The “Spline 1”
method can be fooled under these cir-
cumstances.

Lastly, the Visual Basic program con-
tains a “Spline - Gauss” command. This
solves the Fig 4 equations in the obvious
fashion, using Gaussian elimination. This
routine was developed without any need
to understand the analysis we went
though to derive equations for the “p” val-
ues in Fig 5.

The price that is paid for this simplicity
is a slower solution process. The method
also provides a useful check that the other
Spline commands are working correctly,
as the Gauss command should produce
an identical curve to Spline 1 although it is
calculated by a very different technique.

Fig 9 An adaptation of the basic spline

technique enables a curve to be plotted

where the points are given in any order

