
The beauty of languages like Visual
Basic or Delphi is that good-looking

utilities can be knocked together quickly,
without the need to understand the intrica-
cies of the Windows API. In the real world,
many such applications manipulate data:
Visual Basic took off only when version 3.0
provided the built-in database functions
via the JET engine (the same data access
DLL which powers Microsoft Access). Bor-
land’s “VB Killer”, Delphi, which borrows
this same idea, uses the Borland Data-
base Engine (BDE) to serve dBase, Para-
dox and Delphi itself.

JET and BDE are both core technolo-
gies for their respective vendors and they
work well, as you would expect. Both are
capable of handling several data formats,
can plug into external database drivers
and support a full range of network and
client/server features. It sounds great, but
how many of VB’s 1.5 million users are
developing client/server database applica-
tions? Often, the need is for easy access
to local data within the context of an appli-
cation that might be anything: comms
package, video catalogue, game or multi-
media presentation. Both JET and BDE
represent overkill for this kind of general
purpose use and while that may not mat-
ter, as long as there is plenty of spare
horsepower in your PC, it can be signifi-
cant, especially if you want to distribute
your software as shrink-wrap or shareware.

Another factor is the volume of disk
space occupied by the runtime files
required to make it all work. Delphi is one
of the worst offenders here, because
alongside your application you need two

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 2 6
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 5

install disks for the Borland Database
Engine and even more if you need the
ReportSmith reporting tool. There are two
ways to avoid this overhead. The hardest,
but most efficient, is to roll your own data-
base code in native VB or in a DLL. Failing
that, there are add-ons that aim to be
leaner, meaner and faster than the stan-
dard items.

I’ve been looking at SuccessWare’s
Rocket, a set of DLLs and VBXs aimed
primarily at VB and Visual C++, but also
usable in Delphi. (Clipper developers may
be familiar with the underlying technology,
then called the SixBase driver.) The mem-
ory savings are real. I created a minimal
JET database application, opening a single
table in an MDB and displaying a couple of

Lower your overheads
In search of some lean, mean data access,
Tim Anderson bemoans the overhead of the
Borland or Microsoft approach, and looks for
something slimmer and faster.

Using Rocket with Delphi

The shrink-wrap Rocket which I received from SuccessWare did not work with Delphi
and errors occurred when I tried to install the VBX controls. Help was found on
CompuServe, where SuccessWare have a section in the COMPB forum: there I found a
file called ROCKET.PAS which installs a non-visual Rocket component into Delphi. This
small component sets up all the types and functions used by Rocket; it also makes a call
to Rocket’s sx_setStringType function which tells Rocket to pass standard null terminated
strings back to the calling application rather than VB-style strings.

What SuccessWare didn’t mention was that ROCKET.PAS refers throughout to the
multi-user version of Rocket and I had been sent the single-user version. A search-and-
replace operation sorted that problem. The company did advise changing the names of
the Rocket VBXs from 6Brow and 6Data to sxBrow and sxData respectively — apparently,
Delphi is not happy with VBX components beginning with a number.

With these steps completed, Rocket and Delphi worked fine. But it’s worth noting that
using VBXs intended for Visual Basic in Delphi is not always smooth going. The situation
is likely to improve as Delphi becomes better established. But better still, by the time you
read this, SuccessWare expects to have a VCL component that will render the Rocket
VBXs obsolete for Delphi programmers.

Application Heap memory used Load time

VB/JET 2.5 1.29Mb 4.2 secs

VB/Rocket 652Kb 2.2 secs

Delphi/BDE 1.3Mb 3.4 secs

Delphi/Rocket 544Kb 1.6 secs

fields in bound text boxes. Using Heap-
Walker, Microsoft’s utility supplied with
Visual C++, gave the following results on
a 486DX2/66:

For anyone familiar with dBase, Clip-
per or FoxPro, programming with Rocket
is straightforward since it is firmly in the
xBase tradition. Data is stored in DBF
files and you can choose between Clip-
per or FoxPro format using Rocket’s
Replaceable Database Engine. The
main Rocket .DLL contains functions
which match the core xBase set, for
example sx_Skip, sx_GoTop, sx_Use.
You can include a subset of xBase func-
tions in index definitions. For example:
UPPER(“SURNAME”) +
LEFT(UPPER(FORENAME),3).

Including functions in index definitions
is not my favoured practice (although in
xBase, UPPER is hard to avoid). But the
capability is vital for compatibility with

H A N D S O N ● V I S U A L P R O G R A M M I N G

existing indexes in old data files. Rocket
has four sx_Eval functions which parse
and evaluate xBase expressions, enabling
them to be used by Visual Basic. It’s
messy, but a comfort for any xBase pro-
grammers struggling to come to terms with
Windows.

A minimal Rocket application is simple:
after adding ROCKET.BAS and a couple
of VBXs to a project, a DBF file is opened
with the sx_use function. Sx_use returns
an integer representing a work area, iden-
tifying the table that has been opened.
Each Rocket custom control has a Dbf
property and by setting this to the value of
the work area, the control is bound to the
open table. A Fieldname property identi-
fies the required field. Now the Rocket
functions can be called to step through or
search the data, with the displayed values

includes CodeBasic for VB, CodePascal
for Delphi or Pascal, and CodeBase for
C/C++. For a VB programmer, the Rocket
solution has additional features and is a
little easier to program. Under C/C++, the
offer of full source code makes CodeBase
a superior choice: all the CodeBase prod-
ucts are supplied with the CodeReporter
xBase reporting tool, whereas Rocket has
no reporting features. Both products are
xBase-orientated and, in a sense, out-
dated in their approach to data manage-
ment, but they do come into their own for
projects where the overhead of all that for-
mat-independent SQL handling is simply
too high.

Acrobatics
Adobe Systems has worked hard to estab-
lish its Acrobat reader and associated
Portable Document Format (PDF). Read-
ers of this column may well have come
across this utility since Borland uses it
extensively for Delphi and C++ online
manuals, and the Visual Basic Program-
mer’s Journal publishes all its back issues
in PDF format. Acrobat gives a close on-
screen portrayal of a printed page: if you
print Borland’s manuals from Acrobat, for
instance, you get something very close to
the book manuals that can be bought sep-
arately. This close match between the
printed word and online form makes Acro-
bat documents easy and cheap for the
publishers to create.

I mention this here in the hope that
visual tools vendors will read it and take
notice. If so, please do not use Acrobat for
online documentation. Why? The reason
is that good online documents are not at all
similar to printed books. The priorities for
programmers are quick access to relevant
information, good cross-references via
hotspots, clearly legible screen fonts and
easy copying of example code. Microsoft
seems to understand this better than any-
one and items like the Office Developer’s
Kit, the Developer Network CD-ROM, and
the Books Online supplied with Visual
C++, are a joy to work with. Sections are
short, the display is highly configurable; a
collapsible outliner helps navigation, and
you can carry out fast searches across a
user-defined range of books. By contrast,

being updated automatically. The bound
controls supplied are a text box (which can
also display pictures, stored by Rocket as
compressed BMPs), check box, combo
and list boxes, and a browse (grid) control.
The browse control is free from the limita-
tions of VB’s grid, and claims to display up
to one billion rows. Cells can be individu-
ally colour-coded and you can edit dis-
played data. Finally, two things that are
difficult in native VB are easy with Rocket:
data-aware controls have a Mask property
which controls data formatting using stan-
dard xBase picture strings; and there’s a
set of encryption functions for automatic
data encryption.

Rocket is rather good and fills a gap in
both VB and Delphi. You can also use
Rocket controls in Visual C++. It competes
with Sequiter’s CodeBase range, which

3 2 7
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 5

Left This demo program, downloaded

from CompuServe, shows that Delphi

and Rocket can be a capable

combination

Below Rocket brings Clipper-style

programming to VB developers

Left When you re-size the

text-viewing area in Acrobat, it

simply makes the text smaller

Below Copying a bitmap to the

clipboard via VB's Clipboard

object

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 2 8
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 5

PCW Contacts
Rocket is available from QBS on
0181 994 4842 and costs £115 for a single
user or £195 for the multi-user version.
CodeBase, CodeBasic and CodePascal
is available from Sequiter on
0181 317 04321.

Tim Anderson welcomes your Visual
Programming comments and tips. He can
be contacted via PCW at the usual
address, or freer@cix.compulink.co.uk

☎

☎

been writing VB programs for about 12
months now, mostly for use at work (the
Bodleian Library Map Section, Oxford). I

would appreciate your advice
on how, or whether, graphics
drawn on a picture box can be
copied to other applications via
the ClipBoard. Presumably the
PrintScreen key cannot be
accessed in code, so how can I

do it?”
VB has a Clipboard

object which you can use
for most clipboard opera-
tions. To place an item on
the clipboard, first clear
any existing data using
Clipboard. Clear and then
use the SetData method,
specifying the format
required. The example
program in Fig 1, adapted
from VB’s documentation,
shows how a graphic can
be drawn on a picture box,
copied to the clipboard
and pasted into a second
picture box. It requires a

form with two picture boxes and a com-
mand button:

It’s important to set the picture box’s
AutoRedraw property to True before
attempting to retrieve the image otherwise
you will not get the results you expect. The
reason is that drawing to a picture box with
AutoRedraw set to False does not update
the persistent bitmap for the picture box.
Another point is that you don’t need all the
code in Fig 1 to copy an image from one
picture box to another — you can do that
directly with:
picture2.Picture = picture1.Image

The clipboard is essential, though, for
pasting images into other applications.

Acrobat restricts searches
to one book at a time and
text is in book-width lines
that will not wrap. To fur-
ther aggravate matters,
Adobe has not yet devel-
oped Acrobat for Win-
dows NT although it does
promise to do so.
Although still a minority
taste, NT is widely used
by developers because
of its great stability. I’ve
nothing against Acrobat,
but I don’t believe that it
is a suitable tool for online
programming
documentation.

In the meantime, there
is a way (undocumented) of using
Acrobat under NT. In the Windows
directory, copy ACROREAD.INI to
ACROEXCH.INI. Edit the new file,
and add the line
ATMOption=1
to the [AdobeViewer] section. This
makes Acrobat use TrueType fonts
and thus allows it to run under NT,
although the substituted fonts may
mess up the appearance of the docu-
ments.

Clipping VB Pictures
Nigel James writes with the following
question: “I enjoy reading your VB section
in PCW — it has some useful info. I’ve

Sub Command1_Click()
Dim CX, CY, Limit, Msg, Radius ‘ Declare variables.
Const CF_BITMAP = 2
Picture1.ScaleMode = 3 ‘ Set scale to pixels.
Picture1.AutoRedraw = True ‘ Turn on AutoRedraw.
Picture1.Width = Picture1.Height ‘ Change width to match height.
CX = Picture1.ScaleWidth / 2 ‘ Set X position.
CY = Picture1.ScaleHeight / 2 ‘ Set Y position.
Limit = CX ‘ Limit size of circles.

For Radius = 0 To Limit ‘ Set radius.
Picture1.Circle (CX, CY), Radius, RGB(Rnd * 255, Rnd * 255, Rnd * 255)
DoEvents ‘ Yield for other processing.

Next Radius

‘ now copy to clipboard
clipboard.Clear
clipboard.SetData Picture1.Image, CF_BITMAP

‘ now copy to another picture box
picture2.Picture = clipboard.GetData(CF_BITMAP)

Picture1.AutoRedraw = False ‘ reset
End sub

Fig 1

