
Note that when you set the Stock property,
the confirming dialogue appears. In the
real world, the confirming dialogue can be
replaced by whatever code you require to
ensure a valid stock update. You can pre-
vent a negative value, for example; or
check a User object for authorisation.
Even better would be to replace the Prop-
erty Set procedure with two methods, Add-
Stock and ReduceStock. Gradually the
code becomes more robust and easier to
reuse (simply import the class module into
another project).

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 2 6
P E R S O N A L C O M P U T E R W O R L D
J A N U A R Y 1 9 9 6

Tim Anderson investigates classes in Visual Basic 4.0,
ODBC struggles and PACKing in Delphi.

A Class Act

Using VB 4.0’s class modules, you can

easily create applications that validate

and protect key data

to class methods
Property Get Stock() as long
stock = lstock
end property

Property Let Stock(lNewStock) as long
if msgbox(“Are you sure you want to
change the stock?”, vbYesNo) = vbYes
then
lstock = lNewStock
endif
end property

You can test the new class as
follows:

Dim widget As New clsProduct
widget.Stock = 34
MsgBox widget.Stock

Visual Basic has not embraced all the
features of object orientation. That’s

no reason not to take advantage of the
substantial language improvements which
it offers, not least the new class module.
This enables you to define objects with
their own properties and methods. For
those unfamiliar with classes, here is a
short introduction. In VB, you create a
class module by choosing Insert –– Class
module. Then press F4 to show the prop-
erty sheet for the class. For example, you
might create a product class, and set the
Name property to clsProduct. Next, define
custom properties and methods for the
class. For example:
Option Explicit
Public name as string ‘ name of the
product
Public description as string ‘
describes the product
Public productID as string ‘ iden-
tifies the product
Public stock As Long ‘ number in
stock

Now you can use the class in your
code, for example:
Dim Widget as new clsProduct
Widget.name = “Widget”
Widget.Description = “A very handy
thing indeed”

But this is no more than the old user-
defined type by another name. The differ-
ence is that classes also support methods
and property procedures. For example, it
is dangerous to expose Stock as a public
property. It would be all too easy to set it to
a wrong value by mistake. The answer is
to rewrite clsProduct as follows:
Private lstock as Long ‘ visible only

H A N D S O N ● V I S U A L P R O G R A M M I N G

There is more to say about OO pro-
gramming in VB, and future Hands On
columns will return to this subject.
● How are you finding Visual Basic 4.0?
Please contact me to say what you think of
the new release and how you are using
the new features.

Wrestling with ODBC
Steven Fletcher has written a database
application using Visual C++ and ODBC.
He writes: “I decided to use Microsoft
Access as the Database builder and stan-
dard. My programs access the databases
via CRecordset and CDatabase using a
ODBC link to my Access Database files.
This has been an effective method so far.
The main problem I have using ODBC is
the installation of the software on other
PCs. Firstly, ODBC has to be installed,
then the database files have to be copied
across. ODBC has to be set up to
recognise the installed database and it
must be given the correct name for the
program to read.

“Is there an easier way of installing my
program together with ODBC? And since
JET is a direct MS Access engine, can I
use and link via CRecordSet with JET?”

Steven has hit on one of the least
appealing aspects of ODBC, when used
for applications that are to be distributed.
ODBC consists of manager software, plus
one or more database drivers, plus one or
more data sources which use those

data source name (DSN) you chose may
already be in use.
4. ODBC is a version control nightmare. If
your application installs the latest versions
of the manager and driver DLLs, there is
always the chance that some other ODBC
application will no longer work.
5. To add to the fun, there are now
separate 16-bit and 32-bit ODBC versions,
both of which may be installed on the
same system.

The immediate conclusion is that
ODBC is best managed in a corporate
environment, where the IS department
can control and configure the installations
as required. But this is shrink-wrap soft-
ware. That leaves two other possibilities.
One is to ship the ODBC installation disks
as supplied by Microsoft, and carefully
explain to the user that they need to install
ODBC from the separate setup disks, run
the driver manager, and set up the data

source name. That is asking a lot: end
users should not have to face intimidating
dialogues asking them to configure data
sources.

That brings us to the alternative, which
is to control ODBC programmatically from
your own installation routine. To do this
you need to obtain the ODBC 2.x SDK
from Microsoft; it is on the MSDN level
two disks. Your setup program will need
to copy across the ODBC DLLS, and then
call the ODBC API to configure it. For
example, there is a function called SQL-

drivers to access specific databases. All
these are a shared, system-wide
resource. If you want to create an ODBC
application which can be delivered as a
shrink-wrap and easily installed onto any
Windows PC, there are several problems
to solve:
1. The target PC may or may not have
ODBC installed.
2. The drivers you require may or may not
be installed.
3. The data source will presumably not be
installed, although if you are unlucky the

3 2 7
P E R S O N A L C O M P U T E R W O R L D

J A N U A R Y 1 9 9 6

Setting up an ODBC driver — do you

really want your users to see this?

Dear Santa
It’s that time of year again. And

dear Father Christmas, I wrote to
you last year with some very reason-
able Visual Basic enhancement
requests, few of which have been fulfilled.
What did I ask for? Oh yes, a compiler. And
object oriented extensions to the language ––
yes, I know we got the class module in VB
4.0, but somebody forgot inheritance. And
decent error handling –– what
happened to that? And Visual Basic for the
Mac, where are you?

Maybe I shouldn’t complain. You did
deliver three of the things I asked for. Ver-
sion control was one, and VB 4.0 is miles
better in this respect. A rich text edit control
was another, although I had hoped it would
run in Windows 3.x. And you excelled your-
self with the third: I asked for more
competition for VB, and now you can’t move
for VB lookalikes. Incidentally one of these,
Borland’s Delphi, delivers most of the other
items on the list as well.

Christmas Wishes

Software development, they say, is
the triumph of hope over experience.
Here’s seven
modest requests for 1996. Over to you

Santa.
1. A VB compiler, OO VB, better error

handling (for details, see last year’s list).
2. Slimmed-down Microsoft Office, bro-

ken into small OLE components that make
Office
automation a more realistic proposition.

3. Microsoft and Borland to agree on a
single DBF standard (see Fig 1, page.330).

4. An end to the O/S wars. Last year my
VB 3.0 program ran fine on Windows 3.x, NT
and OS/2. Now 32-bit Windows has messed
up everything.

5. A 12-month break in publicity for Win-
dows 95. No, make that a permanent break.

6. Visual Basic for Applications in Word.
7. Working OpenDoc applications, and not

just on the Mac, but on OS/2 and Windows as
well. If this is a superior alternative to OLE,
we need to see it in operation –– soon.

H A N D S O N ● V I S U A L P R O G R A M M I N G

ConfigDataSource, which adds, modifies
or deletes data sources. With care, it
should be possible to build an installer
application which silently installs and
configures ODBC, complete with version
control, and checks for name conflicts.
But it is a delicate business, and in my
opinion a good reason not to use ODBC
for shrink-wrapped database applications.

Steven also asks about CRecordSet.
This is an ODBC class so cannot use JET
(except via a roundabout route if a
Microsoft ODBC driver itself calls JET).
Visual C++ version 4 introduces the
CDaoRecordSet class. This is one of the
new set of Data Access Objects (DAO)
classes. Using DAO, Visual C++ program-
mers can use JET as easily as VB pro-
grammers. If you port your application to
use DAO classes, and if (as Steven is) you
are using a database supported directly by
JET, then ODBC is bypassed entirely. In
this case it looks like a wise move, except
that the DAO classes do not exist in the
16-bit version of Visual C++. So if Steven
needs to support Windows 3.x, it’s back to
ODBC with all its frustrations.

Getting Access from Delphi
Colin Dow raises a common problem:
“Do you have any tips for connecting to an
Access database using Delphi. There
must be a few people out there who use
Access databases but like the speed of

dBase or Paradox data, but not FoxPro or
Access. That means using ODBC, which is
not Delphi’s strongest suit, along with an
MDB driver. A better option is to give in
and use the Paradox format instead; but
other factors may make that impossible.
So it’s ODBC; and here the main tip is you
need the Microsoft Desktop Driver set
along with ODBC 2.0 or higher. The
drivers supplied with Microsoft Office 4.x
do not work. The desktop drivers are part
of the ODBC SDK which can be found on
MSDN level 2, or on the Visual C++ 2.x
CD, or can be obtained separately from
Microsoft.

Apparently Microsoft refuse to release
the MDB file format specifications, which
makes it unlikely that a custom VCL will
appear. The problem is that the advanced
features of the MDB format are intimately
linked with JET. But you can avoid going
through the Borland Database Engine by
calling the ODBC API directly. At least one
person has created a VCL wrapper for
ODBC, and a Beta version can be found in
the Delphi conference on Compuserve.
The package includes some data-aware
controls for ODBC, and completely
bypasses the BDE. email the author, Dan
Daley (daley@scruz.net), for more details.

Get packing in Delphi
Finally, Andrew Richmond asks: “How do
you pack a dBASE table from a Delphi

Delphi. I don’t know if there are any
specific settings you can set up in the
ODBC/IDAPI to make the connection
more reliable, but tables with counters
don’t seem to behave very well. Or even
better, is there an Access VCL along the
lines of the Apollo engine which you rec-
ommended in September?”

Between them, Microsoft and Borland
control the most popular desktop database
formats on the PC. Microsoft have the
FoxPro variant of the DBF, and their in-
house invention, the Access MDB. Bor-
land’s equivalents are the dBase DBF
variants, and the more sophisticated Para-
dox DB format. As you would expect, Bor-
land’s Delphi has native connections to

3 2 9
P E R S O N A L C O M P U T E R W O R L D

J A N U A R Y 1 9 9 6

You can pack dBase tables from Delphi.

It’s not documented with the product, but

requires the BDE help file (also shown),

obtainable from Borland

Dan Daley has created a VCL wrapper

for ODBC that bypasses the BDE

entirely. The product is currently in

beta, but can be downloaded from

Compuserve

description of the parameters and possible
error messages, contained in the Borland
help file:

uses
... DBiTypes, DBiProcs, DBiErrs;

implementation

procedure PackTable;

var
hMyDb : hDBIDb;
iResult: Word;

begin

program?” Strangely, although Delphi
uses the same database engine as dBase
itself, table objects have no Pack method.
The only way round this is to use lower-
level BDE functions, which Borland have
documented in a file called BDE.HLP,
available for download from Compuserve
and no doubt elsewhere. Using these
functions is much harder than program-
ming the usual database components, and
not often necessary. The following skele-
ton routine successfully packs a table on
my system. Note that for this to work, the
table must not be in use elsewhere. To
use this in earnest, you need the full

H A N D S O N ● V I S U A L P R O G R A M M I N G

Fig 1Two xBase databases — two

incompatible data formats. Why?

dbiInit(nil);

iResult := DbiOpenDatabase(nil,’STAN-
DARD’,
dbiREADWRITE,dbiOPENEXCL,’’,0,nil,ni
l,hMyDb);
{note database must be opened exclu-
sive}

if iResult <> DBIERR_NONE then
MessageDlg(‘Error opening database’,
mtError,[mbOk], 0)
else
iResult :=
dbiPackTable(hMyDb,nil,’C:\MYTABLE.D
BF’,’DBASE’,False);
{table must not be in use elsewhere}

if iResult = DBIERR_NONE then
MessageDlg(‘Packed table OK’, mtIn-
formation,[mbOk], 0);

iResult := dbiCloseDatabase(hMyDb);
iResult := dbiExit;

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He
can be contacted via PCW at the usual
address, or
freer@cix.compulink.co.uk

