
Visual Basic
1. JET loves SQL. If you can use SQL Select or an Execute method, rather than
navigational database code, performance is almost always better.
2. There are experienced VB programmers who do not realise that the code window can be
split: place the mouse just above the thin grey line at the top of the window, and drag down
to obtain two separate scrolling sections.
3. Avoid variants by declaring all variables. Set Require Variable Declaration to Yes in
Environment Options to ensure that Option Explicit appears at the top of all modules.

Delphi
4. Windows 3.x uses co-operative multitasking, which means your application must
regularly yield control back to Windows to avoid locking the user out of other tasks. In Delphi
you can use Application.ProcessMessages to give processing time to other applications.
5. Re-use your code by developing your own utility functions for frequent tasks. Place these
in one Pascal unit, and add it to the Uses clause of any other units that call these functions.
6. Use Inc and Dec to generate tightly optimised code, instead of statements like

iVar := iVar + 1;
7. Delphi has no direct equivalent to VB’s useful App.Path. You can obtain the same
information (the location of the application) by parsing Application.Exename. This returns
the application name with its full path. Search the string for the last occurrence of “\” to find
the path alone.

Version 5.0 of Excel
introduced Visual Basic for

Applications, the common macro
language that is intended to unify
the programming of Microsoft
applications. VBA’s migration to
the main Office components is
slow. Access 7.0 now includes it,
but unbelievably Word 7.0
remains stuck with WordBasic.
The WordBasic language is not
so bad, although there are
annoying differences; but more seriously
Word is not an OLE automation client. It
works as an OLE automation server but

does so crudely, compared with Excel or
Access. The only object made available is
Word.Basic, through which you can call
WordBasic routines.

While we wait for Word to catch up,
there’s plenty to do with VBA in Excel. In
particular, the new Data Access Objects
(DAO) open up the JET database engine
for OLE automation, giving Excel excellent
database features and, without the use of
the old ODBC add-in, XLODBC.XLA.

There is a natural synergy between
spreadsheets and databases. Spread-
sheets are well suited to analysing and
modelling temporary data, while
databases are ideal for robust, permanent
storage. Using DAO you can easily write
programs that transfer data between Excel
and database tables. For example, an
Excel application could obtain a
customer’s order history, feeding the
details into a spreadsheet for charting or
sales projections. Here’s how you might

go about it.
The first step is to insert a

macro module into an Excel 7.0
workbook. Then, from the
Tools menu, choose Refer-
ences and check DAO 3.0
Object Library. This enables
Excel to use all the DAO
classes and constants. The
procedure to retrieve order
details might look like Fig 1.

This simple example returns
a query result as a snapshot

and enters the results into a worksheet.
The data access code works exactly as it
would in Visual Basic 4.0. But DAO will do
more than just execute queries: using the
data definition language you can create
databases with security, encryption and
referential integrity. The workspaces col-
lection lets you set up simultaneous data
access sessions, with support for transac-
tions. Data can be written as well as read,
either by opening an editable recordset (a
table or dynaset) or by executing SQL
statements. VBA and DAO, combined with
a good knowledge of SQL, gives Excel
full-blown data management features. All
we need now is VBA in Word to open up
the same possibilities there.

Designer Widgets
The migration of VBX add-ons to OCX
components continues with the arrival of
32-bit Designer Widgets from Sheridan.
Version 1.0 of this product is widely used
to add dockable toolbars and tabbed
dialogues to VB applications. Evaluating
this new version, which comes in triplicate
(VBX, 16-bit OCX, 32-bit OCX), proved

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 2 4
P E R S O N A L C O M P U T E R W O R L D
D E C E M B E R 1 9 9 5

Dealing with data

Tim Anderson explores data access in Excel 7.0,
why Designer Widgets was released full of bugs,
and how to access text properties in VBXs within
Delphi. Plus, seven tips for visual programming.

Seven tips for VB and Delphi

The hierarchy of data access object
classes; essential information for
database programming in Visual Basic
for Applications

H A N D S O N ● V I S U A L P R O G R A M M I N G

frustrating. This was the release version,
not a beta.

The Readme informed me that the
product did not work quite as documented.
Two major problems were that the tab and
notebook VBXs did not work data-bound,
and that the FormFX control did not work
under Windows 95. Then I tried some of
the controls using a late beta of VB 4.0,
32-bit version. Using the tab control first, I
noticed that the property page took an age
to appear. When it did, I found that altering
one of the properties caused an obscure
error message, followed by a complete
shutdown of Visual Basic 4.0. Presuming
this to be a problem with the VB 4.0 beta, I
reverted to VB 3.0 and tried the VBX
controls. Performance was improved; but I
soon managed to crash VB 3.0 as well.

Guessing something was up, I logged
on to Sheridan’s forum on Compuserve.
There I found a host of angry messages
from attempted users of Designer Widgets
2.0, a 1.2Mb patch file in the library, and a
further string of messages claiming that
the patched version was little better. The
concerns were mainly to do with stability
(as I had discovered), but also

more difficult than ever. Windows
3.x is dying, and Windows users
are moving to some combination of
Windows 95, NT, or OS/2. On top
of that, the main VBX container
environment, Visual Basic itself,
has just been released in several
new versions. Until recently, long
delays in Windows 95 and VB 4.0
have made it hard to release new
products.

Finally, companies like
Sheridan are in the ridiculous
position of having to support three

component standards — VBX, 16-bit OCX

incompatibility with projects built
using Designer Widgets 1.0.

To be a supplier of third-party
tools is a difficult and dangerous
game. Just at this moment it is

3 2 5
P E R S O N A L C O M P U T E R W O R L D

D E C E M B E R 1 9 9 5

Sub GetOrders()
Dim db As Database
Dim snOrders As Recordset
Dim sSql As String

Dim sCustNo As String
Dim iOrderCount As Integer
Dim iCountVar As Integer

Clear sheet
Worksheets(“sheet1”).Cells.ClearContents

‘Get a customer reference number
sCustNo = InputBox(“Enter customer number”)

‘Construct SQL query
sSql = “Select * from customer, orders, products “
sSql = sSql & “where customer.cust_no = orders.cust_no
“
sSql = sSql & “and orders.prod_no = products.prod_no “
sSql = sSql & “and customer.cust_no = ‘“ & sCustNo & “‘
“
sSql = sSql & “order by orders.date_rcd”

‘ Open the database
Set db =
DBEngine.OpenDatabase(“C:\TESTDATA\MAINDB.MDB”)

‘Create a snapshot based on the required customer num-
ber
Set sn = db.OpenRecordset(sSql, dbOpenSnapshot)

‘ Check for no results, find record count

If Not sn.EOF Then
sn.MoveLast
iOrderCount = sn.RecordCount
sn.MoveFirst
End If

‘ Enter customer name into worksheet
If iOrderCount <> 0 Then
MsgBox “There are “ & Str$(iOrderCount) & “ orders for
this customer”
Worksheets(“sheet1”).Cells(3, 7).Value = “‘“ & sn!Cust-
name
Else
MsgBox “There are no orders for this customer”
End If

‘ Enter order details into worksheet
For iCountVar = 0 To iOrderCount - 1
With Worksheets(“sheet1”)

.Cells(7 + iCountVar, 1).Value =
DateValue(sn!Date_rcd)

.Cells(7 + iCountVar, 3).Value = “‘“ & sn!Product

.Cells(7 + iCountVar, 5).Value = Val(sn!Quantity)
.Cells(7 + iCountVar, 6).Value = Val(sn!price)
.Cells(7 + iCountVar, 8).Value = .Cells(7 + iCount-

Var, 5).Value * .Cells(7 + iCountVar, 6).Value
End With

sn.MoveNext
Next

‘ Close database
db.Close

Fig 1 Procedure to retrieve order details

Above Using Excel 7.0 and data

access objects, data can be

extracted from database tables

as easily as in Visual Basic itself

Right Designer Widgets 2.0:

good when it works. The toolbar

designer is a neat way to

assemble your own dockable

toolbar

and 32-bit OCX, and these are meant to
work in a variety of different and not
completely compatible environments.
Sheridan’s president Bob Wolf had the
grace to post an apology on Compuserve,
and pointed out that, “The permutations
between versions (VBX, 16- and 32-bit
OCX), host environments (VB 3.0, VB 4.0,
Access, etc.) and operating systems (Win
3.x, WFWG, NT, Windows 95) turn out to
be 71 separate test environments.”
Sheridan therefore deserves some sym-
pathy, although it remains extraordinary
that a product as unsteady on its feet as
Designer Widgets 2.0 should acquire
shrinkwrap status.

And what about the product?
Presuming Sheridan soon delivers a solid
release, and improves performance, it has
good potential. There are many small
improvements: the index tab control can
be data-bound to give an instant card-file
database; and a new notebook tab control
allows creation of a comforting
spiral-bound interface. Its appeal is a little
reduced for users of VB 4.0 and Windows
95, since toolbar and tabbed dialogue
controls come as standard, but the
Designer Widgets 2.0 versions offer many
extra features. Just make sure you get one
that works.

Delphi, VBXs and strings
If you have used VBX controls in Delphi,
you may have come across a problem
when trying to use string properties. When
you set up Delphi to use a VBX, using the
Install Components dialogue, it creates a
Pascal wrapper unit in your Windows
System directory. Among other things this
wrapper converts VB property types into
Delphi types. In the case of VB strings,
properties are converted to Pascal strings
limited to 256 characters in length. For
example, the TX Text control, which is
supplied by Borland in the Delphi RAD
pack, has several string properties such as
Text and SelText. The Pro version of the
same control has an RTFSelText property,

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 2 6
P E R S O N A L C O M P U T E R W O R L D
D E C E M B E R 1 9 9 5

needed for programmatic access to
formatted text. Delphi exposes these
properties, but helpfully truncates them to
fit into a Pascal string, rendering them
useless.

There are solutions. First, note that all
Delphi controls support two methods,
SetTextBuf and GetTextBuf. These
methods work with pchars, solving the
256-character limit. Internally they work
with the API messages WM_SETTEXT
and WM_GETTEXT. These are
straightforward to use, although before
calling GetTextBuf you must first
determine the size of buffer required with
GetTextLen. (Fig 2.)

This works fine if it is simply a text prop-
erty which you need to obtain. But what

text you set or obtain depends
entirely on how the control has
implemented the WM_SET-
TEXT and WM_GETTEXT mes-
sages. If there is more than one
text property, as with the TX
Text control, this solution is not
enough. There is another way. A
number of functions in the
BIVBX unit give lower-level

procedure TForm1.Button1Click(Sender: TObject);
var
lpzTextString: PChar;
lSize: Longint;

begin
lSize := TextControl1.GetTextLen;
{allocate memory allowing for null character}
GetMem(lpzTextString, lSize + 1);
TextControl1.GetTextBuf(lpzTextString,lSize);
{...do what you want with lpzTextString}
FreeMem(lpzTextString, lSize);

end;

procedure TForm1.Button1Click(Sender: TObject);

var
ptrText: ^HSZ; {defined in BIVBX as ^char}
lpzString: pchar;

begin
new(ptrText); {initialise the pointer}
{then get value of property by name}
VBXGetPropByName(TextControl1.ctl,’SelText’,ptrText);
lpzString:= VBXGetCStringPtr(ptrText^); {convert to pchar}
{... do something with the pchar}
dispose(ptrText); {free the pointer}

end;

Fig 3 SelText property in TX Text control

Fig 2 Determining buffer size

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He
can be contacted via PCW at the usual
address, or
freer@cix.compulink.co.uk

Designer Widgets costs £99 from
Contemporary Software on
01727 811999.

Obtaining the value of the

seltext property in a VBX is not

straightforward, but it can be

done

access to VBX properties. Two of these
are declared in BIVBX.INT, as follows:
function VBXGetPropByName(Ctl: HCTL;
lpszName: PChar; lpValue: Pointer):
Err;
function VBXSetPropByName(Ctl: HCTL;
lpszName: PChar; lVal: Longint):
Err;

These functions enable you to get and
set properties using pointers. You will
need to put BIVBX in the Uses clause of
any unit which calls them. For example, to
retrieve the SelText property of a TX Text
control, use the code in Fig 3.

Be warned that calling functions in
BIVBX is uncharted territory, not
documented by Borland. You should also
note that the code will need amending
according to the type of property you are
accessing.

☎

