
offending the model.
● Pleas that the sender didn’t
understand the problem because
he/she didn’t speak SQL and
wanted to know more.

In order to try and satisfy
everyone (democracy at its best!)
I’ll publish some of the solutions,
and devote part of this and future
columns to a look at the basics of
SQL for the benefit of those who
want to know more.

Incidentally, several people
suggested that Stephen and I
actually knew what the answer
was and had simply set the ques-
tion as an academic exercise!
This wasn’t the case. Although we
eventually did come up with our
own elegant solution, we hadn’t

The question I posed in the March
issue has opened up a huge oyster-

full of pearls. To save you having to look it
up, it consisted of a table of readings from
electricity meters (Table 1). The problem
was to generate an answer table consist-
ing of records showing each meter read-
ing, together with the previous reading (if
available) from the same meter, and to cal-
culate information such as units used. The
answer is shown in Table 2.

I concluded by stating that my col-
league, Stephen, and I had “cheated” with
the solution we presented in March (it
works perfectly, but offends the relational
model) and we both felt it was inelegant.

Last month I documented the “cheat”,
and now we’ll look at the solution. This
problem has produced the greatest num-
ber of responses I have ever received and

H A N D S O N ● D A T A B A S E S

2 7 6
P E R S O N A L C O M P U T E R W O R L D
M A Y 1 9 9 6

Can you see the join?

Mark Whitehorn has been inundated with answers to a meter reading problem.

Meter No. Date Reading
1 18/05/91 20
1 11/11/91 91
1 12/04/92 175
1 21/05/92 214
1 01/07/92 230
1 21/11/92 270
1 12/12/92 290
1 01/04/93 324
2 18/05/91 619
2 17/09/91 712
2 15/03/92 814
2 21/05/92 913
2 17/09/92 1023
3 19/05/91 20612
3 11/11/91 21112
3 15/03/92 21143
3 21/05/92 21223
3 17/09/92 21456
3 21/03/93 22343

Meter Date Current Previous Units
No. Reading Reading Used
1 11/11/91 91 20 71
1 12/04/92 175 91 84
1 21/05/92 214 175 39
1 01/07/92 230 214 16
1 21/11/92 270 230 40
1 12/12/92 290 270 20
1 01/04/93 324 290 34
2 17/09/91 712 619 93
2 15/03/92 814 712 102
2 21/05/92 913 814 99
2 17/09/92 1023 913 110
3 11/11/91 21112 20612 500
3 15/03/92 21143 21112 31
3 21/05/92 21223 21143 80
3 17/09/92 21456 21223 233
3 21/03/93 22343 21456 887

Table 1 Original readings

Table 2 The answer

they are still rolling in.
The responses fell into three main

categories:
● Interesting, but ultimately incorrect; or
correct in that they functioned but they
offended the relational model in some way,
just like the solution in the March issue.
● Correct; they solved the problem without

Fig 1 The Access query builder for Eve Rocks’

first query. Note that the self-join is essentially

treating a single table as if it were present

twice, and joins it to itself. Eve has used two

aliases, one for each occurrence of the table.

In the text I have just aliased the second table,

but either approach is perfectly acceptable

exactly, in the sense of A = B; they
can match on an expression like A
> B.

The easiest way of picturing a
self-join is to imagine that you can
duplicate the table and then join it to
itself, just as you would if they were
actually different tables (Fig 1, page
276). In SQL, the syntax for creat-
ing a self-join is simple: you just
name the table twice in the FROM
clause, giving it an alias for the sec-

ond version of the table (or indeed, an
alias for both occurrences); thus, the
select command in Fig 2 is using Read-
ings2 as an alias for the duplicate of the
table called Readings. The join conditions
can then be described using the WHERE
clause as normal (Fig 3).

This self-join matches records where
the meter numbers are the same and
where the date of the second reading is
earlier than that of the first.

The solution in Fig 4 (page 278), sent in
by Eve Rocks, uses exactly this type of
join, although it is more detailed and uses
a GROUP BY clause to group the records.
From the original data, this yields the
result shown in Table 3 (page 278).

This output table is named STAGE1 in
Eve’s solution. It has done most of the
work in that it has produced records which

H A N D S O N ● D A T A B A S E S

solved the problem at the time of writing,
for publication in the March issue.

The solutions
SQL is not as standard as many people
would like, particularly with regard to the
style in which statements are formatted and
capitalised. In presenting these solutions I
have tried, as far as possible, to leave the
SQL in the exact form in which it was sent
to me. However, minor modifications have
occasionally been necessary in order to
make the SQL work with the original table I
supplied.

The basis of all the working solutions is
a self-join. This is a join in which records
from a table are combined with other
records from the same table, when there
are matching values in the joined fields.
The matching values don’t have to match

2 7 7
P E R S O N A L C O M P U T E R W O R L D

M A Y 1 9 9 6

SELECT Readings.[Meter No], Readings2.date
FROM Readings, Readings AS Readings2

SELECT Readings.[Meter No], Readings2.date
FROM Readings, Readings AS Readings2
WHERE
Readings.[Meter No] = Readings2.[Meter No]
AND Readings.[Date] < Readings2.[Date]

Fig 2 The select command

Fig 3 Using the WHERE clause

Tips & Tricks: When is FoxPro like File Manager?

This bit of FoxPro code comes from Matthew Cook-McQueen: “I wanted my FoxPro for
Windows applications to operate like File Manager: you run it once and then when you
double-click on the icon, the original instance is merely maximised. So I developed the code,
below. It works for FPW and VFP, and maybe for the Mac if that supports DDE (but not for
the DOS version):
*----- (This goes at the start of the main program in your app)
=ddesetoption(“SAFETY”,.F.)
ch = ddeinitiate(“MyApp”,”SYSTEM”)
IF CH != -1

=DDETERMINATE(CH)
QUIT

ENDIF
DO DDE_SETUP

PROCEDURE DDE_SETUP
=DDESETSERVICE(“MyApp”,”DEFINE”)
=DDESETTOPIC(“MyApp”,”SYSTEM”,”DETECTED”)
RETURN

*----- (This bit can go in your procedure file if you have one)
FUNCTION DETECTED
PARAMETERS A,B,C,D,E,F

ZOOM WINDOW SCREEN MAX
RETURN .T.

“The theory is that your application is set up as a DDE server. When you run your
application, the first thing it does is to see if it can connect to this server. If it can, the function
DETECTED is run and the original application is maximised. Control is then returned to the
second instance of the application, which quits itself. If the application cannot connect to the
server, it ‘knows’ that it is not already running, so it sets up the server.”

for each meter) do not
have a preceding
reading.

You may be wonder-
ing why Eve hasn’t sim-
ply pulled the rest of the
data we need (such as
the Previous reading)
into the table at the
same time. The answer
is that using a GROUP
BY clause restricts the
fields that you can actu-
ally display in the
answer table.

However, the bulk of
the work is done and the
SQL statement (Fig 5)
joins this table back to
the original one (Read-
ings) and pulls in the
missing information that

we want.
This yields the correct answer table

(apart from minor differences, such as the
field names) as shown at the start of the
column in Table 2.

Many people sent in solutions like this

contain information from two records in
the original table. Not only that, it has
managed to find the correct records to
join together. Note that there are 16
records in this table and 19 in the original;
this is because three records (the first one

which used two SQL statements: some
were similar to Eve’s; others used different
means to achieve the same ends. Nothing
in the relational model excludes the use of
multiple SQL statements; indeed, using
two consecutive statements like this
makes the solution easier to understand.

Single file
However, complete solutions can be gen-
erated as a single SQL statement, as in
this one from Peter Davidson (Fig 6).

As he says: “The use of a self-join in
this way is very common. It is perhaps sur-
prising how often data is related to itself in
one way or another. The result of a self-
join is the Cartesian product of the table
with itself and, as with any type of join, it is
necessary to restrict the rows only to those
that make sense. In my statement, that is
achieved in the first part of the WHERE
clause which projects only those rows
where both meter numbers are the same.

“The second part of the WHERE clause
selects only those rows that have a current
reading date which is greater than the pre-
vious reading date. This is not entirely nec-
essary but it has a use, especially for
tables with lots of rows. The advantage is
that it cuts down the number of rows pre-
sented to the final, processor-intensive
part of the WHERE clause.”

From the Oracle
Peter wasn’t the only one to send in a
complete solution as one SQL statement,
and not all worked in the same way. Fig 7
is in Oracle (ANSII) SQL, which isn’t too
surprising because it comes from Tony
Willis-Culpitt, principal consultant with the
Oracle Corporation. Tony provided a
detailed description of the working of the
statement, which included the following
information:

“The function around the date just turns
it into a more readable format. The column
alias’ (in double quotes) just give nice
headings to the SQL*Plus columns.

“In order to add the previous readings to
each of the records returned, construct a
second set on the same table where, for
each of the meter numbers, the read_date
is the next below the one in the current
record. Unfortunately, this has to be done
as a correlated sub-query but careful index-
ing should mean that it is still fairly efficient.

H A N D S O N ● D A T A B A S E S

2 7 8
P E R S O N A L C O M P U T E R W O R L D
M A Y 1 9 9 6

SELECT DISTINCTROW Readings.[Meter No], Readings.Date,
Readings.Reading AS [Current Reading],
Readings_1.Reading AS [Previous Reading],
[Readings].[Reading]-[Readings_1].[Reading] AS [Units Used]
FROM Readings, Readings AS Readings_1
WHERE ((Readings.[Meter No]=[Readings_1].[Meter No])
AND (Readings.Reading>[Readings_1].[Reading])
AND (((SELECT count(*) from Readings AS i
WHERE i.[Meter No] = Readings_1.[Meter No]
AND i.[Date] > Readings_1.[Date])-(SELECT count(*) from Readings AS j
WHERE j.[Meter No] = Readings.[Meter No]
AND j.[Date] > Readings.[Date]))=1))
ORDER BY Readings.[Meter No], Readings.Date;

STAGE1:
SELECT DISTINCTROW r1.[Meter No], r1.date AS current_date, r1.reading AS reading_now, Max(r2.date) AS previous_date

FROM readings AS r1, readings AS r2
WHERE r1.[Meter No] = r2.[Meter No] AND r2.date<r1.date
GROUP BY r1.[Meter No], r1.date, r1.reading;

Meter Current Date Reading Previous Date
No. Now
1 11/11/91 91 18/05/91
1 12/04/92 175 11/11/91
1 21/05/92 214 12/04/92
1 01/07/92 230 21/05/92
1 21/11/92 270 01/07/92
1 12/12/92 290 21/11/92
1 01/04/93 324 12/12/92
2 17/09/91 712 18/05/91
2 15/03/92 814 17/09/91
2 21/05/92 913 15/03/92
2 17/09/92 1023 21/05/92
3 11/11/91 21112 19/05/91
3 15/03/92 21143 11/11/91
3 21/05/92 21223 15/03/92
3 17/09/92 21456 21/05/92
3 21/03/93 22343 17/09/92

Fig 4 Eve Rocks’ solution

Table 3 Data resulting from
Eve Rocks’ solution

STAGE2:
SELECT DISTINCTROW readings.meter, stage1.current_date,
readings.date AS previous_date, stage1.reading_now,
readings.reading AS old_reading,
stage1.reading_now - readings.reading AS units_used
FROM readings INNER JOIN stage1
ON readings.meter = stage1.meter
AND readings.date = stage1.previous_date;

Fig 5 SQL statement

Fig 6 Peter Davidson’s solution

H A N D S O N ● D A T A B A S E S

testing purposes is horribly slow, taking
several seconds to produce an answer for
a single meter. The SQL answers are
essentially instantaneous, producing
answers in well under a second. So, that
answer is clear — use SQL whenever
possible.

The quest continues
I am now interested to know whether there
is a difference between the single and mul-
tiple SQL solutions. I know that the answer
is going to depend on the optimiser which
Access uses, and that any differences I
detect may well reflect differences other
than the number of SQL statements. But
I’m still going to construct a mega-table of
meter readings and do some more speed
tests.

Finally, in case this sounds like a dia-
tribe against using an RDBMS’s internal
programming language (in this case,
Access Basic) I am quite happy to use the
language to generate the large block of
data I need for testing. SQL is not a full
programming language; it is a subset of
one. It is excellent (and very fast) for
querying databases, but useless for other
things. Once again, it’s a case of horses
for courses.

2 7 9
P E R S O N A L C O M P U T E R W O R L D

M A Y 1 9 9 6

Mark Whitehorn welcomes readers’
correspondence and ideas for the
Databases column. He’s on
m.whitehorn@dundee.ac.uk

PCWContacts

select r1.meter_no “Meter No”,
to_char(r1.read_date,’dd-Mon-yyyy’) “Reading Date”,
r1.reading “Reading”,
r2.reading “Last Reading”,
r1.reading - r2.reading “Units Used”,
to_char(r2.read_date,’dd-Mon-yyyy’) “Last Read”

from meter_readings r1,
meter_readings r2

where r1.meter_no = r2.meter_no
and r2.read_date = (select max(r4.read_date)

from meter_readings r4
where r4.meter_no = r1.meter_no
and r4.read_date < r1.read_date)

UNION
select r5.meter_no,

min(to_char(r5.read_date,’dd-Mon-yyyy’)),
min(r5.reading),
0,
0,
null

from meter_readings r5
group by r5.meter_no
order by 1, 2 ;

Fig 7 Tony Willis- Culpitt’s statement

“The change to the order by clause is
because the column names cannot be
used explicitly in a union query. 1 and 2
are the relative positions of the sort
columns in the select list. The ‘min’ func-
tion on the ‘r5.reading’ column does not
actually do anything positive; it is just there
to satisfy the rule that any returned column
not in the ‘group by’ clause must have a
group operator applied to it.”

And thanks to...
It seems grossly unfair to single out only the
few who have been mentioned so far. The
respondents below each deserve a men-
tion; either for correct answers, or for just
plain interesting ones. My solution and the
best of the rest are in the magazine direc-
tory on this month’s free, PCW CD-ROM.

Malcolm Bacchus Alasdair Macdonald
Paul Bloomfield Alan Mackechnie
Jose Femenias Charles Mawdsley
Adrian Fowle John Meads
David Gould Brian Riley
Dave Johnson Geoffrey Snook
Andrew Kaye

The speed angle
You may remember that this question first
appeared, in the March issue, with refer-
ence to speed. The problem can be solved
with sequential programming in Access
Basic, but Stephen and I were keen to find
an SQL answer for reasons of speed as
well as elegance.

A code solution that we produced for

