
Last month I started to write about ways
of speeding up your database. This

month I will digress slightly to cover a
problem which has arisen since then. A
colleague of mine, Stephen Elwell-Sutton,
was building a database in Access to store
meter readings from various electricity
meters. These can be stored in a table like
that in Fig 1:

using [Meter No] and [Date] as the primary
key. The people using the database
wanted, quite reasonably, to see the data
in the sort of format shown in Fig 2, from
which other information, such as the days
between readings, and the usage per day,
can be calculated.

Each record in this table is made up of
data taken from two records in the original
table, and the relationship between the

H A N D S O N ● D A T A B A S E S

2 8 6
P E R S O N A L C O M P U T E R W O R L D
M A R C H 1 9 9 6

two records concerned in each case is as
follows. Consider the last record in the
original table to be the “current” record. In
order to generate a record in the second
table we scan backwards, looking for the
first record which has the same meter
number and a date which is lower in value
that the current record.

Given that the data is sorted as shown in
the first table, this will be the record above
the current one. This matching process fails
if we consider the record for meter three
taken on the 11/11/91, since the record
above it is for meter two.

So, on the face of it, the algorithm for
solving the problem was trivial:
● Start at the bottom of the table.
● Repeat
● For each record look at the one above. If
it contains an identical meter number, use
the two records to generate a record in the
answer table.
● Move up one record, until at the top of the
table.

Mark Whitehorn examines a problem thrown up by a meter reading
database, and sings the praises of indexing –– this month looking at how it
can speed up data retrieval.

meter matching machines

Meter No Date Reading

1 18/5/91 20

1 11/11/91 91

1 12/4/92 175

1 21/5/92 214

1 1/7/92 230

1 21/11/92 270

1 12/12/92 290

1 1/4/93 324

2 18/5/91 619

2 17/9/91 712

2 15/3/92 814

2 21/5/92 913

2 17/9/92 1023

3 19/5/91 20612

3 11/11/91 21112

3 15/3/92 21143

3 21/5/92 21223

3 17/9/92 21456

3 21/3/93 22343

Meter No Date Current Reading Previous Reading Units used Date of Previous Reading

1 11/11/91 91 20 71 18/5/91

1 12/4/92 175 91 84 11/11/91

1 21/5/92 214 175 39 12/4/92

1 1/7/92 230 214 16 21/5/92

1 21/11/92 270 230 40 1/7/92

1 12/12/92 290 270 20 21/11/92

1 1/4/93 324 290 34 12/12/92

2 17/9/91 712 619 93 18/5/91

2 15/3/92 814 712 102 17/9/91

2 21/5/92 913 814 99 15/3/92

2 17/9/92 1023 913 110 21/5/92

3 11/11/91 21112 20612 500 19/5/91

3 15/3/92 21143 21112 31 11/11/91

3 21/5/92 21223 21143 80 15/3/92

3 17/9/92 21456 21223 233 21/5/92

3 21/3/93 22343 21456 887 17/9/92

Fig 1 Meter readings

Fig 2 Another format

In fact, you can work from the top to the
bottom in a similar manner if you prefer.
Fine. Except that the solution is inelegant,
if not to say offensive.

Why? Well, one of the major principles
of the relational model is that the position
of a record in a table is of no significance
whatsoever. We are supposed to be able
(and indeed willing) to locate the value in a
field solely by reference to its table name,
field name and primary key value. Just
because a value in a field happens to be in
“the record above the current one” doesn’t
mean we automatically know it’s the one
to use. SQL, for example, doesn’t allow
you to reference the records above or
below the current one; indeed SQL has no
concept of the “current” record. Instead it
performs operations on sets of records
rather than on individual ones.

Typically, the programming language
supplied with most RDBMSs will allow
sequential record processing, and either
Stephen or I could have solved the

H A N D S O N ● D A T A B A S E S

2 8 7
P E R S O N A L C O M P U T E R W O R L D

M A R C H 1 9 9 6

which has a counter field, Access will
automatically increment the counter field,
sequentially numbering the records. If
the table has been used before, the
numbers won’t start at 1, but they will still
be sequential.)

Then we wrote a series of SQL
statements which did the following:

1. Cleaned out any existing data from
READINGS2 .
2. Copied the data from READINGS to
READINGS2, keeping the order identical
to that dictated by the primary key.
3. Created a Dynaset in which the values
in the counter field were incremented by
one.
4. Joined READINGS and the Dynaset
by Meter No and the Counter to produce

an answer table which
then contained the
desired results.

The important
parts, and hopefully
the rationale, should
become clear if you
study the sample data.

The SQL was as
shown in Fig 3.

problem with Access Basic, but instead
we looked for an entirely SQL-based
solution. And in case you think this
problem has wandered into the realms of
academic theory, remember that set
operations have the potential to be much
faster than sequential processing, so we
were looking not only for a more elegant
solution, but a faster one.

The solution we came up with is as
follows:

The data was stored in a table called
READINGS. We created a table with an
identical structure to READINGS, except
that it had an additional field called [Count]
which was of type Counter. This table was
called READINGS2.

(As an aside, it is a characteristic of
Access that if you add data to a table

A master/sub form

which presents the

“meter” data in a more

acceptable manner

Fig 3 Solving the problem with SQL

1.
DELETE *
FROM Readings2

2.
INSERT INTO READINGS2 ([Meter No], [Date], Reading)
SELECT [Meter No], [Date], [Reading]
FROM READINGS
ORDER BY READINGS.[Meter No], READINGS.[Date]

3.
SELECT DISTINCTROW [Meter No], Date, Reading, [Count]+1 AS [Incremented
Count]
FROM READINGS2

4.
SELECT DISTINCTROW READINGS2.[Meter No], READINGS2.Date,
READINGS2.Reading AS [Current Reading], [3 Renumber records in a
dynaset].Reading AS [Previous Reading], [Current Reading]-[Previous
Reading] AS [Units used], [3 Renumber records in a dynaset].Date AS [Date
of Previous Reading], [READINGS2].[Date]-[3 Renumber records in a
dynaset].[Date] AS [Days since last reading], [Units Used]/[Days since
last reading] AS [Daily Usage]
FROM [3 Renumber records in a dynaset] INNER JOIN READINGS2 ON ([3
Renumber records in a dynaset].[Incremented Count] = READINGS2.Count) AND
([3 Renumber records in a dynaset].[Meter No] = READINGS2.[Meter No])

To which Damian replied:
Thanks, but how can I combine the house no. & address field to be
sorted when using queries in Access 2.0, so the addresses come
out in order?

Build a new query and in the first column write:
Address: Str$([AddressNo])+” “+[AddressWords]

The function Str$ turns the numeric value in AddressNo into text
and the rest of the expression simply adds that text value to a space
character and then to the text in AddressWords. This causes values
like:
7 Acacia Gdns.
to appear in the first column of the answer table. However, sorting

on this column will be unsatisfactory
because Access will treat the numeric
values as text, which means we are back
to the original problem. Clearly what we
want is the addresses sorted first by street
name, then by number, as in the
addresses table. In order to achieve this,
add the two fields AddressWords and
AddressNo to the answer table (in that
order) and set each in turn to be sorted in
ascending order.

Since AddressWords is the first sorted
field in the answer table, reading from left
to right, the data will be sorted first by the
values in that field. The data in the
AddressNo field will be used to sort data
with identical values in the AddressWords

field. However, since AddressNo contains numeric values, the sort
will proceed correctly.

Finally you can render AddressWords and
AddressNo invisible in the answer table by
deselecting the “Show” option. Even deselected
in this way, they will still be used to sort the
data. For non-Access users, the SQL for this
query is:

The table names are overlong, I agree,
but this means they make more sense in
the data which is on the cover disk as
METER2.MDB.

So, we completed the task we set
ourselves, and solved the problem with
SQL. Hopefully this is faster than
sequential processing would be.
Nevertheless we are unhappy with the
result, because we cheated. Somewhere
in there is a nasty, cheap little trick which
offends the relational database model.

Three questions arise.
1. Can you find the cheat?
2. Can you do better?
3. Are we missing something vital?

It seems to us that this problem is
representative of a broader class of

H A N D S O N ● D A T A B A S E S

2 8 8
P E R S O N A L C O M P U T E R W O R L D
M A R C H 1 9 9 6

Tips & Tricks

The GUI version of the final SQL

statement

The query which lists addresses in a

tidy, sensible fashion

Addresses

1 Acacia Gdns.

7 Acacia Gdns.

12 Acacia Gdns.

13 Acacia Gdns.

17 Acacia Gdns.

24 Acacia Gdns.

241 Acacia Gdns.

2 Belmont Road

6 Belmont Road

7 Belmont Road

12 Belmont Road

56 Belmont Road

214 Belmont Road

SELECT DISTINCTROW Str$([AddressNo])+”
“+[AddressWords] AS Address
FROM Address

ORDER BY AddressWords, AddressNo;

From Shane Devenshire:
Selecting an entire form or report without using
the menus in Access
When you are in the Form or Report design mode of Access, you often
want to select the entire form or report. To do this you can click the
white box in the top left corner of the form or report. Alternatively, if you
can see any space to the right hand edge of the form or report all you
need do is click it. Whatever you click to the right of –– the Detail
section, Page Header –– they all work. If you can’t see that area you
can click in the area below the Report Footer; this will also select the
entire form.

In Access II you can also click or double click anywhere on the
ruler that has no objects directly below. Double clicking on the
horizontal ruler will bring up the form’s Property dialogue box.

From Damian Luby
I am looking after a database which belongs to the estate I live
in. I would like to have the primary index (and sorting) put the
address in proper sequence.

I have the address in the following format:
1 Glenbourne Road
2 Glenbourne Road
11 Glenbourne Road
12 Glenbourne Road

After sorting, the no 11 house is put before the no 2, naturally
enough. Can you think of an easy work-around for this problem? I
am using Microsoft Access 2.0.

Try splitting the address into two fields:
AddressWords
AddressNo

and declare the field called
AddressWords to be of data-type Text
and AddressNo to be of type Number.

Access allows you to combine the
two fields to form a single primary key,
so that you can make AddressWords
AND AddressNo the joint Primary key.
The fields will then sort properly.

problem: “What is the best way of
handling records in a relational database
that have to reference each other?”

Clearly there are other solutions, such
as storing both the current and previous
reading in each record, but they all seem
to conflict with the relational model as
well. Surely someone, somewhere has
worked out a solution to this in the past?
Anyone out there know what we are
missing?

PCWContacts

Mark Whitehorn welcomes readers’
correspondence and ideas for the
Databases column. He’s on
m.whitehorn@dundee.ac.uk

