
H A N D S O N ● L O W L E V E L

method. A symbolic solution generally
provides 100 percent accurate answers,
whereas there is always an error factor
with a numerical method. Neither
approach guarantees a solution in every
case — symbolic manipulation can get
overloaded by the complexities of symbol
manipulation, and numerical methods
can miss the mark either because of
accumulated rounding errors, or else
because the underlying iterative method
diverges away from the theoretical solu-
tion instead of converging onto it.

Outside of the Artificial Intelligence
laboratories there is comparatively little
equation-solving software that uses sym-
bolic manipulations; Wolfram’s
Mathematica is one notable exception.
Most other equation-solving software
uses numerical techniques. There are a
number of reasons for this, not least
because most of the common program-
ming languages (e.g. C, C++, Cobol, For-
tran, Basic) are better equipped to handle
numbers rather than symbols.

In this month’s Low Level we will
explore some of the equation-solving
techniques, using both symbolic and
numerical methods, and finish off with a
practical and efficient Basic implementa-
tion of a numerical method that can be
applied in a wide number of problem
areas.

To get a flavour of what’s involved we
will start work with a set of three simple
simultaneous equations (Fig 1), which
are to be solved for the three unknowns:
x, y and z. To solve these equations sym-
bolically by computer, it is essential to
first represent them in an appropriate
data structure, such as the “nested list”
which is a standard construct in program-
ming languages like Lisp or Prolog. Fig 2
shows how these equations can be con-
verted into lists.

Once held in list form it’s much easier
to operate on the equations, but this begs
the question of what operations can use-
fully be performed on them. There are
various rules which are commonly used
when attempting to solve equations. Fig 3
outlines the common manipulations,
although we have glossed over some of
the mathematical niceties: for example,
you have to be careful not to divide equa-
tions by zero. To show how these rules
are used in practice the solution process
for the equations is given in Fig 4.

Using rule 1 we can see that there are
three variables and three equations, so
it’s likely that it will in fact be possible to
reach a solution. Fewer equations would

some redundancy (such as one of the
extra equations being a trivial variant of
another equation) there is likely to be an
inconsistency with no solution possible.

leave the problem under-constrained,
with not enough information to reach a
solution. More equations would over-con-
strain the problem, and, unless there was

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

2 9 9
P E R S O N A L C O M P U T E R W O R L D

O C T O B E R 1 9 9 5

Most computer programs are based
in part on theories that include

some mathematical equations. For exam-
ple, financial applications encode the
equations for profit, loss, compound inter-
est, and so on. Many games and graphics
programs use the equations of projective
geometry. Scientific software typically bor-
rows the equations of physics, with any-
thing from an elementary Fahrenheit to
Celcius formula through to the equations
of atomic theory and beyond. Even a sim-
ple accounting program must encapsulate
the equations for VAT.

In many cases it’s possible for the pro-
grammer to solve the equations while the
program is being written, hard-wiring his
solution explicitly in the code with the
appropriate formulae. Experienced pro-
grammers do this almost sub-
consciously, forgetting that they are
actually implementing something that’s
based on a firm mathematical theory. For
example, the equations for VAT might be
written in this form:
VAT_on_Goods = Invoice_Total -
Goods_Value

VAT_on_Goods = Goods_Value * VAT_Rate
VAT_Rate = .175 (at present!)

For a typical invoicing system it is
likely that, when the program needs to
work with these equations, the
Goods_Value is already known (it is sim-
ply the sum of the prices of all the items
on the invoice, which were presumably
typed in by the user) and that the
VAT_on_Goods and Invoice_Total are

that a VAT Inspector may want to know,
and the only way to provide it with a con-
ventional program is for the programmer
to code another routine to provide this
functionality, working with the same set of
equations as before, but using them in a
different way.

For the small set of VAT equations
above it is simple enough for the
programmer to hand-solve them and then
implement all the necessary routines to
support the application. For more compli-
cated situations this may not be feasible.
Either the formulae may become too
complicated for reliable hand solution, or
the “direction” of use may not be known
in advance — for example, spreadsheet
systems often have a “back-solver”,
where the user can specify any combina-
tion of variables in a formula as input, to
derive the remainder as output.

In these situations the program itself
needs equation-solving capability. There
are two ways of tackling the problem: by
symbolic manipulation or by a numerical

H A N D S O N ● L O W L E V E L

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

2 9 8
P E R S O N A L C O M P U T E R W O R L D
O C T O B E R 1 9 9 5

the unknowns. In this context these are
the values for which the equations must
be solved. With the aid of a trivial manip-
ulation of the first equation and some
straightforward re-ordering of the equa-
tions themselves, the VAT calculations
can be (pseudo-) coded as:
Sub VATCalc(Goods_Value,VAT_on_Goods,

Invoice_Total)
Set VAT_Rate = .175
Set VAT_on_Goods = Goods_Value *

VAT_Rate
Set Invoice_Total = Goods_Value +

VAT_on_Goods
End

This may be enough for most account-
ing software, but it’s interesting to note
that this simple little routine does only half
the job of the original equations, since it
can work in only one direction.
Specifically it can only determinine
VAT_on_Goods and Invoice_Total when
given Goods_Value, but it is unable to
determine, for example, Goods_Value,
given Invoice_Total. This is something

Equal opportunities

Mike Liardet investigates some equation-solving techniques, using both
symbolic and numerical methods, and includes a practical and efficient
Basic implementation of a numerical method that can be applied in a large
number of problem areas.

Fig 1 A set of three simultaneous equations, with three unknowns: x, y and z

x y z = 450 (A)
5 y2 + 5 x y = 50 x (B)
3 x2 - 30 x = -75 (C)

Fig 2 A Lisp-like internal representation of the equations in Fig 1, using list structures

(= (* (* x y) z) 450) (A)
(= (+ (* 5 (^ y 2)) (* (* 5 x) y)) (* 50 x)) (B)
(= (- (* 3 (^ x 2)) (* 30 x)) 45) (C)

Fig 3 Ten rules of thumb for solving equations

1. To be solvable the number of equations should equal the number of unknowns.
2. Equations involving powers of 2 (e.g. x2 - 7 x = - 12) have two solutions (x = 3 or 4 in this
case). With powers of three there are three solutions, and so on.
3. Equations can be shuffled into any order without affecting their solution.
4. Sub-expressions within an equation can be shuffled and re-arranged in various ways,
controlled by mathematical rules and identities.
5. A value, or expression (possibly including unknowns) can be added to or subtracted from
both sides of any equation.
6. A value or expression can be used to multiply or divide an equation. This is done by
applying it to both sides simultaneously.
7. The left- and right-hand sides of an equation can be swapped.
8. Two or more equations can be added (or subtracted) to make a new equation by adding
(or subtracting) the left-hand sides of each, giving one side of the new equation, and
performing the same operation on the right-hand sides of each for the other side of the new
equation.
9. Two or more equations can be multipled together (or divided) to make a new equation by
simultaneously applying the appropriate operation to the respective equation, adding (or
subtracting) the left-hand sides of each for one side of the new equation, and the right-hand
sides of each for the other.
10. When an unknown is isolated on one side of an equation, it can be eliminated from all
the equations by replacing its every occurence in the other equations by the expression that
it’s equal to. The original equation need play no further part in the solution process.

Fig 4 Solving the equations in Fig 1

Divide (C) by 3
x2 - 10 x = -25 (C1)
Add 25 to each side of (C1)
x2 - 10 x + 25 = 0 (C2)
Rearrange LHS of (C2)
(x - 5)(x - 5) = 0 (C3)
So x = 5, substitute in (A) and (B)
5 y z = 450 (A1)
5 y2 + 25 y = 250 (B1)
Divide (B1) by 5
y2 + 5 y = 50 (B2)
Subtract 50 from each side of (B2)
y2 + 5 y - 50 = 0 (B3)
Apply identity
a x2 + b x + c = 0 => x = (-b +-sqrt(b2 - 4 a c))/ 2 a

to (B3)

y = -5 +- sqrt(25 + 200) /2 (B4)

So y = 5 or y = -10 (B5)

Substitute in (A1)

25 z = 450 or -50 z = 450 (A2)

Divide one equation in A2 by 25 and the other by -50

So z = 18 or z = -9

Solutions: (x = 5, y = 5, z =18) or (x = 5, y = -10, z = -9)

H A N D S O N ● L O W L E V E L

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

3 0 1
P E R S O N A L C O M P U T E R W O R L D

O C T O B E R 1 9 9 5

MICROMART
CLASSIFIED

Rule 2 tells us that there may be multi-
ple solutions for x and for y as well. Most
of the other rules are used in the solution
process itself. With an appropriate pro-
gramming language, such as Lisp or Pro-
log, each rule can easily be encoded as
an operation that can be performed on a
list structure. For example, adding a
quantity Q to each side of an equation (=
LHS RHS), converts it to the form (= (+
LHS Q) (+ RHS Q)). List processing lan-
guages can easily manipulate lists in this
fashion.

Notice that, contrary to expectations,
the equations produce only one solution
for x (x = 5). Equation C3 shows why —
there are in fact two solutions, but they
are both the same!

With a symbolic solver it’s not enough
simply to implement the equation manip-
ulation rules. The solver needs some
strategy to guide the solution process
and apply the rules in the right order and
in the right way. This is the hardest part
to implement, and the area in which sym-
bolic solvers are most likely to fail.

We won’t go into the strategy in much
detail here, but in general a good overall
aim is to isolate any one variable on one
side of one equation so that it can be
substituted in all the other equations,
effectively reducing the number of vari-
ables by one. If all goes well, after
repeating this process several times, a
single equation in one variable is left, and
hopefully this is solvable directly, and its
solution can then help get solutions for
the other remaining variables. This may
not always work out as planned — for
example, there’s a well known
mathematical result that there’s no gen-
eral solution method for polynomials of
degree 5 or more (e.g. equations like x5

+.. = ..).
Numerical methods are less likely to

founder in this way, but often require
some complex participation by the user

H A N D S O N ● L O W L E V E L

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

3 0 0
P E R S O N A L C O M P U T E R W O R L D
O C T O B E R 1 9 9 5

as a part of the solution process. For
example, the user may have to provide a
first guess for the solution, and if the
guess is a bad one then the method may
fail to arrive at a solution, or if there are
multiple solutions it may only find the one
nearest to the guess.

With a numerical method it is also
sometimes necessary for the user to dif-
ferentiate the equations by hand and then
write a function that calculates the differ-
ential. This is a pity because it’s not too
difficult to implement a symbolic differen-
tiation routine that could do the job auto-
matically, but the programming
languages commonly used to implement
numerical methods cannot readily be
used in this way. Firstly they are not very
good at symbol manipulation in any case,
but the main problem is that programs
written in languages like C and Pascal
are compiled before they are used, and
cannot then create new compiled
routines dynamically; they simply cannot
be used in this way.

There is one special area of equation-
solving, where a numerical method works
particularly well. This is the Gaussian
elimination technique, which can be
applied to systems of linear equations. A
linear equation can contain any number
of unknowns but these can only be com-
bined in a very simple way. There are no
unknowns multiplied together and expo-
nentiation, trigonometry or other awkward
expressions are not allowed.

Fig 5 shows a typical set of simultane-
ous linear equations, with three
unknowns: x, y and z. These equations
could be solved symbolically, using the
rules given in Fig 3, but Gaussian elimi-
nation formalises the process, so that the
solution, if it exists, is found quickly, effi-
ciently and accurately.

Because of the simple structure of lin-
ear equations they do need to be held in
list structures and can easily be
represented by arrays containing the
essential coefficients. The unknowns
don’t need to be mentioned at all. For
example, the equations in Fig 5 can be
adequately represented by the array
shown in Fig 6, on the understanding that
each row represents an equation, with
the first three columns in the array giving
the coefficients of the x, y and z
unknowns, and the last column giving the
right-hand side values of each equation.

Gaussian elimination systematically
manipulates this array representation
until it uncovers the solution. Fig 7 shows
roughly how it works in practice. All the

PCWContacts
Mike Liardet is a freelance programmer
and writer. He can be contacted via the
PCW editorial office or on email as
mliardet@cix.compulink.co.uk

PCW Cover Disk
The full code for this month’s Low Level is on
the cover disk given with this issue of PCW.

Fig 5 Three simultaneous linear

equations

6 x + 6 y + 12 z = 54
3 x + 2 y + 4 z = 19
2 x + 3 y + 4 z = 20

Fig 6 An array representation of the

linear equations

[6 6 12 54]
[3 2 4 19]
[2 3 4 20]

operations on the equations (or rather,
rows in the array) are covered by one or
other of the rules we mentioned earlier,
but because linear equations are so
highly structured the solution process moves forward very methodically. Notice

that at the third stage, when we are at
the point of deriving the value of z, all the
array values below the array diagonal
are zero. This is the so-called “triangu-
lated” form, from which the solution tum-
bles out, in a straightforward fashion as
shown in the example.

There is only one major complication
(see Fig 8) with the method, which we
have so far glossed over by carefully
constructing the problem in the first
place. But suppose the second and third
equations are swapped, and the order of
variables is changed to x, z, y. The solu-
tion method is in danger of breaking
down here, because when working on
the second variable (z) the pivot element
turns out to be zero, and it cannot be
used to eliminate the elements below.
There’s a simple work-around for this:
search for the most appropriate pivot ele-
ment, looking down the column from the
diagonal to the bottom and swap the
positions of the equations so that the
best pivot element is in the frame and

can then be used. If all the potential pivot
elements are zero then there is no solu-
tion to the equations.

So much for the theory. The code to
perform the Gaussian elimination is
given in Fig 9. It can work on any num-
ber of variables/equations, although the
solution process inevitably slows down
as the problems get bigger. This is a
result of the execution time being
proportional to the cube of the array size
(notice the three nested loops in the
routine).

Fig 7 Gaussian Elimination in action.

The technique systematically manipulates
the array representation of the linear equa-
tions to obtain the solution
[6 6 12 54]
[3 2 4 19]
[2 3 4 20]

Pivoting on the x coefficient in the first
equation, eliminate x from the the
equations below...
[6 6 12 54]
[0 -1 -2 -8]
[0 1 0 2]

Pivoting on the y coefficient in the sec-
ond equation, eliminate y from the equation
below...
[6 6 12 54]
[0 -1 -2 -8]
[0 0 -2 -6]

The last equation now gives z = 3
immediately. Eliminating z from the equa-
tions above, and eliminating this equation
from further consideration...
[6 6 0 18]
[0 -1 0 -2]
The last of the remaining equations now

gives y = 2 immediately. Eliminating y

from the equation above...

[6 0 0 6]
The last remining equation gives x = 1

immediately. The equations are solved

Fig 8

After a minor rearrangement of the equa-
tions there are problems with pivoting,
when a zero element is found in the critical
position.
6 x + 12 z + 6 y = 54
2 x + 4 z + 3 y = 20
3 x + 4 z + 2 y = 19

The equations have been rearranged,
but their solution is the same. The array
representation is:
[6 12 6 54]
[2 4 3 20]
[3 4 2 19]

As before, pivoting on the x coefficient
in the first equation, eliminate x from the
the equations below:
[6 6 12 54]
[0 0 1 2]
[0 -2 -1 -8]
Pivoting on the (second) z coeffi-
cient in the second equation is not
now possible as it is zero...

Fig 9 A subroutine in Basic, that performs Gaussian elimination

Sub Gauss (N As Integer, A() As Single, xans() As Single)
‘Do Gaussian elimination on a(1..N,1..N) where RHS is in a(1..N,N+1)
‘Answer is given in xans(1..N)
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim mx As Integer
Dim t As Single

‘Eliminate...
For i = 1 To N

mx = i
For j = i + 1 To N

If Abs(A(j, i)) > Abs(A(mx, i)) Then mx = j
Next j
For k = i To N + 1

t = A(i, k): A(i, k) = A(mx, k): A(mx, k) = t
Next k
For j = i + 1 To N

For k = N + 1 To i Step -1
A(j, k) = A(j, k) - A(i, k) * A(j, i) / A(i, i)

Next k
Next j

Next i
‘Substitute...

For j = N To 1 Step -1
t = 0#
For k = j + 1 To N

t = t + A(j, k) * xans(k)
Next k
xans(j) = (A(j, N + 1) - t) / A(j, j)

Next j
End Sub

