
10. A Script-Fu Tutorial 10. A Script-Fu Tutorial In this training course, we’ll introduce you to the fundamentals of Scheme

10. A Script-Fu Tutorial
Prev 10. A Script-Fu Tutorial Next

necessary to use Script-Fu, and then build a handy script that you can add to your toolbox of scripts. The script prompts the user
for some text, then creates a new image sized perfectly to the text. We will then enhance the script to allow for a buffer of space
around the text. We will conclude with a few suggestions for ways to ramp up your knowledge of Script-Fu. Note This section
as adapted from a tutorial written for the Gimp 1 User Manual by Mike Terry. 10.1. Getting Acquainted With Scheme Let’s Start
Scheme’ing The first thing to learn is that: Every statement in Scheme is surrounded by parentheses (). The second thing you need
to know is that: The function name/operator is always the first item in the parentheses, and the rest of the items are parameters
to the function. However, not everything enclosed in parentheses is a function -- they can also be items in a list -- but we’ll
get to that later. This notation is referred to as prefix notation, because the function prefixes everything else. If you’re familiar
with postfix notation, or own a calculator that uses Reverse Polish Notation (such as most HP calculators), you should have no
problem adapting to formulating expressions in Scheme. The third thing to understand is that: Mathematical operators are also
considered functions, and thus are listed first when writing mathematical expressions. This follows logically from the prefix
notation that we just mentioned. Examples Of Prefix, Infix, And Postfix Notations Here are some quick examples illustrating the
differences between prefix, infix, and postfix notations. We’ll add a 1 and 3 together: Prefix notation: + 1 3 (the way Scheme will
want it) Infix notation: 1 + 3 (the way we "normally" write it) Postfix notation: 1 3 + (the way many HP calculators will want it)
Practicing In Scheme Now, let’s practice what we have just learned. Start up Gimp, if you have not already done so, and choose
Xtns/Script-Fu/Console. This will start up the Script-Fu Console window, which allows us to work interactively in Scheme. In
a matter of moments, the Script-Fu Console will appear: The Script-Fu Console Window At the bottom of this window is an
entry-field entitled Current Command. Here, we can test out simple Scheme commands interactively. Let’s start out easy, and
add some numbers: (+ 3 5) Typing this in and hitting Return yields the expected answer of 8 in the center window. Now, what
if we wanted to add more than one number? The "+" function can take two or more arguments, so this is not a problem: (+ 3 5
6) This also yields the expected answer of 14. So far, so good -- we type in a Scheme statement and it’s executed immediately
in the Script-Fu Console window. Now for a word of caution.... Watch Out For Extra Parens If you’re like me, you’re used to
being able to use extra parentheses whenever you want to -- like when you’re typing a complex mathematical equation and you
want to separate the parts by parentheses to make it clearer when you read it. In Scheme, you have to be careful and not insert
these extra parentheses incorrectly. For example, say we wanted to add 3 to the result of adding 5 and 6 together: 3 + (5 + 6) +
7= ? Knowing that the + operator can take a list of numbers to add, you might be tempted to convert the above to the following:
(+ 3 (5 6) 7) However, this is incorrect -- remember, every statement in Scheme starts and ends with parens, so the Scheme
interpreter will think that you’re trying to call a function named "5" in the second group of parens, rather than summing those
numbers before adding them to 3. The correct way to write the above statement would be: (+ 3 (+ 5 6) 7) Make Sure You Have
The Proper Spacing, Too If you are familiar with other programming languages, like C/C++, Perl or Java, you know that you
don’t need white space around mathematical operators to properly form an expression: 3+5, 3 +5, 3+ 5 These are all accepted by
C/C++, Perl and Java compilers. However, the same is not true for Scheme. You must have a space after a mathematical operator
(or any other function name or operator) in Scheme for it to be correctly interpreted by the Scheme interpreter. Practice a bit
with simple mathematical equations in the Script-Fu Console until you’re totally comfortable with these initial concepts. Prev
Up Next 9. Using Script-Fu Scripts Home 10.2. Variables And Functions

