
Java™ Object Serialization Specification

Prebeta Release
Revision 1.1
 with

om
ble
Object serialization in the Java™ system is the process of creating a serialized
representation of objects or a graph of objects. Object values and types are serialized
sufficient information to insure that the equivalent typed object can be recreated.
Deserialization is the symmetric process of recreating the object or graph of objects fr
the serialized representation. Different versions of a class can write and read compati
streams.

Revision 1.1, November 1, 1996

-
IL

ubject

r pending

petual,
at are
f clean

sion of
of the
 addi-
cent
ase of

materi-
 SUN.

s Com-
ks of Sun
sively
 of their

.
-

 1996 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

THIS IS A DRAFT, AND IS KNOWN TO BE INCOMPLETE. IT MAY NOT BE COPIED or REDISTRIB
UTED WITHOUT THE EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS. SEND MA
TO rmi-support@java.sun.coM IF YOU WISH TO MAKE ADDITIONAL REVIEW COPIES OR IF YOU
HAVE COMMENTS. FOR MORE DETAILS ABOUT OUR REDISTRIBUTION POLICY, SEE
http://java.sun.com/doc/redist.html

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is s
to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, o
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable, per
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights th
essential to practice this specification. This license allows and is limited to the creation and distribution o
room implementations of this specification that: (i) include a complete implementation of the current ver
this specification without subsetting or supersetting; (ii) implement all the interfaces and functionality
standardjava.* packages as defined by SUN, without subsetting or supersetting; (iii) do not add any
tional packages, classes or methods to thejava.* packages; (iv) pass all test suites relating to the most re
published version of this specification that are available from SUN six (6) months prior to any beta rele
the clean room implementation or upgrade thereto; (v) do not derive from SUN source code or binary
als; and (vi) do not include any SUN binary materials without an appropriate and separate license from

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystem
puter Corporation logo, Java, JavaSoft, JavaScript, and HotJava are trademarks or registered trademar
Microsystems, Inc. UNIX® is a registered trademark in the United States and other countries, exclu
licensed through X/Open Company, Ltd. All other product names mentioned herein are the trademarks
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC
MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Table of Contents
1 System Architecture . 1

1.1 Overview . 1

1.2 Writing to an Object Stream . 2

1.3 Reading from an Object Stream . 3

1.4 Object Streams as Containers . 4

1.5 The ObjectOutput Interface. 5

1.6 The ObjectInput Interface . 5

1.7 The Serializable Interface. 6

1.8 The Externalizable Interface . 7

1.9 Protecting Sensitive Information . 8

2 Object Output Interfaces . 9

2.1 The ObjectOutputStream Class. 9

2.2 The writeObject Method . 13

2.3 The writeExternal Method. 14
Page iii

3 Object Input Interfaces . 15

3.1 The ObjectInputStream Class . 15

3.2 The ObjectInputValidation Interface 20

3.3 The readObject Method . 21

3.4 The readExternal Method . 21

4 Class Descriptors. 23

4.1 Inspecting Serializable Classes . 24

4.2 Stream Unique Identifiers . 24

5 Versioning of Serializable Objects . 27

5.1 Overview . 27

5.2 Goals . 28

5.3 Assumptions . 28

5.4 Who’s responsible for Versioning of Streams 29

5.5 Compatible Java Type Evolution . 30

5.6 Type Changes Affecting Serialization 31

6 Object Serialization Stream Protocol . 35

6.1 Overview . 35

6.2 Stream Elements . 36

6.3 Grammar for the Stream Format . 37

6.4 Example . 41

A Security in Object Serialization . 43

A.1 Overview . 44

A.2 Design Goals . 44

A.3 Using transient to Protect Important System Resources . 45
Page iv Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

A.4 Writing Class-Specific Serializing Methods 45

A.5 Encrypting a Byte Stream . 45

7 Exceptions In Object Serialization. 47
Table of Contents Page v

Page vi Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

System Architecture 1
Topics:
• Overview

• Writing to an Object Stream

• Reading from an Object Stream

• Object Streams as Containers

• The ObjectOutput Interface

• The ObjectInput Interface

• The Serializable Interface

• The Externalizable Interface

• Protecting Sensitive Information

1.1 Overview
The capability to store and retrieve Java objects is essential to building all but
the most transient applications. The key to storing and retrieving objects is
representing the state of objects in a serialized form sufficient to reconstruct the
object(s). Objects to be saved in the stream may support either the Serializable
or the Externalizable Interface. For Java objects, the serialized form must be
able to identify and verify the Java class from which the object’s contents were
saved and to restore the contents to a new instance. For Serializable objects the
Page 1

1

stream includes sufficient information to restore the fields in the stream to a
compatible version of the class. For Externalizable objects the class is solely
responsible for the external format of its contents.

Objects to be stored and retrieved frequently refer to other objects. Those other
objects must be stored and retrieved at the same time to maintain the
relationships between the objects. When an object is stored all of the objects
that are reachable from that object are stored as well.

The goals for serializing Java objects are to:

• Have a simple yet extensible mechanism.

• Maintain the Java object type and safety properties in the serialized form.

• Be extensible to support marshaling and unmarshaling as needed for remote
objects.

• Be extensible to support persistence of Java objects.

• Require per class implementation only for customization.

• Allow the object to define its external format.

1.2 Writing to an Object Stream
Writing objects and primitives to a stream is a straight forward process. For
example:

// Serialize today’s date to a file.
FileOutputStream f = new FileOutputStream("tmp");
ObjectOutpu t s = new ObjectOutputStream(f);
s.writeObject("Today");
s.writeObject(new Date());
s.flush();

First an OutputStream , in this case a FileOutputStream , is needed to receive
the bytes. Then an ObjectOutputStream is created that writes to the
OutputStream. Next, the string “Today” and a Date object are written to the
stream. More generally, objects are written with the writeObject method and
primitives are written to the stream with the methods of DataOutput .

The writeObject method (see Section 2.2, “The writeObject Method)
serializes the specified object and traverses its references to other objects in the
object graph recursively to create a complete serialized representation of the
graph. Within a stream, the first reference to any object results in the object
Page 2 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

1

being serialized or externalized and the assignment of a handle for that object.
Subsequent references to that object are encoded as the handle. Using object
handles preserves sharing and circular references that occur naturally in object
graphs. Subsequent references to an object use only the handle allowing a very
compact representation.

Special handling is required for objects of type Class , ObjectStreamClass ,
strings, and arrays. Other objects must implement either Serializable or
Externalizable interfaces to be saved in or restored from a stream.

Primitive data types are written to the stream with the methods in the
DataOutput interface, such as writeInt , writeFloat , or writeUTF .
Individual bytes and arrays of bytes are written with the methods of
OutputStream . All primitive data is written to the stream in block-data
records prefixed by a marker and the length. Putting the data in records allows
it to be skipped if necessary.

ObjectOutputStream can be extended to customize the information about
classes in the stream or to replace objects to be serialized. Refer to the
annotateClass and replaceObject method descriptions for details.

1.3 Reading from an Object Stream
Reading an object from a stream is equally straight forward:

// Deserialize a string and date from a file.
FileInputStream in = new FileInputStream(“tmp”);
ObjectInputStream s = new ObjectInputStream(in);
String today = (String)s.readObject();
Date date = (Date)s.readObject();

First an InputStream , in this case a FileInputStream , is needed as the
source stream. Then an ObjectInputStream is created that reads from the
InputStream . Next, the string “Today” and a Date object are read from the
stream. More generally, objects are read with the readObject method and
primitives are read from the stream with the methods of DataInput .

The readObject method deserializes the next object in the stream and
traverses its references to other objects recursively to create the complete graph
of objects serialized.
Chapter 1: System Architecture Page 3

1

Primitive data types are read from the stream with the methods in the
DataOutput interface, such as readInt , readFloat , or readUTF . Individual
bytes and arrays of bytes are read with the methods of InputStream . All
primitive data is read from block-data records.

ObjectInputStream can be extended to utilize customized information in the
stream about classes or to replace objects that have been deserialized. Refer to
the resolveClass and resolveObject method descriptions for details.

1.4 Object Streams as Containers
Object Serialization produces and consumes a stream of bytes that contain one
or more primitives and objects. The objects written to the stream in turn refer
to other objects which are also represented in the stream. Object Serialization
produces just one stream format that encodes and stores the contained objects.
Object Serialization has been designed to provide a rich set of features for Java
classes. Other container formats such as OLE or OpenDoc have different
stream or file system representations.

Each object acting as a container implements an interface that allows primitives
and objects to be stored in or retrieved from it. These are the ObjectOutput
and ObjectInput interfaces which:

• Provide a stream to write to and read from,

• Handle requests to write primitive types and objects to the stream,

Each object which is to be stored in a stream must explicitly allow itself to be
stored and must implement the protocols needed to save and restore its state.
Object Serialization defines two such protocols. The protocols allow the
container to ask the object to write and read its state. To be stored in an Object
Stream each object must implement either the Serializable or the Externalizable
interface.

For a Serializable class, Object Serialization can automatically save and restore
fields of each class of an object and automatically handle classes that evolve by
adding fields or supertypes. A Serializable class can declare which of its fields
are transient (not saved or restored), and write and read optional values and
objects.

For an Externalizable class, Object Serialization delegates to the class complete
control over its external format and how the state of the supertype is saved and
restored.
Page 4 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

1

1.5 The ObjectOutput Interface
The ObjectOutput interface provides an abstract stream based interface to
object storage. It extends DataOutput so those methods may be used for
writing primitive data types. Objects implementing this interface can be used
to store primitives and objects.

package java.io;

public interface ObjectOutput extends DataOutput
{

public void writeObject(Object obj) throws IOException;

public void write(int b) throws IOException;

public void write(byte b[]) throws IOException;

public void write(byte b[], int off, int len) throws IOException;

public void flush() throws IOException;

public void close() throws IOException;
}

The writeObject method is used to write an object. The exceptions thrown
reflect errors while accessing the object or its fields, or exceptions that occur in
writing to storage. If any exception is thrown, the underlying storage may be
corrupted, refer to the object implementing this interface for details.

1.6 The ObjectInput Interface
The ObjectInput interface provides an abstract stream based interface to
object retrieval. It extends DataInput so those methods for reading primitive
data types are accessible in this interface.

package java.io;

public interface ObjectInput extends DataInput
{

public Object readObject()
throws ClassNotFoundException, IOException;

 public int read() throws IOException;
Chapter 1: System Architecture Page 5

1

public int read(byte b[]) throws IOException;

 public int read(byte b[], int off, int len) throws IOException;

 public long skip(long n) throws IOException;

public int available() throws IOException;

 public void close() throws IOException;
}

The readObject method is used to read and return an object. The exceptions
thrown reflect errors while accessing the objects or its fields or exceptions that
occur in reading from the storage. If any exception is thrown, the underlying
storage may be corrupted, refer to the object implementing this interface for
details.

1.7 The Serializable Interface
Object Serialization produces a stream with information about the Java classes
for the objects that are being saved. For Serializable objects, sufficient
information is kept to restore those objects even if a different (but compatible)
version of the class’s implementation is present. The interface Serializable is
defined to identify classes that implement the Serializable protocol:

package java.io;

public interface Serializable {};

A Serializable object:

• Must implement the java.io.Serializable interface.

• Must mark its fields that are not to be persistent with the transient keyword.

• Can implement a writeObject method to control what information is
saved or to append additional information to the stream.

• Can implement a readObject method so it can read the information
written by the corresponding writeObject method or to update the state
of the object after it has been restored.
Page 6 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

1

ObjectOutputStream and ObjectInputStream are designed and
implemented to allow the Serializable classes they operate on to evolve, that is,
to allow changes to the classes that are compatible with the earlier versions of
the classes. Details of the mechanism to allow compatible changes can be
found in Section 5.5, “Compatible Java Type Evolution.

1.8 The Externalizable Interface
For Externalizable objects only the identity of class of the object is saved by the
container and it is the responsibility of the class to save and restore the
contents. The interface Externalizable is defined as:

package java.io;

public interface Externalizable extends Serializable
{

public void writeExternal(ObjectOutput out)
throws IOException;

public void readExternal(ObjectInput in)
throws IOException, java.lang.ClassNotFoundException;

}

An Externalizable Object:

• Must implement the java.io.Externalizable interface.

• Must implement a writeExternal method to save the state of the object. It
must explicitly coordinate with its supertype to save its state.

• Must implement a readExternal method to read the data written by the
writeExternal method from the stream and restore the state of the object.
It must explicitly coordinate with the supertype to save its state.

• If writing an externally defined format the writeExternal and
readExternal methods are solely responsible for that format.

Note – The writeExternal and readExternal methods are public and raise
the risk that a client may be able to write or read information in the object
other than by using its methods and fields. These methods must be used only
when the information held by the object is not sensitive or when exposing it
would not present a security risk.
Chapter 1: System Architecture Page 7

1

1.9 Protecting Sensitive Information
When developing a class that provides controlled access to resources, care
must be taken to protect sensitive information and functions. During
deserialization the private state of the object is restored. For example, a file
descriptor contains a handle that provides access to an operating system
resource. Being able to forge a file descriptor would allow some forms of illegal
access, since restoring state is done from a stream. Therefore, the serializing
runtime must take the conservative approach and not trust the stream to
contain only valid representations of objects. To avoid compromising a class,
the sensitive state of an object must not be restored from the stream or it must
be re-verified by the class. Several techniques are available to protect sensitive
data in classes.

The easiest technique is to mark fields that contain sensitive data as “private
transient”. Transient and static fields are not serialized or deserialized.
Marking the field will prevent the state from appearing in the stream and from
being restored during deserialization. Since writing and reading (of private
fields) cannot be superseded outside of the class, the class’s transient fields are
safe.

Particularly sensitive classes should not be serialized at all. To accomplish this
the object should not implement either the Serializable or Externalizable
interfaces.

Some classes may find it beneficial to allow writing and reading but
specifically handle and revalidate the state as it is deserialized. The class
should implement writeObject and readObject methods to save and restore
only the appropriate state. If access should be denied, throwing a
NotSerializableException will prevent further access.
Page 8 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

Object Output Interfaces 2
Topics:
• The ObjectOutputStream Class

• The writeObject Method

• The writeExternal Method

2.1 The ObjectOutputStream Class
Class ObjectOutputStream implements object serialization. It maintains the
state of the stream including the set of objects already serialized. Its methods
control the traversal of objects to be serialized to save the specified objects and
the objects to which they refer.

package java.io;

public class ObjectOutputStream
extends OutputStream
implements ObjectOutput, ObjectStreamConstants

{
public ObjectOutputStream(OutputStream out)

throws IOException;

public final void writeObject(Object obj)
throws IOException;

public final void defaultWriteObject();
throws IOException, NotActiveException;
Page 9

2

public void reset() throws IOException;

protected void annotateClass(Class cl) throws IOException;

protected Object replaceObject(Object obj) throws IOException;

protected final boolean enableReplaceObject(boolean enable)
throws SecurityException;

protected void writeStreamHeader() throws IOException;

public void write(int data) throws IOException;

public void write(byte b[]) throws IOException;

public void write(byte b[], int off, int len) throws IOException;

public void flush() throws IOException;

public void drain() throws IOException;

public void close() throws IOException;

public void writeBoolean(boolean data) throws IOException;

public void writeByte(int data) throws IOException;

public void writeShort(int data) throws IOException;

public void writeChar(int data) throws IOException;

public void writeInt(int data) throws IOException;

public void writeLong(long data) throws IOException;

public void writeFloat(float data) throws IOException;

public void writeDouble(double data) throws IOException;

public void writeBytes(String data) throws IOException;

public void writeChars(String data) throws IOException;

public void writeUTF(String data) throws IOException;
}

Page 10 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

2

The ObjectOutputStream constructor requires an OutputStream. The
constructor calls writeStreamHeader to write a magic number and version
to the stream, that will be read and verified by the corresponding
readStreamHeader in the ObjectInputStream constructor.

The writeObject method is used to serialize an object to the stream. The
exceptions thrown reflect errors during the traversal or exceptions that occur
on the underlying stream. If any exception is thrown, the underlying stream is
aborted and left in an unknown and unusable state. Objects are serialized as
follows:

1. If there is data in the block-data buffer it is written to the stream and the
buffer reset.

2. If the object is null, null is put in the stream and writeObject returns.

3. If the object has already been written to the stream, its handle is written to
the stream and writeObject returns. If the object has been already been
replaced the handle for the previously written replacement object is written
to the stream.

4. If the object is a Class, the corresponding ObjectStreamClass is written to the
stream, a handle assigned for the class and writeObject returns.

5. If the Object is an ObjectStreamClass, a descriptor for the class is written to
the stream including its name, serialVersionUID, and the list of fields by
name and type. A handle is assigned for the descriptor. The annotateClass
subclass method is called before writeObject returns.

6. If the object is a java.lang.String the string is written in Universal
Transfer Format (UTF) format, a handle assigned to the string and
writeObject returns.

7. If the object is an array writeObject is called recursively to write the
ObjectStreamClass of the array. The handle for the array is assigned. It is
followed by the length of the array. Each element of the array is then written
to the stream, after which writeObject returns.

8. If enabled by calling enableReplaceObject , the replaceObject method
is called to allow subclasses to substitute an object. If the object is replaced
the mapping from the original object to the replacement is stored for later
use in step 3 and steps 2 through 7 are repeated on the new object. If the
replacement object is not one of the types covered by steps 2 through 7
processing resumes using the replacement object at step 9.
Chapter 2: Object Output Interfaces Page 11

2

9. For regular objects, the ObjectStreamClass for the object’s class is written by
recursively calling writeObject. It will appear in the stream only the first
time it is referenced. A handle is assigned for this object.

10. The contents of the object are written to the stream.
• If the object is Serializable, the highest Serializable class is located. For that

class and each derived class that class’s fields are written. If the class does
not have a writeObject method the defaultWriteObject method is
called to write the non-static and non-transient fields to the stream. If the
class does have a writeObject method it is called. It may call
defaultWriteObject to save the state of the object and then it can write
other information to the stream.

• If the object is Externalizable , the writeExternal method of the object
is called.

• If the object is neither Serializable or Externalizable, the
NotSerializableException is thrown.

The defaultWriteObject method implements the default serialization
mechanism for the current class. This method may be called only from a class’s
writeObject method. The method writes all of the non-static and non-
transient fields of the current class to the stream. If called from outside the
writeObject method the NotActiveException is thrown.

The reset method resets the stream state to be the same as if it had just been
constructed. Reset will discard the state of any objects already written to the
stream. The current point in the stream is marked as reset so the corresponding
ObjectInputStream will reset at the same point. Objects previously written to
the stream will not be remembered as having already been written to the
stream. They will be written to the stream again. This is useful when the
contents of an object or objects must be sent again. Reset may not be called
while objects are being serialized. If called inappropriately an IOException is
thrown.

The annotateClass method is called while a Class is being serialized, after
the class descriptor has been written to the stream. Subclasses may extend this
method and write other information to the stream about the class. This
information must be read by the resolveClass method in a corresponding
ObjectInputStream subclass.

The replaceObject method is used by trusted subclasses to allow objects
within the graph to be replaced or monitored during serialization. Replacing
objects must explicitly be enabled by calling enableReplaceObject before
Page 12 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

2

calling writeObject with the first object to be replaced. Once enabled
replaceObject is called for each object just prior to serializing the object for
the first time. A subclass’s implementation may return a substitute object that
will be serialized instead of the original. The substitute object must be
serializable. All references in the stream to the original object will replaced by
the substitute object.

When objects are being replaced the subclass must insure that the substituted
object is compatible with every field where the reference will be stored or that
a complementary substitution will be made during deserialization. Objects
whose type is not a subclass of the type of the field or array element will later
abort the deserialization by raising a ClassCastException and the reference
will not be stored.

The enableReplaceObject method is used by trusted subclasses of
ObjectOutputStream to enable the substitution of one object for another during
serialization. Replacing objects is disabled until enableReplaceObject is
called with a true value. It may thereafter be disabled by setting it to false .
The previous setting is returned. The enableReplaceObject method checks
that the stream requesting to do replacement can be trusted. Every reference to
objects is passed to replaceObject . To insure that the private state of objects
is not unintentionally exposed only trusted streams may use replaceObject .
Trusted classes are those classes with a class loader equals null.

The writeStreamHeader method writes the magic number and version to
the stream. This information must be read by the readStreamHeader method
of ObjectInputStream . Subclasses may need to implement this method to
identify the stream’s unique format.

All of the write methods for primitive types encode their values using a
DataOutputStream to put them in the standard stream format. The bytes are
buffered into blockdata records so they can be distinguished from the encoding
of objects. This buffering allows primitive data to be skipped if necessary for
class versioning. It also allows the stream to be parsed without invoking class
specific methods.

2.2 The writeObject Method
For Serializable objects the writeObject method allows a class to control the
serialization of its own fields. Here is its signature:
Chapter 2: Object Output Interfaces Page 13

2

private void writeObject(ObjectOutputStream stream)
throws IOException;

Each subclass of a Serializable object may define its own writeObject method.
If a class does not implement the method the default serialization provided by
defaultWriteObject will be used. When implemented, the class is only
responsible for saving its own fields, not those of its supertypes or subtypes.

The class’s writeObject method, if implemented, is responsible for saving the
state of the class. The defaultWriteObject method should be called before
writing any optional data that will be needed by the corresponding
readObject method to restore the state of the object. The responsibility for
the format, structure and versioning of the optional data lies completely with
the class.

2.3 The writeExternal Method
Objects implementing java.io.Externalizable must implement the
writeExternal method to save the entire state of the object. It must
coordinate with its superclasses to save their state. All of the methods of
ObjectOutput are available to save the object’s primitive typed fields and
object fields.

public void writeExternal(ObjectOutput stream)
throws IOException;
Page 14 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

Object Input Interfaces 3
Topics:
• The ObjectInputStream Class

• The ObjectInputValidation Interface

• The readObject Method

• The readExternal Method

3.1 The ObjectInputStream Class
Class ObjectInputStream implements object deserialization. It maintains the
state of the stream including the set of objects already deserialized. Its methods
allow primitive types and objects to be read from a stream written by
ObjectOutputStream. It manages restoration of the object and the objects that it
refers to from the stream.

package java.io;

public class ObjectInputStream
extends InputStream
implements ObjectInput, ObjectStreamConstants

{
public ObjectInputStream(InputStream in)

throws StreamCorruptedException, IOException;

public final Object readObject()
throws OptionalDataException, ClassNotFoundException,
Page 15

3

IOException;

public final void defaultReadObject()
throws IOException, ClassNotFoundException,

NotActiveException;

public synchronized void registerValidation(
ObjectInputValidation obj, int prio)
throws NotActiveException, InvalidObjectException;

protected Class resolveClass(ObjectStreamClass v)
throws IOException, ClassNotFoundException;

protected Object resolveObject(Object obj)
throws IOException;

protected final boolean enableResolveObject(boolean enable)
throws SecurityException;

protected void readStreamHeader()
throws IOException, StreamCorruptedException;

public int read() throws IOException;

public int read(byte[] data, int offset, int length)
throws IOException

public int available() throws IOException;

public void close() throws IOException;

public boolean readBoolean() throws IOException;

public byte readByte() throws IOException;

public int readUnsignedByte() throws IOException;

public short readShort() throws IOException;

public int readUnsignedShort() throws IOException;

public char readChar() throws IOException;

public int readInt() throws IOException;

public long readLong() throws IOException;
Page 16 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

3

public float readFloat() throws IOException;

public double readDouble() throws IOException;

public void readFully(byte[] data) throws IOException;

public void readFully(byte[] data, int offset, int size)
throws IOException;

public int skipBytes(int len) throws IOException;

public String readLine() throws IOException;

public String readUTF() throws IOException;

}

The ObjectInputStream constructor requires an InputStream. The constructor
calls readStreamHeader to read and verifies the header and version written
by the corresponding ObjectOutputStream .writeStreamHeader method.

The readObject method is used to deserialize an object from the stream. It
reads from the stream to reconstruct an object.

1. If a blockdata record occurs in the stream, throw a BlockDataException with
the number of available bytes.

2. If the object in the stream is null, return null.

3. If the object in the stream is a handle to a previous object, return the object.

4. If the object in the stream is a String, read its UTF encoding, add it and its
handle to the set of known objects and return the String.

5. If the object in the stream is a Class, read its ObjectStreamClass descriptor,
add it and its handle to the set of known objects and return the
corresponding Class object.

6. If the object in the stream is an ObjectStreamClass, read its name,
serialVersionUID, and fields. Add it and its handle to the set of known
objects. Call the resolveClass method on the stream to get the local class for
this descriptor, and throw an exception if the class cannot be found. Return
the ObjectStreamClass object.
Chapter 3: Object Input Interfaces Page 17

3

7. If the object in the stream is an array, read its ObjectStreamClass and the
length of the array. Allocate the array and add it and its handle in the set of
known objects. Read each element using the appropriate method for its
type, assign it to the array, and return the array.

8. For all other objects, the ObjectStreamClass of the object is read from the
stream. The local class for that ObjectStreamClass is retrieved. The class
must be serializable or externalizable.

9. An instance of the class is allocated. The instance and its handle are added
to the set of known objects. The contents restored appropriately:
• For Serializable objects, the no-arg constructor for the non-serializable

supertype is run and then each class’s fields are restored by calling class
specific readObject methods or if not defined the defaultReadObject
method is called. In the normal case the version of the class that wrote the
stream will be the same as the class reading the stream. In this case, all of
the supertypes of the object in the stream will match the supertypes in the
currently loaded class. If the version of the class that wrote the stream had
different supertypes than the loaded class, the ObjectInputStream must be
more careful about restoring or initializing the state of the differing
classes. It must step through the classes, matching the available data in the
stream with the classes of the object being restored. Data for classes that
occur in the stream but do not occur in the object is discarded. For classes
that occur in the object but not in the stream the class fields are set to
default values by default serialization.

• For Externalizable objects, the no-arg constructor for the class is run and
then the readExternal method is called to restore the contents of the
object.

10. If previously enabled by enableResolveObject the resolveObject
method is called just before the object is returned. This allows subclasses to
replace it if desired. The value of the call to resolveObject is returned
from readObject .

All of the methods for reading primitives types only consume bytes from the
blockdata records in the stream. If a read for primitive data occurs when the
next item in the stream is an object, the read methods return -1 or the
EOFException as appropriate. The value of a primitive type is read by a
DataInputStream from the blockdata record.
Page 18 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

3

The exceptions thrown reflect errors during the traversal or exceptions that
occur on the underlying stream. If any exception is thrown, the underlying
stream is left in an unknown and unusable state.

When the reset token occurs in the stream all of the state of the stream is
discarded. The set of known objects is cleared.

When the exception token occurs in the stream the exception is read and a new
WriteAbortedException is thrown with the terminating exception as an
argument. The stream context is reset as described in above.

The defaultReadObject method is used to read the fields of an object from
the stream. It uses the class descriptor in the stream to read the fields by name
and type from the stream. The values are assigned to the matching fields by
name in the current class. Details of the versioning mechanism can be found in
Section 5.5, “Compatible Java Type Evolution. Any field of the object that does
not appear in the stream is set to its default value. Values that appear in the
stream but not in the object are discarded. This occurs primarily when a later
version of a class has written additional fields that do not occur in the earlier
version. This method may only be called from the readObject method while
restoring the fields of a class. When called at any other time the
NotActiveException is thrown.

The registerValidation method can be called to request a callback when
the entire graph has been restored but before the object is returned to the
original caller of readObject . The order of validate callbacks can be controlled
using the priority. Callbacks registered with higher values are called before
those with lower values. The object to be validated must support the
ObjectInputValidation interface and implement the validateObject
method. It is only correct to register validations during a call to a class’s
readObject method. Otherwise, a NotActiveException is thrown. If the
callback object supplied to registerValidation is null an InvalidObjectException
is thrown.

The resolveClass method is called while a class is being deserialized, after
the class descriptor has been read. Subclasses may extend this method to read
other information about the class written by the corresponding subclass of
ObjectOutputStream . The method must find and return the class with the
given name and serialVersionUID. The default implementation locates the class
by calling the class loader of the closest caller of readObject that has a class
loader. If the class cannot be found ClassNotFoundException should be
thrown.
Chapter 3: Object Input Interfaces Page 19

3

The resolveObject method is used by trusted subclasses to enable the
monitoring or substitution of one object for another during deserialization.
Resolving objects must explicitly be enabled by calling
enableResolveObject before calling readObject for the first object to be
resolved. Once enabled resolveObject is called once for each serializable
object just prior to the first time it is being returned from readObject. A
subclass’s implementation may return a substitute object that will be assigned
or returned instead of the original. The object returned must be of a type that is
consistent and assignable to every reference to the original object or else a
ClassCastException is thrown. All assignments are type checked. All
references in the stream to the original object will replaced by references to the
substitute object.

The enableResolveObject method is used by trusted subclasses of
ObjectOutputStream to enable the monitoring or substitution of one object for
another during deserialization. Replacing objects is disabled until
enableResolveObject is called with a true value. It may thereafter be
disabled by setting it to false . The previous setting is returned. The
enableResolveObject method checks that the stream requesting to do
replacement can be trusted. Every reference to deserialized objects is passed to
the resolveObject method. To insure that the private state of objects is not
unintentionally exposed only trusted streams may use resolveObject. Trusted
classes are those classes with a class loader equals null.

The readStreamHeader method reads and verifies the magic number and
version of the stream. If they do not match, the StreamCorruptedMismatch
is thrown.

3.2 The ObjectInputValidation Interface
This interface allows an object to be called when a complete graph of objects
has been deserialized. If the object cannot be made valid it should throw the
ObjectInvalidException . Any exception that occurs during a call to
validateObject will terminate the validation process and the
InvalidObjectException will be thrown.

package java.io;

public interface ObjectInputValidation
{

Page 20 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

3

public void validateObject()
throws ObjectInvalidException;

}

3.3 The readObject Method
For Serializable objects the readObject method allows a class to control the
deserialization of its own fields. Here is its signature:

private void readObject(ObjectInputStream stream)
throws IOException;

Each subclass of a Serializable object may define its own readObject method. If
a class does not implement the method the default serialization provided by
defaultReadObject will be used. When implemented, the class is only
responsible for restoring its own fields, not those of its supertypes or subtypes.

The class’s readObject method, if implemented, is responsible for restoring the
state of the class. The defaultReadObject method should be called before
reading any optional data written by the corresponding writeObject
method. If an attempt is made to read more data than is present in the optional
part of the stream for this class the stream will throw an EOFException. The
responsibility for the format, structure and versioning of the optional data lies
completely with the class.

If the class being restored is not present in the stream being read its fields are
initialized to the appropriate default values.

3.4 The readExternal Method
Objects implementing java.io.Externalizable must implement the
readExternal method to restore the entire state of the object. It must
coordinate with its superclasses to restore their state. All of the methods of
ObjectInput are available to restore the object’s primitive typed fields and
object fields.

public void readExternal(ObjectInput stream)
throws IOException;

Note – The readExternal method is public and it raises the risk of a client
being able to overwrite an existing object from a stream.
Chapter 3: Object Input Interfaces Page 21

3

Page 22 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

Class Descriptors 4
The ObjectStreamClass provides information about classes that are saved in
a Serialization stream. The descriptor provides the fully qualified name of the
class and its serialization version UID. A streamVersionUID identifies the
unique original class version for which this class is capable of writing streams
and from which it can read.

package java.io;

public class ObjectStreamClass
{

public static ObjectStreamClass lookup(Class cl);

public String getName();

public Class forClass();

public long getSerialVersionUID();

public String toString();
}

The lookup method returns the ObjectStreamClass descriptor for the
specified class in the Java VM. If the class has defined serialVersionUID it is
retrieved from the class. If not defined by the class it is computed from the
class’s definition in the Java Virtual Machine. NULL is returned if the specified
class is not Serializable or Externalizable. Only class descriptions for classes
that implement the java.io.Serializable or java.io.Externalizable interfaces can
be written to a stream.
Page 23

4

The getName method returns the fully qualified name of the class. The class
name is saved in the stream and is used when the class must be loaded.

The forClass method returns the Class in the local Virtual Machine if one is
known. Otherwise, it returns null.

The getSerialVersionUID method returns the serialVersionUID of this
class. Refer to the Stream Unique Identifiers below. If not specified by the
class the value returned is a hash computed from the class’s name, interfaces,
methods, and fields using the Secure Hash Algorithm (SHA) as defined by the
National Institute of Standard.

The toString method returns a printable representation of the class
descriptor including the class’s name and serialVersionUID.

4.1 Inspecting Serializable Classes
The program serialver can be used to find out if a class is serializable and to
get its serialVersionUID. When invoked with -show it puts up a simple user
interface. To find if a class is serializable and its serialVersionUID enter its full
class name and press either <enter> or the Show button. The string printed can
be copied and pasted into the evolved class.

When invoked on the command line with one or more class names, serialver
prints the serialVersionUID for each class in form suitable for coping into an
evolving class. When invoked with no arguments it prints a usage line.

4.2 Stream Unique Identifiers
Each versioned class must identify the original class version for which it is
capable of writing streams and from which it can read. For example, a
versioned class must declare:
Page 24 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

4

static final long SerialVersionUID = 3487495895819393L;

The stream unique identifier is a 64 bit hash of the class name, interface class
names, methods, and fields. The value must be declared in all versions of a
class except the first. It may be declared in the original class but is not
required. The value is fixed for all compatible classes. If the SUID is not
declared for a class the value defaults to the hash for that class. Classes do not
need to anticipate versioning.

The serialVersionUID is computed using the signature of a stream of bytes that
reflect the class definition. The National Institute of Standards and Technology
(NIST) Secure Hash Algorithm (SHA-1) is used compute a signature for the
stream. The first two 32-bit quantities are used to form a 64-bit hash. A
java.lang.DataOutputStream is used to convert primitive data types to a
sequence of bytes. The values input to the stream are defined by the Java
Virtual Machine (VM) specification for classes. The sequence of item in the
stream is as follows:

1. The class name written using UTF encoding

2. The class modifiers written as a 32-bit integer

3. The name of each interface sorted by name written using UTF encoding.

4. For each field of the class sorted by field name except private static and
private transient fields.

a. The name of the field in UTF encoding

b. The modifiers of the field written as an 32-bit integer

c. The descriptor of the field in UTF encoding

5. For each method including constructors sorted by method name and
signature, except private methods and constructors.

a. The name of the method in UTF encoding

b. The modifiers of the method written as an 32-bit integer

c. The descriptor of the method in UTF encoding

6. The SHA-1 algorithm is executed on the stream of bytes produced by
DataOutputStream and produces 5 32-bit values sha[0..4].

7. The hash value is assembled from the first and second 32 bits values.
 long hash = sha[1] << 32 + sha[0];
Chapter 4: Class Descriptors Page 25

4

Page 26 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

Versioning of Serializable Objects 5
Topics:
• Overview

• Goals

• Assumptions

• Who’s responsible for Versioning of Streams

• Compatible Java Type Evolution

• Type Changes Affecting Serialization

5.1 Overview
When Java objects use serialization to save state in files or as blobs in databases
the potential arises that the version of a class reading the data is different than
the version that wrote the data.

Versioning raises some fundamental questions about identity of a class,
including what constitutes a compatible change, that is a change that does not
affect the contract between the class and its callers.
Page 27

5

This note describes the goals, assumptions, and a solution that attempts to
address this problem by restricting the kinds of changes allowed and by
carefully choosing the mechanisms.

The proposed solution provides a mechanism for “automatic” handling of
classes that evolve by adding fields and adding classes. Serialization will
handle versioning without class specific methods to be implemented for each
version. The stream format can be traversed without invoking class specific
methods.

5.2 Goals
• Support bidirectional communication between different versions of a class

operating in different virtual machines.
• Define a mechanism that allows Java classes to read streams written by

older versions of the same class.
• Define a mechanism that allows Java classes to write streams intended to

be read by older versions of the same class.

• Provide default serialization for persistence and for RMI.

• For RMI to use serialization it must perform well and produce compact
streams in simple cases.

• Be able to identify and load classes that match the exact class used to write
the stream.

• Keep the overhead low for non-versioned classes.

• Use a stream format that allows the traversal of the stream without having
to invoke methods specific to the objects saved in the stream.

5.3 Assumptions
• Versioning will only apply to Serializable classes since it must control the

stream format to achieve it goals. Externalizable classes will be responsible
for their own versioning which is tied to the external format.

• All data and objects must be read from or skipped in the stream in the same
order as they were written.

• Classes evolve individually as well as in concert with supertypes and
subtypes.
Page 28 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

5

• Classes are identified by name. Two classes with the same name may be
different versions or completely different classes that can be distinguished
only by comparing their interfaces or by comparing hashes of the interfaces.

• Default serialization will not do any type conversions.
• The stream format only needs to support a linear sequence of type changes,

not arbitrary branching of a type.

5.4 Who’s responsible for Versioning of Streams
In the evolution of classes it is the responsibility of the evolved (later version)
class to maintain the contract established by the non-evolved class. This takes
two forms. First, it must itself not break the existing assumptions about the
interface provided by the original version so that the evolved class can be used
in place of the original. Secondly, when communicating with the original (or
previous) versions it must provide sufficient and equivalent information to
allow the earlier version to continue to satisfy the non-evolved contract.

java.lang.Object

 foo

 bar

java.lang.Object’

 foo’

 bar’

Private serialization protocol

Contract with supertype
Chapter 5: Versioning of Serializable Objects Page 29

5

For the purposes of the discussion here, each class implements and extends the
interface or contract defined by its supertype. New versions of a class, for
example foo’, must continue to satisfy the contract for foo and may extend the
interface or modify its implementation.

Communication between objects via Serialization is not part of the contract
defined by these interfaces. Serialization is a private protocol between the
implementations. It is the responsibility of the implementations to
communicate sufficiently to allow each implementation to continue to satisfy
the contract expected by its clients.

5.5 Compatible Java Type Evolution
The Java Language Specification Chapter 13 discusses Binary Compatibility of
Java classes as those classes evolve. Most of the flexibility of binary
compatibility comes from the use of late binding of symbolic references for the
names of classes, interfaces, fields, methods, etc.

The following are the principle aspects of the design for versioning of
serialized object streams.

• The default serialization mechanism will use a symbolic model for binding
the fields in the stream to the fields in the corresponding class in the virtual
machine.

• Each class referenced in the stream will uniquely identify itself, its
supertype, and the types and names of each non-static and non-transient
field written to the stream. The fields are ordered with the primitive types
first sorted by field name, followed by the object fields sorted by field name.

• Two types of data may occur in the stream for each class, required data
corresponding directly to the non-static and non-transient fields of the
object and optional data consisting of an arbitrary sequence of primitives
and objects. The stream format defines how the required and optional data
occur in the stream so that the whole class, the required, or the optional
parts can be skipped if necessary.
• The required data consists of the fields of the object in the order defined

by the class descriptor.
• The optional data is written to the stream and does not correspond

directly to fields of the class. The class itself is responsible for the length,
types and versioning of this optional information.
Page 30 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

5

• If defined for a class, the writeObject/readObject methods supersede the
default mechanism to write/read the state of the class. These methods write
and read the optional data for a class. The required data is written by calling
defaultWriteObject and read by calling defaultReadObject .

• The stream format of each class is identified by the use of a Stream Unique
Identifier (SUID). By default this is the hash of the class. All later versions of
the class must declare the Stream Unique Identifier (SUID) that they are
compatible with. This guards against classes with the same name that
otherwise might inadvertently be identified as being versions of a single
class.

• Subtypes of ObjectOutputStream and ObjectInputStream may include their
own information identifying the class using the annotateClass method, for
example, MarshalOutputStream embeds the URL of the class.

5.6 Type Changes Affecting Serialization
With these concepts we can now describe how the design will cope with the
different cases of an evolving class. The cases are described in terms of a
stream written by some version of a class. When the stream is read back by the
same version of the class there is no loss of information or functionality. The
stream is the only source of information about the original class. Its class
descriptions, while a subset of the original class description, are sufficient to
match up the data in the stream with the version of the class being
reconstituted.

The descriptions are from the perspective of the stream being read in order to
reconstitute either an earlier or later version of the class. In the parlance of RPC
systems, this is a “receiver makes right” system. The writer writes its data in
the most suitable form and the receiver must interpret that information to
extract the parts it needs and to fill in the parts that are not available.

5.6.1 Incompatible Changes

Incompatible changes to classes are those changes for which the guarantee of
interoperability cannot be maintained. The incompatible changes that may
occur while evolving a class are:
Chapter 5: Versioning of Serializable Objects Page 31

5

• Deleting fields - If a field is deleted in a class, the stream written will not
contain its value. When the stream is read by an earlier class, the value of
the field will be set to the default value because no value is available in the
stream. However, this default value may adversely impair the ability of the
earlier version to fulfill its contract.

• Moving classes up or down the hierarchy - this cannot be allowed since the
data in the stream appears in the wrong sequence.

• Changing a non-static field to static or a non-transient field to transient -
This is equivalent to deleting a field from the class. This version of the class
will not write that data to the stream so it will not be available to be read by
earlier versions of the class. As in the deleting a field case above, the field of
the earlier version will be initialized to the default value but that can cause
the class to fail in unexpected ways.

• Changing the declared type of a primitive field - Each version of the class
writes the data with its declared type. Earlier versions of the class
attempting to read the field will fail because the type of the data in the
stream does not match the type of the field.

• Changing the writeObject or readObject method so that it no longer writes
or reads the default field data or changing it so that it attempts to write it or
read it when the previous version did not. The default field data must
consistently either appear or not appear in the stream.

• Changing a class from Serializable to Externalizable or visa-versa is an
incompatible change since the stream will contain data that is incompatible
with the implementation in the available class.

5.6.2 Compatible Changes

The compatible changes to a class are handled as follows:

• Adding fields - When the class being reconstituted has a field that does not
occur in the stream, that field in the object will be initialized to the default
value for its type. If class specific initialization is needed the class may
provide a readObject method that can initialize the field to non-default
values.
Page 32 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

5

• Adding classes - The stream will contain the type hierarchy of each object in
the stream. Comparing this hierarchy in the stream with the current class
can detect additional classes. Since there is no information in the stream
from which to initialize the object, the class’s fields will be initialized to the
default values.

• Removing classes - Comparing the class hierarchy in the stream with that of
the current class can detect that a class has been deleted. In this case, the
fields and objects corresponding to that class are read from the stream.
Primitive fields are discarded but the objects referenced by the deleted class
are created since they may be referred to later in the stream. They will be
garbage collected when the stream is garbage collected or reset.

• Adding writeObject/readObject methods - If the version reading the stream
has these methods then readObject is expected, as usual, to read the
required data written to the stream by the default serialization. It should call
defaultReadObject first before reading any optional data. The
writeObject method is expected as usual to call defaultWriteObject
to write the required data and then may write optional data.

• Removing writeObject/readObject methods - If the class reading the stream
does not have these methods, the required data will be read by default
serialization and the optional data will be discarded.

• Adding java.io.Serializable - This is equivalent to adding types. There will
be no values in the stream for this class so is fields will be initialized to
default values. The support for subclassing non-serializable classes requires
that the class’s supertype have a no-arg constructor and the class itself will
be initialized to default values. If the no-arg constructor is not available the
NotSerializableException is thrown.

• Removing java.io.Serializable so that it is no longer Serializable - This is
equivalent to removing the class, and it can be dealt with by reading and
discarding data for the class.

• Changing the access to a field - The access modifiers public, package,
protected and private have no effect on the ability of serialization to assign
values to the fields.

• Changing a field from static to non-static or transient to non-transient - This
is equivalent to adding a field to the class. The new field will be written to
the stream but earlier classes will ignore the value since serialization will
not assign values to static or transient fields.
Chapter 5: Versioning of Serializable Objects Page 33

5

Page 34 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

Object Serialization Stream Protocol 6
Topics:

• Overview

• Stream Elements

• Grammar for the Stream Format

• Example

6.1 Overview
The stream format is designed to satisfy the following goals:

• Be compact and structured for efficient reading.
• Allow skipping through the stream using only the knowledge of the

structure and format of the stream. Do not require any per class code to be
invoked.

• Require only stream access to the data.
Page 35

6

6.2 Stream Elements
A basic structure is needed to represent objects in a stream. Each attribute of
the object needs to be represented: its classes, its fields, and data written and
later read by class specific methods. The representation of objects in the stream
can be described with a grammar. There are special representations for null
objects, new objects, classes, arrays, strings, and back references to any object
already in the stream. Each object written to the stream is assigned a handle
that is used to refer back to the object. Handles are assigned sequentially
starting from zero. The handles restart at zero when the stream is reset.

A class object is represented by:

• its ObjectStreamClass object.

An ObjectStreamClass object is represented by:
• The Stream Unique Identifier (SUID) of compatible classes.
• A flag indicating if the class had writeObject/readObject methods.
• The number of non-static and non-transient fields.
• The array of fields of the class that are serialized by the default mechanism.

For arrays and object fields the type of the field is included as a string.
• Optional block-data records or objects written by the annotateClass method.
• The ObjectStreamClass of its supertype (null if the superclass is not

Serializable).

Strings are represented by their UTF encoding.

Arrays are represented by

• Their ObjectStreamClass object.
• The number of elements.
• The sequence of values (the type of the values is implicit in the type of the

array. e.g. the values of a byte array are of type byte).

New objects in the stream are represented by:

• The most derived class of the object,
• Data for each serializable class of the object, with the highest superclass

first. For each class the stream contains:
- The default serialized fields (those fields not marked static or transient as

described in the corresponding ObjectStreamClass.
Page 36 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

6

- If the class has writeObject /readObject methods there may be
optional objects and/or block-data records of primitive types written by
the writeObject method followed by an endBlockData code.

All primitive data written by classes is buffered and wrapped in block-data
records whether the data is written to the stream within a writeObject
method or written directly to the stream from outside a writeObject method.
This data may only be read by the corresponding readObject methods or
directly from the stream. Objects written by writeObject terminate any
previous block-data record and are written as regular objects, or null or back
references as appropriate. The block-data records allow error recovery to
discard any optional data. When called from within a class, the stream can
discard any data or objects until the endBlockData.

6.3 Grammar for the Stream Format

The table below contains the grammar. Non-terminal symbols are show in
italics, Terminal symbols in a fixed width font. Definitions of non-terminals are
followed by a “:”. The definition is followed by one or more alternatives each
on a separate line. The notation in the table is as follows:

• (datatype) This token has the data type specified, e.g. (byte).
• token[n] A predefined number of occurrences of the token, i.e. an array.
• x0001 A literal value expressed in hexadecimal, the number of hex digits

reflects the size of the value.
• <xxx> A value read from the stream used to indicate the length of an

array.

6.3.1 Rules of the Grammar

A Serialized stream is represented by any stream satisfying the stream rule.

stream:
magic version contents

contents:
content
contents content
Chapter 6: Object Serialization Stream Protocol Page 37

6

sc

fo
content:
object
blockdata

object:
newObject
newClass
newArray
newString
newClassDesc
prevObject
nullReference
exception

newClass:
TC_CLASS classDesc newHandle

classDesc:
newClassDesc
nullReference
(ClassDesc)prevObject // an object required to be of type ClassDe

superClassDesc:
classDesc

newClassDesc:
TC_CLASSDESC className serialVersionUIDnewHandle classDescIn

classDescInfo:
classDescFlags fields classAnnotation superClassDesc

className:
(utf)

serialVersionUID:
(long)

classDescFlags:
(byte)

fields:
(short)<count> fieldDesc[count]
Page 38 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

6

fieldDesc:
primitiveDesc
objectDesc

primitiveDesc:
prim_typecode fieldName modifiers

objectDesc:
obj_typecode fieldName modifiers className

fieldName:
(utf)

modifiers:
(short)

className:
(String)object // String containing the field’s type

classAnnotation:
endBlockData
contents endBlockData // contents written by annotateClass

prim_typecode:
‘B’ // byte
‘C’ // char
‘D’ // double
‘F’ // float
‘I’ // integer
‘J’ // long
‘S’ // short
‘Z’ // boolean

obj_typecode:
‘[‘ // array
‘L’ // object

newArray:
TC_ARRAY classDesc newHandle (int)<size> values[size]

newObject:
TC_OBJECT classDesc newHandle classdata[]// data for each class
Chapter 6: Object Serialization Stream Protocol Page 39

6

classdata:
nowrclass // SC_WRRD_METHOD & !classDescFlags
wrclass objectAnnotation // SC_WRRD_METHOD & classDescFlags

nowrclass:
values // fields in order of class descriptor

wrclass:
nowrclass

objectAnnotation:
endBlockData
contents endBlockData // contents written by writeObject

blockdata:
TC_BLOCKDATA (byte)<size> (byte)[size]

blockdatalong:
TC_BLOCKDATALONG (int)<size> (byte)[size]

endBlockData:
TC_ENDBLOCKDATA

newString:
TC_STRING newHandle (utf)

prevObject:
TC_REFERENCE (int)handle

nullReference:
TC_NULL

exception:
TC_EXCEPTION (Throwable)object// A java.lang.Throwable object

resetContext:
TC_RESET

magic:
STREAM_MAGIC

version:
STREAM_VERSION

values: // The size and types are described by the
// classDesc for the current object
Page 40 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

6

d

newHandle: // The next number in sequence is assigned

// to the object being serialized or deserialize

6.3.2 Terminal Symbols and Constants

The following symbols in java.io.ObjectStreamConstants define the terminal
and constant values expected in a stream.

final static short STREAM_MAGIC = (short)0xaced;
final static short STREAM_VERSION = 5;
final static byte TC_NULL = (byte)0x70;
final static byte TC_REFERENCE = (byte)0x71;
final static byte TC_CLASSDESC = (byte)0x72;
final static byte TC_OBJECT = (byte)0x73;
final static byte TC_STRING = (byte)0x74;
final static byte TC_ARRAY = (byte)0x75;
final static byte TC_CLASS = (byte)0x76;
final static byte TC_BLOCKDATA = (byte)0x77;
final static byte TC_ENDBLOCKDATA = (byte)0x78;
final static byte TC_RESET = (byte)0x79;
final static byte TC_BLOCKDATALONG = (byte)0x7A;
final static byte TC_EXCEPTION = (byte)0x7B;

 final static byte SC_WRRD_METHODS = 0x01;
 final static byte SC_SERIALIZABLE = 0x02;
 final static byte SC_EXTERNALIZABLE = 0x04;

6.4 Example
Suppose an original class and two instances in a linked list:

class List {
int value;
List next;
public static void main(String[] args) {

list list1 = new list();
list list2 = new list();
list1.value = 17;
list1.next = list2;
list2.value = 19;
list2.next = null;

ObjectOutputStream out = ...;
Chapter 6: Object Serialization Stream Protocol Page 41

6

out.writeObject(list1);
out.writeObject(list2);

}

The resulting stream contains:

00: ac ed 00 05 73 72 00 04 4c 69 73 74 2f 0b 17 f6 >....sr..List/...<

10: 5a 0f bc a7 02 00 02 49 00 05 76 61 6c 75 65 4c >Z......I..valueL<

20: 00 04 6e 65 78 74 74 00 06 4c 4c 69 73 74 3b 78 >..nextt..LList;x<

30: 70 00 00 00 11 73 71 00 7e 00 00 00 00 00 13 70 >p....sq.~......p<

40: 71 00 7e 00 03 >q.~..<
Page 42 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

Security in Object Serialization A
Topics:
• Overview

• Design Goals

• Using transient to Protect Important System Resources

• Writing Class-Specific Serializing Methods

• Encrypting a Byte Stream
Page 43

A

A.1 Overview
The object serialization system allows a bytestream to be produced from a
graph of objects, sent out of the Java environment (e.g. saved to disk or sent
over the network) and then used to recreate an equivalent set of new objects
with the same state.

What happens to the state of the objects outside of the environment is outside
of the control of the Java system (by definition), and therefore outside the
control of the security provided by the system. The question then arises, once
an object has been serialized, can the resulting byte array be examined and
changed, perhaps injecting viruses into Java programs? The intent of this
appendix is to address these security concerns.

A.2 Design Goals
The goal for object serialization is to have the simplest serialization system
consistent with known security restrictions; the simpler the system is, the more
likely it is to be secure. The following points summarize how security in object
serialization has been implemented:

• Only objects implementing the java.io.Serializable or java.io.Externalizable
interfaces can be serialized. there are mechanisms for not serializing certain
fields and certain classes.

• The serialization package cannot be used to recreate the same object, and no
object is ever overwritten by a deserialize operation. All that can be done
with the serialization package is to create new objects, initialized in a
particular fashion.

• While deserializing an object might cause code for the class of the object to
be loaded, that code loading is protected by all of the usual Java code
verification and security management guarantees. Classes loaded because of
deserialization are no more or less secure than those loaded in any other
fashion.

• Externalizable objects expose themselves to being overwritten because the
readExternal method is public.
Page 44 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

A

A.3 Using transient to Protect Important System Resources
Direct handles to system resources, for example file handles, are just the kind
of information that is relative to an address space and should not be written
out as part of an object's persistent state. Therefore, fields that contain this kind
of information should be declared transient , which prevents them from
being serialized. Note that this is not a new or overloaded meaning for the
transient keyword.

If a resource like a file handle were not declared transient , the object could
be altered while in its serialized state, enabling it to have improper access to
resources after it is deserialized.

A.4 Writing Class-Specific Serializing Methods
To guarantee that a deserialized object does not have state which violates some
set of invariants that need to be guaranteed, a class can define its own
serializing and deserializing methods. If there is some set of invariants that
need to be maintained between the data members of a class, only the class can
know about these invariants, and it is up to the class writer to provide a
deserialization method that checks these invariants.

This is important even if one is not worried about security; it is possible that
disk files can be corrupted and serialized data be invalid. So checking such
invariants is more than just a security measure, it is a validity measure.
However, the only place it can be done is in the code for the particular class,
since there is no way the serialization package can determine what invariants
should be maintained or checked.

A.5 Encrypting a Byte Stream
Another way of protecting a bytestream outside the Java virtual machine is to
encrypt the stream produced by the serialization package. Encrypting the
bytestream prevents the decoding and the reading of a serialized object’s
private state.

The implementation allows encryption, both by allowing the classes to have
their own special methods for serialization/deserialization and by using the
stream abstraction for serialization, so the output can be fed into some other
stream or filter.
Appendix A: Security in Object Serialization Page 45

A

Page 46 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

Exceptions In Object Serialization B
All exceptions thrown by serialization classes are subclasses of
ObjectStreamException which is a subclass of IOException .

• ObjectStreamException - superclass of all serialization exceptions
• InvalidClassException - when a class cannot be used to restore objects.

• The class does not match the serial version of the class in the stream
• The class contains fields with invalid primitive data types.
• The class is not public.
• The class does not have an accessible no-arg constructor.

• NotSerializableException - thrown by a readObject or writeObject
method to terminate serialization or deserialization.

• StreamCorruptedException - thrown when the stream header is invalid
or when control information in the stream is not found or found to be
invalid.

• NotActiveException - thrown if registerValidation is not called
during readObject .

• InvalidObjectException - thrown when a restored object cannot be made
valid.

• OptionalDataException - thrown by readObject when there is primitive
data in the stream when an object is expected. The length field of the
exception supplied the number of bytes that are available in the current
block.

• WriteAbortedException - thrown when reading a stream terminated by an
exception that occurred while the stream was being written.
Page 47

B

Page 48 Java™ Object Serialization Specification—November 1, 1996 Prebeta Draft

	Java™ Object Serialization Specification
	Table of Contents
	System Architecture
	1.1 Overview
	1.2 Writing to an Object Stream
	1.3 Reading from an Object Stream
	1.4 Object Streams as Containers
	1.5 The ObjectOutput Interface
	1.6 The ObjectInput Interface
	1.7 The Serializable Interface
	1.8 The Externalizable Interface
	1.9 Protecting Sensitive Information

	Object Output Interfaces
	2.1 The ObjectOutputStream Class
	2.2 The writeObject Method
	2.3 The writeExternal Method

	Object Input Interfaces
	3.1 The ObjectInputStream Class
	3.2 The ObjectInputValidation Interface
	3.3 The readObject Method
	3.4 The readExternal Method

	Class Descriptors
	4.1 Inspecting Serializable Classes
	4.2 Stream Unique Identifiers

	Versioning of Serializable Objects
	5.1 Overview
	5.2 Goals
	5.3 Assumptions
	5.4 Who’s responsible for Versioning of Streams
	5.5 Compatible Java Type Evolution
	5.6 Type Changes Affecting Serialization
	5.6.1 Incompatible Changes
	5.6.2 Compatible Changes

	Object Serialization Stream Protocol
	6.1 Overview
	6.2 Stream Elements
	6.3 Grammar for the Stream Format
	6.3.1 Rules of the Grammar
	6.3.2 Terminal Symbols and Constants

	6.4 Example

	Security in Object Serialization
	A.1 Overview
	A.2 Design Goals
	A.3 Using transient to Protect Important System Re...
	A.4 Writing Class-Specific Serializing Methods
	A.5 Encrypting a Byte Stream

	Exceptions In Object Serialization

