
JavaTM RMI Tutorial
Prebeta Draft
Revision 1.1

November 1, 1996
.

-
IL
U

ubject

r pending

petual,
at are
f clean

sion of
of the
 addi-
cent
ase of

materi-
 SUN.

s Com-
ks of Sun
sively
 of their

.
-

 1996 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

THIS IS A DRAFT, AND IS KNOWN TO BE INCOMPLETE. IT MAY NOT BE COPIED OR REDISTRIB
UTED WITHOUT THE EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS. SEND MA
TO rmi-support@java.sun.com IF YOU WISH TO MAKE ADDITIONAL REVIEW COPIES OR IF YO
HAVE COMMENTS. FOR MORE DETAILS ABOUT OUR REDISTRIBUTION POLICY, SEE
http://java.sun.com/doc/redist.html

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is s
to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, o
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable, per
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights th
essential to practice this specification. This license allows and is limited to the creation and distribution o
room implementations of this specification that: (i) include a complete implementation of the current ver
this specification without subsetting or supersetting; (ii) implement all the interfaces and functionality
standardjava.* packages as defined by SUN, without subsetting or supersetting; (iii) do not add any
tional packages, classes or methods to thejava.* packages; (iv) pass all test suites relating to the most re
published version of this specification that are available from SUN six (6) months prior to any beta rele
the clean room implementation or upgrade thereto; (v) do not derive from SUN source code or binary
als; and (vi) do not include any SUN binary materials without an appropriate and separate license from

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystem
puter Corporation logo, Java, JavaSoft, JavaScript, and HotJava are trademarks or registered trademar
Microsystems, Inc. UNIX® is a registered trademark in the United States and other countries, exclu
licensed through X/Open Company, Ltd. All other product names mentioned herein are the trademarks
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC
MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Table of Contents
1 Getting Started . 1

1.1 Write The HTML and Java Source Files 1

1.1.1 Define a Remote Interface . 2

1.1.2 Write an Implementation Class 3

1.1.3 Write an Applet that Uses the Remote Service 8

1.1.4 Write the Web Page that Contains the Applet 9

1.2 Compile and Deploy Class Files and HTML Files 9

1.2.1 Compile the Java Source Files 10

1.2.2 Generate Stubs and Skeletons. 10

1.2.3 Move the HTML File to the Deployment Directory 11

1.2.4 Set Paths for Runtime . 11

1.3 Start the Remote Object Registry, Server, and Applet . . . 11

1.3.1 Start the RMI Bootstrap Registry 11

1.3.2 Start the Server . 12

1.3.3 Run the Applet . 13
Page iii

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

Page iv Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

Getting Started 1
This chapter shows you the steps to follow to create a distributed version of
the classic Hello World program using Java™ Remote Method Invocation
(RMI).

The distributed Hello World example uses an applet to make a remote method
call to the server from which it was downloaded to retrieve the message “Hello
World!”. When the applet runs, the message is displayed on the client.

To accomplish this, you will:

1. Write The HTML and Java Source Files

2. Compile and Deploy Class Files and HTML Files

3. Start the Remote Object Registry, Server, and Applet

1.1 Write The HTML and Java Source Files
There are four source files for the Hello World server and applet:

1. The Java remote interface.

2. The Java remote object (server) which implements the remote interface.

3. The Java applet that remotely invokes the server’s method.

4. The HTML code for the web page that references the applet.
Page 1

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

Because the Java language requires a mapping between the fully qualified
package name of a class file and the directory path to that class, before you
begin writing Java code you need to decide on package and directory names.
(This mapping allows the Java compiler to know the directory in which to find
the class files mentioned in a Java program.) For the Hello World program
developed in this chapter, the package name is examples.hello and the root
directory is $HOME/java/mysrc/examples/hello .

For example, to create the directory for your source files on Solaris, execute this
command:

mkdir $HOME/java/mysrc/examples/hello

1.1.1 Define a Remote Interface

Remote method invocations can fail in very different ways from local method
invocations, due to network related communication problems and server
problems. To indicate that it is a remote object, an object implements a remote
interface, which has the following characteristics:

• The remote interface must be public. Otherwise, a client will get an error
when attempting to load a remote object that implements the remote
interface.

• The remote interface extends the interface java.rmi.Remote .

• Each method must declare java.rmi.RemoteException in its throws
clause, in addition to any application-specific exceptions.

• A remote object passed as an argument or return value (either directly or
embedded within a local object) must be declared as the remote interface,
not the implementation class.

Here is the interface definition for Hello World. The interface contains just one
method, sayHello , which returns a string to the caller:

package examples.hello;
public interface Hello extends java.rmi.Remote {

String sayHello() throws java.rmi.RemoteException;
}

Page 2 Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

1.1.2 Write an Implementation Class

To write a remote object, you write a class that implements one or more remote
interfaces. The implementation class needs to:

1. Specify the remote interface(s) being implemented.

2. Define the constructor for the remote object.

3. Provide implementations for the methods that can be invoked remotely.

4. Create and install a security manager.

5. Create one or more instances of a remote object.

6. Register at least one of the remote objects with the RMI remote object
registry, for bootstrapping purposes.

For example, here is the source for the HelloImpl.java file, which contains
the code for the Hello World server. The code is followed by an explanation of
each of the preceding six steps.

package examples.hello;

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class HelloImpl
extends UnicastRemoteObject
implements Hello

{
private String name;

public HelloImpl(String s) throws RemoteException {
super();
name = s;

}

public String sayHello() throws RemoteException {
return "Hello World!";

}

Java™ RMI Tutorial—November 1, 1996 Prebeta Draft Page 3

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

public static void main(String args[])
{

// Create and install a security manager
System.setSecurityManager(new RMISecurityManager());

try {
HelloImpl obj = new HelloImpl("HelloServer");
Naming.rebind("//myhost/HelloServer", obj);
System.out.println("HelloServer bound in registry");

} catch (Exception e) {
System.out.println("HelloImpl err: " + e.getMessage());
e.printStackTrace();

}
}

}

▼ Implement a remote interface

The implementation class for the Hello World example is HelloImpl . An
implementation class specifies the remote interface(s) it is implementing. It can
also optionally indicate the remote server that it is extending, in this example
java.rmi.server.UnicastRemoteObject . Here is the HelloImpl class
declaration:

public class HelloImpl
implements Hello
extends java.rmi.server.UnicastRemoteObject

Extending UnicastRemoteObject indicates that the HelloImpl class is used
to create a single (non-replicated) remote object that uses RMI’s default
sockets-based transport for communication. If you choose to extend a remote
object from a non-remote class, you need to explicitly export the remote object
by calling the method UnicastRemoteObject.exportObject .
Page 4 Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

▼ Define the constructor for the remote object

The constructor for a remote class is no different than the constructor for a non-
remote class: it initializes the variables of each newly created instance of the
class.

Here is the constructor for the HelloImpl class, which initializes the private
string variable name with the name of the remote object:

private String name;
public HelloImpl(String s) throws java.rmi.RemoteException {

super();
name = s;

}

Note the following:

• The super method call invokes the no-arg constructor of
java.rmi.server.UnicastRemoteObject , which “exports” the remote
object by listening for incoming calls to the remote object on an anonymous
port.

• The constructor must throw java.rmi.RemoteException , because RMI’s
attempt to export a remote object during construction may fail if
communication resources are not available.

Although the call to the super no-arg constructor occurs by default if omitted,
it is included in this example to make clear the fact that Java constructs the
superclass before the class.

▼ Provide an implementation for each remote method

The implementation class for a remote object contains the code that
implements each of the remote methods specified in the remote interface.

For example, here is the implementation for the sayHello method, which
returns the string Hello World! to the caller.

public String sayHello() throws RemoteException {
return "Hello World!";

}

Java™ RMI Tutorial—November 1, 1996 Prebeta Draft Page 5

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

Arguments to or return values from remote methods can be of any Java type,
including objects, as long as those objects implement the interface
java.io.Serializable . Most of the core Java classes in java.lang and
java.util implement the Serializable interface.

• Local objects are passed by copy, and only the non-static and non-transient
fields are copied by default.

• Remote objects are passed by reference. A reference to a remote object is
actually a reference to a stub, which is a client-side proxy for the remote
object. Stubs are described fully in Section 1.2.2, “Generate Stubs and
Skeletons”.

Note – A class can define methods not specified in the remote interface, but
those methods can only be invoked within the virtual machine running the
service and cannot be invoked remotely.

▼ Create and install a security manager

The main method of the service first needs to create and install a security
manager, either the RMISecurityManager or one that you have defined
yourself. For example:

System.setSecurityManager(new RMISecurityManager());

A security manager needs to be running so that it can guarantee that the
classes loaded do not perform “sensitive” operations. If no security manager is
specified, no class loading for RMI classes, local or otherwise, is allowed.

▼ Create one or more instances of a remote object

The main method of the service needs to create one or more instances of the
remote object which provides the service. For example:

HelloImpl obj = new HelloImpl("HelloServer");

The constructor exports the remote object, which means that once created, the
remote object is ready to begin listening for incoming calls.
Page 6 Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

▼ Register a remote object

For a caller (client, peer, or applet) to be able to invoke a method on a remote
object, that caller must first obtain a reference to the remote object. Most of the
time the reference will be obtained as a parameter to or a return value from
another remote method call.

For bootstrapping, the RMI system also provides a URL-based registry that
allows you to bind a URL of the form //host/objectname to the remote
object, where objectname is a simple string name. Once a remote object is
registered on the server, callers can look up the object by name, obtain a remote
object reference, and then remotely invoke methods on the object.

For example, the following code binds the URL of the remote object named
HelloServer to a reference for the remote object:

Naming.rebind("//myhost/HelloServer", obj);

Note the following about the arguments to the call:

• The host defaults to the current host if omitted from the URL, and no
protocol needs to be specified in the URL.

• The RMI runtime substitutes a reference to the remote object’s stub for the
actual remote object reference specified by the obj argument. Remote
implementation objects like instances of HelloImpl never leave the VM
where they are created, so when a client performs a lookup in a server’s
remote object registry, a reference to the stub is returned.

• Optionally a port number can be supplied in the URL, for example
//myhost:1234/HelloServer. The port defaults to 1099. It is necessary to
specify the port number only if a server creates a registry on a port other
than the default 1099.

Note – For security reasons, an application can bind or unbind only in the
registry running on the same host. This prevents a client from removing or
overwriting any of the entries in a server’s remote registry. A lookup, however,
can be done from any host.
Java™ RMI Tutorial—November 1, 1996 Prebeta Draft Page 7

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

1.1.3 Write an Applet that Uses the Remote Service

The applet part of the distributed Hello World example remotely invokes the
HelloServer’s sayHello method in order to get the string “Hello World!”,
which is displayed when the applet runs. Here is the code for the applet:

package examples.hello;

import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet.Applet {
String message = ““;
public void init() {

try {
Hello obj = (Hello)Naming.lookup("//" +

getCodeBase().getHost() + "/HelloServer");
message = obj.sayHello();

} catch (Exception e) {
System.out.println("HelloApplet exception: " +

e.getMessage());
e.printStackTrace();

}
}
public void paint(Graphics g) {

g.drawString(message, 25, 50);
}

}

1. The applet first gets a reference to the “HelloServer” from the server’s
registry, constructing the URL by using the getCodeBase method in
conjunction with the getHost method.

2. The applet remotely invokes the sayHello method of the HelloServer
remote object and stores the return value from the call (the string “Hello
World!”) in a variable named message .

3. The applet invokes the paint method to draw the applet on the display,
causing the string “Hello World!” to be displayed.

Note – The constructed URL must include the host. Otherwise, the applet’s
lookup will default to the client, and the AppletSecurityManager will
throw an exception since the applet cannot access the local system, but is
instead limited to communicating only with applet host.
Page 8 Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

1.1.4 Write the Web Page that Contains the Applet

Here is the HTML code for the web page that references the Hello World
applet:

<HTML>
<title>Hello World</title>
<center> <h1>Hello World</h1> </center>

The message from the HelloServer is:
<p>
<applet codebase="../.."

code="examples.hello.HelloApplet"
width=500 height=120>

</applet>
</HTML>

Note the following:

• There needs to be an HTTP server running on the machine from which you
want to download classes. The applet’s codebase attribute indicates the
URL, as shown here:

codebase="../.."

The codebase in this example specifies a directory two levels above the
directory from which the web page was itself loaded. Using this kind of
relative path is usually a good idea.

• The applet’s code attribute specifies the fully package qualified name of the
applet, in this example examples.hello.HelloApplet :

code="examples.hello.HelloApplet"

1.2 Compile and Deploy Class Files and HTML Files
The source code for the Hello World example is now complete and the
$HOME/java/mysrc/hello directory has four files:

• Hello.java , which contains the source code for the Hello remote interface.

• HelloImpl.java , which is the source code for the HelloImpl remote object
implementation, the server for the Hello World applet.

• HelloApplet.java , which is the source code for the applet.

• index.html , which is the web page that references the Hello World applet.
Java™ RMI Tutorial—November 1, 1996 Prebeta Draft Page 9

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

In this section, you compile the .java source files to create .class files. You
then run the rmic compiler to create stubs and skeletons. A stub is a client-
side proxy for a remote object which forwards RMI calls to the server-side
skeleton, which in turn forwards the call to the actual remote object
implementation.

When you use the javac and rmic compilers, you must specify where the
resulting class files should reside. For applets, all files should be in the applet’s
codebase directory. In this chapter, this is $HOME/public_html/codebase .

Note – Some Web servers allow accessing a user’s public_html diretory via an
HTTP URL constructed as “http://host/~username/”. If your Web server
does not support this convention, you may use a file URL of the form
“file://home/username/public_html”.

1.2.1 Compile the Java Source Files

Make sure that the deployment directory $HOME/public_html/codebase
and the development directory $HOME/java/mysrc/examples/hello are
each visible via the local CLASSPATH on the development machine.

To compile the Java source files, run the javac command as follows:

javac –d $HOME/public_html/codebase
Hello.java HelloImpl.java HelloApplet.java

This command creates the directory examples/hello (if it does not already
exist) in the directory $HOME/public_html/codebase . The command then
writes to that directory the files Hello.class , HelloImpl.class , and
HelloApplet.class . These are the remote interface, the server, and the
applet respectively.

1.2.2 Generate Stubs and Skeletons

To create stub and skeleton files, run the rmic compiler on the names of
compiled class files that contain remote object implementations. rmic takes
one or more class names as input and produces as output class files of the form
myImpl _Skel.class and myImpl _Stub.class .
Page 10 Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

For example, to create the stub and skeleton for the HelloImpl remote object
implementation, run rmic like this:

rmic –d $HOME/public_html/codebase examples.hello.HelloImpl

The –d option indicates the root directory in which to place the compiled stub
and skeleton files. So the preceding command creates the following files in the
directory $HOME/public_html/codebase/examples/hello :

• HelloImpl_Stub.class

• HelloImpl_Skel.class

Note that the generated stub implements exactly the same set of remote
interfaces as the remote object itself. This means that a client can use the Java
language’s built-in operators for casting and type checking. It also means that
Java remote objects support true object-oriented polymorphism.

1.2.3 Move the HTML File to the Deployment Directory

To make the web page that references the applet visible to clients, the
index.html file must be moved from the development directory to the
codebase directory. For example:

mv $HOME/java/mysrc/examples/hello/index.html
$HOME/public_html/codebase/examples/hello

1.2.4 Set Paths for Runtime

Make sure that the $HOME/public_html/codebase directory is available via
the server’s local CLASSPATH when you run the HelloImpl server.

1.3 Start the Remote Object Registry, Server, and Applet

1.3.1 Start the RMI Bootstrap Registry

The RMI registry is a simple server-side bootstrap name server that allows
remote clients to get a reference to a remote object. It is typically used only to
locate the first remote object an application needs to talk to. That object in turn
will provide application specific support for finding other objects.
Java™ RMI Tutorial—November 1, 1996 Prebeta Draft Page 11

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

To start the registry on the server, execute the rmiregistry command. This
command produces no output and is typically run in the background. For
example, on Windows 95 or Windows NT:

start rmiregistry

(use javaw if start is not available)

And on Solaris:

rmiregistry &

The registry by default runs on port 1099. To start the registry on a different
port, specify the port number in the command. For example, to start the
registry on port 2001 on Windows NT:

start rmiregistry 2001

If the registry is running on a port other than the default, you need to specify
the port number in the URL-based methods of the java.rmi.Naming class
when making calls to the registry. For example, if the registry is running on
port 2001 in the Hello World example, here is the call required to bind the URL
of the HelloServer to the remote object reference:

Naming.rebind("//myhost:2001/HelloServer", obj);

Similarly, the URL stored on the web page needs to specify the non-default
port number, or else the applet’s attempt to lookup the server in the registry
will fail:

<PARAM name="url" value="//myhost:2001/HelloServer">

Note – You must stop and restart the registry any time you modify a remote
interface or use modified/additional remote interfaces in a remote object
implementation. Otherwise, the class bound in the registry will not match the
modified class.

1.3.2 Start the Server

When starting the server, the java.rmi.server.codebase property must be
specified, so that references to the remote objects created by the server can
include the URL from which the stub class can be dynamically downloaded to
the client.
Page 12 Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

The following command shows how to start the HelloImpl server, specifying
this property:

java –Djava.rmi.server.codebase=http://myhost/~myusrname/codebase/
examples.hello.HelloImpl &

Note – The trailing / in the codebase URL must be specified.

A stub class is dynamically loaded into a client’s virtual machine only when
the class is not already available locally.

1.3.3 Run the Applet

Note – At Prebeta, the applet must be run in theJDK1.0.2 appletviewer or the
special RMI version of HotJava.

Once the registry and server are running, the applet can be run. An applet is
run by loading its web page into a browser or appletviewer, as shown here:

appletviewer
http://myhost/~myusrname/codebase/examples/hello/index.html &

After running the appletviewer, you will see output similar to the following on
your display:
Java™ RMI Tutorial—November 1, 1996 Prebeta Draft Page 13

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

1

Page 14 Java™ RMI Tutorial—November 1, 1996 Prebeta Draft

 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

	JavaTM RMI Tutorial
	Table of Contents
	Getting Started
	1.1 Write The HTML and Java Source Files
	1.1.1 Define a Remote Interface
	1.1.2 Write an Implementation Class
	1.1.3 Write an Applet that Uses the Remote Service...
	1.1.4 Write the Web Page that Contains the Applet

	1.2 Compile and Deploy Class Files and HTML Files
	1.2.1 Compile the Java Source Files
	1.2.2 Generate Stubs and Skeletons
	1.2.3 Move the HTML File to the Deployment Directo...
	1.2.4 Set Paths for Runtime

	1.3 Start the Remote Object Registry, Server, and ...
	1.3.1 Start the RMI Bootstrap Registry
	1.3.2 Start the Server
	1.3.3 Run the Applet

