
Java™ Remote Method Invocation
Specification
Prebeta Draft
Revision 1.1
Java™ Remote Method Invocation (RMI) is a distributed object model for the Java
language that retains the semantics of the Java object model, making distributed
objects easy to implement and to use. The system combines aspects of the Modula-
3 Network Objects system and Spring’s subcontract and includes some novel
features made possible by Java. The RMI system is easily extensible and
maintainable.

Revision 1.1, November 1, 1996 Draft

-
IL
U

ubject

r pending

petual,
at are
f clean

sion of
of the
 addi-
cent
ase of

materi-
 SUN.

s Com-
ks of Sun
sively
 of their

.
-

 1996 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

THIS IS A DRAFT, AND IS KNOWN TO BE INCOMPLETE. IT MAY NOT BE COPIED OR REDISTRIB
UTED WITHOUT THE EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS. SEND MA
TO rmi-support@java.sun.com IF YOU WISH TO MAKE ADDITIONAL REVIEW COPIES OR IF YO
HAVE COMMENTS. fOR MORE DETAILS ABOUT OUR REDISTRIBUTION POLICY, SEE
http://java.sun.com/doc/redist.html

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is s
to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, o
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable, per
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights th
essential to practice this specification. This license allows and is limited to the creation and distribution o
room implementations of this specification that: (i) include a complete implementation of the current ver
this specification without subsetting or supersetting; (ii) implement all the interfaces and functionality
standardjava.* packages as defined by SUN, without subsetting or supersetting; (iii) do not add any
tional packages, classes or methods to thejava.* packages; (iv) pass all test suites relating to the most re
published version of this specification that are available from SUN six (6) months prior to any beta rele
the clean room implementation or upgrade thereto; (v) do not derive from SUN source code or binary
als; and (vi) do not include any SUN binary materials without an appropriate and separate license from

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystem
puter Corporation logo, Java, JavaSoft, JavaScript, and HotJava are trademarks or registered trademar
Microsystems, Inc. UNIX® is a registered trademark in the United States and other countries, exclu
licensed through X/Open Company, Ltd. All other product names mentioned herein are the trademarks
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC
MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Table of Contents
1 Introduction . 1

1.1 Overview . 1

1.2 System Goals . 2

2 Java Distributed Object Model. 5

2.1 Definition of Terms. 5

2.2 The Distributed and Non-Distributed Models Contrasted 6

2.3 RMI Interfaces and Classes . 7

2.4 Implementing a Remote Interface 9

2.5 Type Equivalency of Remote Objects with Local Stub. . . 10

2.6 Parameter Passing in Remote Method Invocation 10

2.7 Exception Handling in Remote Method Invocation. 11

2.8 Object Methods Overridden by the RemoteObject Class 11

2.9 The Semantics of Object Methods Declared final 13

2.10 Locating Remote Objects . 13
Page iii

3 System Architecture . 15

3.1 Overview . 15

3.2 Architectural Overview . 16

3.3 The Stub/Skeleton Layer. 18

3.4 The Remote Reference Layer. 19

3.5 The Transport Layer . 20

3.6 Thread Usage in Remote Method Invocations 21

3.7 Garbage Collection of Remote Objects. 21

3.8 Dynamic Class Loading. 22

3.9 Security . 26

3.10 Configuration Scenarios . 27

3.11 RMI Through Firewalls Via Proxies 29

4 Client Interfaces . 33

4.1 The Remote Interface . 33

4.2 The RemoteException Class . 34

4.3 The Naming Class . 34

5 Server Interfaces . 37

5.1 The RemoteObject Class . 38

5.2 The RemoteServer Class . 38

5.3 The UnicastRemoteObject Class . 39

5.4 The Unreferenced Interface . 40

5.5 The RMISecurityManager Class . 41

5.6 The RMIClassLoader Class . 44

5.7 The RMISocketFactory Class. 45
Page iv Java™ Remote Method Invocation Specification—November 1, 1996 Draft

5.8 The RMIFailureHandler Interface 46

5.9 The LogStream Class . 47

5.10 Stub and Skeleton Compiler . 48

6 Registry Interfaces . 49

6.1 The Registry Interface . 49

6.2 The LocateRegistry Class. 51

6.3 The RegistryHandler Interface . 52

7 Stub/Skeleton Interfaces . 53

7.1 The RemoteStub Class . 53

7.2 The RemoteCall Interface . 54

7.3 The RemoteRef Interface . 55

7.4 .The ServerRef Interface. 56

7.5 The Skeleton Interface . 57

7.6 The Operation Class . 57

8 Garbage Collector Interfaces. 59

8.1 The Interface DGC . 59

8.2 The Lease Class. 61

8.3 The ObjID Class . 61

8.4 The UID Class . 62

8.5 The VMID Class . 63

A Exceptions In RMI . 65

A.1 Exceptions During Remote Object Export 66

A.2 Exceptions During RMI Call . 67

A.3 Exceptions or Errors During Return 67
Table of Contents Page v

A.4 Other . 68
Page vi Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Introduction 1
Topics:
• Overview

• System Goals

1.1 Overview
Distributed systems require that computations running in different address
spaces, potentially on different hosts, be able to communicate. For a basic
communication mechanism, the Java™ language supports sockets, which are
flexible and sufficient for general communication. However, sockets require the
client and server to engage in applications-level protocols to encode and
decode messages for exchange, and the design of such protocols is
cumbersome and can be error-prone.

An alternative to sockets is Remote Procedure Call (RPC), which abstracts the
communication interface to the level of a procedure call. Instead of working
directly with sockets, the programmer has the illusion of calling a local
procedure, when in fact the arguments of the call are packaged up and shipped
off to the remote target of the call. RPC systems encode arguments and return
values using an external data representation, such as XDR.

RPC, however, does not translate well into distributed object systems, where
communication between program-level objects residing in different address
spaces is needed. In order to match the semantics of object invocation,
Page 1

1

distributed object systems require remote method invocation or RMI. In such
systems, a local surrogate (stub) object manages the invocation on a remote
object.

The Java remote method invocation system described in this specification has
been specifically designed to operate in the Java environment. While other RMI
systems can be adapted to handle Java objects, these systems fall short of
seamless integration with the Java system due to their inter-operability
requirement with other languages. For example, CORBA presumes a
heterogeneous, multi-language environment and thus must have a language-
neutral object model. In contrast, the Java language’s RMI system assumes the
homogeneous environment of the Java Virtual Machine, and the system can
therefore take advantage of the Java object model whenever possible.

1.2 System Goals
The goals for supporting distributed objects in the Java language are:

• Support seamless remote invocation on objects in different virtual machines.

• Support callbacks from servers to applets.

• Integrate the distributed object model into the Java language in a natural
way while retaining most of the Java language’s object semantics.

• Make differences between the distributed object model and local Java object
model apparent.

• Make writing reliable distributed app.ications as simple as possible.

• Preserve the safety provided by the Java runtime environment.

Underlying all these goals is a general requirement that the RMI model be both
simple (easy to use) and natural (fits well in the language).

In addition, the RMI system should allow extensions such as garbage collection
of remote objects, server replication, and the activation of persistent objects to
service an invocation. These extensions should be transparent to the client and
add minimal implementation requirements on the part of the servers that use
them. To support these extensions, the system should also support:

• Several invocation mechanisms, for example simple invocation to a single
object or invocation to an object replicated at multiple locations. The system
should also be extensible to other invocation paradigms.
Page 2 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

1

• Various reference semantics for remote objects, for example live (non-
persistent) references, persistent references, and lazy activation.

• The safe Java environment provided by security managers and class loaders.

• Distributed garbage collection of active objects.

• Capability of supporting multiple transports.

The first two chapters in this specification describe the distributed object model
for the Java language and the system architecture. The remaining chapters
describe the client and server visible interfaces that comprise the Java RMI to
be released with the JDK 1.1.
Chapter 1: Introduction Page 3

1

Page 4 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Java Distributed Object Model 2
Topics:
• Definition of Terms

• The Distributed and Non-Distributed Models Contrasted

• RMI Interfaces and Classes

• Implementing a Remote Interface

• Type Equivalency of Remote Objects with Local Stub

• Parameter Passing in Remote Method Invocation

• Exception Handling in Remote Method Invocation

• Object Methods Overridden by the RemoteObject Class

• The Semantics of Object Methods Declared final

• Locating Remote Objects

2.1 Definition of Terms
In the Java distributed object model, a remote object is one whose methods can
be invoked from another Java Virtual Machine, potentially on a different host.
An object of this type is described by one or more remote interfaces, which are
Java interfaces that declare the methods of the remote object.
Page 5

2

Remote method invocation (RMI) is the action of invoking a method of a remote
interface on a remote object. Most importantly, a method invocation on a
remote object has the same syntax as a method invocation on a local object.

2.2 The Distributed and Non-Distributed Models Contrasted
The Java distributed object model is similar to the Java object model in the
following ways:

• A reference to a remote object can be passed as an argument or returned as
a result in any method invocation (local or remote).

• A remote object can be cast to any of the set of remote interfaces supported
by the implementation using the built-in Java syntax for casting.

• The built-in Java instanceof operator can be used to test the remote
interfaces supported by a remote object.

The Java distributed object model differs from the Java object model in these
ways:

• Clients of remote objects interact with remote interfaces, never with the
implementation classes of those interfaces.

• Non-remote arguments to and results from a remote method invocation are
passed by copy rather than by reference. This is because references to objects
are only useful within a single virtual machine.

• A remote object is passed by reference, not by copying the actual remote
implementation.

• The semantics of some of the methods defined by class Object are
specialized for remote objects.

• Since the failure modes of invoking remote objects are inherently more
complicated than the failure modes of invoking local objects, clients must
deal with additional exceptions that can occur during a remote method
invocation.
Page 6 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

2

2.3 RMI Interfaces and Classes
The interfaces and classes that are responsible for specifying the remote
behavior of the RMI system are defined in the java.rmi and the
java.rmi.server packages. The following figure shows the relationship
between these interfaces and classes:

2.3.1 The Remote Interface

All remote interfaces extend, either directly or indirectly, the interface
java.rmi.remote . The Remote interface defines no methods, as shown here:

public interface Remote {}

For example, the following code fragment defines a remote interface for a bank
account that contains methods that deposit to the account, get the account
balance, and withdraw from the account:

public interface BankAccount
 extends Remote
{

public void deposit (float amount)
throws java.rmi.RemoteException;

public void withdraw (float amount)
throws OverdrawnException, java.rmi.RemoteException;

public float balance()
throws java.rmi.RemoteException;

}

IOException

RemoteException

Remote

RemoteServer

RemoteObject

Interfaces Classes

extension
implementation

UnicastRemoteObject

...

...

...
Chapter 2: Java Distributed Object Model Page 7

2

The methods in a remote interface must be defined as follows:

• Each method must declare java.rmi.RemoteException in its throws
clause, in addition to any application-specific exceptions.

• A remote object passed as an argument or return value (either directly or
embedded within a local object) must be declared as the remote interface,
not the implementation class.

2.3.2 The RemoteException Class

The java.rmi.RemoteException class is the superclass of all exceptions
that can be thrown by the RMI runtime. To ensure the robustness of
application’s using the RMI system, each method declared in a remote interface
must specify java.rmi.RemoteException in its throws clause.

java.rmi.RemoteException is thrown when a remote method invocation
fails (for example when the network fails or the server for the call cannot be
reached). This allows the application making the remote invocation to
determine how best to deal with the remote exception.

2.3.3 The RemoteObject Class and its Subclasses

RMI server functions are provided by java.rmi.server.RemoteObject
and its subclasses, java.rmi.server.RemoteServer and
java.rmi.server.UnicastRemoteObject :

• The java.rmi.server.RemoteObject class provides the remote
semantics of Object by implementing methods for hashCode , equals ,
and toString .

• The functions needed to create objects and export them (make them
available remotely) are provided abstractly by
java.rmi.server.RemoteServer and concretely by its subclass(es). The
subclass identifies the semantics of the remote reference, for example
whether the server is a single object or is a replicated object requiring
communications with multiple locations.

• The java.rmi.server.UnicastRemoteObject class defines a singleton
(unicast) remote object whose references are valid only while the server
process is alive.
Page 8 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

2

2.4 Implementing a Remote Interface
The general rules for a class that implements a remote interface are as follows:

• The class usually extends java.rmi.server.UnicastRemoteObject ,
thereby inheriting the remote behavior provided by the classes
java.rmi.server.RemoteObject and
java.rmi.server.RemoteServer .

• The class can implement any number of remote interfaces.

• The class can extend another remote implementation class.

• The class can define methods that do not appear in the remote interface, but
those methods can only be used locally and are not available remotely.

For example, the following code fragment defines the BankAcctImpl class,
which implements the BankAccount remote interface and which extends the
java.rmi.server.UnicastRemoteObject class:

package my_package;

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class BankAccountImpl
extends UnicastRemoteObject
implements BankAccount

{
public void deposit (float amount) throws RemoteException {

...
}
public void withdraw (float amount) throws OverdrawnException,

RemoteException {
...

}
public float balance() throws RemoteException {

...
}

}

Note that if necessary, a class that implements a remote interface can extend
some other class besides java.rmi.server.UnicastRemoteObject .
However, the implementation class must then assume the responsibility for the
correct remote semantics of the hashCode , equals , and toString methods
inherited from the Object class.
Chapter 2: Java Distributed Object Model Page 9

2

2.5 Type Equivalency of Remote Objects with Local Stub
In the distributed object model, clients interact with stub (surrogate) objects
that have exactly the same set of remote interfaces defined by the remote
object’s class; the stub class does not include the non-remote portions of the
class hierarchy that constitutes the object’s type graph. This is because the stub
class is generated from the most refined implementation class that implements
one or more remote interfaces. For example, if C extends B and B extends A,
but only B implements a remote interface, then a stub is generated from B, not
C.

Because the stub implements the same set of remote interfaces as the remote
object’s class, the stub has, from the point of view of the Java system, the same
type as the remote portions of the server object’s type graph. A client,
therefore, can make use of the built-in Java operations to check a remote
object's type and to cast from one remote interface to another.

Stubs are generated using the rmic compiler.

2.6 Parameter Passing in Remote Method Invocation
An argument to or a return value from a remote object can be any Java type
that is serializable. This includes Java primitive types, remote Java objects, and
non-remote Java objects that implement the java.io.Serializable
interface. For more details on how to make classes serializable, see the “Java
Object Serialization Specification”. For applets, if the class of an argument or
return value is not available locally, it is loaded dynamically via the
AppletClassLoader. For applications, these classes are loaded by the class
loader that loaded the application, either the default class loader (which uses
the local class path) or the RMIClassLoader (which uses the server’s codebase).

Some classes may disallow their being passed (by not being serializable),
perhaps for security reasons. In this case the remote method invocation will fail
with an exception.

2.6.1 Passing non-remote objects

A non-remote object passed as a parameter of a remote method invocation or
returned as a result of a remote method invocation is passed by copy.
Page 10 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

2

That is, when a non-remote object appears in a remote method invocation, the
content of the non-remote object is copied before invoking the call on the
remote object. By default, only the non-static and non-transient fields are
copied.

Similarly, when a non-remote object is returned from a remote method
invocation, a new object is created in the calling virtual machine.

2.6.2 Passing remote objects

When passing a remote object as a parameter, the stub for the remote object is
passed. A remote object passed as a parameter can only implement remote
interfaces.

2.7 Exception Handling in Remote Method Invocation
Since remote methods include java.rmi.RemoteException in their
signature, the caller must be prepared to handle those exceptions in addition to
other application specific exceptions. When a java.rmi.RemoteException
is thrown during a remote method invocation, the client may have little or no
information on the outcome of the call—whether a failure happened before,
during, or after the call completed. Therefore, remote interfaces and the calling
methods declared in those interfaces should be designed with these failure
semantics in mind.

2.8 Object Methods Overridden by the RemoteObject Class
The default implementations in the Object class for the equals , hashCode ,
and toString methods are not appropriate for remote objects. Therefore, the
java.rmi.server.RemoteObject class provides implementations for these
methods that have semantics more appropriate for remote objects. In this way,
all objects that need to be available remotely can extend
java.rmi.server.RemoteObject (typically indirectly via
java.rmi.server.UnicastRemoteObject).
Chapter 2: Java Distributed Object Model Page 11

2

2.8.1 equals and hashCode

In order for a remote object to be used as a key in a hash table, the methods
equals and hashCode are overridden by the
java.rmi.server.RemoteObject class:

• The java.rmi.server.RemoteObject class’s implementation of the
equals method determines whether two object references are equal, not
whether the contents of the two objects are equal. This is because
determining equality based on content requires a remote method invocation,
and the signature of equals does not allow a remote exception to be
thrown.

• The java.rmi.server.RemoteObject class’s implementation of the
hashCode method returns the same value for all remote references that
refer to the same underlying remote object (because references to the same
object are considered equal).

2.8.2 toString

The toString method is defined to return a string which represents the
reference of the object. The contents of the string is specific to the reference
type. The current implementation for singleton (unicast) objects includes
transport specific information about the object (e.g., host name and port
number) and an object identifier; references to replicated objects would contain
more information.

2.8.3 clone

Objects are only cloneable using the Java language’s default mechanism if they
support the java.lang.Cloneable interface. Remote objects do not
implement this interface, but do implement the clone method so that if
subclasses need to implement Cloneable the remote classes will function
correctly.

Client stubs are declared final and do not implement clone . Cloning a stub is
therefore a local operation and cannot be used by clients to create a new
remote object.
Page 12 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

2

2.8.4 finalize

Remote object implementations (i.e subclasses of RemoteObject) may use
finalize to perform their own cleanup as necessary, for example to
deactivate an object server.

2.9 The Semantics of Object Methods Declared final
The following methods are declared final by the Object class and cannot be
overridden:

• getClass

• notify

• notifyAll

• wait

The default implementation for getClass is appropriate for all Java objects,
local or remote; the method needs no special implementation for remote
objects. When used on a remote object, the getClass method reports the exact
type of the generated stub object. Note that this type reflects only the remote
interfaces implemented by the object, not its local interfaces.

The wait and notify methods of Object deal with waiting and notification in
the context of the Java language’s threading model. While use of these
methods for remote objects does not break the Java threading model, these
methods do not have the same semantics as they do for local Java objects.
Specifically, using these methods operates on the client’s local reference to the
remote object (the stub), not the actual object at the remote site.

2.10 Locating Remote Objects
A simple bootstrap name server is provided for storing named references to
remote objects. A remote object reference can be stored using the URL-based
methods of the class java.rmi.Naming .

For a client to invoke a method on a remote object, that client must first obtain
a reference to the object. A reference to a remote object is usually obtained as a
return value in a method call. The RMI system provides a simple bootstrap
name server from which to obtain remote objects on given hosts. The
Chapter 2: Java Distributed Object Model Page 13

2

java.rmi.Naming class provides Uniform Resource Locator (URL) based
methods to lookup, bind, rebind, unbind, and list the name-object pairings
maintained on a particular host and port.

Here's an example, (without exception handling) of how to bind and lookup
remote objects:

BankAccount acct = new BankAcctImpl();
String url = "rmi://java.Sun.COM/account";
// bind url to remote object
java.rmi.Naming.bind(url, acct);

...
// lookup account
acct = (BankAccount)java.rmi.Naming.lookup(url);
Page 14 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

System Architecture 3
Topics:
• Overview

• Architectural Overview

• The Stub/Skeleton Layer

• The Remote Reference Layer

• The Transport Layer

• Thread Usage in Remote Method Invocations

• Garbage Collection of Remote Objects

• Dynamic Class Loading

• Security

• Configuration Scenarios

• RMI Through Firewalls Via Proxies

3.1 Overview
The RMI system consists of three layers: the stub/skeleton layer, the remote
reference layer, and the transport layer. The boundary at each layer is defined by
a specific interface and protocol; each layer, therefore, is independent of the
next and can be replaced by an alternate implementation without affecting the
Page 15

3

other layers in the system. For example, the current transport implementation
is TCP-based (using Java sockets), but a transport based on UDP could be
substituted.

To accomplish transparent transmission of objects from one address space to
another, the technique of object serialization (designed specifically for the Java
language) is used. Object serialization is described in this chapter only with
regard to its use for marshaling primitives and objects. For complete details,
see the specification Object Serialization in the Java System.

Another technique, called dynamic stub loading, is used to support client-side
stubs which implement the same set of remote interfaces as a remote object
itself. This technique, used when a stub of the exact type is not already
available to the client, allows a client to use the Java language’s built-in
operators for casting and type-checking.

3.2 Architectural Overview
The RMI system consists of three layers:

• The stub/skeleton layer — client-side stubs (proxies) and server-side
skeletons

• The remote reference layer — remote reference behavior (e.g. invocation to a
single object or to a replicated object)

• The transport layer — connection set up and management and remote object
tracking

The application layer sits on top of the RMI system. The relationship between
the layers is shown in the following figure.
Page 16 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

A remote method invocation from a client to a remote server object travels
down through the layers of the RMI system to the client-side transport, then
up through the server-side transport to the server.

A client invoking a method on a remote server object actually makes use of a
stub or proxy for the remote object as a conduit to the remote object. A client-
held reference to a remote object is a reference to a local stub. This stub is an
implementation of the remote interfaces of the remote object and forwards
invocation requests to that server object via the remote reference layer. Stubs
are generated using the rmic compiler.

The remote reference layer is responsible for carrying out the semantics of the
invocation. For example the remote reference layer is responsible for
determining whether the server is a single object or is a replicated object
requiring communications with multiple locations. Each remote object
implementation chooses its own remote reference semantics—whether the
server is a single object or is a replicated object requiring communications with
its replicas.

Also handled by the remote reference layer are the reference semantics for the
server. The remote reference layer, for example, abstracts the different ways of
referring to objects that are implemented in (a) servers that are always running
on some machine, and (b) servers that are run only when some method
invocation is made on them (activation). At the layers above the remote
reference layer, these differences are not seen.

The transport is responsible for connection set-up, connection management,
and keeping track of and dispatching to remote objects (the targets of remote
calls) residing in the transport’s address space.

Client

Remote Reference Layer

Application

RMI
System

Server

Stubs Skeletons

Transport
Chapter 3: System Architecture Page 17

3

In order to dispatch to a remote object, the transport forwards the remote call
up to the remote reference layer. The remote reference layer handles any
server-side behavior that needs to be done before handing off the request to the
server-side skeleton. The skeleton for a remote object makes an up-call to the
remote object implementation which carries out the actual method call.

The return value of a call is sent back through the skeleton, remote reference
layer and transport on the server side, and then up through the transport,
remote reference layer and stub on the client side.

3.3 The Stub/Skeleton Layer
The stub/skeleton layer is the interface between the application layer and the
rest of the RMI system. This layer does not deal with specifics of any transport,
but transmits data to the remote reference layer via the abstraction of marshal
streams. Marshal streams employ a mechanism called object serialization which
enables Java objects to be transmitted between address spaces. Objects
transmitted using the object serialization system are passed by copy to the
remote address space, unless they are remote objects, in which case they are
passed by reference.

A stub for a remote object is the client-side proxy for the remote object. Such a
stub implements all the interfaces that are supported by the remote object
implementation. A client-side stub is responsible for:

• Initiating a call to the remote object (by calling the remote reference layer).

• Marshaling arguments to a marshal stream (obtained from the remote
reference layer).

• Informing the remote reference layer that the call should be invoked.

• Unmarshaling the return value or exception from a marshal stream.

• Informing the remote reference layer that the call is complete.

A skeleton for a remote object is a server-side entity that contains a method
which dispatches calls to the actual remote object implementation. The
skeleton is responsible for:

• Unmarshaling arguments from the marshal stream.

• Making the up-call to the actual remote object implementation.
Page 18 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

• Marshaling the return value of the call or an exception (if one occurred) onto
the marshal stream.

The appropriate stub and skeleton classes are determined at run time and are
dynamically loaded as needed, as described in Section 3.8, “Dynamic Class
Loading”. Stubs and skeletons are generated using the rmic compiler.

3.4 The Remote Reference Layer
The remote reference layer deals with the lower level transport interface. This
layer is also responsible for carrying out a specific remote reference protocol
which is independent of the client stubs and server skeletons.

Each remote object implementation chooses its own remote reference subclass
that operates on its behalf. Various invocation protocols can be carried out at
this layer, for example:

• Unicast point-to-point invocation.

• Invocation to replicated object groups.

• Support for a specific replication strategy.

• Support for a persistent reference to the remote object (enabling activation
of the remote object).

• Reconnection strategies (if remote object becomes inaccessible).

The remote reference layer has two cooperating components: the client-side
and the server-side components. The client-side component contains
information specific to the remote server (or servers, if the remote reference is
to a replicated object) and communicates via the transport to the server-side
component. During each method invocation, the client and server-side
components perform the specific remote reference semantics. For example, if a
remote object is part of a replicated object, the client-side component can
forward the invocation to each replica rather than just a single remote object.

In a corresponding manner, the server-side component implements the specific
remote reference semantics prior to delivering a remote method invocation to
the skeleton. This component, for example, could handle ensuring atomic
multicast delivery by communicating with other servers in the replica group.
Chapter 3: System Architecture Page 19

3

The remote reference layer transmits data to the transport layer via the
abstraction of a stream-oriented connection. The transport takes care of the
implementation details of connections. Although connections present a
streams-based interface, a connectionless transport may be implemented
beneath the abstraction.

3.5 The Transport Layer
In general, the transport layer of the RMI system is responsible for:

• Setting up connections to remote address spaces.

• Managing connections.

• Monitoring connection “liveness.”

• Listening for incoming calls.

• Maintaining a table of remote objects that reside in the address space.

• Setting up a connection for an incoming call.

• Locating the dispatcher for the target of the remote call and passing the
connection to this dispatcher.

The concrete representation of a remote object reference consists of an endpoint
and an object identifier. This representation is called a live reference. Given a
live reference for a remote object, a transport can use the endpoint to set up a
connection to the address space in which the remote object resides. On the
server side, the transport uses the object identifier to look up the target of the
remote call.

The transport for the RMI system consists of four basic abstractions:

• An endpoint is the abstraction used to denote an address space or Java
virtual machine. In the implementation, an endpoint can be mapped to its
transport. That is, given an endpoint, a specific transport instance can be
obtained.

• A channel is the abstraction for a conduit between two address spaces. As
such, it is responsible for managing connections between the local address
space and the remote address space for which it is a channel.

• A connection is the abstraction for transferring data (performing
input/output).
Page 20 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

• The transport abstraction manages channels. Each channel is a virtual
connection between two address spaces. Within a transport, only one
channel exists per pair of address spaces, the local address space and a
remote address space. Given an endpoint to a remote address space, a
transport sets up a channel to that address space. The transport abstraction
is also responsible for accepting calls on incoming connections to the
address space, setting up a connection object for the call, and dispatching to
higher layers in the system.

A transport defines what the concrete representation of an endpoint is, so
multiple transport implementations may exist. The design and implementation
also supports multiple transports per address space, so both TCP and UDP can
be supported in the same virtual machine.

3.6 Thread Usage in Remote Method Invocations
A method dispatched by the RMI runtime to a remote object implementation (a
server) may or may not execute in a separate thread. Some calls originating
from the same client VM will execute in the same thread; some will execute in
different threads. Calls originating from different client virtual machines will
execute in different threads. Other than this last case of different client virtual
machines, the RMI runtime makes no guarantees with respect to mapping
remote object invocations to threads.

3.7 Garbage Collection of Remote Objects
In a distributed system, just as in the local system, it is desirable to
automatically delete those remote objects that are no longer referenced by any
client. This frees the programmer from needing to keep track of the remote
objects clients so that it can terminate appropriately. RMI uses a reference
counting garbage collection algorithm similar to Modula-3’s Network Objects.
(see “Network Objects” by Birrell, Nelson, and Owicki, Digital Equipment
Corporation Systems Research Center Technical Report 115, 1994)

To accomplish reference-counting garbage collection, the RMI runtime keeps
track of all live references within each Java virtual machine. When a live
reference enters a Java virtual machine its reference count is incremented. The
first reference to an object sends a “referenced” message to the server for the
object. As live references are found to be unreferenced in the local virtual
machine, their finalization decrements the count. When the last reference has
Chapter 3: System Architecture Page 21

3

been discarded an unreferenced message is sent to the server. Many subtleties
exist in the protocol, most related to maintaining the ordering of referenced
and unreferenced messages to ensure the object is not prematurely collected.

When a remote object is not referenced by any client, the RMI runtime refers to
it using a weak reference. The weak reference allows the Java virtual machine’s
garbage collector to discard the object if no other local references to the object
exist. The distributed garbage collection algorithm interacts with the local Java
virtual machine’s garbage collector in the usual ways by holding normal or
weak references to objects. As in the normal object life-cycle finalize will be
called after the garbage collector determines that no more references to the
object exist.

As long as a local reference to a remote object exists, it cannot be garbage
collected and it may be passed in remote calls or returned to clients. Passing a
remote object adds the identifier for the virtual machine to which it was passed
to the referenced set. A remote object needing unreferenced notification must
implement the java.rmi.server.Unreferenced interface. When those
references no longer exist, the unreferenced method will be invoked.
unreferenced is called when the set of references is found to be empty so it
may be called more than once. Remote objects are only collected when no more
references, either local or remote, still exist.

Note that if there exists a network partition between a client and remote server
object, it is possible that premature collection of the remote object will occur
(since the transport may think that the client crashed). Because of the
possibility of premature collection, remote references cannot guarantee
referential integrity; in other words, it is always possible that a remote
reference may in fact not refer to an existing object. An attempt to use such a
reference will generate a RemoteException which must be handled by the
application.

3.8 Dynamic Class Loading
In RPC (remote procedure call) systems, client-side stub code must be
generated and linked into a client before a remote procedure call can be done.
This code may be either statically linked into the client or linked in at run-time
via dynamic linking with libraries available locally or over a network file
system. In either the case of static or dynamic linking, the specific code to
handle an RPC must be available to the client machine in compiled form.
Page 22 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

RMI generalizes this technique, using a mechanism called dynamic class
loading to load at runtime (in the Java language’s architecture neutral bytecode
format) the classes required to handle method invocations on a remote object.
These classes are:

• The classes of remote objects and their interfaces.

• The stub and skeleton classes that serve as proxies for remote objects. (Stubs
and skeletons are created using the rmic compiler.)

• Other classes used directly in an RMI-based application, such as parameters
to or return values from remote method invocations.

This section describes

• How the RMI runtime chooses a class loader and the location from which to
load classes.

• How to force the downloading over the net of all the classes for a Java
application.

In addition to class loaders, dynamic class loading employs two other
mechanisms: the object serialization system to transmit classes over the wire,
and a security manager to check the classes being loaded. The object
serialization system is discussed in the Java Object Serialization Specification.
Security issues are discussed in Section 3.9, “Security”.

3.8.1 How a Class Loader is Chosen

In Java, the class loader that initially loads a Java class is subsequently used to
load all the interfaces and classes that are used directly in the class:

• The AppletClassLoader is used to download a Java applet over the net from
the location specified by the codebase attribute on the web page that
contains the <applet> tag. All classes used directly in the applet are
subsequently loaded by the AppletClassLoader.

• The default class loader is used to load a Java application (either a client or
server) from the local CLASSPATH. All classes used directly in the
application are subsequently loaded by the default class loader from the
local CLASSPATH.
Chapter 3: System Architecture Page 23

3

• The RMIClassLoader is used to load those classes not directly used by the
client or server application: the stubs of remote objects, remote interfaces,
and the extended classes of arguments and return values to RMI calls. The
RMIClassLoader looks for these classes in the following locations, in the
order listed:

a. The local CLASSPATH. Classes are always loaded locally if they exist
locally.

b. For remote object references passed as parameters or return values, the
URL encoded in the marshal stream that contains the serialized object.

c. The URL specified by the local java.rmi.server.codebase property.

For case b, the URL of a remote object is passed in the stream only if the
RMIClassLoader on the virtual machine where the remote object
implementation resides loaded the class from the location specified by the
java.rmi.server.codebase property (or the AppletClassLoader loaded
the class from the applet’s codebase). If the class was loaded from
CLASSPATH, the URL is not sent even if the java.rmi.server.codebase
property is set.

The application may be configured with the property
java.rmi.server.useCodebaseOnly , which disables the loading of classes
from network hosts and forces classes to be loaded only from the locally
defined codebase. If the required class cannot be loaded, the method
invocation will fail with an exception.

3.8.2 Bootstrapping the Client

For the RMI runtime to be able to download all the classes and interfaces
needed by a client application, a bootstrapping client program is required
which forces the use of the RMIClassLoader instead of the default class
loader. The bootstrapping program needs to:

• Create an instance of the RMISecurityManager or user-defined security
manager.

• Use the RMIClassLoader to load the class file for the client. The class name
cannot be mentioned explicitly in the code, but must instead be a string or a
command line argument. Otherwise, the default class loader will try to load
the client class file from the local CLASSPATH.
Page 24 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

• Use the newInstance method to create an instance of the client and cast it
to Runnable (the client must implement the java.lang.Runnable
interface

• Start the client by calling the run method (inherited from Runnable).

For example:

public class LoadClient
{

public static void main(String args[])
{

System.setSecurityManager(new RMISecurityManager());

try {
RMIClassLoader loader = RMIClassLoader.getLocalLoader();
Class c = loader.loadClass(args[0]);
Runnable client = c.newInstance();
client.run();

} catch (ClassNotFoundException e) {
System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

} catch (Exception e) {
System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}
}

}

This example assumes that the bootstrapping program is executed like this:

java LoadClient -Djava.rmi.server.codebase=http:// host/rmiclasses/
MyClient

where MyClient is the name of the client class read in as args[0] .

Once the client is started and has control, all classes needed by the client will
also be loaded by the RMIClassLoader from java.rmi.server.codebase .
This bootstrapping technique is exactly the same technique Java uses to force
the AppletClassLoader to download the same classes used in an applet.

Without this bootstrapping technique, all the code needed by the client must be
available through the local CLASSPATH on the client, and the only Java code
that can be loaded by the RMIClassLoader over the net is class files that are not
used directly the client program. These classes are remote interfaces, stubs, and
the extended classes of arguments and return values to remote method
invocations.
Chapter 3: System Architecture Page 25

3

3.9 Security
In Java, when a class loader loads classes from the local CLASSPATH, those
classes are considered trustworthy and are not restricted by a security
manager. However, when the RMIClassLoader attempts to load classes from
the network, there must be a security manager in place or an exception is
thrown.

The security manger must be started as the first action of a Java program so
that it can regulate subsequent actions. The security manager ensures that
loaded classes adhere to the standard Java safety guarantees, for example that
classes are loaded from “trusted” sources (for example, the applet host) and do
not attempt to access sensitive functions. A complete description of the
restrictions imposed by security managers can be found in the documentation
for the AppletSecurity class and the RMISecurityManager class.

Applets are always subject to the restrictions imposed by the
AppletSecurity class. This security manager ensures that classes are loaded
only from the applet host or its designated code base hosts. This requires that
applet developers install the appropriate classes on the applet host.

Applications must either define their own security manager or use the
restrictive RMISecurityManager . If no security manager is in place, an
application cannot load classes from network sources.

A client or server program is usually implemented by classes loaded from the
local system and therefore is not subject to the restrictions of the security
manager. If however, the client program itself is downloaded from the network
using the technique described in Section 3.8.2, “Bootstrapping the Client”, then
the client program is subject to the restrictions of the security manager.

Note – Once a class is loaded by the RMIClassLoader, any classes used directly
by that class are also loaded by the RMIClassLoader and thus are subject to the
security manager restrictions.

Even if a security manager is in place, setting the property
java.rmi.server.useCodebaseOnly to true prevents the downloading of
a class from the URL embedded in the stream with a serialized object (classes
can still be loaded from the locally defined java.rmi.server.codebase).
The java.rmi.server.useCodebaseOnly property can be specified on
both the client and the server, but is not applicable for applets.
Page 26 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

If an application defines its own security manger which disallows the creation
of a class loader, classes will be loaded using the default Class.forName
mechanism. Thus, a server may define its own policies via the security
manager and class loader, and the RMI system will operate within those
policies.

Note – The java.lang.SecurityManager abstract class, from which all
security managers are extended, does not regulate resource consumption.
Therefore the current RMISecurityManager has no mechanisms available to
prevent classes loaded from abusing resources. As new security manager
mechanisms are developed, RMI will use them.

3.10 Configuration Scenarios
The RMI system supports many different scenarios. Servers can be configured
in an open or closed fashion. Applets can use RMI to invoke methods on
objects supported on servers. If an applet creates and passes a remote object to
the server, the server can use RMI to make a callback to the remote object. Java
applications can use RMI either in client-server mode or from peer to peer. This
section highlights the issues surrounding these configurations.

3.10.1 Servers

The typical closed system scenario has the server configured to load no classes.
The services it provides are defined by remote interfaces that are all local to the
server machine. The server has no security manager and will not load classes
even if clients send along the URL. If clients send remote objects for which the
server does not have stub classes, those method invocations will fail when the
request is unmarshaled, and the client will receive an exception.

The more open server system will define its java.rmi.server.codebase so
that classes for the remote objects it exports can be loaded by clients and so
that the server can load classes when needed for remote objects supplied by
clients. The server will have both a security manager and RMI class loader
which protect the server. A somewhat more cautious server can use the
property java.rmi.server.useCodebaseOnly to disable the loading of
classes from client supplied URLs.
Chapter 3: System Architecture Page 27

3

3.10.2 Applets

Typically, the classes needed will be supplied by an HTTP server or by an FTP
server as referenced in URL's embedded in the HTML page containing the
Applet. The RMI based service(s) used by the Applet must be on the server
from which the applet was downloaded because an Applet may only make
network connections to the host from which it was loaded.

For example, the normal Applet scenario uses a single host for the HTTP
server providing the HTML page, the Applet code, the RMI services, and the
bootstrap Registry. In this scenario, all the stub, skeleton, and supporting
classes are loaded from the HTTP server. All of the remote objects provided by
the RMI service and passed to the Applet (which may pass them back to the
server) will be for classes that the RMI service already knows about. In this
case, the RMI service is very secure because it loads no classes from the
network, and no security manager is needed.

3.10.3 Applications

Applications written in the Java language, unlike applets, can connect to any
host, so more options are available for configuring the sources of classes and
where RMI based services run. Typically, a single HTTP server will be used to
supply remote classes, while the RMI based applications themselves are
distributed around the network on servers or running on user’s desktops

If an application is loaded locally, then the classes used directly in that
program must also be available locally. In this scenario, the only classes that
can be downloaded from a network source are the classes of remote interfaces,
stub classes, and the extended classes of arguments and return values to
remote method invocations.

If an application is not loaded from a local directory, but is itself loaded from a
network source using the bootstrapping mechanism described in Section 3.8.2,
“Bootstrapping the Client”, then all classes used by the application can be
downloaded from the same network source.

To enable downloading from a network source, the host where the classes
reside must be configured with the java.rmi.server.codebase property.
This allows the RMI system to embed the URL of a class in the serialized form
of the class.
Page 28 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

Note – Classes on host A which are visible to other hosts via host A’s
java.rmi.server.codebase property cannot also be available through host
A’s CLASSPATH. If they are, the RMI system will not include the URL of the
class when it is serialized. The easiest way to safeguard against this is to put all
classes on an HTTP server and have all the applications (clients, servers, and
peers) load them from there.

Even if a serialized object contains the URL from which the class can be
downloaded, a client or peer will still load classes locally if they are available.

3.11 RMI Through Firewalls Via Proxies
The RMI transport layer normally attempts to open direct sockets to hosts on
the Internet. Many intranets, however, have firewalls which do not allow this.
The default RMI Transport, therefore, provides two alternate HTTP-based
mechanisms which enable a client behind a firewall to invoke a method on a
remote object which resides outside the firewall.

3.11.1 How an RMI Call is Packaged within the HTTP Protocol

To get outside a firewall, the transport layer embeds an RMI call within the
firewall-trusted HTTP protocol. The RMI call data is sent outside as the body
of an HTTP POST request, and the return information is sent back in the body
of the HTTP response. The transport layer will formulate the POST request in
one of two ways:

1. If the firewall proxy will forward an HTTP request directed to an arbitrary
port on the host machine, then it is forwarded directly to the port on which
the RMI server is listening. The default RMI transport layer on the target
machine is listening with a server socket that is capable of understanding
and decoding RMI calls inside POST requests.

2. If the firewall proxy will only forward HTTP requests directed to certain
well known HTTP ports, then the call will be forwarded to the HTTP server
listening on port 80 of the host machine, and a CGI script will be executed to
forward the call to the target RMI server port on the same machine.
Chapter 3: System Architecture Page 29

3

3.11.2 The Default Socket Factory

The RMI Transport extends the java.rmi.server.RMISocketFactory class
to provide a default implementation of a socket factory which is the resource-
provider for client and server sockets. This default socket factory creates
sockets that transparently provide the firewall tunnelling mechanism as
follows:

• Client sockets automatically attempt HTTP connections to hosts that cannot
be contacted with a direct socket.

• Server sockets automatically detect if a newly accepted connection is an
HTTP POST request, and if so, return a socket that will expose only the
body of the request to the transport and format its output as an HTTP
response.

Client-side sockets with this default behavior are provided by the factory’s
java.rmi.server.RMISocketFactory.createSocket method. Server-
side sockets with this default behavior are provided by the factory’s
java.rmi.server.RMISocketFactory.createServerSocket method.

3.11.3 Configuring the Client

There is no special configuration necessary to enable the client to send RMI
calls through a firewall.

The client can, however, disable the packaging of RMI calls as HTTP requests
by setting the java.rmi.server.disableHttp property to equal the
boolean value true.
Page 30 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

3

3.11.4 Configuring the Server

1. In order for a client outside the server host’s domain to be able to invoke
methods on a server’s remote objects, the client must be able to find the
server. To do this, the remote references that the server exports must contain
the fully qualified name of the server host.

Depending on the server’s platform and network environment, this
information may or may not be available to the Java VM on which the
server is running. If it is not available, the host’s fully qualified name must
be specified with the property java.rmi.server.hostname when
starting the server.

For example, to start the RMI server class ServerImpl on the machine
chatsubo.javasoft.com:

 java -Djava.rmi.server.hostname=chatsubo.javasoft.com ServerImpl

Note – The host name should not be specified as the host’s IP address, because
some firewall proxies will not forward to such a host name.

2. The following configuration is necessary only if the server will not support
RMI clients behind firewalls that can forward to arbitrary ports:

a. An HTTP server is listening on port 80.

b. A CGI script is located at the aliased URL path /cgi-bin/java-rmi .
This script:
• Invokes the local Java interpreter to execute a class internal to the

transport layer which forwards the request to the appropriate RMI
server port.

• Defines properties in the Java virtual machine with the same names
and values as the CGI 1.0 defined environment variables.

An example script is supplied in the RMI distribution for the Solaris and
Win32 operating systems. Note that the script must specify the complete
path to the java interpreter on the server machine.
Chapter 3: System Architecture Page 31

3

3.11.5 Performance Issues and Limitations

Calls transmitted via HTTP requests are at least an order of magnitude slower
that those sent through direct sockets, without taking proxy forwarding delays
into consideration.

Because HTTP requests can only be initiated in one direction through a
firewall, a client cannot export its own remote objects outside the firewall,
because a host outside the firewall cannot initiate a method invocation back on
the client.
Page 32 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Client Interfaces 4
When writing an Applet or an application that uses remote objects, the
programmer may need to be aware of the RMI system’s client visible
interfaces.

Topics:
• The Remote Interface

• The RemoteException Class

• The Naming Class

4.1 The Remote Interface
package java.rmi;
public interface Remote {}

The java.rmi.Remote interface serves to identify all remote objects, any
object that is a remote object must directly or indirectly implement this
interface. All remote interfaces must be declared public .
Page 33

4

4.2 The RemoteException Class
All remote exceptions are subclasses of java.rmi.RemoteException . This
allows interfaces to handle all types of remote exceptions and to distinguish
local exceptions and exceptions specific to the method from exceptions thrown
by the underlying distributed object mechanisms.

package java.rmi;
public class RemoteException

extends java.io.IOException
{

// The actual exception or error that occured.
public Throwable detail;

 // Create a remote exception.
public RemoteException()

// Create a remote exception with the specified string.
public RemoteException(String s)

// Create remote exception with specified string and exception.
public RemoteException(String s, Throwable ex)

// Produce message, including message from any nested exception.
 public String getMessage()
}

4.3 The Naming Class
The java.rmi.Naming class allows remote objects to be retrieved and defined
using the familiar Uniform Resource Locator (URL) syntax. The URL consists
of protocol, host, port and name fields. The Registry service on the specified
host and port is used to perform the specified operation. The protocol should
be specified as rmi , as in rmi://java.sun.com:2001/root .
Page 34 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

4

package java.rmi;
public final class Naming {

public static Remote lookup(String url)
throws NotBoundException, java.net.MalformedURLException,
UnknownHostException, RemoteException;

public static void bind(String url, Remote obj)
throws AlreadyBoundException,
java.net.MalformedURLException, UnknownHostException,
RemoteException;

public static void rebind(String url, Remote obj)
throws RemoteException, java.net.MalformedURLException,
UnknownHostException;

public static void unbind(String url)
throws RemoteException, NotBoundException,
java.net.MalformedURLException, UnknownHostException;

public static String[] list(String url)
throws RemoteException, java.net.MalformedURLException,
UnknownHostException;

}

The lookup method returns the remote object associated with the file portion
of the name; so in the preceding example it would return the object named
root . The NotBoundException is thrown if the name has not been bound to
an object.

The bind method binds the specified name to the remote object. It throws the
AlreadyBoundException if the name is already bound to an object.

The rebind method always binds the name to the object even if the name is
already bound. The old binding is lost.

The unbind method removes the binding between the name and the remote
object. It will throw the NotBoundException if there was no binding.

The list method returns an array of Strings containing a snapshot of the
URLs bound in the Registry. The file part of the URL is ignored.

Note – The java.rmi.AccessException may also be thrown as a result of
any of these methods.
Chapter 4: Client Interfaces Page 35

4

Page 36 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Server Interfaces 5
When implementing a server, the client interfaces are available and extended
with those that allow the definition, creation and export of remote objects.

Topics:
• The RemoteObject Class

• The RemoteServer Class

• The UnicastRemoteObject Class

• The Unreferenced Interface

• The RMISecurityManager Class

• The RMIClassLoader Class

• The RMISocketFactory Class

• The RMIFailureHandler Interface

• The LogStream Class

• Stub and Skeleton Compiler
Page 37

5

5.1 The RemoteObject Class
The java.rmi.server.RemoteObject class implements the
java.lang.Object behavior for remote objects. The hashCode and equals
methods are implemented to allow remote object references to be stored in
hashtables and compared. The equals method returns true if two Remote
objects refer to the same remote object. It compares the remote object references
of the remote objects.

The toString method returns a string describing the remote object. The
contents and syntax of this string is implementation specific and may vary.

All of the other methods of java.lang.Object retain their original
implementations.

package java.rmi.server;
public abstract class RemoteObject

implements java.rmi.Remote, java.io.Serializable
{

public int hashCode();
public boolean equals(Object obj);
public String toString();

}

5.2 The RemoteServer Class
The java.rmi.server.RemoteServer class is the common superclass to all
server implementations and provides the framework to support a wide range
of remote reference semantics. At present the only subclass supported is
UnicastRemoteObject .

package java.rmi.server;
public class RemoteServer

extends RemoteObject {

public static String getClientHost()
throws ServerNotActiveException;

public static void setLog(java.io.OutputStream out);

public static java.io.PrintStream getLog();
}

Page 38 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

5

The getClientHost method allows an active method to determine the host
that initiated the remote method active in the current thread. The
ServerNotActiveException is thrown if no remote method is active on the
current thread. The setLog method logs RMI calls to the specified output
stream. If the output stream is null, call logging is turned off. The getLog
method returns the stream for the RMI call log so that application specific
information can be written to the call log in a synchronized manner.

5.3 The UnicastRemoteObject Class
The java.rmi.server.UnicastRemoteObject class provides support for
point-to-point active object references using TCP-based streams. The class
implements a remote server object with the following characteristics:

• References are valid only for at most the life of the process that creates the
remote object.

• A TCP connection based transport is used.

• Invocations, parameters, and results use a stream protocol for
communicating between client and server.

package java.rmi.server;
public class UnicastRemoteObject extends RemoteServer {

protected UnicastRemoteObject()
throws java.rmi.RemoteException;

public Object clone()
throws java.lang.CloneNotSupportedException;

public static void exportObject(java.rmi.Remote obj)
throws java.rmi.RemoteException;

}

5.3.1 Constructing a new Remote Object

In a Java virtual machine running as a server, remote objects defined by the
developer may be created by the server application. When a remote object class
extends UnicastRemoteObject , the constructor creates and exports a remote
object. The constructor is invoked from the corresponding constructor of the
remote object class. The default constructor creates a new unicast remote object
using an anonymous port.
Chapter 5: Server Interfaces Page 39

5

The clone method is used to create a unicast remote object with initially the
same contents, but is exported to accept remote calls and is distinct from the
original object.

5.3.2 Exporting an implementation not extended from RemoteObject

The exportObject method is used to export a unicast remote object that is
not implemented by extending UnicastRemoteObject class. The
exportObject method is called with the object to be exported on an
anonymous port. The object must be exported prior to the first time it is passed
in an RMI call as either a parameter or return value; otherwise a
java.rmi.server.StubNotFoundException is thrown when a remote call
is attempted.

Once exported, the object can be passed as an argument in an RMI call or
returned as the result of an RMI call. When a remote object is passed, during
marshaling a lookup is performed to find the matching remote stub for the
remote object implementation and that stub is passed or returned instead.

5.4 The Unreferenced Interface
package java.rmi.server;
public interface Unreferenced {

public void unreferenced();
}

The java.rmi.server.Unreferenced interface allows a server object to
receive notification that there are no remote references to it. The distributed
garbage collection mechanism maintains a set of remote references to each
remote object. As long as some client holds a remote reference the RMI runtime
keeps a local reference to the remote object. When the set becomes empty the
Unreferenced.unreferenced method is invoked. No action is required by
the implementation and it is not required to support Unreferenced .

As long as some local reference to the remote object exists it may be passed in
remote calls or returned to clients. The process that receives the reference is
added to the reference set for the reference. When those new references no
longer exist Unreferenced will be invoked. As such, the Unreferenced
method may be called more than once, each time the set is newly emptied.
Remote objects are only collected when no more references, either local
references or those held by clients, still exist.
Page 40 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

5

5.5 The RMISecurityManager Class
package java.rmi;

public class RMISecurityManager extends java.lang.SecurityManager {

// Constructor
public RMISecurityManager();

// The host stub came from determines what stub can do
public Object getSecurityContext();

//Disallow creating class loaders or execute ClassLoader methods
public synchronized void checkCreateClassLoader()

throws RMISecurityException;

// Disallow thread manipulation
public synchronized void checkAccess(Thread t)

throws RMISecurityException;

 // Disallow thread group manipulation.
 public synchronized void checkAccess(ThreadGroup g)

throws RMISecurityException;

// Disallow exiting the VM
public synchronized void checkExit(int status)

throws RMISecurityException;

// Disallow forking of processes
 public synchronized void checkExec(String cmd)

throws RMISecurityException;

// Disallow linking dynamic libraries
 public synchronized void checkLink(String lib)

throws RMISecurityException;

// Disallow accessing of all properties except those labeled OK
public synchronized void checkPropertiesAccess()

throws RMISecurityException;

// Access system property key only if key.stub is set to true
public synchronized void checkPropertyAccess(String key)

throws RMISecurityException;

// Check if a stub can read a particular file.
Chapter 5: Server Interfaces Page 41

5

public synchronized void checkRead(String file)
throws RMISecurityException;

// Check if a stub can read a particular file.
public synchronized void checkRead(String file, URL base)

throws RMISecurityException;

// No file reads are valid from a stub
public void checkRead(String file, Object context)

throws RMISecurityException;

// Check if a Stub can write a particular file.
public synchronized void checkWrite(String file)

throws RMISecurityException;

// Check if the specified system dependent file can be deleted.
public void checkDelete(String file)

throws RMISecurityException;

// Disllow opening file descriptor for reading unless via socket
public synchronized void checkRead(FileDescriptor fd)

throws RMISecurityException;

// Disallow opening file descriptor for writing unless via socket
public synchronized void checkWrite(FileDescriptor fd)

throws RMISecurityException;

// Disallow listening on any port.
public synchronized void checkListen(int port)

throws RMISecurityException;

// Disallow accepting connections on any port.
public synchronized void checkAccept(String host, int port)

throws RMISecurityException;

// Disallow making connections on any port.
public synchronized void checkConnect(String host, int port)

throws RMISecurityException;

// Disallow making connections on any port.
public void checkConnect(String host, int port, Object context)

throws RMISecurityException;

// Disallow making connections on any port.
public synchronized void checkConnect(String fromHost,

String toHost)
Page 42 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

5

throws RMISecurityException;

// Allow caller to create top-level windows.
// Allow stubs to create windows with warnings.
public synchronized boolean checkTopLevelWindow(Object window)

throws RMISecurityException;

// Check if a stub can access a package.
public synchronized void checkPackageAccess(String pkg)

throws RMISecurityException;

// Check if a stub can define classes in a package.
public synchronized void checkPackageDefinition(String pkg)

throws RMISecurityException;

// Check if a stub can set a networking-related object factory.
public synchronized void checkSetFactory()

throws RMISecurityException;

// Disallow printing from stubs.
public void checkPrintJobAccess()

throws RMISecurityException;

// Checks to see if client code can access class members.
// Allow access to all public information. Allow non-stubs to
// access default, package, and private declarations and data).
public void checkMemberAccess(Class clazz, int which)

throws RMISecurityException;
}

The RMISecurityManager can be used when the application does not require
specialized security functions but does need the protection it provides. This
simple security manger disables all functions except class definition and access
so that other classes for remote objects, their arguments and returns can be
loaded as needed.

If no security manager has been set, stub loading is disabled. This insures that
some security manager must be responsible for the actions of loaded stubs and
classes as part of any remote method invocation. A security manager is set
using System.setSecurityManager .
Chapter 5: Server Interfaces Page 43

5

5.6 The RMIClassLoader Class
The RMI runtime uses its own class loader to load stubs, skeletons, and other
classes needed by the stubs and skeletons. These classes and the way they are
used support the safety properties of the Java RMI runtime. This class loader
always loads locally available classes first. Only if a security manager is in
force will stubs be loaded from either the local machine or from a network
source.

The class loader keeps a cache of loaders for individual Uniform Resource
Locators (URLs) and the classes that have been loaded from them. When a stub
or skeleton has been loaded, any class references that occur as parameters or
returns will be loaded (from their originating codebase host) and are subject to
the same security restrictions.

Server processes must declare to the RMI runtime the location of the classes
(stubs and parameters/returns) that will be available to its clients. The
java.rmi.server.codebase property should be a URL from which stub
classes and classes used by stubs will be loaded, using the normal protocols,
for example http, ftp, etc...

The java.rmi.server.RMIClassLoader is a utility class that can be used
by applications to load classes via a URL.

package java.rmi.server;

public class RMIClassLoader {

 public static Class loadClass(String name)
throws MalformedURLException, ClassNotFoundException

 public static synchronized Class loadClass(URL codebase,
String name) throws MalformedURLException,
ClassNotFoundException

}

The first loadClass method loads the specified class name via the URL
defined by the java.rmi.server.codebase property. The class is loaded,
defined, and returned.

The second form of the loadClass method loads the specified class name via
the URL parameter codebase.
Page 44 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

5

5.7 The RMISocketFactory Class
The java.rmi.server.RMISocketFactory abstract class provides an
interface for specifying how the transport should obtain sockets.

package java.rmi.server;
public abstract class RMISocketFactory {

public abstract java.net.Socket createSocket(String h,int p)
throws IOException;

public abstract java.net.ServerSocket createServerSocket(int p)
throws IOException;

public static void setSocketFactory(RMISocketFactory fac)
throws IOException;

public static RMISocketFactory getSocketFactory();

public static void setFailureHandler(RMIFailureHandler fh);

public static RMIFailureHandler getFailureHandler();
}

The static method setSocketFactory is used to set the socket factory from
which RMI gets sockets. The application may invoke this method with its own
RMISocketFactory instance only once. An application-defined
implementation of RMISocketFactory could, for example, do preliminary
filtering on the requested connection and throw exceptions, or return its own
extension of the java.net.Socket or java.net.ServerSocket classes,
such as ones that provide a secure communication channel.

The static method getSocketFactory returns the socket factory used by
RMI. The method returns null if the socket factory is not set.

The transport layer invokes the createSocket and createServerSocket
methods on the RMISocketFactory returned by the getSocketFactory
method when the transport needs to create sockets, for example:

RMISocketFactory.getSocketFactory().createSocket(myhost, myport)
Chapter 5: Server Interfaces Page 45

5

The method createSocket should create a client socket connected to the
specified host and port. The method createServerSocket should create a
server socket on the specified port. The default transport’s implementation of
RMISocketFactory provides for transparent RMI through firewalls using
HTTP as follows:

• On createSocket , the factory automatically attempts HTTP connections to
hosts that cannot be contacted with a direct socket

• On createServerSocket , the factory returns a server socket that
automatically detects if a newly accepted connection is an HTTP POST
request, and if so, it returns a socket that will transparently expose only the
body of the request to the transport and format its output as an HTTP
response.

The method setFailureHandler sets the failure handler to be called by the
RMI runtime if the creation of a server socket fails. The failure handler returns
a boolean to indicate if retry should occur, and the default failure handler
returns false, meaning that by default recreation of sockets is not attempted by
the runtime.

The method getFailureHandler returns the current handler for socket
creation failure, or null if the failure handler is not set.

5.8 The RMIFailureHandler Interface
The java.rmi.server.RMIFailureHandler interface provides a method
for specifying how the RMI runtime should respond when server socket
creation fails.

package java.rmi.server;

public interface RMIFailureHandler {
public boolean failure(Exception ex);

}

The failure method is invoked with the exception that prevented the RMI
runtime from creating a java.net.Socket or java.net.ServerSocket .
The method returns true if the runtime should attempt to retry and false
otherwise.

Before this method can be invoked, a failure handler needs to be registered via
the RMISocketFactory.setFailureHandler call. If the failure handler is
not set, creation is not attempted.
Page 46 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

5

5.9 The LogStream Class
The class LogStream presents a mechanism for logging errors that are of
possible interest to those monitoring the system. This class is used internally
for server call logging.

package java.rmi.server;

public class LogStream extends PrintStream {

public static LogStream log(String name);

public static void showThreadName(boolean doIt);

public static synchronized PrintStream getDefaultStream();

public static synchronized void setDefaultStream(

PrintStream newDefault);

public synchronized OutputStream getOutputStream();

public synchronized void setOutputStream(OutputStream out);

public void write(int b);

public void write(byte b[], int off, int len);

public String toString();

public static int parseLevel(String s);

// constants for logging levels
public static final int SILENT = 0;
public static final int BRIEF = 10;
public static final int VERBOSE = 20;

}

The method log returns the LogStream identified by the given name. If a log
corresponding to name does not exist, a log using the default stream is created.

The method showThreadName sets whether thread names are part of the
message label.

The method getDefaultStream returns the current default stream for new
logs.
Chapter 5: Server Interfaces Page 47

5

The method setDefaultStream sets the default stream for new logs.

The method getOutputStream returns current stream to which output from
this log is sent.

The method setOutputStream sets the stream to which output from this log
is sent.

The first form of the method write writes a byte of data to the stream. If it is
not a new line, then the byte is appended to the internal buffer. If it is a new
line, then the currently buffered line is sent to the log's output stream with the
appropriate logging prefix. The second form of the method write writes a
subarray of bytes.

The method toString returns log name as string representation

The method parseLevel converts a string name of a logging level to its
internal integer representation.

5.10 Stub and Skeleton Compiler
The rmic stub and skeleton compiler is used to compile the appropriate stubs
and skeletons for a specific remote object implementation. The compiler is
invoked with the package qualified class name of the remote object class. The
class must previously have been compiled successfully.

• The location of the imported classes may be specified either with the
CLASSPATH environment variable or with the -classpath argument.

• The compiled class files are placed in the current directory unless the -d
argument is specified following the same mechanism for writing class files
as javac.

• The -keepgenerated argument retains the generated java source files for the
stubs and skeletons.

• The -show option displays a graphical user interface for the program.
Page 48 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Registry Interfaces 6
The RMI system uses the java.rmi.registry.Registry interface and the
java.rmi.registry.LocateRegistry class to provide a well known
bootstrap service for retrieving and registering objects by simple names. Any
server process can support its own registry or a single registry can be used for
a host.

A Registry is a remote object that maps names to remote objects. A Registry
can be used in a virtual machine with other server classes or stand-alone.

The methods of LocateRegistry are used to get a Registry operating on a
particular host or host and port.

Topics:
• The Registry Interface

• The LocateRegistry Class

• The RegistryHandler Interface

6.1 The Registry Interface
The java.rmi.registry.Registry remote interface provides methods for
lookup, binding, rebinding, unbinding, and listing the contents of a registry.
The java.rmi.Naming class uses the registry remote interface to provide
URL based naming.
Page 49

6

package java.rmi.registry;

public interface Registry extends java.rmi.Remote
{

public java.rmi.Remote lookup(String name)
throws java.rmi.RemoteException,
java.rmi.NotBoundException, java.rmi.AccessException;

public void bind(String name, java.rmi.Remote obj)
throws java.rmi.RemoteException,
java.rmi.AlreadyBoundException, java.rmi.AccessException;

public void rebind(String name, java.rmi.Remote obj)
throws java.rmi.RemoteException, java.rmi.AccessException;

public void unbind(String name)
throws java.rmi.RemoteException,
java.rmi.NotBoundException, java.rmi.AccessException;

public String[] list()
throws java.rmi.RemoteException, java.rmi.AccessException;

}

The lookup method returns the remote object bound to the specified name. The
remote object implements a set of remote interfaces. Clients can cast the remote
object to the expected remote interface (note that this cast can fail in the usual
ways that casts can fail in the Java language).

The bind method associates the name with the remote object, obj. If the name is
already bound to an object the AlreadyBoundExcepton is thrown.

The rebind method associates the name with the remote object, obj. Any
previous binding of the name is discarded.

The unbind method removes the binding between the name and the remote
object, obj. If the name is not already bound to an object the
NotBoundException is thrown.

The list method returns an array of Strings containing a snapshot of the
names bound in the registry. The return value contains a snapshot of the
contents of the registry.
Page 50 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

6

Clients can access the registry either by using the LocateRegistry and
Registry interfaces or by using the methods of the URL-based
java.rmi.Naming class. The registry supports bind , unbind , and rebind
only from clients on the same host as the server; a lookup can be done from
any host.

6.2 The LocateRegistry Class
The class java.rmi.registry.LocateRegistry contains static methods
that retrieve a registry on the current host, current host at specified port, a
specified host or at a particular port on a specified host.

package java.rmi.registry;
public final class LocateRegistry {

public static Registry getRegistry()
throws java.rmi.RemoteException;

public static Registry getRegistry(int port)
throws java.rmi.RemoteException;

public static Registry getRegistry(String host)
throws java.rmi.RemoteException,
java.rmi.UnknownHostException;

public static Registry getRegistry(String host, int port)
throws java.rmi.RemoteException,
java.rmi.UnknownHostException;

public static Registry createRegistry(int port)
throws java.rmi.RemoteException;

}

The createRegistry method creates and exports a registry on the local host
on the specified port. The registry implements a simple flat naming syntax that
binds the name of a remote object (a string) to a remote object reference. The
name and remote object bindings are not remembered across server restarts.

Note – Starting a registry with the createRegistry method keeps the server
process alive.
Chapter 6: Registry Interfaces Page 51

6

6.3 The RegistryHandler Interface
The interface RegistryHandler is used to interface to the private
implementation.

package java.rmi.registry;

public interface RegistryHandler {

Registry registryStub(String host, int port)
throws java.rmi.RemoteException,
java.rmi.UnknownHostException;

Registry registryImpl(int port)
throws java.rmi.RemoteException;

}

The method registryStub returns a stub for contacting a remote registry on
the specified host and port.

The method registryImpl constructs and exports a Registry on the specified
port. The port must be non-zero.
Page 52 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Stub/Skeleton Interfaces 7
This section contains the interfaces and classes used by the stubs and skeletons
generated by the rmic stub compiler.

Topics:
• The RemoteStub Class

• The RemoteCall Interface

• The RemoteRef Interface

• The Skeleton Interface

• The Operation Class

7.1 The RemoteStub Class
The java.rmi.server.RemoteStub class is the common superclass to all
client stubs. Stub objects are surrogates that support exactly the same set of
remote interfaces defined by the actual implementation of a remote object.

package java.rmi.server;

public abstract class RemoteStub extends java.rmi.RemoteObject {}
Page 53

7

7.2 The RemoteCall Interface
The interface RemoteCall is an abstraction used by the stubs and skeletons of
remote objects to carry out a call to a remote object.

package java.rmi.server;
import java.io.*;

public interface RemoteCall {

ObjectOutput getOutputStream() throws IOException;

void releaseOutputStream() throws IOException;

ObjectInput getInputStream() throws IOException;

void releaseInputStream() throws IOException;

ObjectOutput getResultStream(boolean success)
throws IOException, StreamCorruptedException;

void executeCall() throws Exception;

void done() throws IOException;
}

The method getOutputStream returns the output stream into which either
the stub marshals arguments or skeleton marshals results.

The method releaseOutputStream releases the output stream; in some
transports this will release the stream.

The method getInputStream returns the InputStream from which the stub
unmarshals results or the skeleton unmarshals parameters.

The method releaseInputStream releases the input stream. This will allow
some transports to release the input side of a connection early.

The method getResultStream returns an output stream (after writing out
header information relating to the success of the call). Obtaining a result
stream should only succeed once per remote call. If success is true, then a the
result to be marshaled is a normal return; otherwise the result is an exception.
StreamCorruptedException is thrown if the result stream has already been
obtained for this remote call.
Page 54 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

7

The method executeCall does whatever it takes to execute the call.

The method done allows cleanup after the remote call has completed.

7.3 The RemoteRef Interface
The interface RemoteRef represents the handle for a remote object. Each stub
contains an instance of RemoteRef that contains the concrete representation of
a reference. This remote reference is used to carry out remote calls on the
remote object for which it is a reference.

package java.rmi.server;

public interface RemoteRef extends java.io.Externalizable {

RemoteCall newCall(RemoteObject obj, Operation[] op, int opnum,
long hash) throws RemoteException;

void invoke(RemoteCall call) throws Exception;

void done(RemoteCall call) throws RemoteException;

String getRefClass(java.io.ObjectOutput out);

int remoteHashCode();

boolean remoteEquals(RemoteRef obj);

String remoteToString();
}

The method newCall creates an appropriate call object for a new remote
method invocation on the remote object obj. The operation array op contains the
available operations on the remote object. The operation number, opnum, is an
index into the operation array which specifies the particular operation for this
remote call. Passing the operation array and index allows the stubs generator
to assign the operation indexes and interpret them. The remote reference may
need the operation description to encode in the call.

The method invoke executes the remote call. Invoke will raise any “user”
exceptions which should pass through and not be caught by the stub. If any
exception is raised during the remote invocation, invoke should take care of
cleaning up the connection before raising the “user” or RemoteException .
Chapter 7: Stub/Skeleton Interfaces Page 55

7

The method done allows the remote reference to clean up (or reuse) the
connection. done should only be called if the invoke call returns successfully
(non-exceptionally) to the stub.

The method getRefClass returns the non-package-qualified class name of
the reference type to be serialized onto the stream out.

The method remoteHashCode returns a hashcode for a remote object. Two
remote object stubs that refer to the same remote object will have the same
hash code (in order to support remote objects as keys in hash tables). A
RemoteObject forwards a call to its hashCode method to the
remoteHashCode method of the remote reference

The method remoteEquals compares two remote objects for equality. Two
remote objects are equal if they refer to the same remote object. For example,
two stubs are equal if they refer to the same remote object. A RemoteObject
forwards a call to its equals method to the remoteEquals method of the
remote reference.

The method remoteToString returns a String that represents the reference of
this remote object

7.4 .The ServerRef Interface
The interface ServerRef represents the server-side handle for a remote object
implementation.

package java.rmi.server;

public interface ServerRef extends RemoteRef {

RemoteStub exportObject(java.rmi.Remote obj,
RemoteServer server, Object data)
throws java.rmi.RemoteException;

String getClientHost() throws ServerNotActiveException;
}

The method exportObject finds or creates a client stub object for the
supplied Remote object implementation obj.The parameter server is the remote
server object for the implementation (may be the same as obj), and the
parameter data contains information necessary to export the object (e.g. port
number).
Page 56 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

7

The method getClientHost returns the host name of the current client.
When called from a thread actively handling a remote method invocation the
hostname of the client invoking the call is returned. If a remote method call is
not currently being service, then ServerNotActiveException is called.

7.5 The Skeleton Interface
The interface Skeleton is used solely by the implementation of skeletons
generated by the rmic compiler. A skeleton for a remote object is a server-side
entity that dispatches calls to the actual remote object implementation.

package java.rmi.server;

public interface Skeleton {

 void dispatch(Remote obj, RemoteCall call, int opnum, long hash)
throws Exception;

 Operation[] getOperations();
}

The dispatch method unmarshals any arguments from the input stream
obtained from the call object, invokes the method (indicated by the operation
number opnum) on the actual remote object implementation obj, and marshals
the return value or throws an exception if one occurs during the invocation.

The getOperations method returns an array containing the operation
descriptors for the remote object’s methods.

7.6 The Operation Class
The class Operation holds a description of a Java method for a remote object.

package java.rmi.server;

public class Operation {

public Operation(String op);

public String getOperation();

public String toString();
}

Chapter 7: Stub/Skeleton Interfaces Page 57

7

An Operation object is typically constructed with the method signature.

The method getOperation returns the contents of the operation descriptor
(the value with which it was initialized).

The method toString also returns the string representation of the operation
descriptor (typically the method signature).
Page 58 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Garbage Collector Interfaces 8
The interfaces and classes in this chapter are used by the distributed garbage
collector for RMI.

Topics:
• The Interface DGC

• The Lease Class

• The ObjID Class

• The UID Class

• The VMID Class

8.1 The Interface DGC
The DGC abstraction is used for the server side of the distributed garbage
collection algorithm. This interface contains the two methods: dirty and
clean . A dirty call is made when a remote reference is unmarshaled in a
client (the client is indicated by its VMID). A corresponding clean call is made
when no more references to the remote reference exist in the client. A failed
dirty call must schedule a strong clean call so that the call’s sequence number
can be retained in order to detect future calls received out of order by the
distributed garbage collector.
Page 59

8

A reference to a remote object is leased for a period of time by the client holding
the reference. The lease period starts when the dirty call is received. It is the
client’s responsibility to renew the leases, by making additional dirty calls,
on the remote references it holds before such leases expire. If the client does
not renew the lease before it expires, the distributed garbage collector assumes
that the remote object is no longer referenced by that client.

package java.rmi.dgc;
import java.rmi.server.ObjID;

public interface DGC extends java.rmi.Remote {

Lease dirty(ObjID[] ids, long sequenceNum, Lease lease)
throws java.rmi.RemoteException;

void clean(ObjID[] ids, long seqNum, VMID vmid, boolean strong)
throws java.rmi.RemoteException;

}

The method dirty requests leases for the remote object references associated
with the object identifiers contained in the array ids. The lease contains a
client’s unique VM identifier (VMID) and a requested lease period. For each
remote object exported in the local VM, the garbage collector maintains a
reference list—a list of clients that hold references to it. If the lease is granted,
the garbage collector adds the client’s VMID to the reference list for each
remote object indicated in ids. The sequenceNum parameter is a sequence
number that is used to detect and discard late calls to the garbage collector.
The sequence number should always increase for each subsequent call to the
garbage collector.

Some clients are unable to generate a VMID, since a VMID is a universally
unique identifier that contains a host address which some clients are unable to
obtain due to security restrictions. In this case, a client can use a VMID of
null , and the distributed garbage collector will assign a VMID for the client.

The dirty call returns a Lease object that contains the VMID used and the
lease period granted for the remote references (a server may decide to grant a
smaller lease period than the client requests). A client must use the VMID the
garbage collector uses in order to make corresponding clean calls when the
client drops remote object references.

A client VM need only make one initial dirty call for each remote reference
referenced in the VM (even if it has multiple references to the same remote
object). The client must also make a dirty call to renew leases on remote
Page 60 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

8

references before such leases expire. When the client no longer has any
references to a specific remote object, it must schedule a clean call for the
object ID associated with the reference.

The clean call removes the vmid from the reference list of each remote object
indicated in ids. The sequence number is used to detect late clean calls. If the
argument strong is true, then the clean call is a result of a failed dirty call,
thus the sequence number for the client vmid needs to be remembered.

8.2 The Lease Class
A lease contains a unique VM identifier and a lease duration. A Lease object is
used to request and grant leases to remote object references.

package java.rmi.dgc;

public final class Lease implements java.io.Serializable {

public Lease(VMID id, long duration);

public VMID getVMID();

public long getValue();
}

The Lease constructor creates a lease with a specific VMID and lease duration.
The VMID may be null .

The getVMID method returns the client VMID associated with the lease.

The getValue method returns the lease duration (either requested or
granted).

8.3 The ObjID Class
The class ObjID is used to identify remote objects uniquely in a VM over time.
Each identifier contains an object number and an address space identifier that
is unique with respect to a specific host. An object identifier is assigned to a
remote object when it is exported.

package java.rmi.server;

public final class ObjID implements java.io.Serializable {
Chapter 8: Garbage Collector Interfaces Page 61

8

public ObjID ();

public ObjID (int num);

public void write(ObjectOutput out) throws java.io.IOException;

public static ObjID read(ObjectInput in)
throws java.io.IOException;

public int hashCode()

public boolean equals(Object obj)

public String toString()
}

The first form of the ObjID constructor generates a unique object identifier.
The second constructor generates well-known object identifiers (e.g. used by the
registry and the distributed garbage collector) and takes as an argument a
well-known object number. A well-known object ID generated via this second
constructor will not clash with any object IDs generated via the default
constructor.

The method write marshals the object id’s representation to an output stream.

The method read constructs an object id whose contents is read from the
specified input stream.

The method hashCode returns the object number as the hashcode

The equals method returns true if obj is an ObjID with the same contents.

The toString method returns a string containing the object id representation.
The address space identifier is included in the string representation only if the
object id is from a non-local address space.

8.4 The UID Class
The class UID is an abstraction for creating identifiers that are unique with
respect to the host on which it is generated. A UID is contained in an ObjID as
an address space identifier.

package java.rmi.server;

public final class UID implements java.io.Serializable {
Page 62 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

8

 public UID();

 public UID(short num);

 public int hashCode();

 public boolean equals(Object obj);

 public String toString();

 public void write(DataOutput out) throws java.io.IOException;

 public static UID read(DataInput in) throws java.io.IOException;
}

The first form of the constructor creates a pure identifier that is unique with
respect to the host on which it is generated. This UID is unique under the
following conditions: a) the machine takes more than one second to reboot, and
b) the machine's clock is never set backward. In order to construct a UID that is
globally unique, simply pair a UID with an InetAddress .

The second form of the constructor creates a well-known UID . There are 216 -1

such possible well-known ids. An id generated via this constructor will not
clash with any id generated via the default UID constructor which will
generates a genuinely unique identifier with respect to this host.

The methods hashCode , equals , and toString are defined for UIDs. Two
UIDs are considered equal if they have the same contents.

The method write writes the uid to output stream.

The method read constructs a UID whose contents is read from the specified
input stream.

8.5 The VMID Class
The class VMID provides a universally unique identifier for a client VM. A
VMID contains a UID and a host address.

package java.rmi.dgc;

public final class VMID implements java.io.Serializable {

public VMID() throws VMIDNotSupportedException;
Chapter 8: Garbage Collector Interfaces Page 63

8

public boolean equals(Object obj);

public String toString();
}

The VMID default constructor creates a globally unique identifier for the VM.
This identifier contains the host address of the machine on which it was
created. Due to security restrictions, obtaining the local host address is not
always possible. If this restriction is in force, then the constructor will throw
VMIDNotSupportedException .

The hashCode , equals and toString methods are defined for VMIDs. Two
VMIDs are considered equal if they have the same contents.
Page 64 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

Exceptions In RMI A
Topics:
• Exceptions During Remote Object Export

• Exceptions During RMI Call

• Exceptions or Errors During Return

• Other
Page 65

A.1 Exceptions During Remote Object Export
When a remote object class is created that extends UnicastRemoteObject ,
the object is exported, meaning it can receive calls from external Java virtual
machines and can be passed in an RMI call as either a parameter or return
value. An object can either be exported on an anonymous port or on a specified
port. For objects not extended from UnicastRemoteObject , the
java.rmi.server.UnicastRemoteObject.exportObject method is used
to explicitly export the object.

Exception Context

java.rmi.StubNotFoundException 1.) Class of stub not found.
2.) Name collision with class of
 same name as stub leads to:
 a.) Stub can’t be instantiated.
 b.) Stub not of correct class.
3.) Bad URL due to wrong codebase.
4.) Stub not of correct class.

java.rmi.server.SkeletonNotFoundException 1.) Class of skeleton not found.
2.) Name collision with class of
 same name as skeleton leads to:
 a.) Skeleton can’t be instantiated.
 b.) Skeleton not of correct class.
3.) Bad URL due to wrong codebase.
4.) Skeleton not of correct class.

java.rmi.server.ExportException The port is in use by another VM.
Page 66 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

A.2 Exceptions During RMI Call

A.3 Exceptions or Errors During Return

Exception Context

java.rmi.UnknownHostException Unknown host.

java.rmi.ConnectException Connection refused to host.

java.rmi.ConnectIOException I/O error creating connection.

java.rmi.MarshalException I/O error marshaling transport header,
marshaling call header or marshaling
arguments.

java.rmi.StubNotFoundException Remote object not exported.

Exception Context

java.rmi.UnmarshalException 1.) Corrupted stream leads to I/O or
protocol error:
 a.) Unmarshaling return header.
 b.) Checking return type.
 c.) Checking return code.
 d.) Unmarshaling return.
2.) Return value class not found.

java.rmi.UnexpectedException An exception not in the method
signature occurred, including
runtime exceptions on the client. This
exception object contains the
underlying exception.

java.rmi.ServerRuntimeException Any runtime exception that occurs
while the server is executing a
method, even if the exception is in
the method signature. This exception
object contains the underlying
exception.

java.rmi.ServerException Any remote exception that occurs
while the server is executing a
remote method. See Section A.3.1 for
examples.

java.rmi.server.ServerError Any error that occurs while the
server is executing a remote method.
Appendix : Exceptions In RMI Page 67

A.3.1 Possible Causes of java.rmi.ServerException

These are the underlying exceptions which can occur on the server when the
server is itself executing a remote method invocation. These exceptions are
wrapped in a java.rmi.ServerException , that is the
java.rmi.ServerException contains the original exception for the client to
extract. These exceptions are wrapped by ServerException so that the client
will know that its own remote method invocation on the server did not fail, but
that a secondary remote method invocation made by the server failed.

A.4 Other

Exception Context

java.rmi.server.SkeletonMismatchException Hash mismatch of stub and skeleton.

java.rmi.UnmarshalException I/O error unmarshaling call header.
I/O error unmarshaling arguments.

java.rmi.MarshalException Protocol error marshaling return.

java.rmi.RemoteException Method number out of range due to
corrupted stream.

Exception Context

java.rmi.server.ServerCloneException Clone failed
Page 68 Java™ Remote Method Invocation Specification—November 1, 1996 Draft

	Java™ Remote Method Invocation Specification
	Table of Contents
	Introduction
	1.1 Overview
	1.2 System Goals

	Java Distributed Object Model
	2.1 Definition of Terms
	2.2 The Distributed and Non-Distributed Models Con...
	2.3 RMI Interfaces and Classes
	2.3.1 The Remote Interface
	2.3.2 The RemoteException Class
	2.3.3 The RemoteObject Class and its Subclasses

	2.4 Implementing a Remote Interface
	2.5 Type Equivalency of Remote Objects with Local ...
	2.6 Parameter Passing in Remote Method Invocation
	2.6.1 Passing non-remote objects
	2.6.2 Passing remote objects

	2.7 Exception Handling in Remote Method Invocation...
	2.8 Object Methods Overridden by the RemoteObject ...
	2.8.1 equals and hashCode
	2.8.2 toString
	2.8.3 clone
	2.8.4 finalize

	2.9 The Semantics of Object Methods Declared final...
	2.10 Locating Remote Objects

	System Architecture
	3.1 Overview
	3.2 Architectural Overview
	3.3 The Stub/Skeleton Layer
	3.4 The Remote Reference Layer
	3.5 The Transport Layer
	3.6 Thread Usage in Remote Method Invocations
	3.7 Garbage Collection of Remote Objects
	3.8 Dynamic Class Loading
	3.8.1 How a Class Loader is Chosen
	3.8.2 Bootstrapping the Client

	3.9 Security
	3.10 Configuration Scenarios
	3.10.1 Servers
	3.10.2 Applets
	3.10.3 Applications

	3.11 RMI Through Firewalls Via Proxies
	3.11.1 How an RMI Call is Packaged within the HTTP...
	3.11.2 The Default Socket Factory
	3.11.3 Configuring the Client
	3.11.4 Configuring the Server
	3.11.5 Performance Issues and Limitations

	Client Interfaces
	4.1 The Remote Interface
	4.2 The RemoteException Class
	4.3 The Naming Class

	Server Interfaces
	5.1 The RemoteObject Class
	5.2 The RemoteServer Class
	5.3 The UnicastRemoteObject Class
	5.3.1 Constructing a new Remote Object
	5.3.2 Exporting an implementation not extended fro...

	5.4 The Unreferenced Interface
	5.5 The RMISecurityManager Class
	5.6 The RMIClassLoader Class
	5.7 The RMISocketFactory Class
	5.8 The RMIFailureHandler Interface
	5.9 The LogStream Class
	5.10 Stub and Skeleton Compiler

	Registry Interfaces
	6.1 The Registry Interface
	6.2 The LocateRegistry Class
	6.3 The RegistryHandler Interface

	Stub/Skeleton Interfaces
	7.1 The RemoteStub Class
	7.2 The RemoteCall Interface
	7.3 The RemoteRef Interface
	7.4 .The ServerRef Interface
	7.5 The Skeleton Interface
	7.6 The Operation Class

	Garbage Collector Interfaces
	8.1 The Interface DGC
	8.2 The Lease Class
	8.3 The ObjID Class
	8.4 The UID Class
	8.5 The VMID Class

	Exceptions In RMI
	A.1 Exceptions During Remote Object Export
	A.2 Exceptions During RMI Call
	A.3 Exceptions or Errors During Return
	A.3.1 Possible Causes of java.rmi.ServerException

	A.4 Other

