
March 15, 1995 The Java Virtual Machine Specification 65

Appendix A - An Optimization

The following set of pseudo-instructions suffixed by _quick are variants of Java virtual machine instructions.
They are used by the LiveOak project to improve the execution of compiled code on our bytecode interpreter.
They are not part of the virtual machine specification or instruction set, and are invisible outside of an Java
virtual machine implementation. However, inside a virtual machine implementation they have proven to be
an effective optimization.

A compiler from Java to the Java virtual machine instruction set emits only non-_quick instructions. If the
_quick pseudo-instructions are used, each instance of a non-_quick instruction with a _quick variant is
overwritten on execution by its _quick variant. Subsequent execution of that instruction instance will be of the
_quick variant.

In all cases, if an instruction has an alternative version with the suffix _quick, the instruction references the
constant pool. If the _quick optimization is used, each non_quick instruction with a _quick variant performs the
following:

• Resolves the specified item in the constant pool

• Signals an error if the item in the constant pool could not be resolved for some reason

• Turns itself into the _quick version of the instruction. The instructions putstatic, getstatic, putfield,
and getfield each have two _quick versions.

• Performs its intended operation

This is identical to the action of the instruction without the _quick optimization, except for the additional step
in which the instruction overwrites itself with its _quick variant.

The _quick variant of an instruction assumes that the item in the constant pool has already been resolved, and
that this resolution did not generate any errors. It simply performs the intended operation on the resolved
item.

Pushing Constants onto the Stack (_quick variants)

ldc1_quick
Push item from constant pool onto stack

Stack: ... => ..., item

indexbyte1 is used as an unsigned 8-bit index into the constant pool of the current class. The item at that
index is pushed onto the stack.

Syntax:

ldc1_quick = 199

indexbyte1

Appendix A - An Optimization

66 The Java Virtual Machine Specification March 15, 1995

ldc2_quick
Push item from constant pool onto stack

Stack: ... => ..., item

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant at that index is resolved and the item at that index is pushed onto the stack.

ldc2w_quick
Push long integer or double float from constant pool onto stack

Stack: ... =>=> ..., constant-word1, constant-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant at that index is pushed onto the stack.

Managing Arrays (_quick variants)

anewarray_quick
Allocate new array of objects

Stack: ..., size => result

size should be an integer. It represents the number of elements in the new array.

indexbyte1 and indexbyte2 are are used to construct an index into the constant pool of the current class.
The entry should be a class.

A new array of the indicated class type and capable of holding size elements is allocated. Allocation of
an array large enough to contain nelem items of the given class type is attempted. All elements of the
array are initialized to zero.

If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough memory
to allocate the array, an OutOfMemoryException is thrown.

Syntax:

ldc2_quick = 200

indexbyte1

indexbyte2

Syntax:

ldc2w_quick = 201

indexbyte1

indexbyte2

Syntax:

anewarray_quick = 216

indexbyte1

indexbyte2

March 15, 1995 The Java Virtual Machine Specification 67

Appendix A - An Optimization

Manipulating Object Fields (_quick variants)

putfield_quick
Set field in object

Stack: ..., handle, value => ...

handle should be a handle to an object. value should be a value of a type appropriate for the specified
field. offset is the offset for the field in that object. value is written at offset into the object referenced by
handle. Both handle and value are popped from the stack.

If handle is null, a NullPointerException exception is generated.

putfield2_quick
Set long integer or double float field in object

Stack: ..., handle, value-word1, value-word2=> ...

handle should be a handle to an object. value should be a value of a type appropriate for the specified
field. offset is the offset for the field in that object. value is written at offset into the object referenced by
handle. Both handle and value are popped from the stack.

If handle is null, a NullPointerException exception is generated.

getfield_quick
Fetch field from object

Stack: ..., handle => ..., value

handle should be a handle to an object. The value at offset into the object referenced by handle replaces
handle on the top of the stack.

If handle is null, a NullPointerException exception is generated.

Syntax:

putfield_quick = 203

offset

unused

Syntax:

putfield2_quick = 205

offset

unused

Syntax:

getfield_quick = 202

offset

unused

Appendix A - An Optimization

68 The Java Virtual Machine Specification March 15, 1995

getfield2_quick
Fetch field from object

Stack: ..., handle => ..., value-word1, value-word2

handle should be a handle to an object. The value at offset into the object referenced by handle replaces
handle on the top of the stack.

If handle is null, a NullPointerException exception is generated.

putstatic_quick
Set static field in class

Stack: ..., value => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. value should be the type
appropriate to that field. That field will be set to have the value value.

putstatic2_quick
Set static field in class

Stack: ..., value-word1, value-word2 => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. That field should either be a long
integer or a double precision floating point number. value should be the type appropriate to that field.
That field will be set to have the value value.

getstatic_quick
Get static field from class

Stack: ..., => ..., value

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The value of that field will replace
handle on the stack.

Syntax:

getfield2_quick = 204

offset

unused

Syntax:

putstatic_quick = 207

indexbyte1

indexbyte2

Syntax:

putstatic2_quick = 209

indexbyte1

indexbyte2

Syntax:

getstatic_quick = 206

indexbyte1

indexbyte2

March 15, 1995 The Java Virtual Machine Specification 69

Appendix A - An Optimization

getstatic2_quick
Get static field from class

Stack: ..., => ..., value-word1, value-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The field should be a long integer
or a double precision floating point number. The value of that field will replace handle on the stack

Method Invocation (_quick variants)

invokevirtual_quick
Invoke class method

Stack: ..., handle, [arg1, [arg2 ...]] => ...

The operand stack is assumed to contain a handle to an object and nargs arguments. The method block
at offset in the object’s method table is retrieved. The method block indicates the type of method
(native, synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

invokevirtualobject_quick
Invoke class method

Stack: ..., handle, [arg1, [arg2 ...]] => ...

The operand stack is assumed to contain a handle to an object or to an array and nargs arguments. The
method block at offset in the object’s method table is retrieved. The method block indicates the type of

Syntax:

getstatic2_quick = 208

indexbyte1

indexbyte2

Syntax:

invokevirtual_quick = 210

offset

nargs

Syntax:

invokevirtualobject_quick = 214

offset

nargs

Appendix A - An Optimization

70 The Java Virtual Machine Specification March 15, 1995

method (native, synchronized, etc.) and the number of arguments (nargs) expected on the operand
stack.

If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

invokenonvirtual_quick
Invoke superclass method

Stack: ..., handle, [arg1, [arg2 ...]] => ...

The operand stack is assumed to contain a handle to an object and some number of arguments.
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index in the constant pool contains a method slot index and a pointer to a class. The
method block at the method slot index in the indicated class is retrieved. The method block indicates
the type of method (native, synchronized, etc.) and the number of arguments (nargs) expected on the
operand stack.

If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

invokestatic_quick
Invoke a static method

Stack: ..., [arg1, [arg2 ...]] => ...

The operand stack is assumed to contain some number of arguments. indexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the current class. The item at that index in the
constant pool contains a method slot index and a pointer to a class. The method block at the method

Syntax:

invokenonvirtual_quick = 211

indexbyte1

indexbyte2

Syntax:

invokenstatic_quick = 212

indexbyte1

indexbyte2

March 15, 1995 The Java Virtual Machine Specification 71

Appendix A - An Optimization

slot index in the indicated class is retrieved. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with the method’s class is entered. The
exact behavior of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to the first argument on
the stack, making the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new frame.
The total number of local variables used by the method is determined, and the execution environment
of the new frame is pushed after leaving sufficient room for the locals. The base of the operand stack
for this method invocation is set to the first word after the execution environment. Finally, execution
continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

invokeinterface_quick
Invoke interface method

Stack: ..., handle, [arg1, [arg2 ...]] => ...

The operand stack is assumed to contain a handle to an object and nargs-1 arguments. idbyte1 and
idbyte2 are used to construct an index into the constant pool of the current class. The item at that index
in the constant pool contains the complete method signature. A pointer to the object’s method table is
retrieved from the object handle.

The method signature is searched for in the object’s method table. As a short-cut, the method signature
at slot guess is searched first. If that fails, a complete search of the method table is performed. The
method signature is guaranteed to exactly match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) but unlike invokemethod and invokesuper, the number of available arguments (nargs)
is taken from the bytecode.

If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

guess is the last guess. Each time through, guess is set to the method offset that was used.

Syntax:

invokeinterface_quick = 213

idbyte1

idbyte2

nargs

guess

Appendix A - An Optimization

72 The Java Virtual Machine Specification March 15, 1995

Miscellaneous Object Operations (_quick variants)

new_quick
Create new object

Stack: ... => ..., handle

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index should be a class. A new instance of that class is then created and a handle for it
pushed on the stack.

checkcast_quick
Make sure object is of given type

Stack: ..., handle => ..., handle

handle should be a handle to an object. indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current class. The object at that index of the constant pool should have already
been resolved.

checkcast then determines whether handle can be cast to an object of class class. A null handle can be cast
to any class, and otherwise the superclasses of handle are searched for class. If class is determined to be
a superclass of handle, or if handle is null, object can be cast to class and execution proceeds at the next
instruction, and the handle for handle remains on the stack.

If handle cannot be cast to class, a ClassCastException is thrown.

instanceof_quick
Determine if object is of given type

Stack: ..., handle => ..., result

handle should be a handle to an object. indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current class. The item of class class at that index of the constant pool is assumed
to have already been resolved.

instanceof determines whether handle can be cast to an object of the class class. A null handle can be cast
to any class, and otherwise the superclasses of handle are searched for class. If class is determined to be
a superclass of handle, or if handle is null, handle is overwritten by 1. Otherwise, handle is overwritten by
0.

Syntax:

new_quick = 215

indexbyte1

indexbyte2

Syntax:

checkcast_quick = 217

indexbyte1

indexbyte2

Syntax:

instanceof_quick = 218

indexbyte1

indexbyte2

March 15, 1995 The Java Virtual Machine Specification 73

Appendix A - An Optimization

Constant Pool Resolution

When the class is read in, an array constant_pool[] of size nconstants is created and assigned to a field
in the class. constant_pool[0] is set to point to a malloc-ed array which indicates which fields in the
constant_pool have already been resolved. constant_pool[1] through constant_pool[nconstants -
1] are set to point at the “type” field that corresponds to this constant item.

When an instruction is executed that references the constant pool, an index is generated, and
constant_pool[0] is checked to see if the index has already been resolved. If so, the value of
constant_pool[index] is returned. If not, the value of constant_pool[index] is resolved to be the
actual pointer or data, and overwrites whatever value was already in constant_pool[index].

Appendix A - An Optimization

74 The Java Virtual Machine Specification March 15, 1995

