
 vsFlex 2.0
VideoSoft Custom Control Library

To learn how to use help, press F1

Introduction
Find out about:
Installation      Product support      Licensing      New Features
Registration      Other VideoSoft products.

vsFlexArray
A new way to display and operate on tabular data. FlexArray gives
you total flexibility to display, sort, merge, and format tables
containing strings and pictures.
Introduction      Tutorial      Reference      Summary

vsFlexString
A powerful regular expression engine. With FlexString, you can
find and replace patterns in strings. Use it to provide regular
expression search-and-replace capabilities or to parse input
strings.

Introduction      Tutorial      Reference      Summary

Introduction
Welcome to vsFlex2, a VideoSoft custom control library. VideoSoft custom controls are innovative,
flexible, and powerful. If you like them, make sure you check out our other award-winning products,
vsOcx and vsView2 .

Our distribution policy is almost as innovative as the controls. We want every Visual Basic
programmer to get copies of our products and try them for as long as they want. Those who like the
tools and find them useful (almost everybody, we hope) can buy licenses at reasonable prices. The
only restriction is that unlicensed copies of the software will display a VideoSoft banner whenever
they are loaded, as a friendly reminder that we do expect people to pay for the software if they use
it.

We hope you'll like vsFlex2. If you have suggestions and ideas for new features or new tools, call
us or write.

VideoSoft
5900 Hollis Street, Suite T
Emeryville, CA 94608
Phone 510/595-2400
Fax 510/595-2424

Control Summary
Icon Object Description

vsFlexArray A new way to display and operate on tabular data.
FlexArray gives you total flexibility to display, sort,
merge, and format tables containing strings and
pictures.

vsFlexString A powerful regular expression engine. With
FlexString, you can find and replace patterns in
strings. Use it to provide regular expression
search-and-replace capabilities or to parse input
strings.

Installation
To install vsFlex2, use the INSTALL utility provided on the distribution diskette.

If you are upgrading from the original vsFlex, you will need to use a utility supplied with the
distribution diskette to upgrade your existing projects. Optionally, you may still use the original
vsFlex for legacy projects and vsFlex2 for new projects. Both versions may coexist on the same
computer.

Distribution
vsFlex2 is royalty-free. You may include copies of the OCX and HLP files with as many copies of as
many applications you ship.

You may not distribute the license file VSFLEX2.LIC.
And you don’t have to: as long as you have the license file installed on your machine, vsFlex2 will
stamp every application you compile so the banner will not appear when your users run the
applications.

If you work with other developers, you may be interested in VideoSoft’s site licenses. Call us for
details.

If you haven’t yet registered your copy of vsFlex2 and would like to do it now, click [HERE] to get a
Registration/Order Form.

Product Support
Product support for vsFlex2 is available to licensed users through the following channels:

Internet http://www.videosoft.com
CompuServe CIS 74774,420

or join our forum by typing "GO VIDEOSOFT"
Mail VideoSoft

5900 Hollis Street, Suite T
Emeryville, CA 94608

Phone 510/595-2400
FAX 510/595-2424

Before calling for technical support, please make sure you know what version of vsFlex2 you are
using. The version number appears in the About box that pops up when you double-click the
(About) property in any vsFlex2 control.

New Features in Version 2
This section summarizes the new features in vsFlex2. If you are familiar with vsFlex, this section
will get you up to speed quickly. For details on each new feature, check the main body of the
documentation.

[]    Data Binding
This is something a lot of people were waiting for. FlexArray is data bound, so you can read in
entire tables very quickly, and then manipulate them at will. For details, check the following
items in the reference section: DataSource, VirtualData, and AutoResize.

[]    In-Cell Editing
FlexArray is now fully editable. You can implement data entry with text boxes or drop-down lists
just by setting a couple of properties, and you can validate the data by responding to events.
For details, check the following items in the reference section: Editable, ComboList, EditCell,
BeforeEdit, AfterEdit, and Validate.

[]    Subtotals and Outlining
Think of this as a cross between the Excel outliner and the Explorer. You can dynamically add
subtotals to summarize data, then expand and collapse entire groups with a click of the mouse,
and no code. It's fast, easy, and extremely powerful. For details, check the following items in the
reference section: Subtotal, Outline, OutlineBar, IsSubtotal, and IsCollapsed.

[]    AutoSize Columns
You can tell FlexArray to adjust the width of each column to fit the widest entry. For details,
check the AutoSize method. This also works with data binding: just set the AutoResize
property to True and all your data will fit comfortably within their columns.

[]    ListBox-Style Selection
FlexArray now suports selection of non-adjacent rows, just like an extended-selection ListBox.
Just set SelectionMode to flexSelectionListBox, and extended selection will be enabled using
the mouse or keyboard. To control selection through code, use the IsSelected() property.

[]    Formatted, International Sorting
FlexArray now recognizes numbers with embedded formatting characters such as thousand
separators and currency signs, and it can also extract their values for you. (This works with
international formats as well.) For details, check the following items in the reference section:
Sort, Value, ValueMatrix.

[]    Cell Flooding
Each cell may now be partially flooded to indicate the magnitude of the value it contains. This
allows you to set up tables that also work as charts. It's great for business and scientific
applications. For details, check the following items in the reference section: CellFloodPercent,
CellFloodColor, and FloodColor.

[]    More Compatibility with MSGrid
We have added six new properties to make FlexArray more compatible with Microsoft's basic
grid control: you can now use RowIsVisible and ColIsVisible, RowPosand ColPos,
GridLineWidth, and FixedAlignment. Porting code is easier than ever.

[]    More Convenience
FlexArray has a new Select method that allows you to select a cell or a range with a single
command. It's faster and convenient, and make your code a lot shorter and more readable.
Also, the Clear method now takes optional parameters that allow you to specify what to clear
and where.

[]    More Control
You now have more control over the appearance of your FlexArray controls, with lots of new
settings for the GridLines property, and more control over row and column resizing, with the

UserResized event.

[]    More Speed
Try it out! We have optimized our painting code even more. Scrolling and selecting is even
faster than in version 1.0.

[]    Printing
vsFlex2 knows how to communicate with vsView2. This means you can print and preview your
FlexArray with a single command, even if it spans multiple pages. Plus, you can embed
FlexArray controls into vsView2 reports.
Assuming you have a vsPrinter control named vp, all it takes to print a FlexArray control named
fa is this single line of code: vp.RenderControl = fa.hWnd.

Most of these enhancements were added in response to user requests, and we are grateful for their
input.

Using the FlexArray Control
The FlexArray control allows you to display and operate on tabular data in new ways. On the
surface, FlexArray is similar to a spreadsheet, but it allows total flexibility to display, sort, merge,
and format tables containing strings and pictures.

The FlexArray control was designed to be compatible with Microsoft’s Grid control (GRID.VBX,
GRID32.OCX). FlexArray implements most of the Grid control’s properties, so it is easy to modify
older projects to take advantage of FlexArray’s extra functionality, which includes:

[]    Data Binding
Bind FlexArray to data controls for easy acess to your data using the DataSource property.

[]    Cell Editing
Just set the Editable property to True and you have basic cell editing. Trap the BeforeEdit,
AfterEdit, and Validate events to control user input. And use the ComboList property to allow
users to pick from lists instead of typing.
Alternatively, you may want to use FlexArray’s CellTop, CellLeft, CellWidth, and CellHeight
properties to place other controls directly over the current cell.

[]    Individual cell formatting
Use FlexArray’s CellBackColor, CellForeColor, CellFont, CellAlignment, CellFloodPercent,
CellPicture, CellPictureAlignment, and CellFloodColor properties to control the appearance
of individual cells.

[]    Sorting
Use FlexArray’s Sort property to sort information with speed and complete flexibility.

[]    Row and Column moving
Use FlexArray’s RowPosition() and ColPosition() properties to modify the layout of the
information in the control at run time.

[]    Cell Merging
Use FlexArray’s exclusive MergeCells property to create clear, concise, and attractive data
summaries without programming.

[]    Design-time layout development
Use FlexArray’s FormatString property to define column and row headers, widths, and
alignment at design-time.

[]    Miscellaneous
Other FlexArray advantages are: long strings in cells (up to 32k), more storage capacity,
invisible columns and rows, better font control, more options for customizing colors and grid
styles, for aligning text and pictures, less flicker, more control over cursor and selection
appearance, and more.

Best of all, the FlexArray is small and does not require separate custom DLLs, so installation is
quick and easy.

FlexArray Tutorial
This section of the manual takes you step-by-step through the creation of three Visual Basic
projects using the FlexArray control:

Edit Demo
A data-entry tool with editable fields, drop-down lists, check boxes, and custom controls.

Data Demo
Merge, sort, subtotal, and rearrange data.

Outline Demo
Structure data with subtotals; collapse and expand details.

These are simple programs that focus on using the FlexArray control. We tried to reduce the
amount of coding to a minimum, just enough to show how common tasks can be easily
accomplished with the FlexArray. For more realistic (and ambitious) projects, please check out the
samples on the distribution disks.

Edit Demo
This sample projects starts with a basic data-entry grid, then adds features such as clipboard
support, drop-down lists, data validation, automatic formatting, and check boxes.

1) Create the Control
Start a new Visual Basic project including vsFlex2 (if you don’t know how to add OCX files to a
project, consult the Visual Basic manual). The vsFlex2 control icons will be added to the Visual
Basic toolbox.

Create a FlexArray object on the form by clicking the FlexArray icon on the toolbox (), then
clicking and dragging on the form.

Next, set the following control properties:
 Cols = 5

Editable = True
ExtendLastCol = True
FillStyle = 1 ' Repeat
FixedCols = 0
FormatString = "=Product|Region|Sales Person|>Amount Sold|Bonus"
Name = fa

That's it. If you run the project now, you can already enter data into each column simply by typing it
in. You may also activate the cell-editing mode by pressing the space bar or the F2 function key.

If you select a range and enter some data, the entry will be applied to the whole range. This is a
real time-saver in some situations. If you don't like this behavior, set the FillStyle property to
flexFillSingle (0).

2) Add Mouse Support
Some users use predominantly the mouse, others prefer the keyboard. By default, the FlexArray
will enter cell-edit mode when the user starts typing something into a cell. It is often desirable to let
the user initiate editing with the mouse, either by double-clicking on a cell or by right-clicking on it.
This is accomplished with the following code:

 Private Sub fa_MouseDown(Button%, Shift%, X!, Y!)
 If Button <> 2 Then Exit Sub
 If fa.MouseRow < fa.FixedRows Then Exit Sub
 If fa.Row <> fa.MouseRow Then fa.Row = fa.MouseRow
 If fa.Col <> fa.MouseCol Then fa.Col = fa.MouseCol
 fa.EditCell
End Sub

The first two lines make sure that the right mouse button was clicked over a non-fixed row. In that
case, the next three lines select the cell that was right-clicked and put the control in cell-editing
mode with the EditCell method.

Note that we only set the Row and Col and properties if the mouse is clicked outside the current
cell. This is done this way because setting the Row and Col properties also resets RowSel and
ColSel. If the user right-clicks on the current cell, then we do not set the properties and therefore
do not reset the selection. This is a subtle touch, but it will be very noticeable to some users.

If we had chosen to implement cell-editing in response to the double-click, we would not even have
to set the selection, since the control would have done it for us.

3) Add Clipboard Support
The Windows clipboard is a really great invention. You can use it to move data around, replicate it,
and even to import and export data between applications.

To add clipboard support to our project, all it takes is the following code:

 Private Sub fa_KeyDown(KeyCode%, Shift%)
 Dim Cpy%, Pst%

 ' copy: ctrl-C, ctrl-X, ctrl-ins
 If KeyCode = 67 And Shift = 2 Then Cpy = True
 If KeyCode = 88 And Shift = 2 Then Cpy = True
 If KeyCode = 45 And Shift = 2 Then Cpy = True

 ' paste: ctrl-V, shift-ins
 If KeyCode = 86 And Shift = 2 Then Pst = True
 If KeyCode = 45 And Shift = 1 Then Pst = True

 ' do it
 If Cpy Then
 Clipboard.Clear
 Clipboard.SetText fa.Clip
 ElseIf Pst Then
 fa.Clip = Clipboard.GetText
 End If
End Sub

The routine handles all standard keyboard commands related to the clipboard: CTRL-X, CTRL-C,
or CTRL-Ins to copy, and CTRL-V or SHIFT-Ins to paste. The real work is done by the Clip
property, which takes care of copying and pasting the clipboard text over the current range.

If you run the project now, you can move data around by selecting it, pressing CTRL-Ins, moving
the selection, and pressing SHIFT-Ins. You can also start editing a cell by right-clicking on it.

4) Add Drop-Down Lists
Entering data is a tedious and error-prone process. Drop-down lists are great because they
minimize the amount of typing you must do, reduce the chance of errors, and increase the
consistency of the data.

Let's assume that our sample project only involves sales of three products (Applets, Widgets, and
Gadgets), in four regions (North, South, East, and West), and that there are three sales persons
(Mary, Sarah, and Paula).

In this case, asking the user to type in all this data would be a very mean thing to do. A much better
approcah would be to use drop-down lists, which can be done easily using the BeforeEdit event
and the ComboList property. The code below shows how to do it:

 Private Sub fa_BeforeEdit(ByVal Row%, ByVal Col%, Cancel%)
 Select Case Col
 Case 0 ' product
 fa.ComboList = "Applets|Wahoos|Gadgets"
 Case 1 ' region
 fa.ComboList = "North|South|East|West"
 Case 2 ' sales person
 fa.ComboList = "Mary|Paula|Sarah"
 Case Else ' amount
 fa.ComboList = ""
 End Select
End Sub

As you can see, all we have to do is supply a list of choices, separated by pipes, according to the
type of data being edited. The last two columns (Sales Amount and Bonus) do not use drop-down
lists, so we set ComboList to an empty string.

To see the code in action, run the project and type the first character of an entry into a cell (or F2, or
the space bar). You will get a regular drop-down list box, where you can pick the appropriate value
easily. After making the selection, press ENTER to quit cell-editing mode so you can move the
cursor freely.

5) Add Data Validation
If you pick data from a list, there's little need for field-level data validation (although you may still
need record-level validation). If you type, on the other hand, then data-validation is essential.

In our example, we would like to prevent users from typing text or negative values in the Sales
Amount field. The best way to do this is to use the Validate event, as shown below:

 Private Sub fa_Validate(Row%, Col%, Value$, Cancel%)
 Select Case Col
 Case 3 ' sales amount
 If Val(Value) <= 0 Then
 Cancel = True
 MsgBox "Please enter a positive value"
 End If
 End Select
End Sub

The Value$ parameter contains the entry to be checked. If it contains a an invalid string, the code
sets the Cancel% parameter to True. This causes the original value to be restored and the cursor
to be positioned over the offending cell, so the user can try again. Note that modifying the Value$
parameter has no effect.

6) Add Automatic Formatting
Now let's say we want to format the numberic values entered so they look consistent. The easiest
way to do this is to use the AfterEdit event, as shown below:

 Private Sub fa_AfterEdit(ByVal Row%, ByVal Col%)
 Select Case Col
 Case 3 ' sales amount
 fa = Format(Val(fa.TextMatrix(Row, Col)), "#,###.00")
 End Select
End Sub

This routine takes the value just entered in column 3 (a dollar amount), formats it using VB's
Format function, and assigns the result back to the control. Note that the assignment will copy the
formatted value to all cells in the selected range.

7) Add CheckBoxes
We are almost done. The last thing we need to do is handle the situation when the user wants to
modify the Bonus column, which contains a boolean value.

For this, we could use a drop-down list with "Yes|No" or "True|False" fields, but that would be too
plain for some people. We could also use pictures, but for this tutorial we'll use a different (and
often overlooked) approach: symbols.

Windows provides a font called Wingdings that contains lots of useful symbols. Among these are a
hollow box (Chr(158)) and a checked box (Chr(254)). To use them, we need to assign the
Wingdings font to all cells in the Bonus column, initialize the bonuses with the Chr(158) character,
and then switch between Chr(158) and Chr(254) when we want to toggle someone's bonus. Here's
the code to do it:

 Private Sub Form_Load()
 With fa
 .ColWidth(4) = .ColWidth(4) / 2
 .Select 1, 4, .Rows - 1, 4
 .CellFontName = "Wingdings"
 .CellFontSize = 11
 .Text = Chr(168)
 .Select 1, 0
 End With
End Sub

When the form loads, we set up the Bonus column with the Wingdings font. To toggle the Bonus
value, we simply modified the BeforeEdit handler:

 Private Sub fa_BeforeEdit(ByVal Row%, ByVal Col%, Cancel%)
 Select Case Col
 Case 0 ' product
 fa.ComboList = "Applets|Wahoos|Gadgets"
 Case 1 ' region
 fa.ComboList = "North|South|East|West"
 Case 2 ' sales person
 fa.ComboList = "Mary|Paula|Sarah"
 Case 3 ' amount

 fa.ComboList = ""
 Case 4 ' bonus
 If fa = Chr(168) Then fa = Chr(254) Else fa = Chr(168)
 Cancel = True
 End Select
End Sub

If the user tries to edit the last column, the code toggles the value and sets Cancel% to True,
preventing the user from typing into the cell.

That's it. You may want to play a little with the project and maybe add some features to it. Check
out the distribution disk for samples that use modal forms for entering other types of data such as
dates.

Data Demo
This sample projects starts with a basic grid full of randomly-generated data, then adds cell
merging, automatic sorting, dynamic data layout (by allowing users to drag columns around and
having the control automatically rearrage the data), and subtotals.

1) Create the Control
Start a new Visual Basic project including vsFlex2 (if you don’t know how to add OCX files to a
project, consult the Visual Basic manual). The vsFlex2 control icons will be added to the Visual
Basic toolbox.

Create a FlexArray object on the form by clicking the FlexArray icon on the toolbox (), then
clicking and dragging on the form.

Next, set the following control properties:
 Cols = 4

ExtendLastCol = True
FixedCols = 0
MergeCells = flexMergeRestrictColumns
FormatString = "=Product|Region|Sales Person|>Amount Sold"
Name = fa

2) Fill it up with Random Data
Normally, you would perform this step simply by connecting the FlexArray to a database through
the DataSource property. For this demo, however, we'll generate some random data instead.

You will need this code at the form's Load event:

 Private Sub Form_Load()
 Dim r%, c%
 Dim product$(3), Dim region$(3), Dim person$(3)

 ' move the data into vectors
 InitVector product, "Applets|Wahoos|Widgets|Gadgets"
 InitVector person, "Mary|Sarah|Paula|Annie"
 InitVector region, "North|South|East|West"

 ' now copy random elements into the FlexArray
 With fa
 For r = 1 To .Rows - 1
 .TextMatrix(r, 0) = product$(Rnd() * 3)
 .TextMatrix(r, 1) = region$(Rnd() * 3)
 .TextMatrix(r, 2) = person$(Rnd() * 3)
 .TextMatrix(r, 3) = Format(Rnd() * 20000, "#,###.00")
 Next
 End With

 ' since we're already here, let's turn column merging on
 For c = 0 To 2
 fa.MergeCol(c) = True
 Next
 SortData
End Sub

This routine uses two little helper functions: InitVector splits a string into several elements of an
array, and SortData does exactly what it says:

 Sub InitVector(v$(), ByVal s$)
 Dim i%, p%
 Do
 p = InStr(s, "|")
 If p = 0 Then Exit Do
 v(i) = Left(s, p - 1)
 i = i + 1
 s = Mid(s, p + 1)
 Loop
 v(i) = s

End Sub

Sub SortData()
 fa.Select 1, 0, fa.rows-1, fa.cols-1
 fa.Sort = flexSortStringAscending
End Sub

The SortData routine starts by selecting the first non-fixed row in the control using the Select
method. Next, it sorts the entire control in ascending order using the Sort property.

At this point, you may want to run the project and see the results of the work so far:

This is a pretty neat way to display the information by product. But what if we were interested in analyzing sales
person performance, or viewing sales by region? That's easy to, and is our next step.
3) Dynamic layout

It would be nice if we could double-click on a column heading and have that column move to the
left. That's what the code below does:

 Private Sub fa_DblClick()
 Dim c%

 ' make sure we clicked on a valid row/column
 If fa.MouseCol > 0 Then Exit Sub
 c = fa.MouseCol
 If c = fa.Cols - 1 Then Exit Sub

 ' move the column to the left
 fa.Redraw = False
 fa.ColPosition(c) = 0
 SortData
 fa.Redraw = True
End Sub

That's it. The routine first checks to make sure the user clicked on the heading row, and not on the
last column (the last column contains the sales totals, and we don't want to sort on that.) It uses the
MouseCol and MouseRow properties for that.

If everything is OK, then the routine sets the Redraw property to False to avoid flicker, then moves
the column that was clicked to the left using the ColPosition() property and resorts the data.
Finally, it sets Redraw back on.

If the user double-clicked on the Sales Person column, here's what would happen:

There we go. You can see at a glance who sold what and where. But there's still something missing. If would be really
nice to show subtotals next to the dtailed data, wouldn't it?
4) Subtotals

Adding subtotals is really easy. FlexArray has a Subtotal method that makes it almost trivial. To
make things interesting, let's say we want an overall sales total plus subtotals for the first data
column (in the example above, that would be Sales Person).

All we need to do is modify the SortData routine slightly:

 Sub SortData()

 ' clear old subtotals
 fa.SubtotalPosition = flexSTAbove
 fa.Subtotal flexSTClear

 ' sort the data
 fa.Select 1, 0, 1, fa.Cols - 1
 fa.Sort = flexSortGenericAscending

 ' insert new subtotals
 fa.Subtotal flexSTSum, 0, 3, "#,###.00", 1, fa.BackColor
 fa.Subtotal flexSTSum, -1, 3, "#,###.00", 1, fa.BackColor
End Sub

The routine starts by using the Subtotal method to clear any old subtotals. If also sets the
SubtotalPosition property so the subtotals are inserted before the group of rows they refer to,
rather than after.

The routine then performs the sorting , using the original code, and finally inserts the new subtotals.

The first Subtotal statement starts by specifying the function to be used, in this case flexSTSum, a
simple sum. Next comes the number of the column to be totalled, in this case column 0. This
means that every time the contents of column 0 change, a subtotal will be inserted. Next comes the
column with the numbers to be added together, in this case column3, Amount Sold. The other
parameters are optional: a format for the subtotals and the back and fore colors to be used for the
new subtotal rows.

The second Subtotal statement is almost identical, except it tells the contorl to total on column -1.
By specifying a negative column number, we are effectively asking the control to insert a grand
total.

Here's the result:

That's very informative, don't you agree? We could easily add more levels of subtotals, or calculate average sales,
maxima and minima, or standard deviations.
We could also add outlining, the ability to expand and collapse detail rows under a subtotal row. To do this, you would
simply add a fixed column to the FlexArray, then set the OutlineBar property to a non-zero value. The fixed column
would diplay an outline tree with buttons for collapsing and expanding the outline. Try it.

The next section shows how you can create custom outlines without using subtotals.

Outline Demo
This sample projects shows how you can structure data using FlexArray's outlining features. If you
have used the Windows Explorer, you already know how useful it is to be able to open and close
(or expand and collapse) entire branches of an outline so you can see what you want and not
clutter the display with unnecessary details. Why not apply the same principle to your data?

This sample project reads several INI files and presents each one as a branch, with sections
underneath wchich are also branches, that can be collapsed or expanded to show its tokens and
settings.

1) Create the Control
Start a new Visual Basic project including vsFlex2 (if you don’t know how to add OCX files to a
project, consult the Visual Basic manual). The vsFlex2 control icons will be added to the Visual
Basic toolbox.

Create a FlexArray object on the form by clicking the FlexArray icon on the toolbox (), then
clicking and dragging on the form.

Next, set the following control properties:
 Cols = 3

ExtendLastCol = True
FormatString = " |Token |Setting"
Name = fa
OutlineBar = flexOutlineBarComplete
Rows = 1
SubtotalPosition = flexSTAbove

2) Add code to read the data
Double-click the form and add the following code to the Form_Load event:

 Private Sub Form_Load()
 AddOutline "Win.ini"
 AddOutline "System.ini"
 AddOutline "Progman.ini"
 fa.Outline 0
End Sub

The code calls another routine to read in three INI files (win, system, and progman) and then sets
the outline level to zero using the Outline method. Of course, the real work is done by the
AddOutline routine, listed below:

 Sub AddOutline(inifile$)
 Dim ln$, s$, p%
 With fa
 ' create master branch
 .AddItem Chr(9) & inifile
 .IsSubtotal(fa.Rows - 1) = True
 .Select fa.Rows - 1, 1
 .CellFontBold = True
 ' read ini file
 Open "c:\windows\" & inifile For Input As #1
 While Not EOF(1)
 Line Input #1, ln
 ' it's a section
 If Left(ln, 1) = "[" Then
 .AddItem Chr(9) & " " & Mid(ln, 2, Len(ln) - 2)
 .IsSubtotal(fa.Rows - 1) = True
 .RowData(fa.Rows - 1) = 1 ' outline level
 .Select fa.Rows - 1, 1
 .CellFontBold = True
 ' it's a regular line
 ElseIf InStr(ln, "=") > 0 Then
 p = InStr(ln, "=")
 s = Chr(9) & " " & Left(ln, p - 1)
 s = s & Chr(9) & Mid(ln, p + 1)
 .AddItem s

 End If
 Wend
 Close #1
 End With
End Sub

This routine a longer than most we're using. Sorry about that. But it is pretty simple: It starts by
adding a row to the FlexArray control containing the name of the INI file being read. It marks the
row as a subtotal using the IsSubtotal() property so the FlexArray control will know how to build the
outline tree. It also sets the CellFontBold property to True to make the outline look better.

Next, the routine reads the INI file line by line. Section names are enclosed in square brackets. The
code adds them to the control and then marks them as subtotals much the same way it marked the
file name. The difference is that here it also sets the RowData() property to 1, indicating this is a
level-1 branch. This subordinates all these branches to the file name, which is a level-0 branch.

Regular lines are parsed into token and setting and then added to the control. They are not marked
as subtotals.

The project is pretty much done at this point. If you run it now, you should get a display more or less
like this:

If you click on the plus signs, you'll expand the branch and will be able to see the contents of the each INI file. If you
click the buttons at the top of the outline bar, you'll set the outline level for the control. For example, the display above
shows only the level-0 branches. If you clicked on the level-1 button on the outline bar, the display would change to
something like this:

Pretty easy, huh? You may expand the whole outline by shift-clicking the buttons at the top of the outline bar, or use
the plus and minus buttons to collapse and expand individual branches.
The FlexArray provides the expanding and collapsing for you, but you ma extend and customize its behavior. Every
time a branch is expanded or collapsed, FlexArray fires the Collapsed event so you may take actions in response to
that. Furthermore, you may use the IsCollapsed() property to get and set the collapsed state of each branch in code.
2) Add mouse an keyboard handling

Let's say we wanted to allow users to expand and collapse outline branches by double-clicking on a
row itself, rather than on the outlie bar. Here's the code to do that:

 Private Sub fa_DblClick()

 Dim r%
 With fa
 r = .Row
 If .IsCollapsed(r) = flexOutlineCollapsed Then
 .IsCollapsed(r) = flexOutlineExpanded
 Else
 .IsCollapsed(r) = flexOutlineCollapsed
 End If
 End With
End Sub

The code checks the current row. If it is collapsed, then it expands it. Otherwise, it collapses it.
Collapsing a detail row actually collapses its entire branch.

We can use the same code to implement the keyboard interface. We just call the DblClick event
handler from the KeyPress handler:

 Private Sub fa_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then fa_DblClick
End Sub

That's it. If you run the project, you'll see that the outline is easy to use and makes the data in the
control easy to understand.

If you followed all the samples, you have a good understanding of the main FlexArray features. For
more and more sophisticated sample projects, check out the distribution disks.

FlexArray Reference
Description A FlexArray control displays a series of rows and columns. The intersection of a row and column is

a cell. You can read and set the contents of each cell programmatically.

Remarks You can put text, a picture, or both in any cell of a FlexArray. The Row and Col properties specify
the current cell in a FlexArray. You can specify the current cell in code, or the user can change it at
run time using the mouse or the arrow keys. The Text property references the contents of the
current cell.

If a cell's text is too long to be displayed in the cell, and the WordWrap property is set to True, the
text wraps to the next line within the same cell. To display the wrapped text, you may need to
increase the cell's column width or row height (using the ColWidth() or RowHeight() properties).

Use the Rows and Cols properties to determine the number of columns and rows in a FlexArray
control.

When a new element of a control array is loaded at run time, the new element does not inherit the
original control's run-time properties.

File Name VSFLEX2.OCX (32-bit version), or
VSFLEX2-.OCX (16-bit version)

Object Type vsFlexArray

Note              Before you can use a FlexArray control in your application, you must add vsFlex2 to your project
(see the Visual Basic manual for details). To automatically include vsFlex2 in new projects, put it in
an AUTOLOAD file. When distributing your application, you should follow the instructions in the
Distribution section of the vsFlex2 documentation.

FlexArray Summary
Properties (default: Text)

* AllowBigSelection * AllowUserResizing Appearance
* AutoResize * BackColor * BackColorBkg
* BackColorFixed * BackColorSel BorderStyle
* BottomRow * CellAlignment * CellBackColor
* CellFloodColor * CellFloodPercent * CellFontBold
* CellFontItalic * CellFontName * CellFontSize
* CellFontStrikethru * CellFontUnderline * CellFontWidth
* CellForeColor * CellHeight * CellLeft
* CellPicture * CellPictureAlignment * CellTextStyle
* CellTop * CellWidth * ClientHeight
* ClientWidth * Clip * Col
* ColAlignment * ColData * ColIsVisible
* ColPos * ColPosition * Cols
* ColSel * ColWidth * ComboList
* DataSource * Editable Enabled
* ExtendLastCol * FillStyle * FixedAlignment
* FixedCols * FixedRows * FloodColor
* FocusRect Font FontBold

FontItalic FontName FontSize
FontStrikethru FontUnderline FontWidth

* ForeColor * ForeColorFixed * ForeColorSel
* FormatString * GridColor * GridColorFixed
* GridLines * GridLinesFixed * GridLineWidth
* HighLight hWnd * IsCollapsed
* IsSelected * IsSubtotal * LeftCol
* MergeCells * MergeCol * MergeRow
* MouseCol MouseIcon MousePointer
* MouseRow * OutlineBar * Picture
* PictureType * Redraw * RightCol
* Row * RowData * RowHeight
* RowHeightMin * RowIsVisible * RowPos
* RowPosition * Rows * RowSel
* ScrollBars * ScrollTrack * SelectionMode
* Sort * SubtotalPosition * Text
* TextArray * TextMatrix * TextStyle
* TextStyleFixed * TopRow * TreeColor
* Value * ValueMatrix * Version
* VirtualData * WordWrap

Methods
* AddItem * RemoveItem * Clear
* EditCell * Subtotal Refresh
* Outline * Select * AutoSize

Events
* SelChange * RowColChange * EnterCell
* LeaveCell * Scroll * Compare

Click DblClick KeyDown
KeyPress KeyUp MouseDown
MouseMove MouseUp * UserResized

* Collapsed * Validate * AfterEdit
* BeforeEdit

AddItem Method
Description Adds a row to the control.

Usage              [form!]vsFlexArray.AddItem item$ [, row%]

Remarks The AddItem method has these parts:

item$
String expression to add to the control. Use the tab character (Chr$(9)) to separate the contents of
each cell in the row being added.

row%
Integer representing the position within the control where the new row is to be inserted (row 0 is the
first row). If this part is omitted, the new row is appended at the bottom of the control.

Example ' create a row string
s$ = "Qtr 1" & Chr$(9) & "2312.32"

' insert it at the top
vsFlexArray.AddItem s$, 0

' insert it at the bottom
vsFlexArray.AddItem s$

AfterEdit Event [2]
Description Fired after the control exits cell-editing mode.

Usage              Sub vsFlexArray_AfterEdit(ByVal row%, ByVal col%)

Remarks This event gets fired after the contents of a cell have been changed by the user.

The AfterEdit event is useful for performing actions such as re-sorting the data or calculating
subtotals.

To perform validation, use the Validate event instead.

See also the the Editable and ComboList properties and the EditCell method .

AllowBigSelection Property
Description Sets/returns whether clicking on the fixed area should select entire columns and rows.

Usage              [form!]vsFlexArray.AllowBigSelection[= setting%]

Remarks This property is True by default.

Clicking on the top left fixed cell selects the entire control.

Data Type Boolean

AllowUserResizing Property
Description Sets/returns whether the user should be allowed to resize rows and columns with the mouse.

Usage              [form!]vsFlexArray.AllowUserResizing[= setting%]

Settings              The AllowUserResizing property settings are:

flexResizeNone
flexResizeColumns
flexResizeRows
flexResizeBoth

Remarks If this property is set to a value other than flexResizeNone, the user can resize rows or columns at
run time by using the mouse, as with the Microsoft Grid control.

To resize rows or columns, the mouse must be over the fixed area of the control, and close to a
border between rows or columns. The mouse pointer will then change into an appropriate sizing
pointer and the user can drag the row or column to change the row height or column width.

Rows with zero height and columns with zero width cannot be resized by the user. If you want to
make them very small but still resizable, set their height or width to one, not to zero.

After the user resizes a row or column, the UserResized event is fired.

Data Type Integer

AutoResize Property [2]
Description Sets/returns whether column widths should be automatically adjusted when data is loaded from the

database.

Usage              [form!]vsFlexArray.AutoResize[= setting%]

Remarks If this property is set to True, the control automatically resizes its columns to fit the widest entry
every time new data is read in from the data base. This occurs by default when the control is
loaded and every time the Refresh method is invoked for the data source control.

For this property to work, the DataSource property must be set to a valid data control.

See also the AutoSize method.

Data Type Boolean

AutoSize Method [2]
Description Resizes column widths to fit widest entry.

Usage              [form!]vsFlexArray.AutoSize col1%[, col2%, equal%]

Remarks The AutoSize method has three parts:

col1%, col2%
Specify the first and last columns to be resized so their widths fit the widest entry in each column.
The valid range for these parameters is between 0 and Cols-1. If col2% is omitted, then only
col1% is resized.

equal%
If True, all columns between col1% and col2% are set to the same width. If False, then each
column is resized independently. If this parameter is omitted, then it is assumed to be False.

BackColor* Properties
Description Sets/returns the background color of various elements of the control.

Usage              [form!]vsFlexArray.BackColor[= setting&]
[form!]vsFlexArray.BackColorBkg[= setting&]
[form!]vsFlexArray.BackColorFixed[= setting&]
[form!]vsFlexArray.BackColorSel[= setting&]

Remarks The picture below shows what part of the control each property refers to:

To set the background color of individual cells, use the CellBackColor property.

Data Type Color

BeforeEdit Event [2]
Description Fired before the control enters cell editing mode.

Usage              Sub vsFlexArray_BeforeEdit(ByVal row%, ByVal col%, cancel%)

Remarks This event is fired immediately before the control enters cell editing mode, and gives you a chance
to prevent editing or to supply a list of choices for a drop-down list.

The row% and col% parameters specify which cell is about to be edited.

The cancel% parameter is False by default. If you set it to True, then the control prevents the built-
in cell editor from being activated, and the cell retains its value.

If you do not cancel the editing process, you may supply a list of choices for a drop-down list
through the ComboList property. If you set ComboList to an empty string (""), a regular text editor
is used.

For details and examples, see the Editable property.

BottomRow Property [2]
Description Returns the last visible row in the control.

Usage              setting% = [form!]vsFlexArray.BottomRow

Remarks The bottom row returned may be only partially visible.

You cannot set this property. To scroll the contents o fthe control through code, set the TopRow
and LeftCol properties instead.

Data Type Integer

CellAlignment Property
Description Sets/returns the alignment of data in a cell or range.

Usage              [form!]vsFlexArray.CellAlignment[= setting%]

Settings              The CellAlignment property settings are:

flexAlignLeftTop
flexAlignLeftCenter
flexAlignLeftBottom
flexAlignCenterTop
flexAlignCenterCenter
flexAlignCenterBottom
flexAlignRightTop
flexAlignRightCenter
flexAlignRightBottom
flexAlignGeneral(strings to left, numbers to right)

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

Data Type Integer

CellBackColor, CellForeColor Properties
Description Sets/returns the background and foreground colors of individual cells or ranges.

Usage              [form!]vsFlexArray.CellBackColor[= setting&]
[form!]vsFlexArray.CellForeColor[= setting&]

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

Setting either of these properties to zero (black color) causes the control to paint the cell using the
standard colors (BackColor and ForeColor). Thus, to set either of these properties to black, set
them to RGB(1,0,0,) instead of RGB(0,0,0).

Data Type Color

CellFloodColor Property [2]
Description Sets/returns the color to be used for flooding a cell.

Usage              [form!]vsFlexArray.CellFloodColor[= setting&]

Remarks This property overrides the FloodColor property to determine the color to be used for flooding
individual cells.

Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

For details and examples, see the CellFloodPercent property.

Data Type Color

CellFloodPercent Property [2]
Description Sets/returns the percentage of flooding for a cell.

Usage              [form!]vsFlexArray.CellFloodPercent[= setting%]

Remarks This property allows you to fill up a portion of a cell so it can be used as a progress indicator or a
bar in a bar chart.

Setting this property to a value between -100 and 100 causes the cell to be filled with the color
specified by the FloodColor or CellFloodColor properties.

Positive values fill the cell from left to right. Negative values fill it from right to left.

Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

The example below illustrates the use of this property.

Example ' example to demonstrate cell flooding
' assumes there's a global array "count(2,8)"
Private Sub Form_Load()
 Dim i%
 Dim max!

 ' place text in cells, keep track of maximum
 For i = 0 To 7
 fa.TextMatrix(i + 1, 1) = Str(count(0, i))
 fa.TextMatrix(i + 1, 2) = Str(count(1, i))
 If count(0, i) > max Then max = count(0, i)
 If count(1, i) > max Then max = count(1, i)
 Next

 ' set CellFloodPercent, using max to scale from
 ' 0 to -100 for column 1 and from 0 to 100 for
 ' column 2:
 For i = 0 To 7
 fa.row = i + 1
 fa.col = 1
 fa.CellFloodPercent = -100 * count(0, i) / max
 fa.col = 2
 fa.CellFloodPercent = 100 * count(1, i) / max
 Next
End Sub

Data Type Integer

CellFont* Properties
Description Sets/returns the font to be used for individual cells or ranges of cells.

Usage              [form!]vsFlexArray.CellFontBold[= setting%]
[form!]vsFlexArray.CellFontItalic[= setting%]
[form!]vsFlexArray.CellFontName[= setting$]
[form!]vsFlexArray.CellFontSize[= setting!]
[form!]vsFlexArray.CellFontStrikethru[= setting%]
[form!]vsFlexArray.CellFontUnderline[= setting%]
[form!]vsFlexArray.CellFontWidth[= setting!]

Remarks Changing these properties affects the current cell or the current selection, depending on the setting
of the FillStyle property.

Setting CellFontSize to zero or CellFontName to an empty string resets the cell formatting and
causes the default font to be used.

Setting CellFontWidth to zero causes the default width to be used.

Data Type String (CellFontName)
Single (CellFontSize, CellFontWidth)
Boolean (CellFontBold, CellFontItalic, CellFontUnderline, CellFontStrikeThru)

CellHeight, CellLeft, CellTop, CellWidth Properties
Description Returns the position of the current cell, in Twips. Also brings the current cell into view, scrolling if

necessary.

Usage              variable& = [form!]vsFlexArray.CellHeight
variable& = [form!]vsFlexArray.CellLeft
variable& = [form!]vsFlexArray.CellTop
variable& = [form!]vsFlexArray.CellWidth

Remarks These properties are useful for placing other controls over or near a specific cell. Whenever you
read any of these properties, the control assumes that you want to work on the current cell and it
automatically brings it into view, scrolling if necessary.

vsFlexArray version 2.0 offers in-cell editing of strings and combol lists, so these properties are not
needed for most common editing needs (see the Editable and ComboList properties for details).

Still, you may want to link controls to cells for editing dates, pictures, or other types of data, in which
case these propeties become useful. See the samples on the distribution disk for examples of
custom cell-editing.

Data Type Long

CellPicture Property
Description Sets/returns a picture to be displayed in a cell or range.

Usage              [form!]vsFlexArray.CellPicture[= picture]

Remarks You can set this property at run time using Visual Basic's LoadPicture function on a bitmap, icon, or
metafile, or by assigning to it another control’s Picture property.

Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

Each cell may contain text and a picture. The relative position of the text and picture is determined
by the CellAlignment and CellPictureAlignment properties.

Data Type Picture

CellPictureAlignment Property
Description Sets/returns the alignment of pictures in a cell or range.

Usage              [form!]vsFlexArray.CellPictureAlignment[= setting%]

Settings              The CellPictureAlignment property settings are:

flexAlignLeftTop
flexAlignLeftCenter
flexAlignLeftBottom
flexAlignCenterTop
flexAlignCenterCenter
flexAlignCenterBottom
flexAlignRightTop
flexAlignRightCenter
flexAlignRightBottom
flexAlignStretch
flexAlignTile

Remarks Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

See also the CellPicture property.

Data Type Integer

CellTextStyle Property
Description Sets/returns 3D effects for text in a cell or range.

Usage              [form!]vsFlexArray.CellTextStyle[= setting%]

Settings              The CellTextStyle property settings are:

flexTextFlat
flexTextRaised
flexTextInset
flexTextRaisedLight
flexTextInsetLight

Remarks Settings flexTextRaised and flexTextInset work best for large and bold fonts. Settings
flexTextRaisedLight and flexTextInsetLight work best for small regular fonts.

Changing this property affects the current cell or the current selection, depending on the setting of
the FillStyle property.

See also the TextStyle and TextStyleFixed properties.

Data Type Integer

Clear Method [2]
Description Clears the contents of the control. Optional parameters specify what to clear and where.

Usage              [form!]vsFlexArray.Clear [where%] [, what%]

Remarks The Clear method has two optional parts:

where%
Specifies what part of the control should be cleared. Valid settings are:
flexClearEverywhere (default)
flexClearScrollable
flexClearSelection

what%
Specifies what should be cleared. Valid settings are:
flexClearEverything (default)
flexClearText
flexClearFormatting including pictures

The Clear method does not affect the number of rows and columns on the control.

ClientHeight, ClientWidth Properties [2]
Description Return the size of the control, in Twips, excluding its borders.

Usage              variable& = [form!]vsFlexArray.ClientHeight
variable& = [form!]vsFlexArray.ClientWidth

Remarks These properties may be useful for setting column widths and row heights.

The example shows how to make a control with equal-width columns that extend across the entire
control. Note that the ExtendLastCol property is set to True to eliminate round-off errors.

Example ' ColWidth(-1) means all columns
fa.ColWidth(-1) = fa.ClientWidth / fa.Cols

' make last column extend to fix round-off errors
fa.ExtendLastCol = True

Data Type Long

Clip Property
Description Sets/returns the contents of a range.

Usage              [form!]vsFlexArray.Clip[= setting$]

Remarks The string assigned to Clip may contain the contents of multiple rows and columns. Tab characters
(Chr$(9)) indicate column breaks, and carriage return characters (Chr$(13)) indicate row breaks.

When a string is assigned to Clip, only the selected cells are affected. If there are more cells in the
selected region than are described in the clip string, the remaining cells are left alone. If there are
more cells described in the clip string than in the selected region, the unused portion of the clip
string is ignored.

The example below puts text into a selected area two rows high and two columns wide.

Example ' build clip string
s$ = "1st" & Chr$(9) & "a" & Chr$(13)
s$ = s$ & "2nd" & Chr$(9) & "b"

' paste it over current selection
vsFlexArray.Clip = s$

Data Type String

Col, Row Properties
Description Sets/returns the active row and column.

Usage              [form!]vsFlexArray.Col[= setting%]
[form!]vsFlexArray.Row[= setting%]

Remarks Use these properties to make a cell current or to find out which row or column contains the current
cell. Columns and rows are numbered from zero, beginning at the top for rows and at the left for
columns.

Note that the Col, Row properties are not the same as the Cols, Rows properties.

Setting these properties automatically resets RowSel and ColSel, so the selection becomes the
current cell. Therefore, to specify a block selection, you must set Row and Col first, then set
RowSel and ColSel (or use the Select method to do it all with a single statement).

Data Type Integer

ColAlignment Property
Description Sets/returns the column alignment.

Usage              [form!]vsFlexArray.ColAlignment(col%)[= setting%]

Settings              The ColAlignment property settings are:

flexAlignLeftTop
flexAlignLeftCenter
flexAlignLeftBottom
flexAlignCenterTop
flexAlignCenterCenter
flexAlignCenterBottom
flexAlignRightTop
flexAlignRightCenter
flexAlignRightBottom
flexAlignGeneral(strings to left, numbers to right)

Remarks Any column may have an alignment that is different from other columns. This property affects all
cells in the specified column, including those in fixed rows (unless you override this setting with the
FixedAlignment() property).

If row% is -1, then the control assumes you want to set the alignment of all columns at once.

To set the alignment of the fixed parts of a column, use the FixedAlignment() property.

To set individual cell alignments, use the CellAlignment property.

To set column alignments at design time, use the FormatString property.

Data Type Integer

ColData, RowData Properties
Description Sets/returns a long value with user-defined information.

Usage              [form!]vsFlexArray.ColData(col%)[= setting&]
[form!]vsFlexArray.RowData(row%)[= setting&]

Remarks Use RowData() and ColData() to associate a specific number with each row or column on a
vsFlexArray. You can then use these numbers in code to identify the items.

A typical use for RowData() is to keep indices into an array of data structures associated with each
row.

If you use vsFlexArray's built-in subtotalling and outlining features, RowData() is used to store the
subtotal level (see the Outline and SubTotal methods).

Data Type Long

ColIsVisible, RowIsVisible Property [2]
Description Returns whether a given row or column is currently within view.

Usage              variable% = [form!]vsFlexArray.ColIsVisible(col%)
variable% = [form!]vsFlexArray.RowIsVisible(row%)

Remarks These properties only determine whether the specified column or row are within the visible area of
the control or whether they have been scrolled off the visible part of the control. If a row has zero
height or is collapsed but is within view, RowIsVisible() will return True.

These properties are provided for backward compatibility with the Microsoft Grid control.

Data Type Boolean

Collapsed Event [2]
Description Fired after the user expands or collapses row groups.

Usage              Sub vsFlexArray_Collapsed()

Remarks This event gets fired after the collapsed state of a row or group of rows changes, as a result of a
call to the Outline method, setting the IsCollapsed() property, or by user interaction with the
OutlineBar.

For details about outlining and an example, see the OutlineBar property.

ColPos, RowPos Property [2]
Description Returns the top of a row or left of a column relative to the edge of the control, in Twips.

Usage              variable& = [form!]vsFlexArray.ColPos(col%)
variable& = [form!]vsFlexArray.RowPos(row%)

Remarks These properties are provided for backward compatibility with the Microsoft Grid control.

Data Type Long

ColPosition, RowPosition Properties
Description Sets a new position for a row or a column.

Usage              [form!]vsFlexArray.ColPosition(col%)[= setting%]
[form!]vsFlexArray.RowPosition(row%)[= setting%]

Remarks The index and setting must correspond to valid row or column numbers (in the range 0 to Rows - 1
or Cols - 1) or an error will be generated.

When a column or row is moved with ColPosition() or RowPosition(), all formatting information
moves with it, including width, height, alignment, colors, fonts, etc. To move text only, use the Clip
property instead.

The example below shows how to make a column the leftmost column when the user clicks on it.

Example Sub vsFlexArray_Click ()
 Dim col%

 ' find out which column was clicked
 col% = vsFlexArray.MouseCol

 ' move it all the way to the left
 vsFlexArray.ColPosition(col%) = 0
End Sub

Data Type Integer

Cols, Rows Properties
Description Sets/returns the total number of columns or rows.

Usage              [form!]vsFlexArray.Cols[= setting%]
[form!]vsFlexArray.Rows[= setting%]

Remarks You can use these properties to expand and shrink a vsFlexArray dynamically at run time.

The minimum number of rows and columns is 0. The maximum number is limited by the memory
available on your computer, as long as the total number of cells (rows times columns) is smaller
than 250,000.

If FlexArray runs out of memory while trying to add rows, columns, or cell contents, it will trigger a
VB error. To make sure your code works properly when dealing with large arrays, you should add
error-trapping code to your programs.

Note that the Cols, Rows properties are not the same as the Col, Row properties.

Data Type Integer

ColSel, RowSel Properties
Description Sets/returns the limits of a range.

Usage              [form!]vsFlexArray.ColSel[= setting%]
[form!]vsFlexArray.RowSel[= setting%]

Remarks Use these properties to select a specific region of the control from code, or to determine the
dimensions of an area that the user has selected.

The cursor it the cell at Row, Col. The selection is the region between rows Row and RowSel and
columns Col and ColSel. Note that RowSel may be above or below Row, and ColSel may be to
the left or to the right of Col.

Whenever you set the Row and Col properties, RowSel and ColSel are automatically reset so the
cursor becomes the current selection. If you want to select a block of cells from code, you must set
the Row and Col properties first, then set RowSel and ColSel (or use the Select method do do it
all with a single statement).

Data Type Integer

ColWidth Property
Description Sets/returns the width of the specified column in Twips.

Usage              [form!]vsFlexArray.ColWidth(col%)[= setting&]

Remarks Use this property to set the width of a column at run time. For instructions on setting column widths
at design-time, see the FormatString property.

You can set ColWidth() to zero to create invisible columns, or to -1 to reset the column width to its
default value, which depends on the size of the current font.

If col% is -1, then the control assumes you want to set the width of all columns to the specified
value.

Data Type Long

ComboList Property [2]
Description Sets/returns the contents of the cell editor's combo list.

Usage              [form!]vsFlexArray.ComboList[= setting$]

Remarks This property allows the user to change a cell's contents by picking values from a combo list.

To use it, the Editable property must be set to True, and you must respond to the BeforeEdit event
by setting the ComboList property to a string containing the list of options, separated by pipe
characters ("|"). If you want the user to edit the cell using a regular text box, set the ComboList
property to an empty string ("").

The example below shows how this works. The first column contains a list of names, which are
picked from combo lists, and the second column contains values, which are entered using a regular
text box.

Example Private Sub fa_BeforeEdit(ByVal row%, ByVal col%, cancel%)
 Dim s$

 ' build choice list
 s$ = "Robert|John Paul|Jimmy|Bonzo"

 Select Case col

 ' use combo list for col 0
 Case 0: fa.ComboList = s$

 ' use text box for other columns
 Case Else: fa.ComboList = ""
 End Select
End Sub

Data Type String

Compare Event
Description Fired when the Sort property is set to flexSortCustom, to compare rows.

Usage              Sub vsFlexArray_Compare(row1%, row2%, compare%);

Remarks When the Sort property is set to flexSortCustom, this event is fired several times, to compare row
pairs. The event handler should compare rows row1% and row2% and return the result in the
compare% parameter:

-1 if row1% should appear before row2%
0 if the rows are equal
+1 if row1% should appear after row2%.

Note that custom sorts are orders of magnitude slower than the built in sorts, so you should avoid
using them unless you data sets are small.

See also the Sort property.

DataSource Property [2]
Description Sets/returns the data source.

Usage              [form!]vsFlexArray.DataSource[= dataControl]

Remarks To bind a vsFlexArray to a table in a database, you must specify a Data control in the DataSource
property at design time using the Properties window. This property is not available at run time.

The vsFlexArray data binding is read-only: changes made to the control are not written back
automatically to the database. If you wish to update the database, you must write code to do that.

The contents of a data-bound vsFlexArray are updated whenever the associated Data control is
refreshed.

See also the VirtualData and AutoResize properties for more data-binding options.

Data Type Data Source

Editable Property [2]
Description Sets/returns whether the control should provide in-cell editing.

Usage              [form!]vsFlexArray.Editable[= setting%]

Remarks If the Editable property is set to True, the control provides in-cell editing using a regular text editor
or a drop-down list box.

By default, the control goes into editing mode when the user presses the edit key (F2), the space
bar, or any printable character. You may force the control into cell editing mode by using the
EditCell method, or prevent it from entering edit mode by trapping the BeforeEdit event and
setting the cancel% parameter to True.

The editor used is a text editor or a drop-down list, depending on the setting of the ComboList
property. You may set this property in response to the BeforeEdit event.

You may perform data validation in response to the Validate event, and perfrom post-editing work
— such as re-sorting the control — in response to the AfterEdit event.

See the ComboList property and EditCell method for examples of cell-editing features.

Data Type Boolean

EditCell Method [2]
Description Puts the control in cell-editing mode.

Usage              [form!]vsFlexArray.EditCell

Remarks If the Editable property is set to True, the control goes into editing mode automatically when the
user presses the edit key (F2), the space bar, or any printable character. You may use the EditCell
method to force the control into cell editing mode.

Note that EditCell will force the control into editing mode even if the Editable property is set to
False.

A typical use for this method is shown in the example below. The code traps the right mouse button
to initiate editing.

Example Sub fa_MouseDown(Button%, Shift%, X!, Y!)
 If Button = 2 Then
 fa.Select fa.MouseRow, fa.MouseCol
 fa.EditCell
 End If
End Sub

EnterCell Event
Description Fired when a cell becomes active.

Usage              Sub vsFlexArray_EnterCell()

Remarks This event occurs whenever the user clicks a cell other than the selected cell or when you
programmatically change the active cell within a selection.

See also the LeaveCell event.

ExtendLastCol Property [2]
Description Sets/returns whether the last column should be adjusted to fit the control width.

Usage              [form!]vsFlexArray.ExtendLastCol[= setting%]

Remarks This property only affects painting. It does not modify the ColWidth() property for the last column.

Data Type Boolean

FillStyle Property
Description Sets/returns whether changes to the Text or Cell formatting properties apply to the current sell or to

the selection.

Usage              [form!]vsFlexArray.FillStyle[= setting%]

Settings              The FillStyle property settings are:

flexFillSingle
flexFillRepeat

Remarks If FillStyle is set to flexFillSingle, then setting the Text property or any of the Cell formatting
properties affects the current cell only.

If FillStyle is set to flexFillRepeat, then setting the Text property or any of the Cell formatting
properties affects the whole selected range.

The FillStyle property also determines whether changes caused by in-cell editing should apply to
the current cell only or to the entire selection.

Data Type Integer

FixedAlignment Property [2]
Description Sets/returns the alignment for the fixed rows in a column.

Usage              [form!]vsFlexArray.FixedAlignment(col%)[= setting%]

Settings              The FixedAlignment property settings are:

flexAlignLeftTop
flexAlignLeftCenter
flexAlignLeftBottom
flexAlignCenterTop
flexAlignCenterCenter
flexAlignCenterBottom
flexAlignRightTop
flexAlignRightCenter
flexAlignRightBottom
flexAlignGeneral(strings to left, numbers to right)

Remarks The FixedAlignment() property behaves like the ColAlignment() property except that it only
affects the alignment of fixed cells. You can use FixedAlignment() to align headings differently
from the rest of the columns.

You can also use the CellAlignment property to control the alignment of individual cells.

This property is provided for backward compatibility with the Microsoft Grid control.

Data Type Integer

FixedCols, FixedRows Properties
Description Sets/returns the total number of fixed (non-scrollable) columns or rows.

Usage              [form!]vsFlexArray.FixedCols[= setting%]
[form!]vsFlexArray.FixedRows[= setting%]

Remarks A fixed column is a stationary column on the left side of the control. A fixed row is a stationary row
along the top of the control. You can have zero or more fixed columns and zero or more fixed rows.

Fixed columns and rows do not move when the other columns or rows in the control are scrolled.
You can select the colors, font, grid and text style use for the fixed columns and rows.

Fixed columns and rows are typically used in spreadsheet applications to display row numbers and
column letters or in database applications to show field names.

Data Type Integer

FloodColor Property [2]
Description Sets/returns the color to be used for flooding cells.

Usage              [form!]vsFlexArray.FloodColor[= setting&]

Remarks The color specified is used for painting the flooded portion of cells which have the
CellFloodPercent property set to a non-zero value.

To control the flooding color of individual cells, set the CellFloodColor property.

For details and an example, see the CellFloodPercent property.

Data Type Color

FocusRect Property
Description Sets/returns the type of focus rectangle that should be drawn around the current cell.

Usage              [form!]vsFlexArray.FocusRect[= setting%]

Settings              The FocusRect property settings are:

flexFocusNone
flexFocusLight
flexFocusHeavy

Remarks If a focus rectangle is drawn, then the current cell is painted in the background color, as in most
spreadsheets and grids. Otherwise, the current cell is painted in the selection color, so you can see
which cell is selected even without the focus rectangle.

Data Type Integer

ForeColor* Properties
Description Sets/returns the colors used to draw text on each part of the control.

Usage              [form!]vsFlexArray.ForeColor[= setting&]
[form!]vsFlexArray.ForeColorFixed[= setting&]
[form!]vsFlexArray.ForeColorSel[= setting&]

Remarks The picture below shows what part of the control each property refers to:

To set the text color of individual cells, use the CellForeColor property.

Data Type Color

FormatString Property
Description Sets up the control's column widths, alignments, and fixed row and column text at design time.

Usage              [form!]vsFlexArray.FormatString[= setting&]

Remarks Use FormatString at design time to define the following elements of the control: number of rows
and columns, text for row and column headings, column width, and column alignment.

The FormatString is made up of segments separated by pipe characters ("|"). The text between
pipes defines a column, and it may contain the special alignment characters "<", "^", or ">", to align
the entire column to the left, center, or right. The text is assigned to row zero, and its width defines
the width of each column.

The FormatString may also contain a semi-colon (";"), which causes the remaining of the string to
be interpreted as row heading and width information. The text is assigned to column zero, and the
longest string defines the width of column zero.

If the first character in the FormatString is an equals sign ("="), then all non-fixed rows will have
the same width.

vsFlexArray will create additional rows and columns to accommodate all fields defined by the
FormatString, but it will not delete rows or columns if only a few fields are specified.

The examples below illustrate how the FormatString property works.

Example ' set column headers
 s$ = "<Region |<Product |<Employee |>Sales "
 vsFlexArray.FormatString = s$

 ' set row headers (note semicolon at start)
 s$ = ";Name|Adress|Telephone|Social Security#"
 vsFlexArray.FormatString = s$

 ' set column and row headers
 s$ = "|Name|Adress|Telephone|Social Security#"
 s$ = s$ & ";|Robert|Jimmy|Bonzo|John Paul"
 vsFlexArray.FormatString = s$

Data Type String

GridColor, GridColorFixed Properties
Description Sets/returns the color used to draw the grid lines.

Usage              [form!]vsFlexArray.GridColor[= setting&]
[form!]vsFlexArray.GridColorFixed[= setting&]

Remarks The GridColor property is ignored when GridLines is set to one of the 3D styles. Raised and inset
grid lines are always drawn in black and white.

Data Type Color

GridLines, GridLinesFixed Properties
Description Sets/returns what type of lines should be draw between cells.

Usage              [form!]vsFlexArray.GridLines[= setting%]
[form!]vsFlexArray.GridLinesFixed[= setting%]

Settings              The GridLines, GridLinesFixed property settings are:

flexGridNone
flexGridFlat
flexGridInset
flexGridRaised
flexGridFlatHorz
flexGridInsetHorz
flexGridRaisedHorz
flexGridSkipHorz
flexGridFlatVert
flexGridInsetVert
flexGridRaisedVert
flexGridSkipVert

Remarks GridColor determines the color of the grid lines when the GridLines property is set to one of the
flat styles (flexGridFlat, flexGridFlatHorz, flexGridVert). Raised and inset grid lines are always
drawn in black and white.

See also the GridLineWidth property.

Data Type Integer

GridLineWidth Property [2]
Description Sets/returns the width of the grid lines, in Pixels.

Usage              [form!]vsFlexArray.GridLineWidth[= setting%]

Remarks GridLineWidth determines the thickness, in pixels, of the grid lines when the GridLines property is
set to one of the flat styles (flexGridFlat, flexGridFlatHorz, flexGridFlatVert). Raised and inset
grid lines are always drawn with a width of 1 pixel.

This property is provided for backward compatibility with the Microsoft Grid control.

Data Type Integer

HighLight Property
Description Sets/returns whether selected cells should be highlighted.

Usage              [form!]vsFlexArray.HighLight[= setting%]

Settings              The HighLight property settings are:

flexHighlightNever
flexHighlightAlways
flexHighlightWithFocus

Remarks When this property is set to flexHighlightNever and the user selects a range of cells, there is no
visual cue to show which cells are selected.

Data Type Integer

IsCollapsed Property [2]
Description Sets/returns the collapsed state of a row.

Usage              [form!]vsFlexArray.IsCollapsed(row%)[= setting%]

Settings              The IsCollapsed property settings are:

flexOutlineExpanded show everything
flexOutlineSubtotals show subordinate subtotals, hide data
flexOutlineCollapsed hide subordinate subtotals

Remarks Read this property to determine whether a row is visible or has been collapsed and is therefore
hidden from view.

Set this property to expand or collapse an outline programmatically.

When collapsing or expanding, the setting applies to the entire group of rows under the same
subtotal row. When you set this property, the control fires the Collapsed event.

If you set this property and there are no subtotal rows in the control, a runtime error will occur.

The example below shows the effect of each setting.

See also the Outline and Subtotal methods.

Example ' show all sales in East region
fa.IsCollapsed(1) = flexOutlineExpanded

' show all subtotals for East region
fa.IsCollapsed(3) = flexOutlineSubtotals

' show only the total for East region
fa.IsCollapsed(3) = flexOutlineCollapsed

Data Type Integer

IsSelected Property [2]
Description Sets/returns whether a row is selected (for ListBox-type selections).

Usage              [form!]vsFlexArray.IsSelected(row%)[= setting%]

Remarks This property allows you to select individual rows, not necessarily adjacent, independently of the
ColSel and RowSel properties.

To implement this type of row selection, you will normally set the SelectionMode property to
flexSelectionListBox, which allows the user to select individual rows using the mouse or the
keyboard, and to toggle the selection for a row by ctrl-clicking on it.

If you set SelectionMode to something other than flexSelectionListBox, you may still select and
de-select rows using the IsSelected() property, but the user will not be able to alter the selection
with the mouse or keyboard (unless, of course, you write the code to do it).

Data Type Boolean

IsSubtotal Property [2]
Description Sets/returns whether a row contains subtotals (as opposed to data).

Usage              [form!]vsFlexArray.IsSubtotal(row%)[= setting%]

Remarks This property allows you to determine whether a given row is a regular or subtotal row. The
difference between the two is that subtotal rows are used to provide outlining and that they may be
added and removed automatically with the Subtotal method.

You may set up your own custom subtotal rows by setting this property to True and setting the
RowData() property to indicate the outline levels. vsFlexArray will take of collapsing and expanding
the outline automatically.

See also the Outline and Subtotal methods.

Data Type Boolean

LeaveCell Event
Description Fired before the currently active cell changes to a different cell.

Usage              Sub vsFlexArray_LeaveCell()

Remarks This event is useful if you want to implement custom cell-editing capabilities. In this case, you can
trap this event to validate and apply changes to a cell before the user activates another cell.

The code below shows how this can be done. It assumes that there is a PictureBox control that is
used to edit the contents of the current cell.

See also the EnterCell event.

Example Sub FlexArray_LeaveCell ()

 ' if the picture box is up, copy its contents
 If PictureBox.Visible Then
 vsFlexArray.CellPicture = PictureBox
 PictureBox.Visible = False
 End If
End Sub

LeftCol Property
Description Sets/returns the leftmost visible column (other than a fixed column) in the control.

Usage              [form!]vsFlexArray.LeftCol[= setting%]

Remarks Use this property to scroll a vsFlexArray programmatically. Use the TopRow property to determine
the topmost visible row.

When setting this property, the largest possible column number is the total number of columns
minus the number of columns that will fit the display. Attempting to set LeftCol to a greater value
will cause the control to set it to the largest possible value.

If you need to ensure that a certain cell is visible, do not use this property. Simply make the cell
current by setting the Row and Col properties, then bring it into view by reading the CellTop
property.

Data Type Integer

MergeCells Property
Description Sets/returns whether cells with the same contents should be merged in a single cell.

Usage              [form!]vsFlexArray.MergeCells[= setting%]

Settings              The MergeCells property settings are:

flexMergeNever
flexMergeFree
flexMergeRestrictRows
flexMergeRestrictColumns
flexMergeRestrictAll

Remarks The vsFlexArray cell merging technology allows you to present data in a clear, appealing way.

To use it, you must set the MergeCells property to a value other than flexMergeNever, and then
set the MergeRow() and MergeCol() array properties to True for the rows and columns you wish to
merge.

The control will then merge cells with the same contents, and will update the merging automatically
to reflect changes to the contents of any cells.

When MergeCells is set to a value other than flexMergeNever, the control does not highlight the
current selection. This is done because merged cells can be part within the selection, and part
outside.

The difference between the Free and Restricted settings is whether cells with the same contents
should always be merged (Free settings) or only when adjacent cells to the left or to the top are
also merged.

The examples below illustrate the difference.

Example ' regular spreadsheet view
With vsFlexArray
 .MergeCells = flexMergeNever
 .MergeRow(0) = True
 .MergeRow(1) = True
 .MergeRow(2) = True
 .MergeRow(3) = False
End With

' free merging
' notice how the third employee cell
' (Donna) merges across products to
' its left and across sales to its right.
With vsFlexArray
 .MergeCells = flexMergeFree
 .MergeRow(0) = True
 .MergeRow(1) = True
 .MergeRow(2) = True
 .MergeRow(3) = False
End With

' restricted merging
' notice how the third employee cell
' (Donna) no longer merges across
' sales.
With vsFlexArray
 .MergeCells = flexMergeRestrictAll
 .MergeRow(0) = True
 .MergeRow(1) = True
 .MergeRow(2) = True
 .MergeRow(3) = False
End With

Data Type Integer

MergeCol, MergeRow Properties
Description Sets/returns whether a row (or column) should have its cells merged (see also the MergeCells

property).

Usage              [form!]vsFlexArray.MergeCol(col%)[= setting%]
[form!]vsFlexArray.MergeRow(row%)[= setting%]

Remarks If the MergeCells property is set to a non-zero value, adjacent cells with identical values are
merged if they are in a row whose MergeRow() property is set to True or in a column whose
MergeCol() property is set to True.

For details and examples, see the MergeCells property.

Data Type Boolean

MouseCol, MouseRow Properties
Description Sets/returns the row (or column) over which the mouse pointer is.

Usage              [form!]vsFlexArray.MouseCol[= setting%]
[form!]vsFlexArray.MouseRow[= setting%]

Remarks These properties return the mouse pointer coordinates in terms of rows and columns.

You may trap the MouseMove event and use these properties to display context-sensitive help for
individual cells, or to test whether the user has clicked on a fixed row or column.

Data Type Integer

Outline Method [2]
Description Sets an outline level for displaying subtotals.

Usage              [form!]vsFlexArray.Outline level%

Remarks This method collapses or expands an outline so that only subtotals of level level% or lower are
displayed.

If level% is negative, then the outline is totally expanded.

To set up an outline structure using automatic subtotals, see the Subtotal method. To set up a
custom outline structure, see he IsSubtotal() property.

See also the OutlineBar property.

Example ' expand the outline
fa.Outline -1

' show level 1 subtotals only
fa.Outline 1

' show levels 1 and 2 subtotals only
fa.Outline 2

' show levels 1, 2, and 3 subtotals only
fa.Outline 3

OutlineBar Property [2]
Description Sets/returns the type of outline bar that should be displayed.

Usage              [form!]vsFlexArray.OutlineBar[= setting%]

Settings              The OutlineBar property settings are:

flexOutlineBarNone
flexOutlineBarComplete
flexOutlineBarSimple

Remarks This property determines whether the control should reserve the first fixed column for displaying an
outline bar. The column's width is then set automatically by the control.

The outline bar contains a tree showing the outline structure and buttons that can be used to
collapse and expand portions of the outline (similar to a Visual Basic TreeView control or to the
Explorer).

Clicking on a collapsed branch expands it, clicking on an expanded branch collapses it, and shift-
clicking on a branch collapses it but shows the subordinate subtotals.

The flexOutlineBarSimple setting shows only the outline tree. The flexOutlineBarComplete
setting shows also a row of buttons at the top which can be used to set the outline level for the
entire control with a single click (clicking collapses and shift-clicking expands to the indicated level).

After the user expands or collapses the outline using the outline bar, the controls fires the
Collapsed event.

The color used to draw the outline tree is specified by the TreeColor property.

See also the Outline and Subtotal methods.

Data Type Integer

Picture Property
Description Returns a picture of the entire control (could be huge).

Usage              picture = [form!]vsFlexArray.Picture

Remarks This property returns a picture (bitmap) representation of the entire control, including rows and
columns that are not visible on the screen. If you have a vsFlexArray control with 1000 rows, for
example, the bitmap will include all of them, and the picture will be huge.

To create a picture of a part of the control, write a routine to hide all the elements you don't want to
show, get the picture, and then restore the control.

To reduce memory requirements for the bitmap and increase speed, you may consider setting the
PictureType property to flexPictureMonochrome. The picture will not look as nice, but it will
require less memory. The code below shows how you can trap out-of-memory errors and
automatically switch to monochrome mode.

The example below shows a routine that creates a picture of the the current selection.

Example Sub CopySelection(fa As Control)
 Dim i%, tr%, lc%, hl%

 ' get ready to operate
 fa.Redraw = False ' to eliminate flicker
 hl = fa.HighLight ' save current settings
 tr = fa.TopRow
 lc = fa.LeftCol
 fa.HighLight = 0 ' no highlight on picture

 ' hide non-selected rows and columns
 ' (saving original sizes)
 For i = fa.FixedRows To fa.Rows - 1
 If i < fa.Row Or i > fa.RowSel Then
 fa.RowData(i) = fa.RowHeight(i)
 fa.RowHeight(i) = 0
 End If
 Next
 For i = fa.FixedCols To fa.Cols - 1
 If i < fa.Col Or i > fa.ColSel Then
 fa.ColData(i) = fa.ColWidth(i)
 fa.ColWidth(i) = 0
 End If
 Next

 ' scroll to top left corner
 fa.TopRow = fa.FixedRows
 fa.LeftCol = fa.FixedCols

 ' copy picture (with error-trapping)
 Clipboard.Clear
 On Error Resume Next
 fa.PictureType = flexPictureColor
 Clipboard.SetData fa.Picture
 If Error <> 0 Then
 fa.PictureType = flexPictureMonochrome
 Clipboard.SetData fa.Picture
 Endif

 ' restore control
 For i = fa.FixedRows To fa.Rows - 1
 If i < fa.Row Or i > fa.RowSel Then
 fa.RowHeight(i) = fa.RowData(i)
 End If
 Next
 For i = fa.FixedCols To fa.Cols - 1
 If i < fa.Col Or i > fa.ColSel Then

 fa.ColWidth(i) = fa.ColData(i)
 End If
 Next
 fa.TopRow = tr
 fa.LeftCol = lc
 fa.HighLight = hl
 fa.Redraw = True
End Sub

Data Type Picture

PictureType Property
Description Sets/returns the type of picture that should be generated by the Picture property.

Usage              [form!]vsFlexArray.PictureType[= setting%]

Settings              The PictureType property settings are:

flexPictureColor
flexPictureMonochrome

Remarks Set this property to flexPictureColor to obtain a high-quality image. Set it to
flexPictureMonochrome to obtain a lower-quality image that consumes less memory and is faster
to print and render.

For an example, see the Picture property.

Data Type Integer

Redraw Property
Description Enables or disables redrawing of the FlexArray control.

Usage              [form!]vsFlexArray.Redraw[= setting%]

Remarks Use this property to reduce flicker while making extensive updates to the contents of the control.

For example, the code below turns repainting off, makes several changes to the contents of the
control, and then turns repainting back on to show the results.

Example ' freeze control to avoid flicker
fa.Redraw = False

' update vsFlexArray contents
For i% = fa.FixedRows To fa.Rows - 1
 fa.TextMatrix(i%, 1) = GetName(i%, 1)
 fa.TextMatrix(i%, 2) = GetName(i%, 2)
Next

' show results
fa.Redraw = True

Data Type Boolean

RemoveItem Method
Description Removes a row from the control.

Usage              [form!]vsFlexArray.RemoveItem row%

Remarks The RemoveItem method has these parts:

row%
Integer representing the row to remove. To remove the first row, use index = 0.

RightCol Property [2]
Description Returns the last visible column in the control.

Usage              setting% = [form!]vsFlexArray.RightCol

Remarks The column returned may be only partially visible.

You cannot set this property. To scroll the contents o fthe control through code, set the TopRow
and LeftCol properties instead.

Data Type Integer

RowColChange Event
Description Fired when the currently active cell changes to a different cell.

Usage              Sub vsFlexArray_RowColChange()

Remarks This event occurs whenever the user clicks a cell other than the selected cell or when you
programmatically change the active cell within a selection.

You can trigger this event in code by changing the current cell using the Col and Row properties.

The RowColChange event does not occur when the selected range changes but the active cell
remains the same.

RowHeight Property
Description Sets/returns the height of the specified row in Twips.

Usage              [form!]vsFlexArray.RowHeight(row%)[= setting&]

Remarks You can set RowHeight to zero to create invisible rows, or to -1 to reset the row height to its default
value, which depends on the size of the current font.

If row% is -1, then the control assumes you want to set the height of all rows at once.

Data Type Long

RowHeightMin Property
Description Sets/returns a minimum row height for the entire control, in Twips.

Usage              [form!]vsFlexArray.RowHeightMin[= setting&]

Remarks Use this property if you wish to use small fonts but want the rows to be tall. Setting this property is
often easier than setting individual row heights with the RowHeight() property.

Data Type Long

Scroll Event
Description Fired after the control scrolls.

Usage              Sub vsFlexArray_Scroll()

Remarks Use this event to synchronize the scrolling of multiple controls.

ScrollBars Property
Description Sets/returns whether the control should display horizontal or vertical scroll bars.

Usage              [form!]vsFlexArray.ScrollBars[= setting%]

Settings              The ScrollBars property settings are:

flexScrollBarNone
flexScrollBarHorizontal
flexScrollBarVertical
flexScrollBarBoth

Remarks Scroll bars appear on a vsFlexArray only if its contents extend beyond the control’s borders. For
example, a vertical scroll bar appears when the vsFlexArray can't display all of its rows.

If ScrollBars is set to flexScrollBarNone, the control will not have scroll bars, regardless of its
contents.

Note that if the control has no scroll bars in either direction, it will not allow any scrolling in that
direction, even if the user uses the keyboard to select a cell that is outside the visible area of the
control. (However, you may still scroll the control through code by setting the TopRow and LeftCol
properties.)

Data Type Integer

ScrollTrack Property
Description Sets/returns scrolling should occur while the user moves the scroll thumb.

Usage              [form!]vsFlexArray.ScrollTrack[= setting%]

Remarks This property should normally be set to False to avoid excessive scrolling and flickering. Set it to
True if you want to emulate other controls that have this behavior.

Data Type Boolean

SelChange Event
Description Fired after the selected range changes.

Usage              Sub vsFlexArray_SelChange()

Remarks The SelChange event occurs whenever the user clicks a cell other than the selected cell or after
the user selects a new range of cells with the mouse or keyboard.

The SelChange event does not occur while the user extends the selection with the mouse.

You can trigger this event in code by changing the selected region using the Row, Col, RowSel, or
ColSel properties.

Select Method [2]
Description Selects a range with a single command.

Usage              [form!]vsFlexArray.Select ByVal row1%, ByVal col1%, ByVal row2%, ByVal col2%

Remarks This method allows you to select ranges or cells (by omitting the last two paramters) with a single
command. It is shorter and more efficient than setting the Row, Col, RowSel, and ColSel
properties separately.

SelectionMode Property
Description Sets/returns whether to use regular, row, column, or ListBox selection.

Usage              [form!]vsFlexArray.SelectionMode[= setting%]

Settings              The SelectionMode property settings are:

flexSelectionFree
flexSelectionByRow
flexSelectionByColumn
flexSelectionListBox

Remarks Setting flexSelectionFree allows selections to be made normally, spreadsheet-style.

Setting flexSelectionByRow forces selections to span entire rows, as in a record-based display.

Setting flexSelectionByColumn forces selections to span entire columns, as if selecting ranges for
a chart or fields for sorting.

Setting flexSelectionListBox forces selections to span entire rows and allows for extended
selections spanning non-adjacent rows. Control-clicking with the mouse toggles the selection for an
individual row. The IsSelected() property allows programmatic control over extended selections.

Data Type Integer

Sort Property
Description Sets a sorting order for the selected rows using the selected columns as keys.

Usage              [form!]vsFlexArray.Sort = setting%

Settings              The Sort property settings are:

flexSortNone
flexSortGenericAscending
flexSortGenericDescending
flexSortNumericAscending
flexSortNumericDescending
flexSortStringNoCaseAscending
flexSortStringNoCaseDescending
flexSortStringAscending
flexSortStringDescending
flexSortCustom

Remarks The Sort property always sorts entire rows.

The range of rows to be sorted is specified by setting the Row and RowSel properties. If Row and
RowSel are the same, the control assumes that you want to sort all non-fixed rows.

They keys used for sorting are determined by the Col and ColSel properties, always from the left to
the right. For example, if Col = 3 and ColSel = 1, the sort would be done according to the contents
of columns 1, then 2, then 3.

The method used to compare the rows is determined by the setting, as explained above. The
flexSortCustom setting is the most flexible, since it fires a Compare event that allows you to
compare rows in any way you want, using any columns in any order (see the Compare event for
details). However, this method is also much slower that the others, typically by a factor of ten, so it
should be used only when really necessary.

An alternative to using the flexSortCustom setting is to create an invisible column, fill it with the
keys, then sort based on it with one of the other settings. This is a very good approach for sorting
based on dates, for example.

Example ' fill control with random data (left picture)
For i% = fa.FixedRows to fa.Rows - 1
 fa.TextMatrix(i%, 1) = RandomName()
 fa.TextMatrix(i%, 2) = RandomNumber()
Next

' sort by name (center picture)
fa.Row = 1
fa.Col = 1
fa.Sort = flexSortGenericAscending

' sort by name and number (right picture)
fa.Row = 1
fa.Col = 1
fa.ColSel = 2
fa.Sort = flexSortGenericAscending

Data Type Integer

Subtotal Method [2]
Description Calculates subtotals.

Usage              [form!]vsFlexArray.Subtotal function% [, groupOn%] [, totalOn%]
[, format$] [, backColor&] [, foreColor&] [, fontBold%]

Remarks The Subtotal method has the following parts:

function%
Specifies the type of function to be used for the subtotals. Valid settings are:
flexSTClear removes all existing subtotals
flexSTSum sum
flexSTPercent percent of total sum
flexSTCount record count
flexSTAverage average
flexSTMax maximum
flexSTMin minimum
flexSTStd standard deviation
flexSTVar variance

groupOn%
Specifies the column that contains the categories that should be grouped together. A subtotal row
will be inserted every time the value in this column changes. To calculate grand totals, set
groupOn% to -1, as the example below shows.

totalOn%
Specifies the column that contains the values to be calculated.

format$
Specifies the format to be used for displaying the results. The syntax for the format string is similar
but not identical to the syntax used with Visual Basic's Format command. The rules used to format
values are as follows:
If the format string contains a:
"$" (dollar sign) then a locale-dependent currency sign is prepended to the output.
"," (comma) then locale-dependent thousand separators are added to the output.
"(" (parentheses) then negative values are displayed within parentheses.
"." (decimal point) then the number of decimals is determined by the number of zero or pound ("0"
or "#") characters after the decimal point.

[backColor&][, foreColor&]
Specify the colors to be used for the cells in the subtotal rows.

[fontBold%]
Specifies whether text in the subtotal rows should be boldfaced.

All parts except function% are optional, but you must specify at least groupOn%, totalOn%, and
format$ unless the function% is flexSTClear, in which case they are unnecessary.

The example below shows how to use the Subtotal method.

Example ' remove old totals, calculate new totals
Sub DoSubtotals()
 Dim fmt$, fn%

 ' set format for calculated totals
 fmt$ = "$(#,###.00)"

 ' set function to use for totaling
 fn = flexSTSum

 ' remove any existing junk
 fa.Subtotal flexSTClear

 ' calculate fresh subtotals (the order doesn't matter)
 ' (sales values are in column 4)
 fa.Subtotal fn%, 1, 4, fmt$, RED ' col 1: region
 fa.Subtotal fn%, 2, 4, fmt$, GREEN ' col 2: product
 fa.Subtotal fn%, 3, 4, fmt$, BLUE ' col3: employee

 ' total on a negative column to get a grand total
 fa.Subtotal fn%, -1, 4, fmt$, BLUE
End Sub

SubtotalPosition Property [2]
Description Sets/returns whether subtotals should be inserted above or below the data.

Usage              [form!]vsFlexArray.SubtotalPosition[= setting%]

Settings              The SubtotalPosition property settings are:

flexSTBelow
flexSTAbove

Remarks If you modify this property at run time, any existing subtotals are cleared, and you must use the
Subtotal method to regenerate them.

For more details on subtotals and an example, see the SubTotal method.

Data Type Integer

Text Property
Description Sets/returns the text contents of a cell or range of cells.

Usage              [form!]vsFlexArray[.Text][= setting$]

Remarks When retrieving, the Text property always retrieves the contents of the current cell, defined by the
Row and Col properties.

When setting, the Text property sets the contents of the current cell or of the current selection,
depending on the setting of the FillStyle property.

You may read or set the contents of an arbitrary cell using the TextMatrix() property.

You may read the value of a cell formatted with thousand separators using the Value or
ValueMatrix() properties.

Data Type String

TextArray Property
Description Sets/returns the contents of an arbitrary cell (see also the TextMatrix property).

Usage              [form!]vsFlexArray.TextArray(index&)[= setting$]

Remarks This property is obsolete and is provided for backward compatibility only. (it was introduced for use
with the VBX version of vsFlexArray version 1). You should use the TexMatrix property instead.

Use this property to set or retrieve the contents of a cell without changing the Row and Col
properties.

The index& parameter determines which cell to use. It is calculated by multiplying the desired row
by the Cols property and adding the desired column. The clearest and most convenient way to
calculate the index is to define a function to do it, as shown below.

Example ' calculate index for use with TextArray property
Function faIndex(fa As Control, row%, col%) As Long
 faIndex = row * fa.Cols + col
End Function

Data Type String

TextMatrix Property
Description Sets/returns the contents of an arbitrary cell (row/col subscripts).

Usage              [form!]vsFlexArray.TextMatrix(row%, col%)[= setting$]

Remarks This property allows you to set or retrieve the contents of a cell without changing the Row and Col
properties.

The row% and col% parameters determine which cell to use.

Data Type String

TextStyle, TextStyleFixed Properties
Description Sets/returns 3D effects for displaying text.

Usage              [form!]vsFlexArray.TextStyle[= setting%]
[form!]vsFlexArray.TextStyleFixed[= setting%]

Settings              The TextStyle, TextStyleFixed property settings are:

flexTextFlat
flexTextRaised
flexTextInset
flexTextRaisedLight
flexTextInsetLight

Remarks Settings flexTextRaised and flexTextInset work best for large and bold fonts. Settings
flexTextRaisedLight and flexTextInsetLight work best for small regular fonts.

See also the CellTextStyle property.

Data Type Integer

TopRow Property
Description Sets/returns the topmost row displayed in the control.

Usage              [form!]vsFlexArray.TopRow[= setting%]

Remarks Use this property to read or set the top visible row of the control, causing it to scroll if necessary.
Use the LeftCol property to determine the leftmost visible column.

When setting this property, the largest possible value is the total number of rows minus the number
of rows that will fit the display. Attempting to set TopRow to a greater row number will cause the
control to set it to the largest possible value.

If you need to ensure that a certain cell is visible, do not use this property. Simply make the cell
current by setting the Row and Col properties, then bring it into view by reading the CellTop
property.

Data Type Integer

TreeColor Property [2]
Description Sets/returns the color used to draw the outline tree.

Usage              [form!]vsFlexArray.TreeColor[= setting&]

Remarks The outline tree is drawn only if the OutlineBar property is set to a non-zero value. It allows users
to collapse and expand the outline.

For details on outlines and an example, see the Outline method.

Data Type Color

UserResized Event [2]
Description Fired after the user resizes a row or a column.

Usage              Sub vsFlexArray_UserResized(ByVal row%, ByVal col%)

Remarks If the user resized a row, row% contains the number of the row that was resized and col% is
contains -1.

If the user resized a column, col% contains the number of the column that was resized and row%
contains -1.

Validate Event [2]
Description Fired before the control exits cell-editing mode.

Usage              Sub vsFlexArray_Validate(ByVal row%, ByVal col%, ByVal value$, cancel%)

Remarks The Validate event is fired before any changes made by the user are committed to the cell.

You may trap this event to check whether value$ contains an entry that is valid for cell (row%,
col%). If the entry is valid, just return and the cell contents will be automatically updated. If not, set
the cancel% parameter to True and the changes will be discarded. In this case, you will probably
want to display some sort of error message and set the active cell back to (row%, col%), since the
user may have moved it with the mouse.

For more details on in-cell editing, see the Editable and ComboList properties.

The example below shows a typical use of the Validate event. Column 1 only accepts strings, and
column 2 only accepts numbers greater than zero.

Example Sub fa_Validate(ByVal row%, ByVal col%, ByVal Value$, cancel%)
 Dim c$

 ' different validation for each column
 Select Case col

 ' column 1 only accepts strings
 Case 1
 c = Left(Value)
 If UCase(c) < "A" And UCase(c) > "Z" Then
 MsgBox "Please enter a string..."
 fa.Select row, col
 Cancel = True
 End If

 ' column 2 only accepts numbers > 0
 Case 2
 If Val(Value) <= 0 Then
 MsgBox "Please enter a number > 0..."
 fa.Select row, col
 Cancel = True
 End If

 End Select
End Sub

Value Property [2]
Description Returns the numeric value of the active cell.

Usage              variable# = [form!]vsFlexArray.Value

Remarks This property is similar to Visual Basic's Val function, except it interprets thousand separators,
currency signs, and parenthesized negative values.

To retrieve the value of an arbitrary cell without selecting it first, use the ValueMatrix() property.

Data Type Double

ValueMatrix Property [2]
Description Returns the numeric value of an arbitrary cell.

Usage              variable# = [form!]vsFlexArray.ValueMatrix(row%, col%)

Remarks This property is similar to the Value property, except it allows you to specify the cell whose value is
to be retrieved.

Data Type Double

Version Property
Description Returns the version of vsFlex currently loaded in memory.

Usage              variable% = [form!]vsFlexArray.Version

Remarks You may want to check this value at the Form_Load event, to make sure the version that is
executing is at least as current as the version used to develop your application.

The version number is a three digit integer where the first digit represents the major version number
and the last two represent the minor version number. For example, version 2.00 would return 200.

This property is read-only.

Data Type Integer

VirtualData Property [2]
Description Sets/returns whether data should be loaded at once or as needed.

Usage              [form!]vsFlexArray.VirtualData[= setting%]

Remarks The defaul behavior for a data-bound vsFlexArray is to retrieve the entire table from the
DataSource into memory as soon as it is loaded, and every time the source Data control is
refreshed. If the data source is very large (over a thousand or so records), this process may
become slow.

By setting the VirtualData property to True, data is retrieved only when is is needed (for displaying
or reading its value, for example). In this case, the control loads much faster. The trade-off is that
the control will probably have to retrieve the data some time later, so it may become slower until
every record has been retrieved.

Data Type Boolean

WordWrap Property
Description Sets/returns whether text should wrap within a cell.

Usage              [form!]vsFlexArray.WordWrap[= setting%]

Remarks The vsFlexArray can display text slightly faster if you set WordWrap to False.

Data Type Boolean

Using the FlexString Control
The FlexString control allows you to incorporate regular-expression text matching into your VB
programs. This allows you to parse complex text input easily or to offer regular expression search
and replace features such as those found in professional packages such as Microsoft Word, Visual
C++, and Visual Basic.

FlexString looks for text patterns on its Text property, and lets you inspect and change the matches
it found. The text patterns are specified through the Pattern property, using regular expressions.

The syntax for regular expressionsis described below.

Regular expressions
FlexString has a string property called Pattern that holds a regular expression.

A regular expression is a notation for specifying strings. Like an arithmetic expression, a regular
expression is a basic expression or one created by applying operators to simpler expressions.
FlexString recognizes the following operators (special characters):

Char Meaning
^ Matches the beginning of a string.
$ Matches the end of a string.
. Matches any character.
[] Character class, or complemented character class if the first

character inside the brackets is a caret (^).
* Repeat previous zero or more times.
+ Repeat previous one or more times.
? Repeat previous zero or one time.
\ Escape next character.
{ } Tagged match.

The following examples illustrate how these characters are used:

Pattern Matches
^stuff strings that start with "stuff".
stuff$ strings that end with "stuff".
^...$ any 3-character string.
[AEIOU] any uppercase vowel.
[0-9] any digit.
[A-Za-z][0-9] any letter followed by any digit.
[^0-9] any character except a digit.
[A-Z][0-9]* any upper-case letter optionally followed by any

number of digits.
[A-Z][0-9]+ any upper-case letter followed by at least one

digit.
[A-Z][0-9]? any upper-case letter optionally followed by one

digit.
[+-]?[0-9]+ any integer optionally preceded by a sign.
[+-]?[0-9]+\.?[0-9]* any real number.

Matching
As soon as you assign a string to the Text or Pattern properties, FlexString tries to find as many
matches as it can, and returns the number of matches found in the MatchCount property. You can
then scan through the matches by changing the MatchIndex property and reading the
MatchString property.

For example, the following code would scan a string and print all phone numbers in the San
Francisco area (the phone pattern used in the example is not very flexible, but it’s good enough to
show how the control works):

Example Dim i%
Dim PhonePat$

FlexString.Text = ClientList$
PhonePat = "(415)[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"
FlexString.Pattern = PhonePat
Debug.Print FlexString.MatchCount " match(es) found."
For i% = 0 to FlexString.MatchCount - 1
 FlexString.MatchIndex = I
 Debug.Print FlexString.MatchString
Next

Replacing
You can also replace matches automatically, using the Replace property. For example, say you
wanted to change all instances of the (415) area code with (510):

Example Dim PhonePat$

FlexString.Text = ClientList$
PhonePat = "(415)"
FlexString.Pattern = PhonePat
Debug.Print FlexString.MatchCount " match(es) found."
FlexString.Replace = "(510)"

When a string is assigned to the Replace property, FlexString immediately replaces all matches
with the new string.

This is convenient, but it could also be done in VB code. But FlexString goes way beyond simple
search and replace. It allows you to to tag matches.

Tag Matches
The FlexString control allows you to tag matches using curly brackets. By tagging the matches, you
can easily determine what parts of the string matched what parts of the pattern.

For example, say you wanted to make your letters more informal by replacing all occurrences of
"Mr. John Doe", "Ms Jane Doe", and "Mrs. Penny Doe", with "John", "Jane", and "Penny". Here’s
the code to do it:

Example FlexString.Text = ClientList$

' replace "Mr. Name" or "Mr Name" with "Name"
FlexString.Pattern = "Mr\.? {[A-Za-z]+} {[A-Za-z]+}"
FlexString.Replace = "{0}" ' tag 0 matched the first name

' replace "Ms. Name", "Ms Name", "Mrs. Name", "Mrs Name", with "Name"
FlexString.Pattern = "Mr?s\.? {[A-Za-z]+} {[A-Za-z]+}"
FlexString.Replace = "{0}"

The curly brackets mark the tagged parts of the pattern. In this example, there are two tags, {0} and
{1}, that match the person’s first and last names. The first tag is used in the replace string to
retrieve the person’s first name. The second is not used.

FlexString Tutorial
This section of the manual takes you step-by-step through the creation of a Visual Basic project
using the FlexString control.

The sample project illustrates some of FlexString’s pattern matching capabilities. It shows how
FlexString can be used to implement a mathematical expression evaluator. You can use this project
as is, to allow users to enter expressions instead of numeric constants, or use it as a starting point
for a more sophisticated evaluator with variables and custom functions.

Create Controls
Start a new Visual Basic project including vsFlex2 (if you don’t know how to add OCXs to a project,
consult the Visual Basic manual). The vsFlex2 control icons will be added to the Visual Basic
toolbox.

Create a FlexString object on the form by clicking the FlexString icon on the toolbox, then clicking
and dragging on the form. Also create two text boxes and a command button. Arrange the controls
and resize the form so it looks like this:

Set Properties
Use the Properties window to set the following properties:

Object Property
Form Caption = "Evaluator"
               
Command1

Caption = "Eval"

Text1 Caption = "(5+3)*2"
Text2 Caption = ""
FlexString1 Name = "FS"

Evaluating expressions
Ok, now comes the fun part. Let's write the VB code to evaluate expressions and attach it to the
command button.

First, double-click the command button and enter the following code:

                                      Sub Command1_Click ()
 Caption = "Evaluator"
 Text2 = Format(Evaluate(Text1), "0.00")
End Sub

We start by setting the form's caption to "Evaluator". We do this because the caption will also be
used to show messages while we evaluate the expression.

Then, we call the Evaluate function, which we haven't written yet. The function takes as a
parameter a mathematical expression and returns the result. If there are any syntax errors in the
expression, the function shows the error in the form's caption.

Here's the evaluate function. Notice how it uses the FlexString's pattern matching capabilities to
break the expression apart and interpret it:

                                      Function Evaluate (ByVal s$) As Double
 Dim s1$, s2$, s3$
 Dim v#

 ' get ready to parse
 fs = Trim(s) ' set breakpoint on this line
 Debug.Print s ' remove this line later

 ' interpret subexpressions enclosed in parentheses
 fs.Pattern = "{.*}({.*}){.*}"
 If fs.MatchCount > 0 Then
 fs.TagIndex = 0: s1 = fs.TagString ' stuff to the left
 fs.TagIndex = 1: s2 = fs.TagString ' stuff in brackets
 fs.TagIndex = 2: s3 = fs.TagString ' stuff to the right
 v = Evaluate(s2) ' eval subexpression
 Evaluate = Evaluate(s1 + Format(v) + s3) ' eval other stuff
 Exit Function
 End If

 ' add and subtract (high-priority operators)
 fs.Pattern = "{.*}{[+-]}{.*}"
 If fs.MatchCount > 0 Then
 fs.TagIndex = 0: s1 = fs.TagString ' operand 1
 fs.TagIndex = 2: s2 = fs.TagString ' operand 2
 fs.TagIndex = 1 ' operator
 Select Case fs.TagString
 Case "+": Evaluate = Evaluate(s1) + Evaluate(s2)
 Case "-": Evaluate = Evaluate(s1) - Evaluate(s2)
 End Select
 Exit Function
 End If

 ' multiply and divide (lower-priority operators)
 fs.Pattern = "{.*}{[*/]}{.*}"
 If fs.MatchCount > 0 Then
 fs.TagIndex = 0: s1 = fs.TagString ' operand 1
 fs.TagIndex = 2: s2 = fs.TagString ' operand 2
 fs.TagIndex = 1 ' operator
 Select Case fs.TagString
 Case "*": Evaluate = Evaluate(s1) * Evaluate(s2)
 Case "/": Evaluate = Evaluate(s1) / Evaluate(s2)
 End Select
 Exit Function
 End If

 ' power (lowest-priority operator)
 fs.Pattern = "{.*}^{.*}"
 If fs.MatchCount > 0 Then
 fs.TagIndex = 0: s1 = fs.TagString
 fs.TagIndex = 1: s2 = fs.TagString
 Evaluate = Evaluate(s1) ^ Evaluate(s2)
 Exit Function
 End If

 ' number (nothing else matched, so this should be a number)
 fs.Pattern = "[0-9]+\.?[0-9]*"
 If fs.MatchCount > 0 Then
 Evaluate = Val(s)
 Else
 Caption = "error: Syntax": Beep
 End If
End Function

If you understand how FlexString works, the Evaluate function is pretty simple. To see it in action,
run the project and step through the evaluation of the default expression, "(5+3)*2" by setting a
breakpoint on the line that reads "fs = Trim(s)".

When the program stops, press F8 until the first If statement. The current expression contains a
subexpression enclosed in parentheses, so there will be a match against the pattern "{.*}
({.*}){.*}". Press F8 6 times to extract the subexpression using the TagIndex property. Here's
what we have at this point:

                                      s = "(5+3)*2"

fs.Pattern = "{.*}({.*}){.*}"
s1 = ""
s2 = "5+3" ' parentheses removed
s3 = "*2"

Press F8 again. This is a recursive call, so we are back at the start of the function, but the
expression being evaluated is now "5+3". There are no subexpressions here, so execution will
skip over the first block of code and will match the second pattern, "{.*}{[+-]}{.*}". Again,
the TagIndex property is used to break the expression into components, and a recursive call is
used to evaluate the left and right portions of the expression.

Press F8 to follow execution a bit further. We are back at the start of the function, but now the
expression is "5". There are no subexpressions or operators here, so execution will flow until the
last block, and will match the pattern "[0-9]+\.?[0-9]*". Now we can call VB's Val function
and return the value 5.

If you keep pressing F8, you will see that the function will evaluate the 3, then add 5 and 3 together
to get 8, and will them multiply that by 2 to get the final result, which is 16. If you added the
Debug.Print statement to the code, the debug window will show the subexpressions that were
evaluated:

                                      (5+3)*2
5+3
5
3
8*2
8
2

If you want, try adding support for variables and functions such as Sin, Cos, etc. It is easy, all you
have to do is add the appropriate patterns and corresponding blocks of code.

FlexString Reference
Description The FlexString control is a powerful regular expression engine. With FlexString, you can define, find

and replace patterns in strings.

Remarks Use FlexString it to provide regular expression search-and-replace capabilities similar to those
available in professional packages such as Word, Visual C++, or Visual Basic. Or use it to parse
input strings in complex formats.

File Name VSFLEX.VBX for the VBX version,
VSFLEX32.OCX for the 32-bit OCX version, or
VSFLEX16.OCX for the 16-bit OCX version

Object Type FlexString

Note              Before you can use a FlexString control in your application, you must add vsFlex2 to your project
(see the Visual Basic manual for details). To automatically include vsFlex2 in new projects, put it in
an AUTOLOAD file. When distributing your application, you should follow the instructions in the
Distribution section of the vsFlex2 documentation.

FlexString Summary
Properties (default: Text)

* CaseSensitive * Error * MatchCount
* MatchIndex * MatchLength * MatchStart
* MatchString * Pattern * Replace
* Soundex * TagCount * TagIndex
* TagLength * TagStart * TagString
* Text * Version

CaseSensitive Property
Description Sets/returns whether matching should be case-sensitive.

Usage              [form!]vsFlexString.CaseSensitive[= setting%]

Remarks Setting CaseSensitive to True will in some cases allow you to use simpler regular expressions.
Setting it to True gives more control over the matching process.

Data Type Boolean

Error Property
Description Fired after the control exits cell-editing mode.

Usage              variable% = [form!]vsFlexString.Error

Settings              The Error property settings are:

flexErrNone
flexErrOutOfMemory
flexErrSquareB
flexErrCurlyB
flexErrBadPattern
flexErrBadTagIndex
flexErrNoMatch
flexErrInvalidMatchIndex

Remarks You should always check the Error property when a match fails.

flexErrOutOfMemory
will occur if you assign a string that is too long to the Text property or a pattern that is to complex to
the Pattern property.

flexErrSquareB, flexErrCurlyB
will occur when you assign a pattern with unbalanced squre or culry brackets ([,], {, }) to the
Pattern property. If you want to locate brackets within the search string, remember to escape them
with the backslash character (i.e. use "\{" instead of "{").

flexErrBadPattern
will occur when you try to retrieve the results of a match and the Pattern or Text properties are
empty.

flexErrBadTagIndex
will occur when you use a tag in a replacement string for which there is no match (i.e.
Pattern = "{[a-z]*}    ", Replace = "{0} {1}").

flexErrNoMatch
will occur when you try to retrieve the results of a match and the match failed.

flexErrInvalidMatchIndex
will occur when you try to select a match greater then or equal to the number of matches
(MatchCount).

Data Type Integer

MatchCount Property
Description Returns the number of matches found after setting the Pattern or Text properties.

Usage              variable% = [form!]vsFlexString.MatchCount

Remarks You can retrieve information about each match by setting the MatchIndex property to a value
between 0 and MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString
properties.

Data Type Integer

MatchIndex Property
Description Sets/returns the index of the current match when there are multiple matches.

Usage              [form!]vsFlexString.MatchIndex[= setting%]

Remarks You can retrieve information about each match by setting the MatchIndex property to a value
between 0 and MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString
properties.

Data Type Integer

MatchLength Property
Description Returns the length of the current match, in characters.

Usage              variable% = [form!]vsFlexString.MatchLength

Remarks You can retrieve information about each match by setting the MatchIndex property to a value
between 0 and MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString
properties.

Data Type Integer

MatchStart Property
Description Returns the position of the current match within the Text string, starting from zero.

Usage              variable% = [form!]vsFlexString.MatchStart

Remarks You can retrieve information about each match by setting the MatchIndex property to a value
between 0 and MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString
properties.

Data Type Integer

MatchString Property
Description Sets/returns the string corresponding to the current match.

Usage              [form!]vsFlexString.MatchString[= setting$]

Remarks You can retrieve information about each match by setting the MatchIndex property to a value
between 0 and MatchCount - 1 and then reading the MatchLength, MatchStart, and MatchString
properties.

Data Type String

Pattern Property
Description Sets/returns the regular expression being used for matching against the Text string.

Usage              [form!]vsFlexString.Pattern[= setting$]

Remarks The regular expression syntax recognized by vsFlexString is based o the following special
characters:

Char Meaning
^ Beginning of a string.
$ End of a string.
. Any character.
[list] Any character in list.
[^list] Any character not in list.
? Repeat previous zero or one time.
* Repeat previous zero or more times.
+ Repeat previous one or more times.
\ Escape next character.
{pat} Tag this part of the match.

Example fs.Pattern = "^stuff" ' string starting with "stuff"
fs.Pattern = "stuff$" ' string ending with "stuff"
fs.Pattern = "o.d" ' "old", "odd", etc
fs.Pattern = "o[ld]d" ' "old" or "odd" only
fs.Pattern = "o[^l]d" ' not "old"
fs.Pattern = "od?" ' "o" or "od"
fs.Pattern = "od*" ' "o", "od", "odd"
fs.Pattern = "od+" ' "od", "odd", etc
fs.Pattern = "\."' ' decimal point

Data Type String

Replace Property
Description Sets a string to replace all matches.

Usage              [form!]vsFlexString.Replace = setting$

Remarks The replacement occurs as soon as you assign the new text to the Replace property. To perform
the replacement on several strings, you must set both the Text and Replace properties for each
original string.

The Replace string may contain tags, specified using curly brackets with the tag number between
them, e.g. "{n}". The tags expand into the portions of the original Text string that were matched to
the corresponding tags in the search Pattern. The example below illustrates this:

Example ' set up a pattern to search for a filename and
' extension: tag them both (using curly brackets)
' (note how the period is escaped with a backslash)
fs.Pattern = "{[A-Za-z]+}\.{...}"

' assign a string to be matched agains the pattern
' tag 0 will match the filename and
' tag 1 will match the extension
fs.Text = "AUTOEXEC.BAT"

' expand the string (note that each tag may be used
' several times)
fs.Replace = "File {0}.{1}, Name: {0}, Ext: {1}"
Debug.? fs.Text

File AUTOEXEC.BAT, Name: AUTOEXEC, Ext: BAT

Data Type String

Soundex Property
Description Returns a phonetic code representing the current Text string.

Usage              variable$ = [form!]vsFlexString.Soundex

Remarks This property allows you to search a database for strings even if you don't know the exact spelling.
The database must include a Soundex field that encodes another field such as last name. When
doing the search, look for the Soundex code instead of looking for the name.

The Soundex code consists of an uppercase letter followed by up to three digits. It is built by
assigning codes to each character of the input string, then discarding vowels and repeated codes.
The table below shows a few strings and their Soundex codes:

Andersen, Anderson, Anders: A536
Agassis, Agassi, Agaci: A2
Nixon, Nickson: N25
Johnson, Jonson: J525
Johnston: J523
Rumpelstiltskin, Runpilztiskin, Rumpel: R514

The advantages of this system are that the code is short, that it will rarely miss a match, and that
the system is widely known and already implemented in many databases (the Soundex method
was developed in 1918 by M.K. Odell and R.C. Russel). The disadvantage is that it will often find
spurious matches that are only vaguely similar to the search string.

Data Type String

TagCount Property
Description Returns the number of tags found after setting the Pattern, Text, or MatchIndex properties.

Usage              variable% = [form!]vsFlexString.TagCount

Remarks You can retrieve information about each tag by setting the TagIndex property to a value between 0
and TagCount - 1 and reading the TagLength, TagStart, and TagString properties.

Tags are defined by enclosing parts of the regular expression string in the Pattern property
between curly brackets.

Example fs.Text = "Mary had a little lamb"
fs.Pattern = "Mary had {.*}"
Debug.? fs.TagCount; fs.TagIndex; "[" + fs.TagString + "]"
 1 0 [a little lamb]

Data Type Integer

TagIndex Property
Description Sets/returns the index of the current tag when there are multiple tags in the Pattern string.

Usage              [form!]vsFlexString.TagIndex[= setting%]

Remarks You can retrieve information about the current tag by reading the TagLength, TagStart, and
TagString properties.

The TagIndex property can range from 0 to TagCount - 1.

Example fs.Text = "Mary had a little lamb"
fs.Pattern = "{[^]*} had {.*}"
fs.TagIndex = 0
Debug.? "[" + fs.TagString + "]"
 [Mary]
fs.TagIndex = 1
Debug.? "[" + fs.TagString + "]"
 [a little lamb]

Data Type Integer

TagLength Property
Description Returns the length of the current tag, in characters.

Usage              variable% = [form!]vsFlexString.TagLength

Remarks You can retrieve information about the current tag by reading the TagLength, TagStart, and
TagString properties.

Data Type Integer

TagStart Property
Description Returns the position of the current tag within the Text string, starting from zero.

Usage              variable% = [form!]vsFlexString.TagStart

Remarks You can retrieve information about the current tag by reading the TagLength, TagStart, and
TagString properties.

Data Type Integer

TagString Property
Description Sets/returns the string corresponding to the current tag.

Usage              [form!]vsFlexString.TagString[= setting$]

Remarks You can retrieve information about the current tag by reading the TagLength, TagStart, and
TagString properties.

If you assign a new string to the TagString property, vsFlexString will modify the string in the Text
property and will attempt a new match.

Data Type String

Text Property
Description Sets/returns the text to be scanned searching for the Pattern string.

Usage              [form!]vsFlexString[.Text][= setting$]

Remarks vsFlexString will attempt a match as soon as you assign a string to the Text or Pattern properties.

To find out how many matches were found, read the MatchCount property.

To retrieve information about each match, set the MatchIndex property to a value between 0 and
MatchCount - 1, then read the MatchLength, MatchStart, and MatchString properties.

Data Type String

Version Property
Description Returns the version of vsFlex currently loaded in memory.

Usage              variable% = [form!]vsFlexString.Version

Remarks You may want to check this value at the Form_Load event, to make sure the version that is
executing is at least as current as the version used to develop your application.

The version number is a three digit integer where the first digit represents the major version number
and the last two represent the minor version number. For example, version 2.00 would return 200.

This property is read-only.

Data Type Integer

VideoSoft Products
To get a registration/order form, click HERE.

vsOCX/vsVBX
A set of three custom controls for interface design and text parsing.

Icon Name Description

vsElastic Smart containers that resize themselves and their child controls,
automatically create labels and 3-D frames for its child controls,
and can also be used as progress indicators and labels.

vsIndexTab Allows you to group controls by subject, using the familiar notebook
metaphor that has become a Windows standard.

vsAwk Parsing engine named and patterned after the popular Unix utility,
plus a powerful expression evaluator.

vsView2
A set of four custom controls for creating, viewing, and printing text and graphics.

Icon Name Description

vsPrinter A much improved printer object with word wrap, headers and
footers, multi-column printing, graphics, zooming and panning,
and multi-page Print Preview capability.

vsViewPort A control that gives you a scrollable virtual area so you can fit
more controls in your windows. Use it to implement custom
Print Preview, fill-out forms, and programs with scrollable
pictures or control lists.

vsDraw A versatile drawing control that lets you create complex
images, view them on the screen, copy them to the clipboard,
or print them. Use it to create technical drawings, maps, and
diagrams.

vsInForm A control that you can drop into any container to customize its
title bar, frame, resizing behavior, and frame buttons. InForm
also allows you to monitor the clipboard, drag and drop files
from File manager, and more.

vsFlex2
A set of two custom controls for analyzing, formatting, and displaying information.

Icon Name Description

vsFlexArray A new way to display and operate on tabular data. FlexArray
gives you total flexibility to display, sort, merge, and format
tables containing strings and pictures.

vsFlexString A powerful regular expression engine. With FlexString, you can
find and replace patterns in strings. Use it to provide regular
expression search-and-replace capabilities or to parse input
strings.

Order/Registration Form
(You may print this form by selecting the File|Print command).

TO: VIDEOSOFT
5900 Hollis Street, Suite T
Emeryville, CA 94608

To order by phone, call
510/595-2400
510/595-2424 (fax)

Please register my copy of the following VideoSoft products. I am enclosing a check or money
order for the amount of (all prices in US$):

OCX Version (includes 32-bit, 16-bit, and VBX versions)

      vsOCX 99.00 x ___ copies _______

      vsView2 149.00 x ___ copies _______

      vsFlex2 149.00 x ___ copies _______

VBX Version (16-bit only)

      vsVBX 45.00 x ___ copies _______

      vsView2 99.00 x ___ copies _______

      vsFlex 99.00 x ___ copies _______

Tax (CA residents only, please add 8.25% sales tax) _______

Shipping 6.00

Total Order Amount _______

Note: Call us for details on site licenses and volume discounts.

Name:

Company:

Street:

City, State, ZIP:

Country:

Phone/Fax:

Where did you hear about the VideoSoft products?

