
Page 1

ISIS System 7 Pack™ISIS System 7 Pack™

Version 3.3

Written by Mike Cohen

Copyright © 1991-1992 by

ISIS International
14270 Dickens St., Suite 6

Sherman Oaks, CA 91423-4196

(818) 788-4747

All Rights Reserved. Tous Droits Réservés.

Page 2
Copyright 1

Introduction.. 1
Installing System 7 Pack..1
What is an AppleEvent?...2
Built-in AppleEvent Handlers..2
Sending AppleEvents...3
Receiving AppleEvents..4
Command Reference..5
Launching & Quitting 5
Misc. Utilities 6
Target Addresses 8
Scripting 9
Sending AppleEvents 10
AppleEvent Handling 11
Low Level Interface 13
Constants 19
Advanced Commands 20
Using System 7 Pack with UserLand Frontier™...22
Interfacing with Claris® Resolve™...23
Interfacing with Microsoft® Excel 4.0..24
Using the Low-Level Interface..25
Glossary..26
Appendix A: Built-in Event Handling..27
Appendix B: Sample Programs..28
Appendix C: Error Codes...29
Appendix D: AppleEvent Registry...30
Appendix E: Network Access..32
Appendix F: Quick Reference..33
Appendix G: Version History...35
About ISIS International.. 36
Tech Support.. 36

Page 3
Copyright

System 7 Pack™ is copyrighted 1991-1992 by ISIS International. Portions © 1991 by
Symantec. 4th DIMENSION® is a trademark of ACI and ACIUS. Apple®,
Macintosh®, and Hypercard® are trademarks of Apple Computer, Inc. Frontier™ is a
trademark of UserLand Software. QuicKeys™ is a trademark of CE Software.
SuperCard® is a trademark of Silicon Beach Software and Aldus. Resolve™ is a
trademark of Claris. Excel is a trademark of Microsoft.

You may make backup copies of this disk or transfer the contents to a hard disk. As a
registered user, you may include System 7 Pack™ in your own products and distribute
up to 200 copies as long as you include our copyright message somewhere in the
program and your documentation. If you plan to sell more than 200 copies of a
product, contact us for a distribution license, which is usually about 1% of your price
or whatever you feel comfortable with - we’re very flexible.

Introduction

System 7 Pack™ allows 4th DIMENSION® to take advantage of
one of System 7's most powerful features: AppleEvents. In
addition, you can open or print documents and launch or terminate
any application. System 7 Pack™ also provides the ability to
execute Frontier™ scripts from within 4th DIMENSION®.

Using AppleEvents, you can request any running application to
open or print a document. Certain applications which support
scripting (most notably Frontier™, HyperCard®, and SuperCard®)
can also be requested to execute almost any command via
AppleEvents. System 7 Pack™ will also allow you to install a 4D
procedure to be executed in response to an AppleEvent. You can
also send AppleEvents to compatible applications running on a
remote networked Macintosh. AppleEvents will also allow certain
applications such as Frontier™ to extract information from 4D or
request 4D to execute a command.

Page 4

Not all applications currently support AppleEvents. However, the
Launch/Open Document and Quit functions will work for all
applications whether or not they are AppleEvent aware.

System 7 Pack requires 4th DIMENSION® version 2.2 or later
and any Macintosh® that is capable of running System 7. Earlier
versions of 4D® will allow you to launch applications and send
AppleEvents, but won't allow AppleEvents to be received. Version
3.3 of System 7 Pack is fully compatible with 4D® v3.0.

Installing System 7 Pack

The easiest way to install System 7 Pack™ is to simply drop the
enclosed Proc.Ext file into your database project folder. You can
also use 4D®'s External Mover application to copy the package
into an existing Proc.Ext file. If you have 4D Mover™ from
ACIUS, you can also use it to copy the single Package from the
demo database to your own database. In either External Mover or
4D Mover™, System 7 Pack™ will appear as a single Package,
which actually consists of many individual commands. The
individual commands cannot be moved separately.

Page 5

You can also place the Proc.Ext file in your System folder or
4D®'s folder to make it accessible to all databases. If you do it this
way, make sure you copy the Proc.Ext file if you wish to use your
database on a different system.

You may also wish to place the S7P Help desk accessory in your
Apple Menu Items folder so you can access an online command
reference.

What is an AppleEvent?

An AppleEvent is a message sent between two programs running
under System 7 (a program can also send AppleEvents to itself).
AppleEvents are identified by a 4-letter event class and a 4-letter
event ID. An AppleEvent has certain attributes (which are added
automatically when the event is created), such as the address of the
program that sent it, and any number of parameters, which provide
data or give more information about the event. AppleEvents can
either request information from a program or tell a program to take
some action.

AppleEvent parameters and keywords are identified by 4-
character keywords. Many AppleEvents will only have a single
direct object, which is identified by the key “----”.

AppleEvents are limited to a total size of 64K, which includes all
of the data, parameters, and attributes.

Using System 7 Pack™’s simple high-level interface, you can send
events with a single parameter. In order to create more complex
events, you must use the low-level interface. See the section
“Sending AppleEvents” for more information.

Page 6

Built-in AppleEvent Handlers

System 7 Pack™ installs several AppleEvent handlers which allow
certain applications, such as Frontier™, to request information
from 4D®. In addition, it installs a handler for the 'do script'
AppleEvent which allows another application to execute most
4D® commands. This event handling is OFF by default. Call
AllowAccess(1) to allow these events to be processed. When
these events are disabled, the sending application will get back an
error message "AppleEvents not allowed at this time".

If you’re using a pre-3.0 version of 4D®, use extreme caution
when sending any command to 4D® which could change the
current record or selection. In particular, moving to a different
record while a record is being modified in an input layout could
cause changes to be lost. For this reason, I strongly suggest that
AllowAccess(0) should be called before doing a Modify Selection
or any other command which modifies or creates records. In
version 3.0 or later of 4D, All AppleEvent handlers run in a
separate process called “AEHandler”, so AppleEvents can change
the selection or current record without affecting any other process.
Since one process is used for all AppleEvent processing, A series
of AppleEvents can act on a current record or selection.

For a more complete description of the AppleEvents handled by
System 7 Pack™, see Appendix A.

Page 7

Sending AppleEvents

System 7 Pack™ includes several high-level commands which
make it easy to send AppleEvents.

Before you can send an AppleEvent, you must create a target
address. The address can be selected from a list of programs on the
network using the SelectAddress command, or created with the
commands MakeAddress (if the program resides on your
machine) or StringToAddr.

Once you have a target address, the easiest way to send an
AppleEvent is by using the high-level command AESend, which
lets you specify the class and ID as well as a message which can
consist of up to 32K of text. You can also send a picture instead of
text by using AESendPict.

If the receiving application will return any meaningful information
in response to the AppleEvent, you can use the command
SendWithReply instead. NOTE: SendWithReply isn’t intended to
be used when sending a user-defined event to another 4D database,
although it can be used to send one of the pre-defined events which
return information.

If you need to send an event with more than one parameter or
additional data types such as file aliases, object specifiers, or
arrays you must use the low-level interface.

Page 8

Sending an AppleEvent with the low-level functions requires three
steps: First, you must create the event using CreateAEVT. Next,
you must add any needed parameters using commands such as
PutObject, PutAliasParam, PutTextParam, or PutList. Finally,
you must use SendAppleEvent to actually send the event. When
you’re finished, you must dispose the event and the reply using
DisposeDesc. For more information, see the section “Low Level
Interface”

Example 1: Sending a “do script” using high-level commands (the
DoScript & Frontier commands can simplify this even more)

$Err:=MakeAddress(“LAND”;$Addr)
if ($Err=0)
 $Err:=AESend($Addr;”misc”;”dosc”;”message(“hello”)”)
end if

Example 2: Using the low-level interface to send a “Get Data” event and access the reply

$Err:=MakeAddress(“DFB0”;$Addr)
if ($Err=0)
 $Err:=CreateAEVT(“core”;”getd”;$Addr;$myAEVT)
 if ($Err=0)
 $Err:=PutObject($myAEVT;ObjNamed(“cMPV”;0;”MPVariable”))
 if ($Err=0)
 $Err:=SendAppleEvent($myAEVT;$myReply;kAEWaitReply;-1)
 if ($Err=0)
 $Err:=GetTextParam($myReply;”----”;Result)
 $Err:=DisposeDesc($myReply)
 end if
 end if
 $Err:=DisposeDesc($myAEVT)
 end if
 $Err:=DisposeDesc($Addr)
end if

Page 9

Receiving AppleEvents

In order to receive an AppleEvent, you must install a handler using
the function HandleAEVT. A handler is a normal 4D procedure
which will be executed when an AppleEvent of the specified class
and ID is received.

System 7 Pack™ provides several commands which allow an
AppleEvent handler to extract information from the received event.
To obtain the address of the sending application, use
GetReturnAddr. The resulting target address can be used to send
an event back to the same application. To determine the data type
of the direct object, use GetAEType.

The easiest way to extract the direct object if it is text or a numeric
value is by using GetAEMessage. To obtain a picture that was sent
using AESendPict, use GetAEPict. NOTE: GetAEPict should
only be used to extract a picture that was sent via AESendPict. In
all other cases, you should use the low-level function
GetPicParam.

If the received event contains additional parameters or uses other
data types, you must use the low-level functions, such as
GetTextParam, GetAliasParam, or GetList.

Note for 4D v3.0: All AppleEvent handlers run in a single process
called AEHandler. This process has no window associated with it
unless a procedure explicitly creates a window. You must never
call MESSAGE from such a procedure without first creating a
window.

Example 1: Using the high-level functions to receive text & send
acknowledgement

Page 10

GetAEMessage($theMessage)
GetReturnAddr($who)
Alert($theMessage)
$Err:=SendAEVT($who;”TEST”;”DEMO”;”OK, I got the message!”)
$Err:=DisposeAddress($who)

Example 2: Using the low-level functions to receive an array and create new records

$Err:=GetList(0;”----”;anArray)
if ($Err=0)
 ArrayToSelection(anArray;[File1]Field1)
End if

Example 3: Waiting for an event to be received

HandleAEVT(“aevt”;”xxxx”;”SetFlag”)
EventReceived:=False ` the event handler will change this
while (Not(EventReceived))
 idle
 ProcessAEVT
end while

` Procedure SetFlag -- executed in response to AppleEvent
EventReceived:=True

Page 11

Command Reference

The following commands are added to 4th DIMENSION®’s
programming language when you install System 7 Pack™. They
will be separated into logical groupings in the procedure editor
window.

Launching & Quitting

Launch

Err:=Launch(Signature;Document Name)

This will launch the application associated with the signature (example: to
launch Microsoft Word®, give it "MSWD"). If the document name is not an
empty string, it will be opened when the application starts up. You can also use
this to tell an application that's already running to open a document. This will
work correctly for any application whether or not it supports AppleEvents.

IMPORTANT NOTE: An application launch doesn’t complete until the frontmost
application calls GetNextEvent. Unfortunately, 4D doesn’t do so while a procedure is
running. If you need to call launch from a procedure which must continue running,
you must display a dialog or open a window and call ProcesAEVT and IDLE to
allow the launch to complete by forcing 4D to call GetNextEvent.

LaunchBehind

Err:=LaunchBehind(Creator;Document)

Works exactly the same as Launch except the application won’t be brought to
the front.

PrintDoc

Err:=PrintDoc(Signature;Document Name)

This is similar to Launch, except that the document will be printed. Unlike
Launch, you must give it a non-blank document name.

Page 12
QuitApp

Err:=QuitApp(Signature)

This will tell the specified application to quit. In many cases the application will
ask whether any files should be saved. Some applications need to be brought to
the front before quitting so they can display any alerts necessary.

Page 13

Misc. Utilities

BringToFront

Err:=BringToFront(Signature)

Brings the application specified by a 4-character signature to the front. The
application must already be running. This only requests that the application be
brought to the front. It won’t actually happen until 4D gives up CPU time by
calling WaitNextEvent. In pre-3.0 versions of 4D you may have to call
ProcessAEVT to force it to happen.

FindAppName

Err:=FindAppName(Signature;Name)

Given a 4-character signature, this will return the name of the application
associated with that ID. It will return the name without a full path.

FindCreator

Err:=FindCreator(File Name;Creator ID)

Given a full or partial pathname of a file, will return the creator ID. This is
useful to figure out which application to launch when any document is selected.

Example:

Set Channel(10;"")
if (OK = 1)

Set Channel(11)
$err := FindCreator(Document;$creator)
if ($err = 0)

$err := Launch($creator;Document)
end if

end if

IsRunning

Result:=IsRunning(Creator ID)

Returns 1 if the application is running, 0 otherwise.

Page 14
Long

Result:=Long(TypeString)

Converts a 4-character type string to a long integer value. This is useful when a
type or application signature needs to be passed to one of the low-level
functions.

Page 15

ProcessList

Err:=ProcessList(Visible;StringArray)

Builds an array of the signatures of all running processes. If 'visible' is non-
zero, only the visible applications will be listed. Otherwise, the list will also
include invisible processes, such as background-only applications and File
Sharing Extension. The array will be allocated if necessary and will contain a 4-
character signature string for each running (or visible) application. In a
compiled database, you must pre-define the array as fixed 4 character strings,
although the number of elements will change dynamically.

Example:

If (Before)
 $err:=ProcessList (0;ProcList)
 If ($err=0)
 ARRAY STRING(64;ProcNames;Size of array(ProcList))
 For ($i;1;Size of array(ProcList))
 $err:=FindAppName (ProcList{$i};$pn)
 ProcNames{$i}:=$pn
 End for
 End if
End if

S7Version

Version:=S7Version(Serialization String)

Returns the serialization string and version # of System 7 Pack™ as a long
integer value, which will be negative for a demo version. The current version is
3.26, which will be returned as 326 (or -326 for the demo version).

SetTimeout

SetTimeout(Ticks)

Sets the time-out value in ticks (60ths of a second) to use when sending an
AppleEvent. A good value to use is "600", which is 10 seconds. To specify the
default value, which is about a minute, pass -1. If the value is too short, you
may get an error code of -1712 (time out) when sending an AppleEvent. If the
value is too long, the system will appear to "hang" while waiting for a response
if none is returned.

Page 16
System7

Result:=System7

Returns 1 if you're running a compatible system which supports AppleEvents.
This should be one of the first calls in your program, so you can provide a
graceful exit if necessary. Other System 7 Pack™ functions will not crash if
you're not running system 7 but will simply return an error code of -2.

Page 17

AE Process ID

Result:=AE Process ID

Returns the Process ID of the AppleEvent handler in 4D® v3.0 or later. This
will always return 0 in a pre-3.0 version of 4D, so it can be used to test whether
multiple processes are supported in the running version of 4D.

Target Addresses

AddrToString

Err:=AddrToString(Target;ATLocation;Name;Port)

Converts a target address returned by MakeAddress, SelectAddress, or
GetReturnAddr into strings which may be saved between sessions. ATLocation
describes the machine's network identity and will be a string something like
'Mike:PPCToolBox@*'. It will be an empty string if the program is running on
your local machine. 'Name' is the actual name of the program. Port is a PPC
Toolbox port ID (usually the creator ID followed by "ep01").

DisposeAddress

Err:=DisposeAddress(Target)

Disposes the target address handle that was previously allocated with
MakeAddress, SelectAddress, or GetReturnAddr. This is assumed to be a
handle to an address descriptor. Since this is passed to DisposHandle, the
system may crash if this isn't a valid handle. Note that DisposeAddress is the
same as the new low-level function DisposeDesc, but has been kept for
compatibility with older versions.

MakeAddress

Err:=MakeAddress(Signature;Target)

Creates a target address from an application signature. The application must be
running on the local system. You must not modify this value in any way and
should call DisposeAddress when you're finished using this handle.

Page 18
SelectAddress

Err:=SelectAddress(Prompt;Signature;Target)

Opens the PPC Browser window, which allows you to select a program on your
system or on a remote system to send AppleEvents to. If prompt isn't an empty
string, it will be used instead of the default "select a program to link to"
message. If the signature is an empty string, all programs will be listed,
otherwise only programs matching that signature will be listed. If this function
returns 0, a handle to an address descriptor will be allocated and placed into
'target'. You must not modify this value in any way and should call
DisposeAddress when you're finished using this handle.

Page 19

Example:

if (SelectAddress("Select a copy of Hypercard:";"WILD";$Target)=0)
$err:=DoScript($Target;"Go To Stack 'my stack'")
$err:=DoScript($Target;"Go To Next Card")
$err:=DoScript($Target;"Print Card")
$err:=DisposeAddress($Target)

end if

StringToAddr

Err:=StringToAddr(ATLocation;Name;Port;Target)

Creates a target ID from a set of strings describing it. This is the complementary
function to AddrToString. ATLocation describes the machine's network identity
(should be an empty string if the program is running on your local machine).
Otherwise, it will be something like 'name:PPCToolBox@zone'. 'Name' is the
actual name of the program. Port is a PPC Toolbox port ID, which is the 4-letter
creator ID (it’s actually the creator ID followed by “ep01”, but the creator ID
alone is allowed).

Scripting

DoScript

Err:=DoScript(Target;Command)

Sends a "do script" AppleEvent to an application which must already be
running. 'Command' is a text variable, field, or literal and will be in a format
specific to the receiving application. For Hypercard, this should be any
HyperTalk command. For Frontier, it should be a UserTalk command. Other
applications will have different command formats. This can also be used with
Excel 4.0 to execute any function or macro. NOTE: DoScript won’t wait for the
commands to complete, so if you need to synchronize operations in another
application, you should use SendWithReply instead.

Example:

Page 20
if (IsRunning("WILD")=0)

$err := Launch("WILD";"")
end if
if ($err = 0)

$err := MakeAddress("WILD";$ad)
if ($err = 0)

$err:=DoScript($ad;"Go To Stack 'my stack'")
$err:=DoScript($ad;"Go To Next Card")
$err:=DoScript($ad;"Print Card")
$err := DisposeAddress($ad)

end if
end if

Page 21

Evaluate

Err:=Evaluate(Target;Command;Result)

Sends an "evaluate" message to an application and waits for the result, which
will be of type TEXT. This is most often used with HyperCard® and
SuperCard®.

Example:

$err:=MakeAddress("WILD";$hc)
if ($err = 0)
 $err:=Evaluate($hc;"the long name of the target";$result)
 alert($result)
 $err:=DisposeAddress($hc)
end if

Frontier

Err:=Frontier(Command;Result)

Sends a command to UserLand Frontier™ (which must already be running on
your machine) and returns the result or an error message. If you pass the name
of a Frontier™ object (such as User.Name) rather than an executable command,
the contents of that object will be returned.

Example:

$err:=Frontier("User.Name";$myName)
If ($err=0)
 $q:=Char(34)
 $err:=Frontier("msg("+$q+"Hello, "+$myname+$q+")";$rep)
 $err:=Frontier("Frontier.BringToFront()";$rep)
 $err:=Frontier("edit(readme)";$rep)
End if

QuicKeys

Err:=QuicKeys(Macro Name)

Executes a QuicKeys™ macro. You must be running QuicKeys2 v2.1 or later
with CEIAC. The macro must be installed in the Universal keyset or 4th
DIMENSION®'s keyset.

Page 22

Sending AppleEvents

AESend

Err:=AESend(Target;Class;ID;Message)

Sends any AppleEvent with a single direct object of type TEXT. The event is
sent asynchronously and 4D doesn’t wait for a reply. If you need to wait for a
reply, use SendWithReply instead. Note that the AppleEvent manager can
coerce a string which represents a number into any numeric format at the
receiving end.

Page 23

Example:

$err:=MakeAddress("WILD";$hc)
if ($err = 0)

$err:=AESend($hc;"misc";"dosc";"go to next card")
$err:=DisposeAddress($hc)

end if
` this is really the same as 'DoScript'

AESendPict

Err:=AESendPict(target;class;id;aPicture)

Sends an AppleEvent with a picture as the direct object. This is most useful for
sending pictures between 4D® databases, as pictures will be sent in 4D’s
internal format. If you need to send a picture to an application other than 4D,
use the low level function PutPicParam. NOTE: The maximum size of all data
in an Apple-Event is 64K, so extremely large pictures can’t be sent this way.

Example:

$err:=AESendPict(remoteDB;”DEMO”;”PICT”;aPicture)
if ($err#0)

Alert(“Error sending picture:”+string($err))
end if

SendWithReply

Err:=SendWithReply(Target;Class;ID;message;reply)

Sends any AppleEvent with a single direct object of type TEXT and returns the
direct object of the reply as text. If an error occurs, it will return the 'errs' (error
string) parameter instead. If no reply or error message was available, the reply
will be an empty string. This is not intended to be used for sending custom
events to other 4D databases, since System 7 Pack handles events
asynchronously and doesn’t return a reply with any meaningful
information. This can be used, however, to send one of System 7 Pack’s pre-
defined events which extract information from 4D.
This command can also be used to force 4D to wait until the other application
finishes processing an AppleEvent before it proceeds. Instead of using
DoScript you can use SendWithReply(target;”misc”;”dosc”;”some
commands”;reply) and simply ignore the reply.

Page 24

AppleEvent Handling

AllowAccess

AllowAccess(Flag)

Turns on or off System 7 Pack™'s standard AppleEvent handling (built in
handlers for DoScript and data & structure access events). The event handling is
initially turned off. Calling this function with a non-zero Flag will enable
standard events. Calling this with 'Flag' set to zero will disable standard event
handling. If an application tries to send an AppleEvent when they're disabled, it
will get back an error message 'AppleEvents not allowed at this time'. This
doesn't affect handlers installed with HandleAEVT.

Page 25

GetAEMessage

GetAEMessage(Msg)

Gets the text-based direct object received with the last AppleEvent. This will
usually be called in a procedure installed via HandleAEVT. Note: versions 2.2
and later allows pictures to be sent as well as text. To make sure that what you
received is text, you should call GetAEType and make sure the type isn’t PICT
(any numeric type can be converted to text and will be returned as a string by
GetAEMessage, but pictures will result in a null string). In version 3.0, you can
also use the new low-level interface to extract multiple pieces of data with finer
control.

GetAEPict

Err:=GetAEPict(aPicture)

This should be called in a procedure installed via HandleAEVT to retrieve
picture data from the AppleEvent. Use this function to handle an event that was
sent with AESendPict.

Example:

HandleAEVT(“DEMO”;”PICT”;”Receive Picture”)

-- Receive Picture --
GetAEType($type)
If ($type # “PICT”)

Alert(“Wrong data type received:”+$type)
Else

$err:=GetAEPicture(picVariable)
if ($err#0)
 Alert(“Error receiving picture:”+string($err))
end if
Create Record([Pictures])
[Pictures]thePicture:=picVariable
Save Record([Pictures])

End if

GetAEType

GetAEType(theType)

Returns the data type of the direct object of the last AppleEvent. This should be
called in a procedure installed via HandleAEVT to ensure that the received data
is in the expected format. A procedure that expects PICT will be able to receive
only PICT by calling GetAEPict. A procedure that expects text can receive any
text or numeric type by calling GetAEMessage.

Page 26
GetReturnAddr

GetReturnAddr(Target)

Gets the return address of the last AppleEvent received. The target is identical
to one returned by SelectAddress and may be used in any of the AppleEvent
functions which take a target address. It should be disposed of when you finish
with it. This is most useful in a procedure installed via HandleAEVT.

Page 27

HandleAEVT

Err:=HandleAEVT(Class;ID;Command)

Installs a 4D® command line or procedure to be executed in response to a
particular AppleEvent. Don't try to replace any of the 4 required events (class
'aevt' & ID 'odoc', 'oapp', 'pdoc', or 'quit') or one of the standard events handled
by System 7 Pack™. Note: versions 3.1 and later of S7P allow you to remove
the built-in ‘aevt’,’quit’ handler, after which you can add your own quit
procedure which can do any necessary clean up and then call QUIT 4D.
4D 3.0 Note: All AppleEvent handlers execute in a process called AEHandler.
This process has no window associated with it. Therefore, you must never
call MESSAGE without first creating a window.

Example:

err:=HandleAEVT("DEMO";"TEST";"DemoHandler")

-- DemoHandler --
GetAEMessage($txt)
GetReturnAddr($sender)
$err:=AESend($sender;"DEMO";"ACK!";$txt)
Alert($txt)
$err:=DisposeAddress($sender)

IgnoreAEVT

Err:=IgnoreAEVT(Class;ID)

Removes a previously installed AppleEvent handler. Note: version 3.1 will
now allow you to remove the built-in handler for ‘aevt’,’quit’. Don't use this to
remove any of 4D's standard event handlers other than ‘quit’.

ProcessAEVT

ProcessAEVT

Allows AppleEvents to be received and processed while 4D is in a tight
processing loop. You only need to use this function if a loop is waiting for an
AppleEvent to set some flag before it exits, since 4D normally doesn’t poll for
events during such loops. THIS COMMAND SHOULD NEVER BE
NECESSARY IN 4D V3.0.

Example:

Page 28
MyEventFlag := False ` will be set in AE handler
while (MyEventFlag = False)

ProcessAEVT
end while

Low Level Interface

CreateAEVT

Err:=CreateAEVT(Class;ID;Addr;theEvent)

Creates an AppleEvent of the specified class and ID with the specified target
address. This doesn't add any parameters to the event and doesn't actually send
it.

Page 29

Example:

$err:=CreateAEVT("misc";"dosc";theTarget;$myEvent)
if ($err=0)
 $err:=PutTextParam($myEvent;"----";"message(“Hi there!”)")
 if ($err=0)
 $err:=SendAppleEvent($myEvent;$myReply; kAENoReply+CanInteract ;-1)
 $err:=DisposeDesc($myReply)
 end if
 $err:=DisposeDesc($myEvent)
end if

DisposeDesc

Err:=DisposeDesc(desc)

Disposes an AppleEvent or Target Address descriptor. This should always be
called for an AppleEvent created with CreateAEVT and the reply created when
the event is sent as well as a target address that is no longer needed.

GetAliasParam

GetAliasParam(theEvent;theKey;aFileName)

Extracts a file alias parameter from an AppleEvent. To reference the last event
received in a procedure installed via HandleAEVT, pass 0 for the event handle.
The alias will be converted to a string representing the full pathname of the file.

GetList

Err:=GetList(anEvent;theKey;anArray)

Extracts a descriptor list from an AppleEvent into a 4D array. To reference the
last event received in a procedure installed via HandleAEVT, pass 0 for the
event handle. All items in the list must be of the same type. The array will be
created automatically of the correct type to hold the contents of the list. A list of
lists or AERecords will be returned as an array of long integers, with each
element containing a handle to a descriptor. The type of an existing array
won’t be changed, and if you’re using an existing array, a list of strings
requires a TEXT array. In a compiled database, the array must be
previously defined and you must know the data type in advance.

Page 30
GetLongParam

Err:=GetLongParam(anEvent;keyWord;actualType;Value)

Extracts a long integer parameter from an AppleEvent. To reference the last
event received in a procedure installed via HandleAEVT, pass 0 for the event
handle.

Page 31

GetPicParam

Err:=GetPicParam(anEvent;theKey;convert;aPicture)

Extracts a picture parameter from an AppleEvent. To reference the last event
received in a procedure installed via HandleAEVT, pass 0 for the event handle.
If the picture came from another 4D application, ‘convert’ should be 0,
otherwise it should be non-zero and will cause the picture to be converted from
standard Macintosh format to 4D’s internal picture format.

GetRealParam

Err:=GetRealParam(anEvent;theKey;Value)

Extracts a floating point number parameter from an AppleEvent. To reference
the last event received in a procedure installed via HandleAEVT, pass 0 for the
event handle. The value can be any numeric type and will be coerced into 4D’s
10-byte extended format.

GetShortParam

Err:=GetShortParam(anEvent;keyWord;actualType;Value)

Extracts a short integer parameter from an AppleEvent. To reference the last
event received in a procedure installed via HandleAEVT, pass 0 for the event
handle.

GetTextParam

Err:=GetTextParam(anEvent;theKey;Value)

Extracts a text parameter from an AppleEvent. To reference the last event
received in a procedure installed via HandleAEVT, pass 0 for the event handle.

Obj

ospec:=Obj(class;container;value)

Creates an object specifier identified by a numeric value. Class should be the 4-
letter class ID. Container can be either another object specifier or 0 to specify a
null container. The container will automatically be disposed of to simplify
creating nested containers. Value should be numeric. For example, to create the
specifer 'Word 1 of Paragraph 2 of Document "Foo"' you would use:

Obj("cwor";Obj("cpar";ObjNamed("docu";0;"Foo");2);1)

Page 32
ObjNamed

ospec:=ObjNamed(Class;Container;Name)

Creates an object specifier identified by a name. Class should be the 4-letter
class ID. Container can be either another object specifier or 0 to specify a null
container. The container will automatically be disposed of to simplify creating
nested containers. Name should be a string. For example, to create the specifer
'Word 1 of Paragraph 2 of Document "Foo"' you would use:

Obj("cwor";Obj("cpar";ObjNamed("docu";0;"Foo");2);1)

Page 33

Property

ospec:=Property(Name;Container)

Creates an object specifier for a property. Container should be the object
specifier the property applies to. The container will automatically be disposed
of to simplify creating nested containers. Name should be the 4-letter property
ID. For example, to create the specifer ''font of word 1" you would use:

Property("font";Obj("cwor";0;1))

PutAliasParam

Err:=PutAliasParam(anEvent;theKey;fileName)

Adds a file alias to an AppleEvent. The parameter is identified by a keyword.
The value should be a string representing a file name which will be converted to
an alias record.

Example:

$err:=CreateAEVT("misc";"dosc";theTarget;$myEvent)
if ($err=0)
 $err:=PutAliasParam($myEvent;"----";"HD80:Scripts:Do this")
 if ($err=0)
 $err:=SendAppleEvent($myEvent;$myReply; kAENoReply ;-1)
 $err:=DisposeDesc($myReply)
 end if
 $err:=DisposeDesc($myEvent)
end if

PutList

Err:=PutList(anEvent;key;SpecialType;anArray)

Adds a descriptor list built from a 4D array to an AppleEvent. SpecialType can
specify a data type other than the default implied by the type of the list (the only
conversions are from text representing file names to a list of aliases and from
long integer to AERecord or object specifiers, in all other cases the data format
will remain unchanged). To specify text to alias conversion, SpecialType should
be "alis". To send a list of AERecords or object specifiers, SpecialType should
be “reco” and the long integer array should contain descriptors created with
Obj, ObjNamed, or CreateAERec. In this case, each element of the array will
automatically be disposed when you call PutList.

Example:

Page 34
Selection To Array([file1]field1;anArray)
$err:=CreateAEVT("send";"data";theTarget;$myEvent)
if ($err=0)
 $err:=PutList($myEvent;"----";"";anArray)
 if ($err=0)
 $err:=SendAppleEvent($myEvent;$myReply;kAEWaitReply;-1)
 $err:=DisposeDesc($myReply)
 end if
 $err:=DisposeDesc($myEvent)
end if

Page 35

PutLongParam

Err:=PutLongParam(anEvent;key;actualType;value)

Adds a long integer parameter to an AppleEvent. The parameter is identified by
a keyword and can be given a special type (it defaults to typeLongInteger if
'actualType' is an empty string).

PutObject

Err:=PutObject(anEvent;key;anObject)

Puts an object specifier in an AppleEvent. THIS COMMAND WILL DISPOSE
THE OBJECT SPECIFIER. This command should be used in conjunction with
Obj and/or ObjNamed to create the specifier.

Example:

$err:=MakeAddress("DFB0";$addr)
if ($err=0)
 $err:=CreateAEVT("core";"getd";$addr;$myEvent)
 if ($err=0)
 $err:=PutObj($myEvent;"----";objNamed("cMPV";0;"theDate"))
 if ($err=0)
 $err:=SendAppleEvent($myEvent;$myReply;kAEWaitReply;-1)
 $err:=GetTextParam($myReply;"----";theResult)
 $err:=DisposeDesc($myReply)
 end if
 $err:=DisposeDesc($myEvent)
 end if
 $err:=DisposeDesc($addr)
end if

PutPicParam

Err:=PutPicParam(anEvent;theKey;convert;aPicture)

Adds a picture parameter to an AppleEvent. It will be identified by a keyword
and will always be of type 'PICT'. If ‘convert’ is non-zero, the picture will be
converted from 4D’s internal format to a standard Macintosh picture.

PutRealParam

Err:=PutRealParam(anEvent;theKey;Value)

Adds a floating point number to an AppleEvent. The number will be in 4D’s
internal 10 byte floating point format and the descriptor type will be ‘exte’.
Most applications will be able to convert it to their desired floating point type.

Page 36
PutShortParam

Err:=PutShortParam(anEvent;key;actualType;value)

Adds a short integer parameter to an AppleEvent. The parameter is identified by
a keyword and can be given a special type (it defaults to typeShortInteger if
'actualType' is an empty string).

Page 37

PutTextParam

Err:=PutTextParam(anEvent;key;value)

Adds a text parameter to an AppleEvent. The parameter is identified by a
keyword and will always be of type 'typeText'.

SendAppleEvent

Err:=SendAppleEvent(theEvent;theReply;send mode;time
out)

Sends an AppleEvent previously created by CreateAEVT. SendMode can be
any of the constants kAEWaitReply, kAENoReply, AlwaysInteract, CanInteract,
and/or NeverInteract. Time Out specifies the time (in 1/60ths of a second) to
wait for a reply.

CreateAERec

Err:=CreateAERec(theRecord)

Creates an AE Record, which is a list of keyword specified parameters within
an AppleEvent. All commands which add and extract parameters from an
AppleEvent can be applied the same way to an AE Record. The AE Record
must be disposed when you finish using it (adding it to an AppleEvent or
another AE Record with PutAERecord will automatically dispose it).

Example:

Page 38
` this is how to send a request to Claris® Resolve™
` create the request range table
$Err:=CreateAERec($tabl)
$Err:=PutLongParam($tabl;"TLPT";"";100)
$Err:=PutLongParam($tabl;"BRPT";"";200)
$Err:=PutKeyword($tabl;"RTRN";"TEXT")
` create the record which holds the table
$Err:=CreateAERec($reqList)
$Err:=PutAERecord($reqlist;"TABL";$tabl)
` create the actual AppleEvent and add the record
$Err:=CreateAppleEvent("CLRS";"GVAL";$Resolve;$GetValue)
$Err:=PutAERecord($GetValue;"----";$reqList)
$Err:=SendAppleEvent($GetValue;$Reply;kAEWaitReply;-1)
` extract the data from the reply record
$Err:=GetAERecord($Reply;"----";$reqList)
$Err:=GetAERecord($reqList;"TABL";$tabl)
$Err:=GetTextParam($tabl;"VAL ";$resultString)
` clean up everything we allocated
$Err:=DisposeDesc($tabl)
$Err:=DisposeDesc($reqList)
$Err:=DisposeDesc($Reply)
$Err:=DisposeDesc($GetValue)

GetAERecord

Err:=GetAERecord(anEvent;Key;theRecord)

Extracts an AE Record from an AppleEvent or from another AE Record. Any
commands which apply to AppleEvents for adding and/or extracting data can
also be used on AE Records. To reference the last event received in a procedure
installed via HandleAEVT, pass 0 for the event handle.

Page 39

PutAERecord

Err:=PutAERecord(anEvent;Key;theRecord)

Adds an AE Record to an AppleEvent or to another AE Record. The AE Record
will automatically be disposed after this call. Note that function this is really the
same as PutObject, since an object specifier is simply a special kind of AE
Record.

PutKeyword

Err:=PutKeyword(anEvent;key;value)

Adds a 4-character keyword (enumerated type) to an AppleEvent or AE Record.
If you need to pass a type rather than an enumeration, use
PutLongParam(aevt; key; ”type”; Long(value)) instead.

GetKeyword

Err:=GetKeyword(anEvent;key;value)

Extracts a 4-character enumerated type keyword from an AppleEvent or AE
Record. To reference the last event received in a procedure installed via
HandleAEVT, pass 0 for the event handle.

Constants

AlwaysInteract
CanInteract
NeverInteract

Use these constants in SendAppleEvent to specify the user interaction option of
the send mode. These determine whether the receiving program will be allowed
to interact with the user when processing the AppleEvent. In general you should
specify “NeverInteract” when sending to a remote system. When sending to an
application on the local machine, you should probably specify “AlwaysInteract”
or “CanInteract” to allow it to bring up any dialogs or alerts necessary when
handling the event.

kAENoReply
kAEWaitReply

Use these constants in SendAppleEvent to specify the reply option of the send
mode (you can also use 3 for QueueReply, but in that case you’ll have to add a
handler for reply events, which will be class “aevt” and ID “ansr”.)

Page 40

Advanced Commands

CreateXAEVT

Err:=CreateXAEVT(Class;id;addr;returnID;TransID;aevt)

This works exactly like CreateAEVT except it allows you to supply a return ID
and/or transaction ID. The return ID will allow you to uniquely identify the
reply to this AppleEvent if you allow the reply to be queued and install a
handler for ‘aevt’,’ansr’. You can allow the return ID to be generated
automatically by passing -1 for the return ID. The transaction ID, if non-zero,
can be used to specify that a series of AppleEvents are part of a single operation
(not all applications support this feature).

CopyDesc

Result:=CopyDesc(aevt)

Creates a duplicate copy of an AppleEvent, AERecord, or target ID. You can
use CopyDesc(0) in an AppleEvent handler to obtain a handle to the actual
event being processed. This is useful if you wish to write extensions to System
7 Pack™ which need to access an AppleEvent. When you finish using the
result, you must dispose of it by calling DisposeDesc.

GetTransactionID
GetReturnID

Result:=GetTransactionID(aevt)
Result:=GetReturnID(aevt)

Obtains the transaction ID and return ID of an AppleEvent. You can pass 0 to
use the AppleEvent currently being processed in an AppleEvent handler
procedure. GetReturnID can be used in a handler for queued reply events (class
‘aevt’,id ’ansr’) to determine which AppleEvent is being replied to.

GetAEInfo

Err:=GetAEInfo(Descriptor;Size;Keys;Types;Lengths)

Returns arrays of keywords, types, and lengths of each descriptor in an
AppleEvent, AERecord, or List. 'Size', a LongInt variable, will be set to the
number of descriptors. ‘Keys’ and ‘Types’ should be arrays of String(4) and
‘Lengths’ should be an array of long integers.

Page 41
GetNthDesc

Err:=GetNthDesc(aevt,index,key,type,result)

Extracts a descriptor from an AppleEvent, AERecord, or List by position rather
than by keyword. ‘index’ tells which descriptor to extract (the first one is 1).
‘key’ and ‘type’ will be set to the keyword and actual datatype of that
descriptor. ‘result’ will be a handle to the descriptor. When you finish using it,
you must dispose of the result by calling DisposeDesc.

Page 42

GetNthItem

Err:=GetNthItem(aevt,index,key,type,textVar)

Extracts a value from an AppleEvent, AERecord, or List by position rather than
by keyword and coerces the result to text. ‘index’ tells which descriptor to
extract (the first one is 1). ‘key’ and ‘type’ will be set to the keyword and actual
datatype of that descriptor. This will work for all numeric types and any other
data which can be coerced to text. This command, along with GetAEInfo and
GetNthDesc can be used to examine an entire AppleEvent and extract the
contents of all nested lists.

Example:

DumpList($aevt;0)

--- DumpList
$err:=GetAEInfo ($1;$Size;Keys;Types;Lengths)
For ($i;1;$size)
 MESSAGE($2*"> ")
 $err:=GetNthDesc ($1;$i;$aKey;$aType;$aDesc)
 If (($aType="list") | ($aType="reco"))
 MESSAGE($aKey+" "+$aType+Char(13))
 DumpList ($aDesc;$2+1)
 Else
 $err:=GetNthItem ($1;$i;$aKey;$aType;$value)
 MESSAGE($aKey+" "+$aType+" "+$value+Char(13))
 End if
 $err:=DisposeDesc ($aDesc)
End for

Page 43

Using System 7 Pack with UserLand Frontier™

We provide a glue table for Frontier™ users to simplify access to
Sytstem 7 Pack™'s AppleEvents. To install these commands into
Frontier™, simply double-click on the file called
"FourthDimension.Frontier". If Fontier™ isn't already running, it
will start up. Frontier™ will ask you for the name of the table to
import. Accept the default name of
'System.verbs.apps.FourthDimension'. The following new verbs
will be added to Frontier™:

FourthDimension.countFiles()
Returns the number of files in your database.

FourthDimension.countFields(fileno)
Returns the number of fields in the specified file.

FourthDimension.fileName(fileno)
Returns the name of the specified file.

FourthDimension.fieldName(fileno,fieldno)
Returns the name of the specified field.

FourthDimension.currentRecord(fileno)
Returns the current record number in the specified file.

FourthDimension.recordsInSelection(fileno)
Returns the number of records currently selected in the
specified file.

FourthDimension.fieldInfo(fileno,fieldno,@table)
Inserts information about the specified field in a table. The
following entries will be created:
---- Name of the field
FTYP a numeric code indicating the field type (See 4D®'s Language

Page 44
Reference manual)

FourthDimension.getField(fileno,fieldno)
Returns the contents of the specified field in the current
record.

FourthDimension.doScript(command)
Executes almost any 4D® command. In pre-3.0 versions of
4D, Don't execute a command which changes the current
record or selection while a record is being displayed in an
imput layout or data may be lost.

FourthDimension.buildOutline(@outline)
Builds an outline describing the database structure.

FourthDimension.extractData(fileno,@outline)
Builds an outline containing all data in the specified file.

FourthDimension.searchForData(fileno,expr,@outline)
Does a simple search of a file and builds an outline containing
only the records returned by the search.

Page 45

Interfacing with Claris® Resolve™

In addition to the required AppleEvents and DoScript, Claris®
Resolve™ Supports the following custom events:

CLRS GVAL Extracts data from the current worksheet.
CLRS PVAL Puts data into the current worksheet.

Both of these events require a special record which must be created
with the low-level functions. This record consists of top left and
bottom right points, and a return type (for GVAL) or return value
(for GVAL reply or PVAL) and is contained in another record.

TABL Record with the following fields:
TLPT typeInteger Top left cell in the range
BRPT typeInteger Bottom Right cell of the range
VAL typeEnum Return type (should be “TEXT”)

The code to create and send such a record would look something
like this:

` this is how to send a request to Claris® Resolve™
` create the request range table
$Err:=CreateAERec($tabl)
$Err:=PutLongParam($tabl;"TLPT";"";100)
$Err:=PutLongParam($tabl;"BRPT";"";200)
$Err:=PutKeyword($tabl;"RTRN";"TEXT")
` create the record which holds the table
$Err:=CreateAERec($reqList)
$Err:=PutAERecord($reqlist;"TABL";$tabl)
` create the actual AppleEvent and add the record
$Err:=CreateAppleEvent("CLRS";"GVAL";$Resolve;$GetValue)
$Err:=PutAERecord($GetValue;"----";$reqList)
$Err:=SendAppleEvent($GetValue;$Reply;kAEWaitReply;-1)
` extract the data from the reply record
$Err:=GetAERecord($Reply;"----";$reqList)
$Err:=GetAERecord($reqList;"TABL";$tabl)
$Err:=GetTextParam($tabl;"VAL ";$resultString)
` clean up everything we allocated
$Err:=DisposeDesc($tabl)
$Err:=DisposeDesc($reqList)
$Err:=DisposeDesc($Reply)
$Err:=DisposeDesc($GetValue)

Page 46

Interfacing with Microsoft® Excel 4.0

Excel 4.0 supports most of the AppleEvent Registry (See Appendix
D) and also allows any command or macro to be executed with the
DoScript command.The most useful events are Set Data, Get Data,
and Create Element. You can use these events to create new
worksheets or charts, fill in a range of cells, extract the contents of
a range of cells, produce various kinds of charts, and copy a chart
into 4D as a picture field.

Example 1: Filling a range of cells from a 4D array1

$err:=CreateAEVT(“core”;”setd”;Excel;$aevt)
if ($err=0)

$err:=PutObject($aevt;”----”ObjNamed(“crng”;0;”R1C1:R10C1”))
$err:=PutList($aevt;”data”;ArrayOfValues)
$err:=SendAppleEvent($aevt;$reply;kAEWaitReply+CanInteract;-1)
$err:=DisposeDesc($reply)
$err:=DisposeDesc($aevt)

end if

Example 2: Creating a chart

$err:=DoScript(Excel;”Select(“+char(34)+”R1C1:R10C2”+char(34)+”)”)
$err:=CreateAEVT(“core”;”crel”;Excel;$aevt)
if ($err=0)

$err:=PutLongParam($aevt;”kocl”;”type”;Long(“chrt”))
$err:=SendAppleEvent($aevt;$reply;kAEWaitReply+CanInteract;-1)
$err:=DisposeDesc($reply)
$err:=DisposeDesc($aevt)

end if

Example 3: Copying chart to 4D

$err:=CreateAEVT(“core”;”getd”;Excel;$aevt)
if ($err=0)

$err:=PutObject($aevt;”----”;Obj(“chrt”;0;1))
$err:=PutLongParam($aevt;”rtyp”;”type”;Long(“SPIC”))
$err:=SendAppleEvent($aevt;$reply;kAEWaitReply+CanInteract;-1)
if ($err=0)

$err:=GetPicParam($reply;”----”;1;aPicture)
End if
$err:=DisposeDesc($reply)
$err:=DisposeDesc($aevt)

End if

1These examples assume the variable ‘Excel’ was previously set to the target ID for Excel 4.0. Error handling not shown.

Page 47

Using the Low-Level Interface

DON’T READ THIS SECTION IF INSIDE MACINTOSH FRIGHTENS
YOU!!!!!!!

System 7 Pack’s low-level interface gives you total control for sending and receiving
more complex AppleEvents. These commands are very similar to the functions
documented in the AppleEvent Manager chapter of Inside Macintosh™ Volume 6.

Sending an AppleEvent using the low-level interface involves creating the event,
adding parameters to it, sending it, and finally disposing of the event and the reply.

To create an AppleEvent, call CreateAEVT specifying the target address, a 4-
character event class, and a 4-character event ID. To add parameters to the
AppleEvent, call PutShortParam, PutLongParam, PutTextParam,
PutAliasParam, PutObject, PutPicParam, or PutList, depending on the data type
to be used.

The PutObject command allows you to include an object specifier in your
AppleEvent, which allows you to tell the receiving application to act on one specific
piece of data such as a particular window, a word or paragraph in a particular
document, or an object in a drawing. Object specifiers may be nested to represented
objects contained in another object (called a container). For example, an object
specifier might be something like ‘the first character of the second word of the fifth
paragraph in the document named “gone with the wind”’.

Objects are always identified by a 4-letter class ID and either a numeric value or a
name and an optional container, which will be 0 (null) for the top-level object. For
example, a paragraph may be contained in a document or window, but a window or
document has no container other than the application itself, so their container would
be 0. An object also has certain properties, also identified by 4-letter words. Typical
properties would be the font, font size, style, and color. See Appendix D for a list of
common object classes and property IDs.

Receiving an AppleEvent using the low-level commands is much easier, since most of
the work is already done for you by the AppleEvent manager. When an AppleEvent is
received, the procedure that was installed with HandleAEVT will be called. It can use
a combination of low-level and high-level functions to obtain data from the
AppleEvent.

Page 48
When receiving anything more complex than a single text or numeric direct object,
you should use the commands GetShortParam, GetLongParam, GetTextParam,
GetAliasParam, GetPicParam, or GetList to extract data from the event. Note that
there is no way to receive an object specifier, since 4D doesn’t provide a way to
resolve them into references to actual data.

Page 49

Glossary

AERecord: A single descriptor within an AppleEvent which
contains a list of descriptors specified by keywords.
Can contain nested AERecords.

Alias: A reference to a file sent as part of an AppleEvent.

AppleEvent: 1. A message sent between two applications running
under System 7 or from an application to itself
either requesting information or telling it to do
something. 2. The data structure used to represent
an AppleEvent message, which consists of a list of
data items (“descriptors”).

Container: An object which contains other objects; part of an
object specifier. Example: in ‘word 1 of document
named “Sample”’, the container is ‘document
named “sample”’. Containers can be nested many
levels deep.

Descriptor: A single piece of data within an AppleEvent or
AERecord, identified by a 4-character key.

Descriptor List: A single descriptor within an AppleEvent or
AERecord which consists of several items of the
same type, refered to by position rather than by
keyword.

Direct Object: The AppleEvent parameter identified by the 4-
character key “----”. In many AppleEvents, this will
be the only parameter.

Page 50

IAC: Apple Computer's Interapplication Communication,
a method which allows different applications on the
same machine or across the network to
communicate with each other.

Keyword: A 4-character identifier used to specify a particular
descriptor in an AppleEvent or AERecord.

Object Specifier: An AppleEvent parameter which tells the
application which piece of data the command
applies to, such as ‘the first word of the second
paragraph of the document named “gone with the
wind”’.

Parameter: A single piece of data contained in an AppleEvent.

PPC Browser: Program-to-Program Communication (part of the
Macintosh® Operating System) Browser. This is the
standard user interface for selecting a program to
link to or receive AppleEvents.

Script: A series of executable commands which take
advantage of the host application's environment.

Signature: A unique four-character code which identifies a
particular application.

Tick: One sixtieth (1/60th) of one second.

Time-Out: (n.) The period of time within which some expected
action, event, or result must be initiated, finished, or
occur. (v.) To cause a wait-period limit error to
occur.

Page 51

Appendix A: Built-in Event Handling

System 7 Pack™ has built-in handlers for the following
AppleEvents:

'misc','dosc' This is the standard 'do script' command. It will execute any 4D
command sent with it. An optional parameter 'ACK0', which
should be 1 or 0 specifies whether an acknowledgment should be
sent after the command executes.

'ISIS','CFIL' Count Files - returns the number of files.
'ISIS','CFLD' Count Fields - returns the number of fields in the file specified by

the direct object which must be numeric (either long or short
integer).

'ISIS','FNAM' File Name - returns the name of the file specified by the direct
object which must be numeric.

'ISIS','FINF' Field Info - returns the name and type of a field. The file number is
specified by the direct object and the field number is given by the
key 'FNUM'. Both of these must be numeric. The field name is
returned as the direct object of the reply and the field type (an
integer as returned by 4D's "type" function) is returned with the
key 'FTYP'.

'ISIS','RECS' Returns the number of records in the selection of the file specified
by the direct object.

'ISIS','RECN' Returns the current record number of the file specified by the
direct object.

'ISIS','GETF' Returns the contents of a field in the current record. The direct
object specifies the file number and the field number is given by
the key 'FNUM'.

'ISIS', 'ACK0' This is optionally sent by 4D® as an acknowledgment after a 'do
script' command is completed. The direct object is a numeric result
code with any 4D® error that occurred when executing the
command.

All of these events will return a descriptive error message2* in the 'errs'
parameter if any errors occur. The reply will be one of the following: "Bad File Number", "Bad Field Number", "Bad Record
Number", or "No Current Record". In order to accept these AppleEvents, you must execute the command AllowAccess(1).

2* These messages are in the 'STR#' resource named "Errors" and may be translated.

Page 52

Appendix B: Sample Programs

Your System 7 Pack™ disk includes several demo programs which
illustrate how to use most of the features.

Reference is System 7 Pack’s on-line reference database. It
includes a complete listing of all commands in System 7 Pack in a
HyperCard-like format. This also includes demos of most of
System 7 Pack’s features. There are also several useful 4D
procedures which you can copy to your own databases. See
Appendix D for a description of several functions which create and
send some of the core AppleEvents. Here’s a brief description of
the menu commands:

• List Commands: Displays a list of System 7 Pack’s
commands. Double-clicking on a command name will
open up a HyperCard-like information window.

• Export to Word: Creates a list of System 7 Pack’s
commands as a formatted MS Word file and then uses
System 7 Pack to open the document in Word.

• Frontier Demo: Sends a few simple commands to
UserLand Frontier™, which must be already running.

• Finder Demo: Demonstrates how to send
AppleEvents to the Finder.

• Microphone 4.0: Illustrates how to use the low-level
commands and create object specifiers by launching
Microphone 4.0, setting some variables using
DoScript, and sending Get Data events to examine the
contents of Microphone’s variables.

• Excel 4.0: Demonstrates how to send data to Excel
4.0, request different types of charts in Excel, and
convert Excel charts to a picture in 4D.

Page 53

• Send & Recv List: Demonstrates how to send and
receive arrays using the low-level functions. For the
receiver, you must select either your own copy of 4D
or another one on the network running this same
demo.

• Net Chat: Demonstrates how to use the high-level
functions to send a simple text message. For the
receiver, you must select either your own copy of 4D
or another one on the network running this same
demo.

Address Server and Address Client demonstrates one way 4D®
can provide data to a client application. The 4D application
provides a minimal address file which responds to AppleEvents
(class "ISIS" id "FIND") that request a name lookup. Any text
passed via the lookup request will trigger a Search on the name
field of the address file. The full address will be returned in an
event of class "ISIS" and id "REPL". Address Client is a tiny (28k)
stand-alone application which simply sends lookup requests to the
4D® application and displays the results. Address Client Stack is a
Hypercard 2.1 stack which works exactly the same as the
application. FM Pro Client is a sample client written in FileMaker
Pro 2.0. This one sends a different request to 4D and gets back a
series of Create Element events to create records containing the
results.

Page 54

Appendix C: Error Codes

All System 7 Pack™ functions will return 0 if the operation is
completed successfully. Some applications may return codes not
listed here if they're unable to handle an AppleEvent sent to them.
Other possible results are:

-1............An invalid signature or target address handle was given

-2............You're not running System 7 or your system doesn't
support AppleEvents

-3............The specified application isn't running.

-4............Incompatible array type (PutList or GetList).

-10..........Handler for that event is already present (InstallAEVT).

-20..........Attempted to replace standard event handler
(InstallAEVT).

-30..........Attempted to remove event handler we didn't install
(IgnoreAEVT).

-35..........Couldn't find application to launch on any volume.

-43..........Couldn't find document to open or print.

-100........Unable to install AppleEvent handler proc
(InstallAEVT).

-108........Not enough memory to launch an application.

-606........Attempt to bring background-only application to front.
(BringToFront).

-906........Attempt to send AppleEvent to non-aware application.
(usually PrintDoc).

Page 55

-1700......Incompatible data type in an AppleEvent parameter.

-1701......Parameter not found in the AppleEvent.

-1702-1707 Not a valid AppleEvent or invalid parameter.

-1708......Receiving application couldn’t handle that AppleEvent.

-1709......Reply wasn’t valid.

-1710......Unknown send mode.

-1711......Wait for reply cancelled by user.

-1712......Timed out waiting for reply.

-1713......Required user interaction but none was allowed.

-1715......Required parameter wasn’t accessed.

-1716......Invalid target address.

-1718......Attempted to access reply which hasn’t arrived yet.

Page 56

Appendix D: AppleEvent Registry

Fully describing all of the standard AppleEvents is beyond the
scope of this manual, but here are some of the more common
events defined by Apple in the required, core, and miscellaneous
standard suites of the AppleEvent registry:

Name Class ID Description

Open Application aevt oapp Sent by the finder when an application is opened with no
documents. You shouldn’t send this event.

Open Document aevt odoc Tells an application to open a list of documents.
Print Document aevt pdoc Tells the application to open and print one or more documents.
Quit aevt quit Tells the application to quit.
Close core clos Closes the specified objects.
Delete core delo Deletes the specified objects.
Do Objects Exist core doex Determines if the specified objects exist.
Get Class Info core qobj Get information about a particular object class.
Get Data core getd Get data from the specified objects.
Get Data Size core dsiz Get the size of specified objects.
Get Event Info core gtei Get information about a particular AppleEvent.
Save core save Save the specified objects.
Set Data core setd Change the specified objects.

Do Script misc dosc Executes commands in the applications specific language.

Evaluate misc eval Evaluates an expression and returns the results.

Here some of the more common class names and property IDs:

Cell.........................ccel
Column...................ccol
Document...............docu
File.........................file
Graphic object........cgob
Menu......................cmnu
Paragraph...............cpar
Row........................crow
Selection.................csel
Table.......................ctbl

Page 57

Window..................cwin
Word.......................cwor
Best type (property) pbst
Bounds (property). .pbnd
Class (property)......pbnd
Color (property).....colr
Default type............deft
Font (property).......font
Name (property).....pnam
Point Size...............ptsz
Version...................vers

Page 58

The sample database, S7P Reference, includes the following
functions which create and send some of the more common core
events:

Err:=Create Element(Target;Class;Container;Position)

Creates a new element of the specified class. Specify 0 for
container and ““ for position if no value needs to be given.

Result:=Do ObjectsExist(Target;Object)

Returns TRUE if the specified objects exist.

Err:=Get Text(Target;Object;»data)
Err:=Get Pict(Target;Object;type;»data)

Err:=Get Array(Target;Object;type;»data)

Returns the value of an object or object property. Type should be a
4-letter string specifying the data type to be returned. It should be
one of “TEXT”, “LIST”, “PICT”, or “SPIC”. “SPIC” is only used
with Excel 4.0 and is the same as PICT except it will return a color
screen picture rather than a dithered black & white print image
picture. Data should be a pointer to a variable of the appropriate
type.

NOTE: Rather than using a single procedure, I’ve provided
separate procedures for the most common data types to make
them compatible with the 4D compiler.

Err:=Send Text(Target;Object;Data)
Err:=Send Array(Target;Object;»Array)
Err:=Send Enum(Target;Object;Value)

Changes the value of an object or object property.

Examples:
Err:=Send Text(Excel;Property(“sele”;Obj(“docu”;0;1));”R1C1:R10C1”)

Selects cells R1C1 thru R10C1 in the topmost worksheet.

Page 59
Err:=Send Array(Excel;ObjNamed(“crng”;Obj(“docu”;0;1);”R1C4:R10C4”);»aList)

Sends an array of numbers to a range in the topmost worksheet.

Err:=Get Pict(Excel;Obj(“chrt”;Obj(“docu”;0;1);1);”SPIC”;»aChart)
Copies the first chart in the topmost worksheet to a color picture.

Err:=Create Data(Excel;”chrt”)
Creates a new chart document.

HasChart:=Do ObjectsExist(Excel;Obj(“chrt”;Obj(“docu”;0;1);1))
Returns TRUE if the topmost worksheet contains a chart.

For more information, see the latest edition of the AppleEvent Registry, available
from Apple Computer, Inc.

Page 60

Appendix E: Network Access

Before you can send AppleEvents across the network you must
configure any machines you wish to be able to access. Any
machine which needs to receive remote AppleEvents must have
“Program Linking” turned on with the Sharing Setup control
panel (see figure 1). In addition, any machine you wish to connect
to should have an entry in the Users & Groups file for you
(optionally, if security isn’t a concern, you can simply turn on the
program linking checkbox for guests by double-clicking the
<Guest> icon in the Users & Groups control panel - see figure 2).
The first time you send an AppleEvent to a program on a remote
Macintosh you will be asked to suply a user name and password. If
guest access is enabled, you can simply click on the “Guest”
button.

Figure 1: Turn on program linking

Page 61

Figure 2: Allow program linking for guests

Page 62

Appendix F: Quick Reference

L := AddrToString(Target;String1;String2;String3)
L := AE Process ID
L := AESend(Target;Class;ID;Text)
L := AESendPict(Target;Class;ID;Picture)

AllowAccess(N)
L := BringToFront(Signature)
L := CreateAERec(AERec3)
L := CreateAEVT(Class;ID;Target;AEVT)
L := CreateXAEVT(Class;ID;Target;N;L;AEVT)
L := CopyDesc(AEVT or Target or OSPEC or AERec)
L := DisposeAddress(Target)
L := DisposeDesc(AEVT or Target or OSPEC or AERec)
L := DoScript(Target;Text)
L := Evaluate(Target;Text;Reply)
L := FindAppName(Signature;Name)
L := FindCreator(Name;Signature)
L := Frontier(Text;Reply)

L := GetAEInfo(AEVT2,3;NumOfItems;ArrayOfStr4;ArrayOfStr4;ArrayOfLong)
GetAEMessage(Text)

L := GetAEPict(Picture Variable)

L := GetAERecord(AEVT2,4,Str4;AERec)
GetAEType(Type String)

L := GetAliasParam(AEVT2,3 ;Str4;String)

L := GetKeyword(AEVT3;Str4;Str4)

L := GetList(AEVT3;Str4;anyArray)

L := GetNthDesc(AEVT3;integer;Str4;Str4;Long)

L := GetNthItem(AEVT3;integer;Str4;Str4;Text)

L := GetRealParam(AEVT3;Str4;aRealNum)

L := GetReturnID(AEVT3)

L := GetShortParam(AEVT3;Str4;Str4;L)

L := GetTransactionID(AEVT3)

L := GetPicParam(AEVT3;Str4;N;aPicture)
GetReturnAddr(Target)

L := GetShortParam(AEVT3;Str4;Str4;N)

L := GetTextParam(AEVT3;Str4;Text)
L := HandleAEVT(Class;ID;Name)
L := IgnoreAEVT(Class;ID)
L := IsRunning(Signature)
L := Launch(Signature;Name)
L := LaunchBehind(Signature;Name)
L := Long(Str4)
L := MakeAddress(Signature;Target)

3Any function which adds data to or extracts data from an AppleEvent can also take an AERecord.
4Any function which extracts data from an AppleEvent can be passed 0 to access the event currently being processed in a handler
procedure

Page 63
ospec := Obj(Str4;ospec5;L)

5Object specifiers passed to these functions will be automatically disposed, to simplify creating nested containers

Page 64
ospec := ObjNamed(Str4;ospec3;String)

L := PrintDoc(Signature;Name)
ProcessAEVT

L := ProcessList(N;ArrayOfString4)

ospec := Property(Str4;ospec3)

L := PutAERecord(AEVT;Str4;AERec6)
L := PutAliasParam(AEVT;Str4;Name)
L := PutKeyword(AEVT;Str4;Str4)
L := PutList(AEVT;Str4;Str4;anyArray)
L := PutLongParam(AEVT;Str4;Str4;L)

L := PutObject(AEVT;Str4;ospec3)
L := PutPicParam(AEVT;Str4;N;aPicture)
L := PutRealParam(AEVT;Str4;aRealNum)
L := PutShortParam(AEVT;Str4;Str4;N)
L := PutTextParam(AEVT;Str4;Text)
L := SendAppleEvent(AEVT;ReplyAEVT;L;L)
L := QuicKeys(Name)
L := QuitApp(Signature)
L := S7Version(Name)
L := SelectAddress(Name,Signature;Target)
L := SendWithReply(Target;Class;ID;Text;Reply)

SetTimeOut(N)
L := StringToAddress(String1;String2;String3;Target)
L := System7

L: a Long Integer value
N: an Integer value
Name: a string variable or field
Signature: 4 character application signature
Class,ID: 4 character strings
Text: a Text variable or field
Reply: a Text variable or field
AEVT: a Long Integer representing an AppleEvent
AERec: a Long Integer representing an AERecord
ospec: a Long Integer representing an Object Specifier
Target: a Long Integer representing a target address
ospec: an object specifier

6The AERecord passed to this function will automatically be disposed.

Page 65

Appendix G: Version History

Version 1.0 - Dec. 1991
Initial release.

Version 2.0 - Feb. 1992
Added Frontier & QuicKeys support, Built-in AppleEvent
handlers.
Many commands changed from version 1.0

Version 3.0 - May 1992
Added low-level commands.
Many new commands added but compatibility maintained
with 2.0
Procedure Editor now lists commands in logical groupings.
Demo programs completely rewritten.

Versoion 3.1 - June 1992
Added AE Record support, needed for Claris Resolve.

Version 3.1.1 - June 1992
Fixed problem with StringToAddress

Version 3.2 - July 1992
Added Long() utility function & demos for Excel 4.0

Version 3.26 - Sep. 1992
Added LaunchBehind command.
Added many new commands for examining AppleEvents and
provide more access to internal features for custom extensions
to S7P.

Page 66

*** Interim release until 4D v3.0 compatibility can be
verified ***

Version 3.3 - Nov. 1992
Insure compatibility with 4D® Version 3.0.

Page 67

About ISIS International

ISIS International was founded in 1987 and is recognized as one of
the top 4th DIMENSION® developers. Our clients include a major
hospital, film production companies, and the state of California. In
addition to System 7 Pack™, we produce complete business
solutions. Our other products include ISIS Notes™, an AppleEvent
aware network messaging & file transfer utility, Antwerp™, a
powerful invoice, inventory, & shipping management system;
Horus™, a suite of sales, tech support, and customer service tools;
ISIS Medical & Dental office systems; the ISIS Construction,
Architrieve, and GraphicBid series, which features cost estimation,
bidding and scheduling; and ISIS Production Office which allows
a small production company to juggle multiple projects in various
stages. We also sell Foundation™, our proprietary 4th
DIMENSION® application shell which we used to develop all of
our business products.

Tech Support

ISIS can be reached at (818) 788-4747 during West Coast business
hours. We have the number forwarded to our respective homes
after hours, so we can be reached at most times. We also provide
support on America Online in the Mac Business forum (enter the
keyword “ISIS”). We can also be reached on AppleLink at D6734.
Our Compuserve IDs are 76367,1406 (Paul Harwitz) and
70375,350 (Mike Cohen).

