
Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

OmniScript
the General Purpose Script Language

Richard G. Gibbs
158 Cranberry Rd.
North Attleboro, MA 02760

email: rgibbs@aol.com

1 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
License Agreement

This software is protected by the copyright laws of the United States and other countries. You
are free to try it for 30 days. If after this time you decide to keep it you should send the $25
dollar shareware fee to the author. This fee licenses you to use the OmniScript application and
any droplet applications derived from it on one machine at a time.

2 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
TABLE OF CONTENTS

Introduction.....................................3
What It Does................................3

Scripts..5
Running OmniScript...................5
Script Processing.........................5

Error Handling in Scripts........6
Variables......................................6

General Variables....................6
File Variables...........................7
Alias Variables.........................8
Target Variables.......................8
Path Variables..........................8
Global and Local Variables.....9
Saving Global Variables..........9

Expressions..................................9
OmniScript Features.....................13

The OmniScript Display............13
Setup Script...............................14
Droplet Applications.................15
Lists...15
Menus..16
Dialogs......................................16

Modal Dialogs.......................16
Modeless Dialogs..................17
Dialog Definition Lists..........18

Apple Events.............................20
Finder Control...........................22
File Tailoring.............................22
Application Control...................23

SCRIPT Functions........................25
Function Syntax.........................25
#ABS...25
#ACOS......................................25
#ASIN..25
#ARG..25
#ATAN.......................................26
#ATAN2.....................................26

#CHAR......................................26
#CONV......................................26
#COS...26
#COSH......................................26
#CQD..26
#DATE.......................................27
#DOUB......................................27
#DT..27
#E..27
#EXP...28
#EXPR.......................................28
#EXTE.......................................28
#F...28
#FILE..28
#FORM......................................30
#FPU..30
#G..30
#LC..30
#LEN...30
#LOC...31
#LOG...31
#LOG10.....................................31
#LONG......................................31
#MAC..31
#MENU.....................................31
#NUM..31
#PATH.......................................32
#PI...32
#RAND......................................32
#RET...32
#SCRIPT...................................32
#SEL..32
#SHORT....................................32
#SIN..33
#SING..33
#SINH..33
#SQRT.......................................33
#SYS..33
#TAN...33

3 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#TANH......................................33
#T..34
#TIME.......................................34
#UC...34

SCRIPT Commands......................35
Summary...................................35

Display Control.....................35
File and Folder Control.........35
File Routines.........................35
Input......................................36
Lists.......................................36
Menus....................................36
Script Control.......................36
Process Control and Apple
Events....................................37
Standard File Package...........37
Variables................................37

Command Syntax......................38
ACCEPT....................................38
AEADD.....................................39
AELISTADD.............................39
AELISTNEW............................39
AENEW....................................39
AEOPT......................................39
AEREPLY.................................40
AESEND...................................40
AETARGET..............................40
ALIAS.......................................41

4 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
BEEP...41
CHANGE..................................41
CLEAR......................................42
CLOSE......................................42
CONVERT................................43
CURSOR...................................43
CYCLE......................................43
DEBUG.....................................43
DECREMENT..........................43
DELETE....................................43
DESELECT...............................44
DIALOG....................................44
DIRECTORY............................44
DISPLAY..................................44
DO...44
DROPLET.................................45
ELSE...45
END...45
ERROR......................................45
EXEC..45
EXIT..45
FILE..46
FIND..46
FINDER....................................46
FIXLIST....................................48
FRONT......................................48
GETFILE...................................48
GOTO..49
IF...49
INCREMENT............................49
KILL..49
LAUNCH..................................49
LIST..50
LISTDIR....................................51
LISTNEXT................................51
LISTP..51
LOADSCRIPT..........................52
LVALUES..................................52
MENU.......................................52

MENUSCRIPT..........................52
MENUSET................................53
MODELESS..............................53
MOVE.......................................53
NEWDIR...................................53
OPEN..53
PATH...54
PAUSE.......................................56
PUTFILE...................................56
QUIT...56
READ..56
REMOVE..................................56
RENAME..................................56
REORDER................................57
REPORT....................................57
REWIND...................................57
RESOLVE.................................57
RESTART..................................57
RFCLOSE.................................58
RFOPEN....................................58
SAVE...58
SCRIPT.....................................58
SCRIPTPATH............................59
SELECT....................................59
SET..59
SETINFO..................................59
SORT...59
SORTD......................................60
SOUND.....................................60
SRAND.....................................60
TAILOR.....................................60
TEST...61
UNMOUNT..............................61
VALUES....................................61
VLOAD.....................................61
VSAVE......................................61
WAIT...61
WINDOW.................................62
WRITE......................................62

5 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Resources......................................63

6 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Introduction

What It Does

OmniScript is a general purpose script language with the following features:

• Complete control structure including if and else statements and do loops.

• Use of string, integer or floating point variables. Subscripts can also be used.

• A display window that uses the Macintosh text edit functions. This enables a user to:

- interrupt a script and scroll through the display. Data that scrolls off the screen is not
lost.

- use the text edit functions to modify the display and copy parts to other programs.

- save the display to a file.

- change the size and location of the display window.

• MultiFinder aware and System 7 compatible and can process in the background.

Some of the features of OmniScript are:

• Easily create lists that can be processed with the Macintosh List Manager.

• Add menus to OmniScript that can be used to set options or execute scripts.

• Easily process user defined dialogs (both modal and modeless).

• Create and delete files and folders. Change file information.

• Read and write data to and from files.

• Create, send and receive Apple Events.

• Launch and control other applications.

• Make a ‘droplet’ application, which executes a predefined script to process all files opened
by the application.

7 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
SCRIPTS

Running OmniScript

A script is a TEXT type file containing a series of commands to process, one command per
line. A script can be executed in one of five ways:

i) by opening the ‘OmniScript’ application. The application attempts to execute the
script file ‘Default Script’. If this file is in the same folder as ‘OmniScript’ and is
not empty it will be executed, otherwise the Standard File Package is used to
prompt the user for a script to execute.

ii) by using a force open. The user selects one or more scripts and the ‘OmniScript’
application (by shift-clicking) then selects Open (Open from the File Menu,
Command-O or double clicking on one of the selected icons). (This is for System
6 and does not work under System 7.)

iii) by opening one or more OmniScript documents (scripts showing the OmniScript
File icon). The user selects one or more OmniScript documents (by shift-clicking)
then selects Open.

iv) under System 7.0 by selecting one or more scripts and dragging over the
OmniScript icon.

v) under System 7.0 by using Apple Events to send scripts to the ‘OmniScript’
application. (See below.)

Any TEXT type file can be converted to an OmniScript document by changing the creator to
'ExPr'. The script ‘Change Creator.Setup’ is a script that can be used to make a droplet
application to do this.

Script Processing

The general format of a command line is

[label ;] COMMAND parameter1 , parameter2 , … !! comments

A command line is limited to 254 characters. Any line starting with an * is treated as a
comment and ignored.

The label is optional. It is identified as a label by the semi-colon following it. It is permissible
to code just a label on a command line. When the script file is first read into memory any label

8 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
is stripped off and a note made of the line to which it refers. Thus during command line
processing the label is no longer present. The label name should follow the same rules as
variable names, although it may also contain the underscore character.

Whenever a script is first referenced, whether by the ‘OmniScript’ application or by another
script (using the EXEC or LOADSCRIPT commands), the file is first completely read into
memory, any command line labels are identified, and all DO and IF commands are matched
with the corresponding END commands. The processed script is saved in memory. For any
subsequent invocations of the script via an EXEC command during this execution of the
application the script file is not read again. However if a script is reopened (using the Open,
Immediate or List commands on the File menu or by dragging a script and dropping it on to the
application) it will be reloaded if it has been changed.

9 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
It is possible to include more than one script in a single file. The occurrence of a line starting
with the key word SCRIPT terminates the current script and starts the pre-processing of
another script with the name that follows the SCRIPT key word. Thus if an EXEC command
subsequently references a script by this name it will already be in memory and will not be read
in. (If the script named by the SCRIPT key word is the same as a script previously read in then
the old script will be replaced with the new one. However any static local variables defined
during the execution of the old script will be available to the new script .)

A script can be executed recursively, ie. it can EXEC itself. In this case the dynamic local
variables defined in each execution are separate, but the static local variables are common to
all executions.

The names of commands and functions and the various keywords are not case sensitive.
However variable names are case sensitive.

Error Handling in Scripts

A fatal error occurs if the command processor detects a syntax error or does not receive the
expected type of parameter. A non-fatal error occurs when those commands that receive an
error code from the Macintosh operating system receive a non-zero error code or when a script
executed by the EXEC command returns a non-zero value with the EXIT command.

Fatal errors cause the immediate termination of the script and those scripts in the chain of
EXECs that invoked the script . If the application was opened with more than one script file
(methods ii - v above) the application will execute the next script .

The handling of non-fatal errors depends on whether an error trap has been set. The ERROR
command defines a label to jump to if a non-fatal error occurs. If no error trap has been set
then execution continues with the next command. The error code value can be accessed using
the #RET function.

The REPORT command displays information about a non-fatal error.

Variables

A variable name consists of an alphabetic character or one of the special characters (\, @ or $)
followed by 0 to 30 alphanumeric characters. Variable names are case sensitive. There are
four types of variable: General, File, Alias and Path.

A variable name may be indexed by adding the index in square brackets at the end of the name,
for example $a[1]. A variable may have more than one index, but each index reduces the

10 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
maximum length of the variable name by two characters. The index value can be any valid
integer expression in the range -32768 to 32767.

The script language permits the indirect reference of variables, that is the name of a required
variable can be contained in another variable or, more generally, in a string expression. This is
indicated by enclosing the expression in braces.

General Variables

General variables are used to hold a text string or numeric value. The value of a general
variable is flagged as being string, integer or floating point. A variable can have a null value,
that is non-numeric with length zero.

11 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
When a variable has a string value it is possible, when evaluating an expression, to refer to a
subrange of its value by following the variable name with the range enclosed in parentheses.
The range consists of two integer expressions separated by a colon or a single expression to
define a single character.

The following examples illustrate these rules. They also show how to reference indexed
variable names. Suppose the following variables have been defined

I = 1

DE = 'XXX'

DEF = 'WXYZ'

DEF[1] = 'QRS'

G = 'DEF'

The following table gives the results of variable substitution

Initial string Substituition Comment

DEF WXYZ

DEF[I] QRS The variable name DEF[1] is first generated.

DEF(I:3) WXY The subrange is the first thru third characters

DEF(:2) WX The subrange is the first two characters

DEF(3:) YZ The subrange is the third and following characters

DEF(2) X The subrange is the second character.

DEF[I](2) R The value is the second character of DEF[1].

{G} YYYY The variable name DEF is first generated

{G}[I] QRS The variable name DEF[1] is first generated

{G[I]} null G[1] not defined

{G(1:2)} XXX The variable name DE is generated from the first
two characters of the value of G

12 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
File Variables

File variables are set by the GETFILE, LISTDIR and FILE commands. They actually define a
general variable containing the name of a file (or possibly a directory for the FILE command)
and a file variable of the same name that contains information about the file. (LISTDIR
generates a list of file names and a corresponding list of file variables.) This information can be
accessed using the #FILE function and modified by the CHANGE command. The SETINFO
command is then used to actually apply the information to the file.

Whenever information about a file or directory is obtained it is stored in an internal buffer.
Information to be saved as a file variable is copied from this buffer. The FILE, CHANGE and

13 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
SETINFO commands and the #FILE function can use this buffer directly instead of a file
variable. However other commands may invalidate this buffer. Thus it is possible to use the
FILE or GETFILE commands to set the buffer, followed by the CHANGE or SETINFO
commands or #FILE function.

Alias Variables

Alias variables are used to hold alias information about files or directories. An alias variable is
set by the ALIAS command. Information is retrieved using the RESOLVE command. Since
aliases can only be used with System 7, these commands use full path names under System 6.
(See the PATH command for a description of paths.)

Target Variables

Target variables are generated by the AETARGET command, which uses the PPC Browser
function of System 7 to select a target for an Apple Event. These target variables can also be
used to define items of type 'targ' in Apple Events.

Path Variables

Path variables are used to define directories. Various file operations are performed in the
current default directory. This can be changed by the PATH command. When this command is
used it is possible to save the information about the directory in a variable, thus simplifying
references to this directory in subsequent PATH commands. The SCRIPTPATH command is
similar to the PATH command but is used to define the directory to be searched for scripts.

At the start of execution of a script in the document list two path variables are predefined:
APPL is the directory containing the application and SCRIPT is the directory containing the
script. (For a droplet application SCRIPT is the directory containing the file.)

Under System 7 some path variables describing certain system folders are initialized. They are
given in the following table.

Variable Folder

amnu Apple Menu Items

ctrl Control Panels

desk Desktop Folder

extn Extensions

pref Preferences

prnt PrintMonitor Documents

14 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
empt Shared, network Trash directory

trsh Single-user Trash directory

strt Startup Items

macs System Folder

temp Temporary Items

15 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Global and Local Variables

If a general, file or alias variable name begins with a $ or @ character it is a global variable
otherwise it is local. The value of a local variable is available only in the script that defines it.
Any other script that uses the same name defines a different local variable. The value of a
global variable is available to all scripts. The @ type variables are intended for use with the
VLOAD and VSAVE commands. (See below.) When the VSAVE command is executed all the
@ type variables are saved to a file. The VLOAD command is used to read these variables
back into memory. This allows the predefinition of a set of variables used by a script and can
result in improved execution speed.

If a general, file or alias variable name begins with a \ character it is a static local variable, that
is if a script is exited then executed again this variable will have the value left over from the
previous execution. If a variable name does not begin with one of the special characters (\, @
or $) then it is a dynamic local variable. Its value exists only during the current execution of the
script.

Path variables are always global (equivalent to those variables beginning with a $ character)
and may not be saved with VSAVE.

Saving Global Variables

The VSAVE command is used to save the @ type variables to a file. For example the command

VSAVE ‘Saved Variables’

saves the @ type variables to the file ‘Saved Variables’. These variables could then be loaded
in a subsequent execution of ‘OmniScript’ by

VLOAD ‘Saved Variables’

It is possible to define up to 10 additional blocks of variables to be saved and loaded by the use
of a special form of variable name. For example the command

@3_val = 25

defines a variable that would be saved by the command

VSAVE ‘Additional Variables’, 3

The number following the @ character can have a value in the range 0 - 9 (for a total of 10
additional blocks). These files of saved variables do not have to be loaded back with the same

16 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
number. For the above example the file could be loaded with

VLOAD ‘Additional Variables’, 5

In this case the variable defined above would now be referenced by @5_val.

Expressions

Several of the commands and functions use expressions. They can be used in the assignment of
variable values, as parameters for commands, in variable subscripts and ranges, and in the
arguments of script functions. An expression has the general form

field operator field operator … field

17 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
The expression can be terminated by the end of the line or by a suitable delimiter as required
by the syntax, such as a comma for a command or function parameter, or a right parenthesis for
a function parameter or a nested expression.

A field may have a string, integer or floating point value and can be specified as a hard coded
value (numeric literal or string literal in single or double quotes) or as the value of the variable
specified by field or the value returned by a script function. The variable can have subscripts. If
a string value is desired then a subrange can be specified. The variable can be referenced
indirectly by the use of {}. An integer is stored as a 4 byte signed value.

If the operator is omitted then the two fields are treated as strings and concatenated. An integer
field is converted to a string but a floating point field will generate an error. Comparison
operations generate an integer value of 1 if true or 0 if false. Comparisons are valid between
two numeric fields (even if one is integer and one is floating point) or two string fields.
Expression evaluation can be nested with the use of parentheses.

The operators used in expressions are given in the following table in the order of their
precedence for evaluation. Generally this is the same as the C language. Evaluation of an
expression is performed from left to right.

operator representation precedence notes

string concatenation // 1 can usually be omitted

logical not ! 2 integer operand only

bitwise complement ~ 2 integer operand only

exponent ** 3

multiply * 4

divide / 4

remainder % 4

add + 5

subtract - 5

bitwise left shift << 6 two integer operands only

bitwise right shift >> 6 two integer operands only

less than < 7

18 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

greater than > 7

less than or equal to <= , =< 7

greater than or equal to >= , => 7

equal to =, == 8

not equal to <> , >< , != 9

bitwise and & 10 two integer operands only

bitwise exclusive or ^ 11 two integer operands only

bitwise or | 12 two integer operands only

logical and && 13 numeric operands

logical or || 14 numeric operands

19 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

20 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
OMNISCRIPT FEATURES

The OmniScript Display

When the application is executing the display window is always shown. This is a standard
Macintosh document window with size and zoom boxes and scroll bars. A small area of the
window just below the title is used to display the current status, which can be one of the
following:

Select Script (when the user is prompted for the script file)
Select File (when the user is prompted for a file from a droplet application)
Executing Script
Pause in Script
List Selection (when the user is prompted to select from a list)
Select continue ... (when the program was in the background but

requires user input for list selection or a dialog)

During execution the Menu Bar displays the standard Apple and Edit menus and a File menu.
The options in this menu are:

Quit Immediately stop execution of OmniScript. If the application is not in
a pause the user will first be prompted by an alert to confirm the Quit.
This protects the user from inadvertently cancelling when running in
the background.

Exit If executing a script immediately terminate. If there are any scripts
remaining in the list selected at start up the next is executed.

Pause This suspends execution until the user selects another option from the
File menu.

Continue This continues execution following a Pause. The user may also press
the ENTER key to continue.

Restart If executing a script then the main script is restarted (ie. the script on
the file list). If the program is in a Pause because there are no more
scripts to execute the last script will be restarted.

Save This causes the current contents of the display to be saved to a file and
clears the display. If a file was not previously defined (using the SAVE
command) then a default will be opened in the root directory of the
start up volume. The name will start with ‘Saved on’ followed by the
data and time

Page Mode Normally when the display window is full additional output causes the

21 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

display to scroll enough to display new text. Selecting Page Mode
causes the display to be erased when it is full and the new text is
displayed at the top of the window. This mode can display large
amounts of data more quickly. This menu selection is used to toggle
between Page Mode and the regular mode. When Page Mode is on it is
checked in the menu.

Document List This displays OmniScript’s list of documents. This list includes those
files opened when OmniScript is started, any documents added by
selecting Open or Immediate from this menu, or any documents added
by Apple Events. Documents not yet processed are shown highlited.
When the current script terminates the next highlited document on the
list is processed. By selecting or deselecting documents this order of
execution can be modified, enabling some documents to be skipped or
executed again.

Open This prompts the user to select a script to be added at the end of the
Document List.

Immediate This prompts the user to select a script for immediate execution. The
document is added to the Document List but it is executed
immediately. The current script is interrupted and resumed when this
interrupting script has terminated.

Command The current script is interrupted and the user prompted to enter a single
command that is immediately processed. This command could execute
another script.

Terminate This option is available only when OmniScript is waiting for an
application to terminate following a Launch command with the wait
option on. It immediately terminates the wait and the script continues.

Debug This is used to turn debug on and off. When on each executed
command is displayed (see the DEBUG command). This option
toggles debug on and off. It is checked when on.

Execute Selection Similar to the Command option of this menu except that instead of
entering a command the command is the currently selected text in the
display window. (If the selection includes a return character the
command is the text up to the first return.)

22 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

The display software uses the TextEdit functions and as such is limited to a display of 32K
bytes. An attempt to display information that exceeds this limit causes some of the display to
be deleted and saved to a file. (This is like the Save Menu option except that not all of the
display is deleted.)

The standard TextEdit functions can be used to paste some of the display into desk accessories
or, if MultiFinder or System 7.0 is running, into other applications.

Setup Script

A setup script is a special script used to customize OmniScript. When OmniScript is launched
it checks for a file with the name ‘OmniScript.Setup’. This script is executed first and ‘Default
Script’ is not used if no other files were opened with OmniScript.

The special use of the setup script is that after it is loaded the processed script is saved in the
data fork of OmniScript. When OmniScript is executed again later the script does not need to
be reloaded from OmniScript.Setup. It will only be reloaded if OmniScript.Setup is in the same
folder as OmniScript and it has changed since it was last loaded.

It is possible to have several different customized versions by making and renaming copies of
OmniScript. If it is renamed to XXX then the corresponding setup script is XXX.Setup

23 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Droplet Applications

In general the term ‘droplet’ is used to describe an application that processes one or more files
in a specified way and that supports ‘drag and drop’, where one or more files are selected and
then dragged and dropped onto the application icon. OmniScript supports droplets by using a
setup script that executes the DROPLET command. A droplet is created by making a copy of
OmniScript, changing the name to whatever is desired, using the CONVERT command to
define the droplet’s signature and the types of file it opens and executing the application so that
the corresponding setup script is processed.

When a document is opened by the droplet (ie. added to the Document List by the various
methods available) it is not executed as a script, but instead it is treated as a file to be processed
by the script identified by the DROPLET command. The script defined on the DROPLET
command is executed once for each file processed by the droplet. The general variable $File
contains the name of the file and the corresponding file variable contains the file information
(see the #FILE function). The file is also the current file at the start of execution of the script.

When writing the setup script it should consist of two parts. The first part is the setup and
should include the DROPLET command and any necessary initialization for the droplet, such
as creating menus for example. Following this should be the script defined by the DROPLET
command that is executed by the droplet for each file.

There are two droplet examples included (‘Change Creator’ and ‘File Info’).

Lists

Several commands make use of lists of general variables. Suppose the list name is chosen to be
MYLIST. This variable is set to the number of items in the list (e.g. by using the SET
command). The variable MYLIST[1] contains the first item in the list, MYLIST[2] the second
and so on, up to a theoretical maximum of 32767 items.

One basic use of a list is to prompt the user to select items from a list. The LIST command
creates a separate window and displays the list. The user can select as many items in the list as
appropriate in the context. (The LIST command also has an option to restrict the user to
selecting only one item.) If the user selects the OK button after selecting items from the list, the
list will be updated to indicate the selected items. Following the LIST command the user can
then process the list to see which items have been selected. The #SEL function is used to see if
a particular item was selected. The LISTNEXT command is used to find which items were
selected in order.

The items in a list can be manipulated directly by the SELECT and DESELECT commands to
24 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
change their selected status. When these commands have been used the LISTNEXT command
won't work unless the FIXLIST command is used to reset the internal pointers in the list. This
also applies if the value of any item in the list is changed. Note that the variable with index 0
(ie MYLIST[0] in the example) is used internally in the list structure and should not be directly
referenced by the user. After the LIST command is completed the variable with index -1, eg.
MYLIST[-1], contains the number of items selected.

If a list has had items flagged as selected then the LISTP command can be used to display the
list. In this case the list will show these items as already selected.

The LISTDIR command creates a special list from the contents of the current default directory.
This list can contain all items or may be filtered by file type and creator. In addition to the
normal list of general variables containing the file names a corresponding list of file variables
(with the

25 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
same name) is also created. When this list is displayed for user selection the corresponding file
icon is also displayed.

A list can be sorted by using the SORT and SORTD commands (ascending and descending
order respectively). This command can be used to sort a single list or several lists in the order
determined by the sorting of the first list.

The REMOVE command can be used to remove an item from a list. The REORDER command
can be used to change the position of an item in a list. (To insert an item in a list add the new
item to the end of the list then use the REORDER command.)

Menus

A list can be used to define a menu. This is illustrated in the sample script ‘Dialogs Lists and
Menus’. The MENU command is used to create a menu from the list. Each item in the list
defines a menu item. Meta characters can also be included. The user supplies numbers for the
menuid and location and the list name as fields of this command. A location number of -1
implies a submenu or pop-up menu, otherwise the location number specifies where in the menu
bar the menu appears. If the menu is to appear in the menu bar the menu name is derived from
the list name by deleting the first character.

Menus defined this way can have several uses. The simplest use is to specify values to be used
by a script. The item last selected from a menu can be checked by using the #MENU function.
The MENUSET command can be used to specify an initial value to be returned by ths function
if the menu has not been selected.

The MENUSCRIPT command can be used to specify a script to be executed when an item is
selected from a menu . This script interrupts the current script to execute. The menu id and
item number are passed to the script as arguments.

A menu can be used as a pop-up menu in a dialog.

Dialogs

It is possible to use dialogs (both modal and modeless) in scripts. The DIALOG command
displays a user defined modal dialog. The user must respond to this before the script can
continue. The MODELESS command defines a modeless dialog. Execution of the script
continues after the creation of a modeless dialog. If the user makes a selection from the dialog
a script associated with the dialog is executed (interrupting the current script).

It is up to the user to create the DLOG and DITL (and possibly dctb) resources, typically by

26 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
using ResEdit. Dialogs can contain pop-up menus and lists. (These are defined in the dialog as
user items.) Pop-up menus in a dialog do not execute scripts. They can only be used for
selecting one item in the menu. This choice is tested by the #MENU function.

Modal Dialogs

The items of a dialog are contolled via a list associated with the dialog. Suppose a modal
dialog has been created with DLOG resource id 10. The list $dloglist specifies the dialog items.
The dialog is displayed by the command

dialog $dloglist, 10

27 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
The dialog is displayed until the user selects a button. Up to that time the user may select radio
buttons or check boxes, enter text in text edit items, or select from pop-up menus and lists. The
return code from the dialog command is the item number of the selected button minus one.
Thus item number 1 should be the OK button so that it returns a zero error code. Any other
button generates a non-fatal error. If item 1 is a button pressing the Enter or Return key is
equivalent to selecting this button. The state of radio buttons and check boxes and the value of
text edit items are set in the dialog list. See the section ‘Dialog Definition Lists’ below. The
example script ‘Dialogs Lists and Menus’ processes a dialog. It does nothing useful but
demonstrates all the different options.

Modeless Dialogs

A modeless dialog would be created by the following example.

modeless new, 11, ModeScript , $dloglist

This command creates the modeless dialog described by the DLOG resource with id 11. The
script associated with the dialog is ModeScript. This script is executed whenever a dialog
button is selected. It is also executed if the mouse click was in a list and the list was defined so
that the script is executed. When the dialog is created the script is executed with a value of 0
for the first argument. When the script is executed because a dialog button was selected or a list
was selected the value of the first argument is the item number. If the item was a list then the
second argument is set to 1 if the script is responding to a single click or 2 if responding to a
double click. If a list item is set up to respond to both single and double clicks the script will be
first executed with a single click and then for the double click.

Note: When the script is being executed the Macintosh event loop is not processed in order to
avoid being interrupted by other selections in the dialog. Do not use the LIST command in this
script.

If item 1 in the dialog is an enabled button it is treated as the response if the Return or Enter
key is pressed. In this case the button is framed to show this.

Two other options are available when a button or its equivalent is selected. Before the script is
executed it is possible to do an update, which means that the value of text edit items and the
state of user defined lists is checked and the corresponding list variabless are set to reflect the
values. After the script is executed it is possible to regenerate the dialog, thus permitting the
changing of item values or names or enabling or disabling items in the dialog.

If the dialog was defined as initially invisible it would not be shown until the following
command was executed.
28 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
modeless show, 11

To close the dialog either click in the close box (if it was defined with one) or execute the
modeless command with the delete keyword, eg.

modeless delete, 11

When the dialog is closed the script is executed with a value of -1 for the first argument.

In this example the list $dloglist controls the dialog items. See the section ‘Dialog Definition
Lists’ below. The example script ‘Modeless Dialogs’ illustrates a modeless dialog.

29 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Dialog Definition Lists

This section describes the use of a list to define the items of a dialog. In the example the list
has the name $dloglist. Thus the variable $dloglist[1] describes item number 1 in the dialog.
The following sections describe how to define the list item for each type of dialog item.

Except for text items the first character of the list item is used as a control character. If in the
use of a modeless dialog the dialog is regenerated after execution of the script the items are
individually checked to see if they are to be changed. The item will be changed only if the
control character is upper case. After the regenerate operation the control character is explicitly
changed to lower case. Thus the control character will have to be set to uppercase each time the
item needs to be changed in a regenerate operation.

Button:

The first character is the control character. The rest of the list item is a new title for the button.
It is not necessary to define this list item if the dialog template correctly describes the button.

If the control character has the value ‘d’ then the button is disabled, otherwise it is enabled.

For a modeless dialog the control character has the additional meanings. If it is ‘u’ an update is
performed. If it is ‘r’ a regenerate is performed. If it is ‘b’ both are performed. For any other
value neither is performed. However the script is always executed and the first argument is the
item number. If the list item was not defined then no update or regenerate is performed except
for the case where the button is item 1, in which case an update is performed.

Radio Buttons and Check Boxes

The first character is the control character. The rest of the list item is a new title for the dialog
item. The control character has three possible values: ‘d’ means it is disabled, ‘e’ means it is
enabled but not selected and ‘s’ means it was selected. When the dialog is initialized (or a
modeless dialog is regenerated) these control characters are read to set the item values. When
one of these items is selected in the dialog the control character is immediately set to ‘s’ or ‘e’
as appropriate. If the list item is not defined the control character will be initialized to ‘e’ for
enabled items.

Radio buttons are meant to be used so that exactly one of a set of options is selected. To
support this radio buttons should be defined in the dialog template in groups. A group is a set of
consecutively numbered radio buttons. In the example dialog template items 3 and 4 form one
group and items 6 and 7 form a second group. The program treats these as separate groups
because item 5 is not a radio button. Whenever a radio button is selected the other buttons in

30 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
the group are deselected, so only one radio button in the group is shown as selected. The list
describing the dialog should select exactly one button in each group to ensure proper initial
appearance of each group.

Text Items

No control character is used for a text item. If the list item is initially specified it is used to
replace the text specified in the template. For edit text items the value of the item is returned in
the corresponding list item when a modal dialog is terminated via the OK button (item 1) or a
modeless dialog does an update.

Pop-up Menus

31 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
A pop-up menu is defined by a user item. The list item is set to the id number of the menu,
which must have been created previously with the MENU command.

The dialog item following the user item must be a static text item that defines the menu title. If
the list item corresponding to the static text is undefined the menu title is the value of the text
item defined in the dialog template. If the list item is defined the first character is a control
character and the rest is the new title. A value of ‘d’ for the control character means that the
menu will not appear.

When the user item is defined in the template its size does not have to be specified precisely.
The right side of the rectangle will be adjusted to fit the menu width and the height will be
adjusted to fit the text size. The title rectangle will also be adjusted. This item should be to the
left of the menu. If it overlaps the menu it will be shrunk.

In a modeless dialog a menu is always regenerated whatever the case of the control character in
the title.

Lists

A list is defined by a user item. The list will appear in the rectangle defined by the user item. A
scroll bar will automatically be included if necessary. The dialog list item that describes this list
consists of four control characters followed by the name of the list, eg.

$dloglist[16] = 'oB80$aaa'

This says that the items of the list are described by the list $aaa. The third and fourth
characters, ‘80’ in the case, are the hexadecimal representation of the selFlags byte of the
ListRec structure defining the list (See Inside Macintosh, Vol. IV, page 267). In this case ‘80’
means only one item can be selected. A value of ‘00’ is the standard case with multiple
selection.

The second control character controls the response to a single click in the list and is really
meaningful only for a modeless dialog. The character has the following meanings. A value of
‘n’ means there is no response to a single click, that is the script is not executed. Any other
character means the script is executed. A value of ‘u’ means there is an update, a value of ‘r’
means the dialog is regenerated and ‘b’ means both are done. Any other value means neither is
done.

The case of the second control character is used to control list preselection. If it is lower case
any items in the list marked as selected will appear in the dialog as selected.

32 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
The first control character controls the response to a double click in the list. The meanings of
the control character value are the same as for the a single click. Additionally a value of ‘o’
means that a double click is treated as equivalent to selecting item one in the dialog if it is an
enabled button. For a modal dialog the effective meanings of the control character are ‘o’ (item
1 button), ‘n’ (no action) or any other value equivalent to a button with item number the same
as the user item.

Care should be taken if a list processes the script for both single and double clicks. If the user
double clicks the script will be executed for a single click first and interrupted for the
processing of the double click.

Remember that the case of the first control character is used to control regeneration of the list.

33 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Apple Events

OmniScript contains several commands that enable the user to set up a variety of Apple Events
in a fairly general way. An Apple Event basically is a list of parameters that is identified by an
event class (such as ‘aevt’ for core Apple Events) and an event ID (such as ‘oapp’ to open an
application). Also associated with the event is a target application.

The commands implemented allow a user to build an Apple Event with arbitrary event class
and ID. The target can be specified by signature or type or can be selected using the PPC
Browser, which enables the user to select applications on other Macs on the user’s network as
the target.

An Apple Event is set up in the following way. First the user executes the AETARGET
command to select the target using the PPC Browser if this is the desired method of selecting
the target. Next the user executes the AENEW command, which initializes a new Apple Event
with the event class and ID and the target.

The user may then add an arbitrary number of parameters to the event by using the AEADD
command. Each parameter is identified by a type (such as ‘shor’ for a short integer or ‘alis’ for
an alias record) that describes the nature of the data, an arbitrary keyword to identify the
purpose of the data (such as the core open documents event where the keyword ‘----’ is used to
indentify the list of alias or file spec records describing the files to be opened).

Since an Apple Event parameter may itself be a list, two commands support the generation of
lists. AELISTNEW initializes a new list and AELISTADD adds parameters to the list. The
AEADD command is used to add the list to the Apple Event. These commands limit the user to
building only one list at a time, and thus limit the nesting of lists. However this shouldn’t be a
serious limitation in practice. The types of data recognized by the AEADD and AELISTADD
commands are described below.

When the Apple Event has been built it is sent with the AESEND command. The event can
also be sent with the LAUNCH command.

Because it is the user’s responsibility to dispose of the structures created for Apple Events a
user list is deleted following the AEADD command that adds the list to an event and the Apple
Event is deleted following the AESEND or LAUNCH command.

OmniScript has its own class of events (the class is ‘ExPr’). The following table describes the
possible Event IDs.

Event ID Description

34 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
'quit' Terminates execution of the program

'exit' Makes the program exit the current script (same as Exit menu choice)

'rstr' Makes the program restart the current script (same as Restart menu choice)

'wait' Makes the program enter the pause state (same as Pause menu choice)

'cont' Makes the program leave the pause state (same as Continue menu choice)

'save' Saves the display (same as Save menu choice)

'odoc' Used to send a single script to the program to be added to the document list
(like the Open menu choice). The event should contain a parameter that is of
type 'fss ' or 'alis' with keyword '----'

'imed' Same as 'odoc' except the script interrupts the current script and is executed
immediately. This script can send data back to the application by using the
AEREPLY command. The error code from the script can also be sent back by
adding a parameter to this event that has a keyword '#ret' and type 'TEXT'. The
value of this parameter is the name of the variable that is to contain the
returned error code.

'cmnd' Used to send a single line script command to be executed immediately. The
event should contain a parameter that is of type 'TEXT' with keyword '----'.
The error code from this command can be obtained in the same way as for the
'imed' type described above.

'gnrl' This is used to send information between two different executions of
OmniScript (on the same machine or across a network) The following table
identifies the data types recognized by this event ID. These same data types are
added to an event by using the AEADD and AELISTADD commands

35 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

The following table gives the data types recognized by the AEADD and AELISTADD
commands and describes how they are processed when received by an event of class 'ExPr' and
ID 'gnrl' or received as a reply to such an event. The general syntax of the two commands is

AEADD keyword , type , data

AELISTADD type , data

On receipt each parameter is decoded and assigned to a variable with name the same as
keyword for a single parameter or the corresponding subscripted name for an item in a list.

Data Type Data Description

'list' This is used by the AEADD command to add a list (created by AELISTNEW
and AELISTADD) to an event. (This type cannot be used with AELISTADD.)
No data is used with this type.
On receipt the list is broken down into its component items and assigned to
variables. The keyword is used as the list name. Each item is assigned to the
corresponding list item. (For example, if the keyword was '$abc' then the first
item is assigned to variable $abc[1] and the number of items in the list is
assigned to variable $abc.) The list items can be any of the recognized
individual data types and can be mixed in the list.
This is a standard Apple Event data type and can be sent to other applications.

'varl' This is used by the AEADD command to create a list from a variable list
(general variables only). (This type cannot be used with AELISTADD.) The
data parameter is the name of the list to be copied. The data is added to the
event as type 'list'. Each item in the list is of type 'vari'.

'vars' This is similar to 'varl' except that the list is created from several variables
rather than a single list. The data parameter consists of a sequence of variable
names. Names are separated by commas.

'vari' This is used to add a single general variable to an event or list. The data
parameter is the name of the variable to be copied. On receipt the item is
converted into a general variable.

'alis' This is used to add an alias record to an event or list. The data parameter is the
name of the alias variable to be copied. On receipt the item is converted into an
alias variable.
This is a standard Apple Event data type and can be sent to other applications.

'targ' This is used to add a target record to an event or list. The data parameter is the
name of the target variable to be copied. On receipt the item is converted into a
target variable.
This is a standard Apple Event data type and can be sent to other applications.

'magn' These are standard Apple Event data types that are numeric values. The data

36 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
'long'
'shor'
'sing'
'doub'
'exte'

parameter is an expression that is evaluated to generate the numeric value. On
receipt the item is converted into a numeric general variable. 'magn' is an
unsigned long value, 'long' and 'shor' are 4 and 2 byte integer values and 'sing',
'doub' and 'exte' are 4, 8 and 10 byte floating point values.

'TEXT' This is a standard Apple Event data type. The data parameter is the string that
is the text of the parameter. On receipt the item is converted into a non-numeric
general variable.

'qryv' This is used to request the value of a general variable. The data parameter is
the name of the variable. On receipt the value of the variable is retrieved and
sent back in the reply as type 'vari'. The keyword of the item in the reply is the
same as the original keyword. On receipt of the reply the item is converted into
a general variable with name given by the original keyword. The original
Apple Event should have been sent with the wait or queue parameter specified.

'qryl' This is like 'qryv' except that the request is for a general variable list instead of
a single variable. The reply is of type 'list' with the same keyword and consists
of the corresponding items of type 'vari'. On receipt of the reply the list is
converted into a general variable list with name given by the original keyword.
The original Apple Event should have been sent with the wait or queue
parameter specified.

any other
value

Arbitrary data types can be specified for sending to other applications. The
data parameter is a string that is the data to be added.

37 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

The example script ‘Core Apple Open Event’ illustrates the construction of the core open
documents Apple event.

Finder Control

OmniScript can control the Finder by sending Apple events to it. Use the Finder command to
do this. The example script ‘Finder Play’ illustrates this. The example script ‘Folder Organizer’
illustrates organizing a Finder window.

File Tailoring

File tailoring is the process of generating an output text file from a skeleton by substituting
general variables in each line of the skeleton. A skeleton is just a script file that includes the
skeleton output lines. During command processing a line that starts with a right parenthesis, ‘)’,
is treated as a file tailoring output line and the string expression following the right parenthesis
is written to the file that has been identified by the TAILOR command as the file to receive this
output. Since the skeleton is a script file it can include any command. Thus it is possible to
conditionally process lines by using the IF command or include another skeleton by using the
EXEC command. Typically the skeleton will use global variables that were set in other scripts.

38 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Application Control

The Macintosh operating system lacks the equivalent of a Job Control Language that is used on
other computers to control a user’s data processing applications. OmniScript can be used to
substitute for this lack of a JCL. Basically the idea is to design an application that reads input
parameters from a text file. Based on the user’s input OmniScript would create this text file
(using File Tailoring) then it would launch the application and wait for it to terminate, at which
point it could repeat the process with the next set of input parameters. A useful skeleton for
such an application, that permits easy definition of files to be opened and easy specification of
parameter values and that can process in the background, is available separately from the
author as a Think C project.

39 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
SCRIPT FUNCTIONS

Function Syntax

Script functions are used in expressions. They return string, integer or floating point values.
They are identified by the # character.

In the following description of each function the elements of the syntax line have the following
meanings.

Square brackets [] indicate an optional quantity. variable represents the name of a variable.
string is a string expression. numeric is an expression with a floating point value (an integer
value will be converted). integer is an expression with an integer value.

For those functions that are not followed by arguments the function name can be delimited by
any character not recognized as legal in a variable name. For those functions that are followed
by arguments the function name is delimited by a space or the left parenthesis preceding the
arguments.

#ABS

syntax: #ABS(numeric)
returns: floating point or integer: same as argument

This function returns the absolute value of the argument. It returns an integer if the argument is
an integer.

#ACOS

syntax: #ACOS(numeric)
returns: floating point

This function returns the arc cosine of the argument.

#ASIN

syntax: #ASIN(numeric)
returns: floating point

This function returns the arc sine of the argument.

40 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#ARG

syntax: #ARG(integer)
returns: depends on argument

This function is used to obtain the arguments passed to a script invoked by the EXEC
command. #ARG(0) is the number of arguments passed to the routine. #ARG(1) is the value of
the first argument, etc.

If the function argument is non-integer or less than 0 a fatal error is generated. If integer is
greater than the number of arguments then a null string is returned.

41 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#ATAN

syntax: #ATAN(numeric)
returns: floating point

This function returns the arc tangent of the argument.

#ATAN2

syntax: #ATAN2(num1 , num2)
returns: floating point

This function returns the arc tangent of num1/num2, using the signs of both arguments to
determine the quadrant of the returned value.

#CHAR

syntax: #CHAR(integer)
returns: string (one character)

This function generates a single character with ASCII value given by integer , which should be
in the range 0 to 255. As a short cut the #T function generates a tab character instead of writing
out #CHAR(9)

#CONV

syntax: #CONV(integer)
returns: string

This function formats the value of integer into a date and time. It would be used to convert the
file dates (such as creation, modification and backup) from their internal integer values to a
date and time. The output is a 20 character string in the format MM/DD/YY at HH:MM:SS,
unless integer is 0, in which case the single character 0 is returned.

#COS

syntax: #COS(numeric)
returns: floating point

This function returns the cosine of the argument.

42 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#COSH

syntax: #COSH(numeric)
returns: floating point

This function returns the hyperbolic cosine of the argument.

#CQD

syntax: #CQD
returns: integer

This function returns 1 if the Macintosh has color QuickDraw otherwise 0.

43 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#DATE

syntax: #DATE
returns: string

This function returns the date in an 8 character field in the form YY/MM/DD.

#DOUB

syntax: #DOUB(numeric)
returns: string

This function converts the argument to an 8 byte floating point value and returns it as an 8 byte
string.

#DT

syntax: #DT
returns:

This function returns the date and time in a 20 character field in the form YY/MM/DD at
HH:MM:SS.

#E

syntax: #E(numeric , [integer] , [integer])
returns: string

This function formats the value numeric into a string. The first integer is the length of the
string generated (if omitted then the length of the string will be the minimum necessary). The
second is the precision used (if omitted 0 is used). The formatting is done using the C sprintf
function and the e format. The #F and #G functions are similar, but use the f and g formats. The
following table describes the differences

E Generates exponential format, ie 1.23e1. The precision is the number
of digits after the decimal point. If the precision is zero no decimal
point is printed.

F Generates fixed point format, ie 12.30. The precision is the number
of digits after the decimal point. If the precision is zero no decimal
point is printed.

G This format chooses an exponential format or fixed point format
depending on the size of the number. The precision is the total

44 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

number of significant digits printed. If the precision is zero one digit
is printed. Trailing zeroes are not printed.

More general formatting of floating point numbers can be done with the #FORM function.

45 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#EXP

syntax: #EXP(numeric)
returns: floating point

This function returns e to the power of the argument.

#EXPR

syntax: #EXPR(string)
returns: depends on string

This function treats string as an expression and evaluates it. This could be used if the value of a
variable is assigned by reading from a file and this value is an expression. As a simple example
if the variable a has the string value ‘3 + 5’ then #EXPR(a) returns the integer value 8. This
function can also be used after the accept command to convert the input to numeric.

#EXTE

syntax: #EXTE(numeric)
returns: string

This function converts the argument to an extended floating point value and returns it as a 10
byte string.

#F

syntax: #F(numeric , [integer] , [integer])
returns: string

See the #E function.

#FILE

syntax: #FILE(type [, variable])
returns: integer except as noted in table

This function returns information about a file. If the var parameter is present the information is
taken from the file variable var , otherwise it is taken from the current file, as defined by the
FILE or GET commands. The field type is a literal string, not a string expression, so quotes are
not necessary. The possible values of the field type and the corresponding value returned are
given in the following table. The field type may be abbreviated to three or more characters

46 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

alias 1 if file is an alias: otherwise 0

invisible 1 if file is invisible: otherwise 0

bundle 1 if file has a bundle: otherwise 0

locked 1 if file is locked: otherwise 0

stationery 1 if file is a stationery file: otherwise 0

custom 1 if file has a custom icon: otherwise 0

inited 1 if file has been inited: otherwise 0

shared 1 if file is an application available to multiple users: otherwise
0

color an integer in the range 0 to 7 representing the color used to
display the icon on the desktop

vertical vertical coordinate of file/folder’s location

horizontal horizontal coordinate of file/folder’s location

type 4 character string: file’s type (‘DIR ’ for a folder)

creator 4 character string: file’s creator (‘DIR ’ for a folder)

dirid file/folder’s directory id

len length of data fork

reslen length of resource fork

date creation date

mod modification date

backup backup date

parid directory id of folder containing this file/folder

info 1 for a file: -1 for a folder

view for a folder returns a 4 character string describing the view for
this folder when open on the desktop. Values are
SMAL, NAME, DATE, SIZE, KIND, ICON, LABL

top for a folder the top coordinate of the rectangle that describes
the folder’s window when the folder is open on the desktop

left for a folder the left coordinate of the rectangle that describes
the folder’s window when the folder is open on the desktop

bottom for a folder the bottom coordinate of the rectangle that

47 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

describes the folder’s window when the folder is open on the
desktop

right for a folder the right coordinate of the rectangle that describes
the folder’s window when the folder is open on the desktop

open for a file returns the path number if open otherwise 0

fork for a file returns 1 if the data fork is open, 2 if the resource fork
is open, 3 if both forks open or 0 if neither fork is open

48 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

49 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#FORM

syntax: #FORM(string, numeric)
returns: string

This function formats a floating point value using the C function sprintf with the format
defined by string. (See documentation of the C language for format specifics.) This format
should specify only one floating point value to be formatted.The format string is an expression
and does not have to be a hard coded literal string. This permits the easy use of variable values
to give field size and precision. For example

#FORM('%#+' I '.' J 'f',F)

would print the floating point value in the variable F using the f format with field size and
precision specified by the variables I and J and would also force printing of trailing zeroes and
a leading plus sign.

#FPU

syntax: #FPU
returns: integer

This function returns 1 if the Macintosh has a floating point unit, 0 if it does not.

#G

syntax: #G(numeric , [integer] , [integer])
returns: string

See the #E function.

#LC

syntax: #LC(string)
returns: string

This function converts string to lower case. This could be used to avoid case sensitivity in
string comparisons.

50 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#LEN

syntax: #LEN(string)
returns: integer

This returns the length of string expression. If the expression is simply a variable name then it
returns the length of the value of that variable.

51 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#LOC

syntax: #LOC(string1 , string2)
returns: integer

This returns the first occurence of string1 in string2 . The value returned is the character
position in string2 of the first character of string1 where the match is found. If it is not found a
value of zero is returned.

#LOG

syntax: #LOG(numeric)
returns: floating point

This function returns the natural logarithm of the argument.

#LOG10

syntax: #LOG10(numeric)
returns: floating point

This function returns the base-10 logarithm of the argument.

#LONG

syntax: #LONG(integer)
returns: string

This function converts the argument to a 4 byte integer value and returns it as a 4 byte string.

#MAC

syntax: #MAC
returns: integer

This function returns a code for the type of Macintosh the program is running on.

#MENU

syntax: #MENU(integer)
returns: integer

This returns the item number last selected from the menu with id integer if the menu was

52 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
created by the MENU command. If no item has been selected a value of 0 is returned.

#NUM

syntax: #NUM(variable)
returns: integer

This tests whether the value of variable is numeric and returns 1 if it is an integer, -1 if it is a
floating point number or 0 otherwise.

53 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#PATH

syntax: #PATH
returns: string

This returns the full path name of the current default directory.

#PI

syntax: #PI
returns: floating point

This returns the value of pi.

#RAND

syntax: #RAND
returns: integer

This function returns a random integer in the range 0 to 32767. The function generates a
sequence based on a seed. The SRAND command sets the seed, which defaults to 1. To return
the same sequence as in previous calls set the seed to the same value.

#RET

syntax: #RET
returns: integer

This returns the current value of the error code.

#SCRIPT

syntax: #SCRIPT
returns: string

This returns the name of the script currently being execued.

#SEL

syntax: #SEL(variable)
returns: integer

This tests whether the variable var was selected during list selection and returns -1 if it was or

54 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
0 if it wasn’t.

#SHORT

syntax: #SHORT(integer)
returns: string

This function converts the argument to a 2 byte integer value and returns it as a 2 byte string.

55 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#SIN

syntax: #SIN(numeric)
returns: floating point

This function returns the sine of the argument.

#SING

syntax: #SING(numeric)
returns: string

This function converts the argument to a 4 byte floating point value and returns it as a 4 byte
string.

#SINH

syntax: #SINH(numeric)
returns: floating point

This function returns the hyperbolic sine of the argument.

#SQRT

syntax: #SQRT(numeric)
returns: floating point

This function returns the square root of the argument.

#SYS

syntax: #SYS
returns: string (4 character)

This function returns the system software version number, eg. 0604 for 6.0.4 or 0701 for 7.0.1.

#TAN

syntax: #TAN(numeric)
returns: floating point

This function returns the tangent of the argument.

56 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#TANH

syntax: #TANH(numeric)
returns: floating point

This function returns the hyperbolic tangent of the argument.

57 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
#T

syntax: #T
returns: string

This function returns the tab character. It’s easier than #CHAR(9)! It’s useful for writing tabs to
a file.

#TIME

syntax: #TIME
returns: string

This function returns the time in an 8 character field in the form HH:MM:SS.

#UC

syntax: #UC(string)
returns: string

This function converts string to upper case. This could be used to avoid case sensitivity in
string comparisons.

58 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
SCRIPT Commands

Summary

The following is a summary of the various commands.

Display Control

CURSOR Used to display a rotating cursor during long periods of processing

DISPLAY Displays a line of text

PAUSE Causes the application to pause and optionally display some text

SAVE Indicates that the screen display should be saved to a file.

WINDOW Change size and position of display windows

File and Folder Control

ALIAS Makes an alias variable

CHANGE Changes information about a file (Use SETINFO to complete changes)

CONVERT Used to define a droplet’s signature and file types

DELETE Delete a file or empty directory

FILE Gets information about a file or directory

FIND Finds the application corresponding to a given signature

MOVE Move a file or directory

NEWDIR Create a new directory

PATH Changes the current default directory

SCRIPTPATH Changes the directory used to find the script in an EXEC command

RENAME Renames a file or directory

RESOLVE Resolves an alias variable into file name and directory

SETINFO Changes file information

UNMOUNT Unmounts a volume

File Routines

CLOSE Close a file opened by the OPEN command

OPEN Opens a file

READ Reads text from a file

59 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
REWIND Sets file position to beginning of file

RFCLOSE Close a resource file opened by RFOPEN

RFOPEN Opens a resource file

TAILOR Defines file to receive tailored output

WRITE Writes text to file

60 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Input

ACCEPT Prompts user to enter a string

DIALOG Prompts user for information via a user defined dialog

MODELESS Create a modeless dialog

Lists

DESELECT Marks a list item as not selected

FIXLIST Used after SELECT or DESELECT to reset pointers so that
LISTNEXT works correctly

LIST Prompts user to make selections from a list (See also LISTNEXT)

LISTDIR Makes a list of the files and directories in the current default directory

LISTNEXT Successively returns selected list items following LIST command

LISTP Like LIST but displays preselected items in list (See SELECT and
DESELECT)

REMOVE Remove an item from a list

REORDER Change the position of an item in a list

SELECT Marks a list item as selected

SORT Sorts one or more lists in ascending order

SORTD Sorts one or more lists in descending order

Menus

MENU Creates a menu from a list or deletes a menu

MENUSCRIPT Defines a script to be executed when an item is selected from a menu
created by MENU

MENUSET Sets the value to be returned by the #MENU function. This value is
also set by selecting an item from a menu.

Script Control

BEEP Makes the Macintosh beep

CYCLE Starts next iteration of a DO loop

DEBUG Displays each command as it is executed

DO Start a DO loop

61 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
DROPLET Used in a droplet’s Setup script to convert application to a droplet

ELSE Used in an IF block

END Terminates an IF block or DO loop

ERROR Defines a label to jump to if a command sets the return code non-zero

EXEC Execute another script

EXIT Return to the script that called this one

GOTO Jump to a label

IF Start an IF block

KILL Immediately terminates OmniScript

LOADSCRIPT Loads a script into memory

QUIT Immediately terminate a DO loop

REPORT Displays information about last statement to set error code

SOUND Plays the sound from the specified ‘snd’ resource

SRAND Set random number seed

TEST Conditionally executes a command

WAIT Suspends execution for a specified time

62 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

Process Control and Apple Events

AEADD Add parameter to current Apple Event

AELISTADD Add parameter to current Apple Event list

AELISTNEW Define new Apple Event list

AENEW Define new Apple Event

AEOPT Define optional parameters for an Apple Event

AEREPLY Add paramter to reply Apple Event

AESEND Send Apple Event

AETARGET Define target for Apple Event

FIND Find the application with the specified signature

FINDER Control the Finder by sending Apple Events

FRONT Bring an application to the front

LAUNCH Launch an application, optionally with an Apple Event

Standard File Package

DIRECTORY Prompt the user to select a directory

GETFILE Prompt the user to select an input file

PUTFILE Prompt the user to select an output file

Variables

CLEAR Clears a list of variables (gives them null values)

DECREMENT Decreases the value of a numeric varaible by one

INCREMENT Increases the value of a numeric varaible by one

LVALUES Generates a list from the component fields of a string

SET Assigns a numeric or string value to a variable

VALUES Splits a string into its component fields

VLOAD Loads a set of @ type global variables from a file

VSAVE Saves all of the @ type global variables to a file

63 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Command Syntax

A command consists of a command name possibly followed by parameters separated by
commas.In the following documentation a command is in general described in the following
format.

COMMAND parm1, parm2, parm3 [, parm4]

This example represents a command that takes 3 required parameters and an optional fourth
parameter. A parameter can be one of five types as described in the following table.

variable The parameter is the name of a variable. This name can be indirectly
referenced by using {} in the same way as in expressions. However the
resulting variable name cannot have a range specification.

integer The parameter is an integer expression (terminated by a comma or end of
command). It could simply be a hard coded value, a variable that has an
integer value, or it could be an actual integer expression

string The parameter is an string expression (terminated by a comma or end of
command). It could simply be be a literal value (in quotes), a variable that
has a string or integer value, or it could be an actual expression with a
string or integer value. If the expression has an integer value it is
converted to a string.

key word The parameter is a literal value and does not have to be in quotes.
However a string expression enclosed in parentheses can be used if
required. The keyword must be chosen from a list of possible values.
Sometimes the keyword will be followed by = and an expression (string or
integer as required).

field The parameter is a literal value and does not have to be in quotes.
However a string expression enclosed in parentheses can be used if
required.

Some commands may be abbreviated. The command syntax line has the abbreviation
underlined in the full name.

ACCEPT

syntax: ACCEPT var [, string]
error code: set

This command causes a dialog to be displayed to prompt the user for input from the keyboard.

64 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
string is displayed as a message to prompt the user for the type of input desired. The user’s
reply is stored in the variable var as a string. If the user selects cancel the error code is set to 1.
If numeric input is required use the #EXPR function on the returned value.

65 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
AEADD

syntax: AEADD key , type [, data]
error code: set

See the section ‘Apple Events’ for a description of the use of this command. The error code
will be set to the error value returned by any of the Apple Event Routines.

AELISTADD

syntax: AELISTADD type , data
error code: set

See the section ‘Apple Events’ for a description of the use of this command. The error code
will be set to the error value returned by any of the Apple Event Routines.

AELISTNEW

syntax: AELISTNEW
error code: set

A new Apple Event list is initialized. The error code will be set to the error value returned by
any of the Apple Event Routines.

AENEW

syntax: AENEW class , id , type [= target]
error code: set

The class parameter is a 4 character string that is the event class. The parameter id is a 4
character string that is the event id. The parameter type is a keyword that indicates target type.
The following table gives the possible values of type and the corresponding value of target .

self The target is this execution of OmniScript. The target parameter is omitted

sign The target parameter is the 4 character signature of the application that is the
target. For example 'ExPr' for OmniScript or 'MSWD' for Microsoft Word.

type The target parameter is the 8 character combined type and signature of the
target. For example 'FNDRMACS' for the Finder or 'PROJKAHL' for a Think
C project.

targ The target parameter is the name of a target variable defined by the
AETARGET command.

66 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

AEOPT

syntax: AEOPT string1 [, string2, ...]
error code: set

67 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
This command creates the 'optk' attribute of the Apple Event. It is the list of parameters in the
event that are not required. Each stringx parameter in the command is the 4 character keyword
of an event parameter that is to be treated as optional rather than required. If there are any
optional event parameters this command should be called once after the AENEW command
with the list of all the optional parameter keywords.

AEREPLY

syntax: AEREPLY key , type [, data]
error code: set

This command can be used in a script that is sent from one execution of OmniScript to another
using the 'ExPr' event class and 'imed' event id. It adds data to a reply Apple Event. Its use is
the same as AEADD except that the data is added to the reply instead of the Apple Event the
user is creating.

AESEND

syntax: AESEND [key1 , key2 , ...]
error code: set

This command sends the Apple Event that has been created by the other Apple Event
commands. It takes a number of optional key word parameters as specified in the following
table. Generally these keywords set the corresponding flags in the Apple Event routine AESend
(see Inside Macintosh VI).

no kAENoReply. No reply wanted (the default)

queue kAEQueueReply. The reply will appear in the event queue

wait kAEWaitReply. OmniScript will wait for a reply. The time limit for the
wait (in ticks) is specified in the time = parameter

never kAENeverInteract

can kAECanInteract

always kAEAlwaysInteract

switch kAECanSwitchLayer

dont kAEDontReconnect

receipt kAEWantReceipt

high high priority: the event goes to the front of the queue

68 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

time = The = is followed by an integer expression for the number of ticks to wait
if wait or receipt is specified.

AETARGET

syntax: AETARGET variable
error code: set

This command is used to select a target for an Apple Event by using the PPC Browser. If the
user selects a target it will be stored in the target variable with name specified by variable. The
error code is set to 1 if the user selects cancel in the dialog.

69 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
ALIAS

syntax: ALIAS alias = [path] , string
error code: set

This command is used to create an alias variable describing a file or folder. The syntax is
similar to the PATH command, except that the first variable name is not optional. The name of
the target is given in the expression string. This can be a full path name or a path name relative
to the folder given in the path variable path or, if path is omitted a path name relative to the
current default folder. See the PATH command for further explanation.

BEEP

syntax: BEEP
error code: unchanged

This command causes the Macintosh to beep.

CHANGE

syntax: CHANGE [var = target ,] [use = source ,] keyword list
error code: unchanged

This command is used to change information about a file. The changes to the file are actually
made by the SETINFO command. This command is used to set the file inforamtion in a file
variable or the information for the current file prior to calling SETINFO.

If the target parameter is specified the CHANGE command alters the file information in the
file variable with this name. If the target parameter is omitted the command alters the file
information for the current file. Generally the values set by the CHANGE command can be
either given explicitly or copied from the source file information, which is a file variable
specified by the source parameter or the current file if the source parameter is omitted. If the
target of the command is a file variable, but this variable does not already exist, it is initialized
by copying the source file information.

The values to be set by the command are in the keyword list., which is a list of keywords
separated by commas, generally in the form

keyword [= value] , keyword [= value] , ...

If value is omitted then the new value is copied from the source file information. The
following table describes the possible keywords. Each keyword can be abbreviated to three
70 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
characters.

Function Keywords Values

Copy all of source file information
to target file information

ALL None

Set the Finder attributes contained
in the fdFlags variable in the FInfo
record

ALIAS
INVISIBLE
BUNDLE
LOCKED
STATIONERY
CUSTOM
INITED
SHARED

A zero value clears the
corresponding bit. A non-zero
value sets it.

Set the icon color displayed by the
Finder. This is the same as setting
the color using the Label (System 7)
or Color (System 6) menu

COLOR A value in the range 0 to 7. A zero
value means no color/label. A
value of 7 means the first color in
the menu.

Position of icon when displayed by
Finder in Icon or Small Icon view

HORIZONTAL
VERTICAL

The coordinates of the icon

The rectangle a folder is displayed
in when opened by the Finder

TOP
LEFT
BOTTOM
RIGHT

The coordinates of the rectangle.

File type and creator TYPE
CREATOR

The value is a four character string

File creation, modification and
backup dates

DATE
MOD
BACKUP

These dates are specified internally
as unsigned long integers. Here the
equivalent signed values are used,
which generally means a negative
value since the largest positive date
is in 1972.

The view used by the Finder to
display a folder, corresponding to
the View menu.

VIEW A string corresponding to the menu
items in the View menu. However
only the first two characters are
significant and they are not case
sensitive.

71 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

CLEAR

syntax: CLEAR var1 [, var2 , var3 ]
error code: unchanged

This command clears the values of the listed variables, that is each variable is set non-numeric
with a string value of length zero.

CLOSE

syntax: CLOSE unit1 [, unit2 , ...]
error code: set

This closes the files previously opened with unit number given by the expressions unit1, unit2,
etc.

72 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
CONVERT

syntax: CONVERT file , signature [, types]
error code: set

This command is used when creating a droplet application. After making a copy of OmniScript
and renaming it this command can be used to change the signature and the types of file the
droplet can process. The string expression file is the name of the new droplet. The string
expression signature is the 4 character signature of the application. The optional string
expression types is a list of 4 character file types. Use ‘****’ so see all files. Use
‘****diskfold’ to see all files, folders and disks.

CURSOR

syntax: CURSOR INIT / WAIT
error code: unchanged

This command is used to display a spinning beach ball cursor during a time consuming process
to let the user know that something is happening. Everytime the command is called with the
WAIT keyword the cursor is rotated. At the end of the process the command is called with the
INIT keyword to restore the arrow cursor.

CYCLE

syntax: CYCLE
error code: unchanged

This command is used within a DO loop to stop processing the current iteration of the loop and
start the next iteration. This would often be used with the TEST command for conditional
execution.

DEBUG

syntax: DEBUG ON/OFF
error code: unchanged

This command controls diagnostic display of commands during script development. If any
command sets the error code to a non-zero value, this value is displayed when debug is on.

73 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
DECREMENT

syntax: DECREMENT var
error code: unchanged

If var exists and is numeric its value is decremented by one otherwise var is initialized to
minus one.

DELETE

syntax: DELETE string
error code: set

This command attempts to delete the file or empty directory with name string, which can be
either a full path name or a partial path name relative to the current default directory.

74 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
DESELECT

syntax: DESELECT var
error code: unchanged

This command is used to mark a list item as not selected. See the section ‘Lists’.

DIALOG

syntax: DIALOG var , num
error code: set

See the section ‘Dialogs.

DIRECTORY

syntax: DIRECTORY
error code: set

The user is prompted to select a directory, which becomes the current default directory. The
prompt uses the Standard File Package Get function with a modified dialog. Only directories
are shown in the list. If a directory in the list is highlighted then the open and directory buttons
are enabled. Selecting the directory button selects this directory and the function terminates.
Selecting the open button opens this directory and the list of directories in this directory is
displayed. The select current directory button is used to select the directory displayed above the
directory list. Pressing return is equivalent to selecting the directory button. Double clicking on
a directory in the list is equivalent to the open button for the directory.

Under System 7, if the alias of a directory is selected in the list, the directory button is disabled
but the open button is enabled. To select the directory select the open button then the select
current directory button. This forces the alias to be resolved. Note that when an alias is selected
pressing return or enter is equivalent to selecting the open button.

DISPLAY

syntax: DISPLAYstring
error code: unchanged

This command displays the string string.

75 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
DO

syntax: DO [WHILE expression]
error code: unchanged

The DO command enables the user to iterate through a block of commands. The block is
terminated by the corresponding END command.

If the WHILE parameter is omitted the loop repeats until it is terminated by either an EXIT or
QUIT command. If the WHILE parameter is included then the loop will be repeated while the
expression is non-zero.

76 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
DROPLET

syntax: DROPLET script
error code: unchanged

This command converts OmniScript into a droplet application. The field script is the name of
the script to execute when the application is run as a droplet.

ELSE

syntax: ELSE [IF expression]
error code: unchanged

See the IF command.

END

syntax: END
error code: unchanged

The END command terminates an IF/ELSE block or a DO block.

ERROR

syntax: ERROR [field]
error code: unchanged

This command defines the label to which control is transferred if a non-fatal error occurs. If
field is omitted then any previous error trap definition is cancelled.

EXEC

syntax: EXEC script [, arg1 , arg2 …]
error code: set

This command executes the script with name given by the field script. If the script has not
already been loaded the application tries to load it from the file of the same name in the folder
defined by the SCRIPTPATH command. If the SCRIPTPATH command has not been executed
the folder which contained the main script in the document list is searched. If the file is not
found then the System Folder (if any) on the same volume will be searched.

Any number of arguments may be passed in the EXEC command. These arguments are

77 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
accessed by using the #ARG function.

The error code is set by the EXIT command that terminates the executed script.

EXIT

syntax: EXIT [expression]
error code: set

78 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
This command is used to immediately terminate processing of the current script. If this was a
called script execution continues in the calling script. If this was the main script execution
terminates and the application checks if there are any remaining scripts to be executed. For a
called script if expression is specified then the error code is set to the value of expression,
otherwise it is set to zero.

FILE

syntax: FILE [var =] expression [,string]
error code: set

This command gets information about a file or directory from the current directory. The value
of expression is used as an index to the alphabetically ordered list of files and directories in the
current directory. If this index exceeds the total number of files and directories in the current
directory an error is returned. If this index is positive information is returned about the
corresponding file or directory. If the index is -1 then information about the current directory
is returned.

If the index is zero then information about an explicitly named file is returned. If the string
parameter is present then this is used for the name of the file. If this parameter is absent then
the name must have been previously assigned to var. This name may also contain path
information (full or partial).

After execution, if the file or directory was found, the current file variable is set with the
information. If var was defined then the general variable var contains the file name and the file
information is copied to the file variable of the same name.

After executing this command the RENAME command can be used to change the name of the
file or the CHANGE and SETINFO commands can be used to change information about the
file.

FIND

syntax: FIND var , string
error code: set

This command can be used under System 7 to locate an application by specifying its signature
in string. If the application is found the application name is assigned to the variable var and the
default directory is changed to the directory containing the application. The error code is set if
the application is not found.

79 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
FINDER

syntax: FINDER KEYWORD [, var [, options]]
error code: set

This command can be used under System 7 to control the Finder. It works by sending Apple
Events to it. The following table lists the options for the command that require no other
parameters.

Keyword Description

SHOWABOUT Shows the Finder’s ‘About This Macintosh’ window.

HIDEABOUT Hides the Finder’s ‘About This Macintosh’ window.

SHOWCLIP Shows the Clipboard.

HIDECLIP Hides the Clipboard.

EMPTY Empties the trash.

RESTART Makes the Macintosh do a Restart.

SHUTDOWN Makes the Macintosh do a Shutdown.

SLEEP Makes a powerbook enter Sleep mode.

80 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

The following table lists those options that act on a list. The command keyword is followed by
a variable name, var. The value in var is the number of items in the list. Each item in the list is
an alias variable for a file or folder previously defined by the ALIAS command. These options
are equivalent to selecting one or more items in an open folder and then selecting the
corresponding choice from the Finder’s File menu.

With these options the files and folders described by the list of aliases do not have to reside in
the same folder.

Keyword Description

OPEN Equivalent to selecting Open or double clicking on the selection

DUPLICATE Equivalent to selecting Duplicate

PRINT Equivalent to selecting Print

ALIAS Equivalent to selecting Make Alias

PUTAWAY Equivalent to selecting Put Away

INFO Equivalent to selecting Get Info

SHARING Equivalent to selecting Sharing

The following table lists the options that are equivalent to selecting one or more files or folders
and then dragging the selection to another folder. As in the previous case the variable var is a
list of items to be moved. The destination of this move is specified by defining the alias
variable which is the list name with index 0 to be the destination folder. In addition this form of
the command takes an optional specification of an offset for the move in the form

FINDER MOVE, var, VER=num,HOR=num

If this option is included the position of the selection in the destination window will be offset
from the position in the original window. The position will be shifted down by the amount
specified by the VER keyword and right by the amount specified by the HOR keyword.

Keyword Description

MOVE Equivalent to dragging the selection and dropping into another folder
(which must be on the same volume for this option).

DRAG Equivalent to dragging the selection with the Option key down and
dropping into another folder. The selection is duplicated in the
destination folder.

81 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
The following table lists those options that act on a single item. The variable var is an alias for
the item, which should be a folder (except for the CLOSEINFO case when either a file of
folder alias can be specified).

Keyword Description

CLOSE This closes the window for the specified folder.

CLOSEINFO This closes the ‘Get Info’ window for the specified file or folder.

CLOSESHARING This closes the ‘Sharing’ window for the specified folder.

PRINTWINDOW This is equivalent to selecting Print Window from the File menu.

PAGESETUP This is equivalent to selecting Page Setup from the File menu.

VIEW This is equivalent to using the View menu. The view is chosen by
specifying one of the keywords SMALL, ICON, NAME, DATE,
SIZE, KIND, COMMENT, LABEL, VERSION

MOVEWINDOW This is equivalent to dragging the window to a new location. The
keywords TOP=num and LEFT=num must be included.

SIZEWINDOW This changes the size of the window. The keywords WIDTH=num
and HEIGHT=num must be included.

ZOOMIN This zooms the window in.

ZOOMOUT This zooms the window out.

SHOW This opens the window (if not already open) and brings it to the
front.

82 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

FIXLIST

syntax: FIXLIST list
error code: unchanged

If a list has been manipulated with the SELECT and DESELECT commands then this
command should be called to fix the internal list pointers so that the LISTNEXT command will
work properly. It is not necessary to call this command if the LIST command is used on the list
first.

FRONT

syntax: FRONT [keyword = string]
error code: set

Under System 7 this command brings an application to the foreground if it is in the
background. An error of value 1 is returned if this command is executed under System 6. If the
keyword is omitted then OmniScript is brought to the foreground. If the keyword is ‘sign’ then
the expression string is the 4 character signature of the application to be brought to the
foreground. If the keyword is ‘file’ then the expression string is the name of the application to
be brought to the foreground.

GETFILE

syntax: GETFILE var [, string]
error code: set

This command calls the Standard File Package to obtain the name of an input file. The user
will be prompted with a list of files from the current default directory. The string expression
string is a concatenation of the types of the files to be shown in the dialog, eg. ‘APPL’ for an
application or ‘TEXT’ for a text file.

83 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
If the user selects a file the name will be returned in var and the file variable of the same name
will contain the file information. If the user changes the directory, the default directory will be
set to the directory from which the user selected the file. If the user cancels file selection then
the error code is set to 1.

GOTO

syntax: GOTO label
error code: unchanged

This command causes a jump in the script to the line with label given by the field label.

IF

syntax: IF expression
 commands executed if expression is non-zero
[ELSE IF expression1
 commands executed if expression1 is non-zero
 and expression is zero]
[ELSE
 commands executed if all above expressions
 are zero]
END

error code: unchanged

The syntax of the IF/ELSE/END is illustrated above. An arbitrary number of ELSE IF
commands can be included. An error results if expression is non-numeric. Other IF/ELSE/END
blocks and DO/END blocks can be nested within an IF/ELSE/END.

INCREMENT

syntax: INCREMENT var
error code: unchanged

If var exists and is numeric its value is incremented by one otherwise var is initialized to one.

KILL

syntax: KILL
error code: unchanged

This command immediately terminates the OmniScript application. One use is to avoid the
84 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
pause at the end of the last script if this is not wanted.

LAUNCH

syntax: LAUNCH keyword1 = application [, keyword2]
error code: set

This command is used to launch an application. If the application is already open control is
transferred to it. This command can be used under System 6, but OmniScript will be
terminated. Under System 7 OmniScript continues. The application can be specified in three
different ways as described in the following table.

Value of keyword1 Value of application

FILE The value is a string expression that is the full or partial path name
of the application or an alias of the application. If a partial path
name is used it is relative to the current default directory.

ALIAS The value is the name of a previously defined alias variable that
points to the application or an alias of the application. This
keyword is only valid under System 7.

SIGN The value is a string expression that is the 4 character signature of
the application. The desktop database is searched for the most
recent version of the application. This keyword is only valid under
System 7.

85 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

The other keywords are given in the following table. They are only meaningful when the
command is used under System 7. The user should select one of the first three and optionally
the fourth.

Value of keyword2 Meaning

FRONT The launched application is in the foreground. This is the default

BACK The launched application is in the background.

AEVT An apple event is to be sent to the application when it is launched.
The event is set up using the appropriate commands (eg. AENEW
and AEADD) but the event is not sent with AESEND but is sent at
launch time. The launched application is in the foreground.

WAIT If this keyword is included then OmniScript waits until the
launched application terminates. This wait can be terminated by
selecting the Terminate option from the file menu, which will
cause the script to continue, or by selecting the Exit or Restart
options.

LIST

syntax: LIST var [, [string] [, num]]
error code: set

The LIST command uses the Macintosh List Manager to display a list. It enables the user to
define a list, display it and select items from it. It works by using subscripted variables.
Suppose the var parameter is $LIST. Prior to calling the LIST command the user must generate
the list. The variable $LIST is set to the number of items in the list. $LIST[1] contains the first
list item, $LIST[15] contains the fifteenth and so on.

When the LIST command is executed a window containing the list is displayed. If the optional
string is included the title of the list window will be set to the value of string. This can be used
to give a short description of the type of list selection required.

86 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
The user may select a list item by clicking on it with the mouse. Selection of more than one
item depends on the value of num, which defaults to 0. With this default value the standard
Macintosh rules are followed. More than one item may be selected by using the shift or
command keys in combination with the mouse. Generally one selects several items by clicking
on an item while holding down the command key. An item already selected is deselected by
clicking on it while holding down the command key. Dragging while holding down the
command key extends selection or deselection to the items dragged over. Using the shift key
with the mouse selects a range of items. Different uses of the shift and command keys can be
specified by the value of num. This is actually the value of the selFlags byte of the ListRec
structure defining the list (See Inside Macintosh, Vol. IV, page 267). The most likely use is to
assign a value of 128 so that only one item may be selected. If string is omitted but num is
included both commas must be specified.

The list display is terminated by selecting either the OK button (the normal exit) or the Cancel
button, which generates an error code of 1. Double clicking on an item is equivalent to
selecting OK. If a list item is checked using the #SEL function a value of 1 will be returned if it
was selected or 0 if it was not. If the user only needs to process the selected items then the
LISTNEXT command can be used. The number of items selected is stored in the item with
index -1, eg. $LIST[-1].

When the list is displayed none of the items is shown as selected. Use the LISTP command if
some of the items should be shown as already selected.

LISTDIR

syntax: LISTDIR var [, types [, creators]]
error code: unchanged

This command generates a list to be used by the LIST command from the names of files and
directories in the current default directory. The parameter var is the name of the list. The files
and directories to be included in the list can be filtered by specifying the file type and creator.
The optional string expressiontypes is a concatenation of the 4 character types of the files to be
included in the list. If types is omitted all names in the directory will be included in the list,
otherwise the list will contain a file only if its type was included in types and directories will
only be included if the string ‘DIR ’ is in types . The string expressioncreators is a
concatenation of the 4 character creators of the files to be included in the list. (For example
‘MSWD’ would restrict the list to files created by Microsoft Word.) Note if types is omitted
and creators is included both commas must be present with no field between them.

87 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
LISTNEXT

syntax: LISTNEXT var1 ,var2
error code: unchanged

This command is used to obtain the selected items from a list. The parameter var1 is the name
of the list. On input var2 should be a numeric variable with a value less than the number of
items in the list. The command returns in var2 the number of the next selected item that is
greater than the input value of var2 or zero if there are no more selected items in the list. Thus
if var2 is initialized to zero and the LISTNEXT command repeatedly called until a zero is
returned the user can obtain the item number of each selected item.

LISTP

syntax: LISTP var [, [string] [, num]]
error code: set

This command is the same as LIST except that when the list is displayed those items in the list
that have previously been selected (either by previously displaying the list or using the
SELECT command) are shown as already selected.

88 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
LOADSCRIPT

syntax: LOADSCRIPT script

This command loads the script with name given by the field script. It uses the same search rule
as the EXEC command.

LVALUES

syntax: LVALUES var1 , var2
error code: set

This command takes the string value of the variable var1 and breaks it into its component
fields. A list with name var2 is generated and the component fields are assigned to each list
item in turn. The component fields are separated by spaces. A field should be enclosed in
quotes if it contains spaces. The variables in the list will be set to be string, integer or floating
point as appropriate. For example the following commands

SET a = "ABC DEF 'GHI JKL' 45"
LVALUES a b

would generate a list of four items. The variable b would have value 4, b[1] would be ABC,
b[2] would be DEF, b[3] would be GHI JKL and b[4] would be an integer with value 45.

MENU

syntax: MENU NEW , menuid , position , list
MENU DELETE , menuid

error code: unchanged

This command is used to create a menu specified by a general variable list. The number
menuid is the menuID as described in ‘Inside Macintosh’ and should be in the range 4 to 235.
This value is used in the MENUSCRIPT and MENUSET commands, the #MENU function and
for defining pop-up menus in dialogs. The number position corresponds to the beforeID
parameter of the InsertMenu script described in ‘Inside Macintosh’. A value of -1 indicates the
menu is to be used as a submenu or pop-up menu and does not appear in the menu bar. A value
of 0 places the menu after all others on the menu bar and a postive value places it after the
menu with menuID position . The name of the menu is derived from the list name list by
deleting the first character. (Deleting this first character allows the use of list names starting
with @,$, or \ without having this character appear in the menu name.

89 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
The menu may be deleted by the second form of the command.

When an item is selected from a menu created by this command the item number is saved and
can be checked by the #MENU function. Optionally the MENUSCRIPT command can specify
a script to be executed.

MENUSCRIPT

syntax: MENUSCRIPT menuid , script
error code: unchanged

90 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
This command specifies a script to be executed when an item is selected from the menu
specified by menuid . The current script is interrupted to execute the script named in the field
script . Two arguments are passed to this script. The first is the number menuid and the second
is the number of the selected item.

MENUSET

syntax: MENUSET menuid , num
error code: unchanged

The #MENU function returns the item number of the item last selected from a menu created by
the MENU command or 0 if no item has been selected. This value can be changed by the
MENUSET command. One use is to initialize the display of a pop-up menu. The number
menuid specifies the menu to be set and num specifies the value.

MODELESS

syntax: MODELESS NEW , id , script , list
MODELESS SHOW/DELETE , id

error code: set

This command is used to set up modeless dialogs. The dialog is stored as a resource with id
number id in a file that must have previously been opened. The NEW keyword is used to setup
the dialog. The field script is the name of the script to be executed when a button is pressed in
the dialog. The variable list is the name of a list that describes the dialog. This is discussed
above in the section on dialogs. Once a dialog has been set up the command is used with the
SHOW keyword to show it (if the dialog was defined so that it is invisible when created) and
the DELETE keyword to delete it.

MOVE

syntax: MOVE [string] , var
error code: set

This command moves the file or folder named string (full or partial path name relative to the
current default directory) to the directory defined by the path variable var (set by a PATH or
SCRIPTPATH command). If string is omitted then the current default directory is moved.

91 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
NEWDIR

syntax: NEWDIR directory
error code: set

This command creates a new directory with name given by the string expression directory,
which can be either a full path name or a partial path name relative to the current default
directory.

OPEN

syntax: OPEN num , [KEY1 , … , KEYn]
error code: set

This command is used to open a file and associate a unit number num with the file for use by
the other file commands.

The keywords are

FILE = name The string expression name is the name of the file to be opened.
Aliases will be resolved under System 7.

BOTH
READ
WRITE

This decides whether the file is to be opened for reading, writing or
both. BOTH is the default.

NEW
OLD
UNKNOWN

This decides whether to use an existing file (OLD), to create a new
file (NEW) or to create a new file only if one does not already exist
(UNKNOWN), which is the default. If new is specified and the file
already exists then the data fork is truncated to zero length instead of
actually creating a new file. This leaves the resource fork and Finder
information unchanged.

TYPE = string This specifies the type and creator of the file (even if it already
exists). For example TYPE = TEXTEDIT defines a TEXT document
created by the application with signature EDIT.

LABEL = num This sets the file label (color under System 6). 7 is the highest priority
(first priority in the Label menu or first color in the Color menu) 0 is
the lowest priority or last color

APPEND Writing will be at the end of the file instead of the beginning for an
existing file.

ACCESS = string As an alternative to using the above keywords to specify the file
access mode this keyword can be used with the corresponding ANSI

92 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

C code for file access. See the table below.

93 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

The following table gives the equivalents of command keywords and ANSI C codes for file
access.

Command Keywords ANSI code

READ r

WRITE w

WRITE, APPEND a

BOTH - File does not exist w+

BOTH - File already exists r+

BOTH, APPEND - File already exists a+

PATH

syntax: PATH [var1 =] [var2] , [string]
error code: set

This command is used to set the current default directory and to define path variables. If var1
is included then this path variable is set by the command. If var2 is included it is a path
variable generated by an earlier PATH command or it is one of the default path variables, (see
the section on Path Variables).

94 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
If the expression string is a full path name (that is it starts with a volume name and contains at
least one colon but does not start with a colon) then the PATH command sets the default
directory to this path. If string is a partial path name (that is it begins with a colon or contains
no colons) then the PATH command generates a path relative to the directory defined by the
path variable var2. If var2 is omitted then the current default directory is used.

The following examples applied to the illustrative directory hierarchy should clarify the PATH
command. It is assumed that ‘Root’ is the volume name.

Root

A B

A1 A2 B1 B2

PATH X = 'Root:A' The default directory is now A.

PATH Y = X,'A1' The default directory is now A1.

PATH ,'::A2' The default directory is now A2. The double colon causes a
move one up the hierarchy from the current default directory, A1.

PATH ,':::B:B1' The default directory is now B1.

PATH W = , This is valid. It gives the name W to the current default directory.
This would be useful after a call to PUTFILE or GETFILE which
can change the default directory.

PATH W = ,':' This is also valid and is the same as above.

PATH R = ,'Root' This is invalid. Root is a partial path name and cannot refer to the
Volume.

PATH R = ,'Root:' This is valid. A full path name has been given. R refers to the
Volume Root.

PATH R,'B:B1' This is invalid. B:B1 is an full path name and B is not a volume
name.

95 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.

PATH R,':B:B1' This is valid. The default directory is B1.

96 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
PAUSE

syntax: PAUSE string
error code: unchanged

This command displays string and waits for the user to press the enter key or select continue
from the File menu.

PUTFILE

syntax: PUTFILE var [, [default] [, prompt]]
error code: set

This command calls the Standard FIle Package to obtain the name of an output file. The user
will be prompted with the current default directory. The string default , which may be null, is
the default name, and the string prompt is the string used to prompt the user.

If the user selects a file the name will be returned in var. If the user changes the directory, the
default directory will be set to the directory from which the user selected the file. If the user
cancels file selection then the error code is set to 1.

QUIT

syntax: QUIT
error code: unchanged

This command is used to immediately terminate a DO loop with no further iterations. This
would often be used with the TEST command for a conditional quit.

READ

syntax: READ num , var
error code: set

This command reads a record from the file previously opened with unit number num and saves
it in the variable var. The error code is set to 1 if the file was not previously opened. Reading is
terminated by a return character in the input file.

97 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
REMOVE

syntax: REMOVE var , num
error code: unchanged

This command is used to remove item number num from the list var. (Actually item number
num is moved to the end of the list and the number of items in the list is decremented.)

RENAME

syntax: RENAME field
error code: set

98 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
This command can be used to rename a file or directory. It must be used after a FILENAME
command and renames the file or directory selected by the last FILENAME command. The
new name is field. The error code is set to 1 if there is no file to rename (because FILENAME
was not previously called or the internal file information was overwritten by other commands).

REORDER

syntax: REORDER var , num1 , num2
error code: unchanged

This command moves an item in the list var. Item number num1 becomes item number num2
and the items between positions num1 and num2 are shifted appropriately. If num2 exceeds the
number of items in the list then item num1 is moved to the end of the list.

REPORT

syntax: REPORT
error code: unchanged

This command displays information about the last command to set the error code if it was set
non-zero. The value of the return code, the command and the name of the script are displayed
after a line saying ‘**** ERROR REPORT ****’.

REWIND

syntax: REWIND num
error code: set

This command rewinds the file previously opened with unit number num. The error code is set
to 1 if the file was not previously opened.

RESOLVE

syntax: RESOLVE var
error code: set

This command is used to retrieve information from an alias variable created by the ALIAS
command. If the alias variable var refers to a file then the current default directory is set to the
directory containing this file and the general variable var is set to the name of the file. If the
file does not exist, but the path information is valid the error code is set to -43, but this is not
treated as a non-fatal error. If the alias variable var refers to a directory then the current default
directory is set to this directory and the general variable var is set null (ie. a string of length 0).
99 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
RESTART

syntax: RESTART
error code: unchanged

This System 7 only command sends a Restart event to the Finder (class = 'FNDR', ID = 'rest').
This is equivalent to selecting ‘Restart ’ from the Special Menu. Although the Apple Event
commands can also be used to do this, this command avoids the possibility of OmniScript
responding to the Finder’s quit event with a dialog requesting the user to cancel the current
script.

100 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
RFCLOSE

syntax: RFCLOSE num1 [, num2 , num3 ...]
error code: set

This command is used to close one or more files that were opened by the RFOPEN command.
numx is the path reference number of the file, which can be saved by the RFOPEN command.
The error code is the status returned by the last file closed.

RFOPEN

syntax: RFOPEN string [, var]
error code: set

This command is used to open a resource file. One use is prior to the DIALOG command to
open the resource file containing the dialog template. The string expression string is the file
name. The file must be in the current default directory. If the optional var is present the file
reference number will be stored in this variable for possible use by the RFCLOSE command.

SAVE

syntax: SAVE [file , [APPEND/NEW , [type]]]
error code: unchanged

This command is used to save the screen display to a file. When this command is executed the
display is deleted and saved to the file. The display is also automatically saved when
‘OmniScript’ terminates. The command may be called more than once, either to specifically
save the display at that point or to change the file to which the display is saved.

If no parameters are specified then the file is saved to the file specified on a previous execution
of SAVE. If the first execution of SAVE did not specify a file the display is saved to a file with
a name in the format ‘Saved on mm/dd/yy at hh/mm/ss’ located in the root folder of the start up
volume.

If the file is specified then the keyword APPEND may be specified to add the display to a
previously created file. The default NEW creates a new file or erases the contents of an
existing file. The type and creator of the file can be set or changed if the string type is
specified. This must be an 8 character string. The first four characters are the file type and the
second four are the creator.

101 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
SCRIPT

syntax: SCRIPT field

This is not a command but a directive to the pre-processor when a Script is initially being read
in. Pre-processing of the current script is terminated and a new Script with name field is
started.

102 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
SCRIPTPATH

syntax: SCRIPTPATH [var1 =] [var2] , [string]
error code: set

This command is used to define the directory searched when the EXEC command invokes a
script not previously called. The use of this command is identical to the PATH command
except that it does not change the current default directory.

SELECT

syntax: SELECT var1 [, var2 , var3 ...]
error code: unchanged

This command is used to mark a list item as selected. See the section ‘Lists’.

SET

syntax: [SET] var = [expression]
error code: unchanged

This command assigns a value to the general variable var. The value of expression can be
string, integer or floating point and var is flagged correspondingly. If expression is omitted
then var is set null, that is non-numeric with a string of length zero. The command name SET
can be omitted if there is no conflict between the variable name and a command name.

It is also possible to set a sub-range of a variable by specifying a range with the variable name.
In this case expression should be either string, integer or null. If the length of expression is less
than the length of the subrange then the string will be left justified and remainder of the
subrange will be space filled. (If > is used instead of = the string will be right justified. If the
length of expression is greater than the length of the subrange then expression will be
truncated. It is left justified and truncated on the right unless > is used in which case it is right
justified and truncated on the left.

SETINFO

syntax: SETINFO [var]
error code: set

This command is used to change information about a file or directory following a CHANGE
command. If var is absent the current file is used otherwise the file defined by the file variable
var is used (and this becomes the current file). The error code is set to 1 if there is no file to
103 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
rename (because FILE was not previously called or the current file information was
overwritten by other commands).

SORT

syntax: SORT list1 [, list2 , list3 ...]
error code: set

104 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
This command sorts one or more lists. The list list1 is sorted in ascending order by ASCII code
(except that lower case is converted to upper case before doing the comparison). If more than
one list is specified in the command the members of the subsequent lists will be reordered in
the same way as the first list, thus allowing the sorting of several associated lists using the first
list as the key.

If a list has an associated list of file variables then these will also be reordered if the list name
is followed by /f or /F. A list of alias variables can be reordered by adding /a or /A to the list
name. (This cannot be done for the first list because there is no associated list of names to sort
by.)

The error code is set to 1 if the value of the variable list1 was not set to indicate the number of
items in the list. The error code is set to 2 if any of the items in list1 is undefined. The error
code is set to 3 for an invalid character following the / following the list name.

SORTD

syntax: SORTD list1 [, list2 , list3 ...]
error code: set

This is the same as sort except that the sorting is done in descending order.

SOUND

syntax: SOUND expression
error code: unchanged

This command plays the sound from a ‘snd’ resource. If the expression parameter has an
integer value the program will look for a ‘snd’ resource with this resource number. If it can’t
find it or the expression parameter is not an integer the program will treat field as the name of a
‘snd’ resource. If the program still fails to find a resource it will treat expression as the name of
a file (either a partial path name relative to the current default directory or a full path name)
and plays the first ‘snd’ resource found in this file.

If a ‘snd’ resource can not be found as specified the System Beep sound is played twice. The
simplest use is to play a sound in the Sytem File by name, for example

SOUND ‘Clink-Klank’

105 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
SRAND

syntax: SRAND num
error code: unchanged

This command sets the seed for the sequence of random numbers generated by the #RAND
function.

TAILOR

syntax: TAILOR num
error code: unchanged

This command defines the unit number of the file that will be used for the output of file
tailoring. The error code is set to one if the file was not previously opened.

106 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
TEST

syntax: TEST (expression) command
error code: depends on COMMAND

This command evaluates expression. If the result is non-zero then command is executed.
command is any valid command except for the control commands DO, IF, ELSE and END.

UNMOUNT

syntax: UNMOUNT string
error code: set

This command unmounts the volume named in the expression string.

VALUES

syntax: VALUES source , var1 [, var2 …]
error code: unchanged

This command is similar to LVALUES except that when the source string, contained in the
variable source, is broken into its component fields they are assigned in turn to the variable
var1, var2 etc. Decoding stops when all the variables in the list have been assigned values. If
there are fewer fields than variables then the remaining variables will be assigned null values.

VLOAD

syntax: VLOAD file [, num]
error code: set

This command loads the variables from the file named in the string expression file to one of the
eleven blocks of global variables, depending on the value of num.. All previously defined
global variables in the block are erased. If there is an error reading the file the error code is set.
See the section ‘Saving Global Variables’ for further explanation.

VSAVE

syntax: VSAVE string [, num]
error code: set

This command saves the variables from one of the eleven blocks of global variables to the file
named in the string expression file. This file can be subsequently used in a VLOAD command.

107 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
If there is an error writing to the file the error code is set. See the section ‘Saving Global
Variables’ for further explanation.

WAIT

syntax: WAIT [NONE] expression
or: WAIT [NONE] UNTIL hour:min[: sec] [ON month/day]

error code: unchanged

In the first format this command suspends the execution of the script for the number of seconds
specified by expression.

108 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
In the second format the command suspends execution until the specified time. The seconds
part of the time (which must be specified in 24 hour format) is optional. The date is optional
and defaults to the current date. If the date is specified and the month is less than the current
month then the date is assumed to be in the next year. Each numerical part of the time or date is
an expression. If the specified time has already passed the program does not wait. No error is
generated.

This command could be used when running under MultiFinder or System 7 to delay execution
of the application to enable some other application to finish. This would be used when the
Macintosh is left unattended. During the wait the status message specifes when the wait will
terminate unless the NONE keyword was specified. During the wait period the program will
respond to menu selection and mouse events or other scripts executed at the interrupt level.

WINDOW

syntax: WINDOW top , left , bottom , right
error code: unchanged

This command changes the location and size of the display window. The window’s rectangle is
reset to the specified values.

WRITE

syntax: WRITE num , string
error code: set

This command is used to write text to a previously opened file. The expression string is written
to the file with unit number num. A null string causes a blank line to be written. The error code
is set to 1 if the file was not previously opened.

109 OmniScript Reference Manual

Copyright © 1991-1993, Richard G. Gibbs. All rights reserved.
Resources

OmniScript contains a number of resources, some of which the user may like to modify
(probably by using either ResEdit or RMaker). The following table lists these resources and
their purposes.

type id purpose

dctb 140 Allows use of default colors in dialogs with same ids

DITL 140 Dialog template for directory function

DLOG 140 Directory function dialog

EPFI 129 Font information for displays. This resource consists
of 9 words: respectively the font number, face and
size for the status message, the display window text
and the list window.

SFLN 129 Default location of standard file package dialogs. The
resource consists of two long words (treated as
points). The points are respectively the location of the
top left hand corner of the following dialogs
1 Get File or Directory
2 Put File

WIND 129 Main display window

WIND 131 List selection window

The SFLN resource is omitted from the OmniScript supplied. The default is to center these
dialogs on the screen.

The folder ‘Change Resources’ describes how the application RMaker can be used to easily
change the EPFI resource and add the SFLN resource.

110 OmniScript Reference Manual

