
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Resource Manager Q&As
Toolbox

Revised by: Developer Support Center June 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As in this Technical Note:
Order of resources retrieved by GetIndResource

Order of resources retrieved by GetIndResource
Date Written: 1/21/93
Last reviewed: 4/1/93

When GetIndResource is called, does the Resource Manager return the resource with the
lowest ID? Is it possible to predict the order of resources returned by GetIndResource call?

GetIndResource returns resources in the order that they were added to the resource file, not
by ID number. If you want to retrieve resources in a specific order by ID number, use
GetIndResource and GetResInfo (Inside Macintosh Volume I, page 121) to build a list of
resources and ID numbers, and then sort the list and start retrieving based on your criteria.

Theoretically, if you add resources in a certain order, then GetIndResource will give them
back to you in the same order. However, this is subject to change, which is why we
recommend the above approach.

Developer Technical Support June 1993

Macintosh Technical Notes

Macintosh resource ID numbering
Date Written: 7/26/90
Last reviewed: 10/1/91

Developer Technical Support June 1993

Macintosh Technical Notes

Does the warning about using Macintosh resource IDs 0 through 127 apply to resource types
of my own design?

When numbering resources, you can use any number you like on resource types of your own
creation (that is, not of a type reserved by Apple.)

In numbering resources you create of a type reserved by Apple, stick to the following
guidelines:

• Negative numbers are reserved for various owned and otherwise “encoded” resources.
• The numbers 0–127 are reserved for Apple’s use.
• Positive numbers >127 are available for your use.
• DTS no longer registers 'FOND' IDs. 'FOND's should be referenced by name and not by
number because the numbers change. Choose any 'FOND' ID within your font’s script range.
For details, see the Macintosh Technical Note “Font Family Numbers.”

Locate Macintosh folder first with FindFolder before OpenRFPerm
Date Written: 12/4/90
Last reviewed: 12/19/90

OpenRFPerm gets result code -43 (file not found) when opening a file that was put in the
Macintosh System 7 Control Panel folder, but when the file is moved outside the Control
Panel folder and within the System Folder, OpenRFPerm works fine.

It sounds like you are calling OpenRFPerm and it is accessing the System Folder rather than
the Control Panel Folder. System 7.0 doesn’t automatically search all of the subfolders in the
System Folder; therefore, it is necessary to use the toolbox call FindFolder to locate the
Control Panel folder before you call OpenRFPerm.

The FindFolder call is documented in Inside Macintosh Volume VI, Chapter 8: “You can call
the FindFolder function to get the path information so that you can access special folders.
You pass FindFolder a target volume and a constant that tells it which special folder you are
interested in. FindFolder returns a volume reference number and a directory ID. If the
specified folder does not exist, FindFolder can create it and return the new directory ID. (See
table 8-2 for the folder types [in System 7.0], resource types and constants.)”

HOpenResFile with fsRdPerm permission returns unique path
Date Written: 1/21/91
Last reviewed: 2/13/91

Developer Technical Support June 1993

Macintosh Technical Notes

According to the Macintosh Technical Note “OpenRFPerm: What your mother never told
you,” “OpenRFPerm will create multiple, unique, read-only access paths to a resource file.”
Is this same behavior present in HOpenResFile? A cdev I have written must look within
certain types of files for specific resources. If the file is already open, will a call to
HOpenResFile with fsRdPerm permission return a unique path? Using OpenRFPerm seems
to have no problems, but the overhead of creating working directories seems rather untidy.

Developer Technical Support June 1993

Macintosh Technical Notes

HOpenResFile is simply a friendly face on top of OpenRFPerm, so the unique access paths
that are created by OpenRFPerm will indeed percolate upward through HOpenResFile.

Removing Macintosh resources during shutdown
Date Written: 2/13/91
Last reviewed: 6/7/91

What do I have to do to ensure that a resource installed in the Macintosh System file will be
removed at Shutdown or Restart?

First, your shutdown procedure must be installed before the System file is closed. It helps to
understand the that Shutdown takes place after a couple of other steps in the process. The
order of events is:

1. Close all drivers, issuing goodbye kisses to drivers that need them.
2. Eject and Unmount all volumes. (System file goes away!)
3. Restart or Shutdown, whichever was chosen.

Your shutdown procedure needs to be called before step 2. In other words, you should call
ShutDwnInstall with sdOnUnmount and everything will be cool.

Changing a Macintosh resource
Date Written: 4/15/91
Last reviewed: 8/30/91

What’s the recommended way to update a Macintosh resource?

As you may have guessed, there is no standard way to update a resource in a resource file.
The general rule of thumb is, if the resource exists, simply load it in, modify it, mark it
changed, and then cause it to be written out. It is also best at this point to write the resource
if you know you are done changing it (ChangedResource simply schedules the resource to be
written the next time the resource file is updated). (Read the caveat about changing
purgeable resource on page I-123 of Inside Macintosh Volume I.)

You should, as a general rule, never remove and replace the resource. This causes undue
accounting problems for yourself and the Resource Manager, and causes quite a bit more
writing to the file than is absolutely needed.

If the write of a resource has failed for any reason and you would like to have the memory
version of the resource contain what the disk version does, simply detach the current handle

Developer Technical Support June 1993

Macintosh Technical Notes

from the resource using detach, dispose of the handle if you don’t want the data anymore,
and reload the resource as normal.

System 7.0 Resource Manager resource decompression
Date Written: 4/26/91
Last reviewed: 6/17/91

Developer Technical Support June 1993

Macintosh Technical Notes

Is the resource compression technique used in System 7.0 documented anywhere?

Documentation describing the compression algorithm used on resources is not available. The
System 7.0 Resource Manager automatically decompresses for you. You can force a resource
to be permanently decompressed by modifying it with ResEdit. Under System 6.0.7 or
earlier systems, there’s no easy method to access compressed resources.

HOpenResFile versus OpenResFile
Date Written: 5/1/91
Last reviewed: 6/7/91

Why would using OpenResFile(fileName) cause a crash when I try to open a Macintosh font
file that’s already open?

The problem stems from the fact that OpenResFile doesn’t deal effectively with cases where
the resource file is already open. Luckily, there are some relatively new Resource Manager
calls that you can and should use instead. They’re all documented in the Resource Manager
chapter of Inside Macintosh Volume VI and in the Macintosh Technical Note “New
Resource Manager Calls.”

The call of interest in your case is HOpenResFile. To use it, break down the vRefNum
(actually WDRefNum) returned by Standard File into a real vRefNum and dirID by calling
PBGetWDInfo, and pass those to HOpenResFile along with the file name. The important
part, however, is the permissions byte. If you expect to modify the file, pass fsRdWrPerm in
that field. If there’s an error of any kind, expect HOpenResFile to return -1, which should
serve as a signal that you need to call ResError to find out what went wrong.

Partial resources and compressed resource format
Date Written: 8/9/91
Last reviewed: 9/24/91

The partial resource calls ReadPartialResource and WritePartialResource do not decompress
Apple’s compressed resource format. In fact, these two calls are the only way possible to
read resources without decompressing them. It is not really possible to decompress part of a
resource, since the decompression method requires the entire resource to be in memory for
the conversion to occur.

Details of Apple’s compression scheme are not documented and Apple doesn’t currently
license the algorithm to developers, but Macintosh compressed resources are contained only
in the System file and other Apple-specific files. Because third-party products don’t use

Developer Technical Support June 1993

Macintosh Technical Notes

Apple’s compressed resources and all Apple’s compressed resources fit in memory without
the partial calls, you needn’t worry about supporting partial resource calls with compressed
resources. Just use the standard GetResource call to load these Apple-compressed resources.
You can determine if a resource is compressed by examining bit 0 of the resource’s
attributes. If this bit is set, the resource is compressed, and partial resource calls will return
the compressed data.

Developer Technical Support June 1993

Macintosh Technical Notes

Getting Macintosh system strings
Date Written: 1/18/92
Last reviewed: 2/6/92

Our application needs to know the Chooser Name and Machine Name, stored as 'STR '
resources in the System file. If I do a GetResource to read one of these (they are loaded into
the system heap), should I do a ReleaseResource when I am done? The resources are not
purgeable so they won’t go away by themselves. On the other hand, I’m worried about
releasing them out from under something else that has the same resource handle (like the
Chooser or the Finder).

The Chooser Name and Machine Name resources should be treated a little differently from
normal resources under System 7. You really should use GetString, instead of GetResource
to get the string (although GetString simply calls GetResource). Once you have the string
you should not release, dispose or make purgeable the string. You will find that the string
was already loaded when you asked for it, so it should remain when you are done. Also, you
should never change the contents of, or mark as changed, either of these strings since the
Chooser could be open and would not recognize your changes, unless you give your users
sufficient warning of the potentially confusing side effects of having a different name in two
places. Keep in mind that System 6 does not necessarily have the Computer Name resource,
so do error checking...

Bottom line: Get but don’t release these special strings, and don’t modify them unless
absolutely needed.

Pre-load resources & calling OpenResFile on another application
Date Written: 2/27/92
Last reviewed: 6/12/92

My application wants to open other applications and play with the resources therein, like
ResEdit, but when it calls OpenResFile on an application, the program gets lost in
GetNamedResource. Is there something I’m missing?

Your problem stems from the fact that some resources in the application file you’re opening
with OpenResFile are marked to be preloaded, and so are loaded into memory when the
resource fork is opened.

Since most applications have CODE resources marked to be preloaded, this turns into a
much bigger problem, because the Segment Loader will treat these preloaded CODE
resources as your code resources if you make a between-segment call that triggers a call to
LoadSeg while the opened resource file is first in the resource chain. If this happens, you’ll
begin executing code out of the other application, which will cause your Macintosh to crash

Developer Technical Support June 1993

Macintosh Technical Notes

and burn.

The solution to this problem is to bracket OpenResFile calls with SetResLoad(FALSE) and
SetResLoad(TRUE), and to avoid making between-segment calls when you’ve got another
resource file open that contains CODE resources. This will not only prevent your
application’s memory from being used by preloaded resources that you don’t want, but will
also prevent the Segment Loader from jumping into the other application’s code. If you need
to get CODE resources out of the opened resource file, you can still prevent the Segment
Loader problem by

Developer Technical Support June 1993

Macintosh Technical Notes

calling UseResFile on your application’s resource reference number to put your application
at the top of the resource chain.

Maximum number of items in a Macintosh resource file is 2727
Date Written: 5/22/90
Last reviewed: 12/17/90

Is there a maximum number of items for Macintosh resources?

In a file, yes. It is 2727.

X-Ref:
Macintosh Technical Note “Maximum Number of Resources in a File”

Maximum Macintosh resource size is “maxlongint” bytes
Date Written: 5/22/90
Last reviewed: 12/17/90

Is the maximum size of a Macintosh resource still 32K?

No. There used to be a bug in the 64K ROMs that didn’t allow you to write even multiples
of 32K, such as 32K-64K or 128K-192K. This bug was fixed in 128K ROMs. As of 128K
ROMs, the resource size is limited to “maxlongint” bytes.

Developer Technical Support June 1993

