
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Sub(Launching) From a High-Level Language
Processes

Revised by: C. K. Haun <TR> May 1993
Revised by: Rich Collyer and Mark Johnson April 1989
Written by: Rick Blair and Jim Friedlander May 1987

Note: Developer Technical Support takes the view that launching and sublaunching in
systems earlier than 7.0 are features that are best avoided for compatibility (and
other) reasons, but we want to make sure that when it is absolutely necessary to
implement launching and sublaunching, they are done in the safest possible
way.

This Technical Note discusses the “safest” method of calling _Launch from a high-level
language that supports inline assembly language with the option of launching or
sublaunching another application.

Changes since April 1989: Added note about LaunchApplication in System 7 and later.
Changes since August 1988: Incorporated Technical Note #52 on calling _Launch from a
high-level language, changed the example to offer a choice between launching or
sublaunching, added a discussion of the _Launch trap under MultiFinder, and updated the
MPW C code to include inline assembly language.

Note: The information about launching in this note is primarily geared to applications
that are written for Macintosh computers running System 6, or earlier versions
of the Macintosh Operating System.

If you are writing an application for System 7 and later systems, you will find
the LaunchApplication routine much easier to use and more appropriate.
LaunchApplication is documented in the Process Manager chapter of Inside
Macintosh Volume VI, and in the Processes volume of the New Inside
Macintosh series.

Launching and sublaunching from an application are fully supported under
System 7, and the previous warnings concerning launching do not apply to
System 7 or later systems.

The Segment Loader chapter of Inside Macintosh Volume II, page 53, states the following
about the _Launch trap:
Developer Support Center May 1993

Macintosh Technical Notes

“The routines below are provided for advanced programmers; they can be
called only from assembly language.”

Developer Support Center May 1993

Macintosh Technical Notes

While this statement is technically true, it is easy to call _Launch from any high-level
language that supports inline assembly code, and this Note provides examples of calling
_Launch in MPW Pascal and C.

Before calling _Launch, you need to declare the inline procedure, which takes a variable of
type pLaunchStruct as a parameter. Since the compiler pushes a pointer to this
parameter on the stack, you need to include code to put this pointer into A0. The way to do
this is with a MOVE.L (SP)+,A0 instruction, which is $205F in hexadecimal, so the first
word after INLINE is $205F. This instruction sets up A0 to contain a pointer to the
filename and 4(A0) to contain the configuration parameter, so the last part of the inline is
the _Launch trap itself, which is $A9F2 in hexadecimal. The configuration parameter,
which is normally 0, determines whether the application uses alternate screen and sound
buffers. Since not all Macintosh models support these alternate buffers, you should avoid
using them unless you have a specific circumstance which requires them.

The Finder does a lot of hidden cleanup and other tasks without user knowledge; therefore, it
is best if you do not try to replace the Finder with a “mini” or try to launch other programs
and have them return to your application. In the future, the Finder may provide better
integration for applications, and you will circumvent this if you try to act in its place by
sublaunching other programs.

If you have a situation where your application must launch another and have it return, and
where you are not worried about incompatibility with future System Software versions, there
is a “preferred” way of doing this that fits into the current system well. System file version
4.1 (or later) includes a mechanism for allowing a call to another application; we term this
call a sublaunch. You can perform a sublaunch by adding a set of simple extensions to the
parameter block you pass to the _Launch trap.

_Launch and MultiFinder

Under MultiFinder, a sublaunch behaves differently than under the Finder. The application
you sublaunch becomes the foreground application, and when the user quits that application,
the system returns control to the next frontmost layer, which will not necessarily be your
application.

If you set both high bits of LaunchFlags, which requests a sublaunch, your application
will continue to execute after the call to _Launch. Under MultiFinder, the actual launch
(and suspend of your application) will not happen in the _Launch trap, but rather after a
call or more to _WaitNextEvent.

Under MultiFinder, _Launch currently returns an error if there is not enough memory to
launch the desired application, if it cannot locate the desired application, or if the desired
application is already open. In the latter case, that application will not be made active. If you

Developer Support Center May 1993

Macintosh Technical Notes

attempted to launch, MultiFinder will call _SysBeep, your application will terminate, and
control will given to the next frontmost layer. If you attempted to sublaunch, control will
return to your application, and it is up to you to report the error to the user.

Currently, _Launch returns an error in register D0 for a sublaunch, and you should check it
for errors (D0<0) after any attempts at sublaunching. If D0>=0 then your sublaunch was
successful.

Developer Support Center May 1993

Macintosh Technical Notes

You should refer to the Programmer’s Guide to MultiFinder (APDA) and Macintosh
Technical Notes #180, MultiFinder Miscellanea, and #205, MultiFinder Revisited: The 6.0
System Release, for further discussion of the _Launch trap under MultiFinder.

Working Directories and Sublaunching With the Finder

Putting aside the compatibility issue for the moment, the only problem sublaunching creates
under the current system is one of Working Directory Control Blocks (WDCBs). Unless the
application you are launching is at the root directory or on an MFS volume, you must create
a new WDCB and set it as the current directory when you launch the application.

In the example that follows, the new working directory is opened (allocated) by Standard
File and its WDRefNum is returned in reply.vRefNum. If you do not use Standard File
and cannot assume, for instance, that the application was in the blessed folder or root
directory, then you must open a new working directory explicitly via a call to _OpenWD.
You should give the new WDCB a WDProcID of 'ERIK', so the Finder (or another shell)
would know to deallocate when it saw it was allocated by a “sublaunchee.”

Although the sublaunching process is recursive (that is, programs that are sublaunched may,
in turn, sublaunch other programs), there is a limit of 40 on the number of WDCBs that can
be created. With this limit, you could run out of available WDCBs very quickly if many
programs were playing the shell game or neglecting to deallocate the WDCBs they had
created. Make sure you check for all errors after calling _PBOpenWD. A tMWDOErr (–121)
means that all available WDCBs have been allocated, and if you receive this error, you
should alert the user that the sublaunch failed and continue as appropriate.

Warning: Although the example included in this Note covers sublaunching,
Developer Technical Support strongly recommends that developers not
use this feature of the _Launch trap. This trap will change in the not-
too-distant future, and when it does change, applications that perform
sublaunching will break. The only circumstance in which you could
consider sublaunching is if you are implementing an integrated
development system and are prepared to deal with the possibility of
revising it every time Apple releases a new version of the system
software.

MPW Pascal

{It is assumed that the Signals are caught elsewhere; see Technical
Note #88 for more information on the Signal mechanism}

{the extended parameter block to _Launch}
TYPE

Developer Support Center May 1993

Macintosh Technical Notes

 pLaunchStruct = ^LaunchStruct;
 LaunchStruct = RECORD
 pfName : StringPtr;
 param : INTEGER;
 LC : PACKED ARRAY[0..1] OF CHAR; {extended parameters:}
 extBlockLen : LONGINT; {number of bytes in extension = 6}

Developer Support Center May 1993

Macintosh Technical Notes

 fFlags : INTEGER; {Finder file info flags (see below)}
 launchFlags : LONGINT; {bit 31,30=1 for sublaunch, others reserved}
 END; {LaunchStruct}

FUNCTION LaunchIt(pLaunch: pLaunchStruct): OSErr; {< 0 means error}
 INLINE $205F, $A9F2, $3E80;
{ pops pointer into A0, calls Launch, pops D0 error code into result:
 MOVE.L (A7)+,A0
 _Launch
 MOVE.W D0,(A7) ; since it MAY return }

PROCEDURE DoLaunch(subLaunch: BOOLEAN); {Sublaunch if true and launch if false}

VAR
 myLaunch : LaunchStruct; {launch structure}
 where : Point; {where to display dialog}
 reply : SFReply; {reply record}
 myFileTypes : SFTypeList; {we only want APPLs}
 numFileTypes : INTEGER;
 myPB : CInfoPBRec;
 dirNameStr : str255;

BEGIN
 where.h := 20;
 where.v := 20;
 numFileTypes:= 1;
 myFileTypes[0]:= 'APPL'; {applications only!}
{Let the user choose the file to Launch}
 SFGetFile(where, '', NIL, numFileTypes, myFileTypes, NIL, reply);

 IF reply.good THEN BEGIN
 dirNameStr:= reply.fName; {initialize to file selected}

{Get the Finder flags}
 WITH myPB DO BEGIN
 ioNamePtr:= @dirNameStr;
 ioVRefNum:= reply.vRefNum;
 ioFDirIndex:= 0;
 ioDirID:= 0;
 END; {WITH}
 Signal(PBGetCatInfo(@MyPB,FALSE));
{Set the current volume to where the target application is}
 Signal(SetVol(NIL, reply.vRefNum));

{Set up the launch parameters}
 WITH myLaunch DO BEGIN
 pfName := @reply.fName; {pointer to our fileName}
 param := 0; {we don't want alternate screen or sound

buffers}
 LC := 'LC'; {here to tell Launch that there is nonjunk

next}
 extBlockLen := 6; {length of param. block past this long

word}
 {copy flags; set bit 6 of low byte to 1 for RO access:}
 fFlags := myPB.ioFlFndrInfo.fdFlags; {from GetCatInfo}

{Test subLaunch and set LaunchFlags accordingly}
 IF subLaunch THEN
 LaunchFlags := $C0000000 {set BOTH high bits for a

 sublaunch}
 ELSE
 LaunchFlags := $00000000; {Just launch then quit}
 END; {WITH}

Developer Support Center May 1993

Macintosh Technical Notes

 {launch; you might want to put up a dialog box that explains that
 the selected application couldn't be launched for some reason.}
 Signal(LaunchIt(@myLaunch));
 END; {IF reply.good}

END; {DoLaunch}

MPW C

typedef struct LaunchStruct {
char *pfName; /* pointer to the name of launchee */
short int param;
char LC[2]; /*extended parameters:*/
long int extBlockLen; /*number of bytes in extension == 6*/
short int fFlags; /*Finder file info flags (see below)*/
long int launchFlags; /*bit 31,30==1 for sublaunch, others

 reserved*/
} *pLaunchStruct;

pascal OSErr LaunchIt(pLaunchStruct pLnch) /* < 0 means error */
= {0x205F, 0xA9F2, 0x3E80};

/* pops pointer into A0, calls Launch, pops D0 error code into result:
 MOVE.L (A7)+,A0
 _Launch
 MOVE.W D0,(A7) ; since it MAY return */

OSErr DoLaunch(subLaunch)
Boolean subLaunch; /* Sublaunch if true and launch if false

 */
{ /* DoLaunch */

struct LaunchStruct myLaunch;
Point where; /*where to display dialog*/
SFReply reply; /*reply record*/
SFTypeList myFileTypes; /* we only want APPLs */
short int numFileTypes=1;
HFileInfo myPB;
char *dirNameStr;
OSErr err;

where.h = 80;
where.v = 90;
myFileTypes[0] = 'APPL'; /* we only want APPLs */
/*Let the user choose the file to Launch*/
SFGetFile(where, "", nil, numFileTypes, myFileTypes, nil, &reply);

if (reply.good)
{

dirNameStr = &reply.fName; /*initialize to file selected*/

/*Get the Finder flags*/
myPB.ioNamePtr= dirNameStr;
myPB.ioVRefNum= reply.vRefNum;
myPB.ioFDirIndex= 0;
myPB.ioDirID = 0;
err = PBGetCatInfo((CInfoPBPtr) &myPB,false);
if (err != noErr)

return err;

Developer Support Center May 1993

Macintosh Technical Notes

/*Set the current volume to where the target application is*/
err = SetVol(nil, reply.vRefNum);
if (err != noErr)

return err;

/*Set up the launch parameters*/
myLaunch.pfName = &reply.fName; /*pointer to our fileName*/
myLaunch.param = 0; /*we don't want alternate screen

 or sound buffers*/
/*set up LC so as to tell Launch that there is non-junk next*/

myLaunch.LC[0] = 'L'; myLaunch.LC[1] = 'C';
myLaunch.extBlockLen = 6; /*length of param. block past

 this long word*/
/*copy flags; set bit 6 of low byte to 1 for RO access:*/

myLaunch.fFlags = myPB.ioFlFndrInfo.fdFlags; /*from
 _GetCatInfo*/

/* Test subLaunch and set launchFlags accordingly */
if (subLaunch)

myLaunch.launchFlags = 0xC0000000; /*set BOTH hi bits for a
 sublaunch */

else
myLaunch.launchFlags = 0x00000000; /* Just launch then quit */

err = LaunchIt(&myLaunch); /* call _Launch */
if (err < 0)
{
/* the launch failed, so put up an alert to inform the user */

LaunchFailed();
return err;

}
else

return noErr;
} /*if reply.good*/

} /*DoLaunch*/

Further Reference:

• Inside Macintosh, Volume I, page 12; Volume II, page 53; and Volume IV, page 83, The Segment Loader
• Programmer’s Guide to MultiFinder (APDA)
• Inside Macintosh, Volume VI, Process Manager
• New Inside Macintosh:Processes Process Manager
• Technical Note M.OV.GestaltSysenvirons —

Gestalt and SysEnvirons - a Never Ending Story
• Technical Note M.TB.Multifinder Misc —

 MultiFinder Miscellanea
• Technical Note M.OV.Multifinder—

 The 6.0 System Release

Developer Support Center May 1993

