
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

AppleTalk: The Rest of the Story
Networking

Updated by: Rich Kubota and Jim Luther January 1993
Written by: Rich Kubota and Scott Kuechle February 1992

This Technical Note discusses the updates and modifications to a number of facets of the 
lower levels of AppleTalk Phase 2 since the release of Inside Macintosh Volume VI. Topics 
range from discussion of  the new Datagram Delivery Protocol  (DDP) layer  calls  to  the 
AppleTalk  Multiple  Node  Architecture  to  a  discussion  at  the  driver  level  of  the  new 
Multivendor  ADEV  Architecture.  Most  of  the  information  presented  here  concerns 
AppleTalk versions 56 through 58; however, additional material is presented to clarify and 
correct  material  presented  in  other  AppleTalk  documentation  relating  to  all  versions  of 
AppleTalk.

Reordered subjects according to the order of the AppleTalk version in which the feature was 
first implemented. Added a table of contents to make it easier to find material. Added a 
discussion  on  Multivendor  ADEV  Architecture,  the  .TOKN  driver  interface,  plus 
information on making AppleTalk drivers compatible with virtual  memory under system 
software version 7.0.x. Added a description of the change to the .ENET interface presented 
by the Apple SONIC-based Ethernet  drivers.  Added socket  listener  sample code.  Added 
AppleTalk version list.

Changes since September 1992: Corrected the .TOKN interface to remove reference to the 
A1 register on packet reception. Described a bug with the LAPAddATQ and LAPRmvATQ 
glue code that exists in the MPW Interface.o library file, and published an Assembler glue 
code file  to  work around the problem. Described a  change to  the .ENET EGetInfo call 
interface.  Described a  change to  the  'atlk'  AGetInfo  call  required  of  ADEVs to  support  
SNMP  (Simple  Network  Management  Protocol).  Discussed  other  changes  required 
for  .TOKN and  .ENET support  of  SNMP.  Provided  additional  clarification  to  the  LAP 
Manager calls, LRdDispatch and LWrtInsert. Presented a correction to the ENET.h header 
file supplied with MPW 3.2.x.

Introduction 2
Where Can I Get the Latest Version of AppleTalk? 3

The 'atkv' Gestalt Selector 4
Sample Socket Listener 4

Socket Listener Review 5
Timing Considerations for LocalTalk 5
Register Usage 5
Socket Listener Overview 6
Socket Listener Assembler Code 7

Developer Support Center January 1993



Macintosh Technical Notes

Initializing the Socket Listener 12
Using the Socket Listener 14

The AppleTalk Transition Queue 15
Bug with LAPAddATQ and LAPRmvATQ Glue Code 16
Calling the AppleTalk Transition Queue 18

Developer Support Center January 1993



Macintosh Technical Notes

Standard AppleTalk Transition Constants 18
The Flagship Naming Service 19

The ATTransNameChangeAskTask Transition 19
The ATTransNameChangeTellTask Transition 20
The ATTransCancelNameChange Transition 20
System 7.0 Sharing Setup cdev / Flagship Naming Service Interaction 21

AppleTalk Remote Access Network Transition Event 21
The ATTransNetworkTransition Transition 21
Network Transition Event for AppleTalk Remote Access 21

Cable Range Change Transition Event 22
The ATTransCableChange Transition 23

The Speed Change Transition Event 23
The ATTransSpeedChange Transition 24

Sample Pascal Source to LAPMgrExists Function 24
Sample AppleTalk Transition Queue Function 25

Sample AppleTalk Transition Queue Function in C 25
Sample AppleTalk Transition Queue Function in Pascal 29

Multivendor ADEV Architecture 36
Original Limitations 36
.TOKN Driver Shell 37
.TOKN Driver Basics 37

Driver Considerations for Virtual Memory 38
Limiting DeferUserFn Calls 39
Implementing DeferUserFn 40

SONIC-Based Ethernet Driver Software Interface Change 40
EGetInfo Changes 40
Distinguishing Apple’s SONIC-Based Ethernet Systems 41

Correction to the ENET.h Header File 42
AppleTalk Multiple Node Architecture 42

What Is It? 43
Glue Code For Multinode Control Calls 43
Things You Need to Know When Writing a Multinode Application 45

AddNode (csCode=262) 46
RemoveNode (csCode=263) 47
Receiving Packets 47

Sending Datagrams Through Multinodes 48
NetWrite (csCode=261) 48

AppleTalk Remote Access Network Number Remapping 49
Is There a Router on the Network? 49

New for AppleTalk ADEVs 49
AGetInfo (D0=3) 50
AAddNode (D0=9) 51
ADelNode  (D0=10) 52
AGetNodeRef  (D0=11) 53
AOpen  (D0=7) 53
AClose (D0=8) 54
AInstall (D0=1) 54
AShutDown (D0=2) 54
Receiving Packets 54
Defending Multinode Addresses 55

Corrections/Clarifications to the LAP Manager 55
LRdDispatch (DO = 1) 55
LWrtInsert (DO = 2) 55

AppleTalk Version Information 56
Contacting Apple Software Licensing 57

Developer Support Center January 1993



Macintosh Technical Notes

Introduction

This Tech Note differs from previous revisions in that the subjects have 
been reordered. The topics are presented according to the order of the 
AppleTalk version in which the feature was first implemented. You can 
find new topics  and modifications  to  this  Tech Note  by looking for 
material set off by change bars in the margins.

The first section in this Note, “The 'atkv' Gestalt Selector,” discusses the 
new Gestalt selector 'atkv',  which provides version information when 
AppleTalk is available. 

The next section, “Sample Socket Listener,” presents a sample socket 
listener,  including  initialization  code  to  assist  high-level  language 
programmers.  There  socket  listener  comments  describe  in  detail  the 
basic functions of packet handling at the data link layer.

The  next  section,  “The  AppleTalk  Transition  Queue,”  discusses  the 
AppleTalk  Transition  Queue  including  its  support  for  the  Flagship 
Naming Service, AppleTalk Remote Access, and changes to processor 
speed  that  can  affect  LocalTalk  and  other  processes  dependent  on 
processor speed. Included is Pascal source code for checking whether 
the  Phase  2  LAP Manager  exists  to  support  the  Transition  Queue 
mechanism, plus sample Transition Queue handlers written in both C 
and Pascal. This section includes a description of an important bug that 
exists  in  the  glue  code,  implemented  for  the  LAPAddATQ  and  the 
LAPRmvATQ functions. The glue code is from the MPW Interface.o 
file.  Replacement  glue  routines  are  provided  to  work  around  the 
problem for both MPW and Think programmers.

The  section  “Multivendor  ADEV  Architecture”  presents  the 
Multivendor ADEV Architecture, which allows for Ethernet and token 
ring cards from multiple vendors to be installed on the same system. 
Included is a description of the functionality of the new driver shells for 
Ethernet  and  token  ring,  plus  a  description  of  the  .TOKN interface 
Developer Support Center January 1993



Macintosh Technical Notes

required for compatibility with the new ADEV Architecture.

The section “Driver Considerations for Virtual Memory” shows how to 
modify driver code for compatibility with system software version 7.0 
virtual memory.

SONIC-Based Ethernet Driver Software Interface Change

The section “SONIC-Based Ethernet Driver Software Interface Change” presents a change 
to  the  .ENET interface  that  resulted  from  the  implementation  of  the  SONIC  Network 
Interface Controller on the Ethernet NB Card and in the Macintosh Quadra computer’s built-
in  Ethernet.  The  change  concerns  the  EGetInfo  function,  which  now returns  additional 
network information for Apple Ethernet products based on the SONIC chip.

The section “Correction to the ENET.h Header File” presents a correction to the header file  
for programs that will make a parameter block Control call to the .ENET, .TOKN, or .FDDI 
driver, to add or delete multicast addresses. This problem applies only to C programs that are 
written to include the ENET.h file  supplied with MPW version 3.2.x and with Think C 
versions 5.0 to 5.0.4.

The section “AppleTalk Multiple Node Architecture” discusses the new program interfaces 
to  the  AppleTalk  Multiple  Node  Architecture.  The  new  architecture  was  developed  to 
support multiple node capability on the Macintosh computer, which allows the Macintosh to 
present itself as separate entities, or unique nodes on the network. The AppleTalk Remote 
Access 

Developer Support Center January 1993



Macintosh Technical Notes

program uses multinode capability to implement Remote Access functionality. This section 
presents  the  Datagram  Delivery  Protocol  (DDP)  interface  for  multinode  AppleTalk  for 
applications  to  take  advantage  of  this  new  functionality.  This  Note,  however,  does  not 
discuss the Remote Access program.

The section “New for  AppleTalk ADEVs” presents  the changes required of  an ADEV’s 
'atlk' code resource for compatibility with the AppleTalk Multinode Architecture. While 
we recommend that developers of Ethernet and token ring network hardware conform to the 
specifications of the Multivendor ADEV Architecture, this information is presented for those 
developers of network products for which Apple does not supply an ADEV.

The final section, “AppleTalk Version Information,” lists the various versions of AppleTalk, 
and the new products that require the support of the AppleTalk version.

Where Can I Get the Latest Version of AppleTalk?

For testing purposes, the latest version of AppleTalk and related software is available on the 
latest  Developer CD Series disc, on AppleLink on the Developer Services Bulletin Board, 
and on the Internet through anonymous FTP to ftp.apple.com (130.43.2.3). It can be installed 
by using the Network Software Installer.

The 'atkv' Gestalt Selector

The 'atkv' Gestalt selector is available beginning with AppleTalk version 56 to provide 
more complete version information regarding AppleTalk, and as an alternative to the existing 
'atlk' Gestalt  selector.  Beginning  with  AppleTalk  version  54,  the  'atlk' Gestalt 
selector was available to provide basic version information. The  'atlk' selector is not 
available  when AppleTalk  is  turned  off  in  the  Chooser.  It  is  important  to  note  that  the 
information between the two resources is provided in a different manner. Calling Gestalt 
with the 'atlk' selector provides the major revision version information in the low-order 
byte of the function result. Calling Gestalt with the  'atkv' selector provides the version 
information in a manner similar to the 'vers' resource. The format of the LONGINT result 
is as follows:

byte; /* Major revision */
byte; /* Minor revision */
byte development = 0x20, /* Release stage  */

alpha = 0x40,
beta = 0x60,
final = 0x80, /* or */ release = 0x80;

byte; /* Nonfinal release # */

For example, passing the 'atkv' selector in a Gestalt call under AppleTalk version 57 gives the following LONGINT result: 0x39008000.

Note:  With the release of the System 7 Tuner product, AppleTalk will not be loaded at startup, if prior to the previous shutdown  
AppleTalk  was  turned  off  in  the  Chooser.  Under  this  circumstance,  the 'atkv' selector  is  not  available.  If  the 
'atkv' selector is  not available under System 7, this is  an indicator that  AppleTalk cannot be turned on 
without doing so in the Chooser and rebooting the system.

Developer Support Center January 1993



Macintosh Technical Notes

Sample Socket Listener

The preferred AppleTalk calls presented in  Inside Macintosh Volume V, page 513, do not 
include  a  preferred  style  call  for  DDPRead.  As  a  result  developers  are  faced  with  the 
prospect of writing their socket listeners and using the POpenSkt function when upgrading 
their programs. Inside Macintosh Volume II, page 324, presents an overview of how socket 
listeners should function.  Inside Macintosh states that socket listeners, as well as protocol 
handlers, need to be written in assembly code, since parameters are passed in registers. To 
assist high-level programmers with implementing a socket listener, the generic listener code 
is provided. The following code demonstrates how to do the following:

• buffer multiple packets

• return DDP/LAP header information that has already been read into the Read Header 
Area (RHA) by DDP

• calculate and compare the packet checksum when a packet uses a long DDP header, 
and includes the checksum value

Some of the things that the listener sample does not do, which you might wish to implement, 
are the following:

• Check the DDP type and ignore any packets that don’t match the desired type(s) that 
you’re interested in.

• Check the source node ID and ignore any packets that don’t come from the desired 
node(s).

• If the socket listener is used by more than one socket, it could route the packets 
differently based on the socket number found in D0.

• The socket listener does not handle the implementation of a completion routine to be 
executed when the packet is processed.

The example listener code includes an initialization routine which the listener client uses to 
notify the listener code of the “available” and “used” buffer queues. A high-level procedure 
is provided to demonstrate the initialization of the listener, and the use of the socket listener.

Socket Listener Review

The reader  is  advised  to  refer  to  Inside  Macintosh Volume II,  pages  324 to  330,  for  a 
description  of  protocol  handlers,  socket  listeners,  and  data  reception  in  the  AppleTalk 
Manager over LocalTalk. The same architecture applies to AppleTalk on Ethernet and token 
ring. With the advent of AppleTalk Phase 2, the size of the Read Header Area (RHA) has 
Developer Support Center January 1993



Macintosh Technical Notes

been expanded to accommodate the long DDP header.

After every ReadPacket or  ReadRest call, the listener code must check the Z (Zero) 
condition code for errors. If an error is detected from ReadPacket, the code must not call 
ReadRest. 

Developer Support Center January 1993



Macintosh Technical Notes

It is the responsibility of the socket listener code to check for the existence of the DDP 
checksum. In contrast with the Frame Check Sequence that the hardware uses to verify the 
frame, the DDP checksum is implemented in extended DDP headers to verify that the packet 
data is not corrupted by memory or data bus errors within routers on the internet. If the 
checksum has been entered, then the socket listener code must calculate the checksum after 
the packet has been read in, and compare the computed value with the passed checksum 
value. The sample listener code demonstrates this check and calculation of the checksum. 
The listener code sets a flag that the program can check to determine whether the checksum 
matched or not.

The record structure presented in this sample returns the DDP type, destination node ID, 
source  address  in  AddrBlock format,  the  hop count,  the  size  of  the  packet,  a  flag  to 
indicate whether a checksum error occurred, followed by the actual datagram. The record 
structure can be extended to return additional information, such as the tick count at the time 
the socket handler was called. 

Timing Considerations for LocalTalk

If LocalTalk is being used, your socket listener has less than 95 microseconds (best case) to 
read more data with a ReadPacket or ReadRest call. If you need more time, you might 
consider reading another 3 bytes into the RHA to buy another 95 microseconds. Remember 
that the RHA may only have 8 bytes still available.

Register Usage

When the socket listener is called, the registers will be set up as follows:

Register(s) Contents
A0-A1 SCC addresses used by MPP
A2 Pointer to MPP’s local variables
A3 Pointer to next free byte in RHA
A4 Pointer to ReadPacket {JSR (A4)} and ReadRest {JSR 2(A4)}

jump table
D0 This packet’s destination socket number
D1 Number of bytes left to read in packet

• Registers D0, D2, and D3 can be used freely throughout the socket listener. A6, and 
D4 to D7 must be preserved.

• From entry to socket listener until ReadRest is called:
The A5 register can be used.
Registers A0–A2, A4, and D1 must be preserved.

• From ReadRest until exit from socket listener:

Developer Support Center January 1993



Macintosh Technical Notes

The A5 register must be preserved.
Registers A0–A3 and D0–D3 are free to use.

You should assume only 8 bytes are still available in the RHA for your use. The RHA will 
contain one of the following:

Developer Support Center January 1993



Macintosh Technical Notes

LLAP header

or

DDP short header

Top of RHA (toRHA)
LLAP header

DDP long header

A3

A3

Socket Listener Overview

The sample socket listener utilizes two standard operating system (OS) queues (see Inside 
Macintosh Volume II, page 372), a free queue of available buffers that the listener uses to fill 
with incoming datagrams. The second linked list is a used queue of buffers that the listener 
has  processed,  but  that  have  not  been  processed  by  the  listener  client.  The 
SL_InitSktListener routine is called to pass the listener the pointers to the two OS queues. 

When the  listener  is  called to  process  a  packet,  the  listener  checks  whether  there  is  an 
available buffer record in the free queue by checking that qHead element of the free queue 
is not nil. If so, then the listener sets register A3 to point to the buffer_data element of 
the record and calls the ReadRest routine. If there is no available buffer record, the packet 
is ignored by calling ReadRest with a buffer size value of 0. Maybe the next time a packet 
is handled, a buffer will be available. If an error occurs during the ReadRest function, then 
the listener simply returns to the caller.

If the packet is successfully read, the listener processes the header information. The header 
information has been stored by the hardware driver in the MPP local variable space pointed 
to in register A2. The listener code fills in the hop count field of the packet buffer record and  
determines the packet length. The listener then figures out whether it is dealing with a short 
or extended DDP header and fills in the remaining fields of the packet buffer. A check is  
made to determine whether the checksum field of the DDP header is nonzero. If the field is 
nonzero,  the value is  passed to the  SL_DoChkSum function to verify that  the resulting 
checksum is zero. If the resulting checksum is nonzero, the buffer_CheckSum field is set 
to ckSumErr, -3103, otherwise the field is set to noErr. Finally, the listener Enqueues 
the packet buffer into the used queue and Dequeues it from the free queue before returning 
to the caller.

The  calling  program periodically  checks  the  QHead element  of  the  used  queue.  When 
QHead is no longer nil, a packet is available for processing. The program processes the 
Developer Support Center January 1993



Macintosh Technical Notes

packet  buffer.  When  finished,  the  packet  buffer  is  Enqueued into  the  free  queue  and 
Dequeued from the used queue. The program might then check for additional packets in 
the used queue and process them in the same manner.

Developer Support Center January 1993



Macintosh Technical Notes

The program needs to define a sufficient number of packet buffers so that the listener has 
buffers available in the free queue between times when the program checks the used queue 
and processes incoming packets.

Socket Listener Assembler Code

;_________________________________________________________________________
;
; Socket Listener Sample
;
; 3/92 Jim Luther,  Apple DTS
;
; ©1992 Apple Computer, Inc.
;_________________________________________________________________________

   INCLUDE    'QuickEqu.a'
   INCLUDE    'ToolEqu.a'
   INCLUDE    'SysEqu.a'
   INCLUDE    'Traps.a'
   INCLUDE    'ATalkEqu.a'
   INCLUDE    'SysErr.a'

;
;
; Record Types
;
;_________________________________________________________________________

QHdr                  RECORD    0
qFlags                DS.W      1
qHead                 DS.L      1
qTail                 DS.L      1
                     ENDR

PacketBuffer          RECORD    0
qLink                 DS.L      1
qType                 DS.W      1
buffer_Type           DS.W      1            ; DDP Type
buffer_NodeID         DS.W      1            ; Destination node
buffer_Address        DS.L      1            ; Source address in AddrBlock format
buffer_Hops           DS.W      1            ; Hop count
buffer_ActCount       DS.W      1            ; length of DDP datagram
buffer_CheckSum       DS.W      1            ; Chksum error returned here (cksumErr 

         ; or noErr)
buffer_Data           DS.B      ddpMaxData   ; the DDP datagram
                     ENDR

;_________________________________________________________________________
;
; Local Variables
;
;_________________________________________________________________________

SL_Locals    PROC
       ENTRY free_queue,used_queue,current_qelem

free_queue        DC.L    0        ; pointer to freeQ QHdr - initialized by 
      ; InitSktListener

used_queue        DC.L    0        ; pointer to usedQ QHdr - initialized by 
      ; InitSktListener  

Developer Support Center January 1993



Macintosh Technical Notes

current_qelem     DC.L    0        ; pointer to current PacketBuffer record
                                  ; initialized by InitSktListener, then
                                  ; set by socket listener after every packet.
                                  ; NIL if no buffer is available.
   ENDP

;_________________________________________________________________________
;
; SL_DoChksum - accumulate ongoing checksum (from Inside Macintosh)
;
;    Input:
;     D1 (word) = number of bytes to checksum
;     D3 (word) = current checksum
;     A1 points to the bytes to checksum
;
;    Return:
;     D0 is modified
;     D3 (word) = accumulated checksum
;_________________________________________________________________________

SL_DoChksum    PROC
   CLR.W      D0                    ; Clear high byte
   SUBQ.W     #1,D1                 ; Decrement count for DBRA
ChksumLoop:
   MOVE.B     (A1)+,D0              ; read a byte into D0
   ADD.W      D0,D3                 ; accumulate checksum
   ROL.W      #1,D3                 ; rotate left one bit
   DBRA       D1,ChksumLoop         ; loop if more bytes
   RTS
   ENDP

;_________________________________________________________________________
;
; SL_TheListener
;
;_________________________________________________________________________

;_________________________________________________________________________
;
; SL_TheListener - process packets received at the designated socket
;
;    Input:
;     D0 (byte) = packet's destination socket number
;     D1 (word) = number of bytes left to read in packet
;     A0 points to the bytes to checksum
;     A1 points to the bytes to checksum
;     A2 points to MPP's local variables
;     A3 points to next free byte in Read Header Area
;     A4 points to ReadPacket and ReadRest jump table
;
;    Return:
;     D0 is modified
;     D3 (word) = accumulated checksum
;_________________________________________________________________________

SL_TheListener  PROC    EXPORT

   WITH    PacketBuffer

; get pointer to current PacketBuffer

Developer Support Center January 1993



Macintosh Technical Notes

GetBuffer:
   LEA       current_qelem,A3                ; get the pointer to the PacketBuffer 

   ; to use
   MOVE.L    (A3),A3
   MOVE.L    A3,D0                           ; if no PacketBuffer
   BEQ.S     NoBuffer                        ; then ignore packet

; read rest of packet into PacketBuffer.datagramData

   MOVE.L    D1,D3                           ; read rest of packet
   LEA       buffer_data(A3),A3              ; A3 = ^bufferData
   JSR       2(A4)                           ; ReadRest
   BEQ.S     ProcessPacket                   ; If no error, continue
   BRA       RcvRTS                          ; there was an error, so ignore packet

; No buffer; ignore the packet

NoBuffer      CLR D3                          ; Set to ignore packet (buffer size = 
   ; 0)

   JSR       2(A4)                           ; ReadRest
   BRA       GetNextBuffer                   ; We missed this packet, but maybe 

   ; there will be a buffer for the next 
   ; packet…

; Process the packet you just read in.
; ReadRest has been called so registers A0-A3 and D0-D3 are free to use.
; We'll use registers this way:
PktBuff         EQU    A0        ; the current PacketBuffer
MPPLocals       EQU    A2        ; pointer to MPP's local variables (still set up 
                                ;  from entry to socket listener)
HopCount        EQU    D0        ; used to get the hop count
DatagramLength  EQU    D1        ; used to determine the datagram length
SourceNetAddr   EQU    D2        ; used to build the source network address

ProcessPacket:
   LEA        current_qelem,PktBuff          ; PktBuff = current_qelem
   MOVE.L     (PktBuff),PktBuff

; do everything that's common to both long and short DDP headers

; first, clear buffer_Type and buffer_NodeID to ensure their high bytes are 0

   CLR.W      buffer_Type(PktBuff)           ; clear buffer_Type
   CLR.W      buffer_NodeID(PktBuff)         ; clear buffer_NodeID

; clear SourceNetAddr to prepare to build network address

   MOVEQ      #0,SourceNetAddr               ; build the network address in 
   ; SourceNetAddr

; get the hop count
   MOVE.W     toRHA+lapHdSz+ddpLength(MPPLocals),HopCount ; Get hop/length field
   ANDI.W     #DDPHopsMask,HopCount          ; Mask off the hop count bits
   LSR.W      #2,HopCount                    ; shift hop count into low bits of high byte 
   LSR.W      #8,HopCount                    ; shift hop count into low byte
   MOVE.W     HopCount,buffer_Hops(PktBuff)  ; and move it into the PacketBuffer

; get the packet length (including the DDP header)
   MOVE.W     toRHA+lapHdSz+ddpLength(MPPLocals),DatagramLength ; Get length field
   ANDI.W     #ddpLenMask,DatagramLength     ; Mask off the hop count bits

Developer Support Center January 1993



Macintosh Technical Notes

; now, find out if the DDP header is long or short

   MOVE.B     toRHA+lapType(MPPLocals),D3    ; Get LAP type
   CMPI.B     #shortDDP,D3                   ; is this a long or short DDP header?
   BEQ.S      IsShortHdr                     ; skip if short DDP header

; it's a long DDP header

   MOVE.B     toRHA+lapHdSz+ddpType(MPPLocals),buffer_Type+1(PktBuff) ; get DDP 
       ; type

   MOVE.B     toRHA+lapHdSz+ddpDstNode(MPPLocals),buffer_NodeID+1(PktBuff) 
                                             ; get destination node from LAP header

   MOVE.L     toRHA+lapHdSz+ddpSrcNet(MPPLocals),SourceNetAddr 
                                             ; source network in hi word
                                             ; source node in lo byte
   LSL.W      #8,SourceNetAddr               ; shift source node up to high byte of 

   ; low word
                                             ; get source socket from DDP header
   MOVE.B     toRHA+lapHdSz+ddpSrcSkt(MPPLocals),SourceNetAddr 

   SUB.W      #ddpType+1,DatagramLength      ; DatagramLength = number of bytes in 
   ; datagram

   BRA.S      MoveToBuffer

; checksum time…
   TST.W      toRHA+lapHdSz+ddpChecksum(MPPLocals) ;Does packet have checksum?
   BEQ.S      noChecksum

; Calculate checksum over DDP header
   MOVE.L     DatagramLength,-(SP)           ; save DatagramLength (D1)

   CLR        D3                             ; set checksum to zero
   MOVEQ      #ddphSzLong-ddpDstNet,D1       ; D1 = length of header part to 

   ; checksum
                                             ; pointer to dest network number in 

   ; DDP header
   LEA        toRHA+lapHdSz+ddpDstNet(MPPLocals),A1 
   JSR        SL_DoChksum                    ; checksum of DDP header part 
                                             ; (D3 holds accumulated checksum)

; Calculate checksum over data portion (if any)

   MOVE.L     buffer_Data(PktBuff),A1        ; pointer to datagram
   MOVE.L     (SP)+,DatagramLength           ; restore DatagramLength (D1)
   MOVE.L     DatagramLength,-(SP)           ; save DatagramLength (D1) 
                                             ;  before calling SL_DoChksum
   BEQ.S      TestChecksum                   ; don't checksum datagram if its

   ; length = 0
   JSR        SL_DoChksum                    ; checksum of DDP datagram part 
                                             ; (D3 holds accumulated checksum)

TestChecksum:
   MOVE.L     (SP)+,DatagramLength           ; restore DatagramLength (D1)

; Now make sure the checksum is OK.

   TST.W      D3                             ; is the calculated value zero?
   BNE.S      NotZero                        ; no -- go and use it
   SUBQ.W     #1,D3                          ; it is 0; make it -1

Developer Support Center January 1993



Macintosh Technical Notes

NotZero:
   CMP.W      toRHA+lapHdSz+ddpChecksum(MPPLocals),D3
   BNE.S      ChecksumErr                    ; Bad checksum
   MOVE.W     #0,buffer_CheckSum(A0)         ; no errors
   BRA.S      noChecksum
ChecksumErr:
   MOVE.W     #ckSumErr,buffer_CheckSum(PktBuff) ; checksum error

noChecksum:
   BRA.S      MoveToBuffer

; it's a short DDP header

IsShortHdr:
   MOVE.B     toRHA+lapHdSz+sddpType(MPPLocals),buffer_Type+1(PktBuff) ; get DDP 

; type
   MOVE.B     toRHA+lapDstAdr(MPPLocals),buffer_NodeID+1(PktBuff) 
                                              ; get destination node from LAP 

    ; header
   MOVE.B     toRHA+lapSrcAdr(MPPLocals),SourceNetAddr ; get source node from LAP 

      ; header
   LSL.W      #8,SourceNetAddr                ; shift src node up to high byte of 

    ; low word
   MOVE.B     toRHA+lapHdSz+sddpSrcSkt(MPPLocals),SourceNetAddr 
                                              ; get source socket from short DDP 

    ; header
   SUB.W      #sddpType+1,DatagramLength      ; DatagramLength = number of bytes in 

    ; datagram

MoveToBuffer:
   MOVE.L     SourceNetAddr,buffer_Address(PktBuff) 
                                              ;move source network address into 

    ; PacketBuffer
   MOVE.W     DatagramLength,buffer_ActCount(PktBuff) 
                                              ; move datagram length into 

    ; PacketBuffer

; Now that we're done with the PacketBuffer, enqueue it into the usedQ and get
; another buffer from the freeQ for the next packet.

   LEA        used_queue,A1                   ; A1 = ^used_queue
   MOVE.L     (A1),A1                         ; A1 = used_queue (pointer to usedQ)
   _Enqueue                                   ; put the PacketBuffer in the usedQ

GetNextBuffer:
   LEA        free_queue,A1                   ; A1 = ^free_queue
   MOVE.L     (A1),A1                         ; A1 = free_queue (pointer to freeQ)
   LEA        current_qelem, A0               ; copy freeQ.qHead into current_qelem
   MOVE.L     qHead(A1),(A0)
   MOVEA.L    qHead(A1),A0                    ; A0 = freeQ.qHead
   _Dequeue

RcvRTS:
   RTS                                        ; return to caller
   ENDP

;_________________________________________________________________________
; Function SL_InitSktListener(freeQ, usedQ: QHdrPtr): OSErr
;
;

Developer Support Center January 1993



Macintosh Technical Notes

SL_InitSktListener PROC EXPORT

StackFrame     RECORD    {A6Link},DECR     ; build a stack frame record
Result1        DS.W      1                 ; function's result returned to caller
ParamBegin     EQU       *                 ; start parameters after this point
freeQ          DS.L      1                 ; freeQ parameter
usedQ          DS.L      1                 ; usedQ parameter
ParamSize      EQU       ParamBegin-*      ; size of all the passed parameters
RetAddr        DS.L      1                 ; placeholder for return address
A6Link         DS.L      1                 ; placeholder for A6 link
LocalSize      EQU       *                 ; size of all the local variables
              ENDR

   WITH       StackFrame,QHdr             ; use these record types

   LINK       A6,#LocalSize               ; allocate our local stack frame

; copy the queue header pointers into our local storage for use in the listener

   LEA        used_queue,A0               ; copy usedQ into used_queue
   MOVE.L     usedQ(A6),(A0)

   LEA        free_queue,A0               ; copy freeQ into free_queue
   MOVE.L     freeQ(A6),(A0)

; dequeue the first buffer record from freeQ and set current_qelem to it

   MOVEA.L    freeQ(A6),A1                ; A1 = ^freeQ
   LEA        current_qelem, A0           ; copy freeQ.qHead into current_qelem
   MOVE.L     qHead(A1),(A0)
   MOVEA.L    qHead(A1),A0                ; A0 = freeQ.qHead
   _Dequeue
   MOVE.W     D0,Result1(A6)              ; Return status

@1  UNLK       A6                          ; destroy the link
   MOVEA.L    (SP)+,A0                    ; pull off the return address
   ADDA.L     #ParamSize,SP               ; strip all of the caller's parameters
   JMP        (A0)                        ; return to the caller
   ENDP

   END                                    ; end of this source file

Initializing the Socket Listener

To initialize the socket listener, define the free and used queue  QHdr variables. You’ll need to define a PacketBuffer structure to match the 
record structure defined in the socket listener code. If you add any new fields, then you need to modify the PacketBuffer structure defined 
in the listener code. In the sample below, an array of 10 PacketBuffers is declared.  Initialize the buffer packets, then queue them into the 
free queue using the _Enqueue trap. Call SL_InitSktListener and pass the addresses of the QHdr variable for the free and used queues. 
The following Pascal code demonstrates this process:

USES MEMTYPES, QUICKDRAW, OSINTF, APPLETALK;

CONST
 ddpMaxData = 586;

Developer Support Center January 1993



Macintosh Technical Notes

TYPE
   PacketBuffer = RECORD
       qLink: QElemPtr;
       qType: Integer;
       buffer_Type: Integer;
       buffer_NodeID: Integer;
       buffer_Address: AddrBlock;
       buffer_Hops: Integer;
       buffer_ActCount: Integer;
       buffer_CheckSum: OSErr;
       buffer_Data: ARRAY[1..ddpMaxData] OF SignedByte;
   END;

VAR
   freeQ, usedQ: QHdr;
   Buffers: ARRAY[1..10] OF PacketBuffer;

PROCEDURE SL_TheListener;
External;

FUNCTION SL_InitSktListener (freeQ, usedQ: QHdrPtr): OSErr;
External;

PROCEDURE SetUpSocketListener;
   VAR
       err: OSErr;
       i: Integer;

   BEGIN
       freeQ.QHead := NIL;                  { initialize to nil to indicate empty 

    queue }
       freeQ.QTail := NIL;                  { initialize to nil to indicate end of 

    queue }

       usedQ.QHead := NIL;                  { initialize to nil to indicate empty 
    queue }

       usedQ.QTail := NIL;                  { initialize to nil to indicate end of 
    queue }

       FOR i := 1 TO 10 DO
           Enqueue(@Buffers[i], @freeQ);

       err := SL_InitSktListener(@freeQ, @usedQ);
       IF err <> noErr THEN
           BEGIN
               { Perform error processing here }
           END;
   END;

For C programmers, the initialization code is as follows:

#include    <types.h>
#include    <appletalk.h>
#include    <OSUtils.h>
#include    <stdio.h>

#define ddpMaxData   586

Developer Support Center January 1993



Macintosh Technical Notes

typedef struct {
   QElemPtr    qLink;
   short       qType;
   short       buffer_type;        /* DDP Type */
   short       buffer_NodeID;      /* Destination Node */
   AddrBlock   buffer_Address;     /* Source Address in AddrBlock format */
   short       buffer_Hops;        /* Hop count */
   short       buffer_ActCount;    /* length of DDP datagram */
   OSErr       buffer_CheckSum;    /* Checksum returned here */
   char        buffer_Data[ddpMaxData]; /* the DDP datagram */
} PacketBuffer;

QHdr          freeQ, usedQ;
PacketBuffer  buffers[10];

extern void SL_THELISTENER();

extern pascal OSErr SL_INITSKTLISTENER (freeQ, usedQ: QHdrPtr): OSErr;

void SetUpSocketListener()
{
   OSErr  err;
   short  i;

   freeQ.QHead = nil;              /* initialize to nil to indicate empty queue */
   freeQ.QTail = nil;              /* initialize to nil to indicate end of queue */

   usedQ.QHead = nil;              /* initialize to nil to indicate empty queue */
   usedQ.QTail = nil;              /* initialize to nil to indicate end of queue */

   for (i = 0; i < 10; i++)
       Enqueue((QElemPtr)&buffers[i], &freeQ);

   err = SL_INITSKTLISTENER (&freeQ, &usedQ);
   if (err != noErr) {
       /* perform error processing here */
   }
}

Using the Socket Listener

The  socket  listener  is  set  in  use  with  the  POpenSkt function,  or  with  the  more  specific  POpenATPSkt function.  The  program then 
periodically checks the usedQ.QHead value to determine whether the socket listener has processed a packet. If so, the packet is processed,  
Dequeued from the used queue, and  Enqueued into the free queue. It’s also possible for the same socket listener to be used by separate  
processes in the program. If so, the program must scan the list for the desired packet(s). Note that if multiple packets are expected, it is possible  
that the program may process the first packet before the listener processes the second packet. The program needs to be designed to check the  
usedQ.QHead value later for the additional packets.

TYPE
   PacketBuffer = RECORD
       qLink: QElemPtr;
       qType: Integer;
       buffer_Type: Integer;
       buffer_NodeID: Integer;
       buffer_Address: AddrBlock;

Developer Support Center January 1993



Macintosh Technical Notes

       buffer_Hops: Integer;
       buffer_ActCount: Integer;
       buffer_CheckSum: OSErr;
       buffer_Data: ARRAY[1..ddpMaxData] OF SignedByte;
   END;

   PacketPtr = ^PacketBuffer;

VAR
   freeQ, usedQ: QHdr;
   bufPtr : PacketPtr;
   .
   .
   .

   WHILE (usedQ.QHead <> nil) DO             { check if packet available for 
     processing }

       BEGIN
           bufPtr := PacketPtr(usedQ.QHead);  { get the packet ptr }
           IF (Dequeue(QElemPtr(bufPtr), @usedQ) <> noErr) THEN
               BEGIN

                { Process the packet information }

                Enqueue(QElemPtr(bufPtr), @freeQ); { requeue the packet buffer for 
    use. }

               END
           ELSE
               BEGIN
                   { error occurred dequeueing packet - perform error processing 

 here }
               END;
       END;

For C Programmers, the  socket listener code is used as follows:

typedef struct {
   QElemPtr    qLink;
   short       qType;
   short       buffer_type;        /* DDP Type */
   short       buffer_NodeID;      /* Destination Node */
   AddrBlock   buffer_Address;     /* Source Address in AddrBlock format */
   short       buffer_Hops;        /* Hop count */
   short       buffer_ActCount;    /* length of DDP datagram */
   OSErr       buffer_CheckSum;    /* Checksum returned here */
   char        buffer_Data[ddpMaxData]; /* the DDP datagram */
} PacketBuffer;

typedef PacketBuffer *PacketPtr;

QHdr       freeQ, usedQ;
PacketPtr  bufPtr;
   .
   .
   .

   while (usedQ.QHead != nil) {               /* check if packet available for 
       processing */

       bufPtr = (PacketPtr)usedQ.QHead;       /* get the packet ptr */
       if (Dequeue(QElemPtr(bufPtr), &usedQ) == noErr {

           { Process the packet information }

Developer Support Center January 1993



Macintosh Technical Notes

           Enqueue(QElemPtr(bufPtr), &freeQ);  /* requeue the packet buffer for 
        use. */

       }
       else {

           /* error occurred dequeueing packet - perform error processing here */
       }
   }

The AppleTalk Transition Queue

The AppleTalk Transition Queue keeps  applications  and other  resident  processes  on the 
Macintosh informed of AppleTalk events,  such as the opening and closing of AppleTalk 
drivers,  or  changes  to  the  Flagship  name  (to  be  discussed  later  in  this  Note).  A 
comprehensive  discussion  of  the  AppleTalk  Transition  Queue  is  presented  in  Inside 
Macintosh Volume VI, Chapter 32. New to the AppleTalk Transition Queue are messages 
regarding the Flagship Naming Service, the AppleTalk Multiple Node Architecture (also to 
be discussed later in this Note), changes to processor speed that may affect LocalTalk timers, 
and a transition to indicate change of the network cable range. 

Later  in  this  section is  a  sample Transition Queue procedure in  both C and Pascal  that  
includes the known transition selectors. There is also a sample Pascal source for determining 
whether the LAP Manager version 53 or later exists. Calling  LAPAddATQ for AppleTalk 
versions  52  and  earlier  will  result  in  a  system  crash  since  the  LAP Manager  is  not 
implemented  prior  to  AppleTalk  version  53.  The  Boolean  function,  LAPMgrExists, 
should be used instead of checking the low-memory global LAPMgrPtr, $0B18.

Bug With LAPAddATQ and LAPRmvATQ Glue Code

A bug exists in the glue code for the LAPAddATQ and for the LAPRmvATQ routines in the Interface.o file. The same glue code 
is used with the Think C version 5.0.x product and will affect those users as well. 

In the glue code, these calls use the Pascal stack calling convention by allocating memory on the stack for the OSErr result. The  
ATQEntryPtr is then pushed onto the stack and the LAP Manager is called. Upon return from a JSR instruction to the LAP 
Manager code, the return address is placed in register A0 and the stack incremented. The glue code should then move the 2-byte  
result onto the stack into the location reserved for the result. Instead, the glue code decrements the stack pointer by 2 bytes before  
moving the result onto the stack. The glue code jumps to the return address in register A0. Upon return, the stack is off by 2 bytes.  
If local variables are used and are referenced from the stack pointer in register A7, following the return from these LAP Manager 
calls, access to the local variables may not be correct. 

The following Assembler glue code is supplied for MPW users to assemble and link with their programs. For the remainder of this 
Tech Note, the call LAPAddATQFix and LAPRmvATQFix will be used instead and refer to the following code. For Think C  
programmers,  the  same functions  are  presented using in-line  Assembler.  For  Think Pascal  programmers,  one  solution is  to 
compile the Think C code and to link with the resulting Library file.

Developer Support Center January 1993



Macintosh Technical Notes

;_________________________________________________________________________
;
; ATQFix.a
;_________________________________________________________________________
;
; DTS Code Sample
;
; ©1992 Apple Computer, Inc.
;
; Replacement code for LAPAddATQ and LAPRmvATQ in which 
; the glue code in Interface.o does not restore the stack to
; its original condition.  Use the following code as opposed
; to that in the Interface.o file.
;
;_________________________________________________________________________

;
; interface
; pascal OSErr LAPAddATQFix(ATQEntryPtr theATQEntry);
; pascal OSErr LAPRmvATQFix(ATQEntryPtr theATQEntry);

LAPAddATQFix   PROC   EXPORT

          MOVE.W     #$0017,D0       ; D0 selector $0017 = LAPAddATQ
          MOVEA.L    $0004(A7),A0    ; A0 -> ATQ Proc
          MOVEA.L    $0B18,A1        ; Set up to call LAP Manager
          MOVE.L     (A7)+,(A7)      ; Move return address up 4 bytes
          JSR        $0002(A1)       ; call LAP Manager
          MOVEA.L    (A7)+,A0        ; Move return address into A0
          MOVE.W     D0,(A7)         ; Move result into space reserved on stack
          JMP        (A0)            ; Return

          ENDP

LAPRmvATQFix   PROC   EXPORT

          MOVE.W     #$0018,D0       ; D0 selector $0018 = LAPRmvATQ
          MOVEA.L    $0004(A7),A0    ; A0 -> ATQ Proc
          MOVEA.L    $0B18,A1        ; Set up to call LAP Manager
          MOVE.L     (A7)+,(A7)      ; Move return address up 4 bytes
          JSR        $0002(A1)       ; call LAP Manager
          MOVEA.L    (A7)+,A0        ; Move return address into A0
          MOVE.W     D0,(A7)         ; Move result into space reserved on stack
          JMP        (A0)            ; Return

          ENDP

          END

;_________________________________________________________________________
; End File: ATQFix.a
;_________________________________________________________________________

For Think C programmers, the following code sample can be used. Think Pascal programmers can link with the library file produced by  
compiling this code with the Think C compiler.

/*
*_________________________________________________________________________
* File: ATQFix.c
*_________________________________________________________________________
*
* DTS Code Sample

Developer Support Center January 1993



Macintosh Technical Notes

*
* ©1992 Apple Computer, Inc.
*
* Replacement code for LAPAddATQ and LAPRmvATQ for Think C programmers 
* to fix the glue code to fix a bug in the Think C library supplied via 
* the MPW Interface.o file.  The glue code does not restore the stack to
* its original condition.  Use the following code as opposed
* to that in the Think C library instead.
*
*_________________________________________________________________________
*/

#ifndef __TYPES__
#include <Types.h>
#endif

#define LAPAddATQCall    0x17
#define LAPRmvATQCall    0x18
#define LAPMgrPtr        0xB18
#define LAPMgrCall       2

/**********  Prototypes ****************************/
pascal OSErr LAPAddATQFix(ATQEntryPtr theATQEntry);
pascal OSErr LAPRmvATQFix(ATQEntryPtr theATQEntry);

pascal OSErr LAPAddATQFix(ATQEntryPtr theATQEntry)
{
       asm {
           MOVE.W     #LAPAddATQCall,D0          /* D0 selector $0017 = LAPAddATQ 

   */
           MOVEA.L    theATQEntry,A0             /* A0 -> ATQ Proc */
           MOVEA.L    LAPMgrPtr,A1               /* Set up to call LAP Manager */
           JSR        LAPMgrCall(A1)             /* call LAP Manager */
           MOVE.W     D0,12(A6)                  /* move result in D0 onto the 

          stack */
       }
}

pascal OSErr LAPRmvATQFix(ATQEntryPtr theATQEntry)
{
       asm {
           MOVE.W     #LAPRmvATQCall,D0          /* D0 selector $0018 = LAPRmvATQ 

   */
           MOVEA.L    theATQEntry,A0             /* A0 -> ATQ Proc */
           MOVEA.L    LAPMgrPtr,A1               /* Set up to call LAP Manager */
           JSR        LAPMgrCall(A1)             /* call LAP Manager */
           MOVE.W     D0,12(A6)                  /* move result in D0 onto the 

          stack */
       }
}

/*
*_________________________________________________________________________
* End file: ATQFix.c
*_________________________________________________________________________
*/

Calling the AppleTalk Transition Queue

System software version 7.0 requires the use of the MPW version 3.2 interface files and libraries. The AppleTalk interface presents two new  
routines for calling all processes in the 

Developer Support Center January 1993



Macintosh Technical Notes

AppleTalk Transition Queue. Rather than use parameter block control calls as described in M.NW.AppleTalk2Mac, use the ATEvent procedure  
or the ATPreFlightEvent function to send transition notification to all queue elements. These procedures are discussed in  Inside Macintosh 
Volume VI, Chapter 32.

Note: You can call the ATEvent and ATPreFlightEvent routines only at virtual memory safe time. See the Memory Management  
chapter of Inside Macintosh Volume VI, Chapter 28, for information on virtual memory.

Standard AppleTalk Transition Constants

Use the following constants for the standard AppleTalk transitions:

CONST ATTransOpen = 0;     {open transition }
ATTransClose = 2;     {prepare-to-close transition }
ATTransClosePrep = 3;     {permission-to-close transition }
ATTransCancelClose = 4;     {cancel-close transition }
ATTransNetworkTransition= 5;     {.MPP Network ADEV Transition }
ATTransNameChangeTellTask = 6;     {change-Flagship-name transition }
ATTransNameChangeAskTask= 7;     {permission-to-change-Flagship-name 

transition }
ATTransCancelNameChange = 8;     {cancel-change-Flagship-name transition }
ATTransCableChange = 'rnge' {cable range change transition }
ATTransSpeedChange = 'sped' {change in cpu speed }

The following information concerns the new transitions from ATTransNetworkTransition through ATTransSpeedChange.

The Flagship Naming Service

System software version 7.0 allows the user to enter  a  personalized name by which her system will  be published when connected to an 
AppleTalk network. The System 'STR ' resource ID –16413 is used to hold this name. The name (listed as Macintosh Name) can be up to 31  
characters in length and can be set using the Sharing Setup Control Panel Device (cdev). This resource is different from the Chooser name, 
System 'STR ' resource ID –16096. When providing network services for a workstation, the Flagship name should be used so that the user can  
personalize his workstation name while maintaining the use of the Chooser name for server connection identification. It’s important to note that  
the Flagship name resource is available only from system software version 7.0.  DTS recommends that applications not change either of 
these 'STR ' resources.

Applications taking advantage of this feature should place an entry in the AppleTalk Transition Queue to stay informed as to changes to this  
name. Three new transitions have been defined to communicate Flagship name changes between applications and other resident processes.  
Support for the Flagship Naming Service Transitions is provided starting from AppleTalk version 56. Note that AppleTalk version 56 can be  
installed on pre-7.0 systems; however, the Flagship Naming Service is available only from system software 7.0 and later.

The ATTransNameChangeAskTask Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent            RECORD   0
ReturnAddr          DS.L     1      ; address of caller

Developer Support Center January 1993



Macintosh Technical Notes

theEvent            DS.L     1      ; = 7; ID of ATTransNameChangeAskTask transaction
aqe                 DS.L     1      ; pointer to task record
infoPtr             DS.L     1      ; pointer to NameChangeInfo parameter block
                   ENDR

The NameChangeInfo record block is as follows

NameChangeInfoPtr: ^NameChangeInfo;
NameChangeInfo  = RECORD
                   newObjStr:      Str32;         {new Flagship name to change to }
                   name:           StringPtr;     {ptr to location to place ptr to 

  process }
                                                  {name }
                 END;

The ATTransChangeNameAskTask is issued under system software version 7.0 to inform Flagship clients that a process wants to change  
the  Flagship  name.  Each  AppleTalk  Transition  Queue  element  that  processes  the  ATTransChangeNameAskTask can  inspect  the 
NameChangeInfoPtr^.newObjStr to  determine  the  new  Flagship  name.  If  you  deny  the  request,  you  must  set  the 
NameChangeInfoPtr^.name pointer with a pointer to a Pascal string buffer containing the name of your application or to the nil pointer. 
The AppleTalk Transition Queue process returns this pointer. The requesting application can display a dialog notifying the user of the name of  
the application that refused the change request.

While processing this event, you can make synchronous calls to the Name-Binding Protocol (NBP) to attempt to register your entity under the  
new name. It is recommended that you register an entity using the new Flagship name while handling the ATTransChangeNameAskTask 
event. You should not deregister an older entity at this point. Your routine must return a function result of 0 in the D0 register, indicating that it  
accepts the request to change the Flagship name, or a nonzero value, indicating that it denies the request.

Warning: DTS does not recommend that you change the Flagship name. The Sharing Setup cdev does not handle this event  
and the Macintosh name will not be updated to reflect this change if the cdev is open.

The ATTransNameChangeTellTask Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0
ReturnAddr DS.L 1 ; address of caller
theEvent DS.L 1 ; = 6; ID of ATTransNameChangeTellTask transaction
aqe DS.L 1 ; pointer to task record
infoPtr DS.L 1 ; pointer to the new Flagship name

ENDR

A process uses ATEvent to send the ATTransNameChangeTellTask to notify AppleTalk Transition Queue clients that the 
Flagship name is being changed. The LAP Manager then calls every routine in the AppleTalk Transition Queue that the Flagship  
name is being changed.

When the AppleTalk Manager calls your routine with a  ATTransNameChangeTellTask transition, the third item on the 
stack is a pointer to a Pascal string of the new Flagship name to 

Developer Support Center January 1993



Macintosh Technical Notes

be registered. Your process should deregister any entities under the old Flagship name at this time. You can make synchronous  
calls to NBP to deregister an entity. Return a result of 0 in the D0 register.

Note: When the AppleTalk Manager calls your process with a TellTask transition (that is, with a routine selector of 
ATTransNameChangeTellTask), you cannot prevent the Flagship name from being changed.

To send notification that your process intends to change the Flagship name, use the ATEvent function described above. Pass  
ATTransNameChangeTellTask as the event parameter and a pointer to the new Flagship name (Pascal string) as the infoPtr  
parameter.

The ATTransCancelNameChange Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0
ReturnAddr DS.L 1 ; address of caller
theEvent DS.L 1 ; = 8; ID of ATTransCancelNameChange transaction
aqe DS.L 1 ; pointer to task record

ENDR

The ATTransCancelNameChange transition complements the ATTransNameChangeAskTask transition. Processes that 
acknowledged an ATTransNameChangeAskTask transition will be sent the ATTransCancelNameChange transition if a 
later process disallows the change of Flagship name. Your process should deregister any NBP entities registered during the  
ATTransNameChangeAskTask transition. You can make synchronous calls to NBP to deregister an entity. Return a result of 
0 in the D0 register.

System 7.0 Sharing Setup cdev / Flagship Naming Service Interaction

The Flagship Naming Service is a new system service built into System 7. It is used to publish the workstation using the Flagship  
name. The Flagship Naming Service implements an AppleTalk Transition Queue element to respond to changes in the Flagship 
name. For example, the Sharing Setup cdev can be used to reset the Flagship name. When a new Macintosh (Flagship) name is  
entered in Sharing Setup, Sharing Setup sends an ATTransNameChangeAskTask message to the AppleTalk Transition Queue 
to  request  permission  to  change  the  Flagship  name.  The  Flagship  Naming  Service  receives  the 
ATTransNameChangeAskTask transition and registers the new name under the type “Workstation” on the local network. 
Sharing Setup follows with the ATTransNameChangeTellTask to notify AppleTalk Transition Queue clients that a change 
in Flagship name will occur. The Flagship Naming Service responds by deregistering the workstation under the old Flagship  
name.

If  an  error  occurs  from the  NBPRegister  call,  Flagship  Naming  Service  returns  a  nonzero  error  (the  error  returned  from  
NBPRegister) and a pointer to its name in the  NameChangeInfoPtr^.Name field. Note that the Workstation name is still 
registered under the previous Flagship name at this point.

Developer Support Center January 1993



Macintosh Technical Notes

AppleTalk Remote Access Network Transition Event

AppleTalk Remote Access allows you to establish an AppleTalk connection between two 
Macintosh computers over standard telephone lines. If the Macintosh you dial-in to is on an 
AppleTalk network, such as LocalTalk or Ethernet, your Macintosh becomes, effectively, a 
node on that network. You are then able to use all the services on the new network. Given 
this new capability, it is important that services running on your Macintosh be notified when 
new  AppleTalk  connections  are  established  and  broken.  For  this  reason,  the 
ATTransNetworkTransition event has been added to AppleTalk version 57. With version 57 
present, this event can be expected in system software version 6.0.5 or later.

Internally,  both  the  AppleTalk  Session  Protocol  (ASP)  and  the  AppleTalk  Data  Stream 
Protocol (ADSP) have been modified to respond to this transition event. When a disconnect  
transition event is  detected, these drivers close down sessions on the remote side of the  
connection.

The ATTransNetworkTransition Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0
ReturnAddr DS.L 1 ; address of caller
theEvent DS.L 1 ; = 5; ID of ATTransNetworkTransition
aqe DS.L 1 ; pointer to task record
infoPtr DS.L 1 ; pointer to the TNetworkTransition record

ENDR

The TNetworkTransition record block is passed as follows:

TNetworkTransition RECORD 0
private DS.L 1 ; pointer used internally by AppleTalk   

  Remote Access    
netValidProc DS.L 1 ; pointer to the network validate procedure
newConnectivity DS.B 1 ; true = new connectivity, false = loss  
of connectivity

ENDR

Network Transition Event for AppleTalk Remote Access

Network Transition events are generated by AppleTalk Remote Access to inform AppleTalk Transition Queue applications and 
resident  processes  that  network  connectivity  has  changed.  The  type  of  change  is  indicated  by  the 
NetTransPtr^.newConnectivity flag. If this flag is true, a connection to a new internet has taken place. In this case, all  
network addresses  will  be  returned as  reachable.  If  the  newConnectivity flag  is  false,  certain  networks  are  no longer 
reachable. Since AppleTalk Remote Access is connection based, it has knowledge of where a specific network exists. AppleTalk  
Remote Access can take advantage of that knowledge during a disconnect to inform AppleTalk Transition Queue clients that a  
network is no longer reachable. This information can be used by clients to age out connections immediately rather than waiting a  
potentially long period of time before discovering that the other end is no longer responding.

When  AppleTalk  Remote  Access  is  disconnecting,  it  passes  a  network  validation  hook  in  the  TNetworkTransition  record, 
NetTransPtr^.netValidProc. A client can use the 

Developer Support Center January 1993



Macintosh Technical Notes

validation hook to ask AppleTalk Remote Access whether a specific network is still reachable. If the network is still reachable, the 
validate function will return true. A client can then continue to check other networks of interest until the status of each one has  
been determined. After a client has finished checking networks, control returns to AppleTalk Remote Access where the next  
AppleTalk Transition Queue client is called.

The information the network validation hook returns is valid only if a client has just been called as a result of a transition. A client  
can validate networks only when she has been called to handle a Network Transition event. Note that the Network Transition  
event can be called as the result of an interrupt, so a client should obey all of the normal conventions involved with being called at  
this time (for example, don’t make calls that move memory and don’t make synchronous Preferred AppleTalk calls).

To check a network number for validity the client uses the network validate procedure to call AppleTalk Remote Access. This call  
is defined using C calling conventions as follows:

pascal long netValidProc(TNetworkTransition *thetrans, unsigned long theAddress);

thetrans --> Pass in the TNetworkTransition record given to you when 
your transition handler was called.

theAddress --> This is the network address you want checked. The 
format of theAddress is the same as AddrBlock as 

defined in Inside Macintosh II, page 281:

Bytes 2 & 3 (High Word) - Network Number
Byte 1 - Node Number
Byte 0 (Low Byte) - Socket Number

Result codes true network is still reachable
false network is no longer reachable

AppleTalk Transition Queue handlers written in Pascal must implement glue code to use the netValidProc.

Cable Range Change Transition Event

The Cable Range Transition,  ATTransCableChange,  event informs AppleTalk Transition Queue processes that the cable range for the 
current network has changed. This can occur when a router is first seen, when the last router ages out, or when an RTMP broadcast packet is first  
received with a cable range that is different from the current range. The  ATTransCableChange event is implemented beginning with 
AppleTalk version 57. Most applications should not need to process this event. With version 57 present, this event can be expected in system  
software version 6.0.5 and later.

The ATTransCableChange Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0
ReturnAddr DS.L 1 ; address of caller
theEvent DS.L 1 ; = 'rnge'; ID of ATTransCableChange
aqe DS.L 1 ; pointer to task record

Developer Support Center January 1993



Macintosh Technical Notes

infoPtr DS.L 1 ; pointer to the TNetworkTransition record
ENDR

The TNewCRTrans record block is passed as follows:

TNewCRTrans RECORD 0
newCableLo DS.W 1 ; the new Cable Lo received from RTMP
newCableHi DS.W 1 ; the new Cable Hi received from RTMP

ENDR

The cable range is a range of network numbers starting from the lowest network number through the highest network number 
defined by a seed router for a network. All node addresses acquired on a network must have a network number within the defined  
cable range. For nonextended networks, the lowest and the highest network numbers are the same. If the cable range on the 
network changes, for example, if the router on the network goes down, the Cable Range Change event will be issued with the  
parameters described earlier in this Technical Note.

After receiving the event, a multinode application should use the new cable range to check if all the multinodes it obtained prior  
to the event are still valid. For the invalid multinodes, the application should issue the .MPP RemoveNode control call to get rid 
of invalid nodes. The .MPP AddNode control call can be issued immediately after removing invalid nodes to obtain new valid  
multinodes in the new cable range. This Cable Range Change Transition event will be issued only during system task time.

The Speed Change Transition Event

The ATTransSpeedChange Transition event is defined for applications that change CPU speed without rebooting, to notify 
time-dependent processes that such change has taken place. Such speed change occurs when altering the cache states on the  
68030 or 68040 CPUs, or with third- party accelerator cards that allow speed changes on the fly via a cdev. Any process that alters 
the effective CPU speed should use the ATEvent to notify processes of this change. Issue the ATTransSpeedChange event 
only at  SystemTask time! Any process that depends on changes to the CPU speed should watch for this event. The Speed  
Change Transition event is issued only during system task time.

One time-dependent code module is LocalTalk, whose low-level timer values must be recalculated when the CPU speed changes. 
Note that altering the cache state on the 68030 does not affect LocalTalk; however doing so on the 68040 does affect LocalTalk 
timers. This event must be sent by any application that toggles caching on the 68040 processor on the fly. If the cache is toggled  
and LocalTalk is not notified, a loss of network connection will result if LocalTalk is the current network connection. Note that  
only LocalTalk implemented in AppleTalk version 57 or later recognizes the Speed Change Transition event. Contact Apple 
Software Licensing for licensing AppleTalk version 57.

Regarding LocalTalk on the Macintosh Plus, the timing values are hard-coded in ROM regardless of the CPU speed. Vendors of  
accelerators for Macintosh Plus computers should contact DTS for information on how to make LocalTalk work for you.

The ATTransSpeedChange Transition

From Assembly language, the stack upon calling looks as follows:

Developer Support Center January 1993



Macintosh Technical Notes

ATQEvent RECORD 0
ReturnAddr DS.L 1 ; address of caller
theEvent DS.L 1 ; = 'sped'; ID of ATTransSpeedChange
aqe DS.L 1 ; pointer to task record

ENDR

To  notify  LocalTalk  that  a  change  in  processor  speed  has  taken  place,  use  the  ATEvent procedure.  Pass 
ATTransSpeedChange as the event parameter and a nil pointer as the infoPtr parameter. This event must be issued 
only at system task time. The ATEvent procedure is implemented as a glue routine in MPW 3.2 or greater. The following line of 
code demonstrates notification of the ATTransSpeedChange event.

    ATEvent (ATTransSpeedChange, nil);

Sample Pascal Source to LAPMgrExists Function

It is important to check whether the LAP Manager exists before making LAP Manager calls like LAPAddATQ. The LAP Manager 
is implemented beginning with AppleTalk version 53. Rather than check the low-memory global LAPMgrPtr, it is preferable to 
check for its existence from a higher level. The following Pascal source demonstrates this technique:

FUNCTION GestaltAvailable: Boolean;
CONST

_Gestalt = $A1AD;
BEGIN

GestaltAvailable := TrapAvailable(_Gestalt);
{ TrapAvailable is documented in Inside Macintosh Volume VI, page 3-8 }

END;

FUNCTION AppleTalkVersion: Integer;
CONST

versionRequested = 1; { version of SysEnvRec }
VAR

refNum: INTEGER;
world: SysEnvRec;
attrib: LONGINT;

BEGIN
AppleTalkVersion := 0; { default to no AppleTalk }
IF OpenDriver('.MPP', refNum) = noErr THEN { open the AppleTalk driver }

IF GestaltAvailable THEN
BEGIN

IF (Gestalt(gestaltAppleTalkVersion, attrib) = noErr) THEN
AppleTalkVersion := BAND(attrib, $000000FF);

END
ELSE { Gestalt or gestaltAppleTalkVersion selector isn't available. }

IF SysEnvirons(versionRequested, world) = noErr THEN
AppleTalkVersion := world.atDrvrVersNum;

END;

FUNCTION LAPMgrExists: Boolean;
BEGIN

{ AppleTalk phase 2 is in AppleTalk version 53 and later }
LAPMgrExists := (AppleTalkVersion >= 53);

END;

Developer Support Center January 1993



Macintosh Technical Notes

Sample AppleTalk Transition Queue Function

A sample AppleTalk Transition Queue function has been implemented in both C and Pascal. These samples have been submitted as snippet code 
to appear on the Developer CD Series disc. Since Transition Queue handlers are called with a C-style stack frame, the Pascal sample includes  
the necessary C glue.

Sample AppleTalk Transition Queue Function in C

The following is  a  sample AppleTalk Transition Queue handler  for  C programmers.  To place the handler  in the AppleTalk  
Transition Queue, define a structure of type myATQEntry in the main body of the application. Assign the SampleTransQueue 
function to the  myATQEntry.CallAddr field. Use the  LAPAddATQFixed function to add the handler to the AppleTalk 
Transition Queue. Remember to remove the handler with the LAPRmvATQFixed function before quitting the application.

Warning: The System 7 Tuner extension will not load AppleTalk resources if it detects that AppleTalk is off at 
boot time. Remember to check the result from the LAPAddATQFixed function to determine whether 
the handler was installed successfully. 

The following code was written with MPW C v3.2:

/*----------------------------------------------------------------------
 file: TransQueue.h
----------------------------------------------------------------------*/
 
#include <AppleTalk.h>

/*
*  Transition Queue routines are designed with C calling conventions in mind.
*  They are passed parameters with a C-style stack and return values are expected
*  to be in register D0.
*/

#define ATTransOpen 0 /* .MPP just opened */
#define ATTransClose 2 /* .MPP is closing */
#define ATTransClosePrep 3 /* OK for .MPP to close? */
#define ATTransCancelClose 4 /* .MPP close was canceled*/
#define ATTransNetworkTransition 5 /* .MPP Network ADEV transition */
#define ATTransNameChangeTellTask 6 /* Flagship name is changing */
#define ATTransNameChangeAskTask 7 /* OK to change Flagship name */
#define ATTransCancelNameChange 8 /* Flagship name change was canceled */
#define ATTransCableChange 'rnge' /* Cable Range Change has occurred */
#define ATTransSpeedChange 'sped' /* Change in processor speed has occurred 

   */

/*----------------------------------------------------------------------
NBP Name Change Info record

----------------------------------------------------------------------*/
typedef struct NameChangeInfo {

Str32 newObjStr; /* new NBP name */
Ptr name; /* Ptr to location to place a pointer to Pascal string 

   of */
/* name of process that NAK'd the event */

}
NameChangeInfo, *NameChangePtr, **NameChangeHdl;

Developer Support Center January 1993



Macintosh Technical Notes

/*----------------------------------------------------------------------
Network Transition Info Record

----------------------------------------------------------------------*/

typedef struct TNetworkTransition {
Ptr private; /* pointer to private structure */
ProcPtr netValidProc; /* pointer to network validation 

          procedure */
Boolean newConnectivity; /* true = new connection */

/* false = loss of connection */

}
TNetworkTransition , *TNetworkTransitionPtr, **TNetworkTransitionHdl;

typedef pascal long (*NetworkTransitionProcPtr)(TNetworkTransitionPtr netTrans, \
  unsigned long theNet);

/*----------------------------------------------------------------------
Cable Range Transition Info Record

----------------------------------------------------------------------*/
typedef struct TNewCRTrans {

short newCableLo; /* the new Cable Lo received from RTMP */
short newCableHi; /* the new Cable Hi received from RTMP */

}
TNewCRTrans , *TNewCRTransPtr, **TNewCRTransHdl;

/*----------------------------------------------------------------------
AppleTalk Transition Queue Element

----------------------------------------------------------------------*/
typedef struct myATQEntry {

Ptr qLink; /* -> next queue element */
short qType; /* unused */
ProcPtr CallAddr; /* -> transition procedure */
Ptr globs; /* -> to user defined globals */

}
myATQEntry, *myATQEntryPtr, **myATQEntryHdl;

/*----------------------------------------------------------------------
 file: TransQueue.c
----------------------------------------------------------------------*/

#include <Memory.h>
#include <AppleTalk.h>
#include "TransQueue.h"

long SampleTransQueue(long selector, myATQEntry *q, void *p)
{

long returnVal = 0; /* return 0 for unrecognized events */
NameChangePtr myNameChangePtr;
TNewCRTransPtr myTNewCRTransPtr;

 TNetworkTransitionPtr myTNetworkTransitionPtr;
NetworkTransitionProcPtr myNTProcPtr;
StringPtr newNamePtr;
long checkThisNet;
char **t;
short myCableLo, myCableHi;

Developer Support Center January 1993



Macintosh Technical Notes

/*
 * This is the dispatch part of the routine. We'll check the selector passed    

into the task; its location is 4 bytes off the stack (selector).
 */
switch(selector) {

case ATTransOpen:
/*
 *  Someone has opened the .MPP driver. This is where one would 

 * reset the application to its usual network state (that is, 
 * you could register your NBP name here). Always return 0.

 */
break;

case ATTransClose:
/*
 *  When this routine is called, .MPP is going to shut down no 

 *  matter what we do. Handle that type of situation here (that 
 *  is, one could remove an NBP name and close down all  *  

sessions); 'p' will be nil. Return 0 to indicate no error.
 */
break;

case ATTransClosePrep:
/* 
 *  This event gives us the chance to deny the closing of 

 *  AppleTalk if we want. Returning a value of 0 means it's OK 
 *  to close; nonzero indicates we'd rather not close at this  *  

time.
 *
 *  With this event, the parameter 'p' actually means 

 *  something. 'p' in this event is a pointer to an address 
 *  that can hold a pointer to a string of our choosing. This  *  

string indicates to the user which task would rather not  *  close. If you 
don't want AppleTalk to close, but you don't  *  have a name to stick in 
there, you MUST place a nil value  *  in there instead.

 *
 *  (We're doing this all locally to this case because it's C 

 *   and we can, so there.)
 */
newNamePtr = (StringPtr)NewPtr(sizeof(Str32));

/*
 *  Assume Ptr allocation successful.
 */

newNamePtr = "\pBanana Mail"; /* This will either be an 
Ax reference or PC relative depending on compiler and options. */

 
/* 
 *  Get a new reference to the address we were passed (in a 

 *  form we can use). 
 */
t = (char **) p;
/* 
 *  Place the address of our string into the address we were 

 *  passed. 
 */
*t = (char *)newNamePtr;

Developer Support Center January 1993



Macintosh Technical Notes

/* 
 *  Return a nonzero value so that AppleTalk knows we'd rather 

 *  not close.
 */
returnVal = 1;
break; 

case ATTransCancelClose:
/*
 *  Just kidding, we didn't really want to cancel that 

 *  AppleTalk closing after all. Reset all your network 
 *  activities that you have disabled here (if any). In our  *  

case, we'll just fall through. 'p' will be nil. 
    */
break;

case ATTransNetworkTransition:
/*
 *  A Remote AppleTalk connection has been made or broken. 
 *  'p' is a pointer to a TNetworkTransition record.
 *  Always return 0.
 */
myTNetworkTransitionPtr = (TNetworkTransitionPtr)p;
/*
 *  Check newConnectivity element to determine whether
 *  Remote Access is coming up or going down.
 */
if (myTNetworkTransitionPtr->newConnectivity) {

/*
 * Have a new connection
 */

}
else {

/*
 * Determine which network addresses need to be 

 * validated and assign the value to checkThisNet.
   */
checkThisNet = 0x1234FD80;  /* network 0x1234, node 

0xFD, socket 0x80 */
myNTProcPtr = (NetworkTransitionProcPtr)myTNetworkTransitionPtr-

>netValidProc;
if ((*myNTProcPtr)(myTNetworkTransitionPtr, 

checkThisNet)) {
/* 
 * Network is still valid.
 */

}
else {

/* 
 * Network is no longer valid.
 */

}
}
break;

case ATTransNameChangeTellTask:
/*
 *  Someone is changing the Flagship name and there is nothing 

 *  we can do. The parameter 'p' is a pointer to a Pascal-style 
 *  string that holds the new Flagship name. */

newNamePtr = (StringPtr) p;

Developer Support Center January 1993



Macintosh Technical Notes

/*
 *  You should deregister any previously registered NBP entries 

 *  under the 'old' Flagship name. Always return 0.*/
break;

case ATTransNameChangeAskTask:
/*
 *  Someone is messing with the Flagship name. 
 *  With this event, the parameter 'p' actually means 

 *  something. 'p' is a pointer to a NameChangeInfo record. The 
 *  newObjStr field contains the new Flagship name. Try to  *  

register a new entity using the new Flagship name.  *  Returning a 
value of 0 means it's OK to change the Flagship  *  name.

 */
myNameChangePtr = (NameChangePtr)p;

/*
 *  If the NBPRegister is unsuccessful, return the error. You 

 *  must also set p->name pointer with a pointer to a Pascal-
 *  style string of the process name. */

break;

case ATTransCancelNameChange:
/*
 *  Just kidding, we didn't really want to change that name 

 *  after all. Remove new NBP entry registered under the  *  
ATTransNameChangeAskTask Transition. In our case,  we'll  *  just fall 
through. 'p' will be nil. Remember to return 0.     */

break;

case ATTransCableChange:
/*
 *  The cable range for the network has changed. The pointer 

 *  'p' points to a structure with the new network range.  *  
(TNewCRTransPtr)p->newCableLo the lowest value of the new  *  network range. 
(TNewCRTransPtr)p->newCableHi is the highest  *  value of the new network 
range. After handling this event,  *  always return 0. */

myTNewCRTransPtr = (TNewCRTransPtr)p;
myCableLo = myTNewCRTransPtr->newCableLo;
myCableHi = myTNewCRTransPtr->newCableHi;
break;

case ATTransSpeedChange:
/*
 *  The processor speed has changed. Only LocalTalk responds to 

 *  this event. We demonstrate this event for completeness  *  
only. Always return 0. */

break;

default:
/*
 *  For future Transition Queue events (and yes, Virginia, 

 *  there will be more). */
break;

} /* end of switch */

Developer Support Center January 1993



Macintosh Technical Notes

/* 
 * return value in register D0 
 */
return returnVal;

}

Sample AppleTalk Transition Queue Function in Pascal

The following is a sample AppleTalk Transition Queue handler for Pascal programmers. AppleTalk Transition Queue handlers are 
passed parameters using the C parameter passing convention. In addition, the 4-byte function result must be returned in register  
D0. To meet this requirement, a C procedure is used to call the handler, then to place the 4-byte result into register D0. The stub  
procedure listing follows the handler. 

To place the handler in the AppleTalk Transition Queue, define a structure of type  myATQEntry in the main body of the 
application. Assign the CallTransQueue C procedure to the myATQEntry.CallAddr field. Use the LAPAddATQFixed 
function to add the handler to the AppleTalk Transition Queue. Remember to remove the handler with the LAPRmvATQFixed 
function before quitting the application.

Warning: The System 7 Tuner extension will not load AppleTalk resources if it detects that AppleTalk is off at boot 
time. Remember to check the result from the LAPAddATQFixed function to determine whether the 
handler was installed successfully. 

The following code was written with MPW Pascal and C v3.2:

{********************************************************************************
 file: TransQueue.p
********************************************************************************}

UNIT TransQueue;

INTERFACE

USES MemTypes, QuickDraw, OSIntF, AppleTalk;

CONST
(*  Comment the following 4 constants since they are already defined in the AppleTalk unit. 
   ATTransOpen                 =   0;  { .MPP is opening }
   ATTransClose                =   2;  { .MPP is closing }
   ATTransClosePrep            =   3;  { OK for .MPP to close? }
   ATTransCancelClose          =   4;  { .MPP close was canceled }
*)
   ATTransNetworkTransition    =   5;  { .MPP Network ADEV transition }
   ATTransNameChangeTellTask   =   6;  { Flagship name is changing }
   ATTransNameChangeAskTask    =   7;  { OK to change Flagship name }
   ATTransCancelNameChange     =   8;  { Flagship name change was canceled. }
   ATTransCableChange          =   'rnge'; { Cable Range Change has occurred. }
   ATTransSpeedChange          =   'sped'; { Change in processor speed has 

   occurred. }

{----------------------------------------------------------------------
NBP Name Change Info record

----------------------------------------------------------------------}

Developer Support Center January 1993



Macintosh Technical Notes

TYPE

NameChangeInfo = RECORD
newObjStr : Str32; { new NBP name }
name : Ptr; { Ptr to location to place a pointer to 

  Pascal string of }
{ name of process that 

  NAK'd the event }
END;

NameChangePtr = ^NameChangeInfo;
NameChangeHdl = ^NameChangePtr;

{----------------------------------------------------------------------
Network Transition Info Record

----------------------------------------------------------------------}

TNetworkTransition = RECORD
private : Ptr; { pointer to private structure }
netValidProc : ProcPtr; { pointer to network validation procedure }
newConnectivity : Boolean; { true = new connection, }

 { false = loss of connection }
END;

TNetworkTransitionPtr = ^TNetworkTransition;
TNetworkTransitionHdl = ^TNetworkTransitionPtr;

{ The netValidProc procedure has the following C interface. Note the }
{ CallNetValidProc C function, which follows. The C Glue routine allows the Pascal }
{ handler to make the call to the netValidProc function. }

{
typedef pascal long (*NetworkTransitionProcPtr)(TNetworkTransitionPtr netTrans, \

  unsigned long theNet);
}
{----------------------------------------------------------------------

Cable Range Transition Info Record
----------------------------------------------------------------------}
TNewCRTrans = RECORD

newCableLo : INTEGER; { the new Cable Lo received from RTMP }
newCableHi : INTEGER; { the new Cable Hi received from RTMP }
END;

TNewCRTransPtr = ^TNewCRTrans;
TNewCRTransHdl = ^TNewCRTransPtr;
  
{----------------------------------------------------------------------

AppleTalk Transition Queue Element
----------------------------------------------------------------------}
myATQEntry = RECORD

qlink : Ptr; { -> next queue element }
qType : INTEGER; { unused }
CallAddr : ProcPtr; { -> transition procedure }
globs : Ptr; { -> to user defined globals }
END;

myATQEntryPtr = ^myATQEntry;
myATQEntryHdl = ^myATQEntryPtr;

{---------------- Prototypes --------------------}

FUNCTION SampleTransQueue (selector :LONGINT; q :myATQEntryPtr;  p :Ptr) : LONGINT;
{
*  Transition Queue routines are designed with C calling conventions in mind.
*  They are passed parameters with a C-style stack and return values are expected

Developer Support Center January 1993



Macintosh Technical Notes

*  to be in register D0. Note that the CallTransQueue C glue routine is used
*  to reverse the C-style stack to Pascal style before calling the handler. The
*  procedure CallTransQueue follows this listing. To install this Trans Queue
*  handler, assign CallTransQueue to the CallAddr field, NOT SampleTransQueue.
}

FUNCTION CallNetValidProc(p : ProcPtr; netTrans : TNetworkTransitionPtr; 
 theNet : LONGINT) : LONGINT; 

{
*  CallNetValidProc is used to call the netValidProc passed in the 
*  TNetworkTransition record. Since Pascal cannot call the ProcPtr directly, a C 
*  glue routine is used. This routine is defined following this listing.
}

IMPLEMENTATION

FUNCTION SampleTransQueue (selector :LONGINT; q :myATQEntryPtr;  p :Ptr) : LONGINT;

VAR
returnVal : LONGINT;
myNameChgPtr : NameChangePtr;
myTNewCRTransPtr : TNewCRTransPtr;
myTNetworkTransitionPtr : TNetworkTransitionPtr;
newNamePtr : StringPtr;
processNameHdl : StringHandle;
myCableLo, myCableHi : INTEGER;
shortSelector : INTEGER;
checkThisNet

BEGIN
returnVal := 0; { return 0 for unrecognized events )
{
 *  This is the dispatch part of the routine. We'll check the selector passed  *  

into the task; its location is 4 bytes off the stack (selector).
 }
IF ((selector <= ATTransCancelNameChange) AND (selector >= ATTransOpen)) THEN
{
 *  Check whether a numeric selector is being used whose known values are  *  

between 8 and 0 so that we can implement a CASE statement with an INTEGER  *  var.
 }
BEGIN

shortSelector := selector;
CASE shortSelector OF

ATTransOpen:
BEGIN

{
 *  Someone has opened the .MPP driver. This is where 

 *  one would reset the application to its usual 
 *  network state (that is, you could register your NBP 

 *  name here). Always return 0.
 }

END;

Developer Support Center January 1993



Macintosh Technical Notes

ATTransClose:
BEGIN

{
 *  When this routine is called, .MPP is going to shut 

 *  down no matter what we do. Handle that type of 
 *  situation here (that is, one could remove an NBP  *  name 

and close down all sessions). 'p' will be nil.  *  Return 0 to 
indicate no error.

 }
END;

ATTransClosePrep:
BEGIN

{
 *  This event gives us the chance to deny the closing 

 *  of AppleTalk IF we want. Returning a value of 0 
 *  means it's OK to close; nonzero indicates we'd  *  rather 

not close at this time.*
 *  With this event, the parameter 'p' actually means 

 *  something. 'p' in this event is a pointer to an 
 *  address that can hold a pointer to a string of our  *  

choosing. This string indicates to the user which  *  task would 
rather not close. If you don't want  *  AppleTalk to close, but you 
don't have a name to  *  stick in there,  you MUST place a nil 
value in  *  there instead.

 }

{ 
 *  Get a new reference to the address we were passed 

 *  (in a form we can use).
 *  (We're doing this all locally to this case because 

 *  we can, so there.)
 }
processNameHdl := StringHandle(NewHandle(sizeof(Str32))); 

{
 *  Place the address of our string into the address we 

 *  were passed. 
 }
 := 'Banana Mail';
Ptr(p) := Ptr(processNameHdl);

{
 *  Return a nonzero value so that AppleTalk knows we'd 

 *  rather not close.
 }
returnVal := 1;

END;

ATTransCancelClose:
BEGIN

{
 *  Just kidding, we didn't really want to cancel that 

 *  AppleTalk closing after all. Reset all your network 
 *  activities that you have disabled here (IF any). In 

 *  our case, we'll just fall through. 'p' will be nil. 
 }

END;

Developer Support Center January 1993



Macintosh Technical Notes

ATTransNetworkTransition:
BEGIN

{
 *  A Remote AppleTalk connection has been made or 

 *  broken. 'p' is a pointer to a TNetworkTransition  *  
record. Always return 0.

 }
myTNetworkTransitionPtr := TNetworkTransitionPtr(p);
{
 *  Check newConnectivity element to determine whether
 *  Remote Access is coming up or going down.
 }
if (myTNetworkTransitionPtr^.newConnectivity) THEN 
BEGIN

{
 * Have a new connection.
 }

END
ELSE 
BEGIN

{
 * Determine which network addresses need to be 

 *  validated and assign the value to 
 *  checkThisNet.

 }
checkThisNet = $1234FD80;  /* network $1234, 

node $FD, socket $80 */
if 

(CallNetValidProc(myTNetworkTransitionPtr^.netValidProc,
myTNetworkTransitionPtr, 

checkThisNet) <> 0) THEN
BEGIN

{
 * Network is still valid.
 }

END
ELSE
BEGIN

{
 * Network is no longer valid.
 }

END;
END;

END;

ATTransNameChangeTellTask:
BEGIN

{
 *  Someone is changing the Flagship name and there is 

 *  nothing we can do. The parameter 'p' is a pointer 
 *  to a Pascal-style string that holds the new 

 *  Flagship name.
}
newNamePtr := StringPtr (p);

{
 *  You should deregister any previously registered NBP 

 *  entries under the 'old' Flagship name. Always 
 *  return 0.

 }
END;

Developer Support Center January 1993



Macintosh Technical Notes

ATTransNameChangeAskTask:
BEGIN

{ 
 *  Someone is messing with the Flagship name.
 *  With this event, the parameter 'p' actually means 

 *  something. 'p' is a pointer to a NameChangeInfo 
 *  record. The newObjStr field contains the new  *  

Flagship name. Try to register a new entity using  *  the new 
Flagship name. Returning a value of 0 means  *  it's OK to change 
the Flagship name.

 }
myNameChgPtr := NameChangePtr (p);

{  
 *  If the NBPRegister is unsuccessful, return the 

 *  error. You must also set p->name pointer with a  *  
pointer to a string of the process name.

 }
END;

ATTransCancelNameChange:
BEGIN

{
 *  Just kidding, we didn't really want to cancel that 

 *  name change after all. Remove new NBP entry 
 *  registered under the  ATTransNameChangeAskTask  *  

Transition. 'p' will be nil. Remember to return 0. 
 }

END;

OTHERWISE
returnVal := 0;
{
 *  Just in case some other numeric selector is 

 *  implemented.
 }

END; { CASE }
END
ELSE IF (ResType(selector) = ATTransCableChange) THEN
BEGIN

{
 *  The cable range for the network has changed. The pointer 'p'  *  

points to a structure with the new network range.  *  
(TNewCRTransPtr)p->newCableLo is the lowest value of the new  *  network range. 
(TNewCRTransPtr)p->newCableHi is the highest value  * of the new network range. 
After handling this event, always return  *  0.

 }
myTNewCRTransPtr := TNewCRTransPtr(p);
myCableLo := myTNewCRTransPtr^.newCableLo;
myCableHi := myTNewCRTransPtr^.newCableHi;
returnVal := 0;

END
ELSE IF (ResType(selector) = ATTransSpeedChange) THEN
BEGIN

{
 *  The processor speed has changed. Only LocalTalk responds to this 

 *  event. We demonstrate this event for completeness only. Always  *  
return 0. 

 }
 returnVal := 0;

END; { IF }

Developer Support Center January 1993



Macintosh Technical Notes

SampleTransQueue := returnVal;
END;

FUNCTION CallNetValidProc(p : ProcPtr; netTrans : TNetworkTransitionPtr; 
 theNet : LONGINT) : LONGINT; EXTERNAL;

END. { of UNIT }

/********************************************************************************
 file: CGlue.c
********************************************************************************/
#include <AppleTalk.h>

/*----------------------------------------------------------------------
Network Transition Info Record

----------------------------------------------------------------------*/

typedef struct TNetworkTransition {
Ptr private; /* pointer to private structure */
ProcPtr netValidProc; /* pointer to network validation 

   procedure */
Boolean newConnectivity; /* true = new connection, */

/* false = loss of connection */

}
TNetworkTransition , *TNetworkTransitionPtr, **TNetworkTransitionHdl;

typedef pascal long (*NetworkTransitionProcPtr)(TNetworkTransitionPtr netTrans, \
  unsigned long theNet);

/*----------------------------------------------------------------------
AppleTalk Transition Queue Element

----------------------------------------------------------------------*/
typedef struct myATQEntry {

Ptr qLink; /* -> next queue element */
short qType; /* unused */
ProcPtr CallAddr; /* -> transition procedure */
Ptr globs; /* -> to user defined globals */

}
myATQEntry, *myATQEntryPtr, **myATQEntryHdl;

/*----------------------------------------------------------------------
Prototypes

----------------------------------------------------------------------*/
pascal long  SampleTransQueue (long selector, myATQEntry *q, void *p);
long CALLTRANSQUEUE(long selector, myATQEntry *q, void *p);
/* Capitalize CALLTRANSQUEUE so that linker can match this entry with */
/* the Pascal call. */
pascal long CallNetValidProc(ProcPtr p, TNetworkTransitionPtr netTrans, long theNet);

long CALLTRANSQUEUE(long selector, myATQEntry *q, void *p)
/* CallTransQueue sets up the Pascal stack for the SampleTransQueue handler, */
/* then puts the result into D0. */
{

return(SampleTransQueue(selector, q, p));
}

Developer Support Center January 1993



Macintosh Technical Notes

pascal long CallNetValidProc(ProcPtr p, TNetworkTransitionPtr netTrans, long theNet)
/* CallNetValidProc is used to call the netValidProc pointed to by ProcPtr p. */
{

NetworkTransitionProcPtr myNTProcPtr;

myNTProcPtr = (NetworkTransitionProcPtr)p;
return ((*myNTProcPtr)(netTrans, theNet));

}

Multivendor ADEV Architecture

With  the  release  of  AppleTalk  version  56,  Apple  implemented  the  Multivendor  ADEV 
Architecture. Under the original architecture with versions of AppleTalk prior to 56, using 
EtherTalk or TokenTalk on Macintosh II class machines permitted only one brand of NuBus 
card where multiple Ethernet or token ring connections were desired. Furthermore, there was 
no support for a configuration of a NuBus slot device and a “slotless” device, such as a SCSI 
Ethernet connection.

As Ethernet comes built in on next-generation CPUs, this clearly presents a problem for 
customers wishing to mix Ethernet controller brands on the same CPU. The Multivendor 
Architecture  presents  a  common  interface  through  which  basic  AppleTalk  services  are 
provided.  The  new  architecture  simplifies  software  development  whereas  AppleTalk 
engineering provides the ADEV file, and the developer provides the hardware level driver 
software for Ethernet and token ring. By following the new architecture, Ethernet and token 
ring hardware cards will  be compatible as  new services are provided by AppleTalk (for 
example, AppleTalk Remote Access and MacTCP). 

AppleTalk version 56 and later  is  compatible with system software version 6.0.5 unless 
specifically stated otherwise in the release notes. 

Original Limitations

The original product allowed only one type of NuBus Ethernet or token ring controller or 
one  “slotless”  controller.  This  Multivendor  ADEV  Architecture  deals  only  with  the 
restriction of differing NuBus controllers. It does not address the mutual exclusion of slot 
and slotless devices, nor does it address the singularity of slotless devices.

NuBus slot Ethernet or token ring controller hardware is recognized by the original product 
through a series of Slot Manager  SNextTypesRsrc calls. Any NuBus device that is in 
the  network category and has a type classification of  Ethernet /token ring is considered a 
NuBus slot controller device. Whenever such a device is found in a NuBus slot, the user can 
select it  as the current AppleTalk network connection, or it  can be used as a port  in an  
Internet Router configuration.

When the AppleTalk network system uses this connection, an _Open, IMMED trap call is 
made with an ioNamePtr -> “.ENET/.TOKN”, and the ioSlot field set to the slot containing 
the card. Since only one driver resource can be installed in the system with this name, only 

Developer Support Center January 1993



Macintosh Technical Notes

one type of Ethernet or token ring card was supported under the original architecture.

Developer Support Center January 1993



Macintosh Technical Notes

ENET Driver Shell

System  software  version  7.0  and  later  (and  Network  Software  Installers  (NSI)  system 
software version 1.1 and later) is packaged with the .ENET driver shell that will support  
multiple  NuBus  Ethernet  controllers.  The  sole  function  of  this  driver  is  to  locate  the 
appropriate driver resource for the particular device selected, and transfer control to the open 
routine for that driver. It accomplishes this in the following fashion:

• Obtains the Board ID from the board sResource information for the given slot.

• For the driver shell installed using NSI version 1.2.4 or later, the shell searches for 
resources of type 'enet' with the ID equal to the Board ID in the System file and in 
the System ROM, and for a driver in the slot resources in the ROM of the slot 
device.  It  uses  the  word  (2  bytes)  immediately  following  the  DRVR  name  to 
determine which driver is the most recent; higher values are newer versions. If no 
driver is found, an open error is returned.

For  the  driver  shell  installed  prior  to  NSI  version  1.2.4,  the  shell  uses 
_GetResource to obtain a resource of type 'enet' with the ID equal to the Board 
ID from the system file. If the resource is present, proceeds to use it as the driver 
code resource as defined below, otherwise attempts to load the driver from the slot 
resources in the ROM of the slot device. If neither code resource is found, returns 
an open error.

• Detaches the newly loaded resource.

• Modifies the device control entry for the current  _Open call with information 
from the loaded driver code (address to the driver).

• Obtains the address of the open routine from the driver header information.

• JSRs to the open routine of the loaded driver.

• If the open is successful, returns, otherwise recovers the handle for the loaded driver 
and disposes of it.

This  very  simple  technique  allows  developers  to  quickly  repackage  driver  resources  by 
simply changing the resource type and ID.

Built-in Ethernet on newer CPUs makes use of the board sResource list for slot zero, which  
should be present on all CPUs. These systems also have the Ethernet device sResource lists, 
and also have the .ENET driver in the sResources as well.

The Easy Install process supplied on the Network Software Installer version 1.1 and later, 

Developer Support Center January 1993



Macintosh Technical Notes

and  on  the  system software  installers  for  7.0  and  later,  install  the  driver  shell  when  it  
recognizes that an Apple EtherTalk NB or Ethernet NB (or other Ethernet board with Board 
ID 8) is installed in the system. 

Developer Support Center January 1993



Macintosh Technical Notes

.TOKN Driver Shell

The  .TOKN  driver  shell  is  currently  available  from  Apple  Software  Licensing 
(SW.LICENSE)  for  licensing.  The  driver  and  Multivendor  TokenTalk  ADEV are  being 
packaged beginning with system software version 7.0.1 and AppleTalk products that require 
AppleTalk  version  57  or  later.  The  operation  of  the  .TOKN  driver  shell  is  similar  to 
the .ENET driver shell. In place of searching for and loading the 'enet' resource, a 'tokn' 
resource  will  be  used  instead.  The  new driver  will  affect  all  developers  whose  .TOKN 
drivers get replaced by the driver shell.

.TOKN Driver Basics

The following guidelines describe the minimum requirements for developers of token ring 
products for the Macintosh to be compatible with the TokenTalk Phase 2 driver software. 
MacDTS strongly recommends that  all  developers of token ring products implement the 
basic  functionality  described  below.  By  following  these  guidelines,  the  product  will  be 
compatible with AppleTalk Remote Access, MacTCP, and future releases of AppleTalk and 
related products.

The .TOKN driver is similar to the structure of the .ENET driver as described in Appendix 
B,  “Macintosh  Ethernet  Driver  Details”  in  the  Macintosh  AppleTalk  Connections  
Programmer’s  Guide (Final  Draft  2,  November  11,  1989)  and  more  recently  in  Inside 
Macintosh Volume VI, page 32-88. These documents describe the expected functionality of 
the .ENET driver.  The .TOKN driver interface that  you design can be a superset  of the 
functionality discussed here. The following are some additional guidelines and exceptions to 
consider:

• The driver can obtain the slot number from the DCE entry dCtlSlot.

• The driver need only support  EAttach protocol type 0. Return an error on other 
protocol types.

• Implement the add and delete functional address in place of the EAddMulti and 
EDelMulti commands.

• Implement the ESetGeneral call to return a result of noErr.

• Implement  source  routing  support  if  the  driver  is  to  support  the  source  routing 
bridges.

• On EWrite call:

The first buffer in the WDS contains a 802.3 MAC header (6-byte destination 
address + 6-byte source address + 2-byte length field). The 6-byte destination address 

Developer Support Center January 1993



Macintosh Technical Notes

is the only important field to the driver. The source address and the length fields are 
not used for token ring media. The header is 14 bytes in length.

The second buffer in the WDS contains the LLC header and the SNAP header. 
This buffer is 8 bytes in length.

The remainder of the WDS is the user data.

Developer Support Center January 1993



Macintosh Technical Notes

The packet that gets put out on the “wire” will not include the 2-byte length 
field. The packet header will have the 6-byte destination address, followed by the 6-
byte source address, followed by the LLC and SNAP header, and the user data. 

• On Receive:

Define a Read Header Area (RHA) into which to create the 14 byte 802.3 MAC 
header. Read the header into the RHA and set A3 to point to the end of the RHA; place 
the 6-byte destination and source addresses into the first 12 bytes of the RHA. From 
the hardware, get the length of the packet and place it into the last 2 bytes of the RHA. 
This step is necessary as the LAP Manager is designed to handle and Ethernet style 
packet.

Calculate the packet length (LLC header + SNAP header + data).  Place the 
length in register D1.W. Also place the computed length into the length field of the 
802.3 MAC header (this length does not include the source routing and 802.5 fields). 
Place the address of the ReadPacket routine into register A4. Disable the interrupt. 
Call  the  protocol  handler  or  use  DeferUserFn as  described  below.  Enable  the 
interrupt.

As A0 is reserved for use by the driver, it could be used to point to the next byte 
to be read by the driver, for the ReadPacket and ReadRest functions.

• Other Notes:

If the protocol handler calls your ReadRest routine with a buffer too small to hold the 
entire remaining packet, set the Z-bit in the CCR before returning. Clearing the Z-bit 
indicates that the ReadRest routine handled the packet successfully.

Driver Considerations for Virtual Memory

With the release of system software version 7.0 and the virtual memory option, it is critical 
for driver software to protect against the possibility of a double page fault.  Since driver 
software runs at interrupt time, a non-virtual memory compatible packet processing routine 
could cause a page fault while the Macintosh is already processing a page fault. To protect  
against this possibility, the DeferUserFn is provided to allow interrupt service routines to 
defer code, which might cause a page fault, until a safe time. The following guidelines will 
help make your driver code compatible with virtual memory.

• In the Open routine, use Gestalt  to test  for the presence of virtual memory, and 
whether it’s on. If so, set a flag in your dctlstorage that you can reference later.

• If virtual memory is enabled, always use  DeferUserFn to defer the delivery of 
your packet data to your clients. This is necessary to protect against page faults at 

Developer Support Center January 1993



Macintosh Technical Notes

interrupt  time  when  your  client  reads  data  into  her  own  (probably  unlocked) 
memory. In addition, do not touch any memory that is not locked down (in the 
virtual  memory  sense,  not  the  Memory  Manager  sense)  while  processing  your 
interrupts.

• Set the  VMImmuneBit to keep the system from locking down memory (bit 0 at 
offset  dCtlFlags + 1). If the  VMImmuneBit isn’t set, the system locks the user’s parameter block. In 
contrast, the user’s buffers remain unlocked unless locked by the application. As a result, it is necessary to assume 
that the buffers are unlocked, 

Developer Support Center January 1993



Macintosh Technical Notes

and to use DeferUserFn accordingly. Having the system lock the parameter block results in a noticeable performance 
hit. The solution to this problem is to set the VMImmuneBit, and to be careful to “touch” the parameter block only 
when  it  is  “safe”  to  do  so.  One  time  when  it  might  be  “unsafe”  is  in  a  completion  routine.  Therefore,  use  
DeferUserFn .

The VMImmune bit is not currently found in the MPW headers. Add the following line somewhere at the beginning of your driver  
code:

     VMImmuneBit     EQU    0

Somewhere in the beginning of your code, assuming that the driver is now virtual memory-aware, add the following line:

     BSET  #VMImmuneBit,dCtlFlags+1(A1) ; set the bit

Warning: Do not  assume that  DeferUserFn will  always successfully queue your packet-handling routine. 
Check the return result. Under specific situations, the Defer-Function Queue can become full. If the 
return result is cannotDeferErr exit the slot interrupt routine with a result of zero to indicate that 
the interrupt could not be serviced.

Limiting DeferUserFn Calls

Your interrupt service routine can reduce the number of calls to DeferUserFn depending on the Network Interface Controller 
(NIC) being used. With the SONIC and other NICs, incoming packets are queued. An ISR for such a NIC can be designed to  
process not only the packet that generated the interrupt, but also successive packets. As a result, the ISR can be designed to set a  
“deferred function” flag to indicate that the service routine has been queued, then process all packets that it finds in the card’s 
queue. When the service routine has completed, it can then reset the deferred function flag. If the ISR is reentered, it can check  
whether the deferred function flag is set. If so, simply exit with a nonzero result in register D0 to indicate that the packet was  
processed. 

Using this algorithm, it is important to reset the NIC’s interrupt service register each time the ISR determines that a packet will be  
processed by a previously deferred function. If the register is not cleared, the card will remain in a constant state of interrupt, and  
the deferred function will never get a chance to execute.

Implementing DeferUserFn

The question may arise as to where to implement the  DeferUserFn The following approach is one possible suggestion for 
devices that are not able to empty the NIC’s packet RAM all at once, and which implement a circular buffer or linked buffer list.  
Define an entry point where the ISR begins processing the packet from the card. At this entry point, there may be some code to  
check whether a packet transmission is under way and to perform a cleanup. There may also be code here to check whether the 
buffer has become overrun and to reset the NIC according to manufacturer’s guidelines. The driver code would copy the header  
into the RHA (Read Header Area), identify the protocol handler and set up register A4 with a pointer to the ReadPacket routine,  
then call the handler. Upon completion, the ISR might check whether additional packets have been received, if applicable. A 
flowchart of the deferred function process is as follows:

Developer Support Center January 1993



Macintosh Technical Notes

myDeferedFunction()
{
   If transmit complete
       do final cleanup of packet transmission

   If buffer overrun
       Reset the NIC according to manufacturer's guidelines

   while(received packets are waiting in adapter ram)
   {
       process packet
       call protocol handler
   }
}

On entry to the ISR, see whether virtual memory is active by checking the flag set by the open routine. Perform whatever processing is  
necessary, then pass DeferUserFn, the entry point described above, if virtual memory is active. If virtual memory is inactive, branch to the entry  
point and process the packet.

SONIC-Based Ethernet Driver Software Interface Change

With the introduction of SONIC-based Ethernet controllers, a modification was implemented 
into the Ethernet driver software to return additional information available from the SONIC 
chip  network  statistics  counters.  This  section  describes  the  format  of  the  information 
returned by an EGetInfo call when the current network connection is through an Ethernet 
NB Card, an Ethernet LC Card, or through the built-in Ethernet available on the Macintosh 
Quadra 700/900/950.

EGetInfo Changes

The EGetInfo call can return up to 60 additional bytes of new information making the 
maximum number of bytes returned 78. As with the Apple EtherTalk NB Card (Apple/3Com 
card), the first 6 bytes returned contain the card’s Ethernet address. The remaining bytes that 
are returned contain information different from that returned with the Apple EtherTalk NB 
Card.

The next 12 bytes (offset 6–17) returned contain NO information but are always returned 
zero filled for compatibility. The remaining 60 bytes returned contain SONIC chip network 
statistic counters. The counters are listed below in the following table with the decimal and 
hexadecimal offsets given from the start of the return buffer. Note that the offset of the first  
item in the return buffer, the Ethernet address, is at offset 0.

Developer Support Center January 1993



Macintosh Technical Notes

Byte offset:(start at 0)     Description

18    ($12)       -     Frames transmitted OK
22    ($16)       -     Single collision frames
                 26    ($1A)       -     Multiple collision frames
                 30    ($1E)       -     Collision frames
                 34    ($22)       -     Frames with deferred transmission
                 38    ($26)       -     Late collision
                 42    ($2A)       -     Excessive collisions
                 46    ($2E)       -     Excessive deferrals
                 50    ($32)       -     Internal MAC transmit error
                 54    ($36)       -     Frames received OK
                 58    ($3A)       -     Multicast frames received OK
                 62    ($3E)       -     Broadcast frames received OK
                 66    ($42)       -     Frame check sequence errors
                 70    ($46)       -     Alignment errors
                 74    ($4A)       -     Frames lost due to internal MAC 
                                                 receive error

With the release of AppleTalk version 58, a minor change was implemented into the EGetInfo call such that the number of bytes 
filled in by the call, is returned in the eDataSize field. The revised parameter block description for the .ENET driver supplied with 
AppleTalk version 58 is:

FUNCTION EGetInfo (thePBPtr: EParamBlkPtr; async: Boolean) :  OSErr;

Parameter Block
                    16          ioResult                    word        result code
                    24          ioRefNum                word        driver reference number        
                    26          csCode                      word        always ENetGetInfo
                    30          ePointer                    long         pointer to buffer
                    34          eBuffSize                  word        size of buffer
                    36          eDataSize                 word        number of bytes returned

Distinguishing Apple’s SONIC-Based Ethernet Systems

When making the EGetInfo call, it is important to pass the correct size buffer. The control call will only fill in the buffer with 
the number of bytes specified in the  eBuffSize field. Unless it is already known that the active Ethernet card is the Apple 
(3Com) EtherTalk NB Card, it is recommended that you pass a buffer large enough to accommodate the additional information  
returned by the driver for the SONIC chip. One method to distinguish the Apple (3Com) EtherTalk NB Card from Apple’s 
SONIC-based systems, is to fill the 78-byte buffer with a byte pattern like 0xFF. For the Apple EtherTalk NB Card, the last 60  
bytes of the buffer will still be filled with the byte pattern. For Apple’s SONIC-based systems, the last 60 bytes of the buffer will  
not all contain the byte pattern. 

With the Ethernet driver released under AppleTalk version 58, an alternate method to distinguishing the two Apple Ethernet  
hardware cards is to pass in a pointer to a 78-byte buffer in the ePointer field, then to check the EDataSize value for the number of  
bytes filled into the 

Developer Support Center January 1993



Macintosh Technical Notes

buffer. For the original EtherTalk NB card, the number of returned bytes is 18; for the Ethernet NB card, the number of returned 
bytes will be 78.

Correction to the ENET.h Header File

Programs written for compilation with MPW C, which use the ENET.h header file supplied 
with MPW version 3.2.x are alerted to the fact the following declaration is incorrect. Users 
of Think C should check their ENET.h header file for the same error, as the version 5.0.x 
product was shipped with the header files supplied by the MPW team. This problem does not 
affect the corresponding Pascal interface file.

typedef struct {
     EParamHeader
     EParamMisc1 EParms1;
     char eMultiAddr[5];                 /*Multicast Address*/
}EParamMisc2;

The correct declaration has the eMultiAddr field immediately following the EParamHeader structure and the character array  
allocated 6 instead of 5 bytes as follows:

typedef struct {
     EParamHeader
     char eMultiAddr[6];                 /*Multicast Address*/
}EParamMisc2;

The EParamMisc2 structure applies only to the EAddMulti and EDelMulti control calls to the Ethernet, token ring and FDDI 
drivers. If you are using these calls, you might include a revised structure declaration in your source code file so that you need not  
worry about overwriting the corrected header file when supplied with a new version of MPW. The declaration would be as  
follows:

#include <ENET.h>
.
.
/* The following structure declaration replaces the incorrect EParamMisc2 
* structure declaration presented in the ENET.h files supplied with MPW 
* to v3.2.4 and possibly greater.
*/
typedef struct {
     EParamHeader
     char eMultiAddr[6];                 /*Multicast Address*/
}EParamMultiCast;

AppleTalk Multiple Node Architecture

Supporting multiple node addresses on a single machine connected to AppleTalk is a feature 
that has been created to support software applications such as AppleTalk Remote Access. Its 
implementation is general enough to be used by other applications as well.

Developer Support Center January 1993



Macintosh Technical Notes

Note: AppleTalk version 57 or later  is  required to support  the AppleTalk Multiple 
Node Architecture. Version 57 is compatible with system software version 6.0.5 
and  later.  If  you  implement  multinode  functionality  into  your  program you 
should also plan to include AppleTalk version 57 with your product. Contact 
Apple’s Software Licensing department (see end of this Note) for information 
on licensing AppleTalk.

What Is It?

Multiple Node AppleTalk provides network node addresses that are in addition to the normal 
(user node) DDP address assigned when AppleTalk is opened. These additional addresses 
have different characteristics from those of the user node address. They are not connected to 
the protocol stack above the data link layer. When an application acquires a multinode, the  
application has to supply a receive routine through which AppleTalk will deliver broadcasts 
and packets directed to that multinode address.

The  number  of  multinode  addresses  that  can  be  supported  on  one  single  machine  is 
determined  by  a  static  limit  imposed  by  the  AppleTalk  ADEV  itself  (for  example,  
EtherTalk). The limit is currently 253 nodes for Apple’s implementation of EtherTalk ($0, 
$FF,  and $FE being invalid  node  addresses)  and 254 for  LocalTalk  ($0 and $FF being 
invalid node addresses). The number of receive routines that .MPP supports is determined by 
the static limit of 256. If all of the multiple nodes acquired need to have unique receive 
routines, then only a maximum of 256 nodes can be acquired, even if the ADEV provides 
support for more than 256 nodes. .MPP will support the lesser of either the maximum of 256 
receive routines, or the node limit imposed by the ADEV.

Outbound DDP packets can be created with a user-specified  source network, node,  and 
socket (normally equal to a multinode address) with the new Network Write call. With this  
capability and the packet reception rules described above, a single machine can effectively 
become several nodes on a network. The user node continues to function as it always has.

Glue Code for Multinode Control Calls

The  following  files  are  provided  for  C  and  Pascal  programmers  to  implement  the  new 
multinode calls presented in this Tech Note. First, for C programmers:

/*----------------------------------------------------------------------
 file: MultiNode.c
----------------------------------------------------------------------*/

#include <Types.h>
#include <Devices.h>
#include <OSUtils.h>
#include <AppleTalk.h>

enum {

/*  MultiNode .MPP csCodes */

   netWrite = 261,                 /* Send packet through multinode */
Developer Support Center January 1993



Macintosh Technical Notes

   addNode = 262,                  /* Request a multinode */
   removeNode = 263,               /* Remove multinode */
};

Developer Support Center January 1993



Macintosh Technical Notes

typedef struct {
   MPPATPHeader

char filler1;
unsigned char checkSumFlag;     /* perform checksum on datagram */
Ptr wdsPointer;                 /* Ptr to write-data structure */
char filler2[2];
union {
    AddrBlock reqNodeAddr;      /* preferred address requested */
    AddrBlock nodeAddr;         /* node address to be deleted */

} MNaddrs;
AddrBlock actNodeAddr;          /* actual node address acquired */
Ptr recvRoutine;                /* address of packet receive routine */
short reqCableLo;               /* preferred network range for the */
short reqCableHi;               /*  node being acquired */
char reserved[70];

} MNParamBlock;

typedef MNParamBlock*MNParmBlkPtr;

#ifdef __cplusplus
extern "C" {
#endif
pascal OSErr MNAddNode(MNParmBlkPtr thePBptr,Boolean async); 
pascal OSErr MNRemoveNode(MNParmBlkPtr thePBptr,Boolean async); 
pascal OSErr MNNetWrite(MNParmBlkPtr thePBptr,Boolean async); 
#ifdef __cplusplus
}
#endif

pascal OSErr MNAddNode(MNParmBlkPtr thePBptr,Boolean async)
{

thePBptr->csCode = addNode;
thePBptr->ioRefNum = mppUnitNum;
return (PBControl((ParmBlkPtr)thePBptr, async));

}

pascal OSErr MNRemoveNode(MNParmBlkPtr thePBptr,Boolean async) 
{

thePBptr->csCode = removeNode;
thePBptr->ioRefNum = mppUnitNum;
return (PBControl((ParmBlkPtr)thePBptr, async));

}

pascal OSErr MNNetWrite(MNParmBlkPtr thePBptr,Boolean async)
{

thePBptr->csCode = netWrite;
thePBptr->ioRefNum = mppUnitNum;
return (PBControl((ParmBlkPtr)thePBptr, async));

}

Now for Pascal programmers:

UNIT MultiNode;
INTERFACE

USES
MemTypes, QuickDraw, OSIntf, AppleTalk;

CONST

Developer Support Center January 1993



Macintosh Technical Notes

{    MultiNode .MPP csCodes }

   netWrite = 261;                 { Send packet through multinode }
   addNode = 262;                  { Request a multinode }
   removeNode = 263;               { Remove multinode }

TYPE
MNParmType = (AddNodeParm,RemoveNodeParm);

MNParamBlock = PACKED RECORD
   qLink: QElemPtr;                  {next queue entry}
   qType: INTEGER;                   {queue type}
   ioTrap: INTEGER;                  {routine trap}
   ioCmdAddr: Ptr;                   {routine address}
   ioCompletion: ProcPtr;            {completion routine}
   ioResult: OSErr;                  {result code}
   ioNamePtr: StringPtr;             {->filename}
   ioVRefNum: INTEGER;               {volume reference or drive number}
   ioRefNum: INTEGER;                {driver reference number}
   csCode: INTEGER;                  {call command code AUTOMATICALLY set}

filler1: Byte;
checkSumFlag: Byte;            { perform checksum on datagram }
wdsPointer: Ptr;               { Ptr to write-data structure }
filler2: INTEGER;
CASE MNParmType of
  AddNodeParm:
   (reqNodeAddr: AddrBlock;    { preferred address requested }

          actNodeAddr: AddrBlock;    { actual node address acquired }
          recvRoutine: ProcPtr;      { address of packet receive routine }
          reqCableLo: INTEGER;       { preferred network range for the }
          reqCableHi: INTEGER;       {  node being acquired }
          reserved: PACKED ARRAY [1..70] of Byte);
     RemoveNodeParm:

(nodeAddr: AddrBlock);  { node address to be deleted }
   END;

MNParmBlkPtr = ^MNParamBlock;

FUNCTION MNAddNode(thePBptr: MNParmBlkPtr; async: BOOLEAN): OSErr;
FUNCTION MNRemoveNode(thePBptr: MNParmBlkPtr; async: BOOLEAN): OSErr;
FUNCTION MNNetWrite(thePBptr: MNParmBlkPtr; async: BOOLEAN): OSErr;

IMPLEMENTATION

FUNCTION MNAddNode(thePBptr: MNParmBlkPtr; async: BOOLEAN): OSErr;
BEGIN

thePBptr^.csCode := addNode;
thePBptr^.ioRefNum := mppUnitNum;
MNAddNode := PBControl(ParmBlkPtr(thePBptr), async);

END;

FUNCTION MNRemoveNode(thePBptr: MNParmBlkPtr; async: BOOLEAN): OSErr;
BEGIN

thePBptr^.csCode := removeNode;
thePBptr^.ioRefNum := mppUnitNum;
MNRemoveNode := PBControl(ParmBlkPtr(thePBptr), async);

END;

Developer Support Center January 1993



Macintosh Technical Notes

FUNCTION MNNetWrite(thePBptr: MNParmBlkPtr; async: BOOLEAN): OSErr;
BEGIN

thePBptr^.csCode := netWrite;
thePBptr^.ioRefNum := mppUnitNum;
MNNetWrite := PBControl(ParmBlkPtr(thePBptr), async);

END;

END.

Things You Need to Know When Writing a Multinode Application

Two new .MPP driver control calls have been added to allow multinode applications to add and remove multinodes.

AddNode (csCode=262)

A user can request an extra node using a control call to the .MPP driver after it has opened. Only one node is acquired through  
each call.

Parameter Block:
--> 24 ioRefNum short ; driver ref. number
--> 26 csCode short ; always = AddNode (262)
--> 36 reqNodeAddr AddrBlock ; the preferred address requested 

; by the user.
<-- 40 actNodeAddr AddrBlock ; actual node address acquired.
--> 44 recvRoutine long ; address of the receive routine 

; for MPP to call during packet 
; delivery.

--> 48 reqCableLo short ; the preferred range
--> 50 reqCableHi short ; node being acquired.
--> 52 reserved[70] char ; 70 reserved bytes

AddrBlock:
aNet short ; network #
aNode unsigned chae ; node #
aSocket unsigned char ; should be zero for this call.

The AddNode call must be made as an IMMEDIATE control call at system task time. The .MPP driver will try to acquire the 
requested node address. The result code will be returned in the ioResult field in the parameter block. The result code –1021 
indicates that the .MPP driver was unable to continue with the AddNode call because of the current state of .MPP. The caller 
should retry the AddNode call (the retry can be issued immediately after the AddNode call failed with error–1021) until a node 
address is successfully attained or another error is returned.

If the requested node address is zero, invalid, or already taken by another machine on the network, a random node address will be  
generated by the .MPP driver. The parameters reqCableLo and reqCableHi will be used only if there is no router on the 
network and all  the node addresses in the network number specified in  NetHint (the last  used network number stored in 
parameter RAM) are taken up.

In  this  case,  the  .MPP driver  tries  to  acquire  a  node  address  from the  network  range  as  specified  by  reqCableLo and 
reqCableHi. The network range is defined by the seed router on a network. If a specific cable range is not important to the  
application, set the reqCableLo and reqCableHi fields to zero. The recvRoutine is an address of a 

Developer Support Center January 1993



Macintosh Technical Notes

routine in the application to receive broadcasts and directed packets for the corresponding multinode.

Possible Error Codes:

noErr 0 ; success
tryAddNodeAgainErr -1021 ; MPP was not able to add node, ; try again.
MNNotSupported -1022 ; Multinode is not supported by

; the current ADEV.
noMoreMultiNodes -1023 ; no node address is available on ; the 

network.

RemoveNode (csCode=263)

This call removes a multinode address and must be made at system task time. Removal of the user node is not allowed.

Parameter Block:
--> 24 ioRefNum word ; driver ref. number
--> 26 csCode word ; always = RemoveNode (263)
--> 36 NodeAddr AddrBlock ; node address to be deleted.

Possible Error Codes:

noErr 0 ; success
paramErr -50 ; bad parameter passed

Receiving Packets 

Broadcast packets are delivered to both the user’s node and the multinodes on every machine. If several multinodes are acquired 
with the same recvRoutine address, the recvRoutine, listening for these multinodes, will be called only once in the case of 
a broadcast packet.

Multinode receive handlers should determine the number of bytes already read into the Read Header Area (RHA) by subtracting  
the beginning address of the RHA from the value in A3 (see Inside Macintosh Volume II, page 326, for a description of the Read 
Header Area). A3 points past the last byte read in the RHA. The offset of RHA from the top of the .MPP variables is defined by  
the equate ToRHA in the MPW include file ATalkEqu.a. The receive handler is expected to call ReadRest to read in the rest 
of the packet. In the case of LocalTalk, ReadRest should be done as soon as possible to avoid loss of the packet. Register A4  
contains the pointer to the ReadPacket and ReadRest routines in the ADEV.

To read in the rest of the packet,

JSR 2(A4)

On entry:
A3 pointer to a buffer to hold the bytes
D3 size of the buffer (word), which can be zero to throw away packet

Developer Support Center January 1993



Macintosh Technical Notes

On exit:
D0 modified
D1 modified
D2 preserved
D3 Equals zero if requested number of bytes was read; is less than zero if packet was –D3 bytes too large to fit  in 

buffer and was truncated; is greater than zero if D3 bytes were not read (packet is smaller 
than buffer)

A0 preserved
A1 preserved
A2 preserved
A3 pointer to 1 byte after the last byte read

For more information about ReadPacket and ReadRest, refer to Inside Macintosh Volume II, page 327.

A user can determine if a link is extended by using the GetAppleTalkInfo control call. The Configuration field returned by this call 
is a 32-bit word that describes the AppleTalk configuration. Bit number 15 (0 is LSB) is on if the link in use is extended. Refer to  Inside 
Macintosh Volume VI, page 32-15.

Sending Datagrams Through Multinodes

To send packets through multinodes, use the new .MPP control call, NetWrite. NetWrite allows the owner of the multinode to specify a 
source network, node, and socket from which to send a datagram.

NetWrite (csCode=261)

Parameter Block:
--> 26 csCode word ; always NetWrite (261)
--> 29 checkSumFlag byte ; checksum flag
--> 30 wdsPointer pointer ; write data structure

Possible Error Codes:

noErr 0 ; success
ddpLenErr -92 ; datagram length too big
noBridgeErr -93 ; no router found
excessCollsns -95 ; excessive collisions on write

This call is very similar to the WriteDDP call. The key differences are as follows:

• The source socket is not specified in the parameter block. Instead it is specified along with the source network number and 
source node address in the DDP header pointed to by the write-data structure (WDS). Furthermore, the socket need not be  
opened. Refer to Inside Macintosh Volume II, page 310, for a description of the write-data structure. It is important to note 
that the caller needs to fill in the WDS with the source network, source node, and source socket values. .MPP does not set 
these values for the NetWrite call. 

• The checkSumFlag field has a slightly different meaning. If true (nonzero), then the checksum for the datagram will be 
calculated prior to transmission and placed into the 

Developer Support Center January 1993



Macintosh Technical Notes

DDP header of the packet. If false (zero), then the checksum field is left alone in the DDP header portion of the packet. Thus 
if a checksum is already present, it is passed along unmodified. For example, the AppleTalk Remote Access program sets  
this field to zero, since remote packets that it passes to the .MPP driver already have valid checksum fields. Finally, if the 
application desires no checksum, the checksum field in the DDP header in the WDS header must be set to zero.

Datagrams sent with this call are always sent using a long DDP header. Refer to Inside AppleTalk, second edition, page 4-16, for 
a description of the DDP header. Even if the destination node is on the same LocalTalk network, a long DDP datagram is used so  
that the source information can be specified. The LAP header source node field will always be equal to the user node address 
(sysLapAddr), regardless of the source node address in the DDP header.

AppleTalk Remote Access Network Number Remapping

Network applications should be careful not to pass network numbers as data in a network transaction. AppleTalk Remote Access 
performs limited network number remapping. If network numbers are passed as data, they will not get remapped. AppleTalk  
Remote Access recognizes network numbers in the DDP header and among the various standard protocol packets, NBP, ZIP,  
RTMP, and so on.

Is There a Router on the Network?

Do not assume that there are no routers on the network if your network number is zero. With AppleTalk Remote Access, you can  
be  on  network  zero  and  be  connected  to  a  remote  network.  Network  applications  should  use  the  GetZoneList or  the 
GetBridgeAddress calls to determine if there is a router on the network.

New for AppleTalk ADEVs 

First, a word from our sponsors: The information in this section is provided to assist ADEV 
developers in updating their products for compatibility with AppleTalk Remote Access. If 
you  are  a  Ethernet  or  token  ring  developer,  MacDTS strongly  urges  that  you  consider 
following the Multivendor ADEV Architecture described earlier.  For developers of Fiber 
Data Distribution Interface (FDDI) network interface cards, please contact Apple Software 
Licensing for information on licensing the new FDDI Phase 2 ADEV and Driver shell. 

Several new calls have been implemented into the .MPP driver for AppleTalk version 57. 
Two calls,  AOpen and  AClose, were built into AppleTalk version 54 and later, and are 
also documented here. These calls notified the ADEV of changes in the status of the .MPP 
driver.  For  AppleTalk  version  57,  three  new  calls,  AAddNode, ADelNode,  and 
AGetNodeRef, plus a change to the  AGetInfo call, were implemented to support the 
Multiple Node Architecture.

With  the  release  of  AppleTalk  version  58,  support  is  provided  for  the  Simple  Network 
Management Protocol (SNMP), and for the new Router Manager product.  Programmer’s 
Guides for each of these products are available from APDA. For all ADEVs, an important 
change is  required for the Router Manager product to provide basic SNMP support.  An 
ADEV must be modified to support a minor change in the AGetInfo call. The ADEV must 
respond to the AGetInfo call  by returning the slot  number of  the network device being 
supported, in the second reserved byte. This change is required so that when queried by a 
console, the Router 

Developer Support Center January 1993



Macintosh Technical Notes

Manager can report the slot number of the connection being supported. For those network 
devices running via the LocalTalk ports, the second reserved byte should continue to return 
zero. There is no support for such ADEVs at this time.

EtherTalk Phase 2, version 2.3, and TokenTalk phase 2, version 2.4, drivers support the new 
Multiple Node Architecture. Both drivers and AppleTalk version 57 are available through the 
Network Software Installer, version 1.1. As mentioned previously, AppleTalk version 57 and 
these drivers  are compatible with system software version 6.0.5 and later.  Note that  the 
AppleTalk Remote Access product includes the EtherTalk Phase 2, version 2.3 driver, but 
not the multinode-compatible TokenTalk Phase 2, version 2.4, driver. Token ring developers, 
who license TokenTalk Phase 2, version 2.2 and earlier, should contact Apple’s Software 
Licensing department.

The following information describes changes to the ADEV that are required for multinode 
compatibility. This information is of specific importance to developers of custom ADEVs. 
The ADEV can be expected to function under version 6.0.5 and later. A version 3 ADEV 
must be used with AppleTalk version 57 or later. Developers of custom ADEVs will want to 
contact Software Licensing to license AppleTalk version 57.

For  compatibility  with  Multinode  AppleTalk,  the  'atlk'  resource  of  an  ADEV must  be 
modified to respond to these calls as described below. To determine whether an ADEV is 
multinode compatible, the .MPP driver makes an AGetInfo call to determine whether the 
ADEV version is 3 or later. Any ADEVs responding with a version of 3 or later must be 
prepared to respond to the new calls: AAddNode, ADelNode, and AGetNodeRef. See the 
Macintosh AppleTalk Connections Programmer’s Guide for more information about writing 
an AppleTalk ADEV.

The desired architecture for a multinode-compatible ADEV is such that it delivers incoming 
packets to the LAP Manager along with an address reference number, AddrRefNum. The 
LAP Manager uses the AddrRefNum to locate the correct receive routine to process the 
packet. For broadcast packets, the LAP Manager handles multiple deliveries of the packet to 
each multinode receive routine.

The .MPP driver for AppleTalk version 57 supports the new control call to add and remove 
multinodes, along with the network write call  that allows the specification of the source 
address.  .MPP includes  a  modification  in  its  write  function  to  check for  one  multinode 
sending to another. .MPP supports intermultinode transmission within the same machine. For 
example, the user node may want to send a packet to a multinode within the same system.

AGetInfo (D0=3)

The AGetInfo call should be modified to return the maximum number of AppleTalk nodes 
that can be provided by the atlk. This limit will be used by .MPP to control the number of 
multinodes that can be added on a single machine. The new interface is as follows:

Developer Support Center January 1993



Macintosh Technical Notes

Call: D1 (word) length (in bytes) of reply buffer
A1 -> Pointer to GetInfo record buffer

Return: A1 -> Pointer to GetInfo record
D0 nonzero if error (buffer is too small)

Developer Support Center January 1993



Macintosh Technical Notes

AGetInfoRec = RECORD
<-- version: INTEGER; { version of ADEV, set to three (3) }
<-- length: INTEGER; { length of this record in bytes }
<-- speed: LongInt; { speed of link in bits/sec }
<-- BandWidth: Byte; { link speed weight factor }
<-- reserved: Byte; { set to zero }
<-- slot:               Byte; { device slot number or zero for 

( LocalTalk ports }
<-- reserved: Byte; { set to zero }
<-- flags: Byte; { see below }
<-- linkAddrSize: Byte; { of link addr in bytes }
<-- linkAddress: ARRAY[0..5] OF Byte;
<-- maxnodes: INTEGER;

END;

flags: bit 7 = 1 if this is an extended AppleTalk, else 0
bit 6 = 1 if the link is used for a router-only connection (reserved

for half-routing)
bit 5 through 0 reserved, = 0

maxnodes is the total number of nodes (user node and multinodes) the ADEV supports. If a version 3 ADEV does not support multinodes, it  
must return 0 or 1 in the maxnodes field in AGetInfoRec and the ADEV will not be called to acquire multinodes. The version 3 ADEV will  
be called by .MPP in one of the following two ways to acquire the user node:

• If the ADEV returns a value of 0 in maxnodes, .MPP will issue Lap Write calls to the ADEV with D0 set to $FF indicating that ENQs 
should be sent to acquire the user node. .MPP is responsible for retries of ENQs to make sure no other nodes on the network already  
have this address. This was the method .MPP used to acquire the user node before multinodes were introduced. This method of sending  
ENQs must be available, even though the new AAddNode call is provided, to allow older versions of AppleTalk to function 
properly with a version 3 ADEV.

• If the ADEV returns a value of 1 in maxnodes, the new AAddNode function will be called by .MPP to acquire the user 
node.

For values of maxnode greater than 1, the new AAddNode function will be called by .MPP 
to acquire the additional multinodes.

AAddNode (D0=9)

This is a new call that is used to request the acquisition of an AppleTalk 
node address. It is called by the .MPP driver during the execution of the 
AddNode control call mentioned earlier. The ADEV is responsible for 
retrying enough ENQs to make sure  no other  nodes on the network 
already have the address. .MPP makes this call only during system task 
time.

Call: A0-> Pointer to parameter block
Return: D0 = zero if address was acquired successfully

≠ zero if no more addresses can be acquired

Developer Support Center January 1993



Macintosh Technical Notes

atlkPBRec Record csParam
--> NetAddr DS.L 1 ; offset 0x1C  24-bit node address to 

; acquire
--> NumTrys DS.W 1 ; offset 0x20  # of tries for address
--> DRVRPtr DS.L 1 ; offset 0x22  ptr to .MPP vars
--> PortUsePtr DS.L 1 ; offset 0x26  ptr to port use byte
--> AddrRefNum DS.W 1 ; offset 0x2A  address ref number used 

; by .MPP
EndR

The offset values describe the location of the fields from the beginning of the parameter block pointed to by A0. atlkPBRec is 
the standard parameter block record header for a _Control call. The field  NetAddr is the 24-bit AppleTalk node address that 
should be acquired. The node number is in the least significant byte 0 of NetAddr. The network number is in bytes 1 and 2 of 
NetAddr; byte 3 is unused. NumTrys is the number of tries the atlk should send AARP probes on non-LocalTalk networks to  
verify that the address is not in use by another entity. On LocalTalk networks, NumTrys x 32 number of ENQs will be sent to 
verify an address. 

DRVRPtr and PortUsePtr are normally passed when the atlk is called to perform a write function. For ADEVs that support  
multinodes, AppleTalk calls the new AAddNode function rather than the write function in the ADEV to send ENQs to acquire 
nodes. However, the values DRVRPtr and PortUsePtr are still required for the ADEV to function properly and are passed to 
the AAddNode call. AddrRefNum is a reference number passed in by .MPP. The ADEV must store each reference number with 
its corresponding multinode address. The use of the reference number is described in the following two sections.

For multinode-compatible ADEVs, .MPP issues the first AAddNode call to acquire the user node. The AddrRefNum associated 
with the user node must be 0xFFFF. It is important to assign 0xFFFF as the AddrRefNum of the user node, and to disregard the 
AddrRefNum passed by .MPP for the user node. See the discussion at the end of the ADelNode description.

ADelNode (D0=10)

This is a new call that is used to remove an AppleTalk node address. It can be called by 
the .MPP driver to process the RemoveNode control call mentioned earlier.

Call:    A0-> Pointer to parameter block
NetAddr contains the node address to be deleted

Return:    D0 = zero if address is removed successfully
≠ zero if address does not exist
atlkPBRec.AddrRefNum = AddrRefNum to be used by .MPP if the 

operation is successful

Developer Support Center January 1993



Macintosh Technical Notes

atlkPBRec Record csParam
--> NetAddr DS.L 1 ; offset 0x1C  24-bit node 

; address to remove
<-- AddrRefNum DS.W 1 ; offset 0x2A  AddrRefNum 

; passed in by AAddNode
; on return

EndR

The field NetAddr is the 24-bit AppleTalk node address that should be removed. As with the AAddNode selector, the node 
number is in the least significant byte 0 of NetAddr. The network number is in bytes 1 and 2 of NetAddr; byte 3 is unused. 
The address reference number,  AddrRefNum, associated with the  NetAddr, must be returned to .MPP in order for .MPP to 
clean up its data structures for the removed node address.

As mentioned above, a value of 0xFFFF must be returned to .MPP after deleting the user node. When the AppleTalk connection is  
started up for the first time on an extended network, the ADEV can expect to process an AAddNode request followed shortly by 
an ADelNode request. This results from the implementation of the provisional node address for the purpose of talking with the  
router to determine the valid network number range to which the node is connected. After obtaining the network range, .MPP 
issues the ADelNode call to delete the provisional node. The next ADelNode call will be to acquire the unique node ID for the 
user node. As mentioned previously, .MPP can pass a value different from 0xFFFF for the user node. The user node is acquired 
before any multinode. The ADEV needs to keep track of the number of  AAddNode and ADelNode calls issued to determine 
whether the user node is being acquired. Refer to Inside AppleTalk, second edition, page 4-8, for additional information.

AGetNodeRef (D0=11)

This is a  new call that is used by .MPP to find out if a multinode address exists on the 
current ADEV. This call is currently used by .MPP to check if a write should be looped back 
to one of the other nodes on the machine (the packet does not actually need to be sent 
through the network) or should be sent to the ADEV for transmission.

Call: A0-> Pointer to parameter block
Return: D0-> = zero if address does not exist on this machine

≠ zero if address exists on this machine
atlkPBRec.AddrRefNum = AddrRefNum (corresponding 

to the node address) if the operation is successful

atlkPBRec Record csParam
--> NetAddr DS.L 1  ; offset 0x1C  24-bit node 

 ; address to remove
<-- AddrRefNum DS.W 1 ; offset 0x2A  AddrRefNum 

; passed in by AAddNode
; on return

EndR

The field  NetAddr is the 24-bit AppleTalk node address whose  AddrRefNum is requested. The node number is in the least 
significant byte 0 of NetAddr. The network number is in bytes 1 and 2 of NetAddr; byte 3 is unused. The address reference 
number, AddrRefNum, 

Developer Support Center January 1993



Macintosh Technical Notes

associated with the NetAddr, must be returned to .MPP. Remember to return 0xFFFF as the AddrRefNum for the user node.

AOpen (D0=7)

Call:
--> D4.B current port number

ADEVs should expect the AOpen call whenever the .MPP driver is being opened. This is a good time for the ADEV to register 
multicast addresses with the link layer or register a Transition Queue handler. After this call is completed, .MPP is ready to 
receive packets. If the ADEV does not process this message, simply return, RTN with a ControlErr.

Note that AOpen is not specific to the Multinode Architecture.

AClose (D0=8)

AClose is called only when .MPP is being closed (for example, .MPP is closed when the “inactive” option is selected in the  
Chooser or when the user switches links in network cdev). The ADEV can use this event to deregister any multicast addresses  
with the link layer or remove an existing Transition Queue handler. After this AClose call is completed, the ADEV should not 
defend for any node addresses until .MPP reopens and acquires new node addresses. If the ADEV does not process this message,  
simply return, RTN with a ControlErr.

Note that AClose is not specific to the Multinode Architecture.

For comparison, descriptions of AInstall and AShutDown are documented as follows:

AInstall (D0=1)

Call:

--> D1.L = value from PRAM (slot, ID, unused, atlk resource ID)
<-- D1.L = high 3 bytes for parameter RAM returned by the ADEV, 
if no error
<-- D0.W = error code

The AInstall call is made before .MPP is opened either during boot time or when the user switches links in network cdev. This 
call is made during system task time so that the ADEV is allowed to allocate memory, make file system calls, or load resources  
and so on. Note: AOpen call will be made during .MPP opens.

AShutDown (D0=2)

ADEVs should expect the AShutDown call to be made when the user switches links in the Network cdev. The network cdev  
closes .MPP, which causes the AClose call to be made before the cdev issues the AShutDown call. Note: the AShutDown call 
is always made during system task time; therefore, deleting memory, unloading resources, and file system calls can be done at this  
time.

Developer Support Center January 1993



Macintosh Technical Notes

Receiving Packets

The address reference number (AddrRefNum) associated with each node address must be passed to .MPP when delivering 
packets upward. When making the LAP Manager call LReadDispatch to deliver packets to AppleTalk, the ADEV must fill the 
high word of D2 in with the address reference number, corresponding to the packet’s destination address (LAP node address in the 
LocalTalk case and DDP address in the non-LocalTalk case). There are a few special cases:

• In the case of broadcasts and packets directed to the user node, $FFFF (word) should be used as the address reference number.

• On non-LocalTalk networks, packets with DDP destination addresses matching neither the user node address nor any of the  
multinode  addresses  should  still  be  delivered  to  the  LAP Manager  so  that  the  router  can  forward  the  packet  on  to  the 
appropriate network. In this case, the high word of D2 should be filled in with the address reference number, $FFFE, to indicate 
to MPP that this packet is not for any of the nodes on the machine in the case of a router running on a machine on an extended 
network. 

• On LocalTalk networks, the ADEV looks only at the LAP address; therefore, if the LAP address is not the user node, one of the  
multinodes, or a broadcast, the packet should be thrown away.

Defending Multinode Addresses

Both LocalTalk (RTS and CTS) and non-LocalTalk (AARP) ADEVs have to be modified to defend not only for the user node  
address but also for any active multinode addresses.

Corrections/Clarifications to the LAP Manager

The interface for the Link Access Protocol (LAP) Manager is presented in the document 
Macintosh  AppleTalk  Connections  Programmer’s  Guide,  available  from  APDA,  p/n 
M7056/A.  This  section  provides  additional  descriptions  to  the  LAP Manager  functions 
described in the Programmer’s Guide.

LRdDispatch (D0 = 1)

The LRdDispatch routine is called by an ADEV’s 'atlk' packet handling routine to notify the 
LAP Manager that a packet has been received, and to pass the packet to the LAP Manager 
for processing by the appropriate protocol handler. The documentation indicates that this 
routine “even though it is called with a JSR, does not return to the caller, but jumps to the 
protocol handler that is attached to the protocol indicated in (register) D2.” 

When called to handle LRdDispatch, the LAP Manager searches its protocol table for a 
match to the protocol specified in D2. If found, the return address placed on the stack by the 
JSR instruction is removed. For this reason, the caller will not be returned to if a protocol 
handler is found. This also means that the packet handling routine that calls LRdDispatch 
must restore the stack to the state the stack was in when the packet handler was entered.

Developer Support Center January 1993



Macintosh Technical Notes

LWrtInsert (D0 = 2)

The LWrtInsert description indicates that setting bit 6 of the flag byte in register D1, “does 
not disable the port B serial communications controller (SCC).…” This bit no longer has any 
meaning under AppleTalk. 

AppleTalk Version Information

The following table  is  presented to  assist  AppleTalk developers  in  understanding which 
versions of AppleTalk are required by the various AppleTalk products. This list does not 
identify the individual bug fixes associated with each release of AppleTalk.

AppleTalk 
Version

.MPP Version .ATP Version
Apple Products Using That Version

19 19 19 Macintosh Plus ROM
48 48 46 Macintosh SE ROM

Macintosh Classic ROM

48.1 48 46 AppleShare File Server v1.0
49 49 49 Macintosh II ROM

Macintosh IIcx ROM

Macintosh SE/30

50 50 49 AppleShare File Server v1.1
51 51 51 AppleShare Print Server v2.0
52 52 52 AppleShare File Server v2.0

Macintosh IIx ROM

Macintosh IIci ROM

Macintosh Portable ROM

PowerBook 100 ROM

Phase 1 drivers

Developer Support Center January 1993



Macintosh Technical Notes

AppleTalk 
Version

.MPP Version .ATP Version
Apple Products Using That Version

53 53 53 AppleTalk Phase 2 products
AppleTalk Internet Router v2.0

Apple EtherTalk NB Card 2.0

Apple TokenTalk NB Card 2.0

54 54 54 Macintosh IIfx
Macintosh LC, LC II, & IIsi

55 55 55 Apple Ethernet LC Card (for Macintosh LC)
56 56 56 System 7.0, 7.0.1

Macintosh Classic II

PowerBook 140, 160, 170, 180

Macintosh Quadra 700, 900, 950

57.0.1 57.0.1 57.0.1 AppleTalk Remote Access
Apple TokenRing 4/16 NB Card

Apple Ethernet NB Card

57.0.3 57.0.3 57.0.3 Apple  Ethernet  LC  Card  (for  Macintosh  LC 
II)

57.0.4 57.0.4 57.0.4 MacTCP Token Ring Extension v1.0
System 7.1, MacTCP 1.1.1

Macintosh Duo 210, 230

Macintosh IIvi, IIvx

Macintosh Color Classic

Macintosh LC II

PowerBook 165c

Macintosh Quadra 800

Macintosh Centris 610, 650

58 58 58 Apple Internet Router v3.0
Mac SNMP

Phase 2 drivers

Some interesting notes:

• .MPP and .ATP driver versions weren’t always the same in versions of AppleTalk before version 51. The .MPP driver version is the  
AppleTalk version number.

• The Phase 1 RAM-based drivers (versions 49 through 52) were supplied as file that could be drag-installed (that is, the installation  
consisted of dropping them into the System Folder).

• The Phase 2 RAM-based drivers (versions 53 through 58) must be installed by an Installer script that will install the various system 
pieces (files, resources, and so on) needed to load and support these new drivers; these versions cannot be drag-installed.

• AppleTalk version 56 or greater includes the .DSP driver (ADSP). Starting with version 56, the .DSP driver version is the same as the 
AppleTalk version.

Apple software products that require the Phase 2 RAM-based drivers must be installed using the Installer program. Apple supplies an Installer  
script that will copy all files and system resources needed. Apple licenses the source to an Installer script that you can use if you license  
AppleTalk to ship with your products.

Developer Support Center January 1993



Macintosh Technical Notes

Contacting Apple Software Licensing

Software Licensing can be reached as follows:

Software Licensing
Apple Computer, Inc.
20525 Mariani Avenue, M/S 38-I
Cupertino, CA 95014
MCI: 312-5360
AppleLink: SW.LICENSE
Internet: SW.LICENSE@AppleLink.Apple.com
(408)974-4667

Further Reference:
• Inside AppleTalk, Second Edition, Addison-Wesley
• Inside Macintosh, Volume II, The AppleTalk Manager, Addison-Wesley
• Inside Macintosh, Volume V, The AppleTalk Manager, Addison-Wesley
• Inside Macintosh, Volume VI, The AppleTalk Manager, Addison-Wesley
• Macintosh  AppleTalk  Connections  Programmer’s  Guide,  Final  Draft  2,  Apple 

Computer, Inc. (M7056/A)
• AppleTalk Phase 2 Protocol Specification, Apple Computer, Inc. (C0144LL/A)
• AppleTalk Remote Access Developer’s Toolkit, Apple Computer, Inc. (R0128LL/A)
• M.NW.AppleTalk2Mac

NuBus is a trademark of Texas Instruments.

Developer Support Center January 1993


