
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Data Servers on AppleTalk
Networking

Revised by: March 1988
Written by: Bryan Stearns April 1985

Many applications could benefit from the ability to share common data between several
Macintoshes, without requiring a file server. This technical note discusses one technique for
managing this AppleTalk communication.

There are four main classes of network “server” devices:

Device Servers, such as the LaserWriter, allow several users to share a single hardware
device; other examples of this (currently under development by third parties) are modem
servers and serial servers (to take advantage of non-intelligent printers such as the
ImageWriter).

File Servers, such as AppleShare, which support file access operations over the network. A
user station sends high-level requests over the network (such as “Open this file,” “Read 137
bytes starting at the current file position of this file,” “Close this file,” etc.).

Block Servers, which answer to block requests over the network. These requests impart no
file system knowledge about the blocks being passed, i.e., the server doesn’t know which
files are open by which users, and therefore cannot protect one user’s open file from other
users. Examples of this type of server are available from third-party developers.

Data Servers, which answer to requests at a higher level than file servers, such as “Give me
the first four records from the database which match the following search specification.”
This note directs its attention at this type of server.

A data server is like a file server in that it responds to intelligent requests, but the requests
that it responds to can be more specialized, because the code in the server was written to
handle that specific type of request. This has several added benefits: user station processing
can be reduced, if the data server is used for sorting or searching operations; and network
traffic is reduced, because of the specificity of the requests passed over the network. The
data server can even be designed to do printing (over the network to a LaserWriter, or on a
local ImageWriter), given that it has the data and can be directed as to the format in which it
should be printed.

Developer Support Center March 1988

Macintosh Technical Notes

ATP: The AppleTalk Transaction Protocol

ATP, the assured-delivery AppleTalk Transaction Protocol, can be used to support all types
of server communications (the LaserWriter uses ATP for its communications!). Here is a
possible scenario between two user stations (“Dave” and “Bill”) and a data server station
(“OneServer”,

Developer Support Center March 1988

Macintosh Technical Notes

a server of type “MyServer”). We’ve found that the “conversational” analogy is helpful
when planning AppleTalk communications; this example is therefore presented as a
conversation, along with appropriate AppleTalk Manager calls (Note that no error handling
is presented, however; your application should contain code for handling errors, specifically
the “half-open connection” problem described below).

Establishing the Connection

Each station uses ATPLoad to make sure that AppleTalk is loaded. The server station, since
it wants to accept requests, opens a socket and registers its name using NBPRegister. The
user stations use NBPLookUp to find out the server’s network address. This looks like this,
conversationally:

Server: “I’m ready to accept ATPLoad Opens AppleTalk
requests!” OpenSocket Creates socket

NBPRegister Assigns name to socket
ATPGetRequest queue a few asynchronous
ATPGetRequest calls, to be able to handle several
ATPGetRequest users

Dave: “Any ‘MyServers’ ATPLoad Opens AppleTalk
out there?” NBPLookup look for servers, finds OneServer

Dave: “Hey, MyServer! What ATPRequest Ask the server which socket to
socket should I talk to you use for further communications
on?”

Bill: “Any ‘MyServers’ ATPLoad Opens AppleTalk
out there?” NBPLookup look for servers, finds OneServer

Bill: “Hey, MyServer! What ATPRequest Ask the server which socket to
socket should I talk to you use for further communications
on?”

Server: “Hi, Dave! Use Socket N.” ATPOpenSkt Get a new socket for talking to Dave
ATPResponse Send Dave the socket number
ATPGetRequest Replace the used GetRequest

Server: “Hi, Bill! Use socket M.” ATPOpenSkt Get a new socket for talking to Bill
ATPResponse Send Bill the socket number
ATPGetRequest Replace the used GetRequest

From this point on, the server knows that any requests received on socket N are from Dave, and those received on socket M are
from Bill. The conversations continue, after a brief discussion of error handling.

Half-Open Connections

There is a possibility that one side of a connection could go down (be powered off, rebooted
accidently, or simply crash) before the connection has been officially broken. If a user
station goes down, the server must throw away any saved state information and close that
user’s open socket. This can be done by requiring that the user stations periodically “tickle”
the server:
Developer Support Center March 1988

Macintosh Technical Notes

every 30 seconds (for example) the user station sends a dummy request to the server, which
sends a dummy response. This lets each side of the connection know that the other side is
still “alive.”

When the server detects that two intervals have gone by without a tickle request, it can
assume that the user station has crashed, and close that user’s socket and throw away any
accumulated state information.

The user station should use a vertical-blanking task to generate these tickle requests
asyncronously, rather than generating them within the GetNextEvent loop; this avoids
problems with long periods away from GetNextEvent (such as when a modal dialog box is running).
This task can look at the time that the last request was made of the server, and if it’s approaching the interval time, queue an
asynchronous request to tickle the server (it’s important that any AppleTalk calls made from interrupt or completion routines be
asynchronous).

If a user station’s request (including a tickle request) goes unanswered, the user station should recover by looking for the server
and reestablishing communications as shown above (beginning with the call to NBPLookUp).

More information about half-open connections can be found in the Printer Access Protocol chapter of Inside LaserWriter,
available from APDA.

Using the Connection

The user stations Dave and Bill have established communications with the server, each on its
own socket (note that the user stations have not had to open their own sockets, or register
names of their own, to do this—the names we’re using are merely for explanational
convenience). They are also automatically tickling the server as necessary.

Now the user stations make requests of the server as needed:

Bill: “I’d like to use the sales ATPRequest Bill opens a database.
figures for this year.”

Server: “Ok, Bill.” ATPResponse The server checks to make sure that
no one else is using that database.

Dave: “Hey, Server - I’m still here!” ATPRequest Dave notices that the interval time is
approaching, and makes a tickle

request.

Server: “Ok, Dave.” ATPResponse The server resets its “last time I heard
from Dave”.

Bill: “Please print the figures ATPRequest Bill asks for specific data.
for January thru June.”

Server: “Ok, Bill.” ATPResponse The server does a database search
sorts the results, and prints them
on a local Imagewriter.

Developer Support Center March 1988

Macintosh Technical Notes

Dave: “I’d like to use the sales ATPRequest Dave opens a database.
figures for this year.”

Server: “Sorry, Dave, I can’t do that. ATPResponse The server finds that Bill is using that
Bill is using that database.” data.

Closing the Connection

The user stations continue making requests of the server, until each is finished. The type of
work being done by the server determines how long the conversation will last: since the
number of sockets openable by the server is limited, it may be desirable to structure the
requests in such a way that the average conversation is very short. It may also be necessary
to have a (NBP named) socket open on the user station, if the server needs to communicate
with the user on other than a request-response basis. Here is how our example connections
ended:

Dave: “Thank you, server, I’m done ATPRequest Dave tells the server he’s finished.
now. You’ve been a big help.”

Server: “Ok, Dave. Bye now.” ATPResponse T the server kisses Dave goodbye.
ATPCloseSkt After the Response operation

completes, the server closes
the socket Dave was using. It also

ATPCloseSkt notices that Bill hasn’t sent a request
in more than two intervals, and closes

Bill’s socket, too.

The user station can forget about the socket it was using on the server; if it needs to talk with the server again, it starts at the
NBPLookUp (just in case the server has moved, gone down and come up, etc.).

Further Reference:
• The AppleTalk Manager Inside LaserWriter

Developer Support Center March 1988

