
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

SNMP Transports
Network

Written by: Mike Ritter and Vincent Lubet June 1993

This Technical Note explains how to write an SNMP (Simple Network Management
Protocol) Transport. An SNMP Transport is responsible for communicating between the
SNMP Manager and a particular network layer. Thus, if you were writing a new network
stack for the Macintosh and wanted it to use the SNMP Manager, you would write an SNMP
Transport for your network stack.

Topics
• Creating and initializing an SNMP Transport
• Reading and Writing SNMP Packets

Introduction

It is assumed in this document that you understand MacSNMP, object-oriented programming
and the Shared Library Manager. The SNMP Manager is built using the Shared Library
Manager and is a set of shared libraries. The SNMP Manager shared library contains the
implementation of the base class for an SNMP Transport. Your transport must be a subclass
of this SNMP Transport class. For more information on MacSNMP and the Shared Library
Manager see the E.T.O. CD ROM.

This Tech Note provides some additional information needed to construct an SNMP
Transport for a particular network stack. An SNMP Transport is required to know about all
of the specific idiosyncrasies of SNMP for a particular network stack. SNMP was originally
defined to run over the TCP stack using UDP. The IETF (Internet Engineering Task Force)
has also defined how to run SNMP over three other network stacks: AppleTalk, IPX, and
OSI. These methods are documented by the IETF proposed standards: RFC 1419—SNMP
over AppleTalk, RFC 1420—SNMP over IPX, and RFC 1418—SNMP over OSI. There is
also an informational RFC draft that describes what must be defined to allow SNMP to run
over any particular network stack.

Developer Support Center June 1993

Macintosh Technical Notes

Apple provides SNMP transports that support the TCP stack and the AppleTalk stack. The
TCP SNMP Transport provides knowledge of IP addresses, listens on the well-known SNMP
sockets, sends SNMP packets on UDP, and resolves addresses in dotted notation into IP
addresses for sending Traps. (An SNMP Trap is the method that SNMP entities use to
send unsolicited warning messages to each other and should not be confused with a
Macintosh Operating System Trap.) The AppleTalk SNMP Transport likewise provides
knowledge of AppleTalk addresses, listens on the well-known SNMP sockets, sends SNMP
packets on DDP, and resolves NBP (Name Binding Protocol) names into AppleTalk
addresses for sending Traps. Similarly, a new SNMP Transport would have to provide
these same services: understanding the new network addresses, listening for SNMP packets,
sending SNMP packets, and resolving stored console addresses to network addresses for
sending Traps.

SNMP Transports

Network
Layer

DataLink
Layer

Physical
Layer

SNMP
Transport
SubClass

SNMP Manager

SNMP
Transport

SNMP
Agent

Other
Shared

Libraries

Provided Libraries

Your Code

Network Stack

Transport.h

Network Interface

Figure 1—An SNMP Transport provides the interface between the SNMP Manager and
a particular network stack.

Developer Support Center June 1993

Macintosh Technical Notes

Creating an SNMP Transport

The file Transport.h defines the SNMP Transport class. To create an SNMP Transport, you
must subclass the SNMP Transport class. The Shared Library Manager allows a run-time
link of your SNMP Transport subclass with the base object SNMP Transport provided in the
SNMP Manager shared library. The definition of the SNMP Transport object is as follows:

/**
** Class TSNMPTransport
***/
#define kTSNMPTransportID "snmp:mgr$TSNMPTrans"
#define kLIB_TransID "snmp:trans$" // Library ID for an SNMP Transport

class TSNMPTransport : public TDynamic
{
public:

TSNMPTransport();
virtual ~TSNMPTransport();
virtual Boolean IsValid() const; // returns valid or not
virtual OSErr InitSNMPTransport(

TransportTag aTag,
TIAddressPtr aTrapSocketPtr,
TIAddressPtr aReqSocketPtr,
Boolean ahandlesresolution,
short aWritebufsize,
TransportRWProcPtr aWriteProcPtr,
short aNumofReads,
short aReadTIAddrSRCmax,
short aReadTIAddrDESTmax,
short aReadbufsize,
TransportRWProcPtr aReadProcPtr);

virtual void SNMPWriteDone(SNMPTransportBlockPtr snmpPtr);
virtual void SNMPReadDone(SNMPTransportBlockPtr snmpPtr);

TSNMPManagerPrv* fSNMPManagerPtr;

friend TSNMPManagerPrv;

protected:
Boolean fValid;
Boolean fhandlesresolution;
short fNumofReads;
short fReadTIAddrSRCmax;
short fReadTIAddrDESTmax;
short fReadbufsize;
short fWritebufsize;

private:

TransportTag fTag;
TIAddressPtr fTrapSocketPtr;
TIAddressPtr fReqSocketPtr;
TransportRWProcPtr fWriteProcPtr;
TransportRWProcPtr fReadProcPtr;

};

Developer Support Center June 1993

Macintosh Technical Notes

To start an SNMP Transport you must instantiate it. For the AppleTalk SNMP Transport, we install a process on the AppleTalk transition queue
that tells us when AppleTalk is coming up or going down and instantiate or destroy the Transport as appropriate. For the TCP SNMP Transport,
an INIT31 instantiates the Transport and it is never destroyed. For your Transport you must provide the code that instantiates and destroys your
Transport.

When a Transport is instantiated the base class constructor is called first. The base class constructor fills in the fSNMPManagerPtr field with
a pointer to a class TSNMPManagerPrv, which can be cast to a pointer to the class TSNMPManager defined in TSNMP.h. This pointer can be
used to access the members of the TSNMPManager class. The constructor also adds a pointer to your SNMP Transport object to a queue of
transports so that it can find you later, and if everything worked, sets the fValid field to true. Your constructor is then called. If the fValid
field is not set to true on the entrance to your constructor, you should bail out of the constructor immediately. If your constructor fails for some
reason, you should set the fValid field to false. The Shared Library Manager will then clean up the object so that a partially constructed one
does not remain.

Initializing an SNMP Transport

After your Transport is constructed it must be initialized. Your transport will not work until InitSNMPTransport() is called. This routine
sets all of the fields in the SNMP Transport from the parameter values that you pass in. You must call the inherited InitSNMPTransport
member function if you override it. The following fields must be set.

-> TransportTag aTag
A long that uniquely identifies a transport (analogous to OSType)

-> TIAddressPtr aTrapSocketPtr
Opaque address of where the Transport listens for Traps

-> TIAddressPtr aReqSocketPtr
Opaque address of where the Transport listens for Requests

-> Boolean ahandlesresolution
True if the transport can send Traps

-> short aWritebufsize
Maximum size of write buffers

-> TransportRWProcPtr aWriteProcPtr
Address of the write procedure

-> short aNumofReads
Maximum number of reads issued at once

-> short aReadTIAddrSRCmax
Maximum length of source address for read operations

-> short aReadTIAddrDESTmax
Maximum length of destination address for read operations

-> short aReadbufsize
Maximum size of a read buffer

-> TransportRWProcPtr aReadProcPtr
Address of the read procedure

The aReadProcPtr and aWriteProcPtr have the following definition:

Developer Support Center June 1993

Macintosh Technical Notes

typedef void (*TransportRWProcPtr)(SNMPTransportBlockPtr dataPtr);

It is recommended that the TransportTag be four human readable ASCII characters that describe the network layer that the Transport talks
to. If multiple Transports with the same TransportTag are instantiated, the SNMP Manager will ignore all but the first one instantiated. For
the AppleTalk SNMP Transport the tag is 'DDP ', for the TCP SNMP Transport the tag is 'UDP '. This value is used in the Trap Table in
the Macintosh Agent to determine which Transport understands the console address stored in a particular row of the table. The sockets are where
the Transport listens for Traps and Requests. The SNMP Manager does not understand the format of these addresses and just passes them
along to your Transport. They are also used as the source of Traps or Responses sent. Finally, they allow the SNMP Manager to determine
what type of packet it is decoding before parsing the raw ASN.1 data. In our Transports we have stored pointers to the actual bits of the network
layer addresses in these fields. The aWritebufsize and aReadbufsize are the size of buffers that the SNMP Manager allocates for your
Transport to use.

Reading SNMP Packets

Finally, InitSNMPTransport() tries to issue aNumofReads outstanding reads by calling your aReadProc() with a filled in
SNMPTransportBlock as shown in Figure 2. The SNMPTransportBlock is defined as follows:

struct SNMPTransportBlock {
unsigned long qLink; // reserved for pointer to next block
short qType; // reserved for queue routines
TSNMPTransport* transport; // who was asked to read or write block
SNMPError result; // after request is serviced
void* destopaqueData;// destination address to be resolved

(used in write trap only)
TIAddressPtr destination; // who the packet was sent to
TIAddressPtr source; // who sent the packet to us
void * UserDataPtr; // Transport work space
Boolean freeFlag; // is the write finished?
Boolean readFlag; // managed by SNMP Manager
PacketElementPtr pktelementPtr;// managed by SNMP Manager
SNMPPacketStructPtr packetPtr; // managed by SNMP Manager

};

The aReadProc() must be able to catch both incoming Traps and Requests. It must also be able to be called at any time, thus you must
not allocate memory using the normal Macintosh memory calls. You may use the area pointed to by UserDataPtr for any scratch you might
need. The SNMP Manager has preallocated this area for you according to the sizes you set in aReadbufsize. It must also return immediately.
When a read actually completes you must call SNMPReadDone() after filling in the data, the source and destination addresses, the actual
number of bytes read (in packetPtr->packetPiece.dataSize), the freeFlag (set to false), and the result (snmpNoError if it
worked.)

Warning: If the freeFlag is incorrectly set, the SNMP Manager will become hopelessly confused.

Developer Support Center June 1993

Macintosh Technical Notes

After the read packet is processed by the SNMP Manager it issues another read call to aReadProc() so that there will always be some
number of outstanding reads. If there are no outstanding reads at any time it is allowable for your transport to drop SNMP packets.

SNMPTransportBlockPtr

destopaqueData

destination

source

UserDataPtr

pktElementPtr

packetPtr

= NULL

fReadbufsize

fReadTIAddrSRCmax

fReadTIAddrDESTmax

= NULL

dataPtr

= MAX_SNMP_PACKET_SIZE

= NULL

length

= NULLdataPtr

length

Figure 2—Layout of SNMPTransportBlock when aReadProc() called. Only the fields that the Transport may need to access are shown.

When your Transport is deleted you must ensure that your completion routines will not be called after your destructor is finished and your
Transport object is gone. You may have to wait for asynchronous writes to complete and cancel any outstanding reads. The base class destructor
will ensure that any packets you have queued up for processing will be thrown away.

Developer Support Center June 1993

Macintosh Technical Notes

SNMPTransportBlockPtr

fWritebufsize

destopaqueData

destination

source

UserDataPtr

pktElementPtr

packetPtr

=Null

fReadTIAddrSRCmax
= fReqSocketPtr

= Opaque

dataPtr

= bytes to send

= NULL

length

= NULLdataPtr

length

Figure 3—Layout of SNMPTransportBlock when the SNMP Manager calls aWriteProc() with a response to an SNMP Request. Only the
fields that the Transport may need to access are shown.

Writing SNMP Packets

After a packet is processed by the SNMP Manager, it will almost always generate a Response packet. The SNMP Manager will either respond
to a Request or generate a Trap. In the cases of a simple Response the SNMP Manager will call your aWriteProc() with an
SNMPTransportBlock filled out as shown in Figure 3. Your aWriteProc() may be called at any time, thus you must not allocate
memory using the normal Macintosh memory calls. You may use the area pointed to by UserDatPtr for any scratch memory you need. The
SNMP Manager has preallocated this area for you according to the sizes you set in aWritebufsize. The destination socket is the same block
as was passed in on the read as the source socket, the source socket is your initialized fRequestSocketPtr, the packetPtr points to the
SNMP data to put on the wire. You must return immediately from the call to aWriteProc(). After the write completes you should fill in the
result, set the freeFlag to true, and call SNMPWriteDone() so that the SNMP Manager can free up the memory it allocated.

Developer Support Center June 1993

Macintosh Technical Notes

Warning: If the freeFlag is incorrectly set the SNMP Manager will become hopelessly confused.

If your Transport can send Traps it must set the fHandlesResolution field to true. It is strongly encouraged that your transport handle
Traps, if it did not, it would not be fully compliant with the SNMP standard. When a Trap is generated, the SNMP Manager will determine if
the Trap is supposed to be sent to a console that supports your Transport type by looking through the Trap table in the Macintosh System MIB
implemented by the Macintosh Agent. If so, it will issue a call to your aWriteProc() as above, except that the destOpaqueData will
point to a block that the SNMP Manager has procured from the trapDestination field in the Trap Table in the Macintosh Agent. It is up
to you to define how this address will be stored. However, it must be nonvolatile between reboots of the system. For the AppleTalk SNMP
transport, we store the NBP name of the console as specified in the AppleTalk over SNMP RFC. For the TCP SNMP Transport, we store the IP
address of the console in dotted notation The Transport is responsible for turning this address into the wire address of the console. Everything
else is as above. You must return immediately after the call to your aWriteProc() and call SNMPWriteDone() when the Trap write
completes.

The Trap Table is implemented by the Macintosh Agent and is defined in ASN.1 by the Macintosh System MIB as:

TrapRequestEntry ::= SEQUENCE {
trapIndex INTEGER, // unsigned long
trapCommunity MacintoshDisplayString, // opaque data
trapProtocol MacOSType, // four bytes
trapDestination OCTET STRING, // opaque data
trapValidity INTEGER // 1 = valid, 2 = invalid
}

The two fields that an SNMP Transport author must define are the trapProtocol and the trapDestination. The trapProtocol is
compared by the SNMP Manager to the TransportTag and is used to identify which SNMP Transport will be able to resolve the
trapDestination entry and send the Trap. The trapProtocol field must contain the same value that was initialized in the
transportTag field. Some care should be given to the format of the trapDestination as network managers will have to enter these
addresses by hand from a console.

Summary

An SNMP Transport provides an interface between the SNMP Manager and a network layer
of a particular network stack. It must be able to be called at any time, thus cannot depend on
the Macintosh memory calls. A Transport must understand how a Trap destination (console
address) is to be stored in the Macintosh Agent’s Trap Table. This address format must be
stable between reboots of the system and must be resolvable into a network address for the
console. It is the responsibility of the Transport developer to inform network managers of
how to store this address. For IPX, AppleTalk, and OSI, these standards have been specified
in RFCs (Request For Comments). These documents are available on-line off of the Internet
and are maintained in various repositories and formats by the IETF.

Developer Support Center June 1993

Macintosh Technical Notes

Further Reference:
• MacSNMP Programmer’s Guide
• Shared Library Manager Programmer’s Guide
• RFC 1157, A Simple Network Management Protocol (SNMP)
• RFC 1155, Structure and Identification of Management Information for TCP/IP-based

Internets
• RFC 1419, SNMP over AppleTalk, Internet Proposed Standard
• Macintosh System MIB

Developer Support Center June 1993

