
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

AppleShare Q&As
Networking

Revised by: Developer Support Center May 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As this month:
Macintosh AppleShare client version details
Auto-mounting AppleShare 3.0 volumes when a Greeting is enabled

Macintosh AppleShare client version details
Date Written: 12/18/92
Last reviewed: 3/1/93

System 7.0.1 doesn’t seem to correctly display (or display at all) login (greeting) messages
from an AppleShare server. System 7.1 works fine. Is this a known problem, and is there
anything we can do do get the login messages to show up?

Not all Macintosh AppleShare clients support server messages (including the greeting
messages). Every version of the Macintosh AppleShare client released since AppleShare 3.0
has supported server messages. If you install the AppleShare client version 3.0, 7.1 or 3.0.1
on System 7.0, 7.0.1 with or without System 7 Tune-up, you’ll get server greeting messages.

Here’s a list of Macintosh AppleShare client versions in the order they were released (notice
that they aren’t in version order). We’ve listed the important changes made to each version

Developer Support Center May 1993

Macintosh Technical Notes

and listed system software compatibility. (As you might suspect, DTS doesn’t have a
complete list of all minor changes made to every version.)

AppleShare Client version: 2.0
Shipped with: System 6.0.x and AppleShare 2.0

Developer Support Center May 1993

Macintosh Technical Notes

System Software versions: 6.0.x
Maximum AFP version: 2.0
Features: Supports AFP 2.0

AppleShare Client version: 7.0
Shipped with: System 7.0
System Software versions: 7.0
Maximum AFP version: 2.1
Features: Supports required AFP 2.1 features only. Adds
 support for these new File Manager functions:
 PBCreateFileIDRef
 PBDeleteFileIDRef
 PBResolveFileIDRef
 PBExchangeFiles
 PBCatSearch
 PBGetVolMountInfoSize
 PBGetVolMountInfo
 PBVolumeMount (no volume password support)

AppleShare Client version: 7.0.1
Shipped with: System 7.0.1
System Software versions: 7.0 or 7.0.1
Maximum AFP version: 2.1
Features: No changes from version 7.0

AppleShare Client version: 3.0
Shipped with: AppleShare 3.0
System Software versions: System 6.0.4 through 6.0.8, System 7.0 and 7.0.1
Maximum AFP version: 2.1
Features: Added support for server greeting messages.
 Patched the System 6 File Manager to support
 these File Manager functions:
 PBGetVolMountInfoSize
 PBGetVolMountInfo
 PBVolumeMount
 PBVolumeMount now supports volume passwords.

AppleShare Client version: 7.1 and 3.0.1
Shipped with: System 7.1 and AppleShare 3.0.1
System Software versions: System 6.0.4 through 6.0.8, System 7.0, 7.0.1,
 and 7.1
Maximum AFP version: 2.1
Features: Changes made for international support.

Auto-mounting AppleShare 3.0 volumes when a Greeting is enabled
Date Written: 6/5/92
Last reviewed: 3/1/93

Our program calls PBVolumeMount using MPW 3.2.2 interfaces to auto-mount FileShare
and AppleShare servers when performing unattended backups, but if an AppleShare 3.0
server has a Greeting, the backup cannot proceed until the Greeting is dealt with. Is there a
way to auto-mount these volumes which suppresses the Greeting?

To mount a volume with PBVolumeMount and disable the greetings, you need to set bit 0 in
the flags field of the AFPVolMountInfo record. The flags field was marked reserved in
Inside Macintosh Volume VI because the greeting message feature had yet to be released
when

Developer Support Center May 1993

Macintosh Technical Notes

Volume VI was written. The Inside Macintosh: Files book (the revised edition of Inside
Macintosh) documents this flag bit.

One thing you should be aware of is an alias record to an AFP volume created by the Alias
Manager stores the flags information. That is, if you mount a volume with greetings
disabled, create an alias to the volume (or a file or directory on the volume), and then later
mount the volume by resolving the alias, the greeting message will be disabled. If the
volume is mounted with the flags word cleared, any aliases resolved with show greeting
messages (if any).

Here’s a short sample application that mounts a volume with greeting messages disabled:

Program MountVolTest;

USES
 Types,
 Files;

CONST
 kNormalMountFlags = 0;
 kInhibitMsgFlags = 1;

TYPE
 Str8 = STRING[8];

 { I like the following record structure better than }
 { the AFPVolMountInfo struture in Files.p }
 MyAFPVolMountInfo = RECORD
 length: Integer; { length of this record }
 media: VolumeType; { type of media, always AppleShareMediaType }
 flags: Integer; { 0 = normal mount; 1 = no greeting messages }
 nbpInterval: SignedByte; { NBP interval ; 7 is a good choice }
 nbpCount: SignedByte; { NBP count ; 5 is a good choice }
 uamType: Integer; { 1 = 'No User Authent' (guest); }
 { 2 = 'Cleartxt Passwrd'; }
 { 3 = 'Randnum Exchange'; }
 { 6 = '2-Way Randnum exchange' }
 zoneNameOffset: Integer; { offset-record start to zoneName }
 serverNameOffset: Integer; { offset-record start to serverName }
 volNameOffset: Integer; { offset-record start to volName }
 userNameOffset: Integer; { offset-record start to userName }
 userPasswordOffset: Integer; { offset-record start to userPassWord }
 volPasswordOffset: Integer; { offset-record start to volPassWord }
 zoneName: Str31; { server's AppleTalk zone name }
 serverName: Str31; { server name }
 volName: Str27; { volume name }
 userName: Str31; { user name (0 length = guest) }
 userPassWord: Str8; { user password (0 length = no user password) }
 volPassWord: Str8; { volume password (0 length = no volume password) }
 END;

VAR
 gUAMType: Integer;
 gZoneName: Str31;
 gServerName: Str31;
 gVolName: Str27;
 gUserName: Str31;
 gUserPassWord: Str8;
 gVolPassWord: Str8;

 FUNCTION SilentMountAFPVolume: OSErr;
 VAR

Developer Support Center May 1993

Macintosh Technical Notes

 theAFPInfo: MyAFPVolMountInfo;
 pb: HParamBlockRec;
 BEGIN
 WITH theAFPInfo DO
 BEGIN
 length := sizeof(MyAFPVolMountInfo);
 media := AppleShareMediaType;
 flags := kInhibitMsgFlags;
 nbpInterval := 7;
 nbpCount := 5;
 uamType := gUAMType;
 zoneNameOffset := ORD4(@zoneName) - ORD4(@theAFPInfo);
 zoneName := gZoneName;
 serverNameOffset := ORD4(@serverName) - ORD4(@theAFPInfo);
 serverName := gServerName;
 volNameOffset := ORD4(@volName) - ORD4(@theAFPInfo);
 volName := gVolName;
 userNameOffset := ORD4(@userName) - ORD4(@theAFPInfo);
 userName := gUserName;
 userPasswordOffset := ORD4(@userPassWord) - ORD4(@theAFPInfo);
 userPassWord := gUserPassWord;
 volPasswordOffset := ORD4(@volPassWord) - ORD4(@theAFPInfo);
 volPassWord := gVolPassWord;
 END;
 pb.ioBuffer := @theAFPInfo;
 SilentMountAFPVolume := PBVolumeMount(@pb);
 END;

BEGIN
 gUAMType := 1; { mount as guest }
 gZoneName := 'Dev Support Center (DTS)';
 gServerName := 'Briggs';
 gVolName := 'SevenOh';
 gUserName := ''; { guest }
 gUserPassWord := ''; { guest }
 gVolPassWord := ''; { no volume password }
 IF SilentMountAFPVolume <> noErr THEN
 DebugStr('couldn''t mount volume');
END.

Mounting volumes without using aliases
Date Written: 9/25/92
Last reviewed: 11/24/92

How can I mount a volume without using aliases? I get the mounting information, then
attempt to mount the volume. However, the PBVolumeMount call returns an error code.

The PBGetVolMountInfo, PBGetVolMountInfoSize, and PBVolumeMount functions are
currently handled by only the AppleShare external file system (part of the AppleShare
Chooser extension). Those functions are available on AppleShare volumes when the
AppleShare Chooser extension is version 7.0 (system software versions 7.0 and 7.0.1),
version 3.0 (AppleShare 3.0), or version 7.1 (System 7.1). The AppleShare Chooser
extension version 3.0 can be installed on System 6 systems, and then the
PBGetVolMountInfo, PBGetVolMountInfoSize, and PBVolumeMount functions can be used
in System 6. Other file systems may support these functions in the future. The paramErr
error code is returned when these functions aren’t available on a particular volume.

Developer Support Center May 1993

Macintosh Technical Notes

How to tell if someone else has your data file open
Date Written: 7/7/92
Last reviewed: 11/1/92

How can I tell if another person has my data file open? According to Inside Macintosh
Volume IV (pages 148–149), PBGetFInfo will tell you if anyone has a file open by returning
the first access path found in ioFRefNum, but if I have this file already open, it returns
information about myself. I want to be able to tell if anyone else has it open.

If the file is on a local volume, you can index through the open FCBs to find all open
connections to the file. You’ll find your own connection in that list but since you know what
your ioRefNum is, you can ignore that match. For example, the following function will tell
you if someone else has the file specified by myRefNum open. With a small change, you
could have it return the number of other open connections instead of TRUE or FALSE.

FUNCTION OthersHaveItOpen (myRefNum: Integer): Boolean;
 VAR
 err: OSErr;
 fcbPB: FCBPBRec;
 myName: Str255;
 myVRefNum: Integer;
 myDirID: LongInt;
 index: LongInt;
 fileName: Str255;
 found: Boolean;
BEGIN
 fcbPB.ioNamePtr := @myName; { let PBGetFCBInfo fill in the name. }
 fcbPB.ioVRefNum := 0; { look on all volumes. }
 fcbPB.ioRefNum := myRefNum; { use myRefNum to get info. }
 fcbPB.ioFCBIndx := 0; { use ioRefNum instead of ioFCBIndx. }
 err := PBGetFCBInfoSync(@fcbPB); { get the open file’s info. }
 IF err = noErr THEN
 BEGIN
 { save my file’s vRefNum and dirID for matching later. }
 { myName was filled in by PBGetFCBInfo call above. }
 myVRefNum := fcbPB.ioFCBVRefNum;
 myDirID := fcbPB.ioFCBParID;

 { index through the open files on the volume }
 index := 1;
 REPEAT
 fcbPB.ioNamePtr := @fileName;
 fcbPB.ioVRefNum := myVRefNum;
 fcbPB.ioRefNum := 0;
 fcbPB.ioFCBIndx := index;
 err := PBGetFCBInfoSync(@fcbPB);
 IF err = noErr THEN
 { see if there is a match that isn’t myRefNum }
 found := (fileName = myName) AND
 (fcbPB.ioFCBParID = myDirID) AND
 (fcbPB.ioRefNum <> myRefNum)
 ELSE
 found := FALSE; { no matches on errors }
 index := index + 1; { next index position... }
 UNTIL found OR (err <> noErr);

 OthersHaveItOpen := found;

Developer Support Center May 1993

Macintosh Technical Notes

 END
 ELSE
 OthersHaveItOpen := FALSE; { we don’t even have it open! }
END;

On nonlocal volumes (AppleShare volumes), you can use PBHOpenDeny with the deny-read and deny-write permissions to ensure nobody else
can open a file you have open. You can tell which volumes are nonlocal by calling PBHGetVolParms and looking at the value returned in the
GetVolParmsInfo.vMServerAdr field. If that value is 0, the volume is local.

Unmounting volumes shared with Macintosh File Sharing
Date Written: 9/15/92
Last reviewed: 3/10/93

I tried to unmount a volume shared with Macintosh File Sharing from my program using the
following steps: I shut down the file service with the SCShutDown server control call; I call
SCPollServer to make sure the file service is really off (scServerState = SCPSJustDisabled);
then, I call PBUnmountVol to attempt to unmount the volume. It didn’t work because
PBUnmountVol fails with fBsyErr (-47). I broke on the _UnmountVol trap because the
AppleShare PDS file, where the file server keeps the access privilege and share-point
information for the shared volume, was open. Why is AppleShare PDS still open when I’ve
turned the file service off? How can I close it and unmount the volume?

SCPollServer returns the state of the file service, not the file server application (in this case,
File Sharing Extension is the file server application). When SCPollServer returns a server
state of SCPSJustDisabled, the file service is off; however, the file server application may or
may not still be running. The AppleShare PDS file will eventually get closed before the file
server application quits.

There’s an easy way to determine when the File Sharing application has quit (and thus when
the AppleShare PDS file is closed): just use the Process Manager GetNextProcess and
GetProcessInformation calls to find out when File Sharing Extension is no longer running.
The File Sharing Extension application has a processType of 'INIT' and a processSignature
of 'hhgg'. Here’s a function you can use to see if the File Sharing Extension application is
running:

FUNCTION FileSharingAppIsRunning: Boolean;
 CONST
 FileSharingSignature = 'hhgg'; {Macintosh File Sharing}
 VAR
 err: OSErr;
 myPSN: ProcessSerialNumber;
 myPInfoRec: ProcessInfoRec;
BEGIN
 myPSN.highLongOfPSN := 0; {Start at beginning of process list}
 myPSN.lowLongOfPSN := kNoProcess;
 myPInfoRec.processInfoLength := sizeOf(ProcessInfoRec);
 myPInfoRec.processName := NIL; {Don't need process name}
 myPInfoRec.processAppSpec := NIL; {Don't need process location}
 FileSharingAppIsRunning := FALSE; {Haven't found it yet}
 WHILE (GetNextProcess(myPSN) = noErr) DO
 IF GetProcessInformation(myPSN, myPInfoRec) = noErr THEN
 IF (myPInfoRec.processSignature = FileSharingSignature)
 THEN

Developer Support Center May 1993

Macintosh Technical Notes

 FileSharingAppIsRunning := TRUE; {Found it}
END;

After shutting down the file service, your event loop will need to poll with FileSharingAppIsRunning because you must give the file server
application processing time to close files, dispose of memory, and perform other shutdown operations. If you poll with
FileSharingAppIsRunning without giving other processes time, File Sharing will never shut down.

Maximum volumes for file sharing
Date Written: 3/9/92
Last reviewed: 8/1/92

In the past I’ve been able to file share more volumes off my Macintosh SCSI storage devices
than I can with System 7. Now I get an alert saying: “One or more items could not be shared
because not all volumes are available for file sharing.” Please advise as to what the problem
might be.

Macintosh File Sharing will only prepare for sharing the first 10 volumes it sees (it
enumerates the volume list with PBHGetVInfo). The volumes you can’t share will usually
be the ones mounted last. The reason you used to be able to share another set of volumes
probably has to do with some change you’ve made (like changing the boot volume or a
volume’s SCSI ID number).

So, you’ve just hit the limits of File Sharing. The solution to your problem is to use
AppleShare 3.0—it will share up to 50 volumes. File Sharing wasn’t intended to be the end-
all in file servers; it was designed for individuals who want to occasionally share files with a
small number of other users. Here are some limits to File Sharing that you should note:

• The number of users and groups in the Users & Groups Data File is limited to 100 total.
(The limit with AppleShare 3.0 is 8192 total.)

• The number of users that can be logged in at one time is 10 (this doesn’t count the owner
of the system, one remote connection is always reserved for the owner of the system). (The
limit with AppleShare 3.0 is 120.)

• The number of share points available for regular users is 10. (The limit with AppleShare
3.0 is 50.)

• The number of sharable volumes (what the owner sees when he or she logs in remotely and
what can be shared or partially shared) is 10. (The limit with AppleShare 3.0 is 50.)

AppleShare 3.0 also supports many other user (for example, server messages), security, and
developer features (server control calls and the server event mechanism) not supported by
Macintosh File Sharing.

AppleShare user limit
Date Written: 11/16/90
Last reviewed: 12/19/90

Developer Support Center May 1993

Macintosh Technical Notes

What is the maximum number of users that can be logged in to any one AppleShare file
server? What can we do to increase the limit? Will upgrading to AppleTalk Phase II help? Is
there an upgrade to the AppleShare 2.0.1 software?

AppleShare currently has a limit of 50 simultaneous users. This is a limitation in the
software and is not related to AppleTalk. Changing from AppleTalk Phase I to Phase II will
not change anything. The next version of AppleShare might raise this limitation. We do not
have any projected dates for a release of the next version of AppleShare. You may want to
periodically check with APDA for any update or new release.

Maximum number of users supported by AppleShare for each CPU
Date Written: 5/3/89
Last reviewed: 11/21/90

What is the maximum number of users supported by AppleShare? Does this number change
based on the type of CPU being used for the server?

The following chart lists some current AppleShare limits (AppleShare 1.1, 2.0, and 2.01)
which are based upon the chosen server platform and memory configuration. The limits that
otherwise might be present on a workstation are still in effect, and are not affected by the
workstation being logged in to an AppleShare server. These limits will change in the future.

Server machine is Macintosh Plus, SE, or II with 1 MB:

 Number of users: 25
 Number of locked ranges: 1000
 Number of open files: 80
 Number of volumes: 16

Server machine is Macintosh II with more than 1 MB:

 Number of users: 50
 Number of locked ranges: 2000
 Number of open files: 160
 Number of volumes: 16

X-Ref:
Macintosh Technical Note “AppleShare 1.1 and 2.0 Limits”

Macintosh file system active ranges
Date Written: 3/18/91

Developer Support Center May 1993

Macintosh Technical Notes

Last reviewed: 6/7/91

How many active ranges can a Macintosh application have on a shared file? If the answer is
more than one, is the limit per application or per machine? If two ranges overlap, are they
joined into one range? Can an application nest ranges? For example, if an application’s user
performs an action that forces a record to be locked and later the application locks the full
range of the file, does the initial record lock disappear?

Developer Support Center May 1993

Macintosh Technical Notes

The only way to determine the limit is to hit the limit and get a NoMoreLocks error. The
number of range locks supported is a limit of the server platform, and that limit is shared by
all users of the server (at least it is with Apple’s AppleShare server software). With Apple’s
server-based version of AppleShare, approximately 40 locks per user are allowed (for
example, if the server allows 25 users, there are 1000 locked ranges total; if the server allows
50 users, there are 2000 locked ranges total; and with File Sharing running under System
7.0, approximately 20 locks are allowed per user). Other vendors may allow more or fewer
locked ranges on their implementations of an AppleTalk Filing Protocol (AFP) server. Notice
that the numbers given are per user, not per application. It’s assumed that a user probably
won’t need more than a few locks at a time on a single file.

You cannot have range locks that overlap. You’ll get a RangeOverlap error from AFP. All the
rules for range locking can be found in the AFP chapter of Inside AppleTalk (page 13-56).
Additional information on AppleShare limits is available on the latest Developer CD Series
disc.

The Macintosh Technical Note “Lock, Unlock the Range” covers several important details
about PBLockRange and PBUnlockRange that are not in Inside Macintosh.

AppleShare open file limit
Date Written: 10/8/91
Last reviewed: 10/8/91

On an AppleShare 2.0 File Server platform, the only application that can access files outside
of the Server Folder (that is, the System Folder) is the file server application. AppleShare
Foreground applications (described in the Macintosh Tech Note “AppleShare Foreground
Applications” are the only other applications that should be running on a server and they can
only access files inside the Server Folder. All file forks (referred to as files from here on)
opened by remote AppleShare workstations are opened by the File Server application.

The File Server application will open a file only one time. All access to that file from any
number of workstations will use the single access path the File Server has opened. Only
when all workstations have closed the file does the File Server really close the file on the
server. So, that means only one FCB is used on the server per open file, even if 50 users have
shared access to that file.

The File Server application handles all access control to an open file using the AppleTalk
Filing Protocol (AFP) deny-mode permission model. The only reason a user won’t be able to
open an access path to a file on a server is if another user has opened that file with a deny-
mode that conflicts with the second user’s request, or the user does not have the access rights
needed to open files in the file’s parent directory or directory ancestors. The AFP deny-mode
permission model is described briefly in Inside Macintosh Volume V, File Manager

Developer Support Center May 1993

Macintosh Technical Notes

Extensions in a Shared Environment, and in detail in the AppleTalk Filing Protocol chapter
of Inside AppleTalk.

Developer Support Center May 1993

Macintosh Technical Notes

As noted in the Macintosh Tech Note “AppleShare 1.1 and 2.0 Limits,” the maximum
number of open file forks on an AppleShare 2.0 server is either 80 on a 1 MB MC68000
server platform, or 160 on a server platform with more than 1 MB and a MC68020 or greater
processor. That figure includes the number of files kept open by the system and the file
server application. If an AppleShare Foreground application is running on the server (for
example, the AppleShare Print Server), then any files it may have open count against the
maximum, too. The same can be said for open desk accessories. This Tech Note currently
doesn’t say anything about those files counting towards the limit. If the 160 (or 80) file limit
is a problem, you can use the “Up Your FCBs” INIT to bump the number available up to the
maximum (342) allowed by the File Manager. “Up Your FCBs” can be found on AppleLink
in the Developer Support: Developer Technical Support: Hacks folder.

Software-selecting an AppleShare volume
Date Written: 10/23/90
Last reviewed: 2/20/91

Is there any source code available for mounting/unmounting AppleShare volumes?

There are actually a couple of ways to select an AppleShare volume. You could use the
Choose tool in MPW that accomplishes this, or you can do it with aliases under System 7.
Other than the MPW tool, there is no other supported way of doing this under pre-7.0
systems; there are no current hooks to allow easy mounting of AppleShare volumes
programmatically. It gets pretty nasty trying to figure out everything that is necessary to
accomplish this, which is why people here pretty much stay away from this as well. Also,
some low-level stuff may be proprietary, which is why the tool is supplied for developers.
The Choose tool is described in the MPW docs. It should be pretty straightforward to use.

2.0.1 PBHGetDirAccess and PutDirAccess restrictions
Date Written: 12/5/90
Last reviewed: 1/16/91

If a volume is connected to an AppleShare server, but is not an AppleShare volume, will the
PBHGetDirAccess (and PutDirAccess) function work on it? Can an INIT on the server make
these calls?

For AppleShare 2.0.1, the INIT cannot make these calls on non-file server volumes. In future
versions, the PBHGetDirAccess and PutDirAccess calls can safely be made on all volumes
connected.

Server Move & Rename folder

Developer Support Center May 1993

Macintosh Technical Notes

Date Written: 12/5/90
Last reviewed: 1/16/91

A folder is created in the Server Folder called “…Move & Rename.” What is this and what
are its contents? Should it be backed up? Are there any other temporary folders and files that
might need to be backed up?

Developer Support Center May 1993

Macintosh Technical Notes

It’s the “$01$02$03Move & Rename” folder that AppleShare 2.0.1 and future versions
create for the two-step process of moving and renaming a file or a folder, a feature that is not
provided via HFS. It should be backed up, but in general will not contain anything. (It has
something in it only for a brief instant and only if the server has IBM PCs or some other
computer that uses this call. Macintosh systems don’t.) It needs to be backed up for 2.0.1 so
that the folder is there if the server is restored. (Otherwise, Admin will have to be run to
create a new one, a somewhat disconcerting action to perform after completely restoring a
file server.)

How to tell if application’s running on a server
Date Written: 12/5/90
Last reviewed: 1/16/91

What is the best way to determine if a Macintosh application is running on a server?

For 2.0.1 you can test the longword at $B50. If it is 0 or -1, the server is not running. If it
isn’t—that is, it’s a real address—then the server is either starting up, or is running. There
might be a hook available in future versions of AppleShare that your process can hook into.

Detecting AppleTalk being closed down by user
Date Written: 12/12/90
Last reviewed: 1/17/90

How do I detect that a user has closed down my AppleTalk connection (by turning
AppleTalk off from the Chooser or by changing network connections from the Network
control panel)?

The AppleTalk Transition Queue provides a means to determine when the AppleTalk drivers
change status or when they might be closed in the very near future. The Transition Queue
informs its clients (everyone who has asked to be added to the queue) each time the state of
the .MPP driver changes state (opened or closed) or is about to change state.

The AppleTalk Transition Queue is documented in Inside Macintosh Volume VI, Chapter 32
(The AppleTalk Manager) and is also documented in the Macintosh AppleTalk Connections
Programmer’s Guide, Chapter 3 (Calls to the LAP Manager), available from APDA.

Purpose of AppleShare SP file
Date Written: 3/14/91
Last reviewed: 4/29/91

Developer Support Center May 1993

Macintosh Technical Notes

What is the file “AppleShare SP” and what does it do? The AppleShare File Server seems to
run without it, and it reduces the alert sound to just a beep even when the server is not
running on that computer. Is the file really needed?

You do need the AppleShare SP INIT on your file server. The AppleShare SP (Small Patch)
INIT is designed to correct a minor incompatibility between AppleShare 2.0x and the Sound
Manager. The INIT forces the Macintosh to use the “Simple Beep” sound at all times.
System 7.0 file sharing and future versions of AppleShare do not need the INIT.

Macintosh EOF in an AppleShare environment

Developer Support Center May 1993

Macintosh Technical Notes

Date Written: 3/18/91
Last reviewed: 6/10/91

I ran into the following when updating the logical end of file (EOF) of a shared file:
Application A and Application B have access to a file under AppleShare. Each is using
fsRdWrShPerm. When Application A changes the logical EOF, Application B doesn’t seem
to notice that EOF has changed until Application B calls GetEOF. Is there a better way to
make Application B aware of the change of logical EOF?

You’ve made a correct assumption that the correct way to keep track of EOF in an
AppleShare environment is to ask for it. When you open a file, the AppleShare workstation
code translates the Macintosh operating system Open call to the AFP (AppleTalk Filing
Protocol) FPOpenFork call, and sets the bits in the bitmap parameter to current length of the
fork opened (in the case of Open, the data fork). It then uses THAT as the EOF for future
operations unless it gets an update from the server. Because the server does not constantly
update everyone who has the file open, you have to ask to find if another user (or
application) has made a change. Just remember that using GetEOF will only get you the
EOF at that instant in time. Someone else sharing the file could change EOF right after you
check it.

The PBLockRange function can be used by an AppleShare aware application to prevent
another user from appending data to a shared file while you are appending data. For
example:

 paramBlock.ioRefNum := myFileRef;
 err := PBGetEOF(@paramBlock, FALSE); {get the current EOF}
 {check for errors in a real application}

 oldEOF := paramBlock.ioMisc; {save the current EOF}
 paramBlock.ioReqCount := -1; {$FFFFFFFF}
 paramBlock.ioPosMode := fsFromStart;
 paramBlock.ioPosOffset := oldEOF; {start range lock at current EOF}
 err := PCLockRange(@paramBlock, FALSE); {and lock the rest of the fork}
 {check for errors in a real application}

 {now you can append data to the file}

 paramBlock.ioRefNum := myFileRef;
 paramBlock.ioReqCount := -1; {$FFFFFFFF}
 paramBlock.ioPosMode := fsFromStart;
 paramBlock.ioPosOffset := oldEOF;
 err := PCUnlockRange(@paramBlock, FALSE); {unlock the locked range}
 {check for errors in a real application}

PBLockRange can also be used when you need to truncate a shared file. Locking the portion of the file you’re about to truncate prevents another
user from using that portion during the truncation process. For example:

 paramBlock.ioRefNum := myFileRef;
 paramBlock.ioReqCount := -1; {$FFFFFFFF}
 paramBlock.ioPosMode := fsFromStart;
 paramBlock.ioPosOffset := theNewEOF; {start lock at truncation point}
 err := PCLockRange(@paramBlock, FALSE); {and lock the rest of the fork}
 {check for errors in a real application}

 paramBlock.ioMisc:= theNewEOF;
 err := PBSetEOF(@paramBlock, FALSE); {set the new EOF (truncate the file)}

Developer Support Center May 1993

Macintosh Technical Notes

 {check for errors in a real application}

Developer Support Center May 1993

Macintosh Technical Notes

 paramBlock.ioReqCount := -1; {$FFFFFFFF}
 paramBlock.ioPosMode := fsFromStart;
 paramBlock.ioPosOffset := theNewEOF;
 err := PCUnlockRange(@paramBlock, FALSE); {unlock the locked range}
 {check for errors in a real application}

The entire fork can be locked with:

 paramBlock.ioRefNum := myFileRef;
 paramBlock.ioReqCount := -1; {$FFFFFFFF}
 paramBlock.ioPosMode := fsFromStart;
 paramBlock.ioPosOffset := 0; {lock from the beginning}
 err := PCLockRange(@paramBlock, FALSE); {lock the whole fork}
 {check for errors in a real application}

 {do your thing}

 paramBlock.ioRefNum := myFileRef;
 paramBlock.ioReqCount := -1; {$FFFFFFFF}
 paramBlock.ioPosMode := fsFromStart;
 paramBlock.ioPosOffset := 0; {unlock from the beginning}
 err := PCUnlockRange(@paramBlock, FALSE); {unlock the whole fork}
 {check for errors in a real application}

Macintosh AppleShare versus file sharing capabilities
Date Written: 4/3/91
Last reviewed: 6/21/91

We are using the file sharing capabilities of Macintosh systems with System 7.0 to make
them mini file servers. Where can information that details the features of both AppleShare
and file sharing be found? We are considering using only file sharing in the office if it is
capable of providing most of what AppleShare provides.

Information on file sharing can be found in the System 7 Personal Upgrade Kit and in Inside
Macintosh Volume VI, on your Developer CD Series disc. The maximum number of
concurrent connections allowed on a Macintosh using file sharing is 10. The performance of
an AppleShare file server (the standard kind of server) is approximately 25 percent better
than a similar configuration of Macintosh computers acting as a file sharing server.

System 7 and AppleTalk Internet Router
Date Written: 9/17/91
Last reviewed: 11/25/91

We’ve tried to run the Apple Internet Router with our System 7 file sharing servers. There
does not appear to be support for multiple networks. Is there some solution to this?

The AppleTalk Internet Router and System 7 are compatible, with two exceptions: virtual
memory and 32-bit addressing. You need to drag-install it instead of using the Installer. The
Installer script on the router disk will put the parts of the router in the wrong place. Here are
the steps to drag-install the router:
Developer Support Center May 1993

Macintosh Technical Notes

Developer Support Center May 1993

Macintosh Technical Notes

1. Drag the files Router, LocalTalk (Built-in), and LocalTalk (Modem) from the System
Folder on the AppleTalk Internet Router disk to the closed System Folder on the disk
where you want to install. System 7 will automatically put the Router file in the System
Folder, and put the LocalTalk (Built-in) and LocalTalk (Modem) files in the Extensions
folder in the System Folder.

2. Under System 7, open the System file on the AppleTalk Internet Router disk (double-
click the System file). A window will open showing the desk accessories, fonts, and
sounds that are part of that System file. Drag the Router desk accessory from that window
to the closed System Folder on the disk where you want to install. System 7 will
automatically put the Router desk accessory in the Apple Menu Items folder in the
System folder.

3. Reboot.

That’s all there is to it.

X-Ref:
“System 7: Installing Internet Router 2.0,” AppleLink Tech Info Library

TMGetTermEnvirons envVersTooBig error
Date Written: 9/17/91
Last reviewed: 9/17/91

A call made to TMGetTermEnvirons returns -5502 or envVersTooBig. The call is made with
a good terminal handle started from your TTY tool. What’s wrong? How do I fix it?

When you call TMGetTermEnvirons, the TermEnvironRec that you hand it a pointer to must
have initialized the version field with curTermEnvRecVers. The following will work
properly:

void getTEnvirons(TermHandle aTerm)
{ ...
 TermEnvironRec tEnv;
 TMErr err;
 ...
 tEnv.version = curTermEnvRecVers;
 err = TMGetTermEnvirons(aTerm,&tEnv);
 /* check for errors, do whatever... */
 ...
}

This is consistent with most other Macintosh “get environment” calls such as SysEnvirons, and is documented (somewhat unclearly) at the top
of page 113 in Inside the Macintosh Communications Toolbox.

Modifying a server volume’s backup date-time from a workstation
Date Written: 12/5/91
Last reviewed: 1/27/92
Developer Support Center May 1993

Macintosh Technical Notes

Developer Support Center May 1993

Macintosh Technical Notes

How can I change the backup date of a remote AppleShare volume? When I get the volume
information with PBHGetVInfo (followed by a PBFlushVol), change the backup date field,
and call PBSetVInfo, the date is changed in my local copy of the volume information, but
when I unmount and remount the AppleShare volume, the original backup date is still there.

On an AppleTalk Filing Protocol (AFP) file server, two of the volume date-time values, the
volume creation date-time and the volume modification date-time, are managed solely by the
server and can’t be changed by workstations. The third volume date-time value, the volume
backup date-time, can be set by a workstation with only one AFP call, afpSetVolParms.
However, the File Manager, through the Macintosh AppleShare external file system, does
not give an application a way to make the afpSetVolParms call. That leaves only one way
you can change a server volume’s backup date-time from a workstation: You’ll have to use
the AppleTalk .XPP driver to access the server directly.

Using the .XPP driver to change the backup date-time involves these steps:

• Open the .XPP driver and get the driver reference number.

• Use the afpLogin variant of AFPCommand to start a session and log in to the server. If the
“Randnum Exchange” or “2-Way Randnum Exchange” user authentication methods are
used, you will receive an AuthContinue error (-5001) from the afpLogin call and you’ll
have to follow up the afpLogin call with an afpLoginCont call (through AFPCommand
again) to finish the log-in sequence.

• Once you’re logged in to the server, you need make an afpGetSrvrParms call to get a list of
volumes and to find out if the volume you’re interested in has a password associated with
it.

• Then you need to call afpOpenVol with the volume name (and password if there is one).
You can have afpOpenVol give you the volume’s current backup date-time and other
volume information if you set the appropriate bits in the bitmap parameter passed to
afpOpenVol.

• Now that you’re logged in to the server and have the volume opened, you can make an
afpSetVolParms call to change the backup date-time.

• After changing backup date-time, you need to close the volume with afpCloseVol, and then
log off the server with afpLogout.

The .XPP driver’s AFP commands are described in Inside Macintosh Volume V in the
AppleTalk chapter (pages V-524 through V-550). For a description of the AFP calls, user
authentication methods, and other AFP information, you need to look in the AppleTalk Filing
Protocol chapter of Inside AppleTalk. If you decide you want to really use the .XPP driver as
described above and want to use the 2-Way Randnum Exchange user authentication method

Developer Support Center May 1993

Macintosh Technical Notes

supported by System 7 File Sharing and AppleShare 3.0, contact DTS for a preliminary
version of the AFP 2.1 specification that describes that new authentication method.

AppleShare Print Server 3.0 and AppleTalk self-send
Date Written: 2/28/92
Last reviewed: 2/28/92

Developer Support Center May 1993

Macintosh Technical Notes

When I issue a PAPWrite from my application to the AppleShare Print Server 3.0 running on
the same Macintosh, PAPWrite locks up in a tight loop. If I send to a LaserWriter or the
AppleShare Print Server 3.0 running on a different Macintosh system, all works well. The
LaserWriter Font Utility 7.0 behaves the same as my application: It works if the spooler is
remote and locks up if the spooler is local.

You’re probably calling PAPWrite and then not giving up any system time needed by the
print server to process the data you sent to it. That just doesn’t work in the self-send
environment. For example, the following won’t work:

 PAPWrite(refNum, writeBuff, dataSize, eof, compState);
 WHILE compState = 1 DO
 ; { do nothing -- wait for PAPWrite to complete }

What your application should do is drop back into its event loop after making the PAPWrite call and then poll compState to see when the
PAPWrite completes. By calling WaitNextEvent from your event loop, your application gives the print server application the time it needs to
receive and process the data you sent to it.

The LaserWriter Font Utility wasn’t designed to work with print servers and will exhibit the same problem your application is experiencing.

System 6 & 7 Chooser AppleShare differences
Date Written: 2/28/92
Last reviewed: 2/1/93

What’s the limit on the number of servers displayable in the Chooser as well as the
maximum number of AppleShare mount points per server? Are the System 7 limits the same
as for System 6?

Most System 6 Chooser limitations have been eliminated with the System 7 Chooser. Here’s
how each version operates:

System 6 Chooser:

The 6.0 Chooser’s LookupName call to find AppleTalk entities is made asynchronously
where retBuffPtr points to a 512-byte buffer and maxToGet = 32 (this is the 32-device limit
per device type you may have heard of). The important thing to note here is the return buffer
size (512 bytes). For example, if you are looking for AppleShare servers in your own zone
(the “*” zone), the number of overhead bytes per NBP tuple returned will be 16 (5 for the
entity address, 10 for the string “AFPServer”, and 2 for the string “*”). If there were 20
servers in your zone, 340 bytes of the 512-byte buffer are used before you start counting the
space used by the server names. That leaves 172 bytes for the names or around 8 characters
per name (1 length byte plus 8 characters). If the average server name is longer than that,
there won’t be enough room to collect all of the NBP replies and one or more servers won’t
show up in the list.

Once a server is selected and the user is authenticated, the AppleShare 2.0 RDEV uses

Developer Support Center May 1993

Macintosh Technical Notes

afpGetSrvrParms to ask for the list of server volumes. The AppleShare 2.0 RDEV uses a
512-byte buffer for the replies. After the overhead used by the AppleTalk protocol headers,
that’s enough room for around 16 volumes with full-sized names; more if the names aren’t
full-sized.

System 7 Chooser:

Developer Support Center May 1993

Macintosh Technical Notes

The System 7.0 Chooser fixes the problem with the NBP buffer completely. It dynamically
sizes the NBP LookupName return buffer. So, if numGotten => maxToGet, it will make the
return buffer larger and increase the value of maxToGet. The System 7.0 Chooser starts with
retBuffSize=1024 and maxToGet=256.

The AppleShare 7.0 and 3.0 RDEVs increased the size of the afpGetSrvrParms reply buffer
to 1728 bytes. That’s still not big enough to get 255 volumes (the AFP limit) with full-sized
names. However, it is big enough for 50 volumes with full-sized names, the maximum
number of volumes supported by AppleShare 3.0.

For both System 6 and 7 Choosers, the only limits imposed on the zone are the List Manager
limits of 32K of data per list. If each zone name were 33 characters, for example, that would
give you space for roughly 1000 zones.

Server and workstation clock times
Date Written: 2/25/92
Last reviewed: 4/22/92

If I hook up two Macintosh computers over LocalTalk, turn on Personal File Share, mount
one computer’s volume on the other, and make changes to files on each machine, the Get
Info mod dates are not adjusted. In my case, machine A’s clock said 10:20 and machine B’s
said 10:30. From machine B, I made a change to a file on machine A. Then, still on machine
B, I did a Get Info on that machine A file. Its mod date said 10:20. I then instantly made a
change to a file (from machine B still) on machine B and did a Get Info on it and its mod
date was 10:30. In other words, the mod dates were not adjusted and reflected the time of the
machine each file was located on. Am I misinterpreting something?

The way the workstation computes the server time is not quite as straightforward as is
documented in Inside AppleTalk, 2nd edition, page 13-21. When a workstation logs onto a
server (File Share or AppleShare), the difference between the workstation’s clock and the
server’s clock (s – w) is computed. All subsequent server date/time values as seen by the
workstation are computed by adding this difference (s – w) to the server data/time
(workstation time = server time + (s – w)).

However, it looks as if the Macintosh workstation also uses the following algorithm to
compute the adjusted server time:

• if the offset (s – w) is 15 minutes or less, report the server time as is
• if the offset (s – w) is greater than 15 minutes, compute the offset rounded up to the nearest

30 minute interval.

For example, let’s say you have two machines, A and B. B logs on to A. B then goes and

Developer Support Center May 1993

Macintosh Technical Notes

modifies a file on A. Listed below are the clock times that the modification took place, and
in the rightmost column is the mod. time that B would see for the modified file on A.

 A time B time mod. time as seen by B
 ------ ------ ----------------------
 11:09 11:22 11:09
 11:04 11:20 11:34
 4:34 7:14 7:05

Developer Support Center May 1993

Macintosh Technical Notes

 11:22 11:53 11:52

In the first example, the difference (s – w) is (11:22 – 11:09) = 13 minutes. Since 13 is less than 15 minutes, B sees the server time as is. In the
second example, (s – w) is (11:20 – 11:04) = 16 minutes which is greater than 15 minutes so compute the offset to the nearest 30 minute interval
(30 – 16) = 14, and 11:20 + 14 = 11:34. In the third example, (s – w) is (7:14 – 4:34) = 2:40 which is greater than 15 minutes so compute the
offset to the nearest 30 minute interval (30-40) = –10, and 7:14 – 10 = 7:05. In the last example, (s – w) is (11:53 – 11:22) = 31 minutes so
compute the offset to the nearest 30 minute interval 30 – 31 = –1, and 11:53 – 1 = 11:52.

You are probably asking why the 15-minute cushion and why round to the nearest 30-minute interval? Possibly it’s an attempt to approximate a
modification time somewhere in between the workstation and server times.

AppleShare PC 2.0 changes
Date Written: 11/17/89
Last reviewed: 11/21/90

What are the new changes to AppleShare PC 2.0?

AppleShare PC 2.0 was designed to affect developers in a minimal way, so there were some
very MINOR changes to the way programmers interact with AppleShare PC 2.0.

• The Int60 mechanism no longer exists; now far calls to the code are made.
• DS:BX no longer contains the parameter block pointer; ES:BX does.
• Commands 4, 5, 6, and 7 are no longer supported.
• The Open Data-Link Interface (ODI) was used and adhered to in the design of AppleShare

PC 2.0.
• Compat.com was created and included to make all previous applications useable and

compatible with AppleShare PC 2.0.

If your application uses any of these older methods (as outlined in the “LocalTalk PC Card
and Driver Preliminary Notes”), compat.com “translates” the interface to one that
AppleShare 2.0 is able to use (that is, put DS:BX into ES:BX, make a far call to the code,
and call different commands that replace commands 4, 5, 6, and 7).

ODI, which was codeveloped with Novell, makes it possible for many different cards with
different drivers to be usable by different upper-layer protocols. If there are ODI drivers for a
given TokenRing/Ethernet/LocalTalk card, AppleShare PC 2.0 will work over
TokenTalk/EtherTalk/LocalTalk. Currently, there are several drivers provided with
AppleShare PC 2.0: IBM TokenRing drivers (IBM TokenRing cards—short, long, and
MCA), two Ethernet drivers (EtherLink MC Adapter card and EtherLink II card), and the
LocalTalk PC card driver. For more information about ODI, and/or becoming an ODI
developer, contact Scott Lemon at Novell.

To use the AppleTalk protocol stack (included as part of AppleShare PC 2.0), you need to
reference the “LocalTalk PC Card and Driver Preliminary Notes” (August 3, 1987). These
notes detail the AppleTalk stack and the PC interfaces to the stack. The “LocalTalk PC Card
and Driver Preliminary Notes” document is available through APDA (Order #M7055).

Developer Support Center May 1993

Macintosh Technical Notes

AppleShare PC 2.0 supports EtherTalk and TokenTalk
Date Written: 11/17/89
Last reviewed: 11/21/90

Does AppleShare PC support EtherTalk? TokenTalk?

AppleShare PC version 2.0 supports both EtherTalk and TokenTalk. Cards that work include:

• 3Com’s EtherLink and EtherLink/MC Ethernet cards
• IBM’s TokenRing cards (long, short, and MCA)
• DayStar Digital’s LocalTalk board

Accessing the Server Folder on the AppleShare file server
Date Written: 6/29/90
Last reviewed: 11/21/90

I am trying to access the Server Folder on an AppleShare file server from my program. I
have tried AFP (AppleTalk Filing Protocol) calls OpenDir and EnumerateCatalog, but they
cannot access the Server Folder. Is there another method to access a Server Folder?

No. Access to the Server Folder of an AppleShare server is not possible except during local
maintenance of the AppleShare server. It is then only accessible through the Finder while the
AppleShare server application is not running.

PBCatSearch on AppleShare volumes
Date Written: 3/11/92
Last reviewed: 5/21/92

PBCatSearch acts differently on a local hard disk than on an AppleShare volume. Say, after a
couple of successful PBCatSearch operations on a volume, the user modifies the directory by
duplicating, renaming, or removing a file. An error is returned, and (theoretically), the search
can continue. If you do this on a local hard disk, everything is cool. After making the
change, the next PBCatSearch call returns -1304 (catChangedErr), but subsequent calls
return noErr and continue to find files. However, if you run this on an AppleShare 3.0
volume, the first call after the change returns -5037 (afpCatalogChanged), but all following
calls continue to return that error, and “find” the same file that was found on the last good
attempt. So what gives?

Developer Support Center May 1993

Macintosh Technical Notes

The afpCatSearch AFP call does not map exactly to the File Manager’s PBCatSearch call.
This isn’t uncommon in File Manager to AFP translations because AFP calls are designed to
be more general so they can be implemented on platforms other than the Macintosh. In some
cases, AFP keeps more information than the Macintosh requires (for example, ProDOS file
type mapping information for Apple II systems and short names for DOS workstations) and
in other cases Macintosh-specific information is “generated” by the Macintosh workstation
software (for example, allocation block sizes in the Volume Control Block). Here are
specific differences I’ve found between PBCatSearch and afpCatSearch:

Developer Support Center May 1993

Macintosh Technical Notes

• afpCatSearch and the AppleShare workstation implementation of PBCatSearch do not use
ioSearchTime. The AppleShare 3.0 server searches for up to 1 second or 4 matches
maximum and then returns to the workstation with whatever matches (0-4) are found
within areas of the disk that user has access to. The AppleShare workstation keeps asking
for the number of matches requested minus the total matches returned until it gets the
number requested, or the server returns an error.

• AFP 2.1 does not support both physical and logical fork lengths. If a PBCatSearch call uses
fork lengths, the upper bound (in the afpCatSearch Spec2 field which comes from the
ioSearchInfo2 record) becomes the maximum of the logical and physical lengths and the
lower bound (in the afpCatSearch Spec1 field, which comes from the ioSearchInfo1
record) becomes the minimum of the logical and physical lengths.

• AFP 2.1 does not support the fsSBNegate ioSearchBits bit. If a PBCatSearch call uses
fsSBNegate, that bit will be ignored by the AppleShare workstation and server and you’ll
get back exactly the opposite of what you expected. This is an unfortunate omission from
AFP 2.1. Because it is implemented this way in at least two shipping servers, the
fsSBNegate cannot be added without a revision to the AFP specification.

• The File Manager PBCatSearch call doesn’t return any matches when a catChangedErr
occurs. However, it does return an updated ioCatPosition record which can be used to
make another PBCatSearch call (this may result in your search either missing a few entries
or getting a few duplicate matches). afpCatSearch does not work that way. afpCatSearch
only returns AFP reply data (which includes the ioCatPosition record) if the FPError is
noErr or afpEofError. The current ioCatPosition record is not returned to the workstation if
any other error occurs. So, if an afpCatalogChanged error occurs, the ioCatPosition record
is not returned to the workstation and the workstation returns ioCatPosition to the caller of
PBCatSearch unchanged. Since the ioCatPosition record is still invalid, calling
PBCatSearch again with the same invalid ioCatPosition record will just return the
afpCatalogChanged error again. The conclusion from this explanation is that you can
continue a search if PBCatSearch returns a result of noErr or catChangedErr. The search
completed if PBCatSearch returns a result of eofErr. All other results from PBCatSearch
(including afpCatalogChanged) indicate that you must restart the search from the
beginning by clearing the initialize field of the ioCatPosition record.

AppleShare Prep file and boot-mounting volumes
Date Written: 8/25/92
Last reviewed: 9/15/92

I have selected AppleShare volumes to mount at system startup by checking the volumes in
the Chooser list. If I’m on a nonextended network and I call an extended network via
AppleTalk Remote Access and log into a remote server via the Chooser and AppleShare, an
error alert will say “The AppleShare Prep file needed some minor repairs. Some AppleShare

Developer Support Center May 1993

Macintosh Technical Notes

startup information may be lost” and all the information about my local nonextended
network will be cleared out of the AppleShare Prep file, so I loose all my log-in IDs and
passwords for my local servers. The same thing happens going back the other way (extended
to nonextended). Why is this happening?

Developer Support Center May 1993

Macintosh Technical Notes

There are several problems you can run into when you connect two networks (and that’s
what you’re doing when you use AppleTalk Remote Access when you’re already connected
to a network). The problems are usually the result of duplicate names or duplicate node
numbers.

The “boot mount list” (BML) kept in the AppleShare Prep file stores the location of volumes
that you want mounted at boot time. Part of that location is the zone name. If you create
entries to the BML when you aren’t on an extended network (that is, when you have no
zones), the zone name stored in the BML is “*” (“*” is AppleTalk’s shorthand for “this
zone”). If you create entries to the BML when you are on an extended network (that is, when
you have zones), then the zone name stored in the BML is the zone name of the server.

The boot mount code checks the validity of the BML when the system starts up, and the
Choose checks the validity of the BML when it’s opened. If there are no zones, then entries
with zone names other than “*” are cleared out and an alert saying “The AppleShare Prep
file needed some minor repairs. Some AppleShare startup information may be lost” is
displayed because those entries aren’t valid. If there are zones, then entries with zone names
of “*” are cleared out and the alert is displayed because the “*” zone name isn’t a reliable
way to save the zone location of a server on an extended network. The “*” zone isn’t reliable
for storing the zone name because a workstation can easily be moved from zone to zone,
keeping the same NBP object and NBP type names. This is especially true with AppleTalk
phase 2, which supports multiple zones on a single network (for example, multiple zones on
the same piece of Ethernet cable).

The workaround for boot-mounting volumes is to create alias files to the file servers you
want to mount at boot time and then drop those alias files into the Startup folder inside your
System Folder. The only drawback to this is aliases don’t save the user’s password. If you
need boot-mounted volumes without the password dialog, you’ll have to use guest access.

Developer Support Center May 1993

