
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Dictionary Downloading
Imaging

Written by: Zz Zimmerman April 1991

This technical note discusses a method for downloading PostScript dictionaries
automatically using the LaserWriter driver. It will also provide the format and use of the
PREC(103) resource. It will also describe some problems with the now obsolete PREC(201)
resource. If you are using PostScript dictionaries, or either of these resources, you should
definitely read this note.

Introduction

Although many picture comments have been added to support the features of PostScript that
are missing from Quickdraw, many developers have still taken to sending PostScript directly
from their applications. As the use and complexity of this PostScript code increases, more
and more developers are finding it necessary to define and use their own PostScript
dictionaries. PostScript dictionaries are basically collections of variables and procedures
that can be predefined, and accessed later. They are used to prevent conflicts between the
symbols used by applications and those used by system software (such as the LaserWriter
driver's LaserPrep dictionary). Unfortunately, because of the LaserWriter drivers habit of
using the PostScript 'save' and 'restore' operators, there are problems with keeping a
PostScript dictionary defined. PostScript definitions made by code sent with the print job
(ie. sent between the calls to PrOpenPage/PrClosePage) will be lost the first time the
LaserWriter driver calls 'restore'. There are a couple of solutions to this problem, but one
that hasn't been documented before involves the use of the PREC(103) resource. If the
LaserWriter driver finds a resource of type PREC with an ID of 103, it will download the
PostScript code to the LaserWriter before performing the initial 'save' operation. This means
that any definitions made by the PostScript code stored in the PREC(103) resource will
remain defined for the duration of the print job, independent of the LaserWriter driver's calls
to save and restore.

Caveats

The PREC(103) method is a great way to get a dictionary downloaded at print time.
Unfortunately, this does not solve the problem for using dictionaries in export files like
PICT. If you insert PostScript code into Quickdraw pictures, the system is not smart enough

Developer Support Center April 1991

Macintosh Technical Notes

to record the PREC(103) code into the picture. Instead, you must record the dictionary using
the standard PostScript picture comments (defined in Technical Note #91, Optimizing for the
LaserWriter–PicComments). You should also use the appropriate PostScript structuring
comments as defined by the Adobe Document Structuring Conventions. If you use the
Adobe comments correctly, an application that is importing your picture will have the option
of

Developer Support Center April 1991

Macintosh Technical Notes

parsing for the procedure set comments, and extracting the dictionary definition to be placed
in a PREC(103) resource at print time.

The next caveat concerns the use of multiple PREC(103) resources. At PrOpenDoc time, the
LaserWriter driver makes one GetResource call to load the resource of type PREC with an
ID of 103. Because the call is a GetResource call (instead of Get1Resource), the PREC can
be stored in any open resource file. To avoid any conflicts, the resource should be stored in
the resource fork of your application, or in the document file that is referencing the
PostScript dictionary. Because the GetResource call is only made once, only the first PREC
resource found by GetResource will be used. Any other PREC(103) resources will be
ignored. As long is this resource is only used by applications, there is no problem since
there can only be one application active at any particular time. If the resource is used by
other elements of the system (ie. desk accessories, drivers, INITs), you can easily run into
the problem of your PREC resource being ignored. The best solution to this problem is to
only use the resource from within an application.

Since the PREC(103) resource is considered part of the print job, the definitions it makes are
lost when the job ends (ie. when the LaserWriter receives EndOfFile from the Macintosh).
Because of this, the code you place in the PREC(103) resource should not attempt changing
any persistent parameters in the printer. The means avoiding the PostScript 'exitserver'
operator. You should also avoid calling other routines that reset the current state of the
printer (ie. initclip, initgraphics, etc.). Use of these operators will have a serious effect on
Quickdraw operations that may be present in the print job.

When the PREC(103) resource was originally introduced, it had a cousin called PREC(201).
PREC(201) was similar to the PREC(103) resource in that it allowed PostScript to be
downloaded to the printer before the actual print job. The difference between the two
resources was that the PREC(201) resource downloaded the PostScript code at the same time
that it downloaded the LaserPrep dictionary, outside of the PostScript 'server loop'. Because
of this, any definitions made by the code in the PREC(201) resource would remain after the
current job. Like the LaserPrep dictionary, the dictionary downloaded in PREC(201) would
remain until the LaserWriter was rebooted (ie. powered off then on again). Although this
feature was useful in some situations, it did have its problems. Not the least of which was
the valuable printer memory consumed by the dictionary that was downloaded. Since the
dictionary remained after the job that required it, subsequent jobs had less memory available
to them. The only way to reclaim the memory was to reboot the printer, and this was not
obvious to naive users. The other problem was introduced when background printing
became available. With background printing enabled, the LaserWriter driver could no longer
count on the PREC(201) resource always being available. Since you could no longer store
the resource in the LaserWriter driver (because of the LaserWriter driver being MultiFinder
compatible - see Learning To Drive for more information), it has to be stored in a separate
resource file. This made it virtually impossible for the LaserWriter driver to find the
resource when it was required. For this reason, the PREC(201) resource is only downloaded
when background printing is turned off.

Developer Support Center April 1991

Macintosh Technical Notes

Needless to say, we don't recommend the use of features that only work in certain situations,
so the PREC(201) resource is now considered unsupported and obsolete. If you are using
the PREC(201) resource, you should be able to revise your application to use the PREC(103)
resource instead, with only a small performance penalty. On the bright side, the PREC(201)
resource will continue to be supported in the foreground through the 7.0 version of the
LaserWriter driver, and most likely, until the new printing architecture becomes available,
giving you plenty of time to revise...

Developer Support Center April 1991

Macintosh Technical Notes

Implementation

The PREC(103) resource can be implemented by simply creating the resource with ResEdit
or Rez, and then storing it in an open resource file at print time. In the case of ResEdit, you
should create a new resource of type PREC with an ID of 103. You should then open the
new resource using the resource template for string ('STR ') resources. You can then type
your PostScript code directly into the resource.

If you would rather keep your PREC definition as a Rez source file with the rest of your
project, you can do this by simply defining the PREC resource type at the top of the file,
followed by an instance of the PREC resource. Consider the following Rez source code:

 /* First the resource type definition: */
 type 'PREC' {
 string;
 };

 /* Now the real resource definition: */
 resource 'PREC' (103) {
 "userdict /mydict 50 dict def";
 };

We begin by defining the resource type as being a string. We then define an instance of the resource with an ID of 103. Finally, we define the
contents of the resource. The PostScript code above basically defines a dictionary named mydict within the userdict dictionary. The mydict
dictionary is defined as having a maximum of 50 elements. Consult the PostScript Language Reference Manual for more information
concerning legal operations on dictionaries.

Conclusion

The PREC(103) is a simple, efficient way to download a PostScript dictionary at print time.
It does not solve the problem of exporting PostScript that references a dictionary into file
formats such as PICT, but it can help. Applications can be revised to extract PostScript
dictionary definitions from files such as PICT and download them at print time using the
PREC(103). It should be noted however that this is not automatic, the application must
parse the picture to get this functionality. Finally, the PREC(201) resource can only be
supported when background printing is disabled, so it is now considered obsolete, and use of
it is unsupported.

Further Reference:
• PostScript Language Reference Manual, Adobe Systems Inc.
• Adobe Document Structuring Conventions, Adobe Systems Inc.
• LaserWriter Reference Manual, Addison-Wesley

PostScript is a registered trademark of Adobe Systems Incorporated.

Developer Support Center April 1991

