
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

pIdle Proc (or how to let users know what’s going on during print
time…)

Imaging

Written by: Pete “Luke” Alexander April 1991

This Technical Note discusses how to defensively program a pIdle procedure to work with
the majority of print drivers in existence today, and how to install it at print time.

Introduction

When using a pIdle procedure at print time, there are a few things that one should remember
to be compatible with the printer drivers that are available today. This Technical Note
discusses installing a pIdle procedure at the right time and the things to remember when
writing one.

Installing The pIdle Proc

Let's start by installing the pIdle procedure at the right time. You must install your pIdle
procedure into the print record before calling PrOpenDoc. If you do not install your pIdle
procedure before your call to PrOpenDoc, the printer driver does not give the application's
pIdle procedure any time. The following code fragments demonstrate installing the pIdle
procedure in the right place:

MPW Pascal

 << more print loop would appear above, see Tech Note #161 for details >>

 {** Install a pointer to your pIdle proc into your print record. **}

 PrintingStatusDialog := GetNewDialog(257, NIL, POINTER(-1));
 thePrRecHdl^^.prJob.pIdleProc := @checkMyPrintDialogButton;

 thePrPort := PrOpenDoc(thePrRecHdl, NIL, NIL);

 << more print loop would follow below, see Tech Note #161 for details >>

MPW C

 << more print loop would appear above, see Tech Note #161 for details >>

 /** Install a pointer to your pIdle proc into your print record. **/

Developer Support Center April 1991

Macintosh Technical Notes

 PrintingStatusDialog = GetNewDialog(257, nil, (WindowPtr) -1);
 (**thePrRecHdl).prJob.pIdleProc = checkMyPrintDialogButton;

 thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);

 << more print loop would follow below, see Tech Note #161 for details >>

For a complete printing loop that handles errors at print time and makes all of the right calls to the Printing Manager, refer to Technical Note
#161, A Print Loop That Cares...

Things To Remember About pIdle Procedures

It is extremely important to design and code your pIdle procedure as defensively as possible,
thereby making sure that it works with as many printer drivers as possible. This section
details a few things to remember when creating pIdle procedures.

Saving And Restoring The Current Port

It is extremely important to save the printer driver’s GrafPort, upon entry to your pIdle
procedure and restore it upon exit. Why? If you do not, the printer driver would draw into
the GrafPort of your dialog box instead of it's GrafPort,which will cause some bad
results. To save the printer’s GrafPort, you should call _GetPort when entering your
procedure. Before you exit your procedure, you would call _SetPort to set the port from
your dialog box back to the printer driver’s GrafPort (i.e., the one you saved with
_GetPort).

Saving And Restoring The Printer Driver’s Resources

If the application changes the resource chain within it's pIdle procedure, you want to save
and restore the printer driver’s resource chain. Why? Some printer drivers assume that their
resource chain does not change, but this may not be true when the driver calls the pIdle
procedure installed by the application at print time. To accomplish this task, call
_CurResFile, saving the ID of the printer driver’s resource file at the beginning of your
pIdle procedure. When you exit from your pIdle procedure, restore the resource chain back
to the printer driver’s resource chain with a call to _UseResFile.

At this point, you might be wondering what might change the resource chain. If you called
_OpenResFile or _UseResFile (anything that would change the value of the low memory
global TopMapHdl) within the application's pIdle procedure, the chain would be changed. If
you are not changing the resource chain, these calls would not be needed.

Handling Errors From Within A pIdle Procedure

You should avoid calling PrError within your pIdle procedure; errors that occur while it is
executing are usually temporary, and serve only as internal flags for communication within
the printer driver—they are not intended for the application. If you absolutely must call
PrError within your idle procedure, and an error occurs, never abort printing within the

Developer Support Center April 1991

Macintosh Technical Notes

idle procedure itself. Wait until the last called printing procedure returns, then check to see
if the error still remains. Attempting to abort printing within an idle procedure is a guarantee
of certain death.

Developer Support Center April 1991

Macintosh Technical Notes

Canceling Or Pausing The Printing Process

If you install a procedure for handling requests to cancel printing, with an option to pause
the printing process, beware of timeout problems when printing to the LaserWriter.
Communication between the Macintosh and the LaserWriter must be maintained to prevent a
job or a wait timeout. If there is not any communication for a period of time (over two
minutes), the printer times out and the print job terminates due to a wait timeout. Or, if the
print job requires more than three minutes to print, the print job terminates due to a job
timeout. Since, there is not a good method to determine to what type of printer an
application is printing, it is probably a good idea to document the possibility of a
LaserWriter timing out for a user who chooses to select “pause” for over two minutes.

Some Printer Drivers Do Not Support pIdle Procedures

Some printer drivers do not support pIdle procedures, as they prefer to handle the pIdle
procedure in their own manner without giving an application’s pIdle procedure any time.
This situation should not be a problem as long as you do not assume that your pIdle
procedure is always called at print time. Therefore, you should only create your pIdle
procedure to display the dialog box and respond to a user pausing, continuing, or canceling a
print job.

Conclusion

When installing your pIdle proc, it must be installed before the application calls PrOpenDoc.
You want to make sure that you save and restore the GrafPort , upon entry and exit of your
pIdle procedure, to make sure that the printer driver will image into the correct port during
the print job. Finally, if you are changing the resource chain by calling _OpenResFile or
_UseResFIle, you want to make sure that you save and restore the resource chain.

Further Reference:
• Inside Macintosh, Volume II, The Printing Manager
• Technical Note M.IM.PrintLoop —

 A Print Loop That Cares...

Developer Support Center April 1991

