
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Old-Style Colors
Imaging

Revised by: Bill Guschwan May 1993
Written by: Rich “I See Colors” Collyer and Byron Han October 1989

This Technical Note covers limitations of the original Macintosh color model (eight-color)
that Inside Macintosh Volume I, page I-173, QuickDraw, does not document.

Changes since October 1989:
Added definitions of the old-style constants.
Corrected definitions of old-style constants to reflect MPW 3.2 interfaces.

QuickDraw has always been able to deal with color, just on a very limited basis. Most
applications have not made use of this feature, since Color QuickDraw–based Macintosh
computers come with a better color model. There are, however, a few nice features that come
with the old-style color model. With the old-style colors, it is easy to print color on an
ImageWriter with a color ribbon. Another advantage is that developers do not have to write
special-case code depending on whether or not a machine has Color QuickDraw.

Now that you are ready to convert to the old-style colors, there are a few things you should
know about that do not work with old-style colors. This Note covers the limitations of using
old-style colors, as well as the best ways to work around these limitations.

Limitations

The most obvious limitation is that of only eight colors: black, white, red, green, blue, cyan,
yellow, and magenta. This limitation is a problem only if you want to produce a color-
intensive application; if this describes your application, then you need not read any further in
this Note.

The next limitation is that off-screen buffers are not very useful. You can draw into off-
screen buffers, but there is no way to get the colors back from the buffer. This leads into the
next limitation, which is that _CopyBits cannot copy more than one color at a time.

When you call _CopyBits from an off-screen buffer to your window, you need to set the
forecolor to the color you want to copy before calling _CopyBits (for example, to copy a
red object, call _ForeColor(redColor)). Now when you copy the object, you can
Developer Support Center May 1993

Macintosh Technical Notes

copy only one color. If you copy different colored objects at one time, then you have a
problem. The result of a multicolored copy is that all objects copy in the same color, that of
the foreground.

Developer Support Center May 1993

Macintosh Technical Notes

It is possible to work with an off-screen buffer and the old-style colors, but it requires a lot
of extra work. Unless the objects are really complex, then it is probably easier to just draw
the objects directly into your window.

One other limitation does exist. Consider the following code sample. One would assume that
this sample would work at all times.

 SetPort (myPort);
 savedFG := myPort^.fgColor;
 ForeColor (redColor); {or any other color}

 {...drawing takes place here...}

 ForeColor (savedFG);

Surprise. It does not always work. The saved value for the fgColor field of the grafPort is not a classic QuickDraw color if the
grafPort is actually a cGrafPort. If dealing with a cGrafPort, the fgColor field actually contains the foreground color’s entry in the
color table, so the second call to _ForeColor really messes things up.

The proper way to set and reset the foreground color with classic QuickDraw’s _ForeColor call is as follows:

 SetPort (myPort);
 savedFG := myPort^.fgColor;
 ForeColor (redColor); {or any other color}

 {...drawing takes place here...}

 myPort^.fgColor := savedFG; {Manually stuff the old fgColor back.}
 If (32BQD = TRUE) Then {32BQD is a flag that is made and set by}
 PortChanged (myPort); {the application; to set it, the application}
 {needs to check _Gestalt for 32-Bit QuickDraw.}

This Note also applies to the routine _BackColor.

What Works

The easiest way to work with these limited colors is to use pictures. When you draw the
images, you should draw into a picture. Then when you want to draw the images into your
window or to a printer, call _DrawPicture. Pictures work well with the old-style colors,
and you don’t need to worry about making sure that the forecolor is current when you draw
into your window.

Once you have the picture, you can use it to draw into the screen or to the printer port. You
can also set the WindowRecords windowPic to equal your PictureHandle so
updates are handled by the Window Manager.

Developer Support Center May 1993

Macintosh Technical Notes

What Do Those Constants Mean Anyway

The correct values are

blackColor = 33
whiteColor = 30
redColor = 205
greenColor = 341
blueColor = 409
cyanColor = 273
magentaColor= 137
yellowColor = 69

The following discussion is theoretical and was based on the color constants for the MPW 3.1 interfaces. Well, those interfaces
were wrong as far as the color constants. The discussion will be kept here to prove once and for all that Macintosh programming
sometimes is arbitrary and not logical. On the other hand, the information about the color bits is correct.

Each of the constants contains 9 bits of information, and each bit has a special meaning. Figure 1 illustrates the meaning of each
of the bits, while Table 1 shows how each of the color constants fills in the appropriate bits.

Figure 1—Bit Definitions

Table 1 Color-Bit Correlation

black white red green blue cyan magenta yellow
(33) (30) (209) (329) (389) (269) (149) (89)

Cyan 0 0 0 1 1 1 0 0
Magenta 0 0 1 0 1 0 1 0
Yellow 0 0 1 1 0 0 0 1
Black 1 0 0 0 0 0 0 0
Red 0 1 1 0 0 0 1 1
Green 0 1 0 1 0 1 0 1
Blue 0 1 0 0 1 1 1 0
Inverse 0 1 0 0 0 0 0 0
Normal 1 0 1 1 1 1 1 1

Developer Support Center May 1993

Macintosh Technical Notes

Further Reference:

• Inside Macintosh, Volume I, page I-173, QuickDraw
• Technical Note M.IM.Copybits—Of Time and Space and _CopyBits

Developer Support Center May 1993

