
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Basic QuickDraw Q&As
Imaging

Revised by: Developer Support Center May 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As for this month:
Determining whether CopyBits to a PICT was successful
Random function requires prior InitGraf call
GetIconCacheData & SetIconCacheData bug and workaround
DrawText and DrawString patched to be script aware

Determining whether CopyBits to a PICT was successful
Date Written: 1/7/93
Last reviewed: 3/1/93

If I’m recording a PICT and doing a CopyBits of a really big image into the PICT, how can I
determine whether I’m out of memory?

The only reliable way to see whether a CopyBits to a PICT succeeded is after the fact. You
need to test the PICT’s picFrame rect (Inside Macintosh Volume V, page V-87) to see
whether it’s empty after the CopyBits. The test would look like:

If (EmptyRect(&(**myPicture).picFrame))
/* CopyBits failed */

Developer Support Center May 1993

Macintosh Technical Notes

Random function requires prior InitGraf call
Date Written: 12/16/92
Last reviewed: 3/1/93

Developer Support Center May 1993

Macintosh Technical Notes

The Random function call listed in QuickDraw.h can’t be called from MPW tools without
crashing my system. It appears to work when the function is called from applications or
cdevs. What could be causing this problem?

Use SANE’s RandomX function instead of QuickDraw’s Random function if possible
because it gives you better randomness. If you do use QuickDraw’s Random function, be
sure to call InitGraf before calling Random from any application or tool. InitGraf initializes
a set of QuickDraw global variables for use with the QuickDraw tools; these globals must be
initialized because the Random function uses one of them as a seed to generate the random
number.

Normally, it’s not good practice to call initialization routines from within an MPW tool, but
calling InitGraf is OK. For more information on which initialization routines are OK to call
and which ones aren’t, see page 7 in the MPW Tools chapter of Building and Managing
Programs in MPW.

Sometimes it isn’t obvious when you need to call InitGraf before using the Random
function. For example, if you’re using the Macintosh serial tool in a faceless background
application, you’ll need to initialize QuickDraw because the tool calls Random.

GetIconCacheData & SetIconCacheData bug and workaround
Date Written: 12/8/92
Last reviewed: 3/1/93

The Icon Utilities routine GetIconCacheData leaves two bytes of garbage on the stack. This
surfaced as a problem for me because it prevented a saved register from getting restored
properly. SetIconCacheData probably has the same problem, since it calls the same trap
internally. I solved the problem by encapsulating GetIconCacheData within my own static
function, like so:

static OSErr _GetIconCacheData(Handle theCache, void **theData)
{
return GetIconCacheData(theCache, theData);
}
#define GetIconCacheData _GetIconCacheData

I then call GetIconCacheData normally. The #define redirects my call to my static wrapper function. The extra two bytes on the stack are
recovered when the wrapper function UNLKs and returns. This method has the advantage that the calling code will still work even after the trap
is fixed. Am I correct?

You’re quite correct; this is a bug in GetIconCacheData and SetIconCacheData. Here’s the offending code from the source:

EXIT MOVEA.L (SP)+, A0 ; Pop return address into A0
 ADDQ.L #6, SP ; Point stack at return value
 MOVE.W D0, (SP) ; Put return value on the stack
 JMP (A0) ; Return

Developer Support Center May 1993

Macintosh Technical Notes

As you can see, the exit routine is adding 6 to the stack to clear up the input parameters instead of 8 (handle and handle), so an extra word of
garbage is being left on the stack. Thanks for letting us know about the problem.

DrawText and DrawString patched to be script aware
Date Written: 11/16/92
Last reviewed: 3/1/93

While localizing our software, we were told not to assume that a character is only one byte,
and thus not to use DrawChar. Does this mean that we can’t use DrawText or DrawString?

DrawChar takes a one-byte character as a parameter, so it isn’t suitable for drawing a
character whose internal representation requires two bytes. However, DrawText and
DrawString (both end up in the same bottleneck procedure StdText) are patched in script-
aware systems, and do recognize whether a given byte in a given font-script still corresponds
to a one-byte character, or is the first byte of a two-byte character. In the latter case, it
transparently fetches the next byte, and looks up the right glyph encoded by a double byte,
before actually drawing the glyph.

QuickDraw globals at INIT time
Date Written: 6/1/92
Last reviewed: 9/15/92

If I call InitGraf before I reference CurrentA5, will CurrentA5 be valid and can the
QuickDraw globals be referenced off it? The screenBits bounds values seem screwy on some
machines. Does the problem lie with CurrentA5? Should I be referencing A5?

Here’s the process used by ShowINIT, which is remarkably compatible with system software
and other INITs (and it had better be, because it’s used by more than half the system
extensions available):

1. It saves the value in the CurrentA5 global to restore it later.
2. It points the A5 register at 4 bytes of storage for use by the system.
3. It copies the value now in A5 into the CurrentA5 global.
4. It calls InitGraf, passing a pointer to the thePort field of a QuickDraw globals structure.
5. It opens a port and draws as necessary. [This is where all the functionality goes.]
6. After it’s done, it closes its port.
7. It copies the value saved in step (1) into the A5 register.
8. It copies the restored A5 value into the CurrentA5 global.

To summarize, ShowINIT saves the A5, creates and initializes its own A5 world, does its
drawing, then restores the previous A5 world. For more information on this subject, see the
Macintosh Technical Note “Stand-Alone Code.”

Developer Support Center May 1993

Macintosh Technical Notes

Macintosh QuickDraw LineTo bug and workaround
Date Written: 4/23/92
Last reviewed: 7/13/92

Developer Support Center May 1993

Macintosh Technical Notes

Our zooming function crashes into flames when we pass valid coordinate values to LineTo,
as in the following example:

 SetPort(myPort);
 MoveTo(154,31619);
 LineTo(74, -31742); (* You are dead! *)

What can we do to avoid LineTo crashes like this?

The QuickDraw Engineering group is aware of the problem you described. The bug probably is going to be fixed in the next release that
includes bug fixes. Given that waiting for a system solution may demand more patience than is reasonable, you may want to consider including
in your software some form of workaround that will prevent your users from crashing every time an operation takes the software to the limits of
QuickDraw.

One way to approach this problem is to replace the lineProc bottleneck. All you need to do is to check the distance between the current pen
position and the line’s end, and when the distance becomes too big (let’s say more than 32000) your procedure will call StdLine a couple of
times, splitting the operation in two.

Replacing the bottlenecks is a very straightforward operation (which you are probably already using) and in most of the cases will only result in
another level of indirection into StdLine but that will prevent your program from calling QuickDraw with parameters that are guaranteed to
cause crashes.

Use crsrNew flag to unobscure cursor without mouse move
Date Written: 3/3/92
Last reviewed: 6/11/92

The Macintosh QuickDraw routine ObscureCursor hides the cursor until the next time the
mouse is moved, but it isn’t affected by HideCursor or ShowCursor. Our application needs
to use ObscureCursor while the user is typing but needs the cursor to be visible after no
typing has occurred for a short period. How do we “undo” ObscureCursor, since we can’t
rely on the user to move the mouse?

The only way (besides actual mouse movement) to make an obscured cursor visible again is
to convince the system that the mouse has moved. There’s no really good way to do this via
Toolbox calls, so you’re going to have to do it the hard way and simply update the low-
memory cursor information to tell the system the cursor moved (even though you don’t need
to update the actual position).

To tell the system the cursor has changed location, simply set the crsrNew flag (a byte
located at $08CE) to 1. When the system sees this byte is 1, it will assume the cursor has
moved and redraw the unobscured cursor at the appropriate place (where it was all along),
and reset CrsrNew, waiting for the mouse to move again.

Macintosh CalcMask and CopyMask code sample

Developer Support Center May 1993

Macintosh Technical Notes

Date Written: 2/27/92
Last reviewed: 5/21/92

I can’t get the black-and-white version of my lasso-type tool to work correctly with
CalcMask and CopyMask. With CalcCMask it seems to work fine. What could I be doing
wrong?

CalcMask and CalcCMask are similar in that they both generate a 1-bit mask given a source
bitmap. With CalcCMask, though, a pixMap can be used in place of the source bitmap; the
seedRGB determines which color sets the bits in the mask image. An easy mistake to make
is to forget that CalcCMask accepts a pointer to a bitmap data structure while CalcMask
expects a pointer to the actual bit image. And unlike CalcCMask, which uses bounding Rects
for the image’s dimensions, CalcMask uses the bitmap’s rowBytes and pixel image offsets to
determine the bounding Rects for the image. A typical call to these routines would be

 BitMap source, mask;
 CalcMask (source.baseAddr, mask.baseAddr, source.rowBytes,
 mask.rowBytes, source.bounds.bottom-source.bounds.top,
 source.rowBytes>>1);
 CalcCMask (&source, &mask, &(*source).bounds, &(*mask).bounds,
 &seedRGB, nil, 0);

One last thing to note when using CalcMask is that the width of the image is in words and not bytes. To learn more about these routines, see
page 24 of Inside Macintosh Volume IV and page 72 of Inside Macintosh Volume V. Also, the Developer CD Series disc contains a sample,
CalcCMask&CalcMask, that shows how to use both these routines.

Code for filling an area fully bounded by polygon
Date Written: 2/21/92
Last reviewed: 6/11/92

Currently, when a polygon is filled, an even-odd rule is applied to determine which areas of
the polygon are to be filled. For our application, we also need to fill all the areas of the
defined polygon. Is there a relatively easy way to accomplish this?

There are many different ways to fill polygons, as you may know. If you do not want to use
QuickDraw’s standard FillPoly routine, you’ll have to create your own. The following
sample illustrates one technique that might be used to fill the area fully bounded by a
polygon. It can be dropped right into the traffic light sample (sample.p) that ships with MPW
as a replacement for its DrawWindow procedure. The green star is drawn using FillPoly and
the black star is drawn using my filling technique that uses an offscreen bitmap and
calcMask to fill in the poly the desired way, then CopyBits to transfer it to the onscreen port.
The drawbacks of this method are that it is not as fast as writing a specialized poly routine;
the benefits are that it’s small, fast enough for most operations, and can be used for more
than just polygons.

{$S Main}
PROCEDURE DrawWindow(window: WindowPtr);

Developer Support Center May 1993

Macintosh Technical Notes

var MyPoly:PolyHandle;
 MyRgn :RgnHandle;
 OffPort,OnPort:GrafPtr;

Developer Support Center May 1993

Macintosh Technical Notes

 Function CreateOffport(VAR newOffscreen:grafPtr;
inBounds:Rect):Boolean;

 var SavePort,NewPort:Grafptr;

 begin
 GetPort(SavePort);
 NewPort:=GrafPtr(NewPtr(sizeof(grafport)));
 If MemError<>noErr then Begin
 CreateOffport:=false;
 EXIT(CreateOffport);
 END;

 OpenPort(newPort);
 With newPort^ do begin
 portRect :=Inbounds;
 RectRgn(ClipRgn,inBounds);
 RectRgn(visRgn, inBounds);
 End;

 With newPort^.PortBits DO BEGIN
 Bounds:=Inbounds;
 rowBytes:= ((inBounds.right-inBounds.Left+15) DIV 16) *2;
 baseAddr:= NewPtr(rowBytes
 * LONGINT(inBounds.Bottom-inBounds.Top));
 End;
 If MemError <>noErr THEN BEGIN
 SetPort(SavePort);
 ClosePort(newPort);
 DisposPtr(ptr(newPort));
 CreateOffport:=false;
 END
 ELSE BEGIN
 EraseRect(inBounds);
 newOffscreen :=newPort;
 setPort(SavePort);
 CreateOffPort:=true;
 end;
 end;

 Procedure KillOffPort(oldOffscreen :GrafPtr);
 Begin
 ClosePort(oldOffscreen);
 DisposPtr(OldOffscreen^.portBits.baseAddr);
 DisposPtr(ptr(OldOffScreen));
 End;

BEGIN
 If NOT (CreateOffPort(offPort,window^.portRect)) THEN Exit(DrawWindow);
 If NOT (CreateOffPort(onPort,window^.portRect)) THEN Exit(DrawWindow);

 SetPort(window);

 MyRgn:=NewRgn;
 OpenRgn;
 MoveTo(10,25);
 Lineto(70,25);
 Lineto(15,70);
 Lineto(40,10);
 Lineto(65,70);
 Lineto(10,25);
 CloseRgn(MyRgn);

Developer Support Center May 1993

Macintosh Technical Notes

 MyPoly:=OpenPoly;
 MoveTo(10,25);
 Lineto(70,25);
 Lineto(15,70);
 Lineto(40,10);
 Lineto(65,70);
 Lineto(10,25);
 ClosePoly;
 OffsetPoly(MyPoly,0,100);

 SetPort(OffPort);
 FramePoly(MyPoly);
 { Now "Fill the poly" the right way }
 CalcMask(Offport^.portBits.BaseAddr,OnPort^.portBits.BaseAddr,
 OffPort^.portBits.RowBytes, OnPort^.portBits.RowBytes,
 OffPort^.portRect.bottom-OnPort^.portRect.Top,
 OffPort^.portBits.RowBytes DIV 2);
 SetPort(OnPort);
 SetPort(Window);

 If gStopped then
 CopyBits(OnPort^.portBits, Window^.portBits,
 OnPort^.portRect, Window^.portRect, srcCopy, NIL)
 ELSE
 CopyBits(OffPort^.portBits, Window^.portBits,
 OffPort^.portRect, Window^.portRect, srcCopy, NIL);

 IF gStopped THEN
 begin
 ForeColor(greenColor);
 FrameRgn(MyRgn);
 end
 ELSE
 begin
 ForeColor(greenColor);
 PaintRgn(MyRgn);
 end;
 ForeColor(blackColor);
 DisposeRgn(MyRgn);
 KillPoly(MyPoly);
 KillOffPort(Offport);
 KillOffPort(OnPort);
END; {DrawWindow}

Inside Macintosh Vol. V PICT opcode size should be fixed
Date Written: 1/22/92
Last reviewed: 2/28/92

The definition of PICT version 2 on pages 92-105 of Inside Macintosh Volume V says that
the data size of the opcodes $001A and $001B is variable, but also that the data is an
RGBColor. This is confusing, since the size of an RGBColor is fixed at six bytes. How can
these two opcodes vary in the amount of associated data?

Seems like you’ve run into a cut/paste problem. All the opcodes that refer to table 4 are new
for Color QuickDraw. Also, most of them are variable in length, so the author simply had a
standard notation for anything that was explained further in table 4 (page V-103). The

Developer Support Center May 1993

Macintosh Technical Notes

information contained in table 4 is, in fact, accurate. The size information of several of the
opcodes listed is not variable even though the preceding pages told you they were.

All you gotta do is believe table 4 and you will be fine.

PICTs with PostScript PICT comments and memory use
Date Written: 1/10/92
Last reviewed: 2/17/92

Why does my PICT (including dotted lines) use so much memory when drawn in MacDraw,
and even more when drawn in SuperPaint? Do they include PicComments for PostScript?

Your guess that it has to do with PicComments is quite right; both MacDraw and SuperPaint
include a PostScript representation of the dotted (dashed) lines and some other graphic
operations in the PICT, together with the QuickDraw commands. During printing, this
allows the LaserWriter driver to take advantage of specific PostScript capabilities that are
unavailable in QuickDraw, like primitives for dashed lines.

On the other hand, the PostScript representation for dashed lines is much shorter than the
QuickDraw representation, which requires a (long, very long …) sequence of “ShortLine”
opcodes. So, another piece of explanation for the large PICT size basically is that
QuickDraw does not have facilities to describe dotted lines in an economic way.

SuperPaint also includes a copy of a proprietary dictionary, which adds substantially to the
size of a PICT. On the other hand, the code that resides in that dictionary makes the picture’s
PostScript representation that much better. Ultimately, WYSIWYG is the goal, and
sometimes it takes a little extra code to make that happen. (Incidentally, the PostScript
dictionary contained in pictures created by older versions of SuperPaint makes assumptions
about the contents of the LaserPrep file which are not true for the recent versions of the
LaserWriter driver. Documents containing such pictures will not print correctly any more.)

To determine the primitives that define other nonstandard QuickDraw objects found in
drawing applications, you can use MPW’s DeRez function or a third-party utility such as
Palomar Software’s PICT Detective on the resource PICT. These tools will provide the
opcodes that define the PICT.

Where CopyBits looks for memory to use
Date Written: 1/3/92
Last reviewed: 1/27/92

Where does CopyBits look for the memory it needs?

Developer Support Center May 1993

Macintosh Technical Notes

CopyBits checks the stack to determine if there is enough stack space for it to copy the
whole image, which in some cases may be roughly up to 5 extra rowbytes of special effects
per row, depending on what special effects such as dithering or scaling are being used. If
there is not enough stack space for the whole image, CopyBits then tries for half the image,
and keeps halving until it gets down to one row of the image (plus the room for the special
effects rows).

Developer Support Center May 1993

Macintosh Technical Notes

If there is not enough stack space for one row of the image, then CopyBits tries to allocate
temporary memory.

Before allocating temporary memory, CopyBits checks if the temporary memory traps are
available. (They are available under both System 6 MultiFinder and System 7.) If the traps
are available, CopyBits tries to allocate a 256K byte buffer for use as a “fake” stack.
(CopyBits used to try for a 64K block, but this has been changed, and it may change again.)
If this succeeds, then all is well and the image is copied. If the temporary memory traps do
not exist, or if CopyBits cannot allocate a 256K buffer, then the image is not copied and
CopyBits returns.

CopyBits does not check in the application heap for free memory, at least not for its work
buffer. For its work buffer it will only use the stack, and after that it resorts to temporary
memory, if available. There are some circumstances that may cause memory allocations in
the application heap, but this memory is not used for CopyBits’s image buffer.

Also, please note that the implementation of CopyBits is subject to change in future versions
of QuickDraw.

GrafPort patStretch: valid values
Date Written: 12/19/91
Last reviewed: 2/6/92

I’d like to know more about that PatStretch field inside a GrafPort or CGrafPort. If I stuff a
values in PatStretch(4) then nothing happens; prints look the same, even using a standard
bottleneck. Please tell me how I can get this to work.

PatStretch only works with values of 2 or 3. With any other value, it defaults to no
stretching. The “2” case was created because of the ImageWriter (72->144 dpi) situation.
The “3” case was added to support the ImageWriter LQ and the AppleFax modem.

So why wasn’t a “4” (72->300 dpi) handler added for the LaserWriter driver? Good
question. Somehow or other it was decided that pattern stretching for the LaserWriter driver
would be done completely by the driver itself. The LaserWriter driver actually does pattern
stretching by using a pattern 4 times as large, rather than 4.17. In other words, it really scales
the 72 dpi pattern to 288 dpi rather than 300 dpi. You may want to take a similar approach,
since you’d only have to work with whole numbers this way.

So, if you want to do 4-times pattern stretching, you must scale the pattern yourself. If you
copy the original pattern into an area that’s twice as wide and twice as tall and use that, you
should be all set. You’ll need to use PrGeneral to set the printer to the appropriate resolution
and Copybits to copy the pattern into the object that needs to be filled, using the “cookie
cutter” approach to fill the object.

Developer Support Center May 1993

Macintosh Technical Notes

X-Ref:
Inside Macintosh Volume I, page I-150

How to tell whether GetPictInfo is available
Date Written: 12/16/91

Developer Support Center May 1993

Macintosh Technical Notes

Last reviewed: 2/24/92

How do you determine whether the Picture Utilities Package function GetPictInfo is
available? Gestalt doesn’t seem to have the right stuff!

To determine whether the GetPictInfo routine is available, check the system version number
with the Gestalt function. GetPictInfo is available in system software version 7.0 and later.
Use the Gestalt selector gestaltSystemVersion to determine the version of the system
currently running. Usually it’s best not to rely on the system version to determine whether
features are available, but in this case, it’s the only way to determine whether the Picture
Utilities Package is available.

For example, the following C function will determine whether the GetPictInfo call is
available:

#include <GestaltEQU.h>
Boolean IsGetPictInfoAvail()
{
 OSErr err;
 long feature;
 err = Gestalt(gestaltSystemVersion,&feature);
 /* Check for System 7 and later */
 return (feature >= 0x00000700);
}

In Inside Macintosh Volume VI, see page 3-42 for information on using Gestalt to check the
system version number, and see page 18-3 for information on the Picture Utilities Package.

Detecting whether application window is partially hidden
Date Written: 9/26/92
Last reviewed: 1/27/92

We draw directly to the screen to gain the fastest possible animation speed, and when we
need compatibility—such as when windows overlap or for multiple screens—we do use
CopyBits. How do we tell whether the window is hidden or that the visible part is not
rectangular?

If your window is covered partially by another applications window or if your layer has been
hidden by the process menu, the visRgn of your window’s grafport will not be the portRect
anymore. (Keep in mind that if you scroll by modifying the portRect of the grafport, then
you’ll have to do a more complex calculation...) Here is a small Pascal routine that returns
this information:

Developer Support Center May 1993

Macintosh Technical Notes

Function UseCopyBits(thePort:grafptr):Boolean;

begin

 UseCopyBits:= NOT((thePort^.VisRgn^^.rgnSize=10) and
 (thePort^.visRgn^^.RgnBBox=thePort^.PortRect));
end;

The rect strucRgn^^.rgnBBox will be zero for a visible window if the system
has hidden the application.

Developer Support Center May 1993

Macintosh Technical Notes

Macintosh QuickDraw and pen characteristic routines
Date Written: 8/12/91
Last reviewed: 11/6/91

When generating pictures and then looking at the corresponding Macintosh PICT file, we
notice that QuickDraw is optimizing PnMode, PnPat, and PnSize. Can you tell us how to
stop QuickDraw from optimizing, and how to know when QuickDraw will optimize?

QuickDraw does not optimize away new pen characteristic routines, but it does insert them
into pictures just before a drawing routine that uses the pen rather than place them where
they are called. Therefore, you may not see your new pen characteristic routine until later in
a picture when it is about to be used. Opcodes for pen characteristics are inserted into the
picture when they are changed from the previous time they’re used.

Macintosh picture (PICT) 90-degree rotation
Date Written: 7/23/91
Last reviewed: 8/30/91

The trick for rotating a Macintosh QuickDraw picture 90 degrees is to intercept all
bottlenecks and exchange the x and y coordinates. Then, call OpenPicture to receive the
rotated picture, call DrawPicture(unrotatedPicture), and then call ClosePicture on the rotated
picture. You’re done! QuickDraw spins out the DrawPicture call into its component parts,
but runs each component through the bottlenecks first, so they get rotated (by YOUR
bottleneck intercepts) and stuck into the new picture, already rotated.

Here‘s a bottleneck intercept for StdLine that rotates a PICT composed entirely of Line
commands (which depend on the current pen position):

procedure MyLineProc(newPt: point);
var
 tempV : integer;
begin
 tempV := thePort^.pnLoc.v; { Swap current pen location coordinates }
 thePort^.pnLoc.v := thePort^.pnLoc.h;
 thePort^.pnLoc.h := tempV;

 tempV := newPt.v; { Swap destination pen location coordinates }
 newPt.v := newPt.h;
 newPt.h := tempV;

 StdLine(newPt);

 tempV := thePort^.pnLoc.v; { Restore current pen location coordinates }
 thePort^.pnLoc.v := thePort^.pnLoc.h;
 thePort^.pnLoc.h := tempV;
end;

Notice that the start coordinates as well as the destination coordinates must be swapped before calling StdLine. The resulting pen location is
swapped back again after the operation, so the port looks like it should if unrotated drawing were performed. For things that don’t depend on the
current pen location, things are simplified a little bit.

Developer Support Center May 1993

Macintosh Technical Notes

You’ll still need bitmap rotation code for the StdBits and StdText intercepts.You might do StdText by setting the port to an offscreen one you
create earlier, calling QuickDraw’s StdText, and then calling your bitmap rotation code to copy it into the destination.

CopyBits bug and workaround
Date Written: 6/26/91
Last reviewed: 8/13/91

Has anyone run across what I’m told is a bug in CopyBits? It works like this: In the deep,
dark workings of CopyBits, some routine tries to read the two bytes preceding the
baseAddress of the source PixMap. If the baseAddress is at the start of a card’s NuBus space
and there isn’t a card filling the adjacent space, this causes a bus error! Has anyone found a
good workaround?

The short answer is: you’re right. QuickDraw inadvertently reads from memory below the
base address of a pixmap. The workaround is to place the video base address 32 bytes into
the RAM on the card; if the card you’re using doesn’t have this workaround, there’s nothing
you can do other than making sure there’s a card in the next-lower slot.

Macintosh animation samples
Date Written: 11/6/91
Last reviewed: 11/6/91

Do you have an example of flicker-free animation on the Macintosh?

We have some good stuff that’s written in MPW Pascal. It’s DTS Sample Code #16,
OffSample, and this uses some routines defined in DTS Sample Code #15, OffScreen. Also,
the System 7.0 CD sample code folder contains a smaller sample called “GMonde” that uses
GWorlds.

System 7 QuickDraw DrawText performance
Date Written: 11/4/91
Last reviewed: 11/27/91

We’ve noticed that using DrawText is much slower in System 7, especially when drawing in
color (anything other than black on white). What can be done to restore the drawing speed to
System 6 levels?

A QuickDraw function like DrawString or DrawText will be slower under certain
circumstances in System 7 than System 6. Specifically, if you are drawing in srcCopy mode
and you colorize the text—that is, foreground color is not black and background color is not

Developer Support Center May 1993

Macintosh Technical Notes

white (Inside Macintosh Volume VI, page 17-16)—then QuickDraw really slows down as
you have noticed. Sometimes, the speed of drawing is 6 times as slow as System 6.

The cause of this slowness is a known System 7 bug. The bug has concerned the engineers
greatly and will be responded to in an appropriate manner in the future.

Developer Support Center May 1993

Macintosh Technical Notes

There are a few workarounds: One, you can avoid using the srcCopy mode and use the
default srcOr mode instead. However, this is not a real workaround, since you may have
essential reasons to use srcCopy. The other option is to create an offscreen pixmap or
GWorld and perform a DrawText with srcOr to this GWorld with colorization. Then, you can
perform a CopyBits from the offscreen to the screen with srcCopy mode and no colorization.
Using CopyBits will not cost you much time. Again, this is a workaround and is not ideal.

The srcOr is a bit slower than in System 6.0.x, but it does not have a bug; rather it is a side
effect of system enhancements. The slow speed is a trade-off taken to receive the host of
other benefits.

Updating Macintosh cursor without mouse competition
Date Written: 6/12/91
Last reviewed: 8/1/91

How can I programmatically move the Macintosh mouse without the real mouse interfering?

The real answer to your question is twofold: First, you can do exactly what you want to do
with the sample included below. However, this is not a good thing to do, it would be better if
you took the solution used in Apple’s Guided Tour disks: Always hide the cursor and then
decouple the cursor from the mouse. Then, instead of using the system’s cursor, simply draw
your own “cursor” using QuickDraw and treat it as a little animated bitmap on the screen.
This avoids all the problems that you have with the mouse competing. (Apple does update
the mouse globals with the mouse position so that other things function correctly.)

Now, as promised, here is the way to do what you want using the real cursor. As you have
discovered, setting the crsrCouple variable to false prohibits the mouse from affecting the
cursor; unfortunately, it also prohibits the jcrsrTask routine from drawing the cursor. The
solution to this is to set crsr couple to true, call the cursor drawing routine jCrsrTask
yourself, and then set the crsrCouple variable to false, as shown below:

procedure callcrsr;
 inline $2078 ,$08EE ,$4E90;
{ move.L jcrsrTask,A0
 jsr (A0) }

Procedure FudgeMouse;

type PointPtr=^Point;

var RawMouse:PointPtr;
 MTemp:PointPtr;
 RandPt:Point;
 CrsrNew:ptr;
 CrsrCouple:ptr;
 fred:Longint;

begin
 RawMouse:=PointPtr($82C);

Developer Support Center May 1993

Macintosh Technical Notes

 MTemp:=PointPtr($828);
 CrsrNew:=ptr($8CE);
 CrsrCouple:=ptr($8CF);
 RandPt:=RawMouse^;

Developer Support Center May 1993

Macintosh Technical Notes

 repeat
 RandPt.h:=RandPt.h+1;
 RandPt.V:=RandPt.v+1;
 RawMouse^:=RandPt;
 MTemp^:=RandPt;
 CrsrNew^:=1;
 CrsrCouple^:=1;
 callCrsr;
 crsrCouple^:=0;
 repeat until fred<tickCount;
 fred:=tickCount+3;
 until Button;
 crsrCouple^:=1;
end;

Techniques for graying Macintosh text
Date Written: 6/3/91
Last reviewed: 8/1/91

How do I draw grayed-out text on the Macintosh, like the text for disabled buttons or menu
items?

There are currently two different kinds of grayed text: First, there’s “patterned” gray, where
every other dot is missing. This really only looks good with Chicago or other heavy fonts
and was always used for graying out menus and controls in system software through 6.0.x,
and is still used in 7.0 when the screen is set to less than 4 bits deep. This is done by first
drawing the text in a normal, srcCopy transfer mode. Then a gray rectangle is drawn over the
text using the patBic mode. This “erases” half the bits in the text, and is rapid enough that
there is very rarely any flicker.

The second kind of text is the actually gray text, which is used in System 7 on screens that
are 4 bits deep or deeper for menus, controls, and other grayed text. To draw this text, just
call GetGray (as documented on page 17-27 of Inside Macintosh Volume VI) to get an
appropriate gray. Then draw the text in that color.

Use srcOr instead of srcCopy for Macintosh text drawing
Date Written: 6/4/91
Last reviewed: 10/9/91

DrawText with srcCopy takes six times as long as with srcOr now that my Macintosh is
running System 7. Why is this so slow? Is this a bug in System 7?

It’s true that srcCopy is slower than srcOr when handling text, especially in color mode. This
loss in speed occurs because CopyBits is a lot smarter than it used to be. It can handle
foreground and background colors a lot better, but that improvement came at the cost of
speed. Our recommended method for drawing text is to erase before drawing, and use srcOr
to draw, not srcCopy. Alternatively, you could draw colorized text in srcOr mode off screen

Developer Support Center May 1993

Macintosh Technical Notes

and then use CopyBits to draw it on the screen in srcCopy mode without colorization.

Developer Support Center May 1993

Macintosh Technical Notes

Code for reversing Macintosh PICT images
Date Written: 3/4/91
Last reviewed: 8/30/91

Is there a simple way to put PICT images up in mirror image format, or is there sample code
showing how to flip an offscreen bitmap?

There is no easy way to do this, nor do we have sample code showing how to flip an
offscreen bitmap. Indeed, the best way to do what you want is to draw it to an offscreen
pixel map and reverse it.

If you are using Color QuickDraw, always draw it to an 8-bit-per-pixel offscreen bitmap, and
then the reverse is a very simple task. Here is some sample Pascal code that might roughly
do what you want, with the following assumptions:

 1. You are going to add error checking where appropriate.
 2. Rowbytes correspond exactly to pixel width of the port.
 3. The port is 8 bits deep.
 4. You add the code to make this sketch work.
 5. The origin of your offscreen port is (0,0).

Procedure FlipScanLine(theV:Integer; thePort:cGrafPtr);
{ Given any scan line number in the indicated port, this routine will flip }
{ that scan line horizontally. This routine assumes that you have made }
{ sure that scan line theV exists. }

type ScanLn=Packed Array [0..0] of Byte;
 ScanPtr=^ScanLine;
var thePixMap:PixMapPtr;
 Index,Size:Integer;
 ThisScanLine:ScanPtr;
 TempPixel:Byte;

Begin
thePixMap:=thePort^.PortPixMap^;
{ First create a pointer to the scan line we are currently reversing. }
ThisScanLine:=ScanPtr(thePixMap^.BaseAddr);
ThisScanLine:=ScanPtr(ord4(ThisScanLine)+(thePixMap^.RowBytes*theV));

{ Now simply reverse all the bytes. }
{ The scan line is simply an array [0..RowBytes] of Byte, and since this is }
{ 8 bits per pixel, each one is a single pixel.}
Size:=thePixMap^.RowBytes;
For Index:=0 to (Size div 2) do
 begin
 tempPixel:=ThisScanLine^[Index];
 ThisScanLine^[Index]:=ThisScanLine[Size-Index-1];
 ThisScanLine^[Index]:=tempPixel;
 end;
end;

This same procedure can be used also to swap a 1-, 2- or 4-bit-per-pixel pixmap if you add a function that accepts a byte and swaps the pixels in
it.

Using dithered drawing mode with QuickDraw

Developer Support Center May 1993

Macintosh Technical Notes

Date Written: 11/28/90
Last reviewed: 12/19/90

When I draw a 32-bit Macintosh PICT image from a file to an 8-bit port via an offscreen
GWorld, I use dither mode in the CopyBits call and the results are quite impressive. If there
is not enough memory to allocate the GWorld, I draw the image directly to the port. But
since there does not seem to be any way to tell QuickDraw to use dithered drawing mode,
the image looks horrible.

Do you have any suggestions? I have installed bottleneck procs to allow DrawPicture to get
its data from the file instead of the handle in memory. Is there a way, while in the
bottlenecks, to find the CopyBits call that comes from the picture and force it to use dithered
mode instead of source mode? I don’t want to try and parse the PICT myself, but I thought
that maybe a QuickDraw global could be modified in my StdBits proc to force dithered
drawing for that operation only?

You can install a StdBits or bitsProc bottleneck procedure to get all the CopyBits calls when
the picture is being played back. One of the parameters to the StdBits call is the mode. You
can install a procedure that saves the current mode, and then passes ditherMode to the
original StdBits proc. This is all you should need to do. It’s been done here so we know it
works, only not in any form that can be sent to you as sample code at this time.

Using PicComments to rotate text
Date Written: 11/28/90
Last reviewed: 12/19/90

I have a PostScript routine (using TextBegin/TextEnd) to generate bitmapped rotated text on
the screen (which can be later printed on QuickDraw printers). Why do I get duplicate text? I
get both bitmapped rotated text and PostScript rotated text when I print on the LaserWriter
II, and both bitmapped rotated text and horizontal text on the ImageWriter. When I make a
machine dependent check (check type of printer) and call the proper printing procedure, it
works fine. Because of the speed and memory considerations of generating the rotated
bitmapped text (especially at 300 dpi), is there a way to ensure that the printer will use the
PostScript BEFORE generating the bitmap?

We will use the following Macintosh PicComments to hide your QuickDraw calls from the
LaserWriter, but the ImageWriter will use them:

PostScriptBegin
>> Put your CopyBits and QuickDraw calls to image your rotated
>> bitmapped text here....
PostScriptEnd

By wrapping your QuickDraw code within the PostScriptBegin and PostScriptEnd PicComments, the code will be ignored by the LaserWriter,
but the ImageWriter will use the QuickDraw calls. Basically, the PostScriptBegin and PostScriptEnd PicComments tell the LaserWriter driver to

Developer Support Center May 1993

Macintosh Technical Notes

turn “off” QuickDraw. In the ImageWriter case, the ImageWriter does not understand the PicComments. Therefore, it will use the QuickDraw
calls to create and image your bitmapped text.

Developer Support Center May 1993

Macintosh Technical Notes

Now, we need to use the rotation PicComments to rotate the text on the LaserWriter, but have the ImageWriter ignore the code:

Rect zeroRect;

SetRect (&zeroRect, 0, 0, 0, 0);

TextBegin
TextCenter
 ClipRect (&zeroRect);

 >> Draw your text to be rotated on the LaserWriter....

 ClipRect (&rPageRect);
TextEnd

Wrapping your text drawing call(s) between the ClipRect calls will ensure that the text is drawn only on the LaserWriter. Setting the ClipRect to
zero tells the ImageWriter to ignore all QuickDraw calls until the ClipRect is reset to something “real” (actually, a zero ClipRect prevents
QuickDraw from drawing anything). After we have completed drawing the rotated text, we reset the ClipRect to the dimensions of rPage (that
is, rPage is the image-able area of the currently selected printer—see Inside Macintosh Volume II, page 150). This will allow all of your normal
drawing to continue on the ImageWriter and LaserWriter. If you did not reset the ClipRect after the TextEnd call, nothing would be drawn on the
ImageWriter or LaserWriter.

Why grafPort’s clipRgn should be changed before OpenPicture
Date Written: 11/1/90
Last reviewed: 12/19/90

On page 189 of Inside Macintosh Volume I, in the QuickDraw chapter’s description of
OpenPicture, is the following warning: “A grafPort's clipRgn is initialized to an arbitrarily
large region. You should always change the clipRgn to a smaller region before calling
OpenPicture, or no drawing may occur when you call DrawPicture.” The “arbitrarily large”
clipping region rectangle is set to -32767,- 32767,32767,32767 (top, left, bottom, right) for
new ports. This is the largest rectangle possible. If this is not a "valid" clipping rectangle for
pictures, what is? Is there some specific limit to the size of the clipping rectangle? Does it
depend on either available memory or the size of the picture?

Inside Macintosh’s warning is based on truth but it’s incomplete. It didn’t actually say that
this rectangle is invalid as a clipping region, because this is in fact a perfectly valid clipping
region. But, you could run into problems if you use this as a clipping region when creating a
QuickDraw picture. It’s not a matter of available memory or size; it’s a simple matter of 16-
bit signed integer overflow and underflow.

When you open a picture, the current clip region is recorded in the picture (this wasn’t
necessarily true in some early versions of QuickDraw). When you draw the resulting picture
using the picture’s picFrame as the destination rectangle, there won’t be any problems. But if
you use a destination rectangle that’s larger than the picFrame, QuickDraw scales everything
in the picture proportionately, including the clip region. If you allowed the default clip
region to be recorded into the picture, then its rgnBBox, already as large as possible, will be
made even larger. That means that the -32767 coordinates might wrap around to the positive
number

Developer Support Center May 1993

Macintosh Technical Notes

range, and the 32767 coordinates might wrap around to the negative number range. This
leaves you with an empty clip region. Nothing at all gets drawn when the current port’s clip
region is empty.

If the destination rectangle is smaller than the picture’s picFrame, you won’t have any
problems because the default clip region will be made smaller, and that’s no problem.

This is why Inside Macintosh suggests that you make the clip region smaller than the default
clip region before opening a picture. By doing this, you’re almost guaranteed that the clip
region won’t get scaled to the point that it turns inside out. What size should you make it?
Small enough so that the risk of the clip region’s coordinates being scaled out of QuickDraw
coordinate space is minimal. I usually just set the clip region to the picFrame of the picture.
It’s hard to go wrong this way.

PICT fontName opcode
Date Written: 10/31/90
Last reviewed: 2/20/91

Is there an up-to-date canonical source for PICT opcodes? In “Night of the Living Disc,” as
far as I can see, the only list of PICT opcodes is in the Macintosh Tech Note “QuickDraw’s
Internal Picture Definition” which does not mention opcode $2C. It appears that opcode $2C
concerns font names. I recall seeing a patch for PictDetective named "fontnameop" or
something like that. However I can't be sure that $2C is the only new opcode.

The fontName opcode is documented in the Technical Note “32-Bit QuickDraw: Version 1.2
Features.” Note also that since the introduction of 32-Bit QuickDraw there are two more
bitmap opcodes for direct RGB PixMaps $009A (DirectBitsRect) and $009B
(DirectBitsRgn). The QuickDraw section of Inside Macintosh Volume VI has all these
opcodes listed in a single place, making it easier to get the necessary info. Here is the info on
font names and pictures from the "32-Bit QuickDraw..." Tech Note:

PICTs Contain Font Name Information

Every time you draw text inside of an _OpenPicture and _ClosePicture pair, QuickDraw
stores the name of the current font and uses it when playing back the picture. The opcode
used to save this information is $002C and its data is as follows:

 PictFontInfo = Record
 length : Integer; { length of data in bytes }
 fontID : Integer; { ID in the source system }
 fontName : Str255;
 END;

QuickDraw saves this information only one time for each font used in a picture. When QuickDraw plays back a picture, it uses the fontID as a
reference into the list of font names which are used to set the correct font on the target system.

For example, the following code:

Developer Support Center May 1993

Macintosh Technical Notes

 GetFNum('Venice', theFontID); { Set a font before opening PICT}
 TextFont(theFontID);

Developer Support Center May 1993

Macintosh Technical Notes

 pHand2 := OpenPicture (pictRect);
 MoveTo(20,20);
 DrawString(' Better be Venice');

 GetFNum('Geneva', theFontID);
 TextFont(theFontID);
 MoveTo(20,40);
 DrawString('Geneva');

 GetFNum('New York', theFontID);
 TextFont(theFontID);
 MoveTo(20,60);
 DrawString('New York');

 GetFNum('Geneva', theFontID);
 TextFont(theFontID);
 MoveTo(20,80);
 DrawString('Geneva');
 ClosePicture;

generates a picture containing font information like this:

 OpCode 0x002C {9,
 "0005 0656 656E 6963 65"} /* save current font */
 TxFont 'venice'
 DHDVText {20, 20, " Better be Venice"}
 OpCode 0x002C {9, /* save next font name */
 "0003 0647 656E 6576 61"}
 TxFont 'geneva'
 DVText {20, "Geneva"}
 OpCode 0x002C {11, /* ditto */
 "0002 084E 6577 2059 6F72 6B"}
 TxFont 'newYork'
 DVText {20, "New York"}
 TxFont 'geneva' /* second Geneva does not
 need another $002C guy */
 DVText {20, "Geneva"}

This feature works regardless of the type of picture being saved, including old style PICTs in a black-and-white port. Using _OpenCPicture
instead of _OpenPicture to start a recording session results in the same functionality.

X-Refs:
Inside Macintosh Volume VI
Macintosh Technical Note “QuickDraw's Internal Picture Definition”
Macintosh Technical Note “32-Bit QuickDraw: Version 1.2 Features”

Calling InitCursor instead of SetCursor
Date Written: 10/23/90
Last reviewed: 2/20/91

Is it legal to call InitCursor instead of SetCursor(arrow) when I want to set the cursor to an
arrow (after my normal one-time program initialization code, in my UpdateCursor routine)?
The only reason I'd want to do such a skanky thing is to save code. Calling a trap with no
parameters is less code than one with parameters. What, exactly, if anything, does InitCursor
do besides setting the cursor to an arrow and setting the cursor level to zero?

Developer Support Center May 1993

Macintosh Technical Notes

There's no problem at all with this, as long as you are aware that the hidden, busy, and
obscured states are cleared when you call InitCursor, so if the cursor was hidden or obscured
for good reason it'll suddenly reappear. It also gets the arrow from QuickDraw, of course, but
that's not a problem.

Macintosh PICT-to-PostScript conversion
Date Written: 8/3/90
Last reviewed: 10/8/91

How do I convert PICT format data to PostScript in my printer driver?

Converting PICT files to PostScript involves a detailed understanding of both bitmaps (or
pixmaps) and the graphics state in PostScript, which is a data structure defining the context
in which other graphic operators in PostScript execute. If you don’t know PostScript, the
following manuals are a must:

• PostScript Language Tutorial and Cookbook (Addison-Wesley) is an introduction to
PostScript. • PostScript Language Reference Manual (Addison-Wesley).

• PostScript Language Program Design (Addison-Wesley) details designing efficient
PostScript programs. It has a lot of useful sample programs on topics like writing a print
spooler.

You need to convert all the QuickDraw operations in a PICT to corresponding PostScript
operations. To get a feel for this conversion, you can analyze the PostScript dump from a
LaserWriter to see how it converts a PICT to PostScript. Under System 6.x, a PostScript
dump can be obtained by pressing Command-K while printing. Under System 7.0, you can
get a dump by selecting the PostScript File option in the Print dialog.

Some areas of QuickDraw, such as transfer modes, do not have a correspondence in
PostScript. The PostScript imaging model is designed so that all areas of a page affected by
an image are marked as if with opaque paint. Using image masks can help. See the Graphics
chapter in the PostScript reference manual.

PICT-to-PostScript conversion can be a long process, especially if one is unfamiliar with
PostScript. Using the above books and the PostScript dump from the LaserWriter (but ONLY
as a general guide) should help.

Sending PostScript via PostScriptHandle PicComment
Date Written: 5/1/90
Last reviewed: 10/9/91

Developer Support Center May 1993

Macintosh Technical Notes

If I use the PostScriptHandle PicComment to send PostScript code to the LaserWriter driver,
do I need to open a picture and then draw the picture to the driver, or can I just use the
PicComment with no picture open while drawing to the printer’s grafPort?

Developer Support Center May 1993

Macintosh Technical Notes

You don’t need to create a picture with your PicComment in it and draw the picture to the
driver. The best method for sending PostScript code to the LaserWriter is to use the
PostScriptHandle PicComment documented in the Macintosh Technical Note “Optimizing
for the LaserWriter—Picture Comments,” as shown below.

PrOpenPage(...)
{ Send some QuickDraw so that the Printing Manager gets a }
{ chance to define the clipping region. }
PenSize(0,0);
MoveTo(0,0);
LineTo(0,0);
PenSize(1,1);
PicComment(PostScriptBegin, 0, NIL);
{ QuickDraw representation of graphic. }
MoveTo(100, 100);
LineTo(200, 200);
{ PostScript representation of graphic. }
thePSHandle^^ := '100 100 moveto 200 200 lineto stroke';

PicComment(PostScriptHandle, GetHandleSize(thePSHandle),
 thePSHandl);
PicComment(PostScriptEnd, 0, NIL);
PrClosePage(...)

The above code prints a line on any type of printer, PostScript or not. The first MoveTo/LineTo combination is required to give the LaserWriter
driver a chance to define a clipping region. The LaserWriter driver replaces the grafProcs record in the grafPort returned from PrOpenDoc. In
order for the LaserWriter driver to get execution time, you must execute a QuickDraw drawing routine that calls one of the grafProcs. In this
case, the MoveTo/LineTo combination calls the StdLine grafProc. When StdLine executes, it notices that the grafPort has been reinitialized, and
therefore initializes the clipping region for the port. Until the MoveTo/LineTo combination is executed, the clipping region for the port is set to
(0,0,0,0). If PostScript code is sent via the PostScriptHandle PicComment before executing any QuickDraw routines, all PostScript operations
will be clipped to (0,0,0,0).

The next thing that’s done is to send the PostScriptBegin PicComment. This comment is recognized only by PostScript printer drivers. When the
driver receives this comment, it saves the current state of the PostScript device (by executing the PostScript gsave operator), then disables all
QuickDraw drawing operations. This way, the QuickDraw representation of the graphic will be ignored by PostScript devices. In the above
example, the second MoveTo/LineTo combination is executed only on non-PostScript devices.

The next PicComment is PostScriptHandle, which tells the driver that the data in thePSHandle is to be sent to the device as PostScript code. The
driver then passes this code unchanged to the PostScript device for execution. The PostScriptHandle comment is recognized only by PostScript
printer drivers.

The last PicComment, PostScriptEnd, tells the driver to restore the previous state of the device (via a PostScript grestore call), and to enable
QuickDraw drawing operations.

Since most PicComments are ignored by QuickDraw devices, only the QuickDraw representation is printed. Since PostScriptBegin tells
PostScript drivers to ignore QuickDraw operations, only the PostScript representation is printed on PostScript devices. This is a truly device-
independent method for providing both PostScript and QuickDraw representations of a document.

Developer Support Center May 1993

Macintosh Technical Notes

Macintosh QuickDraw region quirks
Date Written: 1/1/90
Last reviewed: 11/21/90

I’m working with regions, and I’m having problems with Macintosh QuickDraw trashing the
heap and crashing, even though my regions are under 32K.

There are some quirks in the current version of QuickDraw. Here are some the commonly-
encountered problems:

1. When doing operations which use more than one region, sduch as UnionRgn, DiffRgn,
XorRgn, or SectRgn, the sum of the sizes of the source regions must be less than 32K,
regardless of the size of the resulting region.

2. FrameRgn will fail if it tries to frame a region bigger than 16K.

3. If CloseRgn fails, the internal region data is already corrupt; there is nothing you can do
to recover. CloseRgn will also fail if there isn’t at least a 32K block of free space
available.

Here are some workarounds:

1. Keep regions small and not too complex. Keep track of the sizes of all regions so you can
check the SUM of the sizes before calling a routine that has a 32K limit.

2. Keep 32K free, or allocate a 32K block and release it just before calling CloseRgn.

Apple is working on these problems and expects to fix them in future versions of
QuickDraw.

How to get Macintosh QuickDraw arc endpoints
Date Written: 1/1/90
Last reviewed: 11/21/90

Is there a way to obtain the endpoints of an arc drawn by the Macintosh QuickDraw arc
routines, such as FrameArc and PaintArc?

Given a rectangle R which frames the arc you wish to draw, convert your angles to an
absolute coordinate system, where three o’clock is 0 degrees and 12 o’clock is 90 degrees.

Now, let:

Developer Support Center May 1993

Macintosh Technical Notes

 x = .5 (+ or -) (R.right - R.left)
 y = .5 (+ or -) (R.bottom - R.top)

The endpoint of the curve will be defined by:

 EndPoint.h = x (+ or -) cos(ang);
 EndPoint.v = y (+ or -) sin(ang);

Developer Support Center May 1993

Macintosh Technical Notes

h & v are relative to center of rectangle R

This calculates only the upper endpoint of the arc, but you can easily calculate the other endpoint using the same formula by calculating the
absolute angle for the start point and applying the same formula.

Here is a subroutine which illustrates the algorithm, in LightSpeed Pascal:

{ DrawCurve: draw an arc from 0 degrees until the point defined }
{ by 'angle'. At that point draw a 4 by 4 crosshair. }

procedure DrawCurve (frame : Rect; angle : integer);

var
 x, y : integer;
 xr, yr : extended;
 rad : extended;

begin

 { Convert angle to radians }
 rad := (90 - angle) / 180 * 3.14159;

 { Find end point }
 xr := (frame.right - frame.left) * cos(rad) / 2;
 yr := (frame.bottom - frame.top) * sin(rad) / 2;
 x := (frame.right + frame.left) / 2 + Num2Integer(xr);
 y := (frame.bottom + frame.top) / 2 + Num2Integer(yr);

 { Draw crosshair }
 MoveTo(x - 4, y);
 LineTo(x + 4, y);
 MoveTo(x, y - 4);
 LineTo(x, y + 4);

 { Draw arc }
 FrameArc(frame, 0, angle);
end;

Macintosh CopyBits no longer limited to 3K
Date Written: 5/3/89
Last reviewed: 11/21/90

Inside Macintosh Volume I (page 188) says there is a 3K limit for CopyBits. Is this still true?

The CopyBits limit is obsolete; there is no longer a 3K limit. The limit depends on the
amount of RAM in your Macintosh. CopyBits tries to use the stack to do all of the copying.
In most cases CopyBits is able to copy entire screen shots at one time. You might run into
problems if you don’t have enough stack to hold two times the rowBytes of your source, but
even in this case CopyBits will attempt to find the memory it needs.

Developer Support Center May 1993

