
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

RowBytes Revealed II
Imaging

Written by:Bill Guschwan May 1993

This Technical Note discusses the maximum rowBytes value for a pixMap.

Topics
• What is the largest value of rowBytes?
• Why does it have a limit?
• How do you increase the limit?

Introduction

This technical note concerns applications which create and read very large pixMaps. The
rowBytes field defines the limits of the largest pixMap. For applications which use 32-
Bit QuickDraw, this limit is well-defined: 0x3FFE. However, a few applications want to go
beyond this limit, and under some extremely controlled situations, this limit can be extended
to 0x7FFE. This note explains why the limit exists, and proposes a few difficult methods to
exceed this limit. Along the way, proper parameter passing for CopyBits is discussed and
a few debugging tips are thrown in.

Largest size of rowBytes of a pixMap

rowBytes is important because it defines the size of a pixMap. rowBytes had a
largest size of 0x1FFE up through Color QuickDraw. The top three bits were reserved.

Version 1.0 of 32-Bit QuickDraw extended that limit to 0x3FFE: only the top two bits are
reserved. QuickDraw uses the two bits for identification purposes. The top bit distinguishes
between a pixMap and a bitMap. If the top bit of rowBytes is set, then QuickDraw knows the structure is a pixMap.
The second highest bit is used by CopyBits, CopyMask, CopyDeepMask, SeedCFill, and CalcCMask to
distinguish between their bitMap parameters. The implications of this identification scheme are fully discussed below.

3 Types of BitMap Parameters

CopyBits, CopyMask, CopyDeepMask, SeedCFill, and CalcCMask are routines which
take bitMaps as their first two parameters. For historical and compatibility

Developer Support Center May 1993

Macintosh Technical Notes

reasons, three types of parameters can be passed in: bitMap, pixMaps and the portBits field of a cGrafPort.

For the purposes of this note, I will focus on the CopyBits call, though my discussion will apply to the other four routines. The
behavior of these five calls is identical for the bitMap parameters.

The BitMap

The bitMap parameter is actually a pointer to a bitMap. In Pascal, the pointer is implicit, since a bitMap structure is greater than 4 bytes
in size and the Pascal compiler creates a pointer for any data structure greater than 4 bytes.

In C:
pascal void CopyBits(const BitMap *srcBits,const BitMap *dstBits,const Rect

*srcRect, const Rect *dstRect,short mode,RgnHandle maskRgn) = 0xA8EC;

In Pascal:
PROCEDURE CopyBits(srcBits: BitMap;dstBits: BitMap;srcRect: Rect;dstRect: Rect;

mode: INTEGER;maskRgn: RgnHandle);
INLINE $A8EC;

The PixMap

With Color QuickDraw, CopyBits accepts pixMaps as BitMap parameters. This support, however, does not come without a cost.
CopyBits needs a method to distinguish between the two parameters. As mentioned above, the top bit of rowBytes distinguishes between
pixMaps and bitMaps. While this bit allows pixMaps to be passed in to CopyBits, the size of rowBytes is diminished. All design
choices have trade-offs.

The portBits of a CGrafPort

In designing Color QuickDraw, certain rules were set up to provide compatibility with the new features. Here was one rule: you should be able
to pass a portPixMap field to CopyBits just as you would pass a portBits field. Unfortunately, portPixMap is a handle whereas
portBits is a BitMap. Tricky type-casting, however, allows one to pass in a cGrafPort's portPixMap field, as the following
examples show. You must coerce the cGrafPtr in to a grafPtr in order to use the portBits field.

In C:

CGrafPtr colorPort; /* Graphics environment for color off screen */
GrafPtr savedPort; /* Pointer to the saved graphics environment */

CopyBits(&((GrafPtr)colorPort)->portBits, &savedPort->portBits,
 &colorPort->portRect, &savedPort->portRect,
 srcCopy, nil);

In Pascal:

colorPort: CGrafPtr; {Graphics environment for color off screen}
savedPort: GrafPtr; {Pointer to the saved graphics environment}

Developer Support Center May 1993

Macintosh Technical Notes

CopyBits(GrafPtr(colorPort)^.portBits, savedPort^.portBits,
colorPort^.portRect, savedPort^.portRect,
srcCopy, NIL);

Typecasting is not the only trickery involved here. CopyBits is faced with a major headache if you think about it. PortPixMap is a handle,
and the parameters of CopyBits expect a pointer to a pixMap. To solve this, CopyBits has a little algorithm in it which dereferences the
pointer twice if you pass in a portBits. To identify the type of pointer it is getting, CopyBits looks at the top two bits of the rowBytes
field. As mentioned above, the top bit distinguishes between a pixMap and a bitMap. The next bit tells CopyBits if the pixMap is part of a
cGrafPort or not (see Fig. 1). If the two bits are set, then CopyBits knows it is being passed a pixMapHandle, and it will perform the
dereference.

BitMapPtr

rowBytes

baseAddr

00

PixMapPtr

01rowBytes

baseAddr

portPixMapPtr

portVersion

portPixMap
(Handle)

11

device

CGrafPort structure

PixMap structure

BitMap structure

Figure 1. CopyBit's BitMap parameters

Figure 1. displays three types of CopyBit's BitMap parameters. Each points to a either a bitMap, pixMap, or the portPixMap field in
a cGrafPort. After 4 bytes, the top two bits of the fifth byte identifies the pointer.

Why Large PixMaps Crash Apps

As you can see, the top two bits of rowBytes have specific functions. The highest bit
distinguishes between bitMaps and pixMaps. The second highest bit identifies the type
of BitMap parameter. If it is set, a dereference is applied; if not, nothing happens to the
pixMap. If your pixMap uses the second highest bit of rowBytes and you pass it into a
QuickDraw application, it will think it is part of a cGrafPort, and will perform a handle

Developer Support Center May 1993

Macintosh Technical Notes

dereference on your baseAddr. The first dereference will get to video memory, but the
second dereference will be on whatever random video data happens to be there. Your
application will land up in Never-Never land.

If you create pictures which can be redistributed, leave the top two bits of rowBytes alone.
Below, I will identify one method of going around this limit, but it will only work in specific
situations. If you read pictures, look below for reading pictures which go around this limit.

Identifying CGrafPorts and GWorlds in a Debugger

You'll notice in Figure 1 that the portVersion field of a cGrafPort coincides with the location of the rowBytes field of a
grafPort. Remember, a cGrafPort has the same size as a grafPort. During debugging, you can use the same information which
CopyBits uses to identify cGrafPorts.

If you use a grafPort template to display memory for an unknown grafPort, you can tell if it is a cGrafPort
because the rowBytes will be equal to 0xC000. The 0xC
corresponds to the two high bits being set in the portVersion field
of a cGrafPort. Since these bits can not be set in a grafPort, you
know you have a cGrafPort. In addition, if the bottom bit of the
portVersion field is set, then it is a gWorld. Thus, if your rowBytes field

has a value of 0xC001, then you know you have a gWorld.

Even or odd rowBytes?

Since the dawn of Macintosh, it has been said that rowBytes should be even because each row of a pixMap must contain an integral number
of words. Actually, rowBytes has to be even because QuickDraw accesses bitmap data using word or long operands, and these generate
address errors when it references an odd address on the 68000, which would happen if rowBytes is odd. The 68020 and later handle odd
addresses fine, and so rowBytes can be odd. But, it is still recommended that rowBytes be even, because misaligned accesses incur a
performance penalty.

Going Around The Limit Today

In the world today applications have a difficulty because they can either refuse to create
pixMaps as big as users want or cause crashes by confusing CopyBits into dereferencing
the base address of the pixMap if rowBytes exceeds the established limit of less than
0x4000. Some well-known image applications create such pixMaps with bad results.
Reading large pixMaps causes the crash, but applications which create them are the
ultimate culprit.

As far as a solution for the present, a possibility is to bypass the CopyBits dereferencing
algorithm. You can call StdBits directly since it does not mind dealing with larger than
legal rowBytes. The problem here is that the destination is implied and the application has
to make sure that everything is alright. Also, if the destination spans multiple devices, the
application has to divide the task , targeting each device at the time. See the DeviceLoop
procedure in IM VI for ideas on this.

Developer Support Center May 1993

Macintosh Technical Notes

Developer Support Center May 1993

Macintosh Technical Notes

A second possibility is to patch CopyBits in situations where you know it can only be fed
pixMaps. DrawPicture time is one example. You need to patch right before
DrawPicture because you know a picture will contain only pixMaps. That is, you know
CopyBits will not be passed portBits. If rowBytes is too big, then the application
could split the job, banding the image vertically until the resulting rowBytes values fall
within range. After the DrawPicture call, you will need to unpatch.

Going Around The Limit Tomorrow

All this is known by engineering and some future directions are already being studied, for
example it is possible that a next release of QuickDraw will support pixMap with a
rowBytes constant value indicating that the real rowBytes is contained in the
planeBytes field instead; I am sure you can immediately think of cases where this is also
going to cause problems but we think that the problems are less important than the limitation
being overcome.

Conclusion

The limitations of rowBytes is becoming an increasingly painful thing, applications can
easily create pixMaps (and PICTs) that exceed the limit of 0x4000. It is possible for an
application to patch CopyBits in order to work around this limitation but the application
writer has to decide what is appropriate for each set of conditions. Thus, rowBytes has
traditionally been said to have a maximum value of 0x3FFE. But, if your application avoids
the use of CopyBits, CopyMask, and CopyDeepMask, then you can use a rowBytes
value of 0x7FFF without harm. However, those situations are rare, and, for all practical
matters, the limit of rowBytes is 0x3FFE.

Further Reference:
• Inside Macintosh, Volume I, QuickDraw
• Inside Macintosh, Volume V & VI, Color QuickDraw
• d e v e l o p 1, "Realistic Color For Real-World Applications"

Developer Support Center May 1993

