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MemSim: 
A Membrane Dynamics Simulator

Introduction:

MemSim uses electrical circuit models to emulate the behavior of an elastic 

membrane subjected to any combination of velocity and force conditions.  The user 

defines the properties of the membrane and the material it is made of; he also specifies 

source layouts and parameters.  Finally, he has control over simulation parameters such 

as time step and granularity.  MemSim requires an FPU or emulator (like the shareware 

Software FPU), a 68020 or better processor, and at least a portable-sized screen.  Color 

output can be generated on machines with color Quickdraw and system 6.04 or newer.  

The appearance of such output will be best in 256 color mode.  

Source code for the program and/or a version that does not require an FPU (but 

is significantly slower) will be mailed to any who send me an SASE along with a disk 

and the $10 shareware fee.

The Model:

The first step in the process of creating a simulator is developing a model for the 

system of interest.  In order to use electrical circuit analysis techniques and intuition, it 

may also be necessary to translate between engineering disciplines, as was here the 

case.  Since I envisioned most of the velocity constraints on the membrane being 

essentially boundary conditions and most of the force constraints being imposed by 

electromechanical transducers, I 
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chose to represent velocity as analogous to voltage and force as analogous to current.  

Using this mapping, the following equations can be derived:

f = m a   -->    f = m (du/dt)   <--->   i = C (dv/dt)

f = kx  -->  u = (1/k) (df/dt)   <--->   v = L (di/dt)

u = fR   <--->   v = iR

Thus mechanical masses of value m in Kg can be replaced in a circuit model by 

capacitors with value m in F, mechanical springs with value k in N/m can be replaced by 

inductors with value (1/k) in H, and mechanical resistances with value R in m/Ns can be 

replaced by electrical resistances of value R in Ω. 

Having determined the appropriate element conversions, it remains to model the 

mechanical construct itself.  A membrane is by nature a distributed system, and as 

such, two-dimensional versions of any of the analytical techniques discussed in chapter 

eight of the notes could be used to approximate its transmission .  However, it is likely 

that the response of interest in the case of a membrane is the shape of its surface 

rather than its terminal characteristics, so a multiple-element uniform lumped model is 

the most suitable.  Given that, it is necessary to determine the connection pattern of the 

lumped elements.  

If the membrane is split up into n equal lumps, each lump will have a mass equal 

to the total mass of the membrane divided by the number of lumps being created:

 (membrane width * membrane length * membrane thickness)  ρ = m
number of lumps 

One terminal of each of these masses is connected to all neighboring lumps by a spring 

constant, representing the elasticity of the membrane, and a damper, representing the 

tendency of the membrane to stop vibrating once it has begun.  These elements must 

be in parallel, since a DC force applied to the membrane 
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will not necessarily result in a velocity (i.e. it is possible for all of the force to "flow" 

through the springs).  The second terminal of a mechanical mass is always connected 

to the inertial frame of reference.  

Given the assumption that the spring and damper are both operating in a linear 

range (probably about some operating point on a nonlinear transfer curve), their values 

can be easily determined.  The spring constant is equal to the area of the spring 

perpendicular to the axis of deflection, times the modulus of elasticity of the spring 

material , divided by the length of the spring along the axis of deflection.  In terms of the 

size of the entire membrane, this is: 

(membrane thickness *  membrane width   ⊥  ) / branches along width     E  =  k
membrane length / branches along length

Where E has units of N / m2.  The equation for the resistance of the damper is of the 

same form, with Ρ, the mechanical resistivity of the material in 1/Ns, replacing E and R, 

the resistance of the damper, replacing k.  Obviously, if the membrane is not square or if 

the lumps are not square, the spring constant along one axis will be different from that 

along the other.   The unit lump described by this model is shown in Figure 1.

m
k'

R' k

Figure 1: The Unit Element of the Lumped Model
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Elements along the left and bottom edges of the membrane have only those branches 

that connect to neighbors; therefore , the number of branches along an axis is one less 

than the number of nodes.  Force and velocity constraints simply appear as sources 

between the frame of reference and the appropriate node(s).  Using the transformations 

described above, this mechanical model translates to the electrical model shown in 

Figure 2. 
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Figure 2: The Electrical Model of a Node

Simulation Plan:

Given these models of the lumped element array, it is necessary to decide on a 

means of computing all relevant circuit parameters (i.e. state variables V and I or F and 

U, and from them the position x).  There are two steps that must be taken in such a 

time-varying simulation.  At each time step, the correct state variable values must be 

calculated.  Then, between time steps, some type of integrator must perform the 

integration embodied in the capacitors and inductors.  Any time-varying sources must 

also be updated.  My program uses Gauss-Seidel iteration with over-relaxation to 

compute the state variables at each time step, and uses trapezoidal rule companion 

circuits to perform the integration between time steps.  A procedure also updates all 

sources in between time steps.  
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The Gauss-Seidel iteration step is derived from KCL at each node as shown in 

Figure 3, where the inductors and capacitors have been replaced by their companion 

circuits.  With the possible addition of a force source, Is, or a velocity source, Vs:

If Vs is defined: V = Vs.  Otherwise, do KCL:

0 = (Vu - V) / Ru + Iu + (Vr - V) / Rr - Ir + (Vb - V) / Rb - Ib + (Vl - V) / Rl + Il + (Is) + (Vc - V) / Rc

V =  ( Vu / Ru ) + ( Vr / Rr ) + ( Vd / Rd ) + ( Vl / Rl ) + (Vc / Rc ) + Iu - Ir - Id + Il + (Is)
         -----------------------------------------------------------------------------------------------------------------------------------------

      ( 1 / Ru ) + ( 1 / Rr ) + (1 / Rd ) + ( 1 / Rl ) + (1 / Rc)

Using over-relaxation makes this:

V = Vold + weight ( Vfrom above - Vold).

The program iterates at each time step using an auto-adjusting weight factor.  It 

keeps a moving average of the number of iterations the last three time steps took to 

converge, and increases the weight if the current iteration did better than the average.  

If not, it lowers the weight factor.  The average is initialized to a large number to start 

things in motion, and a protection threshold is set to keep fluctuations in convergence 

speed from causing an unstable weight to be used (see the functions "converge" and 

"step").  In between time steps a function updates the companion circuit models for the 

capacitors and inductors.



6

+
-

R || 2/hK

R || 2/hK

R || 2/hK

R || 2/hK Vck+1 = Vck + (h/2m) I k
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Idk+1 = I k + (hK/2) Vk

Ilk+1 = I k + (hK/2) Vk

Iuk+1 = I k + (hK/2) Vk

Figure 3: A Node For Iteration / Integration

Sources: 

The program provides for graphical entry of source locations and supports the 

source functions step, impulse, sin, and cos for both force and velocity sources.  

Sources can also have their own material properties, as would be the case if, for 

example, a thick wire attached to the back of the membrane were the source of a force 

excitation.  Such a source would cause local variations in spring constant, mass, and 

resistance.  Force source magnitudes are automatically scaled by 1 / (area of source), 

velocity sources are not.  

The graphical source window displays which nodes will be touched by a source - 

it automatically breaks itself up into a grid the same size as the node 
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space.  You may either draw sources in the window or enter them in the text boxes 

below it; in either case, the set of points that show up in the source box is the set of 

points that will act as sources on the membrane.  Mapping a continuous membrane to a 

small node space and then to a larger pixel space inevitably causes some inaccuracy.  

If a source that should fit on the membrane does not show up in the graphical source 

entry window, it has been lost in the mapping; use a different one.  

Output:

Once the program has finished its iteration for a given time step, it sends its data 

to plot routines that create a projected 3-D image of the membrane in a window on the 

screen.  The user can choose not to plot every set of data if he so chooses; this speeds 

up program execution but makes it harder to follow the pattern of the membrane's 

motion.  Time step and total simulation length are also selectable.  The program makes 

a rough estimate of the lowest natural frequencies of the membrane (simply 1/sqrt(LC)) 

in order to give the user an idea of what time step is appropriate.  

As the simulation proceeds, the user can choose whether to plot the velocities of 

the masses or the position of the surface.  The velocities are simply the voltages at 

each node; the position is calculated by finding the displacement of each spring relative 

to its neighbors.  The current through the model inductor is the equivalent of the force 

acting on the mechanical spring, so dividing by the spring constant yields a 

displacement.  The program makes the approximation that the change in length of the 

spring is all in the up-down direction.  Although 

one could calculate the up-down displacement by finding the unknown leg of a right 

triangle (Figure 4), that method is relatively computation intensive; 
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furthermore, it is unclear what to do if ΔX < 0, that is, if the spring is in compression.

length of spring

length + ΔX

Δh

Δh = sqrt( (len + ΔX)2 - len2)

Figure 4: Vertical Displacement

A plot of ΔH vs. ΔX and length (Figure 5) shows that the approximation is relatively 

accurate -  ΔH ≈ ΔX over a wide range of values of length and ΔX.  Outside of the region 

where the approximation holds, the other  assumptions made by the program, such as 

linear spring action and liner resistance probably fail as well, so it really is not a crucial 

issue.

length = 0.0001

length = 0.001

length = 0.01

length = 0.1

dh

dx

Figure 5: dh vs dx for several lengths

In any case, once the x,y,z space corresponding to the membrane and its up and 

down position/velocity has been constructed, it is scaled, shifted, 
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rotated, and projected so as to map onto the screen.  The values on the z axis will scale 

automatically if the membrane displacement or velocity exceeds half of the membrane's 

width, so it the values there seem not to be changing, look at the axis label.  If the 

computer in use supports color Quickdraw, the membrane surface can also be colored 

to indicate elevation/speed using one of four palettes.

Additional Notes:

This document provides an explanation of the simulation mechanics of the 

program.  Other aspects, such as menu selections,  file options, etc. follow standard 

Macintosh style; it should be easy to find one's way around the program.   MemSim 

should run on any Macintosh with a 68020 and FPU (or emulator, like the shareware 

Software  FPU) or better.  Dialog and window appearances and placement will be best 

under System 7 in 256 color mode.  If the program cannot perform a system check 

(using Gestalt, System 6.04 or newer), it will display a warning that a 68020 or better 

and an FPU are required; color will be disabled.  Have a look at the example settings - 

some of them are pretty spiffy (though not very realistic - note the huge deflections in 

"2D trans").

Defaults:

The default settings for material characteristics were chosen so as to provide 

behavior that seemed consistent with what one would consider an "elastic" membrane.  

The modulus of elasticity is about that of rubber, the density should be close as well 

(after all, some rubber float and some sinks).  The resistivity was selected only by the 

amount of ringing it allowed  - it is not based on any values from the references.  

Raising this number increases the 
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tendency of the membrane to ring, lowering it makes the membrane less mobile.  Below 

a certain point the membrane will not move at all.


