
11. Summary
    "What steps should I take to start using ViewIt and FaceIt in a new or existing programming project?"

New Programs
    First, create a new ".Rsrc" resource file to store program resources during development.    A good place 
to get such a file is to copy and rename the "Minimum.Rsrc" file since this file contains LoadIt (required by 
FaceWare modules) plus other program resources (such as default MENUs).
    Second, construct a small program that does little more than call DoInit and DoLoop.    A good example 
of such a program is the "MinimumXY" demo which you can copy and rename.    Also change the 
"Minimum.Rsrc" file name found within it to the name of your resource file.
    Third, try compiling and running your new program.    The "Recompiling Demos" topic in "Getting 
Started" describes some of the problems you might encounter.
    Fourth, if you would like to add program-controlled main menu items, then use ResEdit or other 
resource editor to add such items to the MENU resources in your resource file.    The "Menu Handling" 
topic in the FaceIt Guide describes the types of items that can be added to these menus, and the 
"Initializations" topic in the FaceIt Guide describes the rules to follow when adding new MENU resources.
    Fifth, begin adding code below DoLoop in your main event loop that handles events and messages 
returned by DoLoop.    If, for example, you added a program menu item "Run" as the 4th item in the 
MENU resource with menuID 105, then a case or if...then statement should be added to handle the 
corresponding menu event:
    repeat
      FaceIt(nil,DoLoop,0,0,0,0);
      if (uMenuID = 105) and (uMenuItem = 4) then
        ...
Note that all code appearing in your main event loop is added to respond to events or messages that you 
have chosen to support.    This differs greatly from most other interface builders that appear to make 
getting started easy, but then require you to wade through large amounts of code to figure out how to add 
program-specific functionality.
    Once you have a simple program up and running, begin adding ViewIt modal or modeless windows 
along with corresponding code to handle events from these windows.    Modeless ViewIt windows are 
often opened as part of the initialization code in a program:
    FaceIt(nil,DoInit,0,0,0,0);
    ...
    FaceIt(nil,NewWnd,1001,1,0,0);
    ...
    repeat
      FaceIt(nil,DoLoop,0,0,0,0);
      ...
Each ViewIt window requires an FWND resource, but ViewIt creates one for you if it cannot find one with 
the resource ID passed to NewWnd (described in "Adding Windows" in the "Windows" topic of the ViewIt 
Guide).    Thus you can write and execute code to open a ViewIt window before the FWND is created, and 
then enter edit mode and edit the window from within the running program.
    Processing events from modeless windows is similar to processing menu events, but uMenuID returns 
the FWND ID and wcHit the number of the item hit (see "Windows" in ViewIt Guide for a complete 
description of window events):
    repeat
      FaceIt(nil,DoLoop,0,0,0,0);
      if (uMenuID = 1001) and (wcHit = 6) then
        ...
which would respond to a hit in the sixth control of the window associated with FWND 1001.
    Modal windows are opened, responded to, and closed within isolated sections of your program code. 
Most of the "vDemo" example program is devoted to illustrating the opening and managing of modal 
windows, so take the time to study this program in detail.    The "Windows" topic in the ViewIt Guide 
describes the types of events and messages returned from modal windows.
    ViewIt windows contain views and controls.    These objects can be copied from other windows, or 
imported via the "+" import menu when in edit mode.    The "Editing" topic in the ViewIt Guide discusses 
on-line editing of these objects, the "Views" topic discusses views, and "Controls" discusses control 



features and how to learn more about the various custom controls supported by ViewIt control drivers.
    Moving information to and from ViewIt windows usually involves transferring data between program 
variables and control values.    ViewIt makes this task easy by supporting "data linking" which is discussed 
in the "Data Links" topic of the ViewIt Guide.
    When finished with an application, you may want to create a stand-alone version that does not require 
presence of the FaceWare file.    This issue and other resource management issues are discussed in 
"Resources" in the ViewIt Guide.    When adding resources to a finished program, you'll also want to add 
several Finder-related resources that affect the program's interaction with the Finder.    "Finder 
Resources" in the FaceIt Guide discusses adding such resources.

Existing Programs
    To adapt an existing program, incorporate the required elements that have been discussed in previous 
topics:

1. Include the "FaceStorXY" and "FaceProcXY" files in your programming project (where "XY" denotes a 
compiler, as described in the "About Compilers" program).    Examine one of our demo programs to 
determine the manner in which this is done for the compiler you are using.    Some modules require 
additional include files.

2. Add the LoadIt module to your program or other resource file used by your program.    If you will not be 
using FaceIt, then use MoveIt to move LoadIt (found on the Utilities disk and in demo ".Rsrc" files) into 
your own res file.    If using FaceIt, then simply copy and rename one of our demo res files, or copy and 
rename the "Minimum.Rsrc" res file.

3. Add a call to FaceWare initialization command DoInit near the beginning of your main program code.    
If using FaceIt (parameter c ≥ 0 in call to DoInit), then DoInit will auto-load main program menus and 
perform other tasks described in the FaceIt Guide.    If not using FaceIt (c < 0 or FaceSt is being used), 
then DoInit's actions are "silent" and will not affect the appearance of your program.

4. If using FaceIt, add a "main event loop" to your program that begins with a call to DoLoop followed by 
an if...else or case block that processes the messages and events returned.


