
V8. Override (Advanced)
    Every message sent by ViewIt to a control driver can be intercepted by a main program.    This allows 
the program to selectively modify all aspects of control behavior.    Note that this "override" capability is 
much more powerful than the Dialog Manager's support for "userItem" procedures, or the Control 
Manager's support for "action" procedures, since ViewIt allows you to intercept all control messages 
passed to any ViewIt control.
    At one extreme, overriding can be used to tweak the behavior of an existing control (such as filtering 
key events in some program-specific manner).    At the other extreme, controls can be completely 
managed by program code ("program controls") that intercepts and handles all messages from ViewIt, 
allowing, in effect, the program to control any region of a ViewIt window.
    This topic describes the 3 ways that a program can override ViewIt controls:    1) content drawing within 
ViewBV controls by a main program procedure, 2) "program controls" that are completely supported by 
main program code, and 3) overriding of selected messages by a program procedure.    These 3 options 
represent different degrees to which the main program can take responsibility for a control's appearance 
and behavior.

CONTENT DRAWING
    The ViewBV controls described in the "Views" topic support the use of a main program procedure that 
does the drawing of the view's content.    ViewBV can also support non-view controls in a ViewIt window. 
The "Program Content" example control seen in the Import menu when in edit mode is an example of 
such a non-view control that is supported by ViewBV (try adding it to a ViewIt window).
    The "Program Content" control handles scrolling and drawing of its body and frame, but does not 
display any "content" unless it is associated with a program drawing procedure (described under 
"Content" in the "Views" topic).    The scrolling is done using ViewIt's built-in support (described under 
"Scrolling" in "Controls" topic), meaning that the ScrCtl command can be used by a program to directly 
scroll and resize the content area of the control, and that changes to the content and increment settings in 
the Bounds dialog will apply.
    Scrollable controls based on the ViewBV driver offer a simple way to support scrolling of program-
specific drawing.    All of the display options of views are supported:    scroll bars, hand scrolling, 
activation/deactivation with active state of window, color, frame thickness, attachment, etc.
    The major limits on such controls are:
- maximum 30,000-pixel height and width of content area
- the scrolling increment (set in Bounds dialog) is limited to 255 pixels and is the same in both directions
- the controls must be type "Static" (i.e., display only)

PROGRAM CONTROLS
    The "Program Controls" folder included with ViewIt contains the demo projects in C++, C, and Pascal 
that illustrate how to create "program controls" which are completely supported by main program code 
(i.e., areas of a window whose appearance and behavior are controlled by the main program).    These 
custom, program controls can be mixed with any number of other controls in the same window, and can 
be edited like any other control when in edit mode.

Example Projects
    The C++ project is in the form of a class hierarchy in which a base class, "VControl" (which contains 
code that is common to most control drivers), is subclassed to create custom controls:    static and 
editable text controls.    The C and Pascal projects are in a procedural format which contains the same 
code as the C++ "VControl" base class.    In this case the default procedures are simply replaced to 
produce custom controls.
    The procedures found in the VControl file have a one-to-one correspondence to the control messages 
that are sent by ViewIt to control drivers, and each procedure in VControl includes a complete description 
of what it is that ViewIt expects the procedure to do.    Additional information about control drivers can be 
found in the "Inside Drivers" window when running the "ctlDemo" program which makes use of VControl 
to support program controls.
 FORTRAN Programmers:    Although we did not provide examples of FORTRAN-based program controls, 
note that the form of the program procedures needed to support such controls is the same as the override 



procedures described below, so you can use the override example in the FORTRAN version of vDemoXY 
as the starting point for developing program control drivers.

Procedure Format
    Program-based controls are supported by main program procedures that do all of the things done by 
"control drivers" (first described in "Views" topic).    These procedures must be of type "Pascal", and have 
a single, 4-byte parameter.    When working within a code resource, this parameter is used to recover the 
global fRec address and other information.    When working within a main program, however, the fRec is 
usually available as a global record and so the passed parameter can be ignored:
/* C, C++ */
 pascal void function MyDriver(Ptr thePtr);
Pascal
 procedure MyDriver(thePtr : Ptr);
where "MyDriver" is the name of the program procedure and "thePtr" is the single, 4-byte parameter.
    On entry, the "c" variables in fRec will contain information about the control (as if you called GetCtl), and 
the variables uCommand and uParam will contain the message being sent to the control by ViewIt.    A 
complete description of the messages sent to controls by ViewIt is presented in the VControl file and 
Inside Drivers document that are part of the example projects in the "Program Controls" folder.

Procedure Installation
    The address of the program procedure must be connected to the program controls in the window.    One 
way of doing this would be to use the OvrCtl command described below, but this would be tedious since 
OvrCtl would need to be called to connect each such control.
    To simplify this task, baseID "7400" has been set aside as a signal to ViewIt that any control with this 
baseID is a program control (i.e., that it is supported by a program procedure), and that the address of the 
procedure will be found in the fRec variable fDrvr7400.    Thus, to connect all program controls to a single 
procedure, simply set their baseID to 7400 (in the Control dialog) and fDrvr7400 to the procedure 
address:
 fRec.fDrvr7400 = (long)MyDriver;    /* C, C++ */
 fRec.fDrvr7400 := @MyDriver;            Pascal
Note that this assignment should be made before any window is opened that contains associated 
program controls, and that the procedure must be located in a nonrelocatable code resource.

SELECTIVE OVERRIDES
    Occasionally you may find that an existing control almost does what you want it to do, but needs to be 
modified in some minor way.    In this case you should selectively override one or more of its control 
messages with a program override procedure (instead of creating a program control that must handle all 
messages from ViewIt).    A simple example of an override procedure is presented in the "vDemoXY" 
program, and the following notes review the installation, format, and operation of these procedures.

Override Format
    Override procedures must be of type "Pascal", and have a single, 4-byte parameter.    When working in 
a code resource, this parameter is used to recover the global fRec address and other information. When 
working in a main program, however, the fRec is usually available as a global record, so the passed 
parameter can be ignored (although it is used in jumping back to the driver - discussed below):
/* C, C++ */
 pascal void function MyOverride(Ptr thePtr);
Pascal
 procedure MyOverride(thePtr : Ptr);
where "MyOverride" is the name of the override procedure and "thePtr" is the single, 4-byte parameter.

Override Installation
    The most direct method of associating an override procedure with a control is by passing a control 
handle and a procedure address to the OvrCtl command (Pascal source):
 FaceIt(nil,GetCtl,0,0,1,5);
 FaceIt(nil,OvrCtl,ord(cControl),ord(@MyOverride)…



where, in this case, the 5th control in the 1st view is being associated with the program's "MyOverride" 
procedure.    See "vDemoXY" for an example using your preferred language and compiler.
    The above method of installing an override procedure has two disadvantages:    the control must 
already exist in a window, and OvrCtl must be called for each control that is to be overridden.    These 
disadvantages are addressed by an alternative method based upon the assignment of an "Override ID" 
number to each override procedure.    These ID numbers are arbitrary 2-byte integers passed to OvrCtl in 
place of the control handle.    For example,
 FaceIt(nil,OvrCtl,1001,ord(@MyOverride),0,0);
would associate the override ID "1001" with "MyOverride" by storing this ID/ProcPtr pair in a private table. 
All controls with an "Override ID" of 1001 (set in Control dialog) will then be associated with the program's 
"MyOverride" procedure.
    OvrCtl can be used to add new entries to the ID/ProcPtr table at any time, whether associated controls 
have been initialized or not.    To remove an entry, pass the ID number of the entry to be removed and 
zero for the proc address:
 FaceIt(nil,OvrCtl,1001,0,0,0);
    Since override IDs are saved with control-related resources, such controls can be added, pasted, 
imported, duplicated, etc., without losing their link to the override procedure.    If the override ID is zero, or 
is not found in the table, then ViewIt ignores it and calls the control driver directly.

Override Execution
    Before ViewIt sends a message to a control, it checks whether the control is linked to an override 
procedure, and, if so, then the override procedure is called instead of the control driver.    This means that 
the override procedure will see all control messages and can selectively override or modify any message.
    On entry, the "c" variables in fRec will contain information about the control (as if you called GetCtl), and 
the variables uCommand and uParam will contain the message being sent to the control by ViewIt.    A 
complete description of the messages sent to controls by ViewIt is presented in the VControl file and 
Inside Drivers document that are part of the example projects in the "Program Controls" folder.
    In most cases, you'll want to pass messages on to the control driver so that it can execute its default 
behavior (versus the "program controls" described above that must handle all messages).    This is done 
by calling the "JumpIt" procedure using the 4-byte parameter passed to the override procedure.    See the 
"vDemoXY" programs for examples of calling JumpIt using your preferred language and compiler.
    When passing messages on to control drivers, the override procedure must be careful to preserve the 
contents of the "c" variables in fRec, plus uCommand and uParam since these will be used by the driver. 
This differs from the procedures that support "program controls" since the latter are drivers and are 
completely responsible for all messages.
    The actions taken by an override procedure usually fall into one of five categories:

• Posting Events
    One approach to take is to post a pseudo-menu event back to your own event loop before passing the 
message on to the driver.    This approach is relatively safe because it does not involve making any 
changes to fRec variables or executing code that might affect the default operation of the driver.    A 
pseudo-menu event can be posted using ViewIt's PstEvt:
 ...
 if [some condition] then
    begin
      BlockMove(@uCommand,@saveMessage,20);
      FaceIt(nil,PstEvt,13,b,c,d);
      BlockMove(@saveMessage,@uCommand,20);
    end;
 JumpIt(thePtr);    pass message to driver
 ...
where "saveMessage" is a 20-byte array being used to save uCommand and uParam for use by the 
driver, and passing a = 13 to PstEvt puts a new event in the private event queue from which pseudo-
menu events are returned to the program's modal or modeless event loop:    b -> uMenuID, c -> uResult, 
and d -> uMenuItem (see the PstEvt command in the "Other Utilities" topic for more info).
    If the posted message is to replace the original event, then the code is even simpler:
 ...



 if [some condition] then    message to program
    FaceIt(nil,PstEvt,13,b,c,d)
 else                                            message to driver
    JumpIt(thePtr);
 ...
ViewIt's "Links" dialog, for example, supports use of the arrow keys to move up and down in its list of 
controls (versus the default behavior of moving the insertion bar within the current editable text item).    
This trick is done by overriding all of the editable text controls with the same override procedure:
 procedure OverProc(thePtr:Ptr);
 ...
 if (uCommand = 264) then      a key press?
    if (uParam[1] = 30) or (uParam[1] = 31) then
      begin                                        arrow keys?
        FaceIt(nil,PstEvt,13,1200,0,uParam[1]);
        exit(OverProc);
      end;
 JumpIt(thePtr);
 ...
where the message posted is received by ViewIt from MdlWnd (uMenuID = 1200, uMenuItem = 30 or 31) 
and interpreted as a request to move up or down in the list.
    uMenuID can be thought of as a message "class", uMenuItem as a message ID, and uResult as any 
accompanying data.    To avoid conflicts with other uses of uMenuID, choose a value that is outside of the 
range of FCMD IDs (1100-7499), and is not equal to any label ID, menuID, or FWND ID (a number > 
7499 is a good choice).    NOTE:    The value returned in uMenuItem gets temporarily stored in the 2-byte 
"modifiers" field of an event record, so don't use it to pass 4 bytes of information.    uResult, on the other 
hand, gets stored in the 4-byte "where" field, so you can use this to pass addresses, handles, etc.

• Stealing Messages
    Another safe action to take is to simply steal the message and not pass it on to the driver (i.e., do not 
call "JumpIt").    This strategy works when you wish to replace the default response of the control with a 
program-specific response, or with no response at all.    WARNING:    Only the message(s) of interest 
should be stolen.    Stealing other messages (such as a "draw" message) will disable the corresponding 
default behavior of the control (such as drawing itself!).

• Tweaking Messages
    Another safe action is to make minor changes to messages being passed to drivers.    An example of 
this can be found in "vDemoXY" where its override procedure converts all space characters to underline 
characters passed to the editable text item.

• Major Action Before
    More complex actions within override procedures that are taken before passing a message to a driver 
must be careful to preserve the fRec variables set by ViewIt for use by the driver (cNext to cString, 
uCommand, and uParam).    The "c" variables, for example, can be reset using GetCtl, but the "u" 
variables must be saved in program variables:
 ...
 BlockMove(@uCommand,@saveMessage,20);
 saveControl := cControl;
 [do stuff that clobbers fRec]
 FaceIt(nil,GetCtl,0,0,0,ord(saveControl));
 BlockMove(@saveMessage,@uCommand,20);
 JumpIt(thePtr);
 ...
where "saveMessage" is a 20-byte program array being used to save uCommand and uParam (the 
original message).

• Major Action After
    More complex actions within override procedures that are taken after passing a message to a driver 
must consider that the driver is allowed to change any "c" or "u" variables for its own purposes.    Again, 



GetCtl can be used, if necessary, to update the contents of fRec if the control's control handle has been 
saved:
 ...
 saveControl := cControl;
 JumpIt(thePtr);
 FaceIt(nil,GetCtl,0,0,0,ord(saveControl));
 ...
Also note, if executing code after "JumpIt", that the fRec variables uResult and uMenuHdl are sometimes 
used to return information from the driver to ViewIt, so you will need to preserve these for some types of 
messages.

Limitations
- Most ViewIt controls are very flexible.    Do not waste time attempting to override behavior until you fully 
understand a control's default capabilities.
- Messages to standard CDEF controls cannot be intercepted.
- The "initCntl" message will not be seen by an override procedure that was installed by passing a control 
handle to OvrCtl.    Any initialization-related code that you wish to add, however, can be executed just 
after the override procedure is installed.
- Controls that are reinitialized from within editing mode will lose their connection to an override procedure 
if the procedure was installed by passing a control handle to OvrCtl.
- The fRec variables ciIndex to ccIndex are not updated by ViewIt when calling control drivers and 
override proc.s.    The reason for this is that it would take ViewIt too long to calculate these values when 
passing messages to windows with large numbers of controls.    If you need such indices for use within 
override proc.s, then use GetCtl with the control handle passed in cControl (be careful to preserve 
uCommand and uParam!).    A better approach, however, is to not rely on control or view numbers, but 
rather write procedures that understand how to deal with control types.    Controls can be easily 
distinguished by variables such as cBaseID (the driver type), cResType (linked resource type), cDataType 
(linked data type), cRefCon (a value set by you), etc.


