
U6. String Utility Commands
    ViewIt supports several commands that perform common string-related operations:    setting substrings, ViewIt supports several commands that perform common string-related operations:    setting substrings,
trimming strings, setting parameter text, converting strings from one format to another, finding strings trimming strings, setting parameter text, converting strings from one format to another, finding strings
within text blocks, and interconverting strings and numbers.within text blocks, and interconverting strings and numbers.

Name    Number    Parameters & Variables used
SetSub    451    a,b,c,d,uString,uName
    Moves the contents of uString into uName beginning at character a of uName and ending at character bMoves the contents of uString into uName beginning at character a of uName and ending at character b
(i.e. sets a substring in uName).    Undefined characters are replaced with spaces so that SetSub works (i.e. sets a substring in uName).    Undefined characters are replaced with spaces so that SetSub works
even if uName is less than b characters in length, or uString is smaller than the substring.    You can even if uName is less than b characters in length, or uString is smaller than the substring.    You can
optionally use parameter c to pass the address of a Pascal-type source string (instead of using uString), optionally use parameter c to pass the address of a Pascal-type source string (instead of using uString),
and/or d to pass the address of a Pascal-type destination string (instead of using uName).and/or d to pass the address of a Pascal-type destination string (instead of using uName).
    NOTE:    You can get substrings using the command GetStr described in the "String Lists" topic.    NOTE:    You can get substrings using the command GetStr described in the "String Lists" topic.

TrmStr    452    a,b,uString,uName
    Moves or removes leading or trailing spaces within the string uString, uName, or some other string Moves or removes leading or trailing spaces within the string uString, uName, or some other string
designated by a, according to the type of adjustment specified by b.designated by a, according to the type of adjustment specified by b.
    a = string to adjust    a = string to adjust
        0 or 1 = uString        0 or 1 = uString
        2 = uName        2 = uName
        other = address of a Pascal string        other = address of a Pascal string
    b = type of adjustment to make    b = type of adjustment to make
        1 = removes (trims) trailing spaces        1 = removes (trims) trailing spaces
        0 = removes both leading and trailing spaces        0 = removes both leading and trailing spaces
      -1 = removes leading spaces      -1 = removes leading spaces
      -2 = moves leading spaces to end of string      -2 = moves leading spaces to end of string

SetPrm    453    a,b,c,d,uString
    Resets the four parameter text strings (^0, ^1, ^2, and ^3 items in dialogs and alerts) to the strings Resets the four parameter text strings (^0, ^1, ^2, and ^3 items in dialogs and alerts) to the strings
designated by a, b, c, and d where,designated by a, b, c, and d where,
    0 = empty string    0 = empty string
    1 to 255 = size of substring from uString    1 to 255 = size of substring from uString
    other = address of a Pascal string    other = address of a Pascal string
If using substrings from uString, these are obtained in succession, and trimmed of both leading and If using substrings from uString, these are obtained in succession, and trimmed of both leading and
trailing spaces before being assigned to parameter text.    For example, the call trailing spaces before being assigned to parameter text.    For example, the call
"FaceIt(nil,SetPrm,10,20,10,30)" would set the ^0 item to the first 10 characters of uString, ^1 to the next "FaceIt(nil,SetPrm,10,20,10,30)" would set the ^0 item to the first 10 characters of uString, ^1 to the next
20 characters, ^2 to the next 10 characters, ^3 to the next 30 characters (= 70 total characters of uString 20 characters, ^2 to the next 10 characters, ^3 to the next 30 characters (= 70 total characters of uString
used).    This approach can be mixed with that of passing Pascal string addresses.    SetPrm is primarily used).    This approach can be mixed with that of passing Pascal string addresses.    SetPrm is primarily
provided for those programmers who do not have access to the toolbox routine ParamText, but is also provided for those programmers who do not have access to the toolbox routine ParamText, but is also
useful when "writing" multiple parameter text items to a single string.useful when "writing" multiple parameter text items to a single string.
NOTE:    This command is largely obsolete now since the basic control driver used with ViewIt provides a NOTE:    This command is largely obsolete now since the basic control driver used with ViewIt provides a
more powerful "parameter text" scheme based on the use of string lists.more powerful "parameter text" scheme based on the use of string lists.

CnvStr    454    a,b,c,d,uString,uName
    Converts the string designated by parameter c from string type a to type b.    Parameter d designates Converts the string designated by parameter c from string type a to type b.    Parameter d designates
the total number of bytes occupied by the string variable (its "storage size") which is usually larger than the total number of bytes occupied by the string variable (its "storage size") which is usually larger than
the number of characters in the string (the "string length").the number of characters in the string (the "string length").
    a = source type (0 = Pascal, 1 = C, 2 = FORTRAN)    a = source type (0 = Pascal, 1 = C, 2 = FORTRAN)
    b = converted type (0 = Pascal, 1 = C, 2 = FORTRAN)    b = converted type (0 = Pascal, 1 = C, 2 = FORTRAN)
    c = source string (0 or 1 = uString, 2 = uName, other = string address)    c = source string (0 or 1 = uString, 2 = uName, other = string address)
    d = source string storage size (0 ≤ d ≤ 256 bytes)    d = source string storage size (0 ≤ d ≤ 256 bytes)
            (if d = 0, ViewIt assumes d = 256 bytes)            (if d = 0, ViewIt assumes d = 256 bytes)
CnvStr preserves all fRec scratch variables, so you don't need to worry about it clobbering other values inCnvStr preserves all fRec scratch variables, so you don't need to worry about it clobbering other values in
fRec.fRec.

FndTxt    455    a,b,c,d,uResult
    Searches within the text block defined by a and b for the string defined by c and d.    Note that the text
block must be locked in memory during the search since FndTxt can move heap memory.    uResult
returns the position of the found string as a byte offset from a, or -1 if not found.
    a = address of text block to search
    b = size of text block to search (bytes)
    c = address of search text
    d = size of search text (use -d for case sensitive search)

NumToS    471    a,b,c,d,uString
    Converts a number from the variable designated by b to the string designated by a, using the format Converts a number from the variable designated by b to the string designated by a, using the format
indicated by c and d.    Infinities will appear as the character "∞".indicated by c and d.    Infinities will appear as the character "∞".
    a = destination string    a = destination string
        0 = uString        0 = uString
        other = address of a Pascal string        other = address of a Pascal string
    b = source of number (as a data type)    b = source of number (as a data type)
        1 = uI1        5 = uR4        1 = uI1        5 = uR4
        2 = uI2        6 = uR8        2 = uI2        6 = uR8
        3 = uI4        7 = uR10        3 = uI4        7 = uR10
        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")
    c = format    c = format
        0 = general (= fixed point unless very large or small)        0 = general (= fixed point unless very large or small)
        1 = floating point        1 = floating point
        2 = fixed point        2 = fixed point
    d = digits (use -d to also trim trailing decimal zeroes)    d = digits (use -d to also trim trailing decimal zeroes)
        if c = 0 or 1, d = significant figures (-4 used if d = 0)        if c = 0 or 1, d = significant figures (-4 used if d = 0)
        if c = 2, d = decimals to display        if c = 2, d = decimals to display

C & Pascal Programmers:    The "FaceStorXC" files declare uR8, uR10, and uR12 as arrays of 2-byte C & Pascal Programmers:    The "FaceStorXC" files declare uR8, uR10, and uR12 as arrays of 2-byte
integers:integers:
 short    uR8[4]; short    uR8[4];
 short    uR10[5]; short    uR10[5];
 short    uR12[6]; short    uR12[6];
The "FaceStorXP" files define these variables similarly:The "FaceStorXP" files define these variables similarly:
 uR8 : array [1..4] of integer; uR8 : array [1..4] of integer;
 uR10 : array [1..5] of integer; uR10 : array [1..5] of integer;
 uR12 : array [1..6] of integer; uR12 : array [1..6] of integer;
The reason that these fRec elements are defined as integer arrays is that we needed to ensure that the The reason that these fRec elements are defined as integer arrays is that we needed to ensure that the
size of these variables was always 8, 10, or 12 bytes, respectively, but could not use "double" or size of these variables was always 8, 10, or 12 bytes, respectively, but could not use "double" or
"extended" since the meaning of these depends on both the compiler in use and on compiler options (see"extended" since the meaning of these depends on both the compiler in use and on compiler options (see
the "Numbers" topic in the "About Compilers" program for more information about this issue).the "Numbers" topic in the "About Compilers" program for more information about this issue).
    To work with uR8, uR10, and uR12, you will either need to "fix" the "FaceStorXY" file to declare these     To work with uR8, uR10, and uR12, you will either need to "fix" the "FaceStorXY" file to declare these
variables using numerical types corresponding to 8, 10, and 12-byte reals, or type cast these variables to variables using numerical types corresponding to 8, 10, and 12-byte reals, or type cast these variables to
the proper types in expressions involving real numbers.    The following lines, for example, will not compilethe proper types in expressions involving real numbers.    The following lines, for example, will not compile
due to a type mismatch,due to a type mismatch,
    uR10 := myReal;    uR10 := myReal;
    myReal := uR10;    myReal := uR10;
but can be quickly fixed by applying type casts,but can be quickly fixed by applying type casts,
    extended(uR10) := myReal;    extended(uR10) := myReal;
    myReal := extended(uR10);    myReal := extended(uR10);
which assumes, of course, that the compiler is interpreting "extended" as a reference to a 10-byte real, which assumes, of course, that the compiler is interpreting "extended" as a reference to a 10-byte real,
and that the program variable "myReal" can be assigned or assigned to a variable of type extended.and that the program variable "myReal" can be assigned or assigned to a variable of type extended.

SToNum    481    a,b,uString,uResult,fI1Err...
    Converts a string designated by a to an integer or real number in the variable designated by b.    The Converts a string designated by a to an integer or real number in the variable designated by b.    The
"∞" character can be used in strings to represent infinities.    Leading and trailing spaces are ignored."∞" character can be used in strings to represent infinities.    Leading and trailing spaces are ignored.

    a = source string    a = source string
        0 = uString        0 = uString
        other = address of a Pascal string        other = address of a Pascal string
    b = destination variable (as a data type)    b = destination variable (as a data type)
        1 = uI1        5 = uR4        1 = uI1        5 = uR4
        2 = uI2        6 = uR8        2 = uI2        6 = uR8
        3 = uI4        7 = uR10        3 = uI4        7 = uR10
        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")
If no error occurs, then uResult is set equal to zero, else uResult returns -1 and the variable (uI1...uR12) If no error occurs, then uResult is set equal to zero, else uResult returns -1 and the variable (uI1...uR12)
is set equal to the corresponding error value in fRec (fI1Err... fR12Err).    The default error values are zero,is set equal to the corresponding error value in fRec (fI1Err... fR12Err).    The default error values are zero,
but these can be changed at any time to other values if you prefer a special non-zero value returned but these can be changed at any time to other values if you prefer a special non-zero value returned
when an error occurs.when an error occurs.
    Conditions causing an error include an empty string or a string that cannot be evaluated as a number     Conditions causing an error include an empty string or a string that cannot be evaluated as a number
(an NAN).    A number that is out of the range of values represented by the destination variable's (an NAN).    A number that is out of the range of values represented by the destination variable's
numerical type is either set equal to the maximum or minimum integer (for integer types), or to ±∞ or 0 numerical type is either set equal to the maximum or minimum integer (for integer types), or to ±∞ or 0
(for real types).(for real types).
C and Pascal Programmers:    See note above accompanying NumToS that describes type-casting that C and Pascal Programmers:    See note above accompanying NumToS that describes type-casting that
may be needed if working with uR8, uR10, or uR12.may be needed if working with uR8, uR10, or uR12.

