
C1. FaceIt & ViewIt Commands

    As described in the "Startup" topics, communication between a program and FaceWare modules is 
accomplished via the global fRec record and the "FaceIt" dispatching procedure.    The fRec record is 
described in the "fRec Record" topic, and commands supported by FaceIt and ViewIt that can be passed 
to the FaceIt dipatching procedure are described in the other topics under the "Commands" menu.

Command Format
    The FaceIt dispatching procedure is found in the "FaceProcXY" file (or in some other form compatible 
with your programming environment).    Calls to this procedure always have the form,
    FaceIt(nil,[command],a,b,c,d);      Pascal
    FaceIt(0,[command],a,b,c,d);          /* C, C++ */
    call FaceIt(0,[command],a,b,c,d) !FORTRAN
where parameters a, b, c, and d are 4-byte integers, and where other record elements from the global 
fRec or other records may be used with particular commands.
    Each FaceIt and ViewIt command name, its equivalent number, the parameters and record elements 
used by the command, and a complete description of the command are presented in the topics under the 
"Commands" menu.    Command names can be used in place of the numbers in calls to the FaceIt 
procedure since they are declared as constants in the "FaceStorXY" file (or in some other way compatible 
with your programming environment).

Command Types
    The commands described under the "Commands" menu are of 3 general types:
    1. "Program Commands" are commands supported by the FaceIt module that deal with program-wide 
features (the main loop, the main menu bar, modeless window management, etc.).
    2. "Window" and "Control Commands" are commands supported by the ViewIt module that deal directly 
with ViewIt windows and controls.
    3. The "Utilities" commands are also supported by ViewIt, but provide a wide range of utility-type 
routines that augment the Macintosh toolbox.    These utility routines are used internally by ViewIt and 
control drivers, but can also be called by your program for its own purposes.

Clobbered Variables
    Most fRec variables are scratch variables that can be changed by any call to the FaceIt dispatching 
procedure or to the Control Manager (since the Control Manager then calls ViewIt via CDEF 1200).    The 
scratch variables include all those prefixed by the letters "u", "w", or "c".    This means that you cannot rely 
on the content of these fRec variables across calls to FaceIt or the Control Manager.    The rule of thumb 
to follow is that if you will be using such an fRec variable in more than one FaceIt or Control Manager call, 
then save a copy of its contents in a local variable and use the copy.    The major exception to this rule is 
that most utility-type routines preserve the content of the "w" and "c" variables since they do not deal 
directly with ViewIt windows.
    Suppose, for example, that a control handle is needed for use in a single call to "SizeControl".    In this 
case you can get away with using the cControl returned by GetCtl:
 FaceIt(nil,GetCtl,1030,0,1,5);
 SizeControl(fRec.cControl,100,100);
But if the control handle is also used in a subsequent call, then a copy of cControl should be used:
 FaceIt(nil,GetCtl,1030,0,1,5);
 theControl := fRec.cControl;
 SizeControl(theControl,100,100);
 FaceIt(nil,AddCtl,1004,0,ord(theControl),0);
since both the Control Manager and FaceIt calls can result in clobbering the current values in fRec.
    The same precaution should be taken with commonly used variables such as uString, uMenuID, 
uMenuItem, wvHit, wcHit, and wiHit, although these are most often used as simple case selectors in case 
blocks in a way that does not require their contents to be saved.    The following code, for example, is safe 
since it makes just one use of uMenuID between calls to DoLoop:
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);



    if (uMenuID = 1001) then
      ...
    else if (uMenuID = 1002) then
      ...
    else if (uMenuID = 1003) then
      ...
 until false;
but the similar code that follows is asking for trouble since it assumes that the actions taken after each 
"if...then" do not affect the contents of uMenuID:
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
    if (uMenuID = 1001) then
      ...
    if (uMenuID = 1002) then
      ...
    if (uMenuID = 1003) then
      ...
 until false;
This code could also be fixed by simply storing the contents of uMenuID in a local variable and using that 
variable in the "if...then" blocks.


