
TransDisplay 3.0 Manual

TransDisplay
A TransSkel Display Window Module

Release 3.05
26 February 1994

Introduction

This document describes TransDisplay, a plug-in module that runs on top of the
TransSkel Macintosh application skeleton, and that may be added to any TransSkel
project to provide an arbitrary number of text display windows. It may be used, for
instance, to provide a debug output window without disturbing the normal operation of
the application under development, or to display on-line documentation. TransDisplay
provides no editing capabilities; applications requiring text editing windows may use
TransEdit instead.

TransDisplay provides standard document windows that may be dragged and resized in
the usual manner. Output written to the window is displayed and remembered (it’s stored
in a standard TextEdit record), so anything that goes out of view is not lost, but may be
scrolled back for review. To prevent overflow, the text is autoflushed every so often.
Autoflush behavior is configurable. Display windows may also be flushed manually by
the host.

The host application may exert quite a bit of control over display windows if it wishes,
but the minimum investment required to use them is small. For instance, to maintain a
help window, the window is created with a single call and the help text can be written
with another call. To maintain a debug output window, the procedure is similar, except
that text is written to the window intermittently with output calls placed at arbitrary
places in the host, rather than with a single call at the time the window is created.

With little effort, the host may provide a mechanism allowing the window to be made
visible and invisible under user control: a single menu item and a few lines of code
suffices.

The window and its data structures may also be destroyed anytime during host execution.
If the destroyed window happens to be the current display output window, output is
automatically turned off. Display windows not destroyed explicitly by the host are
disposed of automatically by the usual TransSkel mechanism (i.e., when the host calls
Page 1

TransDisplay 3.0 Manual

SkelCleanup()).

Output to a display window may be turned on or off at any time. For debugging purposes
especially, this provides an alternative to the insertion / deletion / reinsertion or
commenting / uncommenting or #ifdef’ing of debug statements. For instance, a menu
item may be established during development to allow run-time toggling of debug output,
or a dialog might be provided for selecting one of several levels of debug output. Also, if
the window creation call is deleted, all output calls are implicitly disabled and do not
need to be deleted. This provides a convenient (i.e., trivial-effort) compile-time
mechanism for controlling debug output.

The set of built in output-writing procedures is very simple-minded, consisting of calls
for writing one object each of the following types: text, Pascal or C string, char, short,
long, boolean, and OS type (no floating point). However, TransDisplay is not tied to any
particular output convention. If the built-in calls are inconvenient or insufficient for
particular applications, one may use sprintf() to format a text object to be passed to
TransDisplay. The sprintf() routine is found in the THINK C stdio library.

Page 2

TransDisplay 3.0 Manual

Display windows may be told to report activate/deactivate events to the host. This can be
useful for applications that enable or disable menu items according to which window is
frontmost.

Distribution Information

TransDisplay is public domain, so distribution is unrestricted. I am interested in hearing
about any additions or corrections, for possible inclusion in future releases. I may be
reached via electronic mail at dubois@primate.wisc.edu or via U.S. mail at:

Paul DuBois
Wisconsin Regional Primate Research Center
1220 Capitol Court
Madison, WI 53715-1299
USA

The version of TransDisplay described in this document is written for THINK C 6.0.
THINK C is a trademark of:

Symantec Corporation
10201 Torre Avenue
Cupertino, CA 95014 USA

This distribution of TransDisplay consists of:

Documentation
Release Notes
Manual

TransDisplay library C source code
TransDisplay.c —TransDisplay source

Demonstration application source code
MiniDisplay — minimal demonstration
EventLog — event logging demonstration

Interface files
TransDisplay.h — C header file
TransDisplay.intf — Pascal interface file
TransDisplay — binary TransDisplay library document

Page 3

TransDisplay 3.0 Manual
The remainder of this document describes the demonstration programs included in the distribution and provides a detailed
specification of the TransDisplay interface. TransDisplay 3.0 requires TransSkel 3.0. Familiarity with TransSkel is assumed.

Demonstration Applications

The demonstrations are an introduction to the ways in which TransDisplay can be used.
MiniDisplay shows the minimum amount of work necessary by the host to use a display
window. EventLog demonstrates how a display window may be fully integrated into an
application, including appropriate menu item enabling/disabling.

MiniDisplay

Page 4

TransDisplay 3.0 Manual

This demonstration puts up an Apple menu with desk acessories in it, a File menu with a
Quit item and a single display window. The window displays a minimal amount of text,
demonstrating the available output calls. Desk accessories may be run as usual. Terminate
the application by selecting Quit from the File menu, or by typing Command-Q.

EventLog

This demonstration uses multiple display windows. One is a help window (supplied with
text from a resource), while the other is a window that reports events. Another (non-
display) window is used to select the types of events that are logged. This demonstration
shows how to change text attributes of display windows.

The TransDisplay Interface — General Information

TransDisplay.c contains the source of the TransDisplay module. It can be made into a
project or library document for inclusion in the your application project document, or the
source can be included directly in your project.

The available calls are:

NewDWindow() Create display window
GetNewDWindow() Create display window from resource template
SetDWindow() Set window used for output
GetDWindow() Get window currently used for output
GetDWindowTE() Get TextEdit record associated with window
SetDWindowNotify() Install activate notification procedure
SetDWindowStyle() Set window text display characteristics
SetDWindowFlush() Set autoflush parameters
SetDWindowPos() Scroll window to given line
FlushDWindow() Flush output from display window
IsDWindow() Test whether window is a display window.

DisplayText() Write text
DisplayString() Write Pascal string
DisplayCString() Write C string
DisplayChar() Write character
DisplayShort() Write short integer
DisplayLong() Write long integer
DisplayHexChar() Write character in hex
DisplayHexShort() Write short integer in hex
DisplayHexLong() Write long integer in hex
DisplayBoolean() Write boolean

Page 5

TransDisplay 3.0 Manual
DisplayOSType() Write OS type
DisplayLn() Write carriage return

All other variables and procedures are declared static, to preclude name conflicts with
the host. The interface to the host application is procedural, but the header file
TransDisplay.h should be #include’d in source files containing TransDisplay calls.

The general logic of host applications using TransDisplay is:

• Initialize TransSkel, plus whatever other initialization is desired.

Page 6

TransDisplay 3.0 Manual

• For each display window to be used, call NewDWindow() or GetNewDWindow()
to create it.

• Set the window to be written to with SetDWindow() and write to it (unnecessary
unless more than one display window is used).

• To destroy display windows explicitly, call SkelRmveWind() for each one.
Otherwise, display windows are disposed of automatically when the host calls
SkelCleanup().

The TransDisplay Interface — Procedural Specification

Each of the TransDisplay interface routines is described in detail below.

Except where noted, routines expecting a WindowPtr to a display window do nothing if
the pointer is not pointing to a display window.

Standard Interface Routines — Control Routines

pascal WindowPtr
NewDWindow (Rect *bounds, StringPtr title, Boolean visible,

WindowPtr behind, Boolean goAway, long refCon);

NewDWindow() creates a new display window and makes it the current window for
display output. The WindowPtr of the new window is the return value. All the other
parameters have the same meanings as the corresponding parameters of the Toolbox
routine NewWindow() (see Inside Macintosh). The window is created as a standard
document window, with a size box and a scroll bar along the right edge. A pointer to
the new window is the return value. If the window could not be created the return
value is nil. The window is subject to whatever the current TransSkel window sizing
defaults are. They may be changed with SkelSetGrowBounds() in the usual
manner.

The default text display characteristics for display windows are monaco 9-point font,
word wrap on, and left justification. The default autoflush values are: allow 30,000
characters maximum, flush 25,000 when that limit is exceeded. By default there is no
activation/deactivation notification procedure. These values may be changed with
SetDWindowStyle(), SetDWindowFlush(), and SetDWindowNotify().

To destroy the display window and its data structures, pass the window pointer to
SkelRmveWind().

Page 7

TransDisplay 3.0 Manual

Note
If the window being destroyed is the current display output window, output is
implicitly turned off until you select another window for output with
SetDWindow() or NewDWindow(). Thus the host may blithely destroy display
windows with impunity. (Not that blitheness juxtaposes well with impunitance…)

pascal WindowPtr
GetNewDWindow (short resourceNum, WindowPtr behind);

GetNewDWindow() is like NewDWindow() except that it creates the window from
the 'WIND' resource with the given ID number.

pascal void
SetDWindowNotify (WindowPtr w, TDispActivateProcPtr p);

Page 8

TransDisplay 3.0 Manual

SetDWindowNotify() associates a procedure p with w, to be called whenever w
receives an activate or deactivate event. The procedure should be declared to take one
boolean parameter, like so:

pascal void
MyNotify (Boolean active)
{
}

The parameter will be true if w is coming active, false if it’s going inactive. When the notification procedure is called, the display
window to which the event applies is the current port, and may be obtained with the QuickDraw procedure GetPort(). This is
useful if you associate the procedure with more than one window. TransDisplay handles activating the window properly (e.g.,
highlighting the scroll bar and drawing the size box appropriately), before calling the notification procedure.

If w is a display window and p is nil, notification is turned off. If w is nil, p becomes the default activation procedure associated
with new display windows created with subsequent calls to NewDWindow() or GetNewDWindow().

Note
Notification is useful mainly for applications that change enabling of menu items according to which window is frontmost. No special
treatment is necessary for display windows created with a close box: The window handler simply hides the window when the box is
clicked, which generates a deactivate event that can be detected with the notification procedure. Thus, if you want to destroy a display
window when it’s closed, check whether the window is still visible when it goes inactive. If not, call SkelRmveWind() to remove
it.

There is no notification when a display window is clobbered. If the window is clobbered at the end of application execution, the host
doesn’t need to know. If the window is clobbbered during execution, the host must be the one telling TransSkel to shut down the
window, and so is assumed to know what additional actions to take, if any.

pascal void
SetDWindowStyle (WindowPtr w,

short font,
short size,
short wrap,
short just);

SetDWindowStyle() sets the text display characteristics for w. The value of wordWrap should be non-negative to specify
wrapping on, negative to specify wrapping off. The justification values are the usual TextEdit justification constants teJustLeft,
teJustCenter, and teJustRight to specify left, center or right justification, respectively.

If w is nil, the style parameters become the defaults for new display windows created with subsequent calls to NewDWindow() or
GetNewDWindow().

pascal void
SetDWindowFlush (WindowPtr w, long maxText, long flushAmt);

Page 9

TransDisplay 3.0 Manual
SetDWindFlush() configures the autoflush behavior of w. maxSize determines the maximum number of text characters allowed
in the window. flushSize determines how many characters are flushed when the text grows beyond maxSize characters. Neither
value may be set less than 100 characters.

If w is nil, the flush parameters become the defaults for new display windows created with subsequent calls to NewDWindow() or
GetNewDWindow().

pascal void
FlushDWindow (WindowPtr w, long byteCount);

FlushDWindow() removes the first byteCount bytes from the current text of w. If there are not that many characters of text, the
effect is to empty the window.

pascal void
SetDWindow (WindowPtr w);

SetDWindow() select w as the current display window; subsequent output is written to that window. Pass nil to turn output off
completely (output calls are then ignored until output is turned on again). If w is not a display window and is not nil,
SetDWindow() does nothing.

SetDWindow() preserves the current port.

pascal WindowPtr
GetDWindow (void);

GetDWindow() returns the current display window.

Warning
This value will be nil if output is currently turned off. Check the value before you pass it somewhere else!

pascal Boolean
IsDWindow (WindowPtr w);

IsDWindow() returns true if w is a display window, false otherwise.

pascal void
SetDWindowPos (WindowPtr w, short lineNum);

SetDWindowPos() scrolls the text in w so that the given line is at the top of the window, if possible. This is useful mainly for
scrolling to the top of the text (lineNum = 0), or the bottom (lineNum = some large number, like 32767).

pascal TEHandle
GetDWindowTE (WindowPtr w);

GetDWindowTE() returns a handle to the TextEdit record associated with w, or nil if it’s not a display window. This call allows
the host to perform arbitrary text operations not supported by the standard TransDisplay calls.

Standard Interface Routines — Output Routines

Page 10

TransDisplay 3.0 Manual

All display routines write to the current display window, and scroll the new output into
view if necessary. No output is written if the current display window has been set to nil
with SetDWindow(), or if no call has been made to NewDWindow(). By implication,
you can disable all output calls by deleting display window creation calls from the host. If
they are replaced later, output capability is restored without the need for deleting and
replacing the output calls themselves.

The current port is preserved across all output calls.

pascal void
DisplayText (Ptr theText, long len);

DisplayText() writes arbitrary text.

pascal void
DisplayString (StringPtr str);

DisplayString() writes the string, which should be a Pascal string.

pascal void
DisplayCString (char *str);

DisplayCString() writes the string, which should be a C string.

This function isn’t very useful from within Pascal applications.

pascal void
DisplayChar (short c);

DisplayChar() writes the character.

pascal void
DisplayHexChar (short c);

DisplayHexChar() writes the value of the character as 2-digit hex number.

pascal void
DisplayShort (short i);

Page 11

TransDisplay 3.0 Manual

DisplayShort() writes the value of the short integer.

pascal void
DisplayHexShort (short i);

DisplayHexShort() writes the value of the short integer as a 4-digit hex number.

pascal void
DisplayLong (long l);

DisplayLong() writes the value of the long integer.

pascal void

Page 12

TransDisplay 3.0 Manual
DisplayHexLong (long l);

DisplayHexLong() writes the value of the long integer as an 8-digit hex number.

pascal void
DisplayBoolean (Boolean b);

DisplayBoolean() writes the string "\ptrue" if b is true, "\pfalse"
otherwise.

pascal void
DisplayOSType (OSType type);

DisplayOSType() writes the four-character value of the given OS type. It doesn’t
print any single-quotes around the value.

pascal void
DisplayLn (void);

DisplayLn() writes a carriage return to the display window.

Using Notification Procedures

The notification procedure for a display window, if one is installed, is called whenever a
display window is activated or deactivated. It is also called whenever the user clicks in
the close box. TransDisplay installs window handlers with nil close procedures, so if
the window is created with a close box, clicking in the close box causes TransSkel simply
to hide the window. Since hiding a window generates a deactivate event, the notification
procedure is called.

Generally, Macintosh applications allow the user the option of closing windows via a
Close item in the File menu. If the host provides such an option, it should simply hide
any display window that is frontmost when Close is selected.

if (IsDisplayWindow (FrontWindow ()))
HideWindow (FrontWindow ());

This generates a deactivate event, and the notification procedure will be called in the usual manner.

The question of what the notification procedure should do is a bit different. Typically, certain menu items are enabled or disabled. The host
may also wish to destroy the display window altogether (perhaps to free up memory), rather than just leave it hidden. This can be done as
follows:

Page 13

TransDisplay 3.0 Manual
pascal void
Notify (Boolean active)
{
WindowPtr w;

if (!active) /* check if invisible on deactivate */
{

GetPort (&w);
if (((WindowPeek) w)->visible == 0)

SkelRmveWind (w); /* destroy window */
}

/* set menu items appropriately here */
}

Page 14

TransDisplay 3.0 Manual

The current port is obtained with GetPort() since the port when a notification procedure is called always corresponds to the window
being deactivated or activated. (If the host only uses one display window, or maps each display window onto a different notification
procedure, then of course it does not need to find out which one is current, since it will know implicitly.)

An alternative to setting menu items when a display window becomes active or inactive is to install a menu hook to be called whenever the
mouse is clicked in the menu bar. The hook procedure can check what sort of window is frontmost and set menu items accordingly. You can
use SkelSetMenuHook() to install such a hook.

Page 15

