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While creating or revising any program for the Macintosh, you should be aware of the most  
common reasons why programs fail on various versions of the Macintosh. This note will 
detail some common failure modes, why they occur, and how to avoid them.

We’ve tried to explain the issues in depth, but recognize that not everyone is interested in 
every issue. For example, if your application is not copy protected, you’re probably not very 
interested in the section on copy protection. That’s why we’ve included the outline form of 
the  technical  note.  The  first  two  pages  outline  the  problems  and  the  solutions  that  are 
detailed  later.  Feel  free  to  skip  around  at  will,  but  remember  that  we’re  sending  this 
enormous  technical  note  because  the  suggestions  it  provides  may  save  you  hasty 
compatibility revisions when we announce a new machine.

We know it’s a lot, and we’re here to help you if you need it. Our address (electronic and 
physical) is on page two—contact us with any questions—that’s what we’re here for!

Compatibility: the outline

Don’t assume the screen is a fixed size
To get the screen size:

• check the QuickDraw global screenBits.bounds

Don’t assume the screen is in a fixed location
To get the screen location:

• check the QuickDraw global screenBits.baseAddr

Don’t assume that rowBytes is equal to the width of the screen
To get the number of bytes on a line:

• check the QuickDraw global screenBits.rowBytes
To get the screen width:

• check the QuickDraw global screenBits.bounds.right
To do screen-size calculations:

• Use LongInts
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Don’t write to or read from nil Handles or nil Pointers
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Don’t create or Use Fake Handles
To avoid creating or using fake handles:

• Always let the Memory Manager perform operations with handles
• Never write code that assigns something to a master pointer

Don’t write code that modifies itself
Self modifying code will not live across incarnations of the 68000

Think carefully about code designed strictly as copy protection
To avoid copy protection-related incompatibilities:

• Avoid copy protection altogether
• Rely on schemes that don’t require specific hardware
• Make sure your scheme doesn’t perform illegal operations 

Don’t ignore errors
To get valuable information:

• Check all pertinent calls for errors 
• Always write defensive code 

Don’t access hardware directly
To avoid hardware-related incompatibilities:

• Don’t read or write the hardware
• If you can’t get the support from the ROM, ask the system where the hardware is
• Use low-memory globals

Don’t use bits that are reserved
To avoid compatibility problems when bit status changes:

• Don’t use undocumented stuff
• When using low-memory globals, check only what you want to know

Summary

Minor bugs are getting harder and harder to get away with:
• Good luck
• We’ll help
• AppleLink: MacDTS, MCI: MacDTS
• U.S. Mail: 20525 Mariani Ave.; M/S 27-T; Cupertino, CA 95014

What it Is

The basic idea is to make sure that your programs will run, regardless of which Macintosh 
they are being run on. The current systems to be concerned with include:

• Macintosh 128K • Macintosh 512Ke
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• Macintosh 512K • Macintosh Plus
• Macintosh XL • Macintosh SE
• Macintosh II

If you perform operations in a generic fashion, there is rarely any reason to know what 
machine is  running.  This means that  you should avoid writing code to determine which 
version of the machine you are running on, unless it is absolutely necessary.
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For the purposes of this discussion, the term “programs” will be used to describe any code 
that runs on a Macintosh. This includes applications, INITs, FKEYs, Desk Accessories and 
Drivers.

What the “Rules” mean

Compatibility across all Macintosh computers (which may sound like it involves more work 
for you) may actually mean that you have less work to do, since it may not be necessary to 
revise your program each time Apple brings out a new computer or System file. Users, as a  
group, do not understand compatibility problems; all they see is that the program does not 
run on their system.

The benefits of being compatible are many-fold: your customers/users stay happy, you have 
less programming to do, you can devote your time to more valuable goals, there are fewer 
versions to deal with, your code will probably be more efficient, your users will not curse 
you under their breath, and your outlook on life will be much merrier.

Now that we know what being compatible is all about, recognize that nobody is requiring 
you to be compatible with anything. Apple does not employ roving gangs of thought police 
to be sure that developers are following the recommended guidelines. Furthermore, when the 
guidelines comprise 1200 pages of turgid prose (Inside Macintosh), you can be expected to 
miss one or two of the “rules.” It is no sin to be incompatible, nor is it a punishable offense.  
If it were, there would be no Macintosh programs, since virtually all developers would be 
incarcerated. What it does mean, however, is that your program will be unfavorably viewed 
until  it  steps  in  line  with  the  current  system (which  is  a  moving  target).  If  a  program 
becomes incompatible with a new Macintosh, it usually requires rethinking the offending 
code, and releasing a new version. You may read something like “If the developers followed 
Apple  guidelines,  they  would  be  compatible  with  the  transverse-hinged  diatomic  quark 
realignment system.” This means that if you made any mistakes (you read all 1200 pages 
carefully, right?), you will not be compatible. It is extremely difficult to remain completely 
compatible,  particularly  in  a  system  as  complex  as  the  Macintosh.  The  rules  haven’t 
changed, but what you can get away with has. There are, however, a number of things that  
you can do to improve your odds—some of which will be explained here.

It’s your choice

It is still your choice whether you will be concerned with compatibility or not. Apple will not 
put out a warrant for your arrest.  However,  if  you are doing things that are specifically 
illegal, Apple will also not worry about “breaking” your program.

Bad Things

The following list is not intended to be comprehensive, but these are the primary reasons 

Developer Support Center March 1988



Macintosh Technical Notes

why programs break from one version of the system to the next. These are the current top ten 
commandments:

I Thou shalt not assume the screen is a fixed size.
II Thou shalt not assume the screen is at a fixed location.
III Thou shalt not assume that rowBytes is equal to the width of the screen.
IV Thou shalt not use nil handles or nil pointers.
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V Thou shalt not create or use fake handles.
VI Thou shalt not write code that modifies itself.
VII Thou shalt think twice about code designed strictly as copy protection.
VIII Thou shalt check errors returned as function results.
IX Thou shalt not access hardware directly.
X Thou shalt not use any of the bits that are reserved (unused means reserved).

This has been determined from extensive testing of our diverse software base.

Assuming the screen is a fixed size

Do not assume that the Macintosh screen is 512 x 342 pixels. Programs that do generally 
have problems on (or special case for) the Macintosh XL, which has a wider screen. Most  
applications have to create the bounding rectangle where a window can be dragged. This is 
the boundsRect that is passed to the call:

DragWindow (myWindowPtr, theEvent.where, boundsRect);

Some ill-advised programs create the boundsRect by something like:

SetRect (boundsRect, 0,0,342,512);  { oops, this is hard-coded…}

Why it’s Bad

This is bad because it is never necessary to specifically put in the bounding rectangle for the screen. On a Macintosh XL for example, the screen 
size is 760x364 (and sometimes 608x431 with alternate hardware). If a program uses the hard-coded 0,0,342,512 as a bounding rectangle, end  
users will not be able to move their windows past the fictitious boundary of 512. If something similar were done to the GrowWindow call, it 
would make it impossible for users to grow their window to fill the entire screen. (Always a saddening waste of valuable screen real-estate.)

Assuming screen size makes it more difficult to use the program on Macintoshes with big screens, by making it difficult to grow or move  
windows, or by drawing in strange places where they should not be drawing (outside of windows). Consider the case of running on a Macintosh  
equipped with one of the full page displays, or Ultra-Large screens. No one who paid for a big screen wants to be restricted to using only the  
upper-left corner of it.

How to avoid becoming a screening fascist

Never hard code the numbers 512 and 342 for screen dimensions.  You should avoid using constants for system values that  can change.  
Parameters like these are nearly always available in a dynamic fashion. Programs should read the appropriate variables while the program is  
running (at run-time, not at compile time).

Here’s how smart programs get the screen dimensions:

InitGraf(@thePort); { QuickDraw global variables have to be initialized.}
…
boundsRect := screenBits.bounds;   { The Real way to get screen size }

                                          { Use QuickDraw global variable. }
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This is smart, because the program never has to know specifically what the numbers are. All references to rectangles that need to be related to  
the screen (like the drag and grow areas of windows) should use screenBits.bounds to avoid worrying about the screen size.

Note that this does not do anything remotely like assume that “if the computer is not a standard Macintosh, then it must be an XL.” Special  
casing for the various versions of the Macintosh has always been suspicious at best; it is now grounds for breaking. (At least with respect to  
screen dimensions.)

By the way, remember to take into account the menu bar height when using this rectangle. On 128K ROMs (and later) you can use the low-
memory global mBarHeight (a word at $BAA). But since we didn’t provide a low-memory global for the menu bar height in the 64K ROMs, 
you’ll have to hard code it to 20 ($14). (You’re not the only ones to forget the future holds changes.)

How to find fascist screenism in current programs

The easiest way is to exercise your program on one of the Ultra-Large screen Macintoshes. There should be no restrictions on sizing or moving  
the windows, and all drawing should have no problems. If there are any anomalies in the program’s usage, there is probably a lurking problem.  
Also, do a global find in the source code to see if the numbers 512 or 342 occur in the program. If so, and if they are in reference to the screen,  
excise them.

Assuming the screen is at a fixed location

Some programs use a fixed screen address, assuming that the screen location will be the same on various incarnations of the Macintosh. This is  
not the case. For example, the screen is located at memory location  $1A700 on a 128K Macintosh, at  $7A700 on a 512K Macintosh, at 
$F8000 on the Macintosh XL, and at $FA700 on the Macintosh Plus.

Why it’s Bad

When a program relies upon the screen being in a fixed location, Murphy’s Law dictates that an unknowing user will run it upon a computer 
with the screen in a different location. This usually causes the system to crash, since the offending program will write to memory that was used 
for something important. Programs that crash have been proven to be less useful than those that don’t.

How to avoid being a base screener

Suffice it to say that there is no way that the address of the screen will remain static, but there are rare occasions where it is necessary to go  
directly to the screen memory. On these occasions, there are bad ways and not-as-bad ways to do it. A bad way:

myScreenBase := Pointer ($7A700);  { not good.  Hard-coded number. }

A not-as-bad way:

InitGraf(@thePort);   { do this only once in a program. }
…
myScreenBase := screenBits.baseAddr;  { Good.  Always works. }

                          {Yet another QuickDraw global variable}
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Using the latter approach is guaranteed to work, since QuickDraw has to know where to draw, and the operating system tells QuickDraw where  
the screen can be found. When in doubt, ask QuickDraw. This will work on Macintosh computers from now until forever, so if you use this  
approach you won’t have to revise your program just because the screen moved in memory.

If you have a program (such as an INIT) that cannot rely upon QuickDraw being initialized (via  InitGraf), then it is possible to use the 
ScrnBase low-memory global variable (a long word at  $824). This method runs a distant second to asking QuickDraw, but is sometimes 
necessary.

How to find base screeners

The easiest way to find base screeners is to run the offending program on machines that have different screen addresses. If any addresses are  
being used in a base manner, the system will usually crash. The offending program may also occasionally refuse to draw. Some programs  
afflicted with this problem may also hang the computer (sometimes known as accessing funny space). Also, do a global find on the source code  
to look for numbers like $7A700 or $1A700. When found, exercise caution while altering the offending lines.

Assuming that rowbytes is equal to the width of the screen

According to the definition of a bitMap found in Inside Macintosh (p I-144), you can see that rowBytes is the number of actual bytes in 
memory that are used to determine the bitMap. We know the screen is just a big hunk of memory, and we know that QuickDraw uses that  
memory as a  bitMap.  rowBytes accomplishes the translation of a big hunk of memory into a  bitMap. To do this,  rowBytes tells the 
system how long a given row is in memory and, more importantly, where in memory the next row starts. For conventional Macintoshes,  
rowBytes (bytes per Row) * 8 (Pixels per Byte) gives the final horizontal width of the screen as Pixels per Row. This does not have to be the  

case. It is possible to have a Macintosh screen where the rowBytes extends beyond what is actually visible on the screen. You can think of it 
as having the screen looking in on a larger bitMap. Diagrammatically, it might look like:

BaseAddr:

Big Hunk o’ Memory

Visible Area

screenBits.Bounds

RowBytes

Developer Support Center March 1988



Macintosh Technical Notes

With an Ultra-Large screen, the number of bytes used for screen memory may be in the 500,000 byte range. Whenever calculations are being  
made to find various locations in the screen, the variables used should be able to handle larger screen sizes. For example, a 16 bit Integer will 
not be able to hold the 500,000 number, so a LongInt would be required.  Do not assume that the screen size is 21,888 bytes long.  bitMaps 
can be larger than 32K or 64K.

Why it’s Bad

Programs that assume that all of the bytes in a row are visible may make bad calculations, causing drawing routines to produce unusual, and  
unreadable, results.  Also, programs that use the  rowBytes to figure out the width of the screen rectangle will find that their calculated  
rectangle is not the real screenBits.Bounds.  Drawing into areas that are not visible will not necessarily crash the computer, but it will 
probably give erroneous results, and displays that don’t match the normal output of the program.

Programs that assume that the number of bytes in the screen memory will be less than 32768 may have problems drawing into Ultra-Large  
screens,  since those screens will  often have more memory than a  normal  Macintosh screen.   These particular  problems do not  evidence  
themselves by crashing the system.  They generally appear as loss of functionality (not being able to move a window to the bottom of the  
screen), or as drawing routines that no longer look correct.  These problems can prevent an otherwise wonderful program from being used.

How to avoid being a row byter

In any calculations, the rowBytes variable should be thought of as the way to get to the next row on the screen.  This is distinct from thinking  
of it as the width of the screen.  The width should always be found from screenBits.bounds.right– screenBits.bounds.left. 

It is also inappropriate to use the rectangle to decide how many bytes there are on a row.  Programs that do something like:

bytesLine := screenBits.bounds.right DIV 8;  { bad use of bounds }
rightSide := screenBits.rowBytes * 8;        { bad use of rowBytes }

will find that the screen may have more rowBytes than previously thought.  The best way to avoid being a row byter is to use the proper 
variables for the proper things.  Without the proper mathematical basis to the screen, life becomes much more difficult.  Always do things like:

bytesLine := screenBits.rowBytes;      { always the correct number }
rightSide := screenBits.bounds.right;  { always the correct screen size }

It is sometimes necessary to do calculations involving the screen.  If so, be sure to use LongInts for all the math, and be sure to use the right 

variables (i.e. use LongInts).  For example, if we need to find the address of the 500th row in the screen (500 lines from the top):

VAR myAddress: LongInt;
myRow: LongInt; { so the calculations don’t round off. }
myOffset: LongInt; { could easily be over 32768 ... }
bytesLine: LongInt;
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myAddress := ord4(screenBits.baseAddr);{start w/the real base address }
myRow := 500;      {the row we want to address }
bytesLine := screenBits.rowBytes;      {the real bytes per line }
myOffset := myRow * bytesLine;       {lines * bytes per lines gives bytes }

myAddress := myAddress + myOffset;    {final address of the 500th line }

This is not something you want to do if you can possibly avoid it, but if you simply must go directly to the screen, be careful.  The big-screen  
machines (Ultra-Large screens) will thank you for it.  If QuickDraw cannot be initialized, there is also the low-memory global screenRow (a 
word at $106) that will give you the current rowBytes.  

How to find row byters

To find current problems with row byter programs, run them on a machine equipped with Ultra-Large screens and see if any anomalies crop up.  
Look for drawing sequences that don’t work right, and for drawing that clips to an imaginary edge.  For source-level inspection, look for uses of 
the rowBytes variables and be sure that they are being used in a mathematically sound fashion.  Be highly suspicious of any code that uses  
rowBytes for the screen width.  Any calculations involving those system variables should be closely inspected for round-off errors and  
improper use.  Search for the number 8.  If it is being used in a calculation where it is the number of bits per byte, then watch that code closely  
for improper conceptualization.  This is code that could leap out and grab you by the throat at anytime.  Be careful!

Using nil Handles or nil Pointers

A nil pointer is a pointer that has a value of 0.  Recognize that pointers are merely addresses in memory.  This means that a nil pointer is 
pointing to memory location 0.  Any use of memory location 0 is strictly forbidden, since it is owned by Motorola.  Trespassers may be shot on  
sight, but they may not die until much later.  Sometimes trespassers are only wounded and act strangely.  Any use of memory location 0 can be  
considered a bug, since there are no valid reasons for Macintosh programs to read or write to that memory.  However, nil pointers themselves 
are not necessarily bad.  It is occasionally necessary to pass nil pointers to ROM routines.  This should not be confused with reading or writing 
to memory location 0.  A pointer normally points to (contains the address of) a location in memory.  It could look like this:
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This is how a Pointer
works.  The address of
the pointer variable itself
is $E9310 (@P) and is four
bytes long.  The pointer points
to (contains the address of)
the block at $3E4DE (P).
That memory location is where
the actual data resides (P^).

Memory 0

Higher Memory

Highest Memory

$3E4DE

Real
Data

P: $E9310:

P^: $3E4DE:

If a pointer has been cleared to nil, it will point to memory location 0.  This is OK as long as the program does not try to read from or write to  
that pointer.  An example of a nil pointer could look like:

Memory 0 
(P^)

Higher Memory

Highest Memory

0

$3E4DE:

Real
Data

This is a nil Pointer.
Note that the memory that
it points to (the address)
is 0 (P^).  This is wrong.  
There is no valid data at 
memory location 0.  Any 
writing to or reading from 
this pointer is a bug.

P: $E9310:

nil handles are related to the problem, since a handle is merely the address of a pointer (or a pointer to a pointer).  An example of what a normal  
handle might look like is:
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Memory 0

Higher Memory

Highest Memory

$2603C

Real
Data

This is how a Handle works.
The address of the handle
variable itself (H) is $E9310.
That variable points (has the
address) to the master pointer
at location $2603C (H).  That
variable is a pointer also, and
points to the real data found
at $3E4DE (H^^).  The dark grey 
block is a Master pointer block. I t
is a group (usually 64) of Master
Pointers.  One of them is the Mast er
Pointer at address $2603C (H^).

$3E4DE

H: $E9310:

H^^: $3E4DE:

H^: $2603C:

This is a nil Handle.
Note that the Handle usually
points to a Master Pointer, but
in this case it points at (has
the value of) 0 (H^).  This is wro ng.
Using what is at memory location
0 as a pointer is invalid, since
it is not known what will be there .

H^^: Points someplace strange...

Memory 0 
(H^)

Higher Memory

Highest Memory

0

$3E4DE:

$2603C:

Real
Data

$3E4DE

H: $E9310:

If the memory at 0 contains an odd number (numerically odd), then using it as a pointer will cause a system error with ID=2.  This can be very  
useful, since that tells you exactly where the program is using this illegal handle, making it easy to fix.  Unfortunately, there are cases where it is  
appropriate to pass a nil handle to ROM routines (such as GetScrap).  These cases are rare, and it is never legal to read from or write to a 
nil handle.

There is also the case of an empty handle.  An empty handle is one where the handle itself (the first pointer) points to a valid place in memory;  
that place in memory is also a pointer, and if it is nil the entire handle is termed empty. There are occasions where it is necessary to use the  
handle itself, but using the nil pointer that it contains is not valid.  An example of an empty handle could be:
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This is an Empty Handle.
Note that the handle itself
has a valid Master Pointer
address in it $2603C (H^).  The
Master Pointer is nil however,
which is the address of location
0 in memory.  It is wrong to use
the Master Pointer in this case,
although there are cases where
using the Handle itself is valid.

Memory 0 
(H^^)

Higher Memory

Highest Memory

0

$2603C

Purged
Data

H: $E9310:

$3E4DE:

H^: $2603C:

Why it’s Bad

The use of nil pointers can lead to the use of make-believe data.  This make-believe data often changes for different versions of the computer.  
This changing data makes it difficult to predict what will happen when a program uses nil pointers.  Programs may not crash as a result of 
using a  nil pointer, and they may behave in a consistent fashion.  This does not mean that there isn’t a bug.  This merely means that the  
program is lucky, and that it should be playing the lottery, not running on a Macintosh.  If a program acts differently on different versions of the  
Macintosh, you should think “could there be a nasty nil pointer problem here?”   Use of a nil handle usually culminates in reading or writing 
to obscure places in memory.  As an example:

VAR   myHandle:  TEHandle;

myHandle := nil;

That’s pretty straightforward, so what’s the problem?  If you do something like:

myHandle^^.viewRect := myRect;  { very bad idea with myHandle = nil }

memory location zero will be used as a pointer to give the address of a TextEdit record.  What if that memory location points to something in the  
system heap?  What if it points to the sound buffer?  In cases like these, eight bytes of rectangle data will be written to wherever memory 
location 0 points.  

Use of a nil handle will never be useful.  This memory is reserved and used by the 68000 for various interrupt vectors and Valuable Stuff.  This 
Valuable Stuff is composed of things that you definitely do not want to change.  When changed, the 68000 finds out, and decides to get back at  
your program in the most strange and wonderful ways.  These strange results can range from a System Error all the way to erasing hard disks  
and destroying files.  There really is no limit to the havoc that can be wreaked.  This tends to keep the users on the edge of their seat, but this is  
not really the desired effect.  As noted above, it won’t necessarily cause traumatic results.  A program can be doing naughty things and not get  
caught.  This is still a bug that needs to be fixed, since it is nearly guaranteed to give different results on different versions of 
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the Macintosh.  Programs exhibiting schizophrenia have been proven to be less enjoyable to use.

How to avoid being a Niller

Whenever a program uses pointers and handles, it should ensure that the pointer or handle will not be nil.  This could be termed defensive 
programming, since it assumes that everyone is out to get the program (which is not far from the truth on the Macintosh).  You should always  
check the result of routines that claim to pass back a handle. If they pass you back a  nil handle, you could get in trouble if you use them. 
Don’t trust the ROM.  The following example of a defensive use of a handle involves the Resource Manager.  The Resource Manager passes  
back a handle to the resource data.  There are any number of places where it may be forced to pass back a nil handle.  For example:

VAR   myRezzie:  MyHandle;

myRezzie := MyHandle(GetResource(myResType, myResNumber));    { could be 
       missing…}

IF myRezzie = nil  THEN  ErrorHandler('We almost got Nilled')
ELSE  myRezzie^^.myRect := newRect;   { We know it is OK }

As another example, think of how handles can be purged from memory in tight memory conditions.  If a block is marked purgeable, the Memory 
Manager may throw it away at any time.  This creates an empty handle.  The defensive programmer will always make sure that the handles  
being used are not empty.  

VAR   myRezzie:  myHandle;

myRezzie := myHandle(GetResource(myResType, myResNumber));  { could be 
                                                missing… }

IF myRezzie = nil  THEN  ErrorHandler('We almost got Nilled')
ELSE  myRezzie^^.myRect := newRect; { We know it is OK }
tempHandle := NewHandle (largeBlock); {might dispose a purgeable 

 myRezzie}
IF myRezzie^ = nil  THEN LoadResource(Handle(myRezzie)); {Re-load empty

                                            handle}
IF ResError = noErr  THEN 
    myRezzie^^.StatusField := OK; { guaranteed not empty, and actually 
                        gets read back in, if necessary }

Be especially careful of places where memory is being allocated.  The NewHandle and NewPtr calls will return a nil handle or pointer if 
there is not enough memory.  If you use that handle or pointer without checking, you will be guilty of being a Niller.

How to find Nillers

The best way to find these nasty  nil pointer problems is to set  memory location zero to be an  odd number (a good choice is 'NIL!'  = 
$4E494C21, which is numerically odd, as well as personality-wise).  Please see M.OV.Debugging for details on how to do this. 

If you use TMON, you can use the extended user area with Discipline.  Discipline will set memory location 0 to 'NIL!' to help catch those nasty  
pointer problems.  If you use Macsbug, just type SM 0 'NIL! and go.  Realize of course, that if a program has made a transgression and is  
actually using nil pointers, this may make the program crash with an ID=2 system error.  This is good!  This means that you have found a bug 
that may have been causing you 
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untold grief.  Once you know where a program crashes, it is usually very easy to use a debugger to find where the error is in the source code.  
When the program is compiled, turn on the debugging labels (usually a $D+ option).  Set memory location 0 to be 'NIL!'.  When the program  
crashes, look at where the program is executing and see what routine it was in (from a disassembly).  Go back to that routine in the source code  
and remove the offending code with a grim smile on your face.  Another scurvy bug has been vanquished.  The intoxicating smell of victory 
wafts around your head.

Another way to find problems is to use a debugger to do a checksum on the first four bytes in memory (from 0 to 3 inclusive).  If the program 
ever traps into the debugger claiming that the memory changed, see which part of the program altered memory location 0.  Any code that writes  
to memory location zero is guilty of high treason against the state and must be removed.  Remember to say, “bugs are not my friends.”

Creating or Using Fake Handles

A fake handle is  one that  was not  manufactured by the system, but  was created by the 
program itself.  An example of a fake handle is:

CONST aMem = $100;
VAR myHandle: Handle;

myPointer: Ptr;

myPointer := Ptr (aMem); { the address of some memory }
myHandle := @myPointer; {the address of the pointer variable. Very bad.}

The normal way to create and use handles is to call the Memory Manager NewHandle function. 

Why it’s Bad

A handle that is manufactured by the program is not a legitimate handle as far as the operating system is concerned.  Passing a fake handle to  
routines that use handles is a good way to discover the meaning of “Death by ROM.”  For example, think how confused the operating system  
would get if the fake handle were passed to DisposHandle.  What would it dispose?  It never allocated the memory, so how can it release it?  
Programs that manufacture handles may find that the operating system is no longer their friend.

When handles are passed to various ROM routines, there is no telling what sorts of things will be done to the handle.  There are any number of 
normal handle manipulation calls that the ROM may use, such as  SetHandleSize,  HLock,  HNoPurge,  MoveHHi and so on.  Since a 
program cannot guarantee that the ROM will not be doing things like this to handles that the program passes in, it is wise to make sure that a  
real handle is being used, so that all these type of operations will work as the ROM expects.  For fake handles, the calls like  HLock and 
SetHandleSize have no bearing.  Fake handles are very easy to create, and they are very bad for the health of otherwise upstanding  
programs.  Whenever you need a handle, get one from the Memory Manager.  

As a particularly bad use of a fake handle:

VAR   myHandle:  Handle;
      myStuff:  myRecord;
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myHandle := NewHandle (SIZEOF(myStuff));   { create a new normal handle }
myHandle^ := @myStuff;  {YOW!  Intended to make myHandle a handle to

            the myStuff record.  What it really does is
            blow up a Master Pointer block, Heap corruption,
            and death by Bad Heap.  Never do this. }

This can be a little confusing, since it is fine to use your own pointers, but very bad to use your own handles.  The difference is that handles can  
move in memory, and pointers cannot, hence the pointers are not dangerous.  This does not mean you should use pointers for everything since  
that causes other problems.  It merely means that you have to be careful how you use the handles. 

The use of fake handles usually causes system errors, but can be somewhat mysterious in its effects.  Fake handles can be particularly hard to  
track down since they often cause damage that is not uncovered for many minutes of use.  Any use of fake handles that causes the heap to be  
altered will usually crash the system.  Heap corruption is a common failure mode.  In clinical studies, 9 out of 10 programmers recommend 
uncorrupted heaps to their users who use heaps.

How to avoid being a fakir

The correct way to make a handle to some data is to make a copy of the data:

VAR   myHandle:  Handle;
      myStuff:  myRecord;

errCode := PtrToHand (@myStuff, myHandle, SIZEOF(myStuff));
IF  errCode <> noErr  THEN ErrorHandler ('Out of memory');

Always, always, let the Memory Manager perform operations with handles.  Never write code that assigns something to a master pointer, like:

VAR   myDeath:  Handle;
myDeath^ := stuff;  { Don’t change the Master pointer. }

If there is code like this, it usually means the heap is being corrupted, or a fake handle is being used.  It is, however, OK to pass around the  
handle itself, like:

myCopyHandle := myHandle;   { perfectly OK, nobody will yell about this. }

This is far different than using the ^ operator to accidentally modify things in the system.  Whenever it is necessary to write code to use handles, 
be careful.  Watch things carefully as they are being written.  It is much easier to be careful on the way in than it is to try to find out why  
something is crashing.  Be very careful of the @ operator.  This operator can unleash untold problems upon unsuspecting programs.  If at all  
possible, try to avoid using it, but if it is necessary, be absolutely sure you know what it is doing.  It is particularly dangerous since it turns off  
the normal type checking that can help you find errors (in Pascal).  In short, don’t get crazy with pointer and handle manipulations, and they  
won’t get crazy with you. 

How to find fakirs

Problems of this form are particularly insidious because it can be very difficult to find them after they have been created.  They tend to not crash  
immediately, but rather to crash sometime long after the real damage has been done.  The best way to find these problems is to run the 
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program with Discipline.  (Discipline is a programmer’s tool that will check all parameters passed to the ROM to see if they are legitimate.  
Discipline can be found as a stand-alone tool, but the most up-to-date version will be found in the Extended User Area for the TMON debugger.  
The User Area is public domain, but TMON itself is not.  TMON has a number of other useful features, and is well worth the price.)  Discipline  
will check handles that are passed to the ROM to see if they are real handles or not, and if not, will stop the program at the offending call.  This  
can lead you back to the source at a point that may be close to where the bad handle was created.  If a program passes the Discipline test, it will  
be a healthy, robust program with drastically improved odds for compatibility.  Programs that do not pass Discipline can sleep poorly at night, 
knowing that they have broken at least one or two of the “rules.”   

A way to find programs that are damaging the heap is to use a debugger (TMON or Macsbug) and turn on the Heap Check operation.  This will  
check the heap for errors at each trap call, and if the heap is corrupted will break into the debugger.  Hopefully this will be close to where the  
code is that caused the damage.  Unfortunately, it may not be close enough; this will force you to look further back. 

Looking in the source code, look for all uses of the @ operator, and examine the code carefully to see if it is breaking the rules.  If it is, change it  
to step in line with the rest of the happy programs here in happy valley.  Also, look for any code that changes a master pointer like the  
myHandle^ := stuff.  Any code of this form is highly suspect, and probably a member of the Anti-Productivity League.  The APL has  
been accused of preventing software sales and the rise of the Yen.  These problems can be quite difficult to find at times, but don’t give up.  
These fake handles are high on the list of guilty parties, and should never be trusted.  

Writing code that modifies itself 

Self-modifying code is software that changes itself.  Code that alters itself runs into two main groupings:  code that modifies the code itself and  
code that changes the block the code is stored in.  Copy protection code often modifies the code itself, to change the way it operates (concealing  
the meaning of what  the code does).   Changing the code itself  is  very tricky,  and also prone to having problems, particularly when the  
microprocessor itself changes.  There are third-party upgrades available that add a 68020 to a Macintosh.  Because of the 68020’s cache,  
programs that modify themselves stand a good chance of having problems when run on a 68020.  This is a compatibility point that should not be  
missed (nudge, nudge, wink, wink).  Code that changes other code (or itself) is prone to be incompatible when the microprocessor changes. 

The second group is code that changes the block that the code is stored in.  Keeping variables in the CODE segment itself is an example of this.  
This is uncommon with high-level languages, but it is easy to do in assembly language (using the DC directive).  Variables defined in the code  
itself should be read-only (constants).  Code that modifies itself has signed a tacit agreement that says “I’m being tricky, if I die, I’ll revise it.”

Why it’s Bad

There are now three different versions of the microprocessor, the 68000, 68010, and the 68020.  They are intended to be compatible with each 
other, but may not be compatible with code that modifies itself.  As the Macintosh evolves, the system may have compatibility problems with  
programs that try to “push the envelope.”
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How to avoid being an abuser

Well, the obvious answer is to avoid writing self-modifying code.  If you feel obliged to write self-modifying code, then you are taking an oath  
to not complain when you break in the future.  But don’t worry about accidentally taking the oath: you won’t do it without knowing it.  If you 
choose to abuse, you also agree to personal visits from the Apple thought police, who will be hired as soon as we find out.

How to find abusers

Run the program on a 68020 system.  If it fails, it could be related to this problem, but since there are other bugs that might cause failures, it is  
not guaranteed to be a self-modifying code problem.  Self-modifying code is often used in copy protection, which brings us to the next big topic.

Code designed strictly as copy protection

Copy protection is used to make it difficult to make copies of a program.  The basic premise is to make it impossible to copy a program with the  
Finder.  This will not be a discussion as to the pros and cons of copy protection.  Everyone has an opinion.  This will be a description of reality,  
as it relates to compatibility.  

Why it’s Bad

System changes will never be made merely to cause copy protection schemes to fail, but given the choice between improving the system and  
making a copy protection scheme remain compatible, the system improvement will always be chosen.

• Copy protection is number one on the list of why programs fail the compatibility test.
• Copy protection by its very nature tends to do the most “illegal” things.  
• Programs that are copy protected are assumed to have signed a tacit  agreement to revise the program when the system 

changes.  

Copy protection itself is not necessarily bad.  What is bad is when programs that would otherwise be fully compatible do not work due only to  
the copy protection.  This is very sad, since it requires extra work, revisions to the software, and time lost while the revision is being produced.  
The users are not generally humored when they can no longer use their programs.  Copy protection schemes that fail generally cause system  
errors when they are run.  They also can refuse to run when they should.  

How to avoid being a protectionist

The simple answer is to do without copy protection altogether.  If you think of compatibility as a probability game, if you leave out the copy  
protection, your odds of winning skyrocket.  As noted above, copy protection is the single biggest reason why programs fail on the various  
versions of the Macintosh.  For those who are required to use copy protection, try to rely on schemes that do not require specific hardware and  
make sure that the scheme used is not performing illegal operations.  If a program runs, an experienced Macintosh programmer armed with a  
debugger can probably make a copy of it, (no matter how sophisticated the copy protection scheme) so a moderate scheme that does not break  
the rules is probably a better 
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compatibility bet.  The trickier and more devious the scheme, the higher the chance of breaking a rule.  Tread lightly.

How to find protectionists

The easiest way to see if a scheme is being overly tricky is to run it on a Macintosh XL.  Since the floppy disk hardware is different this will  
usually demonstrate an unwanted hardware dependency.  Be wary of schemes that don’t allow installation on a hard disk.  If the program cannot  
be installed on a hard disk, it may be relying upon things that are prone to change.  Don’t use schemes that access the hardware directly.  All  
Macintosh software should go through the various managers in the ROM to maintain compatibility.  Any code that sidesteps the ROM will be  
viewed as having said “It’s OK to make me revise myself.”  

Check errors returned as function results

All of the Operating System functions, as well as some of the Toolbox functions, will return result codes as the value of the function.  Don’t  
ignore these result codes.  If a program ignores the result codes, it is possible to have any number of bad things happen to the program.  The  
result code is there to tell the program that something went wrong; if the program ignores the fact that something is wrong, that program will  
probably be killed by whatever went wrong.  (Bugs do not like to be ignored.)  If a program checks errors, an anomaly can be nipped in the bud,  
before something really bizarre happens.

Why it’s Bad

A program that ignores result codes is skipping valuable information.  This information can often prevent a program from crashing and keep it  
from losing data.  

How to avoid becoming a skipper

Always write code that is defensive.  Assume that everyone and everything is out to kill you.  Trust no one.  An example of error checking is:

myRezzie := GetResource (myResType, myResId);
IF  myRezzie = nil  THEN  ErrorHandler ('Who stole my resource...');

Another example:

fsErrCode := FSOpen ('MyFile', myVRefNum, myFileRefNum);
IF fsErrCode <> noErr  THEN ErrorHandler (fsErrCode, 'File error');

And another:

myTPPrPort := PrOpenDoc (myTHPrint, nil, nil);
IF  PRError <> noErr  THEN  ErrorHandler (PRError, 'Printing error');

Any use of Operating System functions should presume that something nasty can happen, and have code to handle the nasty situations.  Printing  
calls, File Manager calls, Resource Manager calls, and Memory Manager calls are all examples of Operating System functions that should be  
watched for returning errors.  Always, always check the result codes from Memory Manager calls.  Big memory machines are pretty common 
now, and it is easy to get cavalier about memory, but realize that someone will always want to run the program under Switcher, or on smaller  
Macintoshes.  It never hurts to check, and always hurts to ignore it.  
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How to find skippers

This is easy: just do weird things while the program is running.  Put in locked or unformatted disks while the program is running.  Use  
unconventional command sequences.  Run out of disk space.  Run on 128K Macintoshes to see how the program deals with running out of  
memory.  Run under Switcher for the same reason.  (Programs that die while running under Switcher are often not Switcher’s fault, and are in  
fact due

to faulty memory management.)  Print with no printer connected to the Macintosh.   Pop disks out of the drives with the Command-Shift  
sequence, and see if the program can deal with no disk.  When a disk-switch dialog comes up, press Command-period to pass back an error to 
the requesting program (128K ROMs only).  Torturing otherwise well- behaved programs can be quite enjoyable, and a number of users enjoy 
torturing the program as much as the program enjoys torturing them.  For the truly malicious, run the debugger and alter error codes as they 
come back from various routines.  Sure it’s a dirty low-down rotten thing to do to a program, but we want to see how far we can push the  
program.  (This is also a good way to check your error handling.)  It’s one thing to be an optimist, but it’s quite another to assume that nothing  
will go wrong while a program is running. 

Accessing hardware directly

Sometimes it is necessary to go directly to the Macintosh hardware to accomplish a specific task for which there is no ROM support.  Early hard  
disks that used the serial ports had no ROM support.  Those disks needed to use the SCC chip (the 8530 communication chip) in a high-speed  
clocked fashion.  Although it is a valid function, it is not something that is supported in the ROM.  It was therefore necessary to go play with the  
SCC chip directly, setting and testing various hardware registers in the chip itself.  Another example of a valid function that has no ROM support 
is the use of the alternate video page for page-flipping animation.  Since there is no ROM call to flip pages, it is necessary to go play with the  
right bit in the VIA chip (6522 Versatile Interface Adapter).  Going directly to the hardware does not automatically throw a program into the  
incompatible group, but it certainly lowers its odds.

Why it’s bad

Going directly to the hardware poses any number of problems for enlightened programs that are trying to maintain compatibility across the  
various versions of the Macintosh.  On the Macintosh XL for example, a lot of the hardware is found in different locations, and in some cases 
the hardware doesn’t exist.  On the XL there is no sound chip.  Programs that go directly to the sound hardware will find they don’t work 
correctly on an XL.  If the same program were to go through the Sound Manager, it would work fine, although the sound would not be the same 
as expected.  Since the Macintosh is heavily oriented to the software side of things, expecting various hardware to always be available is not a  
safe bet.  Choosy programmers choose to leave the hardware to the ROM.  

How to avoid having a hard attack

Don’t read or write the hardware.  Exhaust every possible conventional approach before deciding to really get down and dirty.  If there is a 
Manager in the ROM for the operation you wish to perform, it is far better to use the Manager than to go directly to the hardware.  Compatibility 
at the hardware level can very rarely be maintained, but compatibility at the Manager level is a prime consideration.  If a program is down to the  
last ditch effort, and 
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cannot get the support from the ROM that is desired, then access the hardware in an enlightened approach.  The really bad way to do it:

VIA := Pointer ($EFE1FE);  { sure it’s the base address today…}
                { This is bad.  Hard-coded number. }

The with-it, inspired programmer of the eighties does something like:

TYPE LongPointer = ^LongInt;

VAR  VIA: LongPointer;
     VIABase: LongInt;

VIA := Pointer ($1D4);  { the address of the low-memory global. }
VIABase := VIA^;        { get the low-memory variable’s value }

                 { Now VIABase has the address of the chip }

The point here is that the best way to get the address of a hardware chip is to ask the system where it currently is to be found.  The system  
always knows where the pieces of the system are, and will always know for every incarnation of the Macintosh.  There are low-memory global  
variables for all of the pieces of hardware currently found in the Macintosh.  This includes the VIA, the SCC, the Sound Chip, the IWM, and the  
video display.  Whenever you are stuck with going to the hardware, use the low-memory globals.  The fact that a program goes directly to the 
hardware means that it is risking imminent incompatibility, but using the low-memory global will ensure that the program has the best odds.  It’s  
like going to Las Vegas:  if you don’t gamble at all, you don’t lose any money; if you have to gamble, play the game that you lose the least on.

How to find hard attacks

Run the suspicious program on the Macintosh XL.  Nearly all of the hardware is in a different memory location on the XL.  If a program has a 
hard-coded hardware address in it, it will fail.  It may crash, or it might not perform the desired task, but it won’t work as advertised.  This  
unfortunately, is not a completely legitimate test, since the XL does not have some of the hardware of other Macintoshes, and some of the 
hardware that is there has the register mapping different.  This means that it is possible to play by the rule of using the low-memory global and  
still be incompatible.  

Don’t use bits that are reserved

Occasionally during the life of a Macintosh programmer, there comes a time when it is necessary to bite the bullet and use a low-memory global. 
These are very sad days, since it has been demonstrated (by history) that low-memory global variables are a mysterious lot, and not altogether  
friendly.  One fellow in particular is known as ROM85, a word located at $28E.  This particular variable has been documented as the way to 
determine if a program is running on the 128K ROMs or not.  Notably, the top most bit of that word is the determining bit.  This means that the  
rest of the bits in that word are reserved, since nothing is described about any further bits.  Remember, if it doesn’t say, assume it’s reserved.  If  
it’s reserved, don’t depend upon it.  Take the cautious way out and assume that the other bits that aren’t documented are used for Switcher local  
variables, or something equally wild.  An example of a bad way to do the comparison is:

VAR  Rom85Ptr: WordPtr;
     RomsAre64: Boolean;
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Rom85Ptr := Pointer ($28E);    { point at the low-memory global }
IF  Rom85Ptr^ = $7FFF  THEN  RomsAre64 := False  { Bad test. }
ELSE  RomsAre64 := True;

This is a bad test since the comparison is testing the value of all of the bits, not only the one that is valid.  Since the other bits are undocumented, 
it is impossible to know what they are used for.   Assume they are used for something that is arbitrarily random, and take the safe way out.

How to avoid being bitten

VAR     ROM85Ptr: Ptr

Rom85Ptr := Pointer ($28E);    { point at the low-memory global }
IF BitTst(ROM85Ptr,0) THEN RomsAre64 := True {Good--tests only hi-bit}
ELSE  RomsAre64 := False;

This technique will ensure that when those bits are documented, your program won’t be using them for the wrong things.  Beware of trojan bits. 

Don’t use undocumented stuff.  Be very careful when you use anything out of the ordinary stream of a high-level language.  For instance, in the  
ROM85 case, it is very easy to make the mistake of checking for an absolute value instead of testing the actual bit that encodes the information.  
Whenever a program is using low-memory globals, be sure that only the information desired is being used, and not some undocumented (and  
hence reserved) bits.  It’s not always easy to determine what is reserved and what isn’t, so conservative programmers always use as little as  
possible.  Be wary of the strange bits, and accept rides from none of them.  The ride you take might cause you to revise your program.

How to find those bitten

Since there are such a multitude of possible places to get killed, there is no simple way to see what programs are using illegal bits.  As time goes  
by it  will  be  possible  to  find more of  these cases  by running on various versions of  the Macintosh,  but  there  will  probably never  be a  
comprehensive way of finding out who is accepting strange rides, and who is not.  Whenever the use of a bit changes from reserved status to  
active, it will be possible to find those bugs via extensive testing.  From a source level, it would be advisable to look over any use of low-
memory globals, and eye them closely for inappropriate bit usage.  Do a global search for the $ (which describes those ubiquitous hexadecimal 
numbers), and when found see if the use of the number is appropriate.  Trust no one that is not known.  If they are documented, they will stay  
where they are, and have the same meaning.  Be very careful in realms that are undocumented.  Bits that suddenly jump from reserved to active  
status have been known to cause more than one program to have a sudden anxiety attack.  It is very unnerving to watch a program go from calm  
and reassuring to rabid status.  Users have been known to drop their keyboards in sudden shock (which is bad on the keyboards). 

Summary

So what does all this mean?  It means that it is getting harder and harder to get away with  
minor bugs in programs.  The minor bugs of yesterday are the major ones of today.  No one 
will yell at you for having bugs in your program, since all programs have bugs of one form 
or another.  
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The goal should be to make the programs run as smoothly and effortlessly as possible.  The 
end-users will never object to bug-reduced programs.

What is the best way to test a program?  A reasonably comprehensive test is to exercise all of 
the program’s functions under the following situations:

• Use Discipline to be sure the program does not pass illegal things to the ROM.
• Use  heap  scramble  and  heap  purge  to  be  sure  that  handles  are  being  used 

correctly, and that the memory management of the program is correct.
• Run with a checksum on memory locations 0...3 to see if the program writes to 

these locations.
• Run on a 128K Macintosh, or under Switcher with a small partition, to see how 

the program deals with memory-critical situations.
• Run on a 68020 system to see if the program is 68020-compatible and to make 

sure that changing system speed won’t confuse the program.
• Run on a Macintosh XL to be sure that the program does not assume too much 

about the operating system, and to test screen handling.
• Run on an Ultra-Large screen to be sure that the screen handling is correct, and 

that there are no hard-coded screen dimensions.
• Run on 64K ROM machines to be sure new traps are not being used when they 

don’t exist.
• Run under both HFS and MFS to be sure that the program deals with the file 

system correctly.  (400K floppies are usually MFS.)

If a program can live through all of this with no Discipline traps, no checksum breaks, no 
system errors, no anomalies, no data loss and still get useful work done, then you deserve a 
gold medal for programming excellence.   Maybe even an extra medal for conduct above and 
beyond the call of duty.  In any case, you will know that you have done your job about as  
well as it can be done, with today’s version of the rules, and today’s programming tools.

Sounds like a foreboding task, doesn’t it?  The engineers in Macintosh Technical Support are 
available to help you with compatibility issues (we won’t always be able to talk about new 
products, since we love our jobs, but we can give you some hints about compatibility with 
what the future holds).

Good luck.

Further Reference:
• M.OV.Compatibility
• M.OV.Debugging
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