
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

SetLineWidth Revealed
Imaging

Revised by: March 1988
Written by: Scott "ZZ" Zimmerman November 1987

This technical note describes the internal implementation, and correct method of using, the
SetLineWidth Picture Comment.

The SetLineWidth picture comment provides a way of accessing PostScript’s
'setlinewidth' operator. Since the LaserWriter resolution is roughly four times that of the
Macintosh screen, fractional line widths can be printed. The SetLineWidth PicComment
provides a way for applications to access these fractional line widths through PostScript,
without having to use floating point numbers.

First of all, the LaserWriter has an internal state that is stored in a number of PostScript
variables. For more information on PostScript variables, see the PostScript Language
Reference Manual. Some operations performed on the LaserWriter cause the values of these
variables to change. One of these variables contains the width of the printer’s pen. The
SetLineWidth picture comment works by changing the value of this variable.

Before we look at what the SetLineWidth comment does, let’s look at the argument
passed to the comment. The argument is represented as a QuickDraw Point, however it is
interpreted by the LaserWriter as a fraction. The LaserWriter interprets a point(h,v) to
be a real number whose value is (v / h). This means that a point whose value is h=2,
v=1, will be converted to 0.5 before being used by the LaserWriter. If you wanted to pass a
value of 0.25, you would pass a point whose value is h=4, v=1. For 1.25, pass a point, h=4,
v= 5.

In addition to the pen width variable, there is a variable that is used for scaling the pen’s
width. This variable, named pnm for PeN Multiplier, contains a real number which is applied
to the pen width. The default value of pnm is 1.0, which causes no scaling of the line width.

Whenever the SetLineWidth PicComment is sent to the LaserWriter, the current value of
pnm is replaced by the value passed to the PicComment. The current pen size is then scaled
by the new value of pnm. The following example will display four lines of different sizes. It
is meant to illustrate the interaction between the QuickDraw PenSize procedure and the
SetLineWidth PicComment.

Developer Support Center March 1988

Macintosh Technical Notes

TYPE
widthHdl = ^widthPtr;
widthPtr = ^widthPt;
widthPt = Point;

Developer Support Center March 1988

Macintosh Technical Notes

VAR
 theWidth: widthHdl;

BEGIN

(* Initialize the print manager as per Inside Macintosh II-155. *)

At this point, it is assumed that PrPageOpen has been called, and the print manager is ready to accept data.

The first thing we do is set the scaling factor to 1.0. This way, no scaling will be performed when we call PenSize.

theWidth := widthHdl(NewHandle(SizeOf(widthPt)));
(*Real programs do error checking here... *)
SetPt(theWidth^^, 1, 1);
PicComment(SetLineWidth, SIZEOF(widthPt), Handle(theWidth));

Here we call PenSize. Because the pnm has been set to 1.0, the pen size(1,1) times the multiplier (1.0) yields 1,1.

PenSize(1, 1);
MoveTo(50, 100);
LineTo(500, 100);
MoveTo(50, 125);
DrawString('1 point thickness.');

Now we will use the SetLineWidth PicComment to change the pen size. Note that when we change the scaling factor, the pen size changes
as well.

SetPt(theWidth^^, 1, 5);
PicComment(SetLineWidth, SIZEOF(widthPt), Handle(theWidth));
MoveTo(50, 200);
LineTo(500, 200);
MoveTo(50, 225);
DrawString('5.0 times 1 point pen size = 5 point thickness.');

If any calls to PenSize are made at this point, the new pen size will be scaled by 5.0. This is because the SetLineWidth PicComment is
still in effect. We will now send a SetLineWidth PicComment to revert the scaling factor back to 1.0.

 SetPt(theWidth^^, 5, 1);
 PicComment(SetLineWidth, SIZEOF(widthPt), Handle(theWidth));
 MoveTo(50, 300);
 LineTo(500,300);
 MoveTo(50, 325);
 DrawString('0.2 times 5 point pen size = 1 point thickness.');

Since the scaling is once again 1.0, PenSize calls at this point will not be scaled. Here we explicitly set the scaling factor to 1.0 before
changing the pen size. This makes it easier to see what scaling will be applied to the next call to PenSize.

 SetPt(theWidth^^, 1, 1);
 PicComment(SetLineWidth, SIZEOF(widthPt), Handle(theWidth));
 PenSize(1, 1);
 MoveTo(50, 400);

Developer Support Center March 1988

Macintosh Technical Notes

 LineTo(500,400);
 MoveTo(50, 425);
 DrawString('1.0 times 1 point pen size = 1 point thickness');
 (* Dispose of the handle when you are through with it! *)
 DisposHandle(Handle(theWidth));

When printed, the above example will produce the following:

To summarize, there are four things to remember when using the SetLineWidth PicComment:

1. The argument to the SetLineWidth PicComment is specified as a point, though it is actually interpreted by the LaserWriter as a real
number. The point value is specified as h,v, and the LaserWriter interprets the value as v / h.

2. The SetLineWidth PicComment affects both the height and width of the pen, even though the name suggests otherwise.

3. When you send the SetLineWidth PicComment, the current pen size will be scaled. Any drawing that is done after the PicComment is
set, will be done with the scaled pen size.

4. When you call the QuickDraw PenSize procedure, the pen size will be scaled after it has been set. For example, if your scaling factor is
0.5, and you set the pen size to 2,2, the actual pen size will be 1,1. If you don’t want the scaling to occur, make sure to send a
SetLineWidth PicComment, with the point argument set to 1,1. The next call to PenSize will then be scaled by 1.0, which will have
no effect.

Developer Support Center March 1988

Macintosh Technical Notes

Further Reference:
• LaserWriter Reference Manual
• PostScript Language Reference Manual
• PostScript Language Tutorial and Cookbook

Developer Support Center March 1988

