
A Complex Script, Explained

The following pages contain an example of a well-written and robust script.

This script uses most of DialScript's important features and is excessively commented in order to 
explain them. 

-- Comments start with --.

-- To use 1200 bps, remove the "send break", and set speed to 1200
-- The script gets the modem's attention and dial, even if it has
-- to hang up to do it.    It uses timeouts to recover from problems.
-- Problems after connect are assumed to be due to line noise, so it
-- hangs up and dials again in hope of a cleaner line.    It assumes
-- a Hayes type modem set for English commands and responses.

-- You must set the variable for your username in state init and fix up
-- state FinishUp (optional).

script cs        -- scripts must begin with the word "script" and a name.
                          -- Keywords like script must be in lower case.

      -- Execution begins with the first state in the file.    In this case,
      -- the state named init.    Every state must have a unique name. 
      -- Identifiers (names) in DialScript are sequences of any
      -- length of letters, digits, and underscore characters.    They
      -- must begin with a letter.

      state init

            -- Display statements display characters on the terminal window
            -- without sending them.    Use it for user messages.    The variable
            -- date contains the current date and time.    A newline is not 
            -- automatically included.    Hence the display "\r" at the end.

            display "Beginning UT CS login script on\r";
            display date;
            display "\r";    --      <-- Don't forget semicolons after statements.

            set port modem;    -- The set statement is used to set communication
            set speed 2400;    -- parameters.    These values are the defaults, so 
            set databits 8;    -- these statements are not really necessary.

            set online on;      -- Be sure DialScript is online so that it will
                                              -- talk to the serial port.    This is also
                                              -- the default.

            -- setvar is used to give variables values.    All variables hold
            -- string values, never numbers, i.e. "67" not 67.
            -- Use variables to hold parameters that you may wish to change
            -- later.

            setvar USERNAME "newton\r";      -- You must change this, of course.
            setvar PHONE "ATDT4718454\r"; -- It's MY username, not yours.
            setvar Modem_Escape_String "+++";    -- Some people change this.

            -- input prompts the user for a value for a variable.    The noecho
            -- keyword causes what the user types to not be displayed.    Good 
            -- for passwords.



            input PASSWORD noecho;      -- You could use a setvar here.

            next "ModemReady";                  -- Branch to the state named ModemReady.

      end; -- init

      -- This state makes sure we have the (Hayes-type) modem's attention.
      -- It sends a carriage return to it and expects it to reply with OK.

      state ModemReady

            -- The repeat statement executes the statements before its
            --    end a fixed number of times, twice in this case.

            repeat 2

                  -- send sends characters out over the serial port.    Note that
                  -- carriage return is not included automatically.    Use
                  -- \r for a carriage return.

                  send "\r"; send "AT\r";

                  -- select waits for one of several conditions.
                  select
                        "OK": next "Dial";    -- If OK is received, go to state Dial. 
                        timeout 3:    -- If 3 seconds pass without a match,
                                                -- display a message and exit the select.
                                display "ModemReady timeout!\r";
                  end; -- select
            end; -- repeat

            -- If we get here, the select has timed out in both
            -- iterations of the repeat.    The modem is not responding.
            -- Try hanging up.

            next "HangUp";    -- failed again, maybe hangup

      end; -- ModemReady

      -- The state hangs up a Hayes modem by sending +++, waiting for OK,
      -- and then sending ATH.

      state HangUp

            repeat 2
                  -- Note that send pauses for one second before sending.
                  -- The delay does nothing for 1 second to give an even greater
                  -- pause before sending the escape string.
                  delay 1; send Modem_Escape_String;
                  select
                        "OK"            : send "ATH\r"; next "ModemReady";
                        timeout 3 : display "HangUp timeout!\r";
                  end;
            end;
  
            -- If we reach this point, we have not received the ack for the
            -- escape string.    We are confused and so try hanging up.
            -- Control really should not reach this point.

            send "\r"; send "ATH\r";
            next "ModemReady";



      end; -- HangUp

      -- This state dials the phone number and awaits the CONNECT message.
      -- The select causes a redial if the line is busy, the modem responds
      -- with NO CARRIER, or the modem does not respond with 25 seconds.

      state Dial
            send PHONE;          -- The system's phone number
            select
                  "CONNECT"        : next "GotIt";
                  "BUSY"              : next "ModemReady";
                  "NO CARRIER" : next "ModemReady";
                  timeout 25      : display "Dial timeout!\r"; next "ModemReady";
            end; 
      end; -- Dial

      -- This state enters the username and the password in reponse to
      -- the appropriate prompts.    If there is no prompt within 60 seconds,
      -- the script hangs up and redials.

      state GotIt

            -- Here is a trick.    The machine we are calling requires
            -- that we send a break in order to switch to 2400 baud and prompt
            -- for login.    The delay 1 gives a little time between the modem
            -- connect and sending the break.    It is probably not necessary.

            delay 1;
            send break;      -- UNIX host needs a break to switch to 2400 baud
            select 
                  "login:"      : send USERNAME;
                  timeout 60 : display "login timeout!\r"; next "HangUp";
            end;

            select
                  "Password:" : send PASSWORD; send "\r"; -- Your password
                  timeout 60    : display "password timeout!\r"; next "HangUp";
            end;

            next "FinishUp";
      end; -- GotIt

      -- This state is used to answer the terminal type prompt.    The nature
      -- of this prompt depends on your .login file on UNIX.    You need to
      -- to customize this state for your circumstances.    I enter return
      -- to confirm that I will use a vt100 emulator and then switch to
      -- the emulator I use (MacLayers) by means of the transfer. 
      -- "RunLayers" is my settings file for MacLayers.    This script has
      -- to be in the same folder as MacLayers and RunLayers in order
      -- for the transfer to succeed.    The transfer quits DialScript and 
      -- runs MacLayers with settings file RunLayers (as though I
      -- had double clicked on RunLayers from the finder).

      state FinishUp      -- You need to customize this.    What's here is weak.
            -- wait "(vt100)";                                            -- Terminal type prompt
            -- send "\r";                                                      -- Yes to vt100
            -- transfer "MacLayers" "RunLayers";        -- Run real term emulator
      end;    -- FinishUp

      -- FInally, the script ends with "end;" 
end; -- cs


