
Macintosh™
Cellular Automata

Thai Truong
@Play Corp.

truo8166@sundance.SJSU.EDU

Introduction

What is cellular automata and why do we need it?    Wentian Li says that

cellular automata are simple models to simulate complex behaviors of many

degrees of freedom dynamical systems.    Let me preface my next statement by

saying that although we use the word simple, I am only scratching the surface of

the field of cellular automata study.    In laymen terms, it means the use of simple

mathematical rules to simulate things that might occur at the cellular level.    For

the purpose of keeping the program simple, I am only going to look at one-

dimensional cellular automata.    There are of course, two and three-dimensional

cellular automata but I won’t get into it.

One-dimensional cellular automata is divided into four classes according to

their behavior:

Class 1:    Class one cellular automata are based on simple rules.    They have the

tendency to die out after a few generations.

Class 2:    Class two cellular automata are based on periodic rules.    They start out

randomly but quickly become periodic.    This can be seen in their repeating

pattern.

Class 3:    Class three cellular automata are based on random rules.    They have the

distinct appearance of having basically junk on the screen with no definable

shapes.

Class 4:    Class four cellular automata are based on complex rules.    Complex

because no one really knows the criteria for it to be considered a complex rule.

Even my picture does not do it justice because it could still be considered a class 2

because the patterns are periodic and repeating.    Li’s explanation of “complex” is

in the sense that they go through long transient period before settling down on the

equilibrium states, or in the sense of the diversity of possible inhomogeneous

configurations which they produce from different initial conditions.    He also says

that Class four rules are located between simple rules and random rules.    Hence,

the picture below could be considered a Class four or a Class two.

One-Dimensional Cellular Automata

In one dimensional cellular automata we only consider the cells in one line

at a time.    The other two adjacent lines are either used to calculate the results from

or to receive the calculated results.    Let us consider rule 30.    Rule 30 is used

when we want to look at a cell with only two neighbors, one on each side.

Depending on the state of the left (L) and right (R) cells as well as the center (C)

cell, the result will vary.    If the L cell is 0 and the R cell is 0 and the C cell itself is

0 then the result will be zero.    If the L cell is 0 and the R cell is 1 and the C cell is

0 then the result is 1 and so on.

L C R Rule 30
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

If we were to apply rule 30 on a row of pixels on the screen, we would only

concern ourselves with one pixel and its two neighbor at a time.    The picture

(below) shows what rule 30 produces if the it started out with only one pixel in the

center (1 represents a pixel that is on and 0 is off) as row 1 shows.

1
2
3
4
5
6
7
8
9

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0
1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1

In row 2, we begin to see more pixels that are on.    Look at the picture below and

left, the top row represent a portion of row 1.    The three rows below it represent

the results in row 2 that we calculated from rule 30.    The rows are 3 blocks in

width only because we want to limit our scope to just three cells.    If we look at

only the three cells in row 1 that is within the border of the second row and

compare those three cells to the L, C, and R values in rule 30, we can see that the

result is 1.    Try comparing the rest of the rows with rule 30.

1 0 0 1 0 0111

