
HexFlags DA Version 1.1
By Mark Chally
(MPW adaptation by Ken Mcleod)

Copyright 1988, Chally Micro Solutions. This work may be distributed at no charge, provided
that the desk accessory and this documentation are always distributed together, in whole and
unchanged. Under no circumstances shall this work be sold, through any medium.

Problem: Calculate the content of a menu template’s “enableFlgs” field and express in
hexadecimal, quickly and conveniently (correctly, at first attempt), while still in ResEdit or
any editor.

Solution: HexFlags DA.

• Introduction

ResEdit is a great programmer’s utility. It’s powerful and surprisingly graceful, given its
complexity. For everything it does clumsily or inadequately, it does at least ten things well.
While some programmers prefer to use RMaker or Rez to create resources, I prefer to “play”
with mine until I get them just the way I want them. I use ResEdit, LightspeedC, and “other
stuff” running concurrently under MultiFinder for most of my development work. With such an
environment, any change I want to make to my program (code, resources, bitmaps—
everything) is just seconds away.

Given that environment, little annoyances really turn me off. And that’s why some
things about ResEdit bother me. The one thing I hate most is the silly enableFlgs field of the
MENU resource template. The enableFlgs field is that hexadecimal number that looks sorta
like “$FFFFFF79” which you change in order to enable or disable menu items on a given
menu. Instead of putting a checkbox on each menu item in the resource, the author (Andy?)
chose to use “the flags from hell” as an input field.

Correspondingly, Rez requires you to supply the “flags from hell” in a slightly different
format (one bit off, in fact) for any given menu. Here’s how it’s done:

• Theory

In order to enable or disable certain items on a given menu, you must set or reset bits
within the enableFlgs field. The following example is taken from MacWrite, which I happen to
be in now:

The above menu would be represented in binary and hexadecimal as the following:

ResEdit Notation
Hex: $FFFFF[FF9]
Binary: 1111 1111 1111 1111 1111 111[1 1111 1001]

Rez Notation
Hex: $7FFFFF[FC]
Binary: 0111 1111 1111 1111 1111 1111 [1111 1100]

I have placed brackets around the “significant” digits to indicate that they are the digits
that “matter” for the above menu. That is, when the system looks at the enableFlgs field, it
only looks at the bits (hence, with the hex, hexadecimal digits) that correspond to existing
menu items. The rest of the field is, in effect, ignored.

By matching the binary representation of the flags with the menu, you should notice
that each bit from right to left corresponds to a descending (i.e.. starting at the top, for
ResEdit beginning with the menu title , and for Rez, beginning with the first) menu item. So
for ResEdit, the rightmost binary digit corresponds to the menu title (disabling it disables all
menu items), the second from the right corresponds to the first menu item, and each
successive digit to the left corresponds to the next item. For Rez, the rightmost binary digit
corresponds to the first item, and the second from the right, the second, etc.

For our example then, the rightmost nine bits (there are eight menu items, plus the title
makes nine necessary bits) become significant for ResEdit, and the rightmost eight for Rez.
In converting that to hexadecimal, the rightmost three (the 9th bit from the right starts the
third hex digit) hex digits are significant for ResEdit, and two for Rez.

So, you can see that in order to create a valid hexadecimal number for the enableFlgs
field, you must first “plot” your binary number, then convert each set of four bits to a
hexadecimal digit. Having done that (using hard-boiled base-swapping math, or a note
sheet), you can then insert the resultant hexadecimal number into ResEdit’s enableFlgs field
or use the number for Rez source (padded with ‘F’s, usually, but padding with anything will
work fine—if you pad with ‘F’s, any menu items you add will “automatically” be enabled by
default. Also remember that the largest number for Rez is $7FFFFFFF, because you still only

manipulate 31 menu items). It isn’t a lot of work, but it’s enough to break your concentration
if you want to make a quick change to a menu and get back to your programming. Plus, if
you do it with the haste that I do, you’ll often get it wrong on the first attempt. Along comes
HexFlags.

• Usage

HexFlags is simple to use, but not entirely obvious. First, insert it into your system file
or an editor using the Font/DA mover that corresponds to your current system/finder. As a
short aside, it will not work to use the option-open command of Font/DA mover to install
HexFlags into ResEdit. I originally intended to paste it into ResEdit so it would only show up
within that program, but I found out that ResEdit apparently does not look at its resource
fork when it loads a desk accessory (I guess it assumes the DA is in the system file, since it’s
not distributed with any DAs installed in it). HexFlags does work when installed into other
programs though—if for some reason you should want to.

Anyway, once HexFlags has been installed into your system file, you may load it from
ResEdit, or any other program. It works nicely under MultiFinder, and doesn’t care if you
load it (as normal) into the system heap, or hold down the option key when loading it in order
to load it into the application heap. If you do run it from ResEdit and you do have a resource
file open (the one in the picture is MacWrite), it will look something like this:

To see which items would be enabled for the hexadecimal number in the enableFlgs
field, you may simply copy the number from ResEdit’s enableFlgs field, and paste it into the
MenuFlags field of the DA. Then press the “>>>>>>>>” button to cause the appropriate
boxes to be checked. (Be sure you’re in ResEdit mode for ResEdit, or Rez mode for Rez.)
Each checked box corresponds to an enabled menu item, and each unchecked corresponds
to a disabled one.

Going the other way is even simpler (and probably used more often). Simply set your
mode (Rez or ResEdit), check the boxes that correspond to menu items you’d like enabled
(use the “Set All” or “Clear All” button to start you off if you like) and uncheck the ones you’d
like disabled, then just press the “<<<<<<<<” button. The hexadecimal number then appears
in the MenuFlags field. Copy it and paste it into ResEdit’s enableFlgs field or into your Rez
source if you wish. That’s all there is to it!

Cut, Copy, Paste and Clear are handled as expected, and undo is ignored. “Set All”
sets all check boxes, “Clear All” clears them all—each updates the MenuFlags field of the
DA. “Help” offers operational hints “on the fly”, and “About…” gives me a minute of glory.

The “Rez” and “ResEdit” radio buttons set your mode, deciding which method will be
used to translate between boxes and hex (whether the menu title is included as an “item”).
Changing the radio button selection will cause the hex value to be converted from one
system to the other. When the “Rez” option is selected, the “Menu Title” check-box goes
away.

The other two buttons work as described above.

The window may be moved about freely to wherever you’d like, but I guessed you’d
probably want it where it normally is placed, as you need room to work. (You’re certainly
welcomed to change ths default dialog rectangle in your own working copy if you’re adept
with ResEdit.) When you’re through with the DA, just click its close box.

If you would like the radio button for the conversion system to default to “Rez” instead
of “ResEdit”, you may change the string (named “HexFlags” as are all of HexFlags’
resources) in the “STR ” resource to “Rez” instead of “ResEdit”. (Note, HexFlags will look for
“ResEdit” in that string at the time the DA is opened. If it doesn’t find it, it will assume “Rez”.)

• Modification History

Version 1.01 — Moved “$” character from statText field in front of hex string in
MenuFlags field to part of the hex string. Version 1.01 and later adds “$” if it is missing and
filters out any other non-hex characters. Now the string resembling “$FFFFFFFF” can be
copied or cut directly from ResEdit’s enableFlgs field and pasted directly into the MenuFlags
field of HexFlags—Version 1.0 didn’t respond “nicely” to a string such as “$FFFFFFFF” in the
MenuFlags field, but required a string of the form “FFFFFFFF” instead. Version 1.01 and
later welcomes either format and also adds “$” to the beginning (if absent) when it calculates
the hex value.

Version 1.02 — Slightly changed the treatment of the edText MenuFlags field when
SetIText is called. Replaced the code with a more elegant patch around SetIText’s
“Modeless Dialog in a D/A” bug that caused the edText field not to be updated. This was a
cosmetic change.

Version 1.1 — Added support for MPW “Rez” utility, including “Mode” buttons to
change between ResEdit and Rez modes, allowing the format preferred by each program to
be used. Added “automatic” resetting of the enableFlgs DA field when “Clear All” and “Set
All” buttons are used. Final compile under MPW by Ken Mcleod (kudos, Ken) instead of
under Turbo Pascal, so the DA is only about 7k instead of about 15k.

• About Support, Appreciation, and the Hacker Ethic.

I believe in the Hacker Ethic. As I have come to understand it, the hacker ethic
indicates that programmers should freely provide each other utilities, programming methods,
concepts, and most importantly: support and understanding. If we work together and help
each other solve problems that apply to us all, we can significantly enhance our world.

Where does that come into this? Well, I’ve done my part. After using a variety of “neat”
shareware and public domain utilities (I have actually paid for shareware that I use), I’ve felt
compelled to offer a utility such as this freely to all for the common good.

What do you owe me? HexFlags is “WhoCaresWare”. I’m not gonna send a guy
named “Guido” with a violin case after you so that you send me money or stop using this DA,
nor am I going to suggest an amount of money or even make you feel guilty for not sending
any. If you don’t want to send me money, don’t get all hot and sweaty worrying about it. If
you do, then go ahead and send me what you think it’s worth (no coins, fruit, or vegetables
please).

Okay, so what am I getting at? Just this: if my work has benefitted you, do something
sporting about it: send me comments, bug reports, literary pats on the back, etc. Better yet,
write something useful yourself!

• Now that you’re filled in

I really would like to hear from you (even hate-mail), especially the bug reports. You
can send me your comments, suggestions, (money,) etc. at any of the following:

Chally Micro Solutions
P.O. Box 4600
West Covina, CA 91791

The AppleBus BBS
Sysop, Mark Chally (me)
818-919-5459

GEnie, Chally.Micro
MCI Mail, ChallyMicro
MacNet, ChallyMicro

The Macintosh world is something really special, and I’m happy to be a part of it. Thanks to
all of you who have “done your part”.

Mark Chally

