
Appendix A: Built-in Event Handling

System 7 Pack™ has built-in handlers for the following AppleEvents:

'misc','dosc'

This is the standard 'do script' command. It will execute any 4D command sent with it. An 
optional parameter 'ACK0', which should be 1 or 0 specifies whether an acknowledgment should 
be sent after the command executes.

'ISIS','CFIL'
Count Files - returns the number of files.

'ISIS','CFLD'
Count Fields - returns the number of fields in the file specified by the direct object which must 
be numeric (either long or short integer).

'ISIS','FNAM'
File Name - returns the name of the file specified by the direct object which must be numeric.

'ISIS','FINF'
Field Info - returns the name and type of a field. The file number is specified by the direct object 
and the field number is given by the key 'FNUM'. Both of these must be numeric. The field name 
is returned as the direct object of the reply and the field type (an integer as returned by 4D's 
"type" function) is returned with the key 'FTYP'.

'ISIS','RECS'
Returns the number of records in the selection of the file specified by the direct object.

'ISIS','RECN'
Returns the current record number of the file specified by the direct object.

'ISIS','GETF'
Returns the contents of a field in the current record. The direct object specifies the file number 
and the field number is given by the key 'FNUM'.

'ISIS', 'ACK0'
This is optionally sent by 4D® as an acknowledgment after a 'do script' command is completed. 
The direct object is a numeric result code with any 4D® error that occurred when executing the 
command.

All of these events will return a descriptive error message in the 'errs' parameter if any errors 
occur. The reply will be one of the following: "Bad File Number", "Bad Field Number", "Bad 
Record Number", or "No Current Record". In order to accept these AppleEvents, you must 
execute the command AllowAccess(1).



Appendix B: Sample Programs
Your System 7 Pack™ disk includes several demo programs which illustrate how to use most of 
the features.

S7P Demo DB is System 7 Pack’s on-line reference and demo database. It includes a complete 
listing of all commands in System 7 Pack in a HyperCard-like format in addition to demos of 
most of System 7 Pack’s features. There are also several useful 4D procedures which you can 
copy to your own databases. See Appendix D for a description of several functions which create 
and send some of the core AppleEvents.

Here’s a brief description of the menu commands:
•
List Commands: Displays a list of System 7 Pack’s commands. Double-clicking on a command 
name will open up a HyperCard-like information window.
•
Export to Word: Creates a list of System 7 Pack’s commands as a formatted MS Word® file and 
then uses System 7 Pack to open the document in Word.
•
Frontier Demo: Sends a few simple commands to UserLand Frontier™, which must be already 
running.
•
AppleScript Demo: Allows you to type in a script and execute it with AppleScript.
•
Finder Demo: Demonstrates how to send AppleEvents to the Finder.
•
Excel 4.0: Demonstrates how to send data to Excel® 4.0,    request different types of charts in 
Excel, and convert Excel charts to a picture in 4D.
•
Send & Recv List: Demonstrates how to send and receive arrays using the low-level functions. 
For the receiver, you must select either your own copy of 4D or another one on the network 
running this same demo.
•
On Location: Demonstrates how to send AppleEvents to On Location®.
•
ISIS Notes Demo: Demonstrates how to control ISIS Notes™ by sending AppleEvents to look 
up users, send a note, and send a file.
•
Client/Server menu: Implements a name & address lookup server. Use one of the client 
applications described below to send lookup requests.

Address Client demonstrates one way 4D® can provide data to a client application. The 4D 
application provides a minimal address file which responds to AppleEvents (class "ISIS" id 
"FIND") which request a name lookup. Any text passed via the lookup request will trigger a 
Search on the name field of the address file. The full address will be returned in an event of class 
"ISIS" and id "REPL". Address Client is a tiny (28k) stand-alone application which simply sends 
lookup requests to the 4D® application and displays the results. Address Client Stack is a 



HyperCard® 2.1 stack which works exactly the same as the application. FM Pro Client is a 
sample client written in FileMaker® Pro 2.0. This one sends a different request to 4D and gets 
back a series of Create Element events to create records containing the results.

Appendix C: Error Codes

All System 7 Pack™ functions will return 0 if the operation is completed successfully. Some 
applications may return codes not listed here if they're unable to handle an AppleEvent sent to 
them. Also, any possible system error code can be returned (for a complete list, see Bill 
Steinberg’s “System Errors DA”). Other possible results are:

-1    An invalid signature or target address handle was given
-2    You're not running System 7 or your system doesn't support AppleEvents
-3
 The specified application isn't running.
-4 
Incompatible array type (PutList or GetList).
-10
 Handler for that event is already present (InstallAEVT).
-20
 Attempted to replace standard event handler (InstallAEVT).
-30
 Attempted to remove event handler we didn't install (IgnoreAEVT).
-35 
Couldn't find application to launch on any volume.
-43
 Couldn't find document to open or print.
-100
 Unable to install AppleEvent handler proc (InstallAEVT).
-108
 Not enough memory to launch an application.
-606
 Attempt to bring background-only application to front. (BringToFront).
-906
 Attempt to send AppleEvent to non-aware application. (usually PrintDoc).
-1700
 Incompatible data type in an AppleEvent parameter.
-1701
 Parameter not found in the AppleEvent.
-1702-1707
 Not a valid AppleEvent or invalid parameter.
-1708
 Receiving application couldn’t handle that AppleEvent.
-1709 
Reply wasn’t valid.



-1710
 Unknown send mode.
-1711
 Wait for reply cancelled by user.
-1712
 Timed out waiting for reply.
-1713
 Required user interaction but none was allowed.
-1715
 Required parameter wasn’t accessed.
-1716
 Invalid target address.
-1718
 Attempted to access reply which hasn’t arrived yet.
-1753
 General AppleScript error (usually syntax error in script).

Appendix D: AppleEvent Registry

Fully describing all of the standard AppleEvents is beyond the scope of this manual, but here are 
some of the more common events defined by Apple in the required, core, and miscellaneous 
standard suites of the AppleEvent registry:

Open Application    aevt
oapp
Sent by the finder when an application is opened with no documents. You shouldn’t send this 
event.

Open Document
aevt
odoc
Tells an application to open a list of documents.

Print Document
aevt
pdoc
Tells the application to open and print one or more documents.

Quit
aevt
quit
Tells the application to quit.

Close
core
clos



Closes the specified objects.

Delete
core
delo
Deletes the specified objects.

Do Objects Exist
core
doex
Determines if the specified objects exist.

Get Class Info
core
qobj
Get information about a particular object class.

Get Data
core
getd
Get data from the specified objects.

Get Data Size
core
dsiz
Get the size of specified objects.

Get Event Info
core
gtei
Get information about a particular AppleEvent.

Save
core
save
Save the specified objects.

Set Data
core
setd
Change the specified objects.

Do Script
misc
dosc
Executes commands in the application's specific language.



Evaluate
misc
eval
Evaluates an expression and returns the results.

Here some of the more common class names and property IDs:

Cell
ccel
Column
ccol
Document
docu
File
file
Graphic object
cgob
Menu
cmnu
Paragraph
cpar
Row
crow
Selection
csel
Table
ctbl
Window
cwin
Word
cwor
Best type (property)
pbst
Bounds (property)
pbnd
Class (property)
pbnd
Color (property)
colr
Default type
deft
Font (property)
font
Name (property)
pnam



Point Size
ptsz
Version
vers

The sample database, S7P Reference, includes the following functions which    create and send 
some of the more common core events:

Err:=Create Element(Target;Class;Container;Position)
Creates a new element of the specified class. Specify 0 for container and "" (a null string) for 
position if no value needs to be given.

Result:=Do ObjectsExist(Target;Object)
Returns TRUE if the specified objects exist.

Err:=Get Text(Target;Object;»data)
Err:=Get Pict(Target;Object;type;»data)
Err:=Get Array(Target;Object;type;»data)
Returns the value of an object or object property. Type should be a 4-letter string specifying the 
data type to be returned. It should be one of “TEXT”, “LIST”, “PICT”, or “SPIC”. “SPIC” is 
only used with Excel® 4.0 and is the same as PICT except it will return a color screen picture 
rather than a dithered print image picture. Data should be a pointer to a variable of the 
appropriate type.

NOTE: Rather than using a single procedure, we’ve provided separate procedures for the most 
common data types to make them compatible with the 4D compiler. 

Err:=Send Text(Target;Object;Data)
Err:=Send Array(Target;Object;»Array)
Err:=Send Enum(Target;Object;Value)
Changes the value of an object or object property. 

Examples:
Err:=Send Text(Excel;Property(“sele”;Obj(“docu”;0;1));”R1C1:R10C1”)

Selects cells R1C1 thru R10C1 in the topmost worksheet.

Err:=Send Array(Excel;ObjNamed(“crng”;Obj(“docu”;0;1);”R1C4:R10C4”);»aList)

Sends an array of numbers to a range in the topmost worksheet.

Err:=Get Pict(Excel;Obj(“chrt”;Obj(“docu”;0;1);1);”SPIC”;»aChart)

Copies the first chart in the topmost worksheet to a color picture.

Err:=Create Data(Excel;”chrt”)

Creates a new chart document.

HasChart:=Do ObjectsExist(Excel;Obj(“chrt”;Obj(“docu”;0;1);1))

Returns TRUE if the topmost worksheet contains a chart.



For more information, see the latest edition of the AppleEvent Registry, available from Apple 
Computer, Inc and the Excel Software Development Kit, available from Microsoft Press. Many 
AppleEvent aware applications include a description of the supported events in their manul. You 
may also be able to get additional information from the software publisher.

Appendix E: Network Access

Before you can send AppleEvents across the network you must configure any machines you wish 
to be able to access. Any machine which needs to receive remote AppleEvents must have 
“Program Linking” turned on through the Sharing Setup control panel. In addition, any machine 
you wish to connect to should have an entry in the Users & Groups file for you (optionally, if 
security isn’t a concern, you can simply turn on the program linking checkbox for guests by 
double-clicking the <Guest> icon in the Users & Groups control panel). The first time you send 
an AppleEvent to a program on a remote Macintosh you will be asked to suply a user name and 
password. If guest access is enabled, you can simply click on the “Guest” button.
 

Appendix F: Quick Reference

L :=
AddrToString(Target;String1;String2;String3)
L :=
AESend(Target;Class;ID;Text)
L :=
AESendPict(Target;Class;ID;Picture)

AllowAccess(N)
L :=
AppleScript(Text;Reply)
L :=
BringToFront(Signature)
L :=
CreateAERec(AERec )
L :=
CreateAEVT(Class;ID;Target;AEVT)
L :=
CreateXAEVT(Class;ID;Target;N;L;AEVT)
L := Coerce(AERec;Str4)
ospec := Comparison(Str4;container ospec;test ospec;Str4;String)
L :=
CopyDesc(AEVT or Target or OSPEC or AERec)
L :=
DisposeAddress(Target)
L :=
DisposeDesc(AEVT or Target or OSPEC or AERec)
L :=



DoScript(Target;Text)
L :=
Evaluate(Target;Text;Reply)
L :=
FindAppName(Signature;Name)
L :=
FindCreator(Name;Signature)
L :=
FinderOpen(Name);
L :=
Frontier(Text;Reply)
L :=
GetAEInfo(AEVT;NumOfItems;ArrayOfStr4;ArrayOfStr4;ArrayOfLong)

GetAEMessage(Text)
L :=
GetAEPict(Picture Variable)
L :=
GetAERecord(AEVT;Str4;AERec)

GetAEType(Type String)
L :=
GetAliasParam(AEVT ;Str4;String)
L := GetBoolean(AEVT;Str4;aBoolean)
L :=
GetComponent(Str4)
L :=
GetKeyword(AEVT;Str4;Str4)
L :=
GetList(AEVT;Str4;anyArray)
L :=
GetNthDesc(AEVT;integer;Str4;Str4;Long)
L :=
GetNthItem(AEVT;integer;Str4;Str4;Text)
L :=
GetRealParam(AEVT;Str4;aRealNum)
L :=
GetReturnID(AEVT)
L :=
GetShortParam(AEVT;Str4;Str4;L)
L :=
GetTransactionID(AEVT)
L :=
GetPicParam(AEVT;Str4;N;aPicture)

GetReturnAddr(Target)



L :=
GetShortParam(AEVT;Str4;Str4;N)
L :=
GetTextParam(AEVT;Str4;Text)
L :=
HandleAEVT(Class;ID;Name)
L :=
IgnoreAEVT(Class;ID)
L :=
IsRunning(Signature)
L :=
IsVersion3
L :=
Launch(Signature;Name)
L :=
LaunchBehind(Signature;Name)
L :=
ListComponents(Str4;Long;StrArray;TextArray)
L :=
Long(Str4)
L :=
MakeAddress(Signature;Target)
ospec :=
Obj(Str4;ospec ;L)
ospec :=
ObjNamed(Str4;ospec;String)
ospec := ObjX(Str4;ospec;Str4)
L :=
PrintDoc(Signature;Name)

ProcessAEVT
L :=
ProcessList(N;ArrayOfString)
ospec :=
Property(Str4;ospec)
L :=
PutAERecord(AEVT;Str4;AERec )
L :=
PutAliasParam(AEVT;Str4;Name)
L := PutBoolean(AEVT;Str4;aBoolean)
L :=
PutKeyword(AEVT;Str4;Str4)
L :=
PutList(AEVT;Str4;Str4;anyArray)
L :=
PutLongParam(AEVT;Str4;Str4;L)



L :=
PutObject(AEVT;Str4;ospec)
L :=
PutPicParam(AEVT;Str4;N;aPicture)
L :=
PutRealParam(AEVT;Str4;aRealNum)
L :=
PutShortParam(AEVT;Str4;Str4;N)
L :=
PutTextParam(AEVT;Str4;Text)
L :=
SendAppleEvent(AEVT;ReplyAEVT;L;L)
L :=
SetComponent(Str4)
L :=
QuicKeys(Name)
L :=
QuitApp(Signature)
L :=
S7Version(Name)
L :=
SelectAddress(Name,Signature;Target)
L :=
SendWithReply(Target;Class;ID;Text;Reply)

SetTimeOut(N)
L :=
StringToAddress(String1;String2;String3;Target)
L :=
System7

______________________________________
 L:
a Long Integer value
 N:
an Integer value
 Name:
a string variable or field
 Signature:
4 character application signature
 Class,ID:
4 character strings
 Text:
a Text variable or field
 Reply:
a Text variable or field
 AEVT:
a Long Integer representing an AppleEvent
 AERec:
a Long Integer representing an AERecord
 ospec:
a Long Integer representing an Object Specifier



 Target:
a Long Integer representing a target address
 ospec:
an object specifier

Appendix G: Version History

Version 1.0 - Dec. 1991 Initial release.

Version 2.0 - Feb. 1992 Added Frontier & QuicKeys support, Built-in AppleEvent handlers.

Version 3.0 - May 1992 Added low-level commands. Many new commands added but 
compatibility maintained with 2.0. Procedure Editor now lists commands in logical groupings. 
Demo programs completely rewritten.

Versoion 3.1 - June 1992 Added AE Record support, needed for Claris Resolve.

Version 3.1.1 - June 1992 Fixed problem with StringToAddress

Version 3.2 - July 1992 Added Long() utility function & demos for Excel 4.0

Version 3.26 - Sep. 1992 Added LaunchBehind command. Added many new commands for 
examining AppleEvents and provide more access to internal features for custom extensions to 
S7P.

Version 3.3 - Nov. 1992 Compatibility with 4D® Version 3.0.

Version 3.4 - Apr. 1993 Compatibility with 4D® 3.0.3’s new AppleEvent handling & support for 
AppleScript.

Version 3.4.2 - June 1993 Minor compatibility changes for final release of 3.0.3 & 3.0.4. 
Maintains compatibility with 4D 2.2.3 but removes 3.0.1/3.0.2 compatibility.

Version 3.4.3 - August 1993 Adds FinderOpen command for cleaner application launching. 
PutList now accepts a 2 dimensional array. PutAlias now supports remote aliases.

Version 3.5 - Sep. 1993 Added GetBoolean & PutBoolean commands. Improved AppleScript and 
Open Scripting Architecture support. AppleScript command now returns the script result. 
SetComponent & GetComponent commands provide a way to change the default scripting 
language. ListComponents can get information about components of any type.

Version 3.6    - Nov. 1993 Added Coerce, ObjX, and Comparison commands to simplify certain 
tasks in Now Up-To-Date and FileMaker Pro.


