
Menu Sharing Toolkit 2.0

UserLand Software, Inc.

© copyright 1992, UserLand Software, Inc.

UserLand Software is located at 400 Seaport Court, Redwood City, CA 94063. 415-369-6600, 
415-369-6618 (fax). UserLand, Frontier and Frontier Runtime are trademarks of UserLand 
Software, Inc. Other product names may be trademarks or registered trademarks of their owners.

Email: userland.dts@applelink.apple.com. If you’re an AppleLink user, check out the UserLand 
Discussion Board under the Third Parties icon. CompuServe users enter GO USERLAND at 
any ! prompt.

Comments, questions and suggestions are welcome! 

Background

Frontier’s Editable Menu Bar

One of Frontier’s many capabilities is that it gives the script writer an easy way to edit the 
contents of its own menu bar. When the user selects an item from the menu, Frontier runs the 
script that’s linked into the menu item. 

Thru the menu sharing protocol, implemented by the Menu Sharing Toolkit, that capability is 
extended to allow Frontier to add new hierarchic structures of shared menus to any Macintosh 
application that includes the Toolkit.

Menus sharing adds a set of standard Macintosh menus at the end of your application’s menu bar. 
Script writers can add commands to these menus using Frontier. Any changes to your menus are 
automatically visible as soon as the script writer switches back to your application.

Menu sharing does not in any way alter the performance of your menu commands, it just adds 
new commands to your menu bar.



Applications-as-Development-Platforms

Menu sharing allows script writers to view your application as a customizable development 
platform. They can add commands that automate your application just as if it had an integrated 
scripting language. Even if your application already has an integrated scripter, it makes sense to 
support the menu sharing protocol because scripts can easily launch other applications and 
integrate their capabilities with your program and the Macintosh operating system.

Script users, usually less technical people than script writers, will see simpler commands in these 
menus. Examples include: prepare for a meeting, send a message to everyone working on a 
specific project; write a press release; or hire a new employee. There are as many potential 
custom scripts as there are Macintosh users. They will only be aware that these commands were 
“put into” your application by a friend they work with, or their organization’s network manager. 
The details of this technology are completely open to the script writer, but neatly hidden from the 
end-user.

To many potential users of your product, commands like New, Cut, Paste, and Zoom are like 
assembly language. By opening your product to menu sharing you offer more technical users an 
easy way to simplify your product for less technical users. This means your technology is more 
useful to a much larger number of people, and can only contribute to making your product more 
competitive and more profitable.

The Menu Sharing Toolkit

In order to be menu sharing-aware, an application includes the Menu Sharing Toolkit and inserts 
calls to Toolkit routines in several places: on initialization; in the main event loop; before 
processing a menu selection; where the user presses cmd-period; and in each Apple Event 
“handler” routine. 

No Royalty or License Fee

There is no royalty or license fee for use of the Menu Sharing Toolkit. It’s provided in source 
form so that developers know exactly what the Toolkit is doing on their behalf, and so it can 
easily be adapted to different development environments. 

You may include this code in any Macintosh application, but you must maintain our copyright 
notice at the head of each Menu Sharing source file.



Menu Sharing is Open

We’re publishing source code for the client side of the menu sharing protocol, and plan to 
support menu sharing in all future versions of UserLand Frontier and all other software products 
developed by or published by UserLand Software.

We believe menu sharing should be an open specification, with freely distributed source code. 
Everyone wins if it’s widely supported on both sides of the equation, by clients (the vast majority 
of “sharing-aware” programs) and by servers (Frontier, and competitive products).

Icing on the Cake

It makes little or no sense to add menu sharing if your application is only minimally IAC-aware. 
Scripts launched from your menu bar must be able to call back into your program to open or 
close a window, get a value, add a record, dial the phone -- basically to do the types of things 
your program was designed to do.

Menu sharing, therefore, is like icing on a cake. Once you’ve added a reasonably complete set of 
scriptable IAC messages, the next step is to open up your menu bar to allow script writers to 
insert new commands that are implemented in scripts. 



Cookbook

Introduction

In this section we’ll step through the source code for “MenuSharer,” a very minimal Macintosh 
program, whose main reason for existing is this tutorial. It pays to browse through the 
MenuSharer source code before installing menu sharing in your program. MenuSharer is written 
in THINK C 5.0. To view the source code, open menusharer.¹ with THINK C.

The Toolkit is implemented in menusharing.c. Its header file is menusharing.h. To see how these 
routines are called, page through main.c. You’ll see calls to Toolkit routines in five places:

1. In handlemenu -- we call SharedMenuHit to run scripts selected from a shared menu.

2. In handlekeystroke -- we call SharedScriptRunning and CancelSharedScript if the user had 
pressed cmd-period to cancel a running script.

3. In handleevent -- we call CheckSharedMenus to reload the shared menus if they have been 
changed by a script writer.

4. In main -- we call InitSharedMenus to set up globals and install handlers for IAC messages 
that may be sent by the menu server.

If you have Frontier handy, double-click on MenuSharer’s Frontier install file, and edit the menu 
bar at system.menubars.MENS. 

It may take a couple of readings of this section, browsing the source code, and reading the 
reference section for the whole concept to “click” -- but please stay with it -- menu sharing is 
really very simple, elegant, and powerful.

Following is a step by step “cookbook” for adding menu sharing to any Macintosh application. 

Step #1 -- Initialize the Toolkit

After initializing the Macintosh using InitGraf, InitFonts, etc., call the Toolkit InitSharedMenus 
routine:

if (!InitSharedMenus ()) /*failed to initialize*/

goto error; 

This call initializes menu sharing globals, and installs Apple Event handlers for the two IAC 
messages it must be prepared to receive from Frontier. InitSharedMenus returns false if the 
initialization failed for some reason. Your application may want to continue, or as MenuSharer 
does, simply display an alert and exit to the operating system.

Step #2 -- Add a Call in Your Main Event Loop

In your main event loop, when you receive a null event and are not suspended, insert a call to 
CheckSharedMenus. You can keep track of whether or not you are active by setting a global flag 
each time you receive a suspend/resume event. It’s important that you only call 



CheckSharedMenus when you’re active to ensure that the menubar can be updated properly. 

If your menus need updating, CheckSharedMenus automatically disposes your out-of-date 
shared menus, and conducts a short Apple Event coversation with the menu sharing server to get 
your updated menus.

CheckSharedMenus takes one parameter -- the resource id for the first shared menu. If 
CheckSharedMenus loads new menus, they are assigned resource ids starting with this number. It 
must be less than 255 to allow for hiearchic menus, and must be small enough so that no menu 
has an id of greater than 255. If there are n menus, and the parameter to CheckSharedMenus is x, 
then the menu ids will range from x to x + n - 1. 

MenuSharer calls CheckSharedMenus in its handleevent routine in main.c.

Step #3 -- Add a Call in Your Menu Handler

In your menu handling routine, insert a call to SharedMenuHit:

if (SharedMenuHit (idmenu, iditem)) /*it was a shared menu item*/
goto exit; 

SharedMenuHit checks to see if the indicated menu is a shared menu. If so, it builds an Apple 
Event message instructing the server to run the script, then disables the shared menus and returns 
true. Your program should immediately return to its main event loop.

If SharedMenuHit returns false, the menu is not a shared menu, and you should process the 
command the way you normally would. menu sharing does not in any way alter the performance 
of your menu commands, it just adds new commands to your menu bar.

MenuSharer calls SharedMenuHit in its handlemenu routine in main.c.



Step #4 -- Add code to Your Keystroke Handler

Now that we’ve given the user a way to launch a script from within your application’s menu bar, 
we have to provide a way to terminate or cancel a script. Following the standard Macintosh user 
interface conventions, this should be accomplished by pressing cmd-period while a script is 
running. The user will be able to tell that a script is running because the shared menus are 
disabled while a script is running.

Use SharedScriptRunning to determine if a script is currently running. If it returns true, and the 
user has pressed cmd-period, call CancelSharedScript to terminate the script.

Here’s the MenuSharer code, in main.c, that implements script termination:

handlekeystroke (ev) EventRecord *ev; {

register char ch = (*ev).message & charCodeMask;

if (SharedScriptRunning ()) /*cmd-period terminates the script*/

if (((*ev).modifiers & cmdKey) && (ch == '.')) { 

CancelSharedScript (); /*cancel the shared menu script*/

return;

}

handlemenu (MenuKey (ch)); /*process the normal way*/

} /*handlekeystroke*/

Step #5 -- Add code to each Apple Event Handler

In Step #4 above, we added a call to CancelSharedScript. CancelSharedScript doesn’t send an 
IAC message to the scripting system, it just sets a global flag indicating that the script has been 
cancelled. The scripting system doesn’t actually find out that the script has been cancelled until it 
attempts to send an IAC message to the application. You could watch the flag yourself, and 
return an error to the caller; or you could call SharedScriptCancelled, which does this for you 
transparently. 

In every Apple event handler that could reasonably be called from Frontier or a similar scripting 
system, insert a call to SharedScriptCancelled, passing it a pointer to the Apple event record and 
the reply record:

if (SharedScriptCancelled (event, reply)) 
return (noErr); 

If the script has been cancelled, SharedScriptCancelled replies with an error. The error string 
(key 'errs') is the empty string; the error number (key 'errn') is 6. By convention, the scripting 
system will not display an error dialog on this error, since it was initiated by the user pressing 
cmd-period.

If SharedScriptCancelled returns true, you should not process the event. Simply return noErr to 
the Apple Event Manager.

Here’s what the MenuSharer’s setmessageverb Apple event handler looks like:



pascal OSErr setmessageverb (event, reply, refcon) AppleEvent *event, 
*reply; long refcon; {

Str255 s;

if (SharedScriptCancelled (event, reply)) /*it was cancelled*/

return (noErr);

if (!IACgetstringparam (event, '----', s)) 

return (false);

IACreturnboolean (reply, setwindowmessage (s));

return (noErr);

} /*setmessageverb*/

IACgetstringparam and IACreturnboolean are implemented in menusharing.c. You can call any 
of the “IAC” routines implemented there. Function prototypes are provided in iac.h.

Step #6 -- Include "menusharing.h"

Add a #include at the top of every file that calls menu sharing Toolkit routines, as detailed in 
Steps 1-5 above.



Reference Information

Introduction

The Menu Sharing Toolkit is implemented in a single C source file, menusharing.c. To use the 
Toolkit, include the menusharing.h header file at the beginning of every source file that calls a 
Toolkit routine or references a menu sharing global.

There are six menu sharing routines that your program is likely to call. Those routines are 
documented here. You can browse the source code to see how these routines are implemented. 
You may need or want to build other routines out of menusharing.c routines if you want shared 
menus to appear as popup menus, or if you’re implementing shared menus in a Control Panel, 
XCMD or Finder extension.

In this section we try to avoid referring to Frontier by name, rather we talk about the    “menu 
sharing server” or “menu server” application. For now that’s Frontier. As we mentioned earlier, 
the menu sharing protocol is an open protocol, so it’s possible to imagine other software playing 
the role of menu server.

Much of the information presented here is provided in more detail in the Cookbook Section, 
following. This reference section is provided primarily as a summary of the information 
presented in that section.



Menu Sharing Globals

All the globals needed by the Menu Sharing Toolkit are stored in a single C structure named 
MSglobals. Toolkit routines are provided to initialize and operate on the fields of this structure, 
but we provide the details and document it so you can monitor the performance of the Toolkit 
using a source-level debugger.

Here’s what the declaration of MSglobals looks like:

typedef struct tyMSglobals { 

OSType serverid; 

OSType clientid; 

hdlmenuarray hsharedmenus; 

Boolean fldirtysharedmenus; 

Boolean flscriptcancelled; 

Boolean flscriptrunning; 

tyMScallback scriptcompletedcallback;

long idscript;

} tyMSglobals;

extern tyMSglobals MSglobals; 

MSglobals.serverid is the 4-character identifier of the menu sharing server. It’s initialized by 
InitSharedMenus to 'LAND' -- the 4-character creator id of UserLand Frontier. 

MSglobals.clientid is the 4-character identifier of your program. It’s set automatically by 
InitSharedMenus using the Macintosh Process Manager (see IM-VI, Chapter 29). This 
information is passed to menu server in an IAC message to determine the set of shared menus 
being requested.

MSglobals.hsharedmenus is the data structure that holds the shared menus. It’s set to nil by 
InitSharedMenus. See the declaration of hdlmenuarray in menusharing.h for further information.

MSglobals.fldirtysharedmenus    is a boolean. If true, the shared menus are re-loaded the next 
time your application becomes the frontmost process. It’s set true by InitSharedMenus to force 
an update the first time thru the main event loop, and when the 'updm' IAC message is received 
from the menu sharing server when the script writer makes an editing change to your shared 
menu.

MSglobals.flscriptcancelled    is a boolean. If true, the currently running script has been 
terminated by a call to CancelSharedScript, probably in response to the user pressing cmd-
period.

MSglobals.flscriptrunning    is a boolean. If true, a script is running and the shared menus are 
disabled. It’s set true by SharedMenuHit and cleared when the menu server sends a 'done' IAC 
message.

MSglobals.scriptcompletedcallback is a callback routine -- if it’s not nil, this routine is called 



when the menu sharing server sends a 'done' IAC message. You can use this capability to trigger 
a screen update, or to recalculate your scroll bars after a script has completed.

MSglobals.idscript is the menu sharing server’s identifier for the currently running script. When 
the Toolkit sends a message to the server of the script it identifies the script by passing this value 
to the server.



Menu Sharing Routines

Boolean InitSharedMenus (void);

Initializes the Menu Sharing Toolkit.

Establishes initial values for the fields of MSglobals and installs two Apple event message 
handlers -- one to catch the “menu needs update” message, and another to handle the “script 
has completed” message. 

Returns true if the program is running on a version of the Macintosh OS that supports Apple 
events and if it was able to install handlers for the two Apple Events, false otherwise. 

Boolean CheckSharedMenus (short);

Call CheckSharedMenus from your main event loop when you receive a null event and are 
not suspended via suspend/resume events. If the shared menus need updating, the Toolkit 
sends an Apple Event message to the server asking for your shared menus. 

The MenuHandles are assigned resource ids starting with the id indicated by the single 
parameter. This number must be less than 255 to allow for hierarchic menus, and must be 
small enough so that no menu has an id of greater than 255.

CheckSharedMenus will only request menus if the program is the frontmost process. This 
avoids delays while the script writer is editing the shared menu. Furthermore, background 
updating is unnecessary because the shared menus are only visible when the application is in 
front.

Returns false if there was an error loading the shared menus.

Boolean SharedMenuHit (short, short);

Call this routine when you’ve received a menu selection. The first parameter is the id of the 
selected menu, the second parameter is the id of the selected menu item.

SharedMenuHit returns false if the menu isn’t a shared menu. Your program should process 
the menu selection as it normally would.

If it is a shared menu, SharedMenuHit sends an Apple Event message to the menu sharing 
server, requesting that the script linked into that menu item be run. Shared menus are 
disabled while the script is running.

Boolean SharedScriptRunning (void);

Returns true if a shared script is currently running, false otherwise.

Use this routine to determine if a cmd-period should be applied to terminating the current 
script using CancelSharedScript.

Boolean CancelSharedScript (void);

Call CancelSharedScript when the user presses cmd-period or otherwise indicates that he or 
she wants the currently running script to be terminated.



Boolean SharedScriptCancelled (AppleEvent*, AppleEvent*); 

Call SharedScriptCancelled from any Apple event handler that could conceivably be called 
from a script managed by a menu sharing server.

If the script was cancelled by the user, SharedScriptCancelled returns a specific error code to 
the server, indicating that the script should be cancelled, and no error dialog should be 
displayed.

Returns true if the script was cancelled. If so, you should immediately return noErr to the 
Apple Event Manager. If SharedScriptCancelled returns false, your handler should process 
the event as it normally would.

Messages that the server sends

The server sends two Apple Event messages as its part of the menu sharing protocol. Both 
messages are handled automatically by Apple Event handlers installed by InitSharedMenus. The 
class for both events is the same as the 4-character creator identifier of your application.

1. When your menu has been edited and requires updating, the menu server sends an 'updm' 
message. The handler for this message sets an MSglobals flag true. When your program becomes 
the frontmost application, CheckSharedMenus sends a series of Apple Event messages to the 
server requesting the new menus.

2. When a shared script has completed, the server sends a 'done' message. The handler for this 
message simply records the fact in MSglobals and re-enables the shared menus.

Where your shared menu lives

Suppose your application’s creator id is 'WXYZ'. If your application has a shared menu, it’s 
stored in Frontier’s object database at system.menubars.WXYZ. 

Since MenuSharer’s id is 'MENS', its menus are located at system.menubars.MENS. 

If you implement menu sharing, you should also develop a sample shared menu for distribution 
with your product as part of your Frontier install file. The “Export Install File” command in 
Frontier’s Commercial Developers suite automatically includes your shared menu in the file it 
creates if one is present in system.menubars.



Change Notes

No impact on the API

We’ve made some major improvements in the efficiency of the Toolkit in version 2.0. However, 
these changes have no impact on the API, if you built on the 1.0 API you can simply replace the 
1.0 library with the 2.0 library and rebuild your application.

Further, if you installed Menu Sharing 1.0 in a shipping application, Frontier 2.0 is compatible 
with it. The net effect of installing Menu Sharing 2.0 is an increase in performance for script 
writers and users.

Where to call CheckSharedMenus

We’ve changed our recommendation on where to call CheckSharedMenus in your program. In 
SDK 1.0 we recommended calling it in your main event loop, at the same time you adjust your 
cursor and enable/disable menu items. In 2.0, we go more conservative, and ask that you only 
call CheckSharedMenus when you are not suspended and you receive a null event 
(WaitNextEvent returns false). See the MenuSharer program for an example.

It’s much faster

We use the new support for system event handlers in the IAC Tools library. If the server app has 
installed a set of system event handlers to implement the server side of the menu sharing 
protocol, we use them instead of sending Apple Events thru the operating system. The net result 
is virtually instantaneous loading and updating of shared menus. This performance increase is 
completely transparent to your program.

Compatibility

Frontier Runtime 1.0 supports the faster form of menu sharing. Frontier 1.0 does not. A version 
of Frontier supporting the faster protocol is in development. This Toolkit is fully compatible with 
present and future versions of Frontier. 

UserLand will continue to support the 1.0 form of menu sharing in all future versions of Frontier 
and other products. If you’ve shipped a product with the 1.0 Menu Sharing Toolkit, UserLand 
will remain compatible with it.



Sends ‘kill’ message when script is cancelled

We've enhanced the protocol so that someday it may not be necessary to call 
SharedScriptCancelled in each of your Apple Event handlers. Instead of just setting a flag, 
CancelSharedScript now sends a 'kill' message to the menu sharing server (Frontier) to kill the 
script that was launched by calling RunSharedMenuItem, if the server has such a handler 
installed. If not (Frontier 1.0 does not), it depends on the SharedScriptCancelled method.

However, this protocol is not understood by Frontier 1.0, so we had to leave in the old method. 
The Menu Sharing Toolkit knows which version of Frontier it's talking to. If it's 1.0, it simply 
sets the flag and returns. If it's 2.0 or greater, it sends the 'kill' message. The net: you have to 
leave in your CancelSharedScript calls in your AE handlers for now. Once we have most of the 
1.0 base upgraded to 2.0, it will be possible to remove those calls.

In RunSharedMenuItem

We check to see if the server is still running, if not, we remove the shared menus and return false.


