
UCMDs & XCMDs 2.0, page 1.
© copyright 1992 UserLand Software
10/9/92

UCMDs & XCMDs 2.0

UserLand Software, Inc.

© copyright 1992, UserLand Software, Inc.

UserLand Software is located at 400 Seaport Court, Redwood City, CA 94063. 415-369-
6600, 415-369-6618 (fax). UserLand and Frontier are trademarks of UserLand Software,
Inc. Other product names may be trademarks or registered trademarks of their owners.

Email: userland.dts@applelink.apple.com. If you’re an AppleLink user, check out the
UserLand Discussion Board under the Third Parties icon. CompuServe users enter GO
USERLAND at any ! prompt.

Comments, questions and suggestions are welcome!

Background

Frontier 2.0 supports two kinds of code extensions: UCMDs and XCMDs.

In both models, you use a C or Pascal compiler to create a code resource in a Macintosh
file, and then use a Frontier “droplet” to copy the code resource into the Frontier object
database. Once the code is in the database, your scripts can call them, send parameters,
and receive returned values. Several example code extensions are included in this folder.

XCMD support in Frontier allows script writers to tap into part of the large base of
HyperCard 1.0-compatible code extensions. The architecture of XCMDs is well-
understood, and for many programmers it represents a very easy way to extend the
UserTalk language.

But we didn’t want to stop there. We felt that there were limits to XCMDs that could easily
be erased, and there were good reasons for us to invest in a new design for code extensions,
one that is very compatible with the System 7 Apple Event Manager. Those are UCMDs.
The “U” is for “UserTalk,” the scripting language that forms the heart of Frontier.

This folder, which is part of Frontier SDK 2.0, contains a set of tools, sample code and
projects that can help get you started writing XCMDs and UCMDs that work with the
upcoming release of Frontier.

System.extensions is a new standard table in Frontier 2.0. All UserLand-supplied code
extensions will be loaded into this table. You can load things into this table too, in fact we
suggest that you do. It makes sense to keep all code extensions in one place in the user’s
object database.

UCMDs & XCMDs 2.0, page 2.
© copyright 1992 UserLand Software
10/9/92

As usual, the sample code is provided for THINK C 5.0, but the techniques can be adapted
for use with any Macintosh development system that can produce code resources.

As you browse thru the folders in the UCMDs & XCMDs folder, you’ll see Frontier install files
for each of the extensions. To install one in your object database just double-click on its icon in
the Finder.

UCMDs or XCMDs?

Tradeoffs

If you’re writing a new code extension for Frontier, you can write either a UCMD or an XCMD.
Naturally, UCMDs are a better fit for Frontier. But XCMDs can be faster and smaller, and a lot
of people already know how to write XCMDs. In this section we list the advantages of each kind
of code extension.

Advantages of XCMDs:

• XCMDs can be faster, ranging from 1.3 times faster to 1.9 times faster. See the benchmark
script at system.extensions.stringOps.test2 for background.

• XCMDs are usually smaller. The minimum code size for a UCMD is approximately 2500
bytes, XCMDs can be as small as 500 bytes.

• XCMDs are a widely understood kind of code extension. For many people there’s nothing
new to learn.

Advantages of UCMDs:

• One code resource can implement many functions. See Trig for an example.

• Parameters and returned values can be of a many different types, unlike XCMDs which view
all data as strings.

• They can return multiple values, and scripts can access these cleanly using the
complexEvent interface.

• They can have globals used to communicate between functions contained within the UCMD.

• They use the IAC Tools library, without modifications, so code can move easily from
applications to code extensions and back very easily.

• Once you learn how to write a UCMD, you’ve learned how to program Apple Events. Since
this is the form of IAC that both UserLand and Apple are evangelizing, this feature has
tremendous appeal.

UCMDs & XCMDs 2.0, page 3.
© copyright 1992 UserLand Software
10/9/92

UCMDs

The UCMD Toolkit

A small toolkit is included in this package called the UCMD Toolkit.

The main () routine for your code extension is in ucmd.c. It sets up your globals, copies the event
and reply pointers into the IACglobals record, and then calls your routine UCMDmain.

An additional routine, runscript, is provided in ucmdrunscript.c. If your UCMD wants to call
back to Frontier, include this file in your project. An example is included in the scriptRunner
UCMD.

Over time, the UCMD Toolkit will certainly grow in size. If you have any suggestions for
services that the UCMD Toolkit could provide, please let us know.

Your UCMD main file should include ucmd.h. It contains prototypes for the two routines
supplied in the UCMD Toolkit folder, and also brings in the header file for the IAC Tools library.

UCMDs and IAC Tools

UCMDs are built on top of the IAC Tools library. Each project file should include as many of the
iacxxx.c files as necessary to build the project. In our sample code we include all the IAC Tools
files; we depend on THINK C’s smart linking to exclude the code for modules that we don’t call.

When it’s time to release your UCMD, you might want to copy the IAC Tools routines you
depend on into a separate file to make the resulting UCMD as small as possible.

Using a compiled IAC Tools Library

If you’re using a compiled form of IAC Tools as a library in your project, make sure it’s built
with A4 addressing, not A5 addressing. One of our test sites mistakenly built a UCMD with A5
addressing. Things didn’t work too well!

There is no specific switch to turn on A4 addressing in THINK C. In the Set Project Type dialog,
be sure that “Code Resource” is checked off before building the IAC Tools library.

UCMDs & XCMDs 2.0, page 4.
© copyright 1992 UserLand Software
10/9/92

The Apple Event refcon

Each Apple Event comes with three parameters: a pointer to the incoming Apple Event record, a
pointer to the reply record, and a 4-byte refcon. In Frontier 2.0, this refcon will always be 0. It’s
reserved for future versions of Frontier. If you have any ideas for how we should use this refcon,
please let us know.

Writing a new UCMD

1. In the Finder, copy one of the folders in the UCMD folder using the Finder’s Duplicate
command. Change the name of the project file and the C source file to reflect the name of
your UCMD.

2. Open the project file. Choose the Set Project Type command in THINK C’s Project menu.
Change the name item to reflect the name of your UCMD.

3. When you’re ready to build the project, select the Build Code Resource command from the
Project menu. Name the file xxx.ucmd, where xxx is the name of your UCMD.

4. To load the UCMD into your Frontier object database, drag and drop the xxx.ucmd file onto
the Load CMD Droplet.

UCMDs & XCMDs 2.0, page 5.
© copyright 1992 UserLand Software
10/9/92

UCMD glue scripts

The glue scripts for UCMDs work much the same way as glue scripts for Apple Event-aware
programs, with one important exception. Instead of the target of the appleEvent call being the
creator id of a program, the target is the address of the object database cell that holds the UCMD
code.

The stringOps UCMD implements a single Apple Event, it converts its string parameter to upper
case. There are two entries in the system.extensions.stringOps table, allUpper and code.

Here’s how the allUpper script connects outside callers to the UCMD:

You can call it from the Quick Script window as follows:

UCMDs & XCMDs 2.0, page 6.
© copyright 1992 UserLand Software
10/9/92

By convention, all UCMD and XCMD code objects are loaded into a sub-table in
system.extensions with the same name as the code resource. Inside the sub-table, the name of the
XCMD or UCMD is “code.” For UCMDs there are one or more glue scripts that call the
appleEvent built-in to talk to the UCMD code. The only difference for XMCDs is that their
single glue script uses the callXCMD Frontier kernel call.

These conventions are supported by the Load CMD droplet.

XCMDs

XCMDs versus XFCNs

We use the term “XCMD” to refer to all X-things, as seems to be the convention in the Hyper
world.

Why use XCMDs instead of XFCNs? There doesn’t seem to be a good reason. All Frontier
scripts are expected to return a value, even if it’s just a boolean true. Therefore, if you’re writing
a new XCMD code extension, we suggest that you return a value, and use the XFCN shells we
provide as a starting point.

XCMD callbacks

HyperCard 1.0 callbacks are supported to the extent that they make sense in the Frontier
environment, including most of the HyperTalk Utilities and all of the String Utilities and String
Conversions. In addition, the HyperCard 2.0 SendHCEvent callback is supported.

RunHandler and the Field Utilities are not currently supported. Unsupported callbacks are well-
behaved; they return NIL and set the return code to xresNotImp.

When calling EvalExpr, SendCardMessage, or SendHCMessage, the message or expression must
be a valid UserTalk script. All three of these callbacks execute the script, but only EvalExpr
returns the result.

When getting or setting a global, any value in the current script’s scope can be named. If
SetGlobal is called with a name that isn’t defined and isn’t a dotted database path, the value is
placed in the scratchpad table. If GetGlobal is called with a name that isn’t defined, an error is
returned.

In general, we do not recommend that you call WaitNextEvent in your XCMD, but if you do it’s
important that you use the SendHCEvent callback to allow Frontier to processes events that you
don’t respond to.

UCMDs & XCMDs 2.0, page 7.
© copyright 1992 UserLand Software
10/9/92

Writing a new XCMD

1. In the Finder, copy one of the folders in the XCMD folder using the Finder’s Duplicate
command. Change the name of the project file and the C source file to reflect the name of
your XCMD.

2. Open the project file. Choose the Set Project Type command in THINK C’s Project menu.
Change the name item to reflect the name of your XCMD.

3. When you’re ready to build the project, select the Build Code Resource command from the
Project menu. Name the file xxx.xcmd, where xxx is the name of your XCMD.

4. To load the XCMD into your Frontier object database, drag and drop the xxx.xcmd file onto
the Load CMD Droplet.

The callXCMD built-in

The callXCMD verb returns the value returned by the XCMD or XFCN — a string. If an XCMD
doesn’t return a value, callXCMD will return true. If an XFCN doesn’t return a value,
callXCMD returns the empty string.

The first parameter to callXCMD is the address of the XCMD binary object. It is followed by the
XCMD’s parameters, all of which are implicitly coerced to strings.

HyperCard 1.0 callbacks are supported to the extent that they apply to the Frontier environment.
This includes EvalExpr, SendCardMessage, SendHCMessage, the memory and string utilities,
and the string conversions. RunHandler and the field utilities are not currently supported.
Unsupported callbacks are well-behaved; that is, they have no effect or return null values as
appropriate.

Using the GetGlobal and SetGlobal callbacks, an XCMD can get or set the value of any variable
defined in the context of the call, including local variables. Using EvalExpr, SendCardMessage,
or SendHCMessage, an XCMD can execute any valid UserTalk script.

UCMDs & XCMDs 2.0, page 8.
© copyright 1992 UserLand Software
10/9/92

XCMD glue scripts

Glue scripts for XCMDs work much the same way as glue scripts for UCMDs with two
exceptions:

1. Usually there is only one glue script for each XCMD.

2. XCMD glue scripts use the callXCMD built-in.

Here’s what the stringupper XCMD glue script looks like:

You can call it from the Quick Script window as follows:

See “UCMD glue scripts,” above, for more information. For background on glue scripts, see the
“Frontier Install File Creator” sub-folder in the Utilities & Scripts folder.

UCMDs & XCMDs 2.0, page 9.
© copyright 1992 UserLand Software
10/9/92

Here’s the complete list of supported XCMD callbacks:

• EvalExpr

• SendCardMessage

• SendHCMessage

• SendHCEvent

• GetGlobal

• SetGlobal

• ZeroBytes

• ScanToReturn

• ScanToZero

• StringEqual

• StringLength

• StringMatch

• ZeroTermHandle

• BoolToStr

• ExtToStr

• LongToStr

• NumToHex

• NumToStr

• PasToZero

• PointToStr

• RectToStr

• ReturnToPas

• StrToBool

• StrToExt

• StrToLong

• StrToNum

• StrToPoint

• StrToRect

• ZeroToPas

UCMDs & XCMDs 2.0, page 10.
© copyright 1992 UserLand Software
10/9/92

Sample UCMDs & XCMDs

stringOps UCMD

This UCMD implements a single Apple Event, it converts the single string parameter to upper
case.

Enter the following into the Quick Script window. It displays HELLO WORLD! in the main
window.

msg (stringOps.allUpper ("Hello World!"))

scriptRunner UCMD

Demonstrates the use of the runscript routine in the UCMD Toolkit.

The scriptRunner.do glue script takes one parameter, a string containing a UserTalk script which
will be executed.

Enter the following into the Quick Script window. It displays a random number between 1 and
100 in Frontier’s main window.

scriptRunner.do ("msg (random (1, 100))")

trigCmd UCMD

This is the UCMD version of the Trig sample application.

Check out trigCmd.examples for performance testing script and a oneLiners outline.

wordInfo UCMD

This UCMD implements three Apple Events that locate and count words in a string of text.
Check out wordInfo.examples for a oneLiners outline and a script that tests UCMDs for memory
leakage.

Note: we’ve also included wordInfo as an XCMD so you can easily compare the two different
approaches.

stringupper XCMD

This XCMD converts the single string parameter to uppercase.

Enter the following into the Quick Script window. It displays HELLO WORLD! in the main
window.

msg (stringupper.get ("Hello World!"))

This XCMD duplicates the stringOps UCMD. We used it in determining the performance
differences between XCMDs and UCMDs.

UCMDs & XCMDs 2.0, page 11.
© copyright 1992 UserLand Software
10/9/92

syslargestblock XCMD

This XCMD returns the size of the largest block in the Macintosh system heap. It’s the same
number that’s displayed by the About This Macintosh command in the Finder’s  menu.

To call this XCMD from a script, we’ve provided a glue script that’s called as follows:

syslargestblock.get ()

sysfreemem XCMD

This XCMD returns the total number of free bytes in the Macintosh system heap.

To call this XCMD from a script, we’ve provided a glue script that’s called as follows:

sysfreemem.get ()

