
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

MPW’s -mc68881 Option
Platforms & Tools

Revised by: Dave Radcliffe May 1992
Written by: Bryan Stearns July 1987

This Technical Note discusses MPW’s -mc68881 option, which represents Extended
values in 96 bits (instead of 80, as with software SANE), and compatibility issues when
using non-SANE system calls that expect 80-bit Extended values.

Changes since June 1990: Extended the warning about explicitly checking for the presence
of an FPU if an application uses floating-point instructions to include the possibility of FPU-
less MC68040 products and also raised the issue of extended values embedded in data
structures.

MPW Compilers and Extended Values

The MPW 2.0 and later compilers provide a command-line option, -mc68881, to generate
in-line code to use the Motorola 68881/68882 floating-point units (FPU). (Note that MPW
compilers currently do not include a -mc68882 option, as they treat the two chips the same.
If you want to optimize code for the 68882, then you need to write your own assembly-
language code.) This option allows applications to sacrifice compatibility with other
Macintosh models (those not equipped with an FPU) in exchange for much increased
numeric performance.

Warning: Applications should not make assumptions about the presence of an FPU
based upon the microprocessor of a Macintosh. If an application makes a
conditional branch to execute floating-point instructions directly, then it
should first explicitly check for the presence of the FPU with _Gestalt
or _SysEnvirons. Furthermore, you should not assume that the
presence of an MC68040 processor guarantees access to floating-point
instructions. Motorola has announced a reduced-cost MC68040 CPU that
lacks an integral floating-point unit. Possible inclusion of such a CPU in
future Macintosh products means FPU-less 68040 products may someday
exist.

When using the -mc68881 option, the compiler stores all Extended values in the 96-bit

Developer Support Center May 1992

Macintosh Technical Notes

format used by the 68881 instead of the 80-bit software SANE (Standard Apple Numerics
Environment), both of which are illustrated in Figures 1 and 2.

Developer Support Center May 1992

Macintosh Technical Notes

15-bit
exponent

64-bit
mantissa

63 079 78

1-bit
sign

Figure 1 Software SANE Format (80-Bit)

16-bit
UNUSED

15-bit
exponent

64-bit
mantissa

79 06395 94

1-bit
sign

Figure 2 MC68881 Format (96-Bit)

This difference in format affects all procedures that accept floating-point values as
arguments, since all floating-point arguments are converted to Extended before being
passed, no matter how they are declared (for example, Real, Single, Double, or Comp).

When compiling with this option, you must link with a special SANELib library file,
SANE881Lib.o; the interface source file SANE.p contains conditional-compilation
statements to make sure that the correct library’s interface is compiled. In this situation,
SANE procedures are used for certain transcendental functions only (see the last section of
this Tech Note), and these functions, which are in SANE881Lib.o, expect their Extended
parameters in 96-bit format.

However, numeric routines that are not compiled by Pascal (such as any assembly-language
routines) have no way of finding out that their parameters are in 96-bit format. If it is not
possible to rewrite these routines for 96-bit values, you can use the SANELib routines
X96ToX80 and X80ToX96 to convert between formats. It might be simplest to define a
new interface routine that automatically converts the formats:

Pascal

 {FPFunc is a generic floating-point, assembly-language function that accepts}
 {an 80-bit Extended parameter and returns an 80-bit result.}
 {We've changed the types to reflect that these are not 96-bit values.}

 FUNCTION FPFunc(x: Extended80): Extended80; EXTERNAL;

 {Given that we're compiling in -mc68881 mode, the compiler}
 {thinks that Extended values are 96-bits long, but FPFunc wants an}
 {80-bit parameter and produces an 80-bit result; we convert.}

 FUNCTION FPFunc96(x: Extended): Extended; {x is a 96-bit extended!}
 BEGIN
 {convert our argument, call the function, then convert the result}
 MyFPFunc := X80ToX96(FPFunc(X96ToX80(x))); {call the real FPFunc}
 END;

C

 extern Extended80 FPFunc (Extended80 x);

 Extended FPFunc96 (Extended x); //x is a 96-bit extended!

Developer Support Center May 1992

Macintosh Technical Notes

 {

Developer Support Center May 1992

Macintosh Technical Notes

 //convert our argument, call the function, then convert the result
 MyFPFunc = X80ToX96(FPFunc(X96ToX80(x))); //call the real FPFunc
 }

It’s best to avoid compiling some parts of an application with the -mc68881 option on and other parts with it off; very strange bugs can occur
if you try this. Note that 80-bit code and 96-bit code cannot reference the same Extended variables. There is no way to tell whether a given
stored value is in 80-bit format or 96-bit format.

Size of Data Structures

Compile time differences in the size of extended variables also cause problems for variables embedded in data structures. The size of data
structures and offsets within the structure can change depending on the compile-time options. This could be particular troublesome of you write
the data to a file and then attempt to read the file with a version of the program which was compiled differently.

An example of this can be found in some of the Sound Manager interfaces. For example, prior to MPW 3.2.1, the ExtSoundHeader record
contained an extended field which could cause the problem described above. In MPW 3.2.1, the extended field was changed to the uniform type
extended80 to avoid the problem.

SANE on the Macintosh II

The version of SANE provided in the Macintosh II ROM recognizes the presence of the
68881 and uses it for most calculations automatically. SANE still expects (and produces) 80-
bit-format Extended values; it converts to and from 96-bit format internally when using
the 68881.

A Note About 68881 Accuracy and Numeric Compatibility

SANE is more accurate than the 68881 when calculating results of certain functions (Sin,
Cos, Arctan, Exp, Ln, Tan, Exp1, Exp2, Ln1, and Log2). To maintain this accuracy,
SANE does not use 68881 instructions to directly perform these functions; thus the results
you get from SANE calculations are still identical on all Macintosh systems.

To preserve this numeric compatibility with other SANE implementations, MPW compilers
normally do not generate in-line 68881 calls to the above functions, even when the
-mc68881 option is used; instead, they generate SANE calls to accomplish them. If you are
willing to sacrifice numeric compatibility to gain extra speed, you can override this compiler
feature with the compile-time variable, Elems881; include the option -d Elems881 =
TRUE on the Pascal compiler and -Elems881 on the C compiler command line to cause
the compiler to generate direct 68881 instructions.

For certain other transcendental functions provided by the 68881 that are not provided by
SANE, MPW compilers generate direct 68881 calls if the -mc68881 option is on,
independent of the setting of the Elems881 variable. These operations are Arctanh,
Cosh, Sinh, Tanh, Log10, Exp10, Arccos, Arcsin, and Sincos.

Developer Support Center May 1992

Macintosh Technical Notes

For Pascal programmers, it is important to note that if you want an application to check for
an FPU and exit gracefully if it does not exist, then you need to check for the FPU with code
that does not have the -mc68881 option turned on. You need to do this because the
-mc68881 option inserts code to initialize the 68881/68882 at the beginning of your code,
and this initialization code causes an exception error if no FPU is present. For example, if
you check for the existence of an FPU in your main Pascal procedure, you need to compile
that main procedure with {$MC68881-}. Note that this compiler option affects the entire
file that contains the option, so you would need to separate any code that uses an FPU into
another file.

After you determine that an FPU exists, you have to execute the following instructions by
hand to initialize the FPU yourself:

PROCEDURE ClearTheFPU ();
 INLINE $42A7, {clr.l -(a7)}
 $42A7, {clr.l -(a7)}
 $F21F, $9800; {fmovem (a7)+,FPCR/FPSR}

Further Reference:
• Inside Macintosh, Volume V-1, Compatibility Guidelines
• Apple Numerics Manual, Second Edition
• M.OV.GestaltSysenvirons
• M.HW.SpeedyMathCoProc
• MPW Pascal Reference Manual

Developer Support Center May 1992

