Frontier Install File Creator, page 1.
© copyright 1992 UserLand Software
10/9/92

Frontier Install File Creator

UserLand Software, Inc.

UserLand Software is located at 400 Seaport Court, Redwood City, CA 94063. 415-369-
6600, 415-369-6618 (fax). UserLand and Frontier are trademarks of UserLand Software,
Inc. Other product names may be trademarks or registered trademarks of their owners.

Email: userland.dts@applelink.apple.com. If you’re an AppleLink user, check out the
UserLand Discussion Board under the Third Parties icon. CompuServe users enter GO
USERLAND at any ! prompt.

Comments, questions and suggestions are welcome!

Background

You’ve added Apple Event support to your application. You’ve installed the Menu Sharing
Toolkit. You’re almost ready to ship.

But how are script writers going to learn about your Apple Event support?

This document is part cookbook, part style guide. If you follow it carefully, Frontier script
writers will love your product.

Frontier Install File Creator, page 2.
© copyright 1992 UserLand Software
10/9/92

An Example

Check out “Minimal Applet” in the Sample Code folder. In addition to being an example of
programming with the Applet Toolkit, it also has a readme file, a Frontier install file, and a
DocServer text file included in the “MinApp & Frontier” sub-folder.

= == MinfApp ¥ Frontier ==

I itemns 114.1 ME in dizk 216K available
itd
=Ems
Fead Ma Fin &pp Frantiar DiocSerwar Source Text
7
] S [

MinApp.Frontier is a Frontier install file. It contains an embedded script that adds support
for your application to a script writer’s object database.

DocServer Source Text is a text file that contains documentation for the Apple Events that
your program implements.

The “MinApp & Frontier” folder illustrates the principles outlined in this document. Feel
free to copy it and modify the contents so it works for your application.

Frontier Install File Creator, page 3.
© copyright 1992 UserLand Software
10/9/92

Getting Started

Make a list
You’ll need the following information before configuring Frontier for your application:

1. Your application’s name. It should be short, but not so short as to be cryptic. It must be
a language identifier, and therefore should contain no spaces, and it must start with an
alphabetic character. Underscores are allowed but not recommended. By convention,
application names are MixedCase: like BarChart, QuickMail, PageMaker.

2. Your application’s creator id. This is the 4-character creator id for your application
and your data files.

3. Does your application support menu sharing? For more information, see the Menu
Sharing Toolkit folder.

4. The application file. You may have several copies of your program on your system,
Frontier needs to know which copy to launch when communicating with your
application.

Set up Frontier

First, launch Frontier.

A new version of the Commercial Developers Suite is included in this folder. Double-click on its
icon to install.

Select Commercial Developers from the Suites menu. A new menu appears in Frontier’s menu
bar: the Glue menu. It’s name has historic significance from the days when Frontier install files
were called “glue files.”

Select “Enter Your App’s Name” from the Glue menu. A series of dialogs guide you thru the
process of setting up Frontier to work with your application.

Frontier Install File Creator, page 4.
© copyright 1992 UserLand Software
10/9/92

Your Glue Table

Where your glue table lives

If you entered the name “MyApp” for your application, the glue table will be created at
system.verbs.apps.MyApp. Use Frontier’s Jump To command (cmd-J) to open your glue table.

Frontier scripts can reference this table directly because the address of system.verbs.apps is in
Frontier’s “paths” table. See pp 85-86 in the Frontier User Guide for details.
MyApp.appInfo

An “applnfo” table was created too. It has several bits of information that help Frontier work
with your application:

1. app1Supported is a boolean, indicating whether or not the application supports the app1
verb set.

2. sharedMenus is a boolean, it indicates whether or not the application implements
Frontier’s menu sharing protocol.

3. name is a string, it’s used in Frontier messages that mention your application by name.
Without this string, Frontier would have to refer to BarChart as 'BARC' That’s not as
friendly as using a longer string. This name does not have to be an identifier, so you can
change it to whatever makes sense for your application.

4. path is a string, set automatically and maintained by the app.start Frontier verb.

5. id is a 4-character string, the creator id of your application.

MyApp.id

This is the target of all the Apple Events sent to your application. Usually it is just the creator id
of your application. However, if Frontier is talking to your application over a network, it contains
the network address of your application. If you’re debugging with THINK C, it contains the id
'KAHL".

You should never assign to MyApp.id, but all your glue scripts should refer to it. Details follow.

Frontier Install File Creator, page 5.
© copyright 1992 UserLand Software
10/9/92

Write your first glue script

Let’s write a “glue script” to connect to one of the Apple Events implemented in your program.
We’ll start with a very simple one that simply tells your program to quit.

Bring your glue script table to the front. It’s the one named system.verbs.MyApp.

From the Table menu in Frontier, select the New Script... command. Enter the name for your
script:

Mame for new script cell?
quiﬂ

[cancel | [ok |

A window opens with an empty script. Enter the following into the new window (use the tab key
to indent the second line):

system.verbs.apps.MyRpp.quit

TR

Launch your application. Then bring up Frontier’s Quick Script window (press cmd-semicolon)
and type:

MyApp.qulit () b

true |

Frontier Install File Creator, page 6.

© copyright 1992 UserLand Software

10/9/92

Then click on the Run button. Frontier runs the MyApp.quit script; in turn, it sends an Apple
Event to your application telling it to quit. If you’ve correctly implemented the required event
suite (fingers crossed!) your application should no longer be running.

Let’s do another experiment. Bring the Quick Script window to the front and click on the Run
button again. You should see an error message:

Can't send the message because "MyApp" isn't
running ar isn't LAC-aware,

Go To

[

If you click on the Go To button, Frontier takes you to the place that the error occurred, the call
to the appleEvent built-in.

The second glue script
Now let’s write a script that connects to the required 'odoc’ Apple Event.

In Frontier, bring system.verbs.MyApp to the front, select New Script... from the Table menu
and name the script openDocument. Then enter the following script into the new window:

=[1=——— system.verbs.apps.MyApp.opecnDocument =———[11=
Fun Diebug Compile als
i on openDocument (fileFath)
i return CappleEvent (My App.id, ‘aewt’, ‘odoc’, '====", alias [filePath)))
I
[l =]

Launch your program, then enter the following into the Quick Script window and click on the
Run button:

MyApp.openDocument ("System:Test Document")

Inside the quotes, enter the full path to a document created by your application. Switch into your
application. You should see a window displaying the contents of the document.

Frontier Install File Creator, page 7.
© copyright 1992 UserLand Software
10/9/92

The remaining glue scripts

The rest of your glue scripts will follow the same pattern. Write one script to connect to each of
the Apple Events supported by your application.

To see an example of a complete glue scripts table, double-click on MinApp.Frontier in the
Minimal Applet folder, and jump to system.verbs.apps.MinApp.

Sample code

If you’re looking for examples of how to implement the other side of these glue scripts, have a
look at the “Menu Sharer” sub-folder in the Sample Code folder. It builds on the IAC Tools
library to implement its five Apple Event handlers.

MyApp.readme

Create a wp text object in your glue scripts table with pointers showing script writers where to go
for more information.

MyApp.examples

You should include some example scripts to show script writers how to work with your
application in a sub-table of your glue script table. Call it examples.

See MinApp.examples for some ideas. They don’t have to be profound, actually the simpler the
better. Give us ideas on how to access the power of your program.
innerCasing

By convention, the names of glue scripts are innerCase. The first character is lower case. Each
new word in the script name begins with an uppercase letter.

Frontier Install File Creator, page 8.
© copyright 1992 UserLand Software
10/9/92

Your Shared Menu

Where your shared menu lives

If your application’s creator id is 'MYAP', the shared menu for your application is at
system.menubars.M YAP. Use Frontier’s Jump To command (cmd-J) to open your menubar.
Its Purpose

When you add menu sharing to your application you’re allowing script writers to add commands
to your program. When preparing a sample menu bar to ship with your application, you’re
providing examples that will show script writers what they can do.

It’s created automatically

When you entered your application’s name using the Glue menu, a new shared menu is created
automatically. Initially this menu has three real commands and three placeholders for demo
scripts.

Conventions

The art of developing shared menus has progressed substantially. This section details some of
what we’ve learned. It’s a style guide, not hard and fast rules. But a bit of consistency between
shared menus will make it easier for people to learn how to write scripts for new apps.

1. Use hierarchies sparingly.

If you have ten commands to share as sample scripts, don’t use any hierarchies. Keep a
balanced appearance, put the same care into organizing the structure of your shared menu as
you would with a “hard wired” menu.

2. One menu, not five.

Leave lots of room for script writers to be creative. The more menus you write, the less
inviting for the script writer. Choose your examples carefully.

3. Call it the Scripts menu.

Give it a name to set it off from the rest of your menus. The script writer can change this
later.

Frontier Install File Creator, page 9.
© copyright 1992 UserLand Software
10/9/92

4. Include an About command.

It should be the first item in the menu. It should bring Frontier to the front, use the built-in
dialog.notify command to display a short message and then bring your application to the
front after the user clicks on OK.

5. Cmd-M opens the shared menu.

This should be the second-to-last item in your shared menu. It opens the shared menubar for
the script writer to edit it. If cmd-M is already in use in your program, leave the cmd-key
blank in the menu bar editor.

6. Cmd-T opens the scripts table.

This should be the last item in your shared menu. It opens your application’s scripts table. If
cmd-T is already in use in your program, leave the cmd-key blank in the menu bar editor.

When your menu bar is created initially it is set up automatically to follow these conventions. Of
course you can and should edit it.

Exporting your Install File

When to do it

In the process of releasing Apple Event support for your application, you will export your install
file many times. Basically, any time you want to give a copy of your program to a script writer,
you should export a current install file and include it with your application.

How to do it

It’s very simple. Select Commercial Developers from the Suites menu to add the Glue menu to
the menu bar. Be sure that you’ve entered the name of your application. Then choose Export
Install File... from the Glue menu.

Frontier Install File Creator, page 10.
© copyright 1992 UserLand Software
10/9/92

DocServer Docs

DocServer

UserLand includes a copy of DocServer with Frontier, and it is available for downloading on the
AppleLink and CompuServe on-line services. The purpose of DocServer is to provide a quick
and simple way for script writers to access documentation for your glue scripts.

commercial.sampleDocs

Preparing your DocServer docs is done in Frontier, using the built-in outliner.

Open the outline at commercial.sampleDocs. As you browse thru it you’ll see that there’s a
common structure. Each verb has information about its syntax, parameters, action and returned
values. Also included are example script fragments and often notes and pointers to other relevent
verbs.

To prepare documentation for your verbs, edit this outline. Then select the Compile DocServer
Text command to export the outline into a format that can be read by DocServer. To see what
your docs look like, launch DocServer and doube-click on the file.

Include this file in your “MyApp & Frontier” folder.

Frontier Install File Creator, page 11.
© copyright 1992 UserLand Software
10/9/92

MyApp & Frontier

The Folder

You should prepare a folder called “MyApp & Frontier.” You may choose to include it on your
shipping disk or upload it to UserLand’s CompuServe forum (Library 3, Scriptable Apps). It
should contain three files:

Read Me

You should include a Read Me file in TeachText format. Tell the reader how to install support for
your application in Frontier. Keep it direct and simple. You’'re talking to script writers, they’re
more technical than the average end user. People will tune out if the installation instructions are
too complicated.

MyApp.Frontier
This is your Frontier install file. This file is created by the Export Install File... command in the
Commercial Developer Suite, included in this folder. Details are provided in a separate section.

MyApp.DocServer

This is a text file, produced by the Compile DocServer Text command in the Commercial
Developers Suite. It’s file type is TEXT, the creator is DOCS. When the script writer double-
clicks on this file, UserLand’s DocServer app launches and loads the text into its database.

Frontier Install File Creator, page 12.
© copyright 1992 UserLand Software
10/9/92

‘aete' Resources

Jump-starting your glue table

Terminology or 'aete’ resources are the equivalent of Frontier install files for Apple Computer’s
AppleScript software. If you already have such a resource for your application, you can use the
Commercial suite’s “Import 'aete’ Info” command to jump-start your glue table. The command
scans your application’s terminology resource and creates a set of glue scripts for the events you
support. It also adds values to your table corresponding to any classes, properties, and
enumerators you’ve defined.

All of the items are named according to the terminology in the resource, with multiple-word
names mapped to innerCase identifiers. Classes and properties are represented as string4Type
values, while enumerators are binaryType [enum] values.

If you fully support the Core or Miscellaneous Standards suites, a set of scripts is created that
call Frontier’s corresponding core or misc verbs. So in cases where Frontier defines more than
one verb for an event, such as core.get and core.getAs, your table will include matching entries.
For individual suite events and custom events, a glue script is created directly from the 'aete’
data.

Hand-tuning the result

The resulting glue table will be almost ready for prime time. But it should be reviewed carefully,
and fine tuned as necessary. In particular, the 'aete' resource doesn’t provide a name for an
event’s “direct” parameter. Frontier makes a best-guess at a name based on the parameter’s
datatype, but it’s likely that you can come up with something more meaningful. For other
parameters, the name retrieved from the resource may be a UserTalk keyword; check for this by
making sure that every glue script compiles.

As you go through the hand-tuning process, you may want to take notes about the changes you
make. If you end up wanting to re-import from the resource later, you’ll need to apply the
changes again.

Once you have the glue scripts tuned to your satisfaction, you should think about providing
higher-level verbs that build on this basic set. Consider the types of tasks that script writers
might want to accomplish with your application; does it make sense to bundle several common
steps into a single verb? For object model applications, there may be events that are likely to be
called with a specific set of parameters. For example, a charting application might add a
“createNewChart” verb that simplifies the use of the core “create” event. The time you spend
smoothing out the scripting interface here will make a lot of difference to script writers.

Frontier Install File Creator, page 13.
© copyright 1992 UserLand Software
10/9/92

Scriptability Checklist

Launching in the background

Many apps assume that the only way they can be launched is by the user double-clicking on
something in the Finder, or selecting their application from the Apple menu. In other words, they
assume that when they are launched they will be the frontmost application.

However, when a script launches your application it will not be the frontmost application until
the script brings you to front. If you are performing a server function for the script, you may
never be brought to front.

Therefore, techniques like splash screens work only if they do not require interaction from the
user. In fact, it would be more polite to only show a splash screen if you are the frontmost app.

Some early System 7 apps break this rule, and as a result are much less useful to script writers.

